

AUTOMATED SOURCE CODE MEASUREMENT ENVIRONMENT FOR

SOFTWARE QUALITY

Except where reference is made to the work of others, the work described in this

dissertation in my own or was done in collaboration with my advisory committee. This

dissertation does not include proprietary or classified information.

Young Lee

Certificate of Approval:

James H. Cross Kai H. Chang, Chair

Professor Professor

Computer Science and Software Computer Science and Software

Engineering Engineering

Dean Hendrix David Umphress

Associate Professor Associate Professor

Computer Science and Software Computer Science and Software

Engineering Engineering

 George T. Flowers

 Interim Dean

 Graduate School

AUTOMATED SOURCE CODE MEASUREMENT ENVIRONMENT FOR

SOFTWARE QUALITY

Young Lee

A Dissertation

Submitted to

the Graduate Faculty of

Auburn University

in Partial Fulfillment of the

Requirements for the

Degree of

Doctor of Philosophy

Auburn, Alabama

December 17, 2007

iii

AUTOMATED SOURCE CODE MEASUREMENT ENVIRONMENT FOR

SOFTWARE QUALITY

Young Lee

Permission is granted to Auburn University to make copies of this dissertation at its

discretion, upon the request of individuals or institutions and at their expense. The author

reserves all publication rights.

Signature of Author

Date of Graduation

iv

DISSERTATION ABSTRACT

AUTOMATED SOURCE CODE MEASUREMENT ENVIRONMENT FOR

SOFTWARE QUALITY

Young Lee

Doctor of Philosophy, December 17, 2007

(M.S., Hallym University, 1991)

(B.S., Hallym University, 1989)

155 Typed Pages

Directed by Kai H. Chang

Measuring how well software component can be reused and maintained helps

programmers not only write reusable and maintainable software, but also identifies

reusable or maintainable components. We develop an automated measurement tool,

JamTool, for object-oriented software system and describe how this tool can guide a

programmer through measuring internal characteristics of a program for software reuse

and maintenance.

In this research, primitive but comprehensive metrics for object-oriented language

are extensively studied and statistically analyzed to show internal characteristics from

v

classes selected from various applications. Also, the automatically identified connected

unit, reusable unit, and maintainable unit are discussed.

We demonstrate JamTool’s ability through case studies. The first case study

investigates whether JamTool can be used to assess the reusability on the evolution of an

open software system. The second case study investigates whether JamTool can be used

to capture the difference between two consecutive versions on the evolution of the open

software system. The third case study investigates whether the metrics defined and

implemented in JamTool are related to each other.

vi

Style manual or journal used: IEEE Standard

Computer software used: Microsoft Word 2003

vii

TABLE OF CONTENTS

LIST OF FIGURES x

LIST OF TABLES xii

1 INTRODUCTION 1

 1.1 The general area of the research 1

 1.2 Statement of the Problems 4

2 LITERATURE REVIEW 7

 2.1 The GQM Approach and its extension 7

 2.1.1 The GQM approach 7

 2.2.2 Metrics Multidimensional Framework 8

 2.2.3 GQM++ 9

 2.2 Software Quality Models 10

 2.2.1 Omnibus Software Quality Metrics 11

 2.2.2 ISO 9126 13

 2.2.3 Dromey’s Quality Model Framework 13

 2.2.4 Fenton’s Approach to Software Quality 14

 2.2.5 Karlsson’s Approach to Software Quality 15

 2.3 Software Metrics 17

 2.3.1 Object-Oriented Metrics by Chidamber and Kemerer 17

 2.3.2 Class Cohesion and Coupling Measurement in object-

oriented Systems

19

 2.3.3 Profile Software Complexity 21

 2.4 Framework for Coupling and Cohesion Measurement 22

3 SELECTING THE SOFTWARE QUALITY METRICS 26

 3.1 Quality Factors to be Measured 26

 3.1.1 Maintainability 27

 3.1.2 Reusability 28

 3.2 Quality Measurement Model 29

 3.2.1 Definition of subfactors and measurement type 34

 3.2.2 Relationship between subfactors and measurement types 36

 3.3 Metrics for measurement types 38

 3.3.1 Size Metrics 39

 3.3.2 Complexity Metrics 40

viii

 3.3.3 Coupling Metrics 41

 3.3.4 Cohesion Metrics 46

4 AN AUTOMATED MEASUREMENT TOOL 48

 4.1 Automated Measurement Tool Architecture 48

 4.1.1 Java Code Analyzer 50

 4.1.2 The Internal Measurement Tree 51

 4.1.3 Measurement Data Generator 52

 4.1.4 Measurement Table Generator 54

 4.1.5 User Interface 55

 4.2 Measurement Result Tables 57

 4.2.1 Class to Class Table 57

 4.2.2 Fan-in Coupling Table 58

 4.2.3 Fan-out Coupling Table 59

 4.2.4 Connected Unit Table for Coupling 59

 4.2.5 Reusable Unit Table 62

 4.2.6 Maintainable Unit Table 63

 4.2.7 Size and Complexity Table 64

 4.2.8 Cohesion Table 65

 4.2.9 Connected Unit Table for Cohesion 66

 4.3 Connected Unit 66

 4.4 Measurement Result Export for Spreadsheet 72

5 UNDERSTANDING SOFTWARE EVOLUTION USING METRICS AND

VISUALIZATION

76

 5.1 Empirical Study: Measuring Quality on Software Evolution 77

 5.1.1 Objective 79

 5.1.2 Methodology 80

 5.1.3 Hypotheses 81

 5.1.4 Results 82

 5.1.5 Summary 91

6 ANALYZING SOFTWARE FOR REUSE AND MAINTENANCE 93

 6.1 Added and Removed Classes 93

 6.2 Modified Classes 96

 6.3 Reusable Unit and Maintainable Uni 101

 6.4 Connected Unit 104

 6.5 Comparing of Coupling Type 105

 6.6 Size and Complexity 108

 6.7 Cohesion 110

 6.8 Summary 111

7 IDENTIFYING CORRELATION AMONG METRICS 113

 7.1 Methodology 115

ix

 7.1.1 Experiment 1: Correlation Coefficients among the

metrics

115

 7.1.2 Experiment 2: Correlation Coefficients among the

coupling metrics in a group

115

 7.2 Results 116

 7.2.1 Result 1: Correlation among the metrics in a group 116

 7.2.2 Result 2: Correlation among the coupling metrics in a

group

120

8 CONCLUSIONS 123

BIBLIOGRAPHY 127

APPENDIX A. Visualization of Software Evolution 131

 A.1 Evolution Track Table 131

 A.2 Tracking Class Evolution 134

 A.3 Summary 142

x

LIST OF FIGURES

Figure 2-1 McCall Software Quality Model 12

Figure 2-2 Karlsson's Reusability and Maintainability models 16

Figure 3-1 Harrison’s Maintainability Model 27

Figure 3-2 Steps for constructing the quality model and metric set 30

Figure 3-3 Flow of how the subfactors are connected to the metrics 31

Figure 3-4 Fan-in/Fan-out coupling between classes 45

Figure 3-5 Cohesion in a class and metric values 47

Figure 4-1 Architecture of JaMTool 49

Figure 4-2 Internal Measurement Tree 50

Figure 4-3 Algorithm 1- Type of attribute coupling 51

Figure 4-4 Example of Type of attribute couplings 52

Figure 4-5 Algorithm 2 - Method invocation cohesion 53

Figure 4-6 Cohesion of three methods in a class 54

Figure 4-7 Screen shot of JamTool for coupling, cohesion, size, and complexity 56

Figure 4-8 Class to class coupling measurement table 57

Figure 4-9 Fan-in coupling measurement table 58

Figure 4-10 Fan-out coupling measurement table 59

Figure 4-11 Connected Unit Search Algorithm 60

Figure 4-12 Example of Connected Unit Search algorithm 61

Figure 4-13 Connected unit and its strength 61

Figure 4-14 Reusable unit table 62

Figure 4-15 Maintainable unit table 64

Figure 4-16 Size and complexity table 64

Figure 4-17 Cohesion table 65

Figure 4-18 Cohesion among methods and attributes 65

Figure 4-19 Connected unit and its strength for cohesion 66

Figure 4-20 Connected unit table 67

Figure 4-21 Attribute reference cohesion measurement table 68

Figure 4-22 Cohesion connected unit table for class ClassInfo 70

Figure 4-23 Maintainable/Reusable units exported to Excel 74

xi

Figure 4-24 Maintainable/Reusable units graphed in Excel 75

Figure 5-1 Number of class growth 85

Figure 5-2 Average fan-in/out coupling and cohesion 85

Figure 5-3 Number of classes removed and added 87

Figure 5-4 Average coupling/cohesion of the classes removed and added 88

Figure 5-5 Normalized fan-in coupling 89

Figure 5-6 Normalized fan-out coupling 90

Figure 5-7 Normalized cohesion 90

Figure 6-1 Average coupling comparison of changed classes 97

Figure 6-2 Coupling (CCC) distribution in two versions 98

Figure 6-3 Coupling (SCC) distribution in two versions 99

Figure 6-4 Reusable unit 102

Figure 6-5 Maintainable unit 103

Figure 6-6 Connected units in two versions 104

Figure 6-7 Fan-out/Fan-out coupling 107

Figure 6-8 Size & complexity 108

Figure 6-9 LOCC distribution 109

Figure 6-10 Cohesion 110

FigureA-1 Software evolution in an evolution track table 133

Figure A-2 Persistent classes 137

Figure A-3 Removed classes 138

Figure A-4 Added classes 139

Figure A-5 Added and persistent classes 140

xii

LIST OF TABLES

Table 2-1 Connection Types of Coupling 24

Table 2-2 Connection Types of Cohesion 24

Table 3-1 Essential properties of reusable and maintainable code 33

Table 3-2 Measurement type 34

Table 3-3 Relationships between subfactors and measurement types 36

Table 3-4 Size metrics 40

Table 3-5 Complexity metrics 41

Table 3-6 Connection type for coupling 42

Table 3-7 Cohesion metrics 45

Table 5-1 Latest formulation of Lehman’s laws of software evolution 79

Table 5-2 Version differences and Coupling/Cohesion metrics 84

Table 5-3 Correlation between the number of classes and coupling/cohesion 86

Table 6-1 Added classes into 0.9.4 94

Table 6-2 Removed classes from 0.9.3 95

Table 6-3 Changed classes with at least 3 differences 96

Table 6-4 Fan-in/out differences in two versions 97

Table 6-5 Independent classes in two versions 106

Table 6-6 Comparison of Fan-in and fan-out Coupling Types 106

Table 6-7 Size & complexity differences 109

Table 6-8 Cohesion differences 109

Table 7-1 Correlation Coefficients of metrics in SwingLib 117

Table 7-2 Correlation Coefficients of metrics in NetbeanAppl 118

Table 7-3 Correlation Coefficients of metrics in BingoAppl 118

Table 7-4 Pairs in SwingLib, NetbeanAppl, and BingoAppl with r-value > 0.6 119

Table 7-5 Correlation of coupling metrics in SwingLib 122

Table 7-6 Correlation of coupling metrics in NetbeanAppl 122

Table 7-7 Correlation of coupling metrics in BingoAppl 122

Table A-1 Number of classes, removed and added 136

Table A-2 Number of added persistent classes 141

1

1 INTRODUCTION

1.1 The general area of the research

While application development has become a huge and complex task, software

productivity has improved slowly over the past years. One of the many goals of software

developers (e.g., project managers and programmers) is to have control of software

production and its quality. According to Moser and Henderson-Sellers [42], the following

three steps are important to achieving this goal.

