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Measuring how well software component can be reused and maintained helps 

programmers not only write reusable and maintainable software, but also identifies 

reusable or maintainable components. We develop an automated measurement tool, 

JamTool, for object-oriented software system and describe how this tool can guide a 

programmer through measuring internal characteristics of a program for software reuse 

and maintenance. 

In this research, primitive but comprehensive metrics for object-oriented language 

are extensively studied and statistically analyzed to show internal characteristics from 
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classes selected from various applications. Also, the automatically identified connected 

unit, reusable unit, and maintainable unit are discussed. 

We demonstrate JamTool’s ability through case studies. The first case study 

investigates whether JamTool can be used to assess the reusability on the evolution of an 

open software system. The second case study investigates whether JamTool can be used 

to capture the difference between two consecutive versions on the evolution of the open 

software system. The third case study investigates whether the metrics defined and 

implemented in JamTool are related to each other. 
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1 INTRODUCTION 

1.1 The general area of the research 

While application development has become a huge and complex task, software 

productivity has improved slowly over the past years. One of the many goals of software 

developers (e.g., project managers and programmers) is to have control of software 

production and its quality. According to Moser and Henderson-Sellers [42], the following 

three steps are important to achieving this goal. 

1. Knowing where one stands 

2. Aiming where we wish to go 

3. Going there (and reapplying the problem solving steps periodically while 

going)  

Steps 1 and 2 are related to measurement, i.e., we should measure what we want 

to control.  

Fenton and Pfleeger describe that a quality software product is characterized by 

many sound software attributes that may provide useful indications of the maintainability 

and reusability of a software product [17]. Without an accompanying assessment of 

product quality, progress of product is meaningless. Thus, it is important to recognize and 

measure certain desirable software quality attributes.  
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Fisher and Light define software quality as “The composite of all attributes which 

describe the degree of excellence of the computer system.”[19] Fenton et al. focus on the 

purpose of software quality by defining, “The totality of features and characteristics of a 

software product that bear on its ability to satisfy the stated or implied needs.”[16] 

Despite several attempts to quantify the elusive concept of software quality like 

McCall’s Factor Criteria Metric (FCM) model [40] and Basili’s Goal Question Metric 

(GQM) approach [2], measurement of software quality is still not empirically validated.  

Object-oriented technologies have claimed to improve software quality to support 

reuse and to reduce the effort of maintaining the software product. However, many 

object-oriented methods, tools, or notations are being used without evaluation.  

Kitchenham et al. have observed that code and design metrics can be used in a 

way that is analogous to statistical quality control [27]. According to them, object-

oriented code can be accepted or rejected based on a range of metric values. Rejected 

object-oriented code can then be revised until the metric values fall within a specified 

acceptable range.  

 It is argued that existing traditional software metrics are not suitable for object-

oriented systems. Therefore, many new metrics are being proposed for object-oriented 

systems, but only a few have been validated. We need a metric set for object-oriented 

software construction to measure how the reusability and maintainability of the software 

could be improved. But metric research of the object-oriented paradigm is still in its 

infancy.  

The primary motivation to reuse software components is efficiency.  It is achieved 
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by reducing the time, effort and/or cost required to build software systems. The quality 

and reliability of software systems are enhanced by reusing software components, which 

also means reducing the time, effort and cost required to maintain software systems. 

Researchers agree that although maintenance may turn out to be easier for object-oriented 

systems, it is unlikely that the maintenance burden will completely disappear. One 

approach to controlling software maintenance costs is the utilization of software metrics 

during the development phase to help identify potential problem areas. 

Measuring how well the software component can be reused and maintained helps 

programmers not only write reusable and maintainable software, but also identify 

reusable or fault-prone components. Since there are hundreds of software complexity 

measures that reveal internal characteristics of an object-oriented program, it is important 

to have the right criterion to select a good subset of these measures. 

This research will develop an automated metric tool that attempts to guide  

programmers to reuse and maintain object-oriented programs based on software 

measurement.  

The following research activities will be accomplished in this study.  

Quality Measurement Model Development 

We will first identify essential software properties that have been suggested as 

having an impact on software quality.  The properties that can be directly or indirectly 

derived from the source code will then be selected for this study.   

We will divide measurement factors (i.e., reusability and maintainability) into five 

subfactors (i.e., identification, separation, modification, validation, and adaptation) in a 
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top-down fashion. We believe that these subfactors are more tangible and useful to 

connect to software product metrics and cover most of the reuse and maintenance 

activities.  We will also apply bottom-up approach to develop quality measurement 

models for reusability and maintainability based on available measurement types that are 

related to reuse and/or maintenance properties. Using these top-down and bottom-up 

approaches, we will construct a concise quality measurement model for reusability and 

maintainability.   

Widespread adoption of object-oriented metrics can only take place if the metrics 

have been empirically validated, i.e., they accurately measure the attributes of software 

and can be applied easily.   

Automated Measurement Tool 

Users can get an instant measurement feedback while developing object-oriented 

software using an automated tool implemented in this research. The collection, 

derivation, and display of metrics would take place interactively to provide practical and 

non-intrusive feedback. Effort is also devoted to present the metric results along with the 

connected classes, to locate reusable or maintainable classes. 

The research in this dissertation describes how an automated measurement tool 

[29] can guide a programmer through measuring internal characteristics of a program for 

software reuse and maintenance purposes. 

1.2 Statement of the Problems 

It is worthwhile to note that Zuse claims that the results of measurement are 
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difficult to interpret if too many properties of a program are combined into one number 

[51], and Schneidewind argues that a standard set of quality measurement may be 

available in the future [47]. Information is lost if a single-valued measure is used. A 

vector of measures can provide complete information on individual properties of a 

program.  

GQM is useful to identify objectives for measurement, but the available set of 

metrics may not be applicable to the desired objectives. Thus, identifying a set of  

“potentially useful” metrics in some systematic manner could improve the object-oriented 

metrics research effort [22].  After the identification of a set of quality factors and a set of 

metrics, the relations between them should be identified by empirical test. While GQM++ 

attempts to resolve some weaknesses of GQM through additional stages, Dromey argues 

that single-level is better than multiple intermediate levels between quality factors and 

software metrics as a means of linking them [14]. Empirical tests are needed to back both 

of these approaches. These previous approaches do not address problems of measurement 

such as appropriate data scales, alarm threshold, and representation of measurement 

result.  

Consequently, previous efforts have been hampered by the following difficulties 

that have discouraged or delayed the application of object-oriented metrics. In particular: 

• There is no clear relationship between the external quality factors and the 

metrics of the software.  

• Most of existing metrics are not intuitive. It requires education on the users’ 

side to have numerical thinking about the quality of software and how to 



 

 

 

 

6 

apply them. 

• In case of measurements that are intrusive and interruptive, measuring 

software quality intimidates programmers. Therefore, it is difficult to apply 

them in the industry. 

• Some metric sets have not been validated theoretically and empirically. 

Furthermore, there are other reasons that software metrics are not used widely in 

the industrial world:  

• Due to the lack of the availability of a standard metric set, it is difficult to 

choose an appropriate metric set for a user’s purpose. 

• It is difficult to interpret the measurement results. 

This research addresses these issues by focusing on a framework for a customized 

quality model and interactive automated metric tool. The key features of this research are: 

• To define simple and computable object-oriented metrics that quantify 

potential reuse and maintenance. The metrics should be easy to comprehend 

and use, and require only simple and well-formed formulas. 

• To implement an automated metric tool that collects, analyzes, interprets, and 

presents the metric data automatically. 

• To guide a programmer to software reuse and maintenance through measuring 

internal characteristics of a program. 

• To empirically verify the validity of the metrics. 
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2 LITERATURE REVIEW 

There have been several attempts to quantify the fuzzy concept of software 

quality by developing a set of metrics for various attributes related to the concept. These 

metrics all involve some degree of software measurement with the ultimate objective of 

improving software quality. As described later in this chapter, constructing a quality 

measuring model could be guided by several approaches. Unfortunately, measuring 

software quality is still an unsolved problem. 

 

2.1 The GQM Approach and its extension 

2.1.1  The GQM approach 

If we can measure the development progress towards a quality product, the 

management of production process is simplified. In manufacturing, individual 

components are compared to tolerance limits (or goals) in order to reject poor quality 

products. As a result, desirable manufacturing processes can be found. Likewise, in order 

to develop a software measurement approach, the goals that we want to attain should be 

clearly defined, e.g., to increase programmer productivity; to decrease the number of 

defects reported per unit of time or to improve the efficiency of the overall development 

process [42]. 

Basili and Weiss propose a Goal Question Metric (GQM) framework with the aim 
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of providing a systematic approach to translate measurement needs into metrics [2]. The 

measurement goals that can be refined into questions in measurable terms, should be 

answered in terms of enumerated metrics. The GQM approach has enabled managers to 

find objectives for measurement and metrics for their software products. But this also 

calls for thorough knowledge on their part of the organization as well as the developed 

software product. 

Gray and MacDonell say that GQM is usually applied with its: 

• Particular purpose (e.g. to evaluate, predict, classify) 

• Certain perspective (e.g. the manager, user, programmer) 

• Given object (e.g. specification, code) 

• Environment (e.g. the people, tools, methodologies). 

Thus, GQM is useful to ensure the proper metrics are allocated to assess the 

conceptual goal [20]. 

Gray and MacDonell also argue that organizations are faced with a wide range of 

software metrics that can lead to difficulties in the selection of appropriate metrics for a 

particular goal. Given the goals of a specific organization, the generic set of metrics 

needs to be tailored. As a result, the tailored metrics set has the greatest predicting power 

for the desired purpose and the least cost of data collection.  Grey and MacDonell also 

recommend a task within a framework that will assist in decomposing goals in order to 

develop a set of software metrics [20]. 

2.1.2  Metrics Multidimensional Framework 

The problem with the application of the GQM approach to object-oriented metrics 
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is that metrics may not exist. Thus, a complementary activity would be to identify the ‘M’ 

component of ‘GQM’ independently of the specific goals and questions. The first major 

step would be to identify a set of  “potentially useful” metrics in some systematic manner. 

Moser and Henderson-Sellers have presented such a method in the form of a so-called 

Metrics Multidimensional Framework (MMDF) [42]. 

The MMDF approach is composed of three dimensions. The first dimension is the 

external characteristic. It is divided into Quality (e.g., Understandability, Maintainability, 

Reusability, etc.) and Size (e.g., External and Internal). The second dimension is the 

granularity (e.g., System, Part, Class, and Method) at which the metric is applicable. 

Finally, the third dimension is the lifecycle phase (e.g., Analysis, Design, and System 

use). While the reasons and motivation for any individual using metrics in an object-

oriented development environment may vary, Moser and Henderson-Sellers argue that the 

most popular metric usage purposes can be identified and described as combinations of 

these three dimensions. This approach can lead to a minimal set of metrics that is 

desirable for practical managerial purposes. Because MMDF permits the identification of 

useful metrics, it should improve the current, more ad hoc and uncoordinated object-

oriented metrics research effort [22]. 

After defining a set of quality goals and a set of metrics, the correlation between 

them should be identified by empirical test using regression. 

2.1.3 GQM++  

MacDonell extends GQM into a hierarchy of goals, subgoals, domains, 

subdomains, questions, subquestions, and characteristic measures. He also argues that by 
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breaking a goal into separate subgoals, the essential differences between metrics needed 

for each subgoal can be identified [36]. 

However, such extensions do not seem to go far enough. Fenton criticized that 

GQM is useful to identify objectives for measurement, but it does not address the actual 

problems of measurement such as appropriate data scales [17]. Gray and MacDonell  

interpret this criticism as the absence of any feasibility, economic, or correctness checks 

in GQM and that its simple and intuitive nature leads to these problems.  

Further, Gray and MacDonell argue that other precedent conditions should be 

studied in addition to GQM. These considerations include the costs and benefits of data 

collection, the detailed plan of modeling and analysis methods, and the agreement of how 

the measurement results could be applied for their software product. The proposed 

framework, Goal/Question/Metric/Collection/Analysis/Implementation (GQMCAI, 

simply GQM++), attempts to resolve some weaknesses of GQM through additional 

stages [36], including data collection, modeling, and implementation. Their extension 

also includes cost/benefit information and assesses the program in terms of economic 

justification and feasibility [20].  

While GQM++ is suggested to be a more comprehensive and pragmatic data 

collection and analysis process, empirical tests are needed to back up this claim. 

2.2  Software Quality Models 

The relationship between software characteristics and software quality has been 

investigated and proposed by many researchers [17, 40, 5, 24]. There have been attempts 

to quantify software quality resulting in omnibus models which have fixed 
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relationship between quality and metrics. Assessing quality by measuring internal 

properties is also attractive because it offers an objective and context independent view of 

quality [28].  

2.2.1 Omnibus Software Quality Metrics 

Both McCall et al. and Boehm et al. describe product quality using a hierarchical 

approach [40, 5]. In McCall’s Factors-Criteria-Metrics (FCM) model, high-level product 

quality like “reusability” and maintainability” are called factors that can be decomposed 

into several lower-level attributes i.e., criteria (See Figure 2-1). The Manager, who has 

responsibility for the software development, or the potential user who will use the to-be-

developed software, should be interested in the final product quality, especially its 

performance, usability, reliability, etc. These views of software product are described in 

terms of software factors and criteria. But these factors and criteria are too elusive to be 

applied to software development. Thus, the criteria should be related directly to 

measurable attributes of the software process or product. FCM model has three views 

(uses) of software product quality, eleven factors, and twenty-five criteria. For example, 

factor “maintainability” relates to several criteria such as consistency, simplicity, 

conciseness, self-descriptiveness, and modularity. Factor “reusability” is decomposed 

into generality, self-descriptiveness, modularity, machine independence, and software 

system independence.  

Boehm’s model, which has a hierarchical structure similar to the FCM model, has 

two primary uses, ‘maintainability’ and ‘utility’. Maintainability is further divided into 

intermediate constructs: understandability, modifiability, and testability. 
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Figure 2-1: McCall Software Quality Model 
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2.2.2 ISO 9126 

According to Fenton and Pfleeger, global software quality model is required for 

comparing quality among software systems. Because of this requirement, the ISO 9126 

model is proposed with six factors - functionality, reliability, efficiency, usability, 

maintainability, and portability [24]. Despite its incompleteness and conflict with other 

standards, ISO 9126 is used by many companies to support their quality evaluation as 

Fenton and Pfleeger described in [16]. 

2.2.3  Dromey’s Quality Model Framework 

Recently, Dromey also defines a model for software product quality [14]. In this 

model, seven high-level quality attributes (six factors of ISO-9126 and reusability) are 

linked in a structural form of software elements (variable and expression) that influence 

software quality [14]. The emphasis is on defining and describing the quality-carrying 

properties, which are classified further into correctness, structure, modularity, and 

descriptive properties. Because Dromy’s model is designed to be refined by empirical use 

to build a useful model, it is a framework to construct a quality models rather than a fixed 

model (e.g., McCall’s FCM model). He argues that placing a single level (a set of quality-

carrying properties) is better than placing several vaguely decomposed intermediate 

levels between the high-level quality and the components of product as a means of 

linking them. In linking the desirable quality-carrying properties and the high-level 

quality, quality mode can be constructed in bottom-up or top-down fashion. Each 

established link should be verified empirically.   
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In Dromey’s approach, identifying and associating a set of quality-carrying 

properties in a structural form is the first task in constructing a quality model. With 

successively defined, evaluated, and refined models, we can build a software quality 

model that ensures quality and detects quality defects in software. 

2.2.4 Fenton’s Approach to Software Quality 

Fenton defines external product attributes as those that can be measured in terms 

of how the product relates to its environment [17]. For example, if the product is a 

software code, then its reliability (defined in terms of the probability of a failure-free 

operation) is an external attribute. It is dependent on both the machine environment and 

the user. Whenever we think of software code as a product, we have to investigate the 

external attributes that the user depends on.  Inevitably, we are then dealing with 

attributes synonymous with software quality.   

Fenton uses several general software quality models [5, 40], each of which 

proposes a specific set of external and internal quality attributes and their 

interrelationships.  For example, maintainability is not restricted to code; it is an attribute 

of a number of different software products, including specification and design documents, 

and even test plan documents. There are two broad approaches to measuring 

maintainability; reflecting the external and internal views of the attribute. The external 

and more direct approach to measuring maintainability is to measure the maintenance 

process. If the process is effective, then we assume that the product is maintainable. The 

alternative internal approach is to identify internal product attributes (e.g., those relating 

to the structure of the product) and establish that they are predictions of the maintenance 
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process. 

All maintenance activities are concerned with making specific changes to a 

product. Once the need for a change is identified, the required efforts of implementing 

that change becomes the key characteristic of maintainability. Many measures of 

maintainability are expressed in terms of mean time to repair (MTTR). A number of the 

complexity measures have been correlated significantly with the level of maintenance 

effort. There is a clear intuitive connection among poor programming structure, poor 

documented products, and poor maintainability of a software product. We cannot say that 

a poorly structured module will inevitably be difficult to maintain. Rather, past 

experience tells us that such kinds of modules have had poor maintainability, so we 

should investigate the courses for a module's poor structure and perhaps restructure it. 

Fenton and Neil indicate that the most significant benefit of software metrics is to 

provide information to support managerial decision-making during software development 

and testing [18]. Simple metrics are accepted by industrialists because they are easy to 

understand and simple to collect. Thus, Fenton and Neil try to use these simple metrics to 

build management decision support tools to handle the uncertainty as well as combine 

different evidences. They use Bayesian Belief nets as a means of handling decision-

making under uncertain circumstances. 

2.2.5  Karlsson’s Approach to Software Quality 

Karlsson proposes a general reusability and maintainability models for C++ code 

[26].  In addition, he suggested that all measurements should be normalized so that they 

yield a value between zero and one, where a value close to zero indicates that the 
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measured characteristic may cause problems, and a value close to one indicates that the 

corresponding characteristic is kept inside its limit. He chose to use the Kiviat diagram 

for metric presentation. This type of diagram represents parameters as vectors plotted on 

a circle. It provides an easy-to-grasp representation of assessment results and can be used 

for factors, criteria and metrics. Kalsson’s models for reusability and maintainability are 

shown in Figure 2-2 [26]. 

 

 

Figure 2-2: Karlsson's Reusability and Maintainability models 
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2.3 Software Metrics 

2.3.1 Object-Oriented Metrics by Chidamber and Kemerer  

A set of object-oriented metrics for measurement was proposed by Chidamber and 

Kemerer [12]. Since this metrics set is very popular, it has become the focus of discussion 

among many researchers. The resulting six metrics directly relate to design and 

implementation of object-oriented software. 

Because previous metrics were criticized for their lack of theoretical basis, lack of 

desirable measurement properties, and for being too labor-intensive to collect, Chidamber 

and Kemerer developed six object-oriented metrics, and evaluated them analytically. 

They also developed an automated data collection tool to collect an empirical sample of 

these metrics. They then suggested ways in which the managers may use these metrics for 

process improvement using empirical data collected from two field sites[12]. We can also 

interpret these six metrics from the view point of quality. 

Weighted Methods per Class (WMC): The WMC metric can be calculated from the 

sum of the complexities of the methods in a class where method complexity can be 

measured using cyclomatic complexity or assumed unity weights for all methods. WMC 

can be used as a predictor of how much time and effort is required to develop and 

maintain the class. A large value of WMC will have a great impact on the children of the 

class. Classes with large WMC value limit the possibility of reuse. This metric can be 

used as a measure of usability and reusability  

Depth of Inheritance Tree (DIT): The DIT is the length of the longest path from a class 
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node to the root of the tree. The deeper a class is within the hierarchy, the greater the 

number of methods it is likely to inherit. Thus its behavior could be predicted to be more 

complex. This metric can be used not only to evaluate reuse, but also to relate 

understandability and testability.   

Number of Children (NOC): The number of children is the number of immediate 

subclasses subordinate to a class in a hierarchy. The measure is an indication of the 

potential influence a class can have on other classes in the design. The greater the number 

of children, the greater the likelihood of improper abstraction of the parent, and the 

potential misuse of subclassing. This also means greater reuse since inheritance is a form 

of reuse. If a class has a large number of children, it may require more testing for the 

methods of that class, thus increasing the testing time.  

Coupling Between Object Classes (CBO): Coupling is a measure of the strength of 

association from one entity to another. CBO is a count of the number of other classes to 

which a class is coupled. It is measured by counting the number of distinct non-

inheritance related classes on which a class depends. Excessive coupling is detrimental to 

modular design and prevents reuse. The more independent a class is, the easier it is to 

reuse it in another application. The larger the number of couplings, the higher the 

sensitivity of changes would have to other parts of the design, and therefore maintenance 

is more difficult. The higher the inter-object class coupling, the more rigorous the testing 

needs to be. 

Lack of Cohesion of Methods (LCOM): Assume P is the number of null intersections 
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and Q is the number of nonempty intersections between two methods. If P is greater than 

Q then LCOM is the differences between P and Q, else LCOM is zero. Two methods are 

considered related if both methods use the same instance variable(s). LCOM is based on 

method interconnection through instance variable reference. Effective object-oriented 

designs maximize cohesion in order to promote encapsulation. A large number of LCOM 

implies that the class is attempting to model more than a single concept and thus may 

need to be decomposed into several classes. 

Response for a Class (RFC): The RFC is the cardinality of the set of all methods that 

could potentially be executed in response to a message to an object of the class. The 

larger the number, the more complex the testing of the class would be. 

2.3.2 Class Cohesion and Coupling Measurement in object-oriented Systems 

In addition to the Chidamber and Kemerer’s metrics set, other metrics have been 

proposed to measure the coupling and cohesion of classes. Cohesion and coupling are 

two structural attributes whose importance is well-recognized in the software engineering 

community. Cohesion refers to the relatedness of module components within a class 

while coupling refers to how classes affect each other.  

The higher the cohesion of a module, the easier the module is to develop, 

maintain, and reuse. Further the module becomes less fault prone. Some empirical 

evidence exists to support this theory for systems developed by object-based techniques 

[8].  

Eder and colleagues [15] propose a framework aiming at providing 

comprehensive, qualitative criteria for cohesion and coupling in object-oriented systems. 
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They distinguish between three types of cohesion in an object-oriented software system: 

method, class and inheritance cohesion. Briand et al. also suggest the framework for 

coupling and cohesion measurement in object-oriented systems [9, 10] For each type, 

various degrees of cohesion exist. Within this framework, an analysis of the semantics of 

a given method or class is required to determine the degree of cohesion. Bieman and 

Kang define class cohesion measure based on dependencies between methods through 

their references to instance variables [4].  

Briand, Morasco, and Basili design a measure to indicate cohesion for software 

developed in Objected-Oriented programming languages such as Ada [7]. Their primary 

cohesion measure, Ratio of Cohesion Interactions (RCI), is based on the number of 

interactions between subroutines, variable declarations, and type declarations. A method 

cannot affect another method through a type reference but it affects the effort required to 

understand the method. 

During the analysis and design phase, and in any code evaluation at the module 

level, inter-module coupling is measured by the number of relationships between classes 

or between subsystems [35].  Class coupling should be minimized, in the sense of 

constructing autonomous modules [6].  Booch also notes that coupling occurs on a peer-

to-peer basis and within a generalization/specialization hierarchy. The former should 

exhibit low coupling, i.e., closely coupled classes should be generalized in a hierarchy.  

Berard differentiates between necessary and unnecessary coupling [3].  The 

rationale is that without any coupling, a system is useless. Consequently, for any given 

software solution there is a baseline or necessary coupling level. It is the elimination of 
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extraneous coupling that should be the developer's goal. Such unnecessary coupling 

needlessly decreases the reusability of the classes [43].   

Li and Henry offer the Message Passing Coupling (MPC) metric as "the number 

of send statements defined in a class" [34]. A similar approach is taken by Rajaraman and 

Lyu where they define coupling at the method level [45]. They define Method Coupling 

(MC) as the number of nonlocal references, and then gross these values up to the class 

totals and class averages. Chidamber and Kemerer define coupling between objects as 

"the number of other classes to which it is coupled and two classes are coupled when 

methods declared in one class use methods or instance variables defined by the other 

class" [12].  Their Response For a Class (RFC) metric counts the number of internal and 

external methods available to a class.  

Fan-in and fan-out are the number of references made from outside a class to 

entities defined within the class and the number of references made from within a class to 

entities defined outside the class, respectively. A low fan-out is desirable since a high fan-

out is a characteristic of a large number of classes needed by the particular class in 

question [3]. A high fan-out also represents a class coupling to other classes and thus an 

"excessively complex dependence" on other classes [23].  A high fan-in normally 

represents a good object design and a high level of reuse.  Since summations of these two 

numbers are the same for a system, it is not likely to maintain a high fan-in and a low fan-

out across the whole system. 

2.3.3 Profile Software Complexity 

Thomas McCabe proposes a measure of software called cyclomatic complexity 
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[39]. Making use of graph theory, McCabe postulates that software with a large number 

of possible control paths would be more difficult to understand, more difficult to 

maintain, and more difficult to test. One of the problems of using cyclomatic numbers as 

a measure of software complexity is that it produces just a single value to describe a 

module’s complexity. 

An alternative approach proposed by McQuaid is a fine-grained approach to 

computing and visualizing complexity [41]. Unlike cyclomatic complexity, the profile 

metric is computed and shown on a statement-by-statement basis. It defines complexity 

in terms of a program statement's content, much like Halstead's effort measurement, and 

context, which is the environment in which the statement occurs.  The context complexity 

can be further refined into three measures: inherency, reachability, and breadth 

complexity.  

The content complexity tries to measure the information quantity and not quality 

within a measurable unit. The context complexity tries to measure the location of a 

measurable unit within the source code. The profile complexity is designed such that the 

context complexity is the baseline complexity, with the content complexity riding on this 

baseline. The rationale of this design is to provide easy identification of complex clusters. 

When a cluster is identified, the content complexity can be used to isolate the heavy 

segment in the cluster. 

2.4 Framework for Coupling and Cohesion Measurement 

Briand et al. propose a unified framework for coupling and cohesion measurement 

for object-oriented programs [9, 10]. The objective of the framework is to support the 
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comparison and selection of existing coupling and cohesion measures with respect to a 

particular measurement goal. In addition, the framework provides guidelines to support 

the definition of new measures with respect to a particular measurement goal when no 

measures exist. The framework, if used as intended, will: 

• Ensure that measure definitions are based on explicit decisions and well 

understood properties, 

• Ensure that all relevant alternatives have been considered for each decision 

made, 

• Highlight dimensions of coupling for which there are few or no measures 

defined. 

The framework for coupling consists of six criteria, each criterion determining 

one basic aspect of the resulting measure. The six criteria of the framework are: 

1. Type of connection: Choosing the type of connection implies choosing the 

mechanism that constitutes coupling between two classes. Table 2-1 

summarizes the possible types of connections. 

2. Direction of connection: Fan-in refers to connection to the module being 

studied. Fan-out measures the connection to other modules from the module.  

3. Granularity of the measure: Domain of the measure and how to count 

coupling connections. 

4. Stability of server: Stable classes are not subject to change in a new project but 

unstable classes are subject to modification in a new project. 

5. Direct or indirect coupling: Counting direct connections only or also indirect 
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connections. 

6. Inheritance: Inheritance-based vs. noninheritance-based coupling, and how to 

account for polymorphism, and how to assign attributes and methods to 

classes. 

 

Table 2-1: Connection Types of Coupling 

# Class 1 Class 2 Description 

1 Attribute a of class c Class d, d ≠ c Type of attribute: Class d is the 

type of a 

2 Method m of class c Class d, d ≠ c Type of parameter: Class d is the 

type of a parameter of m, or the 

return type of m 

3 Method m of class c Class d, d ≠ c Type of local variable: Class d is 

the type of a local variable of m 

4 Method m of class c Class d, d ≠ c Type of invoked method: Class d 

is the type of a parameter of a 

method invoked by m 

5 Method m of class c Attribute a of class d, 

 d ≠ c 

Attribute reference: m references a 

6 Method m of class c Method m’ of class d,  

 d ≠ c 

Method invocation: m  invokes m’ 

7 Class c Class d, d ≠ c Inheritance: Class d the child class 

of class c 

 

 

Table 2-2: Connection Types of Cohesion  

 

# Element 1 Element 2 Description 

1 Method m of class c attribute a of class c Attribute reference: m 

references a 

2 Method m of class c Method m’ of class c Method invocation: m invokes 

m’ 

3 Method m of class c Method m’ of class c, 

 m ≠ m’ 

Attribute sharing: m and m’  

reference an attribute a 
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When specifying a cohesion measure, the following criteria of the cohesion 

framework must be considered.  

1. Type of connection: What makes a class cohesive. Table 2-2 summarizes the 

possible types of connections. 

2. Domain of measure: Objects to be measured (methods, classes, and system) 

3. Direct or indirect connections. 

4. Inheritance: How to assign attributes and methods to classes, how to account 

for polymorphism. 

5. How to account for access methods and constructors. 

 



 

 

 

 

26 

3 SELECTING THE SOFTWARE QUALITY METRICS 

This research focuses on the design, development, and evaluation of an automated 

measurement tool for object-oriented programs. More specifically, the measurement tool 

is targeted for software quality measurement in terms of reusability and maintainability.   

 

3.1 Quality Factors to be Measured  

For the development of practical and automated metric model, we suggest top-

down and bottom-up metrics framework for source code of object-oriented software. In 

this framework, we develop quality measurement model of object-oriented software in 

terms of quality factors during implementation or maintenance phase.  

In most of the stated software metric models, each software quality aspect (e.g., 

maintainability and reusability) is expressed in terms of a hierarchy of factors and 

criteria. The higher-level factors in the hierarchy typically represent the management's 

point of view; while the lower level criteria represent the code-related measurement, i.e., 

each criterion is normally a function of the raw attributes of the software. The structure of 

the hierarchy is largely dependent upon the nature of the software and the desire of the 

project team.  

In a quality hierarchy, code-related criteria are the foundation by which quality is 

defined, judged, and measured.  The measurement represented by a quality metric can be 
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obtained during all phases of the software development to provide an indication of 

progress towards the desired product quality.  In this research, reusability and 

maintainability are the two focused factors that can be applied to the source code to 

provide good quality indication.  

3.1.1 Maintainability 

Software maintenance includes all post implementation changes made to a 

software entity. Maintainability refers to the easiness or toughness of the required efforts 

to do the changes.  Before any changes can be made to a software entity, the software 

must be fully understood.  After the changes have been completed, the revised entity must 

be thoroughly tested as well.  For this reason, maintainability can be thought of as three 

attributes: understandability, modifiability, and testability.  Harrison sees software 

complexity as the primary factor affecting these three attributes [21], while modularity, 

information hiding, coupling, and cohesion are closely related to the complexity (See 

Figure 3-1). 

 

 

 

 

 

 

Since maintenance accounts for a large portion of a software product's cost, if 

properly improved, it has a great potential to reduce the total software cost.  However, 
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Figure 3-1: Harrison’s Maintainability Model 
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without meaningful measure of maintainability, there would be no substantial way of 

verifying improvement, even though certain actions may seem beneficial [21]. 

Historically, maintainability can only be measured after actual maintenance has been 

performed.  In the same application, the time required per module to determine the 

changes indicates understandability; the time to change indicates modifiability; the time 

to test indicates testability.   

Instead of collecting the measurement after the product is completed, our 

approach is to forecast the maintainability based on the source code and display the 

measurement at any time the programmer wishes.  The source code can be at any stage of 

the development, and the measurement will be computed automatically.  This will 

provide a real time grade of the software in the dimension of maintainability. 

3.1.2 Reusability 

When a reusable code is written, the intended users should be somewhat 

identified.  If a code is to include the functionality that every user would want, the 

resulting code would be too expensive to produce and too difficult to use.  Code reuse has 

been common in practice.  But, many difficulties are associated with code reuse: 

1. Code identification:  It is difficult to identify a piece of reusable code.  Many 

times, programmers reuse only a small fraction of their own or their colleagues’ code.    

2. Code validation and verification:  There is usually little assurance that the 

reused code is correct.   

3. Code dependency:  It is a nontrivial task to separate a desired piece of code 

from an entangled chunk of software with complex dependency. 
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4. Code modification:  In addition to the necessary changes, the reused code may 

implicitly conflict with the new context.  

5. Execution environment: The reused code might assume things that are not true 

in the new environment.  This may result in degraded performance.   

With careful planning and implementation, many of these difficulties can be 

avoided. This requires a reusable code to possess certain properties that our proposed 

measurement will quantify.  A static analysis of a source code in any stage of 

development can provide instant feedback to the programmer, the quality of the code in 

the sense of reusability.  This would encourage programmers to ensure that the completed 

code provides good reusability quality before it is discovered too late.  The measurement 

can also allow the manager of a software project to evaluate the quality and reward the 

programmers accordingly. 

 

3.2 Quality Measurement Model 

 

In this research, a quality measurement model is proposed and its metric set is 

developed. The overall steps to construct the model and metrics are in Figure 3-2. We 

obtain subfactors from the software quality factors and measurement types from the 

essential properties of reusable and maintainable code, then match the subfactors and the 

measurement types, and create a quality model for reusability and maintainability. 

Several metrics are defined for each measurement type. Based on the created quality 

model and the defined metrics, an automated metric tool is implemented, and the 

measured metrics from the tool are validated through empirical study. 
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Subfactors and measurement types are discussed in detail in the following sub-sections. 

We use a top-down and bottom-up approach to develop this quality model. Its 

methodology is shown in Figures 3-3. From the top down, we first divide the quality 

factors (i.e., reusability and maintainability) into subfactors in accordance with 

procedures of performing reuse and maintenance. The divided subfactors are 

identification, separation, modification, validation, and adaptation of a module. By 

dividing the factors into five subfactors, the vague concepts of the factors become clearer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Define Metrics for 

Measurement Types 

Match Measurement Types 

and Subfactors 

 

Implement Automated 

Metric Tool 

Quality Model for 

Reusability and 

Maintainability 

Empirical Validation of 

Metrics for Reusability and 

Maintainability 

Essential Properties of 

Reusable and Maintainable 

Code 

Quality Factors: 

Reusability and 

Maintainability 

Measurement Types 

 

Subfactors 

 

Figure 3-2: Steps for constructing the quality model and metric set 
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From the bottom up, we propose the desirable features for reusability and 

maintainability, and apply these features to understand software for reuse and 

maintenance purposes. These properties can be derived from the source code.  The 

selected measuring properties include External dependency, Cohesion, Information 

hiding, Size, Complexity, Easy understanding, Proven reliability, Reuse frequency, and 

Standardization as shown in Table 3-1. Each measuring property has its own 

measurement type. In this research, we mainly focus on four measurement types 

Reusability and Maintainability 

Identifying Separating Modifying Validating Adapting 

       Quality Factor 

Subfactors 

Coupling Cohesion Size Complexity 

Reuse and maintenance properties 

Measurement type 

Figure 3-3: Flow of how the subfactors are connected to the metrics 
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(Coupling from External dependency, Cohesion, Size, and Complexity) from the reuse 

and maintenance properties. Information hiding, Easy understanding, Proven reliability, 

Reuse frequency, and Standardization will not be considered due to the difficulties of 

collecting measurement data.  

The definitions of the selected measurement types are summarized in Table 3-2. 

The Coupling from the external dependency defines the interdependency of a class to 

other classes in a source code. The Cohesion assesses the relationship of methods and 

attributes in a class. The Size measures the number of methods and attributes, and lines of 

code in a class. The Complexity measures the degree of difficulty in understanding the 

structure of classes.  

The important issue in this model construction is to establish links between the 

subfactors and the measurement types. We want to map the subfactors into the 

measurement types since each measurement type can be defined as a metric and 

computed through a simple expression and each metric plays an important role as a key 

factor in measuring the quality of a software system. Therefore, measuring the 

measurement types as metrics becomes equal to measuring the factors of software 

quality. The links between subfactors and measurement types are established in Figure 3-

3, and their relationship is presented in Section 3.2.2. 
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Table 3-1: Essential properties of reusable and maintainable code 

 

 

 
 

 

• External dependency  

o Requires no separation from any containing code. 

o Requires no changes to be used in a new program 

o Components do not interface with its environment. 

o Low fan-in and fan-out 

o Has more calls to low-level system and utility functions. 

• Cohesion 

o Component exhibits high cohesion 

• Information hiding 

o Has few input-output parameters.  

o Interface is both syntactically and semantically clear.  

o Interface is written at appropriate (abstraction) level. 

• Size  

o Small 

• Complexity  

o The lower the values of complexity metrics, the higher the programmer’s 

productivity.  

o Low module complexity 

• Easy understanding 

o Component and interface are readable by person other than the author 

o Component is accompanied by documentation to make it traceable 

o Easy to find and understand 

o In-line comments 

• Proven reliability 

o Thorough testing and low error rates  

o Reasonable assurance that it is correct 

• Reuse frequency 

• Standardization 

o Component is standardized in the areas of invoking, controlling, terminating 

its function, error-handling, communication, and structure. 
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Table 3-2: Measurement type 

 

Measurement 

Type 

Definition based on class Measuring  Measuring 

Properties 

Coupling The interdependency of a 

class to other classes in a 

system. Measure of the 

number of other classes that 

would have to be accessed 

by a class in order for that 

class to function correctly 

and the number of other 

classes that use the methods 

or attributes in this class 

Reference methods 

and attributes among 

classes 

External 

dependency 

Cohesion The relatedness of methods 

and attributes in a class. 