1. Knowing where one stands

2. Aiming where we wish to go

3. Going there (and reapplying the problem solving steps periodically while

going)

Steps 1 and 2 are related to measurement, i.e., we should measure what we want

to control.

Fenton and Pfleeger describe that a quality software product is characterized by

many sound software attributes that may provide useful indications of the maintainability

and reusability of a software product [17]. Without an accompanying assessment of

product quality, progress of product is meaningless. Thus, it is important to recognize and

measure certain desirable software quality attributes.

2

Fisher and Light define software quality as “The composite of all attributes which

describe the degree of excellence of the computer system.”[19] Fenton et al. focus on the

purpose of software quality by defining, “The totality of features and characteristics of a

software product that bear on its ability to satisfy the stated or implied needs.”[16]

Despite several attempts to quantify the elusive concept of software quality like

McCall’s Factor Criteria Metric (FCM) model [40] and Basili’s Goal Question Metric

(GQM) approach [2], measurement of software quality is still not empirically validated.

Object-oriented technologies have claimed to improve software quality to support

reuse and to reduce the effort of maintaining the software product. However, many

object-oriented methods, tools, or notations are being used without evaluation.

Kitchenham et al. have observed that code and design metrics can be used in a

way that is analogous to statistical quality control [27]. According to them, object-

oriented code can be accepted or rejected based on a range of metric values. Rejected

object-oriented code can then be revised until the metric values fall within a specified

acceptable range.

 It is argued that existing traditional software metrics are not suitable for object-

oriented systems. Therefore, many new metrics are being proposed for object-oriented

systems, but only a few have been validated. We need a metric set for object-oriented

software construction to measure how the reusability and maintainability of the software

could be improved. But metric research of the object-oriented paradigm is still in its

infancy.

The primary motivation to reuse software components is efficiency. It is achieved

3

by reducing the time, effort and/or cost required to build software systems. The quality

and reliability of software systems are enhanced by reusing software components, which

also means reducing the time, effort and cost required to maintain software systems.

Researchers agree that although maintenance may turn out to be easier for object-oriented

systems, it is unlikely that the maintenance burden will completely disappear. One

approach to controlling software maintenance costs is the utilization of software metrics

during the development phase to help identify potential problem areas.

Measuring how well the software component can be reused and maintained helps

programmers not only write reusable and maintainable software, but also identify

reusable or fault-prone components. Since there are hundreds of software complexity

measures that reveal internal characteristics of an object-oriented program, it is important

to have the right criterion to select a good subset of these measures.

This research will develop an automated metric tool that attempts to guide

programmers to reuse and maintain object-oriented programs based on software

measurement.

The following research activities will be accomplished in this study.

Quality Measurement Model Development

We will first identify essential software properties that have been suggested as

having an impact on software quality. The properties that can be directly or indirectly

derived from the source code will then be selected for this study.

We will divide measurement factors (i.e., reusability and maintainability) into five

subfactors (i.e., identification, separation, modification, validation, and adaptation) in a

4

top-down fashion. We believe that these subfactors are more tangible and useful to

connect to software product metrics and cover most of the reuse and maintenance

activities. We will also apply bottom-up approach to develop quality measurement

models for reusability and maintainability based on available measurement types that are

related to reuse and/or maintenance properties. Using these top-down and bottom-up

approaches, we will construct a concise quality measurement model for reusability and

maintainability.

Widespread adoption of object-oriented metrics can only take place if the metrics

have been empirically validated, i.e., they accurately measure the attributes of software

and can be applied easily.

Automated Measurement Tool

Users can get an instant measurement feedback while developing object-oriented

software using an automated tool implemented in this research. The collection,

derivation, and display of metrics would take place interactively to provide practical and

non-intrusive feedback. Effort is also devoted to present the metric results along with the

connected classes, to locate reusable or maintainable classes.

The research in this dissertation describes how an automated measurement tool

[29] can guide a programmer through measuring internal characteristics of a program for

software reuse and maintenance purposes.

1.2 Statement of the Problems

It is worthwhile to note that Zuse claims that the results of measurement are

5

difficult to interpret if too many properties of a program are combined into one number

[51], and Schneidewind argues that a standard set of quality measurement may be

available in the future [47]. Information is lost if a single-valued measure is used. A

vector of measures can provide complete information on individual properties of a

program.

GQM is useful to identify objectives for measurement, but the available set of

metrics may not be applicable to the desired objectives. Thus, identifying a set of

“potentially useful” metrics in some systematic manner could improve the object-oriented

metrics research effort [22]. After the identification of a set of quality factors and a set of

metrics, the relations between them should be identified by empirical test. While GQM++

attempts to resolve some weaknesses of GQM through additional stages, Dromey argues

that single-level is better than multiple intermediate levels between quality factors and

software metrics as a means of linking them [14]. Empirical tests are needed to back both

of these approaches. These previous approaches do not address problems of measurement

such as appropriate data scales, alarm threshold, and representation of measurement

result.

Consequently, previous efforts have been hampered by the following difficulties

that have discouraged or delayed the application of object-oriented metrics. In particular:

• There is no clear relationship between the external quality factors and the

metrics of the software.

• Most of existing metrics are not intuitive. It requires education on the users’

side to have numerical thinking about the quality of software and how to

6

apply them.

• In case of measurements that are intrusive and interruptive, measuring

software quality intimidates programmers. Therefore, it is difficult to apply

them in the industry.

• Some metric sets have not been validated theoretically and empirically.

Furthermore, there are other reasons that software metrics are not used widely in

the industrial world:

• Due to the lack of the availability of a standard metric set, it is difficult to

choose an appropriate metric set for a user’s purpose.

• It is difficult to interpret the measurement results.

This research addresses these issues by focusing on a framework for a customized

quality model and interactive automated metric tool. The key features of this research are:

• To define simple and computable object-oriented metrics that quantify

potential reuse and maintenance. The metrics should be easy to comprehend

and use, and require only simple and well-formed formulas.

• To implement an automated metric tool that collects, analyzes, interprets, and

presents the metric data automatically.

• To guide a programmer to software reuse and maintenance through measuring

internal characteristics of a program.

• To empirically verify the validity of the metrics.

7

2 LITERATURE REVIEW

There have been several attempts to quantify the fuzzy concept of software

quality by developing a set of metrics for various attributes related to the concept. These

metrics all involve some degree of software measurement with the ultimate objective of

improving software quality. As described later in this chapter, constructing a quality

measuring model could be guided by several approaches. Unfortunately, measuring

software quality is still an unsolved problem.

2.1 The GQM Approach and its extension

2.1.1 The GQM approach

If we can measure the development progress towards a quality product, the

management of production process is simplified. In manufacturing, individual

components are compared to tolerance limits (or goals) in order to reject poor quality

products. As a result, desirable manufacturing processes can be found. Likewise, in order

to develop a software measurement approach, the goals that we want to attain should be

clearly defined, e.g., to increase programmer productivity; to decrease the number of

defects reported per unit of time or to improve the efficiency of the overall development

process [42].

Basili and Weiss propose a Goal Question Metric (GQM) framework with the aim

8

of providing a systematic approach to translate measurement needs into metrics [2]. The

measurement goals that can be refined into questions in measurable terms, should be

answered in terms of enumerated metrics. The GQM approach has enabled managers to

find objectives for measurement and metrics for their software products. But this also

calls for thorough knowledge on their part of the organization as well as the developed

software product.

Gray and MacDonell say that GQM is usually applied with its:

• Particular purpose (e.g. to evaluate, predict, classify)

• Certain perspective (e.g. the manager, user, programmer)

• Given object (e.g. specification, code)

• Environment (e.g. the people, tools, methodologies).

Thus, GQM is useful to ensure the proper metrics are allocated to assess the

conceptual goal [20].

Gray and MacDonell also argue that organizations are faced with a wide range of

software metrics that can lead to difficulties in the selection of appropriate metrics for a

particular goal. Given the goals of a specific organization, the generic set of metrics

needs to be tailored. As a result, the tailored metrics set has the greatest predicting power

for the desired purpose and the least cost of data collection. Grey and MacDonell also

recommend a task within a framework that will assist in decomposing goals in order to

develop a set of software metrics [20].

2.1.2 Metrics Multidimensional Framework

The problem with the application of the GQM approach to object-oriented metrics

9

is that metrics may not exist. Thus, a complementary activity would be to identify the ‘M’

component of ‘GQM’ independently of the specific goals and questions. The first major

step would be to identify a set of “potentially useful” metrics in some systematic manner.

Moser and Henderson-Sellers have presented such a method in the form of a so-called

Metrics Multidimensional Framework (MMDF) [42].

The MMDF approach is composed of three dimensions. The first dimension is the

external characteristic. It is divided into Quality (e.g., Understandability, Maintainability,

Reusability, etc.) and Size (e.g., External and Internal). The second dimension is the

granularity (e.g., System, Part, Class, and Method) at which the metric is applicable.

Finally, the third dimension is the lifecycle phase (e.g., Analysis, Design, and System

use). While the reasons and motivation for any individual using metrics in an object-

oriented development environment may vary, Moser and Henderson-Sellers argue that the

most popular metric usage purposes can be identified and described as combinations of

these three dimensions. This approach can lead to a minimal set of metrics that is

desirable for practical managerial purposes. Because MMDF permits the identification of

useful metrics, it should improve the current, more ad hoc and uncoordinated object-

oriented metrics research effort [22].

After defining a set of quality goals and a set of metrics, the correlation between

them should be identified by empirical test using regression.

2.1.3 GQM++

MacDonell extends GQM into a hierarchy of goals, subgoals, domains,

subdomains, questions, subquestions, and characteristic measures. He also argues that by

10

breaking a goal into separate subgoals, the essential differences between metrics needed

for each subgoal can be identified [36].

However, such extensions do not seem to go far enough. Fenton criticized that

GQM is useful to identify objectives for measurement, but it does not address the actual

problems of measurement such as appropriate data scales [17]. Gray and MacDonell

interpret this criticism as the absence of any feasibility, economic, or correctness checks

in GQM and that its simple and intuitive nature leads to these problems.

Further, Gray and MacDonell argue that other precedent conditions should be

studied in addition to GQM. These considerations include the costs and benefits of data

collection, the detailed plan of modeling and analysis methods, and the agreement of how

the measurement results could be applied for their software product. The proposed

framework, Goal/Question/Metric/Collection/Analysis/Implementation (GQMCAI,

simply GQM++), attempts to resolve some weaknesses of GQM through additional

stages [36], including data collection, modeling, and implementation. Their extension

also includes cost/benefit information and assesses the program in terms of economic

justification and feasibility [20].

While GQM++ is suggested to be a more comprehensive and pragmatic data

collection and analysis process, empirical tests are needed to back up this claim.

2.2 Software Quality Models

The relationship between software characteristics and software quality has been

investigated and proposed by many researchers [17, 40, 5, 24]. There have been attempts

to quantify software quality resulting in omnibus models which have fixed

11

relationship between quality and metrics. Assessing quality by measuring internal

properties is also attractive because it offers an objective and context independent view of

quality [28].

2.2.1 Omnibus Software Quality Metrics

Both McCall et al. and Boehm et al. describe product quality using a hierarchical

approach [40, 5]. In McCall’s Factors-Criteria-Metrics (FCM) model, high-level product

quality like “reusability” and maintainability” are called factors that can be decomposed

into several lower-level attributes i.e., criteria (See Figure 2-1). The Manager, who has

responsibility for the software development, or the potential user who will use the to-be-

developed software, should be interested in the final product quality, especially its

performance, usability, reliability, etc. These views of software product are described in

terms of software factors and criteria. But these factors and criteria are too elusive to be

applied to software development. Thus, the criteria should be related directly to

measurable attributes of the software process or product. FCM model has three views

(uses) of software product quality, eleven factors, and twenty-five criteria. For example,

factor “maintainability” relates to several criteria such as consistency, simplicity,

conciseness, self-descriptiveness, and modularity. Factor “reusability” is decomposed

into generality, self-descriptiveness, modularity, machine independence, and software

system independence.

Boehm’s model, which has a hierarchical structure similar to the FCM model, has

two primary uses, ‘maintainability’ and ‘utility’. Maintainability is further divided into

intermediate constructs: understandability, modifiability, and testability.

12

 Product

 operation

 Product

 revision

 Product

 transition

 Usability

 Integrity

 Efficiency

 Correctness

 Reliability

 Maintainability

 Testability

 Flexibility

 Reusability

 Portability

 Interoperability

 Operability

 Traning

 Communicativeness

 I/O volumn

 I/O rate

 Access control

 Storage efficiency

 Execution efficiency

 Traceability

 Completeness

 Accuracy

 Error tolerance

 Consistency

 Simplicity

 Conciseness

 Instrumentation

 Expandability

 Generality

 Self-descriptiveness

 Modularity

 Machine independence

 S/W system independence

 Communications

 Data commonality

 Access audit

 Metrics

Figure 2-1: McCall Software Quality Model

 Criteria Factors Use

13

2.2.2 ISO 9126

According to Fenton and Pfleeger, global software quality model is required for

comparing quality among software systems. Because of this requirement, the ISO 9126

model is proposed with six factors - functionality, reliability, efficiency, usability,

maintainability, and portability [24]. Despite its incompleteness and conflict with other

standards, ISO 9126 is used by many companies to support their quality evaluation as

Fenton and Pfleeger described in [16].

2.2.3 Dromey’s Quality Model Framework

Recently, Dromey also defines a model for software product quality [14]. In this

model, seven high-level quality attributes (six factors of ISO-9126 and reusability) are

linked in a structural form of software elements (variable and expression) that influence

software quality [14]. The emphasis is on defining and describing the quality-carrying

properties, which are classified further into correctness, structure, modularity, and

descriptive properties. Because Dromy’s model is designed to be refined by empirical use

to build a useful model, it is a framework to construct a quality models rather than a fixed

model (e.g., McCall’s FCM model). He argues that placing a single level (a set of quality-

carrying properties) is better than placing several vaguely decomposed intermediate

levels between the high-level quality and the components of product as a means of

linking them. In linking the desirable quality-carrying properties and the high-level

quality, quality mode can be constructed in bottom-up or top-down fashion. Each

established link should be verified empirically.

14

In Dromey’s approach, identifying and associating a set of quality-carrying

properties in a structural form is the first task in constructing a quality model. With

successively defined, evaluated, and refined models, we can build a software quality

model that ensures quality and detects quality defects in software.

2.2.4 Fenton’s Approach to Software Quality

Fenton defines external product attributes as those that can be measured in terms

of how the product relates to its environment [17]. For example, if the product is a

software code, then its reliability (defined in terms of the probability of a failure-free

operation) is an external attribute. It is dependent on both the machine environment and

the user. Whenever we think of software code as a product, we have to investigate the

external attributes that the user depends on. Inevitably, we are then dealing with

attributes synonymous with software quality.

Fenton uses several general software quality models [5, 40], each of which

proposes a specific set of external and internal quality attributes and their

interrelationships. For example, maintainability is not restricted to code; it is an attribute

of a number of different software products, including specification and design documents,

and even test plan documents. There are two broad approaches to measuring

maintainability; reflecting the external and internal views of the attribute. The external

and more direct approach to measuring maintainability is to measure the maintenance

process. If the process is effective, then we assume that the product is maintainable. The

alternative internal approach is to identify internal product attributes (e.g., those relating

to the structure of the product) and establish that they are predictions of the maintenance

15

process.

All maintenance activities are concerned with making specific changes to a

product. Once the need for a change is identified, the required efforts of implementing

that change becomes the key characteristic of maintainability. Many measures of

maintainability are expressed in terms of mean time to repair (MTTR). A number of the

complexity measures have been correlated significantly with the level of maintenance

effort. There is a clear intuitive connection among poor programming structure, poor

documented products, and poor maintainability of a software product. We cannot say that

a poorly structured module will inevitably be difficult to maintain. Rather, past

experience tells us that such kinds of modules have had poor maintainability, so we

should investigate the courses for a module's poor structure and perhaps restructure it.

Fenton and Neil indicate that the most significant benefit of software metrics is to

provide information to support managerial decision-making during software development

and testing [18]. Simple metrics are accepted by industrialists because they are easy to

understand and simple to collect. Thus, Fenton and Neil try to use these simple metrics to

build management decision support tools to handle the uncertainty as well as combine

different evidences. They use Bayesian Belief nets as a means of handling decision-

making under uncertain circumstances.

2.2.5 Karlsson’s Approach to Software Quality

Karlsson proposes a general reusability and maintainability models for C++ code

[26]. In addition, he suggested that all measurements should be normalized so that they

yield a value between zero and one, where a value close to zero indicates that the

16

measured characteristic may cause problems, and a value close to one indicates that the

corresponding characteristic is kept inside its limit. He chose to use the Kiviat diagram

for metric presentation. This type of diagram represents parameters as vectors plotted on

a circle. It provides an easy-to-grasp representation of assessment results and can be used

for factors, criteria and metrics. Kalsson’s models for reusability and maintainability are

shown in Figure 2-2 [26].

Figure 2-2: Karlsson's Reusability and Maintainability models

 Maintainability

 Consistency

 Self-descriptiveness

 Simplicity

 Modularity

 Testability

 Reusability

 Potability

 Adaptability

 Understandability

 Confidence

 Environment

 independence

 Modularity

 Generality

 Self

 descriptiveness

 Documentation

 level

 Structural

 complexity

 Inheritance

 complexity

 Maturity

 Fault tolerance

17

2.3 Software Metrics

2.3.1 Object-Oriented Metrics by Chidamber and Kemerer

A set of object-oriented metrics for measurement was proposed by Chidamber and

Kemerer [12]. Since this metrics set is very popular, it has become the focus of discussion

among many researchers. The resulting six metrics directly relate to design and

implementation of object-oriented software.

Because previous metrics were criticized for their lack of theoretical basis, lack of

desirable measurement properties, and for being too labor-intensive to collect, Chidamber

and Kemerer developed six object-oriented metrics, and evaluated them analytically.

They also developed an automated data collection tool to collect an empirical sample of

these metrics. They then suggested ways in which the managers may use these metrics for

process improvement using empirical data collected from two field sites[12]. We can also

interpret these six metrics from the view point of quality.

Weighted Methods per Class (WMC): The WMC metric can be calculated from the

sum of the complexities of the methods in a class where method complexity can be

measured using cyclomatic complexity or assumed unity weights for all methods. WMC

can be used as a predictor of how much time and effort is required to develop and

maintain the class. A large value of WMC will have a great impact on the children of the

class. Classes with large WMC value limit the possibility of reuse. This metric can be

used as a measure of usability and reusability

Depth of Inheritance Tree (DIT): The DIT is the length of the longest path from a class

18

node to the root of the tree. The deeper a class is within the hierarchy, the greater the

number of methods it is likely to inherit. Thus its behavior could be predicted to be more

complex. This metric can be used not only to evaluate reuse, but also to relate

understandability and testability.

Number of Children (NOC): The number of children is the number of immediate

subclasses subordinate to a class in a hierarchy. The measure is an indication of the

potential influence a class can have on other classes in the design. The greater the number

of children, the greater the likelihood of improper abstraction of the parent, and the

potential misuse of subclassing. This also means greater reuse since inheritance is a form

of reuse. If a class has a large number of children, it may require more testing for the

methods of that class, thus increasing the testing time.

Coupling Between Object Classes (CBO): Coupling is a measure of the strength of

association from one entity to another. CBO is a count of the number of other classes to

which a class is coupled. It is measured by counting the number of distinct non-

inheritance related classes on which a class depends. Excessive coupling is detrimental to

modular design and prevents reuse. The more independent a class is, the easier it is to

reuse it in another application. The larger the number of couplings, the higher the

sensitivity of changes would have to other parts of the design, and therefore maintenance

is more difficult. The higher the inter-object class coupling, the more rigorous the testing

needs to be.

Lack of Cohesion of Methods (LCOM): Assume P is the number of null intersections

19

and Q is the number of nonempty intersections between two methods. If P is greater than

Q then LCOM is the differences between P and Q, else LCOM is zero. Two methods are

considered related if both methods use the same instance variable(s). LCOM is based on

method interconnection through instance variable reference. Effective object-oriented

designs maximize cohesion in order to promote encapsulation. A large number of LCOM

implies that the class is attempting to model more than a single concept and thus may

need to be decomposed into several classes.

Response for a Class (RFC): The RFC is the cardinality of the set of all methods that

could potentially be executed in response to a message to an object of the class. The

larger the number, the more complex the testing of the class would be.

2.3.2 Class Cohesion and Coupling Measurement in object-oriented Systems

In addition to the Chidamber and Kemerer’s metrics set, other metrics have been

proposed to measure the coupling and cohesion of classes. Cohesion and coupling are

two structural attributes whose importance is well-recognized in the software engineering

community. Cohesion refers to the relatedness of module components within a class

while coupling refers to how classes affect each other.