Reference methods 

and attributes in a 

class 

Cohesion 

Size The numbers of methods, 

attributes, and lines in a class 

The numbers of 

methods, attributes, 

and lines in a class 

Size 

Complexity The degree of difficulty in 

understanding and 

comprehending the internal 

and external structure of 

classes and their 

relationships 

Cyclometic 

complexity of 

methods in a class 

Complexity 

 

3.2.1 Definition of subfactors and measurement type 

We choose reusability and maintainability as our measurement factors. Dividing 

these factors into subfactors helps to find appropriate measurement types. In case of 

reusing and/or maintaining an existing code, several procedures should be accomplished: 

• Identification: When a programmer tries to reuse or maintain an existing 

source code, he/she needs to locate and understand the code to match the 

desired purposes.  
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• Separation: After a programmer locates and understands the identified code, 

he needs to take apart the code from its containing program. 

• Modification: Before a programmer reuses the separated code unit he may 

need to change the unit to meet the required function or to make the unit fit to 

the new environment.  

• Validation: Error checking will be an important step to make the unit reliable, 

so a programmer needs to check for errors. 

• Adaptation: He/She has to carefully adapt the modified code into the new 

application to prevent any conflicts. 

To derive measurement types for reusability and maintainability, we collect 

properties of reusable and maintainable software from previous research [44] [46]. These 

essential properties are listed and explained in Table 3-1. Based on these properties, the 

following measurement types are derived. Each measurement type came from each 

measuring property in Table 3-2. 

• Coupling: The interdependency of a class to other classes in a system. It is a 

measure of the number of other classes that would have to be accessed by a 

class in order for that class to function correctly and the number of other 

classes that use the methods or attributes in this class. 

• Cohesion: The relatedness of methods and attributes in a class. Components of 

a class should be designed for a single purpose. Thus, the class that has low 

cohesion needs to be decomposed.  
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• Size: This includes counting lines of code with several options (e.g., ignore 

blank and comments lines), number of methods and attributes in a class.  

• Complexity: The degree of difficulty in understanding and comprehending the 

internal and external structure of classes and their relationships. The structure 

of a method that has high complexity metric value should be inspected and 

simplified. Statement level complexity is also considered to locate complex 

area of source code. 

3.2.2 Relationship between subfactors and measurement types 

Table 3-3 summarizes the relationship between measurement types and 

subfactors. A plus symbol (+) in the table indicates that the measurement type has a 

positive influence on a subfactor, and a minus symbol (-) indicates negative influence. 

Table 3-3: Relationships between subfactors and measurement types 

Measurement Type 

Subfactor 
Coupling Cohesion Size Complexity 

Identification - + - - 

Separation -    

Modification - + - - 

Validation - + - - 

Adaptation -  -  

 

Relationship from coupling to subfactors 

High import coupling of a class indicates strong dependency on other classes, 

their methods, and attributes. Import coupling may be relevant to the following 

subfactors: 
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• Identification: To understand a method or class, we must know about the services 

the method or class uses. 

• Separation: High import coupling obstructs separating the code from its 

containing program. 

• Adaptation: If a class depends on a large amount of external services, it will be 

more difficult to reuse it in other systems. 

High export coupling of a class means that the class is used by many other 

classes, their methods, and attributes. Export coupling may be relevant to the following 

subfactors: 

• Modification: If a method may be invoked by many other methods, any change to 

the method affects the invoking methods. Any defect in a class with high export 

coupling is more likely to propagate to other parts of the system. Such defects are 

more difficult to isolate. In that respect, classes with high export coupling are 

particularly critical. An export coupling measure could therefore be used to select 

classes that should undergo special (effective and may be costly) verification or 

validation processes. 

• Validation: A class with high export coupling can be difficult to test. If defects 

propagate to other parts of the system to cause failure there, they may not be 

detected when testing the class in isolation. 

 

Relationship from cohesion to subfactors  

Stevens et al. define cohesion as a measure of the degree to which the elements of 

a module are together [48]. Some empirical evidence supports that the higher the 
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cohesion of a module, the easier the module is to develop, maintain, and reuse [11, 8]. 

If elements of a module are not related to each other, the design of the module 

most likely is not appropriate. Thus, we define cohesion to have positive impact on 

identifying, modifying, and validating. 

Relationship from size to subfactors  

Usually a large size module has more attributes and methods, thus it will take 

more time to understand, modify, validate, and adapt it. Size measurement type probably 

can be included in other measurement types like complexity. 

Relationship from complexity to subfactors  

High complexity is an obstacle to understand and modify a module. Validating a 

module is also difficult as its complexity increases. 

3.3 Metrics for measurement types  

In forming the quality model, a framework is designed to find the most influential 

metrics for individual reuse and maintain properties. In the framework, we identified a 

few sets of metrics to characterize software written in Java. They are listed in Tables 3-4 

through 3-6. Each of the metrics was carefully evaluated and experimented for its 

capability to accurately measure a reusability and/or maintainability property in this 

dissertation. The rationale used in this experimental test as follows.  

These metrics were chosen because they are representatives of metrics based on 

the measurement types described in Section 3.2. They are also computable using the 

automated measurement tool implemented for this research and are potential indicators 

whether or not a class is reusable and maintainable. In each of the metric definitions, C 
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represents a class, M represents a method, S represents a system composed of classes, D 

represents a domain (i.e., method, class, or system). 

We used very primitive forms of coupling and cohesion metrics because these 

metrics are used to measure subfactors rather than quality factors of a system. All 

coupling and cohesion metrics assume direct and non-inherited based relationship. Each 

coupling and cohesion metric is classified by the type of connection and then divided, in 

detail, by direction of connection and domain level (i.e., class or system).  

In the following sub-sections, we describe those metrics in detail, including size, 

complexity, coupling, and cohesion metrics. They will be investigated throughout the 

remainder of this dissertation. 

3.3.1 Size Metrics 

 Size metrics measure the number of methods and attributes in a class and the 

lines of code of a class. Those are defined in Table 3-4. We have three domains for the 

metrics (method, class, and system domain) and each domain has its own metrics. For a 

method M, LOC(M) measures the lines of code for the method, and for a class C, 

LOC(C) measures the lines of code for the class. NOM(C) counts the number of methods 

in a class and NOA(C) counts the number of attributes in a class.  

The size metrics defined for a system domain are LOC(S), aLOCC(S), 

aLOCM(S), aNOM(S), aNOA(S), and NOC(S). LOC(S) is the lines of code for a system. 

aLOC(S) and aLOC(S) calculate averaged LOC for classes and methods respectively for 

a system. aNOM(S) and aNOA(S) compute average number of methods and attributes in 

a class, and NOC(S) is the number of classes in a system.   
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From the past experience, we believe that large classes may suffer from poor 

design. Large size metrics and more functions in a class normally make it more difficult 

to understand the class. In an iterative development process, more and more functionality 

is added to a class over time. The danger is that, eventually, many unrelated 

responsibilities are assigned to a class. As a result, it has low functional cohesion. This in 

turn negatively impacts the reusability, and maintainability of the class. Therefore, large 

classes should be reviewed for functional cohesion. If there is no justification for the 

large size, the class should be considered for refactoring, for instance, and extracting 

parts of the functionality to make separate and more cohesive classes. 

 Table 3-4: Size metrics  

   

 (a) Size metrics for a method  

Symbol Description domain 

LOC(M) LOC for a method method 

   

 (b) Size metrics for a class  

Symbol Description domain 

LOC(C) LOC for a class class 

NOM(C) number of methods in a class class 

NOA(C) number of attributes in a class class 

   

 (c) Size metrics for a system  

Symbol Description domain 

LOC(S) LOC for a system system 

aLOCC(S) average LOC for classes in a system system 

aLOCM(S) average LOC for methods in a system system 

aNOC(S) average NOM for classes in a system system 

aNOA(S) average NOA for a class in a system system 

 

3.3.2 Complexity Metrics 

Complexity metrics measure the degree of difficulty in understanding internal and 
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external structure of classes and their relationships. In this research, Cyclometic 

complexity of methods in a class is used, and based on this, we define three complexity 

metrics for method (Cx(M)), class (aCx(C)), and system (aCx(S)) domains in Table 3-5.  

High method complexity in a class can lead to decreased understandability and 

therefore decreased reusability and maintainability. Also, testing such a class is more 

difficult.  

 Table 3-5: Complexity metrics  

  

(a) Complexity metrics for a method 

 

Symbol Description domain 

 

Cx(M) McCabe complexity of a method method 

   

 (b) Complexity metrics for a class  

Symbol Description domain 

aCx(C) average Cx(M) in a class class 

   

 (c) Complexity metrics for a system  

Symbol Description domain 

aCx(S) average Cx(C) in a system system 

 

3.3.3 Coupling Metrics 

As we mentioned in section 2.4, the unified framework for coupling provides a 

guideline to select coupling metrics for a particular measurement goal (Reusability and 

Maintainability for this research). 

Based on the first criterion of the unified framework for coupling (i.e., type of 

connection), we study seven types of possible connection between two classes. Therefore 

we define seven coupling metrics for measuring different connection types as in Table 3-

6. The seven metric symbols defined in the table are used to define actual coupling 
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metrics based on the criteria of the framework for measuring coupling described in 2.4. 

The defined metrics for the seven connection types whose domain is class are cplTA(C), 

cplTP(C), cplTL(C), cplTPM(C), cplIAR(C), cplMI(C), and cplPC(C).  

Metrics cplTA(C), cplTP(C), and cplTL(C) measure the number of Type of 

attribute connection, the number of Type of parameter connection, and the number of 

Type of local variable connection of a class, respectively. 

Table 3-6: Connection type for coupling 

 

Metrics cplTPM(C), cplAR(C), cplMI(C), and  cplPC(C) measure the number 

of Invoked method type connection, the number of Attribute reference connection, the 

number of Method Invocation connection, and the number of Parent-Child connection 

of a class, respectively.  We have chosen the first criterion, Type of Connection, to 

create these basic metric symbols for all the connection types. For the second criterion 

of the unified framework for coupling (i.e., Direction of connection), each 

Symbol Connection 

Type 
Class C Class D Description 

cplTA(C) Type of 

Attribute 

Attribute a of 

class c 

Class d, d ≠ c Class d is a type of a 

cplTP(C) Type of 

Parameter 

Method m of 

class c 

Class d, d ≠ c Class d is the type of a 

parameter of m, or the return 

type of m 

cplTL(C) Type of 

local variable 

Method m of 

class c 

Class d, d ≠ c Class d is the type of a local 

variable of m 

cplTPM(C) Invoked 

method type 

Method m of  

class c 

Class d, d ≠ c Class d is the type of a 

parameter of a method invoked 

by m 

cplAR(C) Attribute 

reference 

Method m of  

class c 

Attribute a of class 

d, d ≠ c 

m references a 

cplMI(C) Method 

invocation 

Method m of  

class c 

Method m’ of class 

d, d ≠ c 

m  invokes m’ 

cplPC(C) Parent-Child Class c Class d, d ≠ c Class d is a child class of class 

c 
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coupling metric in Table 3-6 consists of fan-out coupling("using")  and fan-in 

coupling("used") components, which we discuss in the following. 

 For example, the metric cplTA(c) is decomposed into cplTAout(c) and cplTAin(c) 

according to the direction of the connection. cplTAin(c) measures the connections to the 

target class c from other classes and cplTAout(c) measures the connections to other 

classes from the target class c. We measure the cplTA(c) as the sum of cplTAin(c) and 

cplTAout(c).  

Fan-out coupling measures the degree to which a class has knowledge of, uses, or 

depends on other classes. To reuse a class with high fan-out coupling in a new context, all 

the required services must also be understood and reused together. Therefore, high fan-

out coupling can decrease the reusability of a class. 

Fan-in coupling measures the degree to which a class is used by, depended upon, 

by other elements. Changing a class with high fan-in coupling may affect other classes 

which depend on the class. Therefore high fan-in coupling can decrease the 

maintainability of the class. 

Coupling connections cause dependencies among classes, which, in turn, have an 

impact on maintainability (a modification of a class may require modifications to its 

connected classes) or reusability (to reuse a class may require reuse connected classes 

together). Thus, we could say that a principle to improve reusability and maintainability 

is to minimize coupling, and coupling metrics also greatly help identify problematic 

classes to be reused or maintained. 

We can apply these coupling metrics to a system domain. For example, aCplTA(s) 
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is defined as the averaged CplTA(c) of classes in system s and measures the averaged type 

of attribute coupling metrics of classes in system s.  

For the third criterion (i.e., Granularity of the measure) of the unified framework 

for coupling, we define a class as the domain for coupling metrics. 

For the fourth criterion (i.e., Stability of server) of the unified framework for 

coupling, we didn’t define anything because we don’t measure the stability of server.  

For the fifth criterion (i.e., Direct or indirect coupling) of the unified framework 

for coupling, we only choose and measure direct coupling.  

For the sixth criterion (i.e., inheritance) of the unified framework for coupling, we 

choose non-inheritance based coupling. We assign attributes and methods to the class 

which the attributes and methods are defined, not to their parent classes. 

We have a sample code (Figure 3-4) showing couplings between classes and 

coupling metric values obtained by the system implemented in this research. Each 

class is counted either a fan-out coupling or a fan-in coupling to other classes by 

extending or declaring a class.  

For instant, class A is counted a coupling with class F by extending it. In this case, 

classes A and F establish a parent-child relationship (one of the seven connection 

types), which A is a child and F is a parent. Therefore, we count cplPC fan-out meric 

value for class A (cplPCout(A) = 1) and cplPC fan-in metric value for class F 

(cplPCin(F) = 1). In a similar way, a coupling occurs between class A and class B by 

declaring B in class A. In this case, the type of attribute connection is established, 

which attribute b in class A is declared by class B as its type, and class A makes cplTA 
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fan-out metric value counted 1 and class B makes cplTA fan-in metric value counted 1. 

Symbols ---> and <--- indicate a fan-out coupling and a fan-in coupling occurred in a 

class, respectively. 

Fan-In/Fan-Out Coupling between Classes Metric Values 

 

 public class A extends F{         --->          cplPC 

    B b;            --->          cplTA 

    public void ma(D c){                   --->          cplTP 

       E e;                                            --->          cplTL 

       e.me(D d);                                 --->       cplMI, cplTIM 

       e.i++;                                         --->          cplAR 

    } 

 } 

 public class B{                               <---           cplTA 

 } 

 public class D{                               <---        cplTP, cplTIM 

 } 

 public class E{                               <---           cplTL 

    int i;                                             <---           cplAR 

    public void me(D d){                  <---           cplMI 

    } 

 } 

 public class F{                               <---            cplPC 

 } 

 

 

cplPCout(A) = 1 

cplTAout(A)  = 1 

cplTPout(A) = 1 

cplTLout(A) = 1 

cplMIout(A) = 1 

cplTIMout(A) = 1 

cplARout(A) = 1 

 

cplTAin(B) = 1 

 

cplTPin(D) = 1 

cplTIMin(D) = 1 

cplTLin(E) = 1 

cplARin(E) = 1 

cplMIin(E) = 1 

 

 

 cplPCin(F) = 1 

 

 

Figure 3.4: Fan-in/Fan-out coupling between classes  

                              

Table 3-7: Cohesion metrics 

Symbol Connection 

Type 
Element 1 Element 2 Description 

cohAR(C) Attribute 

reference  

Method m of  

class c 

Attribute a of 

class c 

Attribute reference:  

m references a 

cohMI(C) Method 

invocation  

Method m of  

class c 

Method m’ of 

class c 

Method invocation:  

m invokes m’ 

cohAS(C) Attribute 

sharing  

Method m of  

class c 

Method m’ of 

class c, m ≠ m’ 

Attribute sharing: m 

and m’ reference an 

attribute a 
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3.3.4 Cohesion Metrics 

We also defined cohesion metrics based on the framework for cohesion 

measurement (See Section 2.4).  

For the first criterion (i.e., type of connection) of the unified framework for 

cohesion, we define three cohesion metrics with different connection types among the 

components (i.e., methods and attributes) in a class. cohAR(c) measures the number of 

attribute reference connections of a class c, cohMI(c) measures the number of method 

invocation connections of a class, and  cohAS(c) measures the number of attribute 

sharing connections of a class. Table 3-7 shows the three cohesion metrics based on the 

connection type.  

For the second criterion of the unified framework for cohesion (i.e., Domain of 

measure), we can apply these cohesion metrics to class and system domains. For 

example, aCohAR(s) is defined as the averaged CohAR(c) of classes in system s and 

measures the averaged attribute reference cohesion metrics of classes in the system.  

For the third criterion (i.e., Direct or indirect connections) of the unified 

framework for cohesion, we only choose direct connection and measure the direct 

connection.  

For the fourth criterion (i.e., inheritance) of the unified framework for cohesion, 

we choose non-inheritance based cohesion. We assign attributes and methods to the class 

which the attributes and methods are defined, not to its parent class. For the fifth criterion 

(i.e., access methods and constructors) of the unified framework for cohesion, we 
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measure the cohesion for the access methods and constructors.  

Cohesion is the degree to which the methods and attributes in a class are related. 

The higher connectivity between methods and attributes means the higher cohesion, and a 

low cohesive class has been assigned many unrelated responsibilities. Consequently, the 

low cohesive class is more difficult to understand and harder to maintain and reuse. 

Therefore classes with low cohesion should be considered for refactoring, for instance, by 

extracting parts of the functionality to separate classes with clearly defined 

responsibilities. 

We have a sample code (Figure 3-5) showing cohesion in a class and cohesion 

metric values obtained by the system. Class A has two methods ma and mb, and method 

ma makes a method invocation connection by invoking method mb, thus the system 

calculates a choMI metric value of one (cohMI(A) = 1).  For the cohAS metric, methods 

ma and mb establish an attribute sharing connection by sharing an attribute i, thus cohAS 

cohesion metric value of the class is calculated (cohAS(A) =1). 

Cohesion in a Class Metric Values 

  public class A {  

     int i;    int j; 

     public void ma(){            

        mb();                                  --->       cohMI     

        i++;                                    --->       cohAS 

        j++;                                    --->       cohAR 

     } 

     public void mb(){        

        i++;                                   --->        cohAS 

     } 

  } 
 

 

 

 

 

 

cohMI(A) = 1 

cohAS(A) = 1 

cohAR(A) = 1 

 

 

 

Figure 3-5: Cohesion in a class and metric values 
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4 AN AUTOMATED MEASUREMENT TOOL 

4.1  Automated Measurement Tool Architecture 

Java Measurement Tool (JamTool) is a software measurement environment to 

analyze program source code for software reuse and maintenance. It is especially 

designed for object-oriented software. This tool measures attributes from Java source 

code, collects the measured data, computes various object-oriented software metrics, and 

presents the measurement results in a tabular form. The tabular interface of the tool 

provides software developers the capabilities of inspecting software systems, and makes 

it easy for the developers to collect the metric data and to use them for improving 

software quality. By browsing reusable units and maintainable units, a developer can 

learn how to reuse certain software entity and how to locate problematic parts. The 

application of this easy-to-use tool significantly improves a developer’s ability to identify 

and analyze quality characteristics of an object-oriented software system. 