The higher the cohesion of a module, the easier the module is to develop,

maintain, and reuse. Further the module becomes less fault prone. Some empirical

evidence exists to support this theory for systems developed by object-based techniques

[8].

Eder and colleagues [15] propose a framework aiming at providing

comprehensive, qualitative criteria for cohesion and coupling in object-oriented systems.

20

They distinguish between three types of cohesion in an object-oriented software system:

method, class and inheritance cohesion. Briand et al. also suggest the framework for

coupling and cohesion measurement in object-oriented systems [9, 10] For each type,

various degrees of cohesion exist. Within this framework, an analysis of the semantics of

a given method or class is required to determine the degree of cohesion. Bieman and

Kang define class cohesion measure based on dependencies between methods through

their references to instance variables [4].

Briand, Morasco, and Basili design a measure to indicate cohesion for software

developed in Objected-Oriented programming languages such as Ada [7]. Their primary

cohesion measure, Ratio of Cohesion Interactions (RCI), is based on the number of

interactions between subroutines, variable declarations, and type declarations. A method

cannot affect another method through a type reference but it affects the effort required to

understand the method.

During the analysis and design phase, and in any code evaluation at the module

level, inter-module coupling is measured by the number of relationships between classes

or between subsystems [35]. Class coupling should be minimized, in the sense of

constructing autonomous modules [6]. Booch also notes that coupling occurs on a peer-

to-peer basis and within a generalization/specialization hierarchy. The former should

exhibit low coupling, i.e., closely coupled classes should be generalized in a hierarchy.

Berard differentiates between necessary and unnecessary coupling [3]. The

rationale is that without any coupling, a system is useless. Consequently, for any given

software solution there is a baseline or necessary coupling level. It is the elimination of

21

extraneous coupling that should be the developer's goal. Such unnecessary coupling

needlessly decreases the reusability of the classes [43].

Li and Henry offer the Message Passing Coupling (MPC) metric as "the number

of send statements defined in a class" [34]. A similar approach is taken by Rajaraman and

Lyu where they define coupling at the method level [45]. They define Method Coupling

(MC) as the number of nonlocal references, and then gross these values up to the class

totals and class averages. Chidamber and Kemerer define coupling between objects as

"the number of other classes to which it is coupled and two classes are coupled when

methods declared in one class use methods or instance variables defined by the other

class" [12]. Their Response For a Class (RFC) metric counts the number of internal and

external methods available to a class.

Fan-in and fan-out are the number of references made from outside a class to

entities defined within the class and the number of references made from within a class to

entities defined outside the class, respectively. A low fan-out is desirable since a high fan-

out is a characteristic of a large number of classes needed by the particular class in

question [3]. A high fan-out also represents a class coupling to other classes and thus an

"excessively complex dependence" on other classes [23]. A high fan-in normally

represents a good object design and a high level of reuse. Since summations of these two

numbers are the same for a system, it is not likely to maintain a high fan-in and a low fan-

out across the whole system.

2.3.3 Profile Software Complexity

Thomas McCabe proposes a measure of software called cyclomatic complexity

22

[39]. Making use of graph theory, McCabe postulates that software with a large number

of possible control paths would be more difficult to understand, more difficult to

maintain, and more difficult to test. One of the problems of using cyclomatic numbers as

a measure of software complexity is that it produces just a single value to describe a

module’s complexity.

An alternative approach proposed by McQuaid is a fine-grained approach to

computing and visualizing complexity [41]. Unlike cyclomatic complexity, the profile

metric is computed and shown on a statement-by-statement basis. It defines complexity

in terms of a program statement's content, much like Halstead's effort measurement, and

context, which is the environment in which the statement occurs. The context complexity

can be further refined into three measures: inherency, reachability, and breadth

complexity.

The content complexity tries to measure the information quantity and not quality

within a measurable unit. The context complexity tries to measure the location of a

measurable unit within the source code. The profile complexity is designed such that the

context complexity is the baseline complexity, with the content complexity riding on this

baseline. The rationale of this design is to provide easy identification of complex clusters.

When a cluster is identified, the content complexity can be used to isolate the heavy

segment in the cluster.

2.4 Framework for Coupling and Cohesion Measurement

Briand et al. propose a unified framework for coupling and cohesion measurement

for object-oriented programs [9, 10]. The objective of the framework is to support the

23

comparison and selection of existing coupling and cohesion measures with respect to a

particular measurement goal. In addition, the framework provides guidelines to support

the definition of new measures with respect to a particular measurement goal when no

measures exist. The framework, if used as intended, will:

• Ensure that measure definitions are based on explicit decisions and well

understood properties,

• Ensure that all relevant alternatives have been considered for each decision

made,

• Highlight dimensions of coupling for which there are few or no measures

defined.

The framework for coupling consists of six criteria, each criterion determining

one basic aspect of the resulting measure. The six criteria of the framework are:

1. Type of connection: Choosing the type of connection implies choosing the

mechanism that constitutes coupling between two classes. Table 2-1

summarizes the possible types of connections.

2. Direction of connection: Fan-in refers to connection to the module being

studied. Fan-out measures the connection to other modules from the module.

3. Granularity of the measure: Domain of the measure and how to count

coupling connections.

4. Stability of server: Stable classes are not subject to change in a new project but

unstable classes are subject to modification in a new project.

5. Direct or indirect coupling: Counting direct connections only or also indirect

24

connections.

6. Inheritance: Inheritance-based vs. noninheritance-based coupling, and how to

account for polymorphism, and how to assign attributes and methods to

classes.

Table 2-1: Connection Types of Coupling

Class 1 Class 2 Description

1 Attribute a of class c Class d, d ≠ c Type of attribute: Class d is the

type of a

2 Method m of class c Class d, d ≠ c Type of parameter: Class d is the

type of a parameter of m, or the

return type of m

3 Method m of class c Class d, d ≠ c Type of local variable: Class d is

the type of a local variable of m

4 Method m of class c Class d, d ≠ c Type of invoked method: Class d

is the type of a parameter of a

method invoked by m

5 Method m of class c Attribute a of class d,

 d ≠ c

Attribute reference: m references a

6 Method m of class c Method m’ of class d,

 d ≠ c

Method invocation: m invokes m’

7 Class c Class d, d ≠ c Inheritance: Class d the child class

of class c

Table 2-2: Connection Types of Cohesion

Element 1 Element 2 Description

1 Method m of class c attribute a of class c Attribute reference: m

references a

2 Method m of class c Method m’ of class c Method invocation: m invokes

m’

3 Method m of class c Method m’ of class c,

 m ≠ m’

Attribute sharing: m and m’

reference an attribute a

25

When specifying a cohesion measure, the following criteria of the cohesion

framework must be considered.

1. Type of connection: What makes a class cohesive. Table 2-2 summarizes the

possible types of connections.

2. Domain of measure: Objects to be measured (methods, classes, and system)

3. Direct or indirect connections.

4. Inheritance: How to assign attributes and methods to classes, how to account

for polymorphism.

5. How to account for access methods and constructors.

26

3 SELECTING THE SOFTWARE QUALITY METRICS

This research focuses on the design, development, and evaluation of an automated

measurement tool for object-oriented programs. More specifically, the measurement tool

is targeted for software quality measurement in terms of reusability and maintainability.

3.1 Quality Factors to be Measured

For the development of practical and automated metric model, we suggest top-

down and bottom-up metrics framework for source code of object-oriented software. In

this framework, we develop quality measurement model of object-oriented software in

terms of quality factors during implementation or maintenance phase.

In most of the stated software metric models, each software quality aspect (e.g.,

maintainability and reusability) is expressed in terms of a hierarchy of factors and

criteria. The higher-level factors in the hierarchy typically represent the management's

point of view; while the lower level criteria represent the code-related measurement, i.e.,

each criterion is normally a function of the raw attributes of the software. The structure of

the hierarchy is largely dependent upon the nature of the software and the desire of the

project team.

In a quality hierarchy, code-related criteria are the foundation by which quality is

defined, judged, and measured. The measurement represented by a quality metric can be

27

obtained during all phases of the software development to provide an indication of

progress towards the desired product quality. In this research, reusability and

maintainability are the two focused factors that can be applied to the source code to

provide good quality indication.

3.1.1 Maintainability

Software maintenance includes all post implementation changes made to a

software entity. Maintainability refers to the easiness or toughness of the required efforts

to do the changes. Before any changes can be made to a software entity, the software

must be fully understood. After the changes have been completed, the revised entity must

be thoroughly tested as well. For this reason, maintainability can be thought of as three

attributes: understandability, modifiability, and testability. Harrison sees software

complexity as the primary factor affecting these three attributes [21], while modularity,

information hiding, coupling, and cohesion are closely related to the complexity (See

Figure 3-1).

Since maintenance accounts for a large portion of a software product's cost, if

properly improved, it has a great potential to reduce the total software cost. However,

 Maintainability

 Understandability

 Modifiability

 Testability

 Software

 Complexity

 Information

Hiding

 Modularity

 Coupling

 Cohesion

Figure 3-1: Harrison’s Maintainability Model

28

without meaningful measure of maintainability, there would be no substantial way of

verifying improvement, even though certain actions may seem beneficial [21].

Historically, maintainability can only be measured after actual maintenance has been

performed. In the same application, the time required per module to determine the

changes indicates understandability; the time to change indicates modifiability; the time

to test indicates testability.

Instead of collecting the measurement after the product is completed, our

approach is to forecast the maintainability based on the source code and display the

measurement at any time the programmer wishes. The source code can be at any stage of

the development, and the measurement will be computed automatically. This will

provide a real time grade of the software in the dimension of maintainability.

3.1.2 Reusability

When a reusable code is written, the intended users should be somewhat

identified. If a code is to include the functionality that every user would want, the

resulting code would be too expensive to produce and too difficult to use. Code reuse has

been common in practice. But, many difficulties are associated with code reuse:

1. Code identification: It is difficult to identify a piece of reusable code. Many

times, programmers reuse only a small fraction of their own or their colleagues’ code.

2. Code validation and verification: There is usually little assurance that the

reused code is correct.

3. Code dependency: It is a nontrivial task to separate a desired piece of code

from an entangled chunk of software with complex dependency.

29

4. Code modification: In addition to the necessary changes, the reused code may

implicitly conflict with the new context.

5. Execution environment: The reused code might assume things that are not true

in the new environment. This may result in degraded performance.

With careful planning and implementation, many of these difficulties can be

avoided. This requires a reusable code to possess certain properties that our proposed

measurement will quantify. A static analysis of a source code in any stage of

development can provide instant feedback to the programmer, the quality of the code in

the sense of reusability. This would encourage programmers to ensure that the completed

code provides good reusability quality before it is discovered too late. The measurement

can also allow the manager of a software project to evaluate the quality and reward the

programmers accordingly.

3.2 Quality Measurement Model

In this research, a quality measurement model is proposed and its metric set is

developed. The overall steps to construct the model and metrics are in Figure 3-2. We

obtain subfactors from the software quality factors and measurement types from the

essential properties of reusable and maintainable code, then match the subfactors and the

measurement types, and create a quality model for reusability and maintainability.

Several metrics are defined for each measurement type. Based on the created quality

model and the defined metrics, an automated metric tool is implemented, and the

measured metrics from the tool are validated through empirical study.

30

Subfactors and measurement types are discussed in detail in the following sub-sections.

We use a top-down and bottom-up approach to develop this quality model. Its

methodology is shown in Figures 3-3. From the top down, we first divide the quality

factors (i.e., reusability and maintainability) into subfactors in accordance with

procedures of performing reuse and maintenance. The divided subfactors are

identification, separation, modification, validation, and adaptation of a module. By

dividing the factors into five subfactors, the vague concepts of the factors become clearer.

Define Metrics for

Measurement Types

Match Measurement Types

and Subfactors

Implement Automated

Metric Tool

Quality Model for

Reusability and

Maintainability

Empirical Validation of

Metrics for Reusability and

Maintainability

Essential Properties of

Reusable and Maintainable

Code

Quality Factors:

Reusability and

Maintainability

Measurement Types

Subfactors

Figure 3-2: Steps for constructing the quality model and metric set

31

From the bottom up, we propose the desirable features for reusability and

maintainability, and apply these features to understand software for reuse and

maintenance purposes. These properties can be derived from the source code. The

selected measuring properties include External dependency, Cohesion, Information

hiding, Size, Complexity, Easy understanding, Proven reliability, Reuse frequency, and

Standardization as shown in Table 3-1. Each measuring property has its own

measurement type. In this research, we mainly focus on four measurement types

Reusability and Maintainability

Identifying Separating Modifying Validating Adapting

 Quality Factor

Subfactors

Coupling Cohesion Size Complexity

Reuse and maintenance properties

Measurement type

Figure 3-3: Flow of how the subfactors are connected to the metrics

32

(Coupling from External dependency, Cohesion, Size, and Complexity) from the reuse

and maintenance properties. Information hiding, Easy understanding, Proven reliability,

Reuse frequency, and Standardization will not be considered due to the difficulties of

collecting measurement data.

The definitions of the selected measurement types are summarized in Table 3-2.

The Coupling from the external dependency defines the interdependency of a class to

other classes in a source code. The Cohesion assesses the relationship of methods and

attributes in a class. The Size measures the number of methods and attributes, and lines of

code in a class. The Complexity measures the degree of difficulty in understanding the

structure of classes.

The important issue in this model construction is to establish links between the

subfactors and the measurement types. We want to map the subfactors into the

measurement types since each measurement type can be defined as a metric and

computed through a simple expression and each metric plays an important role as a key

factor in measuring the quality of a software system. Therefore, measuring the

measurement types as metrics becomes equal to measuring the factors of software

quality. The links between subfactors and measurement types are established in Figure 3-

3, and their relationship is presented in Section 3.2.2.

33

Table 3-1: Essential properties of reusable and maintainable code

• External dependency

o Requires no separation from any containing code.

o Requires no changes to be used in a new program

o Components do not interface with its environment.

o Low fan-in and fan-out

o Has more calls to low-level system and utility functions.

• Cohesion

o Component exhibits high cohesion

• Information hiding

o Has few input-output parameters.

o Interface is both syntactically and semantically clear.

o Interface is written at appropriate (abstraction) level.

• Size

o Small

• Complexity

o The lower the values of complexity metrics, the higher the programmer’s

productivity.

o Low module complexity

• Easy understanding

o Component and interface are readable by person other than the author

o Component is accompanied by documentation to make it traceable

o Easy to find and understand

o In-line comments

• Proven reliability

o Thorough testing and low error rates

o Reasonable assurance that it is correct

• Reuse frequency

• Standardization

o Component is standardized in the areas of invoking, controlling, terminating

its function, error-handling, communication, and structure.

34

Table 3-2: Measurement type

Measurement

Type

Definition based on class Measuring Measuring

Properties

Coupling The interdependency of a

class to other classes in a

system. Measure of the

number of other classes that

would have to be accessed

by a class in order for that

class to function correctly

and the number of other

classes that use the methods

or attributes in this class

Reference methods

and attributes among

classes

External

dependency

Cohesion The relatedness of methods

and attributes in a class.

Reference methods

and attributes in a

class

Cohesion

Size The numbers of methods,

attributes, and lines in a class

The numbers of

methods, attributes,

and lines in a class

Size

Complexity The degree of difficulty in

understanding and

comprehending the internal

and external structure of

classes and their

relationships

Cyclometic

complexity of

methods in a class

Complexity

3.2.1 Definition of subfactors and measurement type

We choose reusability and maintainability as our measurement factors. Dividing

these factors into subfactors helps to find appropriate measurement types. In case of

reusing and/or maintaining an existing code, several procedures should be accomplished:

• Identification: When a programmer tries to reuse or maintain an existing

source code, he/she needs to locate and understand the code to match the

desired purposes.

35

• Separation: After a programmer locates and understands the identified code,

he needs to take apart the code from its containing program.

• Modification: Before a programmer reuses the separated code unit he may

need to change the unit to meet the required function or to make the unit fit to

the new environment.

• Validation: Error checking will be an important step to make the unit reliable,

so a programmer needs to check for errors.

• Adaptation: He/She has to carefully adapt the modified code into the new

application to prevent any conflicts.

To derive measurement types for reusability and maintainability, we collect

properties of reusable and maintainable software from previous research [44] [46]. These

essential properties are listed and explained in Table 3-1. Based on these properties, the

following measurement types are derived. Each measurement type came from each

measuring property in Table 3-2.

• Coupling: The interdependency of a class to other classes in a system. It is a

measure of the number of other classes that would have to be accessed by a

class in order for that class to function correctly and the number of other

classes that use the methods or attributes in this class.

• Cohesion: The relatedness of methods and attributes in a class. Components of

a class should be designed for a single purpose. Thus, the class that has low

cohesion needs to be decomposed.

36

• Size: This includes counting lines of code with several options (e.g., ignore

blank and comments lines), number of methods and attributes in a class.

• Complexity: The degree of difficulty in understanding and comprehending the

internal and external structure of classes and their relationships. The structure

of a method that has high complexity metric value should be inspected and

simplified. Statement level complexity is also considered to locate complex

area of source code.

3.2.2 Relationship between subfactors and measurement types

Table 3-3 summarizes the relationship between measurement types and

subfactors. A plus symbol (+) in the table indicates that the measurement type has a

positive influence on a subfactor, and a minus symbol (-) indicates negative influence.

Table 3-3: Relationships between subfactors and measurement types

Measurement Type

Subfactor
Coupling Cohesion Size Complexity

Identification - + - -

Separation -

Modification - + - -

Validation - + - -

Adaptation - -

Relationship from coupling to subfactors

High import coupling of a class indicates strong dependency on other classes,

their methods, and attributes. Import coupling may be relevant to the following

subfactors:

37

• Identification: To understand a method or class, we must know about the services

the method or class uses.

• Separation: High import coupling obstructs separating the code from its

containing program.

• Adaptation: If a class depends on a large amount of external services, it will be

more difficult to reuse it in other systems.

High export coupling of a class means that the class is used by many other

classes, their methods, and attributes. Export coupling may be relevant to the following

subfactors:

• Modification: If a method may be invoked by many other methods, any change to

the method affects the invoking methods. Any defect in a class with high export

coupling is more likely to propagate to other parts of the system. Such defects are

more difficult to isolate. In that respect, classes with high export coupling are

particularly critical. An export coupling measure could therefore be used to select

classes that should undergo special (effective and may be costly) verification or

validation processes.

• Validation: A class with high export coupling can be difficult to test. If defects

propagate to other parts of the system to cause failure there, they may not be

detected when testing the class in isolation.

Relationship from cohesion to subfactors

Stevens et al. define cohesion as a measure of the degree to which the elements of

a module are together [48]. Some empirical evidence supports that the higher the

38

cohesion of a module, the easier the module is to develop, maintain, and reuse [11, 8].

If elements of a module are not related to each other, the design of the module

most likely is not appropriate. Thus, we define cohesion to have positive impact on

identifying, modifying, and validating.

Relationship from size to subfactors

Usually a large size module has more attributes and methods, thus it will take

more time to understand, modify, validate, and adapt it. Size measurement type probably

can be included in other measurement types like complexity.

Relationship from complexity to subfactors

High complexity is an obstacle to understand and modify a module. Validating a

module is also difficult as its complexity increases.

3.3 Metrics for measurement types

In forming the quality model, a framework is designed to find the most influential

metrics for individual reuse and maintain properties. In the framework, we identified a

few sets of metrics to characterize software written in Java. They are listed in Tables 3-4

through 3-6. Each of the metrics was carefully evaluated and experimented for its

capability to accurately measure a reusability and/or maintainability property in this

dissertation. The rationale used in this experimental test as follows.

These metrics were chosen because they are representatives of metrics based on

the measurement types described in Section 3.2. They are also computable using the

automated measurement tool implemented for this research and are potential indicators

whether or not a class is reusable and maintainable. In each of the metric definitions, C

39

represents a class, M represents a method, S represents a system composed of classes, D

represents a domain (i.e., method, class, or system).

We used very primitive forms of coupling and cohesion metrics because these

metrics are used to measure subfactors rather than quality factors of a system. All

coupling and cohesion metrics assume direct and non-inherited based relationship. Each

coupling and cohesion metric is classified by the type of connection and then divided, in

detail, by direction of connection and domain level (i.e., class or system).

In the following sub-sections, we describe those metrics in detail, including size,

complexity, coupling, and cohesion metrics. They will be investigated throughout the

remainder of this dissertation.

3.3.1 Size Metrics

 Size metrics measure the number of methods and attributes in a class and the

lines of code of a class. Those are defined in Table 3-4. We have three domains for the

metrics (method, class, and system domain) and each domain has its own metrics. For a

method M, LOC(M) measures the lines of code for the method, and for a class C,

LOC(C) measures the lines of code for the class. NOM(C) counts the number of methods

in a class and NOA(C) counts the number of attributes in a class.

The size metrics defined for a system domain are LOC(S), aLOCC(S),

aLOCM(S), aNOM(S), aNOA(S), and NOC(S). LOC(S) is the lines of code for a system.

aLOC(S) and aLOC(S) calculate averaged LOC for classes and methods respectively for

a system. aNOM(S) and aNOA(S) compute average number of methods and attributes in

a class, and NOC(S) is the number of classes in a system.