The intended application domain for JamTool is small-to-middle sized software 

developed in Java. The acceptance of Java as the programming language of choice for 

industrial and academic software development is clearly evident. The overall system 

architecture of the JamTool is shown in Figure 4-1, in which solid arrows indicate 

information flow. The key components of the architecture are: 1) User Interface, 2) Java 
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Code analyzer, 3) Internal Measurement Tree, 4) Measurement Data Generator, and 5) 

Measurement Table Generator. 

 

 

 

 

 

 

 

 

 

 

 

 

Each key component works as a subsystem of overall system. The Java Code 

analyzer syntactically analyzes source code and builds an Internal Measurement Tree 

(IMT) which is a low level representation of classes, attributes, methods, and 

relationships of the source code. Then the Measurement Data Generator takes the IMT as 

an input, collects the measurement data, and generates the size, complexity, coupling and 

cohesion metrics of classes in the original source code. Those measurement results as 

well as the other metrics are displayed in a tabular representation through the 

Measurement Table Generator subsystem. With this interface of tabular form, software 

User Interface  

  

Internal Measurement Tree Measurement Data Generator 

Measurement Table 

Generator 

User 

Figure 4-1:  Architecture of JaMTool 

Measurement Results Java Sources 

Options for Measurement 

Java Code Analyzer 
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developers can easily analyze the characteristics of their own program.  

4.1.1  Java Code Analyzer 

 Java Code analyzer is built by using a Sun Microsystem’s popular JavaCC parser 

generator. It syntactically analyzes Java source code to build an internal measurement 

tree (IMT) that contains all the information needed to produce measurement results. It 

performs complete analysis on the source code thus identifies all syntactic errors during 

the building of the IMT.  

Class Modifier 

Package Name 

Import Name Vector 

Class Name 

Parent Class 

Interface Name 

Attribute Vector 

Method Vector 

 
 

Import Name 

Attribute Name 

Attribute Type 

Attribute Modifier 

ClassInfo Vector 

Method Type 

Method Modifier 

Method Ret Type 

Method Name 

Rnce Var Vector 

Local Var Vector 

Invoked Method Vector 

 
 

Referenced 

VariName 

 
 

Local Var T 

Local Var N 

 
 
Invoked Method N 

Invoked Method P 

Figure 4-2: Internal Measurement Tree 



 

 

 

 

51 

 

4.1.2 The Internal Measurement Tree  

The Internal Measurement Tree (IMT) is a low level representation of classes, 

attributes, methods and relationships of the program source code that is being analyzed. 

The IMT, after it has been completely resolved, contains all relevant information from the 

source code. It is a representation of the source for measurement. A complete IMT 

hierarchy is shown in Figure 4-2. The root of an IMT is classInfoVector and the 

classInfoVector has a link to ClassInfo node. Each ClassInfo node contains information 

about a class including Attribute Vector, Method Vector etc. The Attribute Vector and the 

Method Vector also have their own links which have detail information about them and 

so on.  

 

 

 

 

 

 

 

 

 

 

 

  
Algorithm 1. Type of attribute Coupling.  
 Traverse IMT and find Type of attribute couplings among the classes in a project . 

 

    Input: Internal Measurement Tree; 

    Output: Coupling measurement result for Type of attribute metrics; 

 
Let classNames = all class names in a project; 
foreach class in classNames do 
  Let targetClass = a class in classNames that has not been measured; 
  if targetClass  is empty then 
    return couplingResult;  

  Traverse class node in IMT and  
  let attributeTypes = all attribute types in the targetClass; 
    foreach attribute type in attributeTypes do 
      Compare to class names in classNames; 
      Update couplingResult according to the comparison result; 
  endfor 
enfdor 

Figure 4-3: Algorithm 1- Type of attribute coupling 
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4.1.3 Measurement Data Generator 

The Measurement Data Generator subsystem takes an IMT as an input, collects 

the measurement data from the IMT, and builds measurement results such as size, 

complexity, coupling and cohesion metrics for a class.  

Algorithm 1 in Figure 4-3 describes the coupling measurement algorithm for the 

type of attribute metric.  The algorithm processes each class node in the IMT and 

computes coupling strength for the type of attribute metric to be displayed in the 

measurement tables like fan-in, fan-out, and class-to-class tables. For instance, we have 

three classes A, B, and C to show the type of attribute coupling metrics in Figure 4-4. 

Reading columns, we see that Class A is used by class B three times and used by class C 

once, which means that the fan-out of A for B and C are 3 and 1, respectively. Class B is 

used by class A twice, which means that the fan-in of A for B is 2. In this way, the 

coupling relationship between classes is measured as a coupling metric and the measured 

metric values are presented in the coupling metrics table form as shown in Figure 4-4. 

 

 

 

 

 

 

 

A 

 

B a1; 

B a2; 

C 

 

            A c1; 

B 

 

     A b1;   A b2;  

     A b3; 

       

       3 

      2 

 A B C Total 

A 0 3 1 4 

B 2 0 0 2 

C 0 0 0 0 

Total 2 3 1 6 

Coupling Metrics Table 

Figure 4-4:  Example of Type of attribute couplings  
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From the coupling metric table, we can easily find that the type of attribute 

couplings of classes A, B, and C are 2, 3 and 1, respectively. The type of attribute 

coupling was explained in sections 3.3 and 3.4. It is also clear to see that these three 

classes are connected together with attribute coupling. Therefore we group the three 

classes as a set of related classes and identify them a Connected Unit. The detailed 

discussion of Connected Unit will be done in Section 4.3. 

Cohesion measurement data is also generated in this subsystem. Algorithm 2 in 

Figure 4-5 describes a measurement algorithm for Method Invocation Cohesion (see 

section 3.2). The algorithm takes each method node from the IMT and computes cohesion 

strength for the method invocation metric to be displayed in the measurement tables. 

 

 

 

 

 

 

 

 

 

 

 

  
Algorithm 2 . Method Invocation Cohesion.  
 Traverse IMT and find Method Invocation cohesion from the target class in a project . 

 

    Input: Internal Measurement Tree; 

    Output: Cohesion measurement result for Method Invocation cohesion metrics; 

 
Let targetClass = the target class names in a project; 
Let methodNames = all method names of targetClass; 
foreach methods in targetClass do 
  Let targetMethod = a method in targetClass that has not been measured;  
  if targetMethod  is empty then 
    return cohesionResult;  
  Traverse method node of targetClass in IMT and  
  let invokedMethods = all invoked methods from the targetMethod; 
    foreach invoked method in invokedMethods do 
      Compare to method names in targetClass; 
      Update cohesionResult according to the comparison result; 
  endfor 
enfdor 

 

Figure 4-5: Algorithm 2 - Method invocation cohesion 
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public class A 

{ 

 

     public void ma(){ 

 int r = mb() + mc(); 

     } 

 

     public int mb(){ 

           return mc() + 1; 

     } 

 

     public int mc(){ 

           int c = 0; 

           return c; 

     } 

} 

Cohesion metrics table 

 ma mb mc Fan-Out 

Total 

ma 0 1 1 2 

mb 0 0 1 1 

mc 0 0 0 0 

Fan-In 

Total 

0 1 2  

Figure 4-6: Cohesion of three methods in a class 

Figure 4-6 shows an example of three methods to measure cohesion.  We have 

three methods, ma, mb, and mc, in class A. Method ma invokes two methods mb and mc, 

and method mb invokes mc.  With these invocations, the relationship of methods is 

measured as cohesion metrics, and the measured metric values are presented in the 

cohesion metrics table. 

The Measurement Data Generator also measures all other coupling metrics and 

cohesion metrics mentioned in Chapter 3.  The measured information about coupling for 

each class is then neatly presented in the coupling measurement tables constructed by the 

Measurement Table Generator, which will be discussed in detail in the following section. 

4.1.4 Measurement Table Generator 

The Measurement Table Generator generates display tables showing various 

metrics obtained. For instance, a class-to-class coupling measurement table showing the 

coupling structure among classes is given in window W2 of Figure 4-7. Windows W3 and 
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W4 of Figures 4-7 show fan-in/fan-out coupling measures in a tabular form for the seven 

coupling metrics defined in Table 3-4. Fan-in/fan-out and various coupling types can be 

interpreted differently as we describe fan-in/fan-out coupling measurement tables and 

how we can find the connected unit from these measurement tables in the next section.  

Other important tables are reusable unit and maintainable unit tables shown in 

windows W5 and W6 of Figure 4-7. In a reusable unit table, each class in the first column 

depends on classes in other columns since the class uses the others, and in a maintainable 

unit table, each class in the first column is used by classes in other columns. Thus the 

classes in the same row make a special reusable unit and maintainable unit. In this way of 

representation, we could easily recognize which classes need more/less effort when they 

are needed for reuse, modify, update or fix. This could definitely help programmer in 

developing and maintaining a program. Detailed discussion for each table and unit will be 

provided in the following Section 4.2. 

4.1.5 User Interface 

JamTool provides a graphical user interface that is developed based on the Java 

Swing library. The measurement results are displayed in a tabular representation and in 

several windows with various levels of detail as shown in Figure 4-7.  

Inputs to the JamTool are Java source files. Users need to provide the name of the 

group of the Java files (i.e., project) and the location of each file when building a new 

project or opening an existing project in JamTool. A hierarchical list box is created within 

a project pane to display classes that form the project (See P1 in Figure 4-7). 
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Figure 4-7: Screen shot of JamTool for coupling, cohesion, size, and complexity  
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Pane P1 shows that the project is composed of multiple Java programs. Pane P2 

shows the source code of the selected Java program. For the project named ‘Bingo’, six 

windows (W1-W6) display the coupling measurement results: connected unit (W1), 

class-to-class coupling (W2), fan-in coupling (W3), fan-out coupling (W4), reusable unit 

(W5), and maintainable unit (W6), and another five windows (W7-W11) display the 

cohesion, size and complexity measurement results: cohesion in a class (W7), size & 

complexity (W8), cohesion for each class (W9), and connected unit (W10) and its 

strength (W11) for cohesion.   

4.2  Measurement Result Tables 

4.2.1  Class to Class Table 

Class-to-class coupling measurement table in Figure 4-8 is to show coupling 

relationship among classes. All class names in a project are displayed. Regarding a class, 

ClassInfo, in the second row, we see that there is a coupling strength of ‘3’ to ClassAttr, 

‘63’ to ClassMethod, and a ‘66’ for total. These mean ClassInfo uses ClassAttr 3 times 

and ClassMethod 63 times, thus 66 times for the total. On the other hand, regarding 

ClassInfo in the second column, we find that this class is used by ClassInfoVector(1), 

CohesionMeasure(13),  and CouplingMeasure(7), for a total of 21 times. 

 
 

Figure 4-8: Class to class coupling measurement table 
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4.2.2 Fan-in Coupling Table 

The 7 coupling metrics defined in Table 3-6 are displayed in a similar tabular 

form of the Fan-in coupling in Figure 4-9. TA, TM, TL, IM, MP, RV, and PC stand for 

Type of  Attribute, Type of Method Invocation, Type of Local Variable, Invoked Method 

Type, Referenced  Variable, and Parent-Child, respectively. All classes in a project are 

displayed in the first column. We interpret fan-in as used-by, invoked by, or referenced by, 

thus we can find how other classes use this class through examining each fan-in coupling 

instance. For instance, ClassInfo has fan-in coupling strength of ‘1’ for TM and ‘20’ for 

TL, which means that other classes in the project (i.e., cm1) use ClassInfo once as 

invoked method and twenty times  as their local variables. In this figure it is clear that 

ClassMethod is used extensively by other classes (sixty three fan-in coupling at total 

column). Special attention must be given to such a class when it is examined or modified 

because it influences many other coupled classes. 

If we inspect column TL, it has ‘3’ to ClassAttr, ‘20’ to ClassInfo, ‘22’ to 

ClassMethod and ‘45’in total. This means forty five times of fan-in coupling as Type of 

Local Variable have occurred in this project while there are thirty eight times for IM, 

twice for TA, respectively and only once for TM and MP.   

 
 

Figure 4-9: Fan-in coupling measurement table 
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4.2.3  Fan-out Coupling Table   

Fan-out couplings for the same seven coupling metrics are in Figure 4-10. We 

interpret fan-out as use, invoke or reference, thus we can find how a class uses other 

classes through examining each fan-out coupling instance. For instance, fan-out coupling 

of ClassInfo shows that this class invokes or uses other classes sixty six times in total (‘2’ 

for TA, ‘25’ for TL, ‘38’ for IM, and ‘1’ for MP). It mainly uses local variables and 

invokes methods, and is identified as a highly fan-out coupled class. We believe that such 

a class is difficult to be reused alone because it needs other classes’ services to perform 

its function. Therefore, it is wise to inspect its fan-out coupled classes from this table for 

a new application when we reuse a class. 

 
 

Figure 4-10: Fan-out coupling measurement table 

4.2.4  Connected Unit Table for Coupling 

We define a connected unit as the classes that are coupled together. In a connected 

unit table, all classes coupled together are displayed in the same column. A connected 

unit is likely to be of interest to the user in finding software units that can be reused.  We 

build a connected unit by identifying coupled classes in the coupling metrics and the 

connected attributes and methods in the cohesion metrics. A user should consider reusing 
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the connected classes together in a new application. In that sense, the connected classes 

are a reusable unit. The connected unit search algorithm, shown in Figure 4-11, computes 

a set of coupled classes (i.e., connected unit) and their position in a connected unit table 

based on a class-to-class coupling table. Figure 4-12 shows the retrieved connected unit 

and the result of applying Algorithm 3 to the class-to-class coupling table in Figure 4-8.  

Each class is displayed in a connected unit table according to its position and its coupling 

strength is displayed in the connected unit strength table in Figure 4-12 (b).  

 

Algorithm 3. Connected Unit Search.  

Compute connected units from a class-to-class table. 

 

Input: Class-to-class coupling measurement table; 

Output: Connected units and their positions in a connected unit 

table; 

 

Let classNames = all class names from a class-to-class table; 

foreach class in classNames do 

   Let targetClass = a class in classNames  

   that has not been searched yet;  

   if targetClass is empty then  

      return connectUnitsWithPosition;  

   Search class-to-class table and let  

   connectUnit = coupled classes to targetClass; 

   Update connectedUnitsWithPosition with the connectUnit; 

end for 

 

Figure 4-11: Connected Unit Search Algorithm 
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Figure 4-13: Connected unit and its strength 

class position strength 

  ClassAttr 1 3 

  ClassInfo 1 87 

  ClassInfoVector 1 1 

  CohesionMeasure 1 13 

  ClassMethod 1 63 

  CouplingMeasure 1 7 

  Editor 2 0 

 

Figure 4-12:  Example of Connected Unit Search algorithm 

ClassInfo 

ClassAttr ClassInfoVector 

CohesionMeasure 

ClassMethod CouplingMeasure 

Editor 

3 

63 

  1 

13 

7 

(a) (b) 
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The connected unit and its strength of the ‘bingo’ project are shown in Figure 4-

13. In this tables, all classes in the same column are coupled together. For instance, only 

two classes, BingoException and NoMoreBallaException, in column B are coupled to 

each other. Utilities in column D could be a dead code because there is no relation to 

other classes in the project. By observing connected units, we may also discover 

connection patterns. For example, if a project is composed of an application program and 

libraries, an investigation of the connected unit will tell how the application program uses 

a library function. In that sense, this type of connection pattern is a use pattern. 

4.2.5 Reusable Unit Table 

Other important tables are reusable unit and maintainable unit tables. Reusable 

unit table is to present how much a class depends on other classes. In Figure 4-14, the 

first column, A, displays all classes in the selected project. A class in column A uses the 

classes in columns to its right.  The classes in the same row make a special reusable unit. 

For instant, in the second and third rows, we see that class BallListener depends on class 

Linstener, and class BallListenerThread depends on classes BallListene, BingoBall, 

Constants, and ListenerThread. This dependency means that, for example, if programmer 

wants to use a certain class (BallListenerThread), then he/she must use the other classes 

in the reusable unit (BallListener, BingoBall, Constants, and ListenerThread) since they 

are used by the certain class (BallListenerThread). Therefore, if a class depends on too 

many other classes, it is obvious that such a class is difficult to be reused. 
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Figure 4-14: Reusable unit table 

 

4.2.6 Maintainable Unit Table 

Figure 4-15 shows a maintainable unit table. Maintainable unit is to present how 

many classes depend on a specific class. All classes in the selected project are displayed 

in the first column, A, and each class in that column is used by the classes in other 

columns, thus the classes in the same row are identified as a maintainable unit. For 

instant, three classes BallListenerThread, Card, and LightBoardPane in the third row use 

BingoBall, thus if you want to modify or update BingoBall, you must test 

BallListenerThread, Card, and LightBoardPane as well. Therefore if there are too many 

classes in a maintainable unit, it is very hard to maintain that specific class. 
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Figure 4-15: Maintainable unit table 

4.2.7  Size and Complexity Table 

 

     Figure 4-16: Size and complexity table 

Five size and complexity metrics 

for each class in a project are given in 

Figure 4-16. They are based on the 

definitions given in Chapter 3 (LOCC: 

Lines of Code in a Class, nMC:  number of 

Metohds in a Class, nAC: number of 

Attributes in a Class , aLOCM: average 

LOC for Methods, and aCx: average 

McCabe complexity) . 
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4.2.8 Cohesion Table  

 

Figure 4-17: Cohesion table 

Cohesion metrics for each class in a 

project are given in Figure 4-17. MI is 

Method Invocation cohesion and AR is 

Attribute Reference cohesion; both are 

discussed in Chapter 3. From this table, we 

can easily see that in this particular 

program, most of the classes use/reference 

attributes (148 times) within a class rather 

than invoke methods (3 times).  

 

 

Figure 4-18: Cohesion among methods and attributes 

 

We look inside a class to examine how the methods and attributes in the class are 

related to each other. In Figure 4-18, the first column and the header row represent all 

attributes and methods, respectively, in the target class (LightBoardPane). If we see 

LightBoardPane class in Figure 4-17, this class has ‘17’ for AR cohesion measure, and in 
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Figure 4-18, we can see each occurrence of AR relation for the class between attributes and 

methods, making 17 relations in total. For example, methods lightBoardPane(), 

displayNewBall(), and  clear()  reference attributes 11 times (allBalls(3), rowTitles(4), 

newBallLable(3), and litColor(1)), 4 times, and 2 times, respectively, for a total of 17 times 

(17 AR cohesion). 