40

From the past experience, we believe that large classes may suffer from poor

design. Large size metrics and more functions in a class normally make it more difficult

to understand the class. In an iterative development process, more and more functionality

is added to a class over time. The danger is that, eventually, many unrelated

responsibilities are assigned to a class. As a result, it has low functional cohesion. This in

turn negatively impacts the reusability, and maintainability of the class. Therefore, large

classes should be reviewed for functional cohesion. If there is no justification for the

large size, the class should be considered for refactoring, for instance, and extracting

parts of the functionality to make separate and more cohesive classes.

 Table 3-4: Size metrics

 (a) Size metrics for a method

Symbol Description domain

LOC(M) LOC for a method method

 (b) Size metrics for a class

Symbol Description domain

LOC(C) LOC for a class class

NOM(C) number of methods in a class class

NOA(C) number of attributes in a class class

 (c) Size metrics for a system

Symbol Description domain

LOC(S) LOC for a system system

aLOCC(S) average LOC for classes in a system system

aLOCM(S) average LOC for methods in a system system

aNOC(S) average NOM for classes in a system system

aNOA(S) average NOA for a class in a system system

3.3.2 Complexity Metrics

Complexity metrics measure the degree of difficulty in understanding internal and

41

external structure of classes and their relationships. In this research, Cyclometic

complexity of methods in a class is used, and based on this, we define three complexity

metrics for method (Cx(M)), class (aCx(C)), and system (aCx(S)) domains in Table 3-5.

High method complexity in a class can lead to decreased understandability and

therefore decreased reusability and maintainability. Also, testing such a class is more

difficult.

 Table 3-5: Complexity metrics

(a) Complexity metrics for a method

Symbol Description domain

Cx(M) McCabe complexity of a method method

 (b) Complexity metrics for a class

Symbol Description domain

aCx(C) average Cx(M) in a class class

 (c) Complexity metrics for a system

Symbol Description domain

aCx(S) average Cx(C) in a system system

3.3.3 Coupling Metrics

As we mentioned in section 2.4, the unified framework for coupling provides a

guideline to select coupling metrics for a particular measurement goal (Reusability and

Maintainability for this research).

Based on the first criterion of the unified framework for coupling (i.e., type of

connection), we study seven types of possible connection between two classes. Therefore

we define seven coupling metrics for measuring different connection types as in Table 3-

6. The seven metric symbols defined in the table are used to define actual coupling

42

metrics based on the criteria of the framework for measuring coupling described in 2.4.

The defined metrics for the seven connection types whose domain is class are cplTA(C),

cplTP(C), cplTL(C), cplTPM(C), cplIAR(C), cplMI(C), and cplPC(C).

Metrics cplTA(C), cplTP(C), and cplTL(C) measure the number of Type of

attribute connection, the number of Type of parameter connection, and the number of

Type of local variable connection of a class, respectively.

Table 3-6: Connection type for coupling

Metrics cplTPM(C), cplAR(C), cplMI(C), and cplPC(C) measure the number

of Invoked method type connection, the number of Attribute reference connection, the

number of Method Invocation connection, and the number of Parent-Child connection

of a class, respectively. We have chosen the first criterion, Type of Connection, to

create these basic metric symbols for all the connection types. For the second criterion

of the unified framework for coupling (i.e., Direction of connection), each

Symbol Connection

Type
Class C Class D Description

cplTA(C) Type of

Attribute

Attribute a of

class c

Class d, d ≠ c Class d is a type of a

cplTP(C) Type of

Parameter

Method m of

class c

Class d, d ≠ c Class d is the type of a

parameter of m, or the return

type of m

cplTL(C) Type of

local variable

Method m of

class c

Class d, d ≠ c Class d is the type of a local

variable of m

cplTPM(C) Invoked

method type

Method m of

class c

Class d, d ≠ c Class d is the type of a

parameter of a method invoked

by m

cplAR(C) Attribute

reference

Method m of

class c

Attribute a of class

d, d ≠ c

m references a

cplMI(C) Method

invocation

Method m of

class c

Method m’ of class

d, d ≠ c

m invokes m’

cplPC(C) Parent-Child Class c Class d, d ≠ c Class d is a child class of class

c

43

coupling metric in Table 3-6 consists of fan-out coupling("using") and fan-in

coupling("used") components, which we discuss in the following.

 For example, the metric cplTA(c) is decomposed into cplTAout(c) and cplTAin(c)

according to the direction of the connection. cplTAin(c) measures the connections to the

target class c from other classes and cplTAout(c) measures the connections to other

classes from the target class c. We measure the cplTA(c) as the sum of cplTAin(c) and

cplTAout(c).

Fan-out coupling measures the degree to which a class has knowledge of, uses, or

depends on other classes. To reuse a class with high fan-out coupling in a new context, all

the required services must also be understood and reused together. Therefore, high fan-

out coupling can decrease the reusability of a class.

Fan-in coupling measures the degree to which a class is used by, depended upon,

by other elements. Changing a class with high fan-in coupling may affect other classes

which depend on the class. Therefore high fan-in coupling can decrease the

maintainability of the class.

Coupling connections cause dependencies among classes, which, in turn, have an

impact on maintainability (a modification of a class may require modifications to its

connected classes) or reusability (to reuse a class may require reuse connected classes

together). Thus, we could say that a principle to improve reusability and maintainability

is to minimize coupling, and coupling metrics also greatly help identify problematic

classes to be reused or maintained.

We can apply these coupling metrics to a system domain. For example, aCplTA(s)

44

is defined as the averaged CplTA(c) of classes in system s and measures the averaged type

of attribute coupling metrics of classes in system s.

For the third criterion (i.e., Granularity of the measure) of the unified framework

for coupling, we define a class as the domain for coupling metrics.

For the fourth criterion (i.e., Stability of server) of the unified framework for

coupling, we didn’t define anything because we don’t measure the stability of server.

For the fifth criterion (i.e., Direct or indirect coupling) of the unified framework

for coupling, we only choose and measure direct coupling.

For the sixth criterion (i.e., inheritance) of the unified framework for coupling, we

choose non-inheritance based coupling. We assign attributes and methods to the class

which the attributes and methods are defined, not to their parent classes.

We have a sample code (Figure 3-4) showing couplings between classes and

coupling metric values obtained by the system implemented in this research. Each

class is counted either a fan-out coupling or a fan-in coupling to other classes by

extending or declaring a class.

For instant, class A is counted a coupling with class F by extending it. In this case,

classes A and F establish a parent-child relationship (one of the seven connection

types), which A is a child and F is a parent. Therefore, we count cplPC fan-out meric

value for class A (cplPCout(A) = 1) and cplPC fan-in metric value for class F

(cplPCin(F) = 1). In a similar way, a coupling occurs between class A and class B by

declaring B in class A. In this case, the type of attribute connection is established,

which attribute b in class A is declared by class B as its type, and class A makes cplTA

45

fan-out metric value counted 1 and class B makes cplTA fan-in metric value counted 1.

Symbols ---> and <--- indicate a fan-out coupling and a fan-in coupling occurred in a

class, respectively.

Fan-In/Fan-Out Coupling between Classes Metric Values

 public class A extends F{ ---> cplPC

 B b; ---> cplTA

 public void ma(D c){ ---> cplTP

 E e; ---> cplTL

 e.me(D d); ---> cplMI, cplTIM

 e.i++; ---> cplAR

 }

 }

 public class B{ <--- cplTA

 }

 public class D{ <--- cplTP, cplTIM

 }

 public class E{ <--- cplTL

 int i; <--- cplAR

 public void me(D d){ <--- cplMI

 }

 }

 public class F{ <--- cplPC

 }

cplPCout(A) = 1

cplTAout(A) = 1

cplTPout(A) = 1

cplTLout(A) = 1

cplMIout(A) = 1

cplTIMout(A) = 1

cplARout(A) = 1

cplTAin(B) = 1

cplTPin(D) = 1

cplTIMin(D) = 1

cplTLin(E) = 1

cplARin(E) = 1

cplMIin(E) = 1

 cplPCin(F) = 1

Figure 3.4: Fan-in/Fan-out coupling between classes

Table 3-7: Cohesion metrics

Symbol Connection

Type
Element 1 Element 2 Description

cohAR(C) Attribute

reference

Method m of

class c

Attribute a of

class c

Attribute reference:

m references a

cohMI(C) Method

invocation

Method m of

class c

Method m’ of

class c

Method invocation:

m invokes m’

cohAS(C) Attribute

sharing

Method m of

class c

Method m’ of

class c, m ≠ m’

Attribute sharing: m

and m’ reference an

attribute a

46

3.3.4 Cohesion Metrics

We also defined cohesion metrics based on the framework for cohesion

measurement (See Section 2.4).

For the first criterion (i.e., type of connection) of the unified framework for

cohesion, we define three cohesion metrics with different connection types among the

components (i.e., methods and attributes) in a class. cohAR(c) measures the number of

attribute reference connections of a class c, cohMI(c) measures the number of method

invocation connections of a class, and cohAS(c) measures the number of attribute

sharing connections of a class. Table 3-7 shows the three cohesion metrics based on the

connection type.

For the second criterion of the unified framework for cohesion (i.e., Domain of

measure), we can apply these cohesion metrics to class and system domains. For

example, aCohAR(s) is defined as the averaged CohAR(c) of classes in system s and

measures the averaged attribute reference cohesion metrics of classes in the system.

For the third criterion (i.e., Direct or indirect connections) of the unified

framework for cohesion, we only choose direct connection and measure the direct

connection.

For the fourth criterion (i.e., inheritance) of the unified framework for cohesion,

we choose non-inheritance based cohesion. We assign attributes and methods to the class

which the attributes and methods are defined, not to its parent class. For the fifth criterion

(i.e., access methods and constructors) of the unified framework for cohesion, we

47

measure the cohesion for the access methods and constructors.

Cohesion is the degree to which the methods and attributes in a class are related.

The higher connectivity between methods and attributes means the higher cohesion, and a

low cohesive class has been assigned many unrelated responsibilities. Consequently, the

low cohesive class is more difficult to understand and harder to maintain and reuse.

Therefore classes with low cohesion should be considered for refactoring, for instance, by

extracting parts of the functionality to separate classes with clearly defined

responsibilities.

We have a sample code (Figure 3-5) showing cohesion in a class and cohesion

metric values obtained by the system. Class A has two methods ma and mb, and method

ma makes a method invocation connection by invoking method mb, thus the system

calculates a choMI metric value of one (cohMI(A) = 1). For the cohAS metric, methods

ma and mb establish an attribute sharing connection by sharing an attribute i, thus cohAS

cohesion metric value of the class is calculated (cohAS(A) =1).