4.2.9 Connected Unit Table for Cohesion  

We also define a connected unit for cohesion metrics and compute the cohesion 

strength of a class as shown in Figure 4-19 (a) and (b). All attributes and methods in the 

same column make a unique connected unit because they are related to each other. In this 

case, it is clearly indicated that attribute allBallsPane and method getMaximunSize() have 

no relation to other elements in the class, thus their cohesion strengths are both zero. 

 
(a) Connected unit name table  (b) Connected unit strength table 

Figure 4-19: Connected unit and its strength for cohesion 

 

 

4.3  Connected Unit 

Display techniques and tabular representations have been studied as to how to 

best depict various metric findings. To represent the coupling and cohesion 
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measurements, we develop a measurement result table and a connected unit table. They 

can display not only the connection strength (count) among the software components, but 

also the architectural nature of an object-oriented system.  

 

A connected unit table is composed of a pair of corresponding tables: connected 

unit name table and connected unit strength table. In the connected unit name table, only 

coupled classes can be located in a same column, thus a set of classes in the same column 

is a connected unit.  

In the connected unit strength table, each number represents the coupling strength 

of the corresponding classes in the connected unit name table. Figure 4-20 (a) shows that 

classes A, B, D, F, and I are in the same column because they are coupled to each other. 

Corresponding numbers in Figure 4-20 (b) represent the coupling strength of each 

of these classes. For example, number seven in the Figure 4-20 (b) indicates that class A 

has a total count of seven for fan-out and fan-in to other classes in this column (i.e., B, D, 

Class A    

Class B    

 Class C   

Class D    

  Class E  

Class F    

 Class G   

   Class H 

Class I    

 

7    

3    

 4   

2    

  0  

43    

 4   

   0 

11    

 

(a) Connected unit name table  

Figure 4-20:  Connected unit table  

 

(b) Connected unit strength table 
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F, and I). Classes E and H are not related to others in this project thus their coupling 

strengths are both zero. There are several possibilities for those classes that have strength 

zero: 

• They are no longer used in the project therefore they should be deleted from the 

project. 

• They have independent functions that are ready to be used in other applications. 

Therefore, we need to inspect their corresponding source codes to determine their 

usefulness.  

Classes C and G are related to each other but not to others as they appear in the 

same column. We may classify these two classes as a reusable or maintainable unit after 

inspecting the measurement results and the source code. We also need to inspect class F 

 
 

Figure 4-21:  Attribute reference cohesion measurement table 
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to find out why it has such a high coupling count. Using the connected unit table, a user 

can inspect a target class and its coupled classes. Connected unit table may be used in a 

priori or a posteriori manner. A developer may decide in priori to slice the class or 

remove the dead code in an application after browsing the connected unit table or in 

posteriori to inspect the software for reuse purpose.  

We can apply the same approach to the cohesion metrics. As an example of 

connected unit in a cohesion connected unit table, we may find a class designed for 

multiple functions. If indeed the class has different functions, the user may slice the class 

into several small classes and reuse a portion of them. This approach can reduce test and 

maintenance costs.  

Figure 4-21 shows attribute reference cohesion measurement for ClassInfo. All 

methods are listed in the first column and all attributes are listed in the first row. A 

number in this table indicates how many times the method in the row references the 

corresponding attribute in the column. For example, method getPackageName() 

references attribute packageName once.  

A cohesion connected unit table can be built based on this cohesion measurement 

table. Figures 4-22 (a) and (b) show the connected unit tables of Cohesion Measurement 

for ClassInfo. Like the coupling connected unit table, only related attributes or methods 

can be located in the same column. 

In this example, we can find the use pattern in columns B, D, E, F, and G (getters 

and setters for attributes).  



 

 

 

 

70 

(a) Cohesion connected unit name table 

(b) Cohesion connected unit strength table 

Figure 4-22:  Cohesion connected unit table for class ClassInfo 
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For example, there are two methods in column B, getPackageName() and 

setPackageName(), for an attribute PackageName, and two methods in column E, 

getParentClassName() and setParentClassName(), for an attribute ParentClassName.   

Since the attributes/methods in the same column are related to each other, if a user 

wants to reuse method getModifier() in column D, he/she would need to reuse attribute 

cModifier and method setModifier(). In that case, these three software components in 

column D can be identified as a reusable unit. Since attribute cIndex in column A has no 

relation to other classes and other parts in this class, this attribute can be classified as a 

dead code thus should be deleted. A user would first browses the connected unit table to 

identify the reusable units and then inspect their connection patterns to see how such 

software components are connected and/or used in the software package. By examining 

the measurement tables, a user can also decide whether he/she can reuse the whole or part 

of the reusable unit.  Locating related components and inspecting their use pattern can 

guide a user to reuse them.  
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4.4 Measurement Result Export for Spreadsheet 

When the Measurement Table Generator in JamTool creates tables, it generates 

the measurement results in the CSV (Comma Separated Values) file format. The CSV file 

format is a file type that stores tabula data which uses a comma to separate values and is 

supported by almost all spreadsheets. Therefore, JamTool exports measurement results 

directly into a spreadsheet application such as Microsoft Excel. 

Exporting to spreadsheet expands the power of JamTool by enabling further 

analysis and graphing. Spreadsheet application provides some of the statistical analysis or 

presentation capabilities required to investigate the measurement results. Therefore it 

does provide a great advantage to help the JamTool users to derive meanings from the 

measurement data. 

With Export to spreadsheet we can: 

• Display measurement results in spreadsheet instead of JamTool 

• Analyze measurement data with a spreadsheet application 

• Configure and format reports to represent the measurement data in an easy to 

understand style such as graph 

Spreadsheet application offers the ability to perform calculations and complex 

mathematical, statistical, and data analysis functions on numbers and text. JamTool’s 

tabular data is suitable to take these advantages. 

Figures 4-23 and 4-24 show an example of Measurement Result Export for 

Spreadsheet. Figures 4-23 (a) and (b) are maintainable/reusable units for coupled 
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classes in a project, and they are the same as Figures 4-14 and 4-15, but exported to Excel 

for analysis report.  

Figure 4-24 displays fan-in/out couplings and their visual graphs. Column A in 

Figure 4-24 (a) displays all classes in the selected project. For the corresponding class, 

Columns B and C in Figure 4-24 (a) show the number of classes fan-in coupled and the 

number of classes fan-out coupled, respectively, and they are obtained from the 

reusable/maintainable units in Figure 4-23. For instance, if we look at class 

BallListenerThread, this class is used/invoked by only one class (OverallStatusPane) as 

shown in the maintainable units of Figure 4-23 (a),  having -1 for fan-in of column B in 

Figure 4-24 (a), and uses/invokes four classes (BallListener, BingoBall, Constants, and 

ListenerThread) as shown in the reusable units Figure 4-23 (b), having 4 for fan-out of 

column C in Figure 4-24 (a). The negative sign (-) of column B is to graph fan-in 

couplings under the x-axis to visually compare them to fan-out couplings above the x-

axis. Their actual strengths of coupling (Number of times they are coupled in the coupled 

classes) are shown and graphed in Figure 4-24 (b). For example, BallListenerThread 

class has -1 for fan-in and 10 for fan-out, which means that this class is used/invoked by 

OverallStatusPane class only once, but uses/invokes four classes (BallListener, 

BingoBall, Constants, and ListenerThread) 10 times for total. The negative sign (-) is for 

the same purpose as Figure 4-24 (a). 

These tabular data and comparative graphic representation will clearly assist and 

aid JamTool users in a better understanding of software reuse and maintenance. For 

instance, class OverallStatusPane, which has the highest fan-out coupling, will decrease 
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the reusability of the class, and class BingoBall, which has the highest fan-in coupling, 

will decrease the maintainability of the class. 

 

(a) Maintainable units exported to Excel 

 

(b) Reusable units exported to Excel 

Figure 4-23: Maintainable/Reusable units exported to Excel 



 

 

 

 

75 

 

(a) Maintainable/Reusable units – number of classes 

 

(b) Maintainable/Reusable units – strength of coupling 

Figure 4-24: Maintainable/Reusable units graphed in Excel 
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5 UNDERSTANDING SOFTWARE EVOLUTION USING 
METRICS AND VISUALIZATION 

This chapter presents an empirical study to investigate if the metrics defined and 

implemented by JamTool can be used to assess the quality of software evolution. The 

empirical study is an analysis of reusability and maintainability during the evolution of an 

open source software system, JFreeChart, which is a charting library [25]. We observe 

the quality change along the evolution of the twenty-two released versions of JFreeChart 

and discuss its quality change based on the Lehman’s laws of evolution. We derive 

software metrics from the twenty-two releases of the target system and determine 

whether software quality has significantly changed over this period. More specifically, 

we compare the fan-in and fan-out couplings of the removed and the added classes from 

one version of the software to the next in order to find out if the quality of each release 

has improved or declined. 

 A separate, but related case study to analyze how a software system has evolved 

was conducted. The case study is to present the global visualization of the evolution of a 

software system and provide effective ways to analyze the evolution of the system. Since 

the study does not utilize the developed metrics, the results of study are included in 

Appendix A. 
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5.1 Empirical Study: Measuring Quality on Software Evolution 

Fan-in is the number of references made from outside a class to entities defined 

within the class, and fan-out is the number of references made from within a class to 

entities defined outside the class. While fan-in coupling is very useful when assessing the 

impact of a change, fan-out is very useful when partitioning programming elements and 

figuring out what other classes a given class needs in order to run. Therefore a low fan-

out is desirable since a high fan-out is a characteristic of the large number of classes 

needed by the particular class and makes the class difficult to reuse [3, 6, 23, 37, and 38]. 

A high fan-in normally represents a good object design and a high level of reuse.  

Although a system is useless without any coupling, for any given software 

solution there is a baseline or necessary coupling level and that developer's goal should 

be the elimination of extraneous coupling. Such unnecessary coupling needlessly 

decreases the reusability of the classes [43].   

For library software like JFreeChart, high fan-out coupling decreases its 

reusability. Because it is an open source library and it has been used by other applications 

for a long time, we expect to find the quality of JFreeChart to improve along with its 

evolution in terms of reusability. 

On the other hand, as summarized in [33], the laws of software evolution have 

been proposed and formalized in [30, 31, and 32] since 1974. The statement of Lehman’s 

laws refers to E-type software, which cannot be completely specified and once the system 

is operational, the development with new requirements of the software is essential. 
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Evolution is intrinsic and inevitable for this type of software. Eight Lehman’s laws are 

given in Table 5-1. 

In this empirical study, we explore the evolution of the JFreeChart in terms of 

size, coupling and cohesion, which are measurable from software source code, and 

discuss its quality change based on the Lehman’s laws of evolution. The study indicates 

that our experimental results follow three laws (I: Continuing change, II: Increasing 

complexity, VI: Continuing growth) out of eight. But this indicates more research is still 

needed for one law (VII: Declining quality). Each of the laws is explained here: 

Continuing change: An E-type system must be continually adapted otherwise it becomes 

progressively less satisfactory in use 

Increasing complexity: As an E-type system is evolved its complexity increases unless 

work is done to maintain or reduce the complexity 

Continuing growth: The functional capability of E-type systems must be continually 

enhanced to maintain user satisfaction over the system lifetime 

Declining quality: Unless rigorously adapted and evolved to take into account changes 

in the operational environment, the quality of an E-type system will decline 
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Table 5-1: Latest formulation of Lehman’s laws of software evolution 

 

No./year of first 

formulation 
Name 

No./year of first 

formulation 
Name 

   I 1974    Continuing change    V 1991 
   Conservation of  

   familiarity 

   II 1974    Increasing complexity    VI 1991    Continuing growth 

   III 1974    Self regulation    VII 1996    Declining quality 

   IV 1978 

   Conservation of   

   organizational 

   stability 

   VIII 1971/96    Feedback system 

5.1.1 Objective 

The objectives of this empirical study are two fold. First, we investigate if there is 

any relationship between the class growth of the target software and the metric values 

(coupling and cohesion) measured by JamTool. We normally assume that if the number of 

classes increases, then the coupling between classes will increase as well since the 

coupling measures the degree to which a program module (i.e., class) relies on other 

modules. However, the class growth should not affect the cohesion metric values, since 

the cohesion metric measures the strength of relationship among internal components 

within a single class. 

Secondly, we observe the quality change along the software evolution by 

comparing the fan-in/out couplings and the cohesion metrics of the removed and added 

classes of each version of the software. We expect quality software to have low coupling 

and high cohesion. When a software system requires updates, i.e., changes to the software 

to correct bugs or to install new functionalities, some classes in the software are removed 

and the classes with new functionalities are added to the software. At this point we 
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assume the removed classes have poorer quality and the added classes should have better 

quality. Therefore, in terms of coupling/cohesion metrics, the newly added classes should 

have lower coupling and higher cohesion than the removed classes.  

We investigate fan-in and fan-out couplings separately since a high fan-in 

coupling and a low fan-out coupling are desirable for a class.  A high fan-in coupling 

indicates the class that is called upon by many other classes. Thus, it is reused. A low fan-

out coupling means independence and encapsulation, and this kind of class/module is 

easier to reuse. 

5.1.2 Methodology 

The software used in the experiment was JFreeChart which is a powerful and 

flexible open source charting library. We choose JFreeChart as the target software system 

because it is a long-term open source library with many releases. To obtain information 

about the version differences, we used an evolution track table to compare two versions 

of a program and report all the differences. A very detailed explanation of an evolution 

track table is provided in section 5.2. 

First, we extract information of classes in terms of size, coupling and cohesion 

metrics from all twenty-two versions of JFreeChart and analyze the relationship between 

the classes and the metrics. According to [13], the size of a system is defined as the 

number of program units it contains, thus it should be based on the number of “modules’ 

rather than source code size. This is the main reason we use the number of classes as size 

metrics. 

Second, we focus on the removed and added classes of the target software. We 
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extract metrics of the removed classes in each version and the newly added classes, 

divide them into two groups, and compare them to investigate any differences between 

the groups. Then we perform an analysis by examining the coupling and cohesion metrics 

of the removed and the added classes over releases. 

Third, we present empirical studies of the relationships between the number of 

classes and the derived coupling/cohesion metrics, and the relationships between the 

removed and the added classes throughout a software evolution.  

Metric extraction can be a difficult task due to the size of the system and the 

number of versions. We use an evolution track table to extract the number of classes and 

the removed and added classes, and JamTool collects coupling and cohesion metrics from 

JFreeChart. 

5.1.3 Hypotheses 

Based on the assumption and expectation above, we set up five hypotheses: Two 

to observe if any relationship exists between class growth and metric values measured by 

JamTool, and three for the added classes (i.e., group A) and the removed classes (i.e., 

group R). 

• Hypothesis 1: Class growth throughout all versions will be positively reflected in the 

fan-in/fan-out coupling metric values. 

• Hypothesis 2: Class growth throughout all versions of the program will not be 

positively reflected in the cohesion metric values. 

 These two are actually to confirm the findings of the previous studies and our 
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expectation about class growth and metrics [32]. 

• Hypothesis 3: The average fan-in coupling of group A will be higher than the average 

fan-in of group R. 

• Hypothesis 4: The average fan-out coupling of group A will be lower than the average 

fan-out of group R. 

• Hypothesis 5: The average cohesion of group A will be higher than the average 

cohesion of group R. 

We believe that group A and group R can be categorized in a certain way based on 

the metric values of coupling and cohesion measured by JamTool. In other words, the 

added class group should have better software quality than the removed class group does. 

5.1.4 Results 

We applied an evolution track table and JarJarDiff (File comparison tool) to find 

the differences between two subsequent versions starting with JFreeChart-0.9.0 and 

ending with JFreeChart-0.9.21. According to the results obtained by evolution track table 

and JarJarDiff, we found that whenever a version is newly evolved, the software had a 

many changes. It modified interfaces and/or classes, removed interfaces and/or classes, 

and/or added new packages, interfaces, and/or classes. 

Normally, the number of classes gradually increases as a new version is released. 

Also, there are some huge changes in the middle of releases. With these reasons, in this 

experimental study, we investigate if the class growth shows any observable phenomenon 

on the coupling and cohesion metric values, and if the newly added classes show any 



 

 

 

 

83 

observable trend in comparison with the removed classes. 

Class Growth, Coupling, and Cohesion  

Table 5-2 gives an overview of the version differences of the software and 

coupling/cohesion metric values obtained by JamTool. It shows the number of classes 

(Removed, Added, total), average fan-in/-out coupling metrics, and average cohesion 

metrics in each version of the JFreeChart.  

Figure 5-1 shows the class growth across all versions of the program and Figure 

5-2 reveals an increasing trend for the average fan-in/fan-out coupling. We can easily 

recognize that the number of class increases gradually as new versions of the program 

evolve and the significant class growth occurred between versions 0.9.3 and 0.9.5, 

otherwise the number of classes increases consistently. 

There was a more than 300% class growth in the number of classes from the 

beginning of the program (i.e., 139) to the final version of the program (i.e., 460). This is 

a confirmation of the study by [6] and Lehman’s 6
th

 law of software evolution [32] that 

the evolution of an object-oriented system reveals an increasing trend of the number of 

classes.  

For the Fan-in/fan-out coupling, a noticeable change appeared between versions 

0.9.3 and 0.9.4. We could say that this is because 113 classes were newly added to 

version 0.9.4 and it affects the average metric values. After that the growth trend is 

consistent while the average cohesion seems not to grow as the class does.  
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Table 5-2: Version differences and Coupling/Cohesion metrics 

Version of 

JFreeChart 

No. of 

Removed 

classes 

No. of 

Added 

classes 

Total no. 

of classes 

Avg. fan-

in 

coupling 

Avg. fan-

out 

coupling 

Average 

cohesion 

0.9.0   139 11.9 12.1 12.7 

0.9.1 1 0 138 12.0 12.2 12.9 

0.9.2 0 6 144 11.8 12 12.9 

0.9.3 0 113 257 11.0 11 11.6 

0.9.4 3 21 275 13.1 14.1 12.8 

0.9.5 22 74 327 12.8 13.8 12.6 

0.9.6 0 2 329 12.8 13.8 12.6 

0.9.7 1 25 353 12.7 13.5 12.4 

0.9.8 0 3 356 12.8 13.6 12.5 

0.9.9 43 48 361 13.0 14.2 12.7 

0.9.10 11 2 352 13.2 14.1 13.2 

0.9.11 0 13 365 13.4 14.4 13.4 

0.9.12 5 17 377 13.6 14.4 13.5 

0.9.13 0 6 383 14.0 14.8 13.8 

0.9.14 3 15 395 15.3 15.4 14.1 

0.9.15 0 9 404 15.2 15.3 14.0 

0.9.16 2 10 412 15.1 15.2 13.8 

0.9.17 19 30 423 15.0 15.2 9.8 

0.9.18 1 10 432 14.7 14.7 9.9 

0.9.19 9 24 447 14.2 14.3 9.8 

0.9.20 0 1 448 14.3 14.3 9.8 

0.9.21 3 15 460 14.5 14.6 9.8 

Total 123 444     

 

The cohesion metric between versions 0.9.16 and 0.9.17 suddenly drops and this 

becomes a key reason to affect the average. This can be explained by the fact that 115 

classes were modified not included in this research as well as 19 removed and 30 added 

at version 0.9.17.   

To test the hypotheses if the growth trend of classes is actually related to the 

metric values, we calculated correlations between the number of classes and one of the 

average fan-in coupling, fan-out coupling and cohesion. 
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Figure 5-1: Number of class growth 
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Figure 5-2: Average fan-in/out coupling and cohesion 

 

The average fan-in/out coupling is the average of the fan-in/out coupling metric 

values of all classes in each version of the program. The average cohesion is the average 
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of the cohesion metric values of all classes in each version. Underlying assumptions are 

that the number of classes is positively related to the average fan-in/out coupling, but is 

not positively related to the average cohesion.  

As we expected, there are strong correlations between the number of classes and 

the average fan-in/fan-out couplings with 0.813 and 0.826, respectively, in the pearson 

correlation, and at the significant level of p-value= 0.000 (Table 5-3). This statistical 

analysis strongly supports the first two hypotheses we made, and agrees with the previous 

research statements about the relationships between the number of classes and the 

coupling metrics, which stated that if the number of classes increases then coupling 

metrics increase.  

Moreover, Lehman’s 2
nd

 law (Increasing complexity) of software evolution states 

that as a system evolves the complexity of the system increases unless work is done to 

maintain it. Since JFreeChart is an object oriented system written in Java, it is known 

that the complexity of a Java program depends largely on the coupling metrics among the 

classes.  

Table 5-3: Correlation between the number of classes and coupling/cohesion 

Number of classes 

 At each version 

Pearson correlation P-value 

Average fan-in coupling 0.813 0.000 

Average fan-Out coupling 0.826 0.000 

Average cohesion -0.356 0.104 
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Figure 5-3: Number of classes removed and added 

 

Figure 5-2 shows that as JFreeChart evolved, the coupling of the system 

increased, thus complexity increases as well, following Lehman’s 2
nd

 law of evolution 

with some minor exceptions.  

Removed and Added Classes 

Figure 5-3 shows the numbers of classes removed (group R)   and added (group 

A) across all versions. We noticed that the software is constantly changed between 

versions and, in most cases, many more classes are added (total of 444) than removed 

(total of 123). This changing nature of JFreeChart follows Lehman's 1st law (Continuing 

change). Almost 50% of group A were added around the beginning of the evolution (213 

out of 444), prior to version 0.9.5. According to [1], this is a common phenomenon. 

About 65% of group A were added before version 0.9.9 (291 out of 444). In addition, 

there seems to be important changes at version 0.9.9 by adding 48 classes and removing 

43 (36% of the removed). 
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Figure 5- 4: Average coupling/cohesion of the classes removed and added 

To test the last three hypotheses, we calculated average Fan-in/out coupling and 

cohesion metrics for both group A and group R. It is the average of metric values of all 

classes removed/added in each version. Figure 5-4 shows the metric values and compares 

them in bar graphs. We were expecting to see higher Fan-in and cohesion and lower fan-

out in group A than in group R. 

The results reveal higher fan-in coupling and lower fan-out coupling for the added 

class group than those for the removed class group thus, support Hypotheses 3 and 4. It 

implies directly that the added classes have better software quality than the removed 

classes in terms of coupling. This result is very interesting because the 7
th

 law (Declining 

quality) of Lehman’s software evolution states that E-type programs will be perceived as 

of declining quality unless adapted to a changing operation environment. We defined 

reusability as a quality factor for JFreeChart since it is a library which is intended to be 

reused by other applications. We measured fan-out and fan-in coupling metrics over time 

to see the trend of the quality in terms of reusability. As we mentioned earlier, low 
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fan-out and high fan-in coupling are desirable for the classes to be reused. Therefore we 

can say that with few exceptions, the evolution of the JFreeChart does not follow 

Lehman's 7
th

 law of evolution. 

Based on the average cohesion metric values as shown in Figure 5-4, we found no 

big difference between the two groups and therefore reject Hypothesis 5. 

For the averages of the metrics, we looked into each version as shown in Figures 

5-5, 5-6, and 5-7. Since we have different numbers of classes across all versions, we 

normalized the average metric values by dividing the number of classes at each version. 

For the fan-in coupling in Figure 5-5, we observe two spikes at versions 0.9.3 and 

0.9.9. The first is for the added and the second is for the removed. Although the overall 

average seems to be influenced by them, the metrics for the added are higher and stronger 

than the removed, which is desirable and expected because it is reusable. More 

importantly the average at version 0.9.3 is the one with 113 added classes. 

Normalized fan-in coupling for the classes removed and added
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Figure 5-5: Normalized fan-in coupling 
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Figure 5-6: Normalized fan-out coupling 

Normalized cohesion for the classes removed and added
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Figure 5-7: Normalized cohesion 

For the fan-out coupling in Figure 5-6, we again notice a spike at version 0.9.9. 

This one is especially important because it is the average of 43 removed classes out of 

123. It is almost 40% of all the removed classes at a single version, and this plays an 

important role toward the undesirable quality of software because it is hard to maintain, 
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thus removed.  

For the cohesion value per version in Figure 5-7, the removed classes at version 

0.9.9 have high cohesion, even though this could be explained that they were removed 

because of the high fan-out coupling. However, the high cohesion for the added at 

version 0.9.3 is meaningful because it is the average of 113 classes while we can’t say 

that the added class group has better quality in terms of cohesion because of the data in 

Figure 5-4.  

Obvious common phenomena from these three Figures (5-5 – 5-7) is that the 113 

classes added at version 0.9.3 represent high fan-in coupling and cohesion, which is ideal, 

and the 43 classes removed at version 0.9.9 represent high fan-in/out and cohesion.  The 

high fan-out coupling resulted in having these 43 classes removed from the software. 

5.1.5 Summary 

In this empirical study, we have mainly focused on tracking the reusability of an 

open software system, JFreeChart, over its evolution with fan-in and fan-out couplings 

for added and removed classes. We found that the number of classes increases gradually 

over most releases, and they have strong correlations with coupling metrics but not 

positively related to the cohesion. These confirm the expectations about the relationship 

between them.  We also found that the added classes have higher fan-in coupling and 

lower fan-out coupling comparing to the removed classes.  Low fan-out and high fan-in 

are desirable in term of reusability since a high fan-out means difficulty to reuse a class 

and a high fan-in represents a high level of reuse. It also has been found that evolution of 

this software system is consistent with Lehman's 1st, 2nd, and 6th laws of software 
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evolution.  

While more research would be required to make any firm conclusions, this 

observation leads us to believe that the reusability of JFreeChart has improved along 

with its evolution. In this way, applying metrics from JamTool over the evolution of the 

software can aid a software engineer to understand how a system has evolved over time. 
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6 ANALYZING SOFTWARE FOR REUSE AND 
MAINTENANCE 

 

 We applied software metrics and visualization approach to understand the 

software evolution in Chapter 5. According to the empirical study, there was a big change 

of coupling metric values from 0.9.3 to 0.9.4 as reported in Table 5-2 and Figure 5-2. 

This chapter presents a case study to investigate if the metrics defined and implemented 

by JamTool can be used to capture the difference between two consecutive versions on 

the evolution of JFreeChart.  

6.1 Added and Removed Classes 

When JFreeChart evolves from version 0.9.3 to version 0.9.4, twenty-one new 

classes were added and three classes were removed. Tables 6-1 and 6-2 summarize fan-in 

and fan-out couplings for the added and removed classes. The Class Counting Coupling 

(CCC) fan-out of a class, C, is the number of other classes that are referenced in C.  A 

reference to another class, A, is a reference to a method or a data member of class A. In 

the CCC fan-out of a class, multiple accesses to the same method or data element are 

counted as one access.  The CCC fan-in of a class, C, is the number of other classes that 

reference class C. In the CCC fan-in of a class, multiple accesses are also counted as one 
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access.  

High CCC fan-out of a class represents couplings to many other classes and thus 

the class is hard to be reused because this class depends on many other classes. High 

CCC fan-in of a class represents good object design and high level of reuse but it may be 

risky to change this class because many classes depend on it.  

Strength Counting Coupling (SCC) fan-in and fan-out coupling counts all 

references between classes. As shown in Table 6-1, added classes have higher (CCC 

average 2.5) fan-out coupling than fan-in coupling (CCC average 1.3).  

Table 6-1: Added classes into 0.9.4 

CCC SCC Class Name 

Fan-out Fan-in Fan-out Fan-in 

ArrowNeedle 1 2 1 3 

CompassPlot 14 0 27 0 

DatasetGroup 0 4 0 8 

DrawableLegendItem 1 3 3 48 

FastScatterPlot 7 0 21 0 

Function2D 0 2 0 2 

IntervalCategoryToolTipGenerator 2 1 4 1 

JThermometer 5 0 35 0 

LineFunction2D 1 0 1 0 

LineNeedle 1 1 1 1 

LongNeedle 1 1 1 1 

MeterNeedle 0 8 0 11 

PinNeedle 1 1 1 1 

PlumNeedle 1 1 1 1 

PointerNeedle 1 1 1 1 

PowerFunction2D 1 0 1 0 

Regression 0 0 0 0 

ShipNeedle 1 1 1 1 

XYDotRenderer 2 0 2 0 

WindNeedle 1 1 1 1 

ThermometerPlot 13 1 62 15 

Average 2.5 1.3 7.8 4.5 
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Six classes (XYDotRenderer, FastScatterPlot, JThermometer, LineFunction2D, 

PowerFunction2D, and CompassPlot) have only fan-out couplings and three classes 

(DatasetGroup, Function2D, and MeterNeedle) have only fan-in couplings. Class Regression 

is added without any relation to other classes. This class may be ready to provide 

independent service to other software application.  

Class ThermometerPlot depends on 13 classes with 62 fan-out couplings and 1 

class depends on this class with 15 fan-in couplings. Nine added classes have both fan-

out and fan-in couplings. Class DrawableLegendItem has 1 fan-out class and 3 fan-in 

classes with 3, and 48 couplings, respectively. Therefore, we need to pay more attention 

to this class than other classes among the added classes. 

In Table 6-2, Class WindAxis is removed, but it does not affect the rest of the 

system because no other classes depended on this class. Classe ToolTipsCollection is 

removed and one class depends on this class with one coupling. Class ToolTip is removed 

and one class depends on this class with six couplings. Even if only one class depends on 

the removed classes, we still need to test the effect of the removed classes because this 

one class may trigger riffle effects to other classes in the system. 

 

Table 6-2: Removed classes from 0.9.3 

 CCC SCC 

Class Fan-out Fan-in Fan-out Fan-in 

WindAxis 2 0 6 0 

ToolTipsCollection 0 1 0 1 

ToolTip 0 1 0 6 
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6.2 Modified Classes 

 We compare CCC fan-in and fan-out couplings between 0.9.3 and 0.9.4 to see if 

there are changes in terms of the number of coupled classes. Table 6-3 shows the changed 

classes that have big differences in terms of the number of coupled classes. As shown in 

Table 6-3 (a), class ChartFactory depends on 15 new classes; there are only 2 classes 

depend on more than 3 new classes, but 4 classes decrease the number of coupled classes 

in version 0.9.4. 

Table 6-3: Changed classes with at least 3 differences.  

CCC(Fan-out) 0.9.3 0.9.4 Change 

ChartFactory 38 53 15 

StandardLegendItemLayout 2 6 4 

AbstractXYItemRenderer 6 9 3 

AreaCategoryItemRenderer 2 5 3 

DateAxis 5 8 3 

HorizontalDateAxis 9 12 3 

StandardCategoryToolTipGenerator 1 4 3 

ChartUtilities 6 3 -3 

StandardLegend 5 2 -3 

JThermometer 4 0 -4 

StackedHorizontalBarRenderer 5 1 -4 
 

(a) Changed classes with big difference of fan-out (CCC) 

CCC(Fan-in) 0.9.3 0.9.4 Change 

LegendItemCollection 1 13 12 

CategoryURLGenerator 2 13 11 

LegendItem 3 10 7 

EntityCollection 20 24 4 

StandardCategoryToolTipGenerator 0 4 4 

TickUnits 3 7 4 

CategoryPlot 7 10 3 

DateTickUnit 0 3 3 

Plot 17 20 3 

StackedVerticalBarRenderer3D 10 1 -9 

(b) Changed classes with big difference of fan-in (CCC) 
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In Figure 6-3 (b), classes LegendItemCollection, CategoryURLGenerator, and 

LegendItem in version 0.9.4 depend on more than 7 new classes and 9 classes stop 

depending on class StackedVerticalBarRenderer3D. Table 6-4 and Figure 6-1 summarize 

fan-in/out differences in these two versions. CCC represents the number of coupled 

classes and SCC represents the coupling strength. 

 

Table 6-4: Fan-in/out differences in two versions 

Average Min Median Max  

0.9.3 0.9.4 0.9.3 0.9.4 0.9.3 0.9.4 0.9.3 0.9.4 

Fan-in 2.9 3.1 0 0 1 1 36 38 CCC 

Fan-out 2.9 3.1 0 0 2 2 38 53 

Fan-in 12.8 16.2 0 0 3 3 255 398 SCC 

Fan-out 12.8 16.2 0 0 3 2 331 447 

 

 

 
Figure 6-1: Average coupling comparison of changed classes  

 

Average Coupling

0 

2 

4 

6 

8 

10 

12 

14 

16 

18 

CCC SCC 

0.9.3 
0.9.4 



 

 

 

 

98 

Fan-in coupling distribution (CCC)

0

50

100

150

200

250

Number of fan-in coupling

N
u

m
b

e
r 

o
f 

c
la

s
s

0.9.3 198 25 8 3 1 0 0 1

0.9.4 210 25 13 3 1 1 0 1

0-5 6-10 11-15 16-20 21-25 26-30 31-35 36-40

Fan-out coupling distribution (CCC)

0

50

100

150

200

250

Number of fan-out coupling

N
u

m
b

e
r 

o
f 

c
la

s
s

0.9.3 195 34 5 1 0 0 0 1 0 0 0

0.9.4 209 33 10 1 0 0 0 0 0 0 1

0-5 6-10 11-15 16-20 21-25 26-30 31-35 36-40 41-45 46-50 51-55

 

 

(a) Fan-in coupling distribution 

 

(b) Fan-out coupling distribution 

 

Figure 6-2: Coupling (CCC) distribution in two versions 
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(a) Fan-in coupling distribution 
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(b) Fan-out coupling distribution 

Figure 6-3: Coupling (SCC) distribution in two versions 



 

 

 

 

100 

When JFreeChart evolves from 0.9.3 to 0.9.4, the average number of coupled 

classes is increased from 2.9 to 3.1 and the average coupling strength is increased from 

12.8 to 16.2. This result means that, in version 0.9.3, each class depends on 2.9 classes on 

average and references/uses other classes about 12.8 times. Each class, in version 0.9.4, 

depends on 3.1 classes on average and references/uses other classes about 16.2 times. 

Therefore, we can say that version 0.9.4 is more difficult to reuse and maintain than 0.9.3. 

Figures 6-2 and 6-3 summarize fan-in/out coupling distributions for these two 

versions. There are classes with high coupling metrics which we need to pay more 

attention and monitor their changes. Figure 6-2 shows fan-in/out coupling distributions in 

terms of the number of classes. Most classes have coupled to fewer than 5 classes.  

Figure 6-3 shows fan-in/out coupling distribution in terms of the number of actual 

couplings. It is a distribution of the SCC metrics. Most classes have fewer than 25 

couplings and only very few classes have high couplings. 
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6.3 Reusable Unit and Maintainable Unit 

Reusable unit is a collection of a target class and its related classes we should 

reuse together.  Identifying a reusable unit means that each class has its own reusable unit 

with other classes which the class depends on. The identification of a reusable unit of 

classes requires an understanding of the relation of classes in a software system. A 

maintainable unit contains a target class and its related classes we should test together.   

Reusable unit and maintainable unit are necessary to understand software 

structure and, more importantly, to serve as a source of information for reuse and 

maintenance. 

Figure 6-4 shows the reusable units in versions 0.9.3 and 0.9.4. From these 

reusable units, progression of the reusable units are captured. For example, class 

AbstractCategoryItemRender depends on 5 classes (StandardCategoryToolTipGenerator, 

CategoryRender, CategoryToolTipGenerator, AbstractRender, CategoryURLGenerator) 

in version 0.9.3, which make a unique reusable unit, but 2 new classes (CategoryDataset, 

LegendItem) are added into the reusable unit in version 0.9.4. 
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(a) Reusable unit in version 0.9.3 

 
(b) Reusable unit in version 0.9.4 

Figure 6-4: Reusable unit 
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(a) Maintainable unit in version 0.9.3 

 

(a) Maintainable unit in version 0.9.4 

Figure 6-5: Maintainable unit 
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Figure 6-5 shows maintainable units in two versions. From these maintainable 

units, we can capture the progression how classes depend on a particular class. For 

example, class DateTickUnit has no classes that depend on it in version 0.9.3, but 2 

classes (DateAxis. HorizonDateAxis) depend on it in version 0.9.4 

6.4 Connected Unit 

  In a connected unit table, directly and indirectly coupled classes are located in the 

same column, thus a set of classes in the same column is a connected unit. Figure 6-6 

shows part of connected units of JFreechart in two versions. From these connected units, 

  

(a) Connected unit in 0.9.3 (b) Connected unit in 0.9.4 

Figure 6-6 : Connected units in two versions 
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we find that version 0.9.3 establishes a main connected unit which has 224 classes out of 

a total of 257 classes as shown in column A in Figure 6-6 (a), and a minor connected unit 

with 3 classes in column D of Figure 6-6(a). The three classes 

(StandardToolTipsCollection, ToolTip, and ToolTipsCollection) belong to the same 

package named "com.jrefinery.chart.tooltips". There are also 11 independent classes, e.g., 

DatasetChangeListener in column E, which have no relation to other classes in Figure 6-

6(a). The independent classes are listed in Table 6-5. 