Cohesion in a Class Metric Values

 public class A {

 int i; int j;

 public void ma(){

 mb(); ---> cohMI

 i++; ---> cohAS

 j++; ---> cohAR

 }

 public void mb(){

 i++; ---> cohAS

 }

 }

cohMI(A) = 1

cohAS(A) = 1

cohAR(A) = 1

Figure 3-5: Cohesion in a class and metric values

48

4 AN AUTOMATED MEASUREMENT TOOL

4.1 Automated Measurement Tool Architecture

Java Measurement Tool (JamTool) is a software measurement environment to

analyze program source code for software reuse and maintenance. It is especially

designed for object-oriented software. This tool measures attributes from Java source

code, collects the measured data, computes various object-oriented software metrics, and

presents the measurement results in a tabular form. The tabular interface of the tool

provides software developers the capabilities of inspecting software systems, and makes

it easy for the developers to collect the metric data and to use them for improving

software quality. By browsing reusable units and maintainable units, a developer can

learn how to reuse certain software entity and how to locate problematic parts. The

application of this easy-to-use tool significantly improves a developer’s ability to identify

and analyze quality characteristics of an object-oriented software system.

The intended application domain for JamTool is small-to-middle sized software

developed in Java. The acceptance of Java as the programming language of choice for

industrial and academic software development is clearly evident. The overall system

architecture of the JamTool is shown in Figure 4-1, in which solid arrows indicate

information flow. The key components of the architecture are: 1) User Interface, 2) Java

49

Code analyzer, 3) Internal Measurement Tree, 4) Measurement Data Generator, and 5)

Measurement Table Generator.

Each key component works as a subsystem of overall system. The Java Code

analyzer syntactically analyzes source code and builds an Internal Measurement Tree

(IMT) which is a low level representation of classes, attributes, methods, and

relationships of the source code. Then the Measurement Data Generator takes the IMT as

an input, collects the measurement data, and generates the size, complexity, coupling and

cohesion metrics of classes in the original source code. Those measurement results as

well as the other metrics are displayed in a tabular representation through the

Measurement Table Generator subsystem. With this interface of tabular form, software

User Interface

Internal Measurement Tree Measurement Data Generator

Measurement Table

Generator

User

Figure 4-1: Architecture of JaMTool

Measurement Results Java Sources

Options for Measurement

Java Code Analyzer

50

developers can easily analyze the characteristics of their own program.

4.1.1 Java Code Analyzer

 Java Code analyzer is built by using a Sun Microsystem’s popular JavaCC parser

generator. It syntactically analyzes Java source code to build an internal measurement

tree (IMT) that contains all the information needed to produce measurement results. It

performs complete analysis on the source code thus identifies all syntactic errors during

the building of the IMT.

Class Modifier

Package Name

Import Name Vector

Class Name

Parent Class

Interface Name

Attribute Vector

Method Vector

Import Name

Attribute Name

Attribute Type

Attribute Modifier

ClassInfo Vector

Method Type

Method Modifier

Method Ret Type

Method Name

Rnce Var Vector

Local Var Vector

Invoked Method Vector

Referenced

VariName

Local Var T

Local Var N

Invoked Method N

Invoked Method P

Figure 4-2: Internal Measurement Tree

51

4.1.2 The Internal Measurement Tree

The Internal Measurement Tree (IMT) is a low level representation of classes,

attributes, methods and relationships of the program source code that is being analyzed.

The IMT, after it has been completely resolved, contains all relevant information from the

source code. It is a representation of the source for measurement. A complete IMT

hierarchy is shown in Figure 4-2. The root of an IMT is classInfoVector and the

classInfoVector has a link to ClassInfo node. Each ClassInfo node contains information

about a class including Attribute Vector, Method Vector etc. The Attribute Vector and the

Method Vector also have their own links which have detail information about them and

so on.

Algorithm 1. Type of attribute Coupling.
 Traverse IMT and find Type of attribute couplings among the classes in a project .

 Input: Internal Measurement Tree;

 Output: Coupling measurement result for Type of attribute metrics;

Let classNames = all class names in a project;
foreach class in classNames do
 Let targetClass = a class in classNames that has not been measured;
 if targetClass is empty then
 return couplingResult;

 Traverse class node in IMT and
 let attributeTypes = all attribute types in the targetClass;
 foreach attribute type in attributeTypes do
 Compare to class names in classNames;
 Update couplingResult according to the comparison result;
 endfor
enfdor

Figure 4-3: Algorithm 1- Type of attribute coupling

52

4.1.3 Measurement Data Generator

The Measurement Data Generator subsystem takes an IMT as an input, collects

the measurement data from the IMT, and builds measurement results such as size,

complexity, coupling and cohesion metrics for a class.

Algorithm 1 in Figure 4-3 describes the coupling measurement algorithm for the

type of attribute metric. The algorithm processes each class node in the IMT and

computes coupling strength for the type of attribute metric to be displayed in the

measurement tables like fan-in, fan-out, and class-to-class tables. For instance, we have

three classes A, B, and C to show the type of attribute coupling metrics in Figure 4-4.

Reading columns, we see that Class A is used by class B three times and used by class C

once, which means that the fan-out of A for B and C are 3 and 1, respectively. Class B is

used by class A twice, which means that the fan-in of A for B is 2. In this way, the

coupling relationship between classes is measured as a coupling metric and the measured

metric values are presented in the coupling metrics table form as shown in Figure 4-4.

A

B a1;

B a2;

C

 A c1;

B

 A b1; A b2;

 A b3;

 3

 2

 A B C Total

A 0 3 1 4

B 2 0 0 2

C 0 0 0 0

Total 2 3 1 6

Coupling Metrics Table

Figure 4-4: Example of Type of attribute couplings

1

53

From the coupling metric table, we can easily find that the type of attribute

couplings of classes A, B, and C are 2, 3 and 1, respectively. The type of attribute

coupling was explained in sections 3.3 and 3.4. It is also clear to see that these three

classes are connected together with attribute coupling. Therefore we group the three

classes as a set of related classes and identify them a Connected Unit. The detailed

discussion of Connected Unit will be done in Section 4.3.

Cohesion measurement data is also generated in this subsystem. Algorithm 2 in

Figure 4-5 describes a measurement algorithm for Method Invocation Cohesion (see

section 3.2). The algorithm takes each method node from the IMT and computes cohesion

strength for the method invocation metric to be displayed in the measurement tables.

Algorithm 2 . Method Invocation Cohesion.
 Traverse IMT and find Method Invocation cohesion from the target class in a project .

 Input: Internal Measurement Tree;

 Output: Cohesion measurement result for Method Invocation cohesion metrics;

Let targetClass = the target class names in a project;
Let methodNames = all method names of targetClass;
foreach methods in targetClass do
 Let targetMethod = a method in targetClass that has not been measured;
 if targetMethod is empty then
 return cohesionResult;
 Traverse method node of targetClass in IMT and
 let invokedMethods = all invoked methods from the targetMethod;
 foreach invoked method in invokedMethods do
 Compare to method names in targetClass;
 Update cohesionResult according to the comparison result;
 endfor
enfdor

Figure 4-5: Algorithm 2 - Method invocation cohesion

54

public class A

{

 public void ma(){

 int r = mb() + mc();

 }

 public int mb(){

 return mc() + 1;

 }

 public int mc(){

 int c = 0;

 return c;

 }

}

Cohesion metrics table

 ma mb mc Fan-Out

Total

ma 0 1 1 2

mb 0 0 1 1

mc 0 0 0 0

Fan-In

Total

0 1 2

Figure 4-6: Cohesion of three methods in a class

Figure 4-6 shows an example of three methods to measure cohesion. We have

three methods, ma, mb, and mc, in class A. Method ma invokes two methods mb and mc,

and method mb invokes mc. With these invocations, the relationship of methods is

measured as cohesion metrics, and the measured metric values are presented in the

cohesion metrics table.

The Measurement Data Generator also measures all other coupling metrics and

cohesion metrics mentioned in Chapter 3. The measured information about coupling for

each class is then neatly presented in the coupling measurement tables constructed by the

Measurement Table Generator, which will be discussed in detail in the following section.

4.1.4 Measurement Table Generator

The Measurement Table Generator generates display tables showing various

metrics obtained. For instance, a class-to-class coupling measurement table showing the

coupling structure among classes is given in window W2 of Figure 4-7. Windows W3 and

55

W4 of Figures 4-7 show fan-in/fan-out coupling measures in a tabular form for the seven

coupling metrics defined in Table 3-4. Fan-in/fan-out and various coupling types can be

interpreted differently as we describe fan-in/fan-out coupling measurement tables and

how we can find the connected unit from these measurement tables in the next section.

Other important tables are reusable unit and maintainable unit tables shown in

windows W5 and W6 of Figure 4-7. In a reusable unit table, each class in the first column

depends on classes in other columns since the class uses the others, and in a maintainable

unit table, each class in the first column is used by classes in other columns. Thus the

classes in the same row make a special reusable unit and maintainable unit. In this way of

representation, we could easily recognize which classes need more/less effort when they

are needed for reuse, modify, update or fix. This could definitely help programmer in

developing and maintaining a program. Detailed discussion for each table and unit will be

provided in the following Section 4.2.

4.1.5 User Interface

JamTool provides a graphical user interface that is developed based on the Java

Swing library. The measurement results are displayed in a tabular representation and in

several windows with various levels of detail as shown in Figure 4-7.

Inputs to the JamTool are Java source files. Users need to provide the name of the

group of the Java files (i.e., project) and the location of each file when building a new

project or opening an existing project in JamTool. A hierarchical list box is created within

a project pane to display classes that form the project (See P1 in Figure 4-7).

56

Figure 4-7: Screen shot of JamTool for coupling, cohesion, size, and complexity

57

Pane P1 shows that the project is composed of multiple Java programs. Pane P2

shows the source code of the selected Java program. For the project named ‘Bingo’, six

windows (W1-W6) display the coupling measurement results: connected unit (W1),

class-to-class coupling (W2), fan-in coupling (W3), fan-out coupling (W4), reusable unit

(W5), and maintainable unit (W6), and another five windows (W7-W11) display the

cohesion, size and complexity measurement results: cohesion in a class (W7), size &

complexity (W8), cohesion for each class (W9), and connected unit (W10) and its

strength (W11) for cohesion.

4.2 Measurement Result Tables

4.2.1 Class to Class Table

Class-to-class coupling measurement table in Figure 4-8 is to show coupling

relationship among classes. All class names in a project are displayed. Regarding a class,

ClassInfo, in the second row, we see that there is a coupling strength of ‘3’ to ClassAttr,

‘63’ to ClassMethod, and a ‘66’ for total. These mean ClassInfo uses ClassAttr 3 times

and ClassMethod 63 times, thus 66 times for the total. On the other hand, regarding

ClassInfo in the second column, we find that this class is used by ClassInfoVector(1),

CohesionMeasure(13), and CouplingMeasure(7), for a total of 21 times.