  We also find that version 0.9.4 has a main connected unit with 254 classes out of a 

total of 275 as shown column A in Figure 6-6 (b), and a minor connected unit with 3 

classes in column K of Figure 6-6 (b). These three classes (Function2D, LineFunction2D, 

PowerFunction2D) belong to the same package named "com.jrefinery.data ". There are 

18 independent classes which have no relation to other classes in Figure-6(b). The 

independent classes are listed in Table 6-5. 

6.5 Comparing of Coupling Type 

 We compare the types of fan-in and fan-out couplings to see which type of the 

coupling is most affected by the evolution from version 0.9.3 to version 0.9.4. Seven 

types of couplings for these two versions are partially shown in Figure 6-7 and their 

actual metrics are shown in Table 6-6. Something very noticeable here is that 48% (1413 

out of 3024 in version 0.9.3) and 53% (2192 out of 4111 in version 0.9.4) of the 

couplings are IM (Invoked Method Type) while none of them is RV (Referenced  

Variable).    
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Table 6-5: Independent classes in two versions 

0.9.3 (11 classes) 0.9.4 (18 classes) 

JFreeChartInfo, PlotException, 

DatasetChangeListener, Values, 

XisSymbolic,YisSymbolic, 

DataPackageResources, 

DataPackageResources_de, 

DataPackageResources-es, 

DataPackageResources_fr, 

DataPackageResources_pl 

DataUnit, JFreeChartInfo, 

PlotException, ChartChangeListener, 

LegendChangeListener,  

lotChangeListener, TitleChangeListener, 

JFreeChartResource, 

DatasetChangeListener, Regression, 

Values, XisSymbolic, YisSymbolic, 

DataPackageResources, 

DataPackageResources_de, 

DataPackageResources-es, 

DataPackageResources_fr, 

DataPackageResources_pl 

 

Every coupling metric type has increased from version 0.9.3 to version 0.9.4, and 

the average increasing rate of the coupling is 35.95%. In particular, Method Invocation 

type (IM) has increased 55.48%, which is 72.13% (784 out of 1087) of the total number 

of the increased. This implies that the most significant difference is Method Invocation 

coupling between these two versions.   

Table 6-6: Comparison of Fan-in and fan-out Coupling Types  

Version Fan-in/out coupling 

0.9.3 0.9.4 

Increased Increasing rate 

TA 70 83 13 18.57% 

TM 221 297 76 34.39% 

TL 495 594 99 20% 

IM 1,413 2,197 784 55.48% 

MP 634 733 99 15.62% 

RV 0 0 0 0% 

PC 191 207 16 8.38% 

Total 3024 4,111 1,087 35.95% 
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(a) Fan-in coupling in version 0.9.3 (a) Fan-in coupling in version 0.9.4 

 

  

(c) Fan-out coupling in version 0.9.3 (d) Fan-out coupling in version 0.9.4 

Figure 6-7: Fan-out/Fan-out coupling 
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6.6 Size and Complexity 

 Four size and one complexity metrics for these two versions are partially shown 

in Figure 6-8 and their differences are in Table 6-7. The metrics have all increased from 

version 0.9.3 to version 0.9.4. Figure 6-9 graphs the LOCC distributions these two 

versions, and it is clear that most classes have fewer than 50 lines. 

 

  

(a) Size & complexity in version 0.9.3 (a) Size & complexity in version 0.9.4 

 

Figure 6-8: Size & complexity 
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Table 6-7: Size & complexity differences 

Version Size & complexity 

0.9.3 0.9.4 

Increased Increasing rate 

LOCC 9,820 11,287 1,467 14.94% 

nMC 2,040 2,302 262 12.84% 

nAC 822 910 88 10.71% 

aLOCM 944 1,087 143 15.15% 

aCX 106 118 12 11.32% 

 

Table 6-8: Cohesion differences 

Version Cohesion 

0.9.3 0.9.4 

Increased Increasing rate 

MI 756 1,028 272 35.98% 

AR 2,551 2,867 316 12.39% 

Total 3,307 3,895 588 17.78% 
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Figure 6-9: LOCC distribution 
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(a) Cohesion in version 0.9.3 (a) Cohesion in version 0.9.4 

Figure 6-10: Cohesion 

 

6.7 Cohesion 

 Cohesion metrics for the two studied versions are partially shown in Figure 6-10 

and their differences are in Table 6-8. Something noticeable is that 77% (2,551 out of 

3,307 in version 0.9.3) and 74% (2,867 out of 3,895 in version 0.9.4) of the cohesion are 

AR (Attribute Reference) while MI (Method Invocation) has increased 35.98% in version 

0.9.4.     
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6.8 Summary 

The goal of this case study is to compare and analyze two versions of  JFreeChart 

at class level. Specifically, it aims to answer the following questions: 

o How does the architecture of JFreeChart change between two consecutive 

versions?  

o How can the differences between them be compared and detected?  

o How can the huge information of source code be filtered and compared?  

In this case study, we analyzed the differences between the metrics of two 

versions using JamTool and found overall trend of metrics of JFreeChart in versions 

0.9.3 and 0.9.4. 

From the comparison and analysis of two versions of JFreeChart, we summarize 

the following findings:  

o 21 classes were added to version 0.9.4  

o 3 classes were removed from version 0.9.3 

o 44 classes have new fan-out couplings and 60 classes have new fan-in 

couplings in version 0.9.4.  

o Most classes have low fan-in or fan-out couplings but few classes have high 

coupling.  

o By comparing reusable units and maintainable units in version 0.9.3 and 

version 0.9.4, we found newly added classes to the reusable unit and 

maintainable unit.  
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o By analyzing connected unit, we found that most classes are directly or 

indirectly related to each other and they form one main connected unit. But we 

also found minor connected units with 3 classes, and 11 and 18 independent 

classes which have no relations to other classes in versions 0.9.3 and 0.9.4, 

respectively.  

o More than half of the newly added couplings were Method invocation. 

o Size and complexity metrics are also increased in 0.9.4. 

Based on the findings above, we conclude that the metrics tables produced by 

JamTool can be used in the following tasks: 

o To monitor new coupling through evolution of the software system. 

o To identify outlier classes based on the metrics 
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7 IDENTIFYING CORRELATION AMONG METRICS 

This chapter presents empirical studies that investigate if the metrics defined and 

implemented in JamTool are related to each other. The data sets used for the study are 

also presented. Finally, the statistical correlation coefficients are described. 

Statistical analyses were performed to investigate the following questions: 

• Are there correlations in the metrics? 

The test programs used in this research are Java classes in the GUI library (i.e., 

Swing in JFC) and GUI applications (i.e., Bingo and Netbean). Metrics for these classes 

were automatically collected using JamTool. These applications were written by 

developers in the Sun Microsystems.  The test programs used in this experiment are 

grouped as follows: 

SwingLib = {classes in Swing package in JFC}, 

BingoAppl = {classes in Bingo application},  

NetbeanAppl = {classes in Netbean application}, 

SwingLib contains 502 classes; BingoAppl has 48 classes; NetbeanAppl has 52 

classes. 

JFC/Swing 

The Java Foundation Classes (JFC) is a comprehensive set of GUI components 

and services which simplify the development and deployment of desktop and 
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Internet/Intranet applications. JFC extends the original Abstract Window Toolkit (AWT) 

by adding a comprehensive set of graphical user interface class libraries.  

These components are written in Java, without window-system-specific code. 

They facilitate a customizable look-and-feel without relying on the native windowing 

system, and simplify the deployment of applications.  

Swing is a GUI component kit and is part of JFC integrated into Java 2 platform-

Standard Edition (J2SE). Swing simplifies deployment of applications by providing a 

complete set of user-interface elements written entirely in Java. Swing components also 

permits a customizable look and feel without relying on any window specific 

components. We shall demonstrate our approach by considering code using the 

JFC/Swing library. 

Bingo  

  

Bingo is a client/server application that implements the game of BINGO and a 

comprehensive example of JFC provided by the Sun Microsystems. This application 

broadcasts information via a multicast socket, builds its GUI with Swing components, 

uses multiple synchronous threads, and communicates with RMI. 

NetBean 

 

The NetBean IDE is a development environment - a tool for programmers to 

write, compile, debug and deploy programs. It is a development tool written in Java for 

writing programs in Java and other programming languages. 
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7.1   Methodology 

7.1.1 Experiment 1: Correlation Coefficients among the metrics 

The goal of this statistical analysis is to answer the question:  

• Are any of the metrics in a group (i.e., SwingLib, BingoAppl, and 

NetbeanAppl) correlated? 

The Pearson product moment correlation coefficient, r, is a dimensionless index 

that ranges from –1.0 to 1.0 inclusive and reflects the extent of a linear relationship 

between two data sets. For example, if the r value associated with Metric1 and Metric2 is 

close to zero, then the metric values of Metric1 and Metric2 are not linearly related. On 

the other hand, if r is close to 1, then large values of Metric1 are associated with large 

values of Metric2. Finally, if r is close to –1, then large values of Metric1 are linearly 

associated with small values of Metric2. The sign of the correlation coefficient indicates 

whether two variables are positively or inversely related. A negative value means that as 

Metric1 becomes larger, Metric2 tends to become smaller. A positive correlation means 

that both Metric1 and Metric2 go in the same direction. 

7.1.2 Experiment 2: Correlation Coefficients among the coupling metrics in a 

group 

The goal of this statistical analysis is to answer the question:  

• Are any of the coupling metrics in a group (i.e., SwingLib, BingoAppl, and 

NetbeanAppl) correlated? 

In this experiment, we analyze the correlation among the fan-in and fan-out 

coupling metrics from SwingLib, BingoAppl, and NetbeanAppl to find internal features of 
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each system. 

In this chapter, we apply metrics defined in Section 3.3. For example, LOC 

measures number of lines in a class. 

7.2 Results  

Sections 7.2.1 and 7.2.2 provide the results for each of the statistical analyses 

described in section 7.1. First, section 7.2.1 discusses the correlation among the metrics 

in a group. Section 7.2.2 discusses the analysis results for the correlation among coupling 

metrics in a group.  

7.2.1 Result 1: Correlation among the metrics in a group 

This section answers the following question: 

• Are any of the metrics in SwingLib, NetBeanAppl, and BingoAppl correlated? 

Tables 7-1, 7-2, and 7-3 show the correlation coefficients for the metrics and 

Table 7-4 shows metrics pairs with r values greater than 0.6. In the traditional procedural 

programming paradigm, studies show that defects correlate with LOC and Cyclomatic 

complexity [49, 50]. 

From the correlation results of SwingLib and NetbeanAppl (See Table 7-1 and 7-

2), we found common correlation patterns.  

Except for aLOCM, size metrics (i.e., LOC, NOM, NOA), complexity metrics 

(i.e., aCx), and cohesion metrics (i.e., cohMI, cohAR) are positively correlated to each 

other. Coupling metrics are positively correlated to each other except cplPC and cplMI. 

 LOC, NOM, and NOA are representatives of the size of a class; however aLOCM 
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represents the averaged method size in a class. 

Size, complexity and cohesion metrics are correlated to each other. But coupling 

metrics are not correlated to other metrics like size, complexity and cohesion. Size, 

complexity and cohesion metrics represent the volume within a class, but coupling 

metrics represent the structure among classes in a system. These two aspects of software 

system, obviously, are not correlated. 

From the correlation results of BingoAppl (See Table 7-3), Size metrics and 

complexity metrics are correlated to each other but cohesion metrics are independent 

from other metrics. Some coupling metrics (cplTA, cplMI, and cplTPM) are correlated to 

size and complexity metrics. aLOCM and cplPC are independent from other metrics. 

 

Table 7-1: Correlation Coefficients of metrics in SwingLib 

  LOC NOM NOA aLOCM aCx cohMI cohAR cplTA cplTP cplTL cplMI cplTPM cplPC 

LOC 1.00             

NOM 0.94 1.00            

NOA 0.70 0.66 1.00           

aLOCM 0.31 0.12 0.15 1.00          

aCx 0.95 0.87 0.64 0.23 1.00         

cohMI 0.85 0.81 0.72 0.15 0.83 1.00        

 cohAR 0.82 0.77 0.73 0.17 0.79 0.76 1.00       

cplTA 0.34 0.33 0.27 0.07 0.33 0.25 0.27 1.00      

cplTP 0.35 0.39 0.20 0.04 0.28 0.29 0.20 0.50 1.00     

cplTL 0.38 0.33 0.24 0.08 0.42 0.31 0.26 0.50 0.52 1.00    

cplMI 0.52 0.47 0.34 0.16 0.51 0.42 0.47 0.52 0.50 0.89 1.00   

cplTPM 0.40 0.33 0.33 0.07 0.45 0.38 0.34 0.43 0.44 0.85 0.77 1.00  

cplPC 0.15 0.15 0.17 0.07 0.17 0.15 0.13 0.18 0.21 0.24 0.20 0.20 1.00 
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Table 7-2: Correlation Coefficients of metrics in NetbeanAppl 

 LOC NOM NOA aLOCM aCx cohMI cohAR cplTA cplTP cplTL cplMI cplTPM cplPC 

LOC 1.00             

NOM 0.95 1.00            

NOA 0.67 0.61 1.00           

aLOCM 0.28 0.05 0.20 1.00          

aCx 0.91 0.86 0.49 0.29 1.00         

cohMI 0.84 0.89 0.49 0.09 0.86 1.00        

cohAR 0.81 0.79 0.81 0.16 0.69 0.65 1.00       

cplTA -0.11 -0.05 -0.14 -0.27 -0.08 -0.06 -0.11 1.00      

cplTP -0.03 0.05 -0.19 -0.31 0.02 0.08 -0.12 0.90 1.00     

cplTL 0.06 0.12 -0.15 -0.17 0.12 0.16 -0.02 0.87 0.88 1.00    

cplMI 0.32 0.32 0.16 -0.02 0.36 0.35 0.20 0.19 0.25 0.28 1.00   

cplTPM 0.06 0.14 0.07 -0.25 0.03 0.19 0.06 0.86 0.85 0.83 0.21 1.00  

cplPC 0.35 0.40 0.06 -0.02 0.47 0.39 0.37 0.17 0.22 0.33 0.18 0.17 1.00 

 

 

Table 7-3: Correlation Coefficients of metrics in BingoAppl 

 LOC NOM NOA aLOCM aCx cohMI cohAR cplTA cplTP cplTL cplMI cplTPM cplPC 

LOC 1.00             

NOM 0.84 1.00            

NOA 0.82 0.64 1.00           

aLOCM 0.46 0.12 0.32 1.00          

aCx 0.88 0.68 0.58 0.34 1.00         

cohMI -0.06 -0.10 -0.16 0.13 -0.03 1.00        

cohAR 0.03 -0.04 -0.08 0.20 0.04 0.92 1.00       

cplTA 0.87 0.73 0.67 0.25 0.80 -0.11 -0.05 1.00      

cplTP 0.52 0.53 0.36 0.09 0.51 -0.12 -0.11 0.71 1.00     

cplTL 0.12 0.06 0.09 0.14 0.11 0.04 -0.04 0.14 0.37 1.00    

cplMI 0.78 0.60 0.74 0.40 0.61 0.15 0.21 0.75 0.52 0.04 1.00   

cplTPM 0.75 0.42 0.87 0.37 0.57 -0.08 -0.02 0.71 0.39 0.06 0.84 1.00  

cplPC -0.22 -0.06 -0.16 -0.42 -0.19 -0.16 -0.14 -0.19 -0.22 -0.30 -0.21 -0.21 1.00 
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Table 7-4: Pairs in SwingLib, NetbeanAppl, and BingoAppl with r-value > 0.6 

r value r value 

Pair Swing 
Lib 

Netbean 
Appl 

Bingo 
Appl 

Pair Swing 
Lib 

Netbean 
Appl 

Bingo 
Appl 

LOC and 
NOM 

0.94 0.94 0.84 
NOA and 

cplTA 
  0.67 

LOC and 
NOA 

0.70 0.70 0.82 
NOA and 

cplMI 
  0.74 

LOC and 
aCx 

0.95 0.95 0.88 
NOA and 
cplTPM 

  0.87 

LOC and 
cohMI 

0.85 0.85  
aCx and 
cohMI 

0.83 0.83  

LOC and 
cplTA 

  0.87 
aCx and 

cplTA 
  0.80 

LOC and 
cohAR 

0.82 0.82  
aCx and 

cplMI 
  0.61 

LOC and 
cplMI 

  0.78 
aCx and 
cohAR 

0.79 0.79  

LOC and 
cplTPM 

  0.75 
cohMI 
and 

cohAR 

0.76 0.76  

NOM and 
NOA 

0.66 0.66  
cplTL and 

cplMI 
0.89   

NOM and 
aCx 

0.87 0.87  
cplTA and 

cplTP 
 0.89 0.71 

NOM and 
NOA 

  0.64 
cplTA and 

cplMI 
  0.75 

NOM and 
aCx 

  0.68 
cplTA and 

cplTL 
 0.86  

NOM and 
cplTA 

  0.73 
cplTA and 
cplTPM 

 0.95 0.71 

NOM and 
cohMI 

0.81 0.81  
cplMI and 
cplTPM 

  0.84 

NOM and 
cohAR 

0.77 0.77  
cplTP and 

cplTL 
 0.88  

NOA and 
aCx 

0.64   
cplTP and 
cplTPM 

 0.85  

NOA and 
cohMI 

0.72   
cplTL and 
cplTPM 

0.86 0.77  

NOA and 
cohAR 

0.73 0.73  
cplMI and 
cplTPM 

0.77   
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7.2.2 Result 2: Correlation among the coupling metrics in a group 

We have found the followings from the previous experiments: 

• Size, complexity and cohesion metrics are correlated to each other with some 

exceptions. 

• Coupling metrics are relatively independent from other metrics (i.e., size, 

complexity, and cohesion) 

• Some coupling metrics are correlated to each other. 

In this experiment, we also measure fan-in and fan-out coupling metrics for each 

software system and analyze the measurement results. We collect and analyze the 

measurement results from SwingLib, NetbeanApp, and BingoAppl.  In this section, we 

add in and out to the end of the metrics name to indicate fan-in and fan-out coupling 

instead prefix cpl. For example, TAin represents fan-in coupling with cplTA type. 

In Tables 7-5, 7-6 and 7-7, some fan-in coupling metrics are positively correlated 

to each other and some fan-out coupling metrics are positively correlated to each other as 

well. However, fan-in coupling metrics are not correlated to fan-out coupling metrics.  

The following are our interpretation of the measurement results in this 

experiment. 

• All fan-in coupling metrics are correlated with each other and all fan-out 

coupling metrics are correlated with each other except PCin, PCout, and 

TMout.  

o There are two types of classes in SwingLib: fan-in coupled classes and 

fan-out coupled classes. Fan-in coupled classes are used by (i.e., 
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export) other classes, but do not use (i.e., import) other classes. Fan-

out coupled classes use other classes, but are not used by other classes.  

o Fan-in coupled classes in SwingLib are used by other classes with 

diverse connection types. 

o Fan-out coupled classes in SwingLib use other classes with diverse 

connection types.  

o Classes in SwingLib are designed with a specific role – import or 

export.  

• In BingoAppl and NetbeanAppl not all fan-in coupling metrics are correlated 

to each other and not all fan-out coupling metrics are correlated to each other 

either. 

• There is no correlation between fan-in and fan-out coupling metrics in 

SwingLib, NetbeanAppl, and BingoAppl. 
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Table 7-5: Correlation of coupling metrics in SwingLib 

 TAin TMin TLin IMin IMPin PCin TAout TMout TLout IMout IMPout PCout 

TAin 1.00            

TMin 0.72 1.00           

TLin 0.84 0.72 1.00          

IMin 0.76 0.59 0.89 1.00         

IMPin 0.78 0.60 0.75 0.68 1.00        

PCin 0.08 0.38 0.12 0.08 0.09 1.00       

TAout 0.12 0.06 0.13 0.18 0.09 0.08 1.00      

TMout 0.08 0.05 0.13 0.27 0.07 0.05 0.57 1.00     

TLout 0.02 0.00 0.05 0.09 0.03 0.08 0.58 0.52 1.00    

IMout 0.01 -0.02 0.03 0.09 0.02 0.08 0.60 0.50 0.89 1.00   

IMPout 0.01 -0.02 0.03 0.05 0.08 0.02 0.49 0.44 0.85 0.77 1.00  

PCout 0.21 0.16 0.25 0.22 0.26 -0.02 0.19 0.21 0.24 0.20 0.20 1.00 

Table 7-6: Correlation of coupling metrics in NetbeanAppl 

 TAin TMin TLin IMin IMPin PCin TAout TMout TLout IMout IMPout PCout 

TAin 1.00            

TMin 0.97 1.00           

TLin 0.96 0.96 1.00          

IMin 0.28 0.28 0.28 1.00         

IMPin 0.92 0.89 0.88 0.23 1.00        

PCin 0.28 0.29 0.30 0.07 0.23 1.00       

TAout -0.10 -0.12 -0.05 -0.09 -0.04 0.00 1.00      

TMout -0.08 -0.09 -0.12 -0.05 -0.09 -0.01 0.36 1.00     

TLout -0.07 -0.08 -0.10 -0.03 -0.11 0.33 0.24 0.51 1.00    

IMout -0.11 -0.10 -0.15 0.01 -0.11 0.30 0.05 0.43 0.61 1.00   

IMPout -0.10 -0.11 -0.15 -0.07 -0.12 0.04 0.24 0.59 0.72 0.48 1.00  

PCout -0.07 -0.09 -0.10 -0.09 -0.08 -0.03 0.00 0.23 0.13 0.35 0.12 1.00 

Table 7-7: Correlation of coupling metrics in BingoAppl 

 TAin TMin TLin IMin IMPin PCin TAout TMout TLout IMout IMPout PCout 

TAin 1.00            

TMin 0.67 1.00           

TLin -0.11 0.29 1.00          

IMin 0.57 0.47 0.03 1.00         

IMPin 0.33 0.53 0.39 0.19 1.00        

PCin -0.23 -0.16 -0.14 -0.32 0.00 1.00       

TAout 0.46 0.49 -0.14 0.34 0.49 -0.22 1.00      

TMout 0.11 0.06 -0.16 0.11 -0.19 -0.18 0.33 1.00     

TLout 0.24 0.13 -0.13 -0.09 -0.02 -0.17 0.34 0.51 1.00    

IMout 0.36 0.36 -0.15 0.25 0.37 -0.18 0.90 0.43 0.57 1.00   

IMPout 0.33 0.14 -0.16 0.29 0.20 -0.19 0.61 0.26 0.37 0.64 1.00  

PCout 0.16 -0.01 -0.24 0.14 -0.23 -0.16 0.08 0.04 0.03 0.11 0.04 1.00 
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8 CONCLUSIONS 

The primary objective of this research is to provide an automated measurement 

tool (i.e., JamTool) to guide a programmer for software reuse and maintenance. 

Measuring how well software components can be reused and maintained helps 

programmers not only write reusable and maintainable software, but also identifies 

reusable or fault-prone components. 

The following research contributions have been achieved in this study.  

Quality Measurement Model Development 

We developed a quality model that leads to a metric set implemented in JamTool. 

We first identified essential software properties that have been suggested as having an 

impact on software reusability and maintainability. Then we divided these quality factors 

into five subfactors (i.e., identification, separation, modification, validation, and 

adaptation) in a top-down fashion. We also applied bottom-up approach to develop 

quality measurement models for reusability and maintainability based on available 

measurement types that are related to reuse and maintenance properties. Using these top-

down and bottom-up approaches, we constructed a concise quality measurement model 

for reusability and maintainability.   

Automated Measurement Tool 

An automated measurement tool, JamTool, for object-oriented software 
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system was developed in this work. This research describes how this tool can guide a 

programmer through measuring internal characteristics of a program for software reuse 

and maintenance. 

In this work, primitive but comprehensive metrics for object-oriented language 

have been extensively studied and statistically analyzed to show internal characteristics 

from the classes selected from various applications. The automatically identified 

connected units, reusable units, and maintainable units have been discussed.  

JamTool’s capabilities have been demonstrated through case studies.  

1. Measuring Quality on Software Evolution: It shows that the metrics defined 

and implemented by JamTool can be used to assess the quality on the 

evolution of a software system. 

2. Visualizing Software Evolution: The evolution track-table visualizes the 

evolution of a software system. 

3. Analyzing Software for Reuse and Maintenance: It shows how the 

architecture of a software system changes between two consecutive versions.  

It also shows the usage of connect unit, reusable unit, and maintainable unit. 

4.  Identifying Correlation among Metrics: It shows the correlation among the 

metrics defined and implemented by JamTool. 

The first case study investigated whether JamTool can be used to assess the 

reusability of an open software system, JFreeChart, over its evolution with fan-in and 

fan-out couplings for added and removed classes. We found that the number of classes 

increases gradually over most releases, and they have positive improvement with respect 
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to the coupling metrics but not positively related to the cohesion. It has also been found 

that evolution of this software system is consistent with Lehman's 1st, 2nd, and 6th laws 

of software evolution. We found that the added classes have higher fan-in coupling and 

lower fan-out coupling comparing to the removed classes, which is desirable in term of 

reusability. This observation leads us to believe that the reusability of JFreeChart has 

improved along with its evolution and reject Lehman's 7th laws of software evolution. In 

this way, applying metrics from JamTool over the evolution of software can aid a 

software engineer to understand how a system has evolved over time. 

The second case study investigated whether JamTool can be used to capture the 

difference between two consecutive versions on the evolution of JFreeChart. Based on 

the findings in this case study, we conclude that the metrics tables produced by JamTool 

can be used in the following tasks: 

o To monitor the new coupling through evolution of the software system. 

o To identify outlier classes based on the metrics 

The third case study investigated whether the metrics defined and implemented in 

JamTool are related to each other. We have found the followings from this case study: 

o Size, complexity and cohesion metrics are correlated to each other with some 

exceptions. 

o Coupling metrics are relatively independent from other metrics (i.e., size, 

complexity, and cohesion) 

o All fan-in coupling metrics are correlated with each other and all fan-out 

coupling metrics are correlated with each other except PCin, PCout, and 



 

 

 

 

126 

TMout.  

o There is no correlation between fan-in and fan-out coupling metrics. 

Consequently, having achieved our goal of providing an automated source code 

measurement environment, we demonstrated that our tool, JamTool, is a valuable tool to 

help software engineers understand and explore software reuse and maintenance. 

There are several aspects to the work presented in this dissertation that offer potential 

for future research. Some of these areas are listed below.  

1. Object-oriented metrics and connected units can be used to automate the 

recognition of design patterns in existing software components. A specific 

area for future research is to characterize the structure of design patterns and 

use design metrics and clusters to recognize pattern structures in existing 

object-oriented software libraries and systems.  

2. To analyze features of application domains: After the analysis of the 

measurement results of various application domains, common features of each 

domain may be derived. 
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APPENDIX A.  Visualization of Software Evolution 

Research on how a software system evolves over time is difficult and time 

consuming. The enormous amount of work required by analyzing software evolution 

makes it difficult without the dedicated tools such as JamTool. Automated environments 

could be key factors in conducting a successful empirical study on software evolution.  

Moreover, there are two major challenges that must be overcome in software 

evolution research. These challenges limit our ability to understand the history of 

software systems, thus prevent us from generalizing our observations into software 

evolution theory. The first challenge is how to organize the enormous amount of 

historical data in a way that allows us to access them quickly and easily. The second 

challenge is how to analyze the structural changes of software systems.  

To overcome these challenges, we use visualization technique in a form of table to 

provide the overview of the evolution history. We observe the evolution history of real 

world software system, JFreeChart. This system is investigated to demonstrate the 

effectiveness of our approach as an example to demonstrate the use of various 

functionalities of JamTool. We also introduce several ways to track and analyze the 

software structural changes from past releases.  

A.1   Evolution Track Table 

In this section we present the global visualization of software evolution using an 
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evolution track table, which is created to visualize the evolution of a software system.  

The evolution of classes of a software system can be visualized in an evolution 

track table as shown in Figure A-1. This table visualizes each class’s lifecycle for a 

software system in Microsoft Excel to achieve various data analysis, and it provides 

effective ways to analyze the evolution of the system. Each column of the table represents 

a version of the software, while each row represents a class name in each version. To 

create the table, we collect and list all class names which are the member of the system at 

least once, and display ‘1’ or ‘0’ depending on whether or not a class is a member of a 

version of the system. In this way, the class name which lasts the longest in the evolution 

appears first. 

Characteristics of Evolution Track Table 

 From an evolution track table, we are able to obtain the following information 

regarding the evolution of a system. 

• Size of the system 

We can find out how many classes are involved in system evolution. The 

summation of ‘1’s in each column is the number of classes existed in that particular 

version of the system. For instance, there are 14 classes in versions 1 and 2 and a total of 

25 classes are involved in the evolution in Figure A-1. 
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Figure A-1: Software evolution in an evolution track table 

 

• Removed and added classes 

The classes which have been removed or added in a certain version can be easily 
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detected. The difference between two subsequent versions tells us that if a class is 

removed or added. If the number is changed from ‘1’ to ‘0’ between two consecutive 

versions, a class is removed, and if the number is changed from ‘0’ to ‘1’, a new class is 

added. For example, in Figure A-1, classes c4, c5, c6, and c7 are removed in version 12 

and their absence will leave ‘0’ on the table from that version on. Classes, c15, c16, c17, 

c18, and c19 are newly added to version 6. Therefore, in this example, a total of 13 

classes are removed and a total of 11 new classes are added. By detecting the removed 

and added classes, we see very easily when/how much the system is changed.   

• Persistent classes 

Persistent classes have the same lifetime as the whole system. They have stayed 

from the beginning to the end. Those classes should be examined since they may be 

important in performing key functions of the system as being a part of the original system 

design. In Figure 5-8, three classes, c1, c2, and c3 are persistent classes. 

• Added persistent classes  

Some important added classes have stayed until the last version.  They might be 

created to upgrade or improve system as being a part of redesign of the system with some 

problematic classes removed. In Figure A-1, six classes, c17, c18, c19, c20, c21, and c22 

are added persistent classes. 

A.2   Tracking Class Evolution 

Understanding the evolution of an object-oriented system based on various 

versions of source code requires analyzing a vast amount of data since an object-oriented 

system has a complex structure consisting of classes, methods, attributes and different 
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kinds of relationships between them rather than simply a set of classes. Using an 

evolution track table designed for this study, we provide an approach to understand such 

an evolution by detecting and visualizing the evolution pattern that characterizes classes. 

Evolution track table helps us understand an overall evolution of a system, discover 

problematic parts with unusual measurement values, and visually get a quick 

understanding of the analyzed history. Thus, in this case study we present the 

visualization of the evolution track table, and explain how this table can be read, thus 

how an object-oriented system has evolved into its current state based on the source code.  

We use 22 versions of JFreeChart as a target system for this study since 

JFreeChart is a long-term open source charting library with many releases. 

Size of the System 

From the evolution track table along with 22 versions of JFreeChart, we collect 

the number of classes, the removed, and the added classes in each version as shown in 

Table A-1.  

Based on this information, we are able to find out how big the system is and how 

many classes are involved in the system evolution. This system started with 139 classes 

at version 0.9.0 and ended with 460 classes at version 0.9.21, which means a 333% class 

growth. 

   The number of classes increases gradually and consistently as new versions 

evolve. A total of 569 classes are involved in the evolution. During the evolution, 123 

classes are removed while 444 classes are added, which is 3.6 times more than the 

removed. In most versions more classes are added than removed. Special attention can be 
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given to versions 0.9.3, 0.9.5, 0.9.9, and 0.9.17 since 68% (84 out of 123) of the removed 

were removed and 60% (265 out of 444) of the added were added in those particular 

versions. 

                Table A-1: Number of classes, removed and added 

Version of 

JFreeChart 

No. of 

Removed 

classes 

No. of 

Added 

classes 

Total no. 

of 

classes 

0.9.0   139 

0.9.1 1 0 138 

0.9.2 0 6 144 

0.9.3 0 113 257 

0.9.4 3 21 275 

0.9.5 22 74 327 

0.9.6 0 2 329 

0.9.7 1 25 353 

0.9.8 0 3 356 

0.9.9 43 48 361 

0.9.10 11 2 352 

0.9.11 0 13 365 

0.9.12 5 17 377 

0.9.13 0 6 383 

0.9.14 3 15 395 

0.9.15 0 9 404 

0.9.16 2 10 412 

0.9.17 19 30 423 

0.9.18 1 10 432 

0.9.19 9 24 447 

0.9.20 0 1 448 

0.9.21 3 15 460 

Total 123 444  

 

Persistent Classes 

Persistent classes have survived through the entire life of a software system. They 

can be easily detected by looking at ‘1’ at all versions and the total number of versions in 

the last column. As shown in Figure A-2, they have ‘1’s for all versions and ‘22’ in the 
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last column, which is the number of versions of the target system from 0.9.0 to 0.9.21. 

We found out that 84 out of the 138 classes in the first version have survived through the 

entire life of the target system, which is about 61 % of the original design classes. From 

this result, we see that 54 classes of the original were removed during the evolution. 

 

 

Figure A-2: Persistent classes 

 

Removed Classes 

 From an evolution track table, we can find what classes are removed from 



 

 

 

 

138 

which version of the system. The removed classes can be detected by finding the 

differences between two subsequent versions from ‘1’ to ‘0’ as shown in Figure A-3. In 

this way, we found that many classes are removed during the evolution (See Table A-1). 

In particular, 22, 43, and 19 classes were removed in versions 0.9.5, 0.9.9, and 0.9.17, 

respectively. These data might imply that in those versions the system was aggressively 

changed. 

 

 

Figure A-3: Removed classes 
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Some classes, which were removed in previous version, reappear later, like 

classes CategoryToolTipGenerator and StandardCategoryToolGenerator. They are 

removed from the system in version 0.9.8, but came back in versions 0.9.18 and 0.9.19, 

respectively. Classes StandardXYZToolTipGenerator and XYZToolTipGenerator were 

removed in 0.9.16, came back in 0.9.19, and stayed until the last version of the system. 

These kinds of interesting changes can be detected by the evolution track table 

Added Classes 
  

 

 

Figure A-4: Added classes 
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The added classes can be detected by finding the differences between two 

subsequent versions from ‘0’ to ‘1’ as shown in Figure A-4. In this way, we find how 

many classes were newly added into which version of the system during the evolution 

(See Table 5-4). In the case of the target system, many classes were added at almost every 

version. In particular, there were 113, 74, 48, and 30 classes added to 0.9.3, 0.9.5, 0.9.9, 

and 0.9.17, respectively. Some classes like Pie3DPlot and HorizontalMarkerAxisBand 

were removed after staying for several versions. From the results of the removed and 

added classes, we found that this system had made huge changes in versions 0.9.3, 0.9.5, 

0.9.9, and 0.9.17. These versions may need to be specifically investigated 

 

 

 

Figure A-5: Added and persistent classes 
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Added Persistent Classes 

 Many classes added in the middle of the evolution have stayed until the last 

version of the system. We call them ‘added persistent classes’. Figure A-5 shows 

examples of added persistent classes, and they were added in different versions when the 

system was changed from one state to another. Table A-2 displays the number of added 

persistent classes and their survival rate in each version. If we compare these with the 

number of added classes, we find that a total of 444 classes were added to the system and 

349 classes (81.35%: 349 out of 429) have survived till the last.  

Table A-2: Number of added persistent classes  

Version of 

JFreeChart 

No. of added 

classes 

No. of added 

persistent classes 

Survival rate 

0.9.1 0 0  

0.9.2 6 3 50% 

0.9.3 113 89 78.76% 

0.9.4 21 19 90.48% 

0.9.5 74 61 82.43% 

0.9.6 2 0 0% 

0.9.7 25 23 92% 

0.9.8 3 3 100% 

0.9.9 48 35 72.92% 

0.9.10 2 2 100% 

0.9.11 13 10 76.92% 

0.9.12 17 17 100% 

0.9.13 6 6 100% 

0.9.14 15 15 100% 

0.9.15 9 9 100% 

0.9.16 10 9 90% 

0.9.17 30 24 80% 

0.9.18 10 5 50% 

0.9.19 24 19 79.17% 

0.9.20 1 1 100% 

0.9.21 15 -  

Total 429 = 444-15 349 81.35% 
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This is certainly comparable to the persistent classes (61% survival rate of the 

original design classes). 

 

A.3   Summary 

 From the evolution track table of JFreeChart, we summarize the following 

findings:  

o Started with 139 classes in version 0.9.0  

o Ended with 460 classes (333% growth) in version 0.9.21 

o 84 (60%) out of the 139 original classes have stayed until the last version  

o 569 classes were involved in whole system evolution 

o 123 classes were removed during the evolution 

o 444 classes were added during the evolution 

o 349 (81%) out of the 429 (444 added classes – number of classes in the last 

version 0.9.21)  added classes have stayed until the last version  

o Big changes occurred in versions 0.9.3, 0.9.5, 0.9.9, and 0.9.17 in terms of 

removed and added classes. 

Based on the findings above, we conclude that the evolution track table can be 

used in the following tasks: 

o To categorize the evolution of classes 

We found the groups of persistent, removed, added, and added persistent 

classes from the evolution track table of JFreeChart. They characterize the 

evolution pattern of the system 
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o To identify unusual evolution pattern of classes 

We found that some classes had stayed unusually for only one, two, or 

several versions. These dynamic classes need to be analyzed to understand 

the architecture of the system. 