Figure 4-8: Class to class coupling measurement table

58

4.2.2 Fan-in Coupling Table

The 7 coupling metrics defined in Table 3-6 are displayed in a similar tabular

form of the Fan-in coupling in Figure 4-9. TA, TM, TL, IM, MP, RV, and PC stand for

Type of Attribute, Type of Method Invocation, Type of Local Variable, Invoked Method

Type, Referenced Variable, and Parent-Child, respectively. All classes in a project are

displayed in the first column. We interpret fan-in as used-by, invoked by, or referenced by,

thus we can find how other classes use this class through examining each fan-in coupling

instance. For instance, ClassInfo has fan-in coupling strength of ‘1’ for TM and ‘20’ for

TL, which means that other classes in the project (i.e., cm1) use ClassInfo once as

invoked method and twenty times as their local variables. In this figure it is clear that

ClassMethod is used extensively by other classes (sixty three fan-in coupling at total

column). Special attention must be given to such a class when it is examined or modified

because it influences many other coupled classes.

If we inspect column TL, it has ‘3’ to ClassAttr, ‘20’ to ClassInfo, ‘22’ to

ClassMethod and ‘45’in total. This means forty five times of fan-in coupling as Type of

Local Variable have occurred in this project while there are thirty eight times for IM,

twice for TA, respectively and only once for TM and MP.

Figure 4-9: Fan-in coupling measurement table

59

4.2.3 Fan-out Coupling Table

Fan-out couplings for the same seven coupling metrics are in Figure 4-10. We

interpret fan-out as use, invoke or reference, thus we can find how a class uses other

classes through examining each fan-out coupling instance. For instance, fan-out coupling

of ClassInfo shows that this class invokes or uses other classes sixty six times in total (‘2’

for TA, ‘25’ for TL, ‘38’ for IM, and ‘1’ for MP). It mainly uses local variables and

invokes methods, and is identified as a highly fan-out coupled class. We believe that such

a class is difficult to be reused alone because it needs other classes’ services to perform

its function. Therefore, it is wise to inspect its fan-out coupled classes from this table for

a new application when we reuse a class.

Figure 4-10: Fan-out coupling measurement table

4.2.4 Connected Unit Table for Coupling

We define a connected unit as the classes that are coupled together. In a connected

unit table, all classes coupled together are displayed in the same column. A connected

unit is likely to be of interest to the user in finding software units that can be reused. We

build a connected unit by identifying coupled classes in the coupling metrics and the

connected attributes and methods in the cohesion metrics. A user should consider reusing

60

the connected classes together in a new application. In that sense, the connected classes

are a reusable unit. The connected unit search algorithm, shown in Figure 4-11, computes

a set of coupled classes (i.e., connected unit) and their position in a connected unit table

based on a class-to-class coupling table. Figure 4-12 shows the retrieved connected unit

and the result of applying Algorithm 3 to the class-to-class coupling table in Figure 4-8.

Each class is displayed in a connected unit table according to its position and its coupling

strength is displayed in the connected unit strength table in Figure 4-12 (b).

Algorithm 3. Connected Unit Search.

Compute connected units from a class-to-class table.

Input: Class-to-class coupling measurement table;

Output: Connected units and their positions in a connected unit

table;

Let classNames = all class names from a class-to-class table;

foreach class in classNames do

 Let targetClass = a class in classNames

 that has not been searched yet;

 if targetClass is empty then

 return connectUnitsWithPosition;

 Search class-to-class table and let

 connectUnit = coupled classes to targetClass;

 Update connectedUnitsWithPosition with the connectUnit;

end for

Figure 4-11: Connected Unit Search Algorithm

61

Figure 4-13: Connected unit and its strength

class position strength

 ClassAttr 1 3

 ClassInfo 1 87

 ClassInfoVector 1 1

 CohesionMeasure 1 13

 ClassMethod 1 63

 CouplingMeasure 1 7

 Editor 2 0

Figure 4-12: Example of Connected Unit Search algorithm

ClassInfo

ClassAttr ClassInfoVector

CohesionMeasure

ClassMethod CouplingMeasure

Editor

3

63

 1

13

7

(a) (b)

62

The connected unit and its strength of the ‘bingo’ project are shown in Figure 4-

13. In this tables, all classes in the same column are coupled together. For instance, only

two classes, BingoException and NoMoreBallaException, in column B are coupled to

each other. Utilities in column D could be a dead code because there is no relation to

other classes in the project. By observing connected units, we may also discover

connection patterns. For example, if a project is composed of an application program and

libraries, an investigation of the connected unit will tell how the application program uses

a library function. In that sense, this type of connection pattern is a use pattern.

4.2.5 Reusable Unit Table

Other important tables are reusable unit and maintainable unit tables. Reusable

unit table is to present how much a class depends on other classes. In Figure 4-14, the

first column, A, displays all classes in the selected project. A class in column A uses the

classes in columns to its right. The classes in the same row make a special reusable unit.

For instant, in the second and third rows, we see that class BallListener depends on class

Linstener, and class BallListenerThread depends on classes BallListene, BingoBall,

Constants, and ListenerThread. This dependency means that, for example, if programmer

wants to use a certain class (BallListenerThread), then he/she must use the other classes

in the reusable unit (BallListener, BingoBall, Constants, and ListenerThread) since they

are used by the certain class (BallListenerThread). Therefore, if a class depends on too

many other classes, it is obvious that such a class is difficult to be reused.

63

Figure 4-14: Reusable unit table

4.2.6 Maintainable Unit Table

Figure 4-15 shows a maintainable unit table. Maintainable unit is to present how

many classes depend on a specific class. All classes in the selected project are displayed

in the first column, A, and each class in that column is used by the classes in other

columns, thus the classes in the same row are identified as a maintainable unit. For

instant, three classes BallListenerThread, Card, and LightBoardPane in the third row use

BingoBall, thus if you want to modify or update BingoBall, you must test

BallListenerThread, Card, and LightBoardPane as well. Therefore if there are too many

classes in a maintainable unit, it is very hard to maintain that specific class.

64

Figure 4-15: Maintainable unit table

4.2.7 Size and Complexity Table

 Figure 4-16: Size and complexity table

Five size and complexity metrics

for each class in a project are given in

Figure 4-16. They are based on the

definitions given in Chapter 3 (LOCC:

Lines of Code in a Class, nMC: number of

Metohds in a Class, nAC: number of

Attributes in a Class , aLOCM: average

LOC for Methods, and aCx: average

McCabe complexity) .

65

4.2.8 Cohesion Table

Figure 4-17: Cohesion table

Cohesion metrics for each class in a

project are given in Figure 4-17. MI is

Method Invocation cohesion and AR is

Attribute Reference cohesion; both are

discussed in Chapter 3. From this table, we

can easily see that in this particular

program, most of the classes use/reference

attributes (148 times) within a class rather

than invoke methods (3 times).

Figure 4-18: Cohesion among methods and attributes

We look inside a class to examine how the methods and attributes in the class are

related to each other. In Figure 4-18, the first column and the header row represent all

attributes and methods, respectively, in the target class (LightBoardPane). If we see

LightBoardPane class in Figure 4-17, this class has ‘17’ for AR cohesion measure, and in

66

Figure 4-18, we can see each occurrence of AR relation for the class between attributes and

methods, making 17 relations in total. For example, methods lightBoardPane(),

displayNewBall(), and clear() reference attributes 11 times (allBalls(3), rowTitles(4),

newBallLable(3), and litColor(1)), 4 times, and 2 times, respectively, for a total of 17 times

(17 AR cohesion).

4.2.9 Connected Unit Table for Cohesion

We also define a connected unit for cohesion metrics and compute the cohesion

strength of a class as shown in Figure 4-19 (a) and (b). All attributes and methods in the

same column make a unique connected unit because they are related to each other. In this

case, it is clearly indicated that attribute allBallsPane and method getMaximunSize() have

no relation to other elements in the class, thus their cohesion strengths are both zero.

(a) Connected unit name table (b) Connected unit strength table

Figure 4-19: Connected unit and its strength for cohesion

4.3 Connected Unit

Display techniques and tabular representations have been studied as to how to

best depict various metric findings. To represent the coupling and cohesion

67

measurements, we develop a measurement result table and a connected unit table. They

can display not only the connection strength (count) among the software components, but

also the architectural nature of an object-oriented system.

A connected unit table is composed of a pair of corresponding tables: connected

unit name table and connected unit strength table. In the connected unit name table, only

coupled classes can be located in a same column, thus a set of classes in the same column

is a connected unit.

In the connected unit strength table, each number represents the coupling strength

of the corresponding classes in the connected unit name table. Figure 4-20 (a) shows that

classes A, B, D, F, and I are in the same column because they are coupled to each other.

Corresponding numbers in Figure 4-20 (b) represent the coupling strength of each

of these classes. For example, number seven in the Figure 4-20 (b) indicates that class A

has a total count of seven for fan-out and fan-in to other classes in this column (i.e., B, D,

Class A

Class B

 Class C

Class D

 Class E

Class F

 Class G

 Class H

Class I

7

3

 4

2

 0

43

 4

 0

11

(a) Connected unit name table

Figure 4-20: Connected unit table

(b) Connected unit strength table

68

F, and I). Classes E and H are not related to others in this project thus their coupling

strengths are both zero. There are several possibilities for those classes that have strength

zero:

• They are no longer used in the project therefore they should be deleted from the

project.

• They have independent functions that are ready to be used in other applications.

Therefore, we need to inspect their corresponding source codes to determine their

usefulness.

Classes C and G are related to each other but not to others as they appear in the

same column. We may classify these two classes as a reusable or maintainable unit after

inspecting the measurement results and the source code. We also need to inspect class F

Figure 4-21: Attribute reference cohesion measurement table

69

to find out why it has such a high coupling count. Using the connected unit table, a user

can inspect a target class and its coupled classes. Connected unit table may be used in a

priori or a posteriori manner. A developer may decide in priori to slice the class or

remove the dead code in an application after browsing the connected unit table or in

posteriori to inspect the software for reuse purpose.

We can apply the same approach to the cohesion metrics. As an example of

connected unit in a cohesion connected unit table, we may find a class designed for

multiple functions. If indeed the class has different functions, the user may slice the class

into several small classes and reuse a portion of them. This approach can reduce test and

maintenance costs.

Figure 4-21 shows attribute reference cohesion measurement for ClassInfo. All

methods are listed in the first column and all attributes are listed in the first row. A

number in this table indicates how many times the method in the row references the

corresponding attribute in the column. For example, method getPackageName()

references attribute packageName once.

A cohesion connected unit table can be built based on this cohesion measurement

table. Figures 4-22 (a) and (b) show the connected unit tables of Cohesion Measurement

for ClassInfo. Like the coupling connected unit table, only related attributes or methods

can be located in the same column.

In this example, we can find the use pattern in columns B, D, E, F, and G (getters

and setters for attributes).

70

(a) Cohesion connected unit name table

(b) Cohesion connected unit strength table

Figure 4-22: Cohesion connected unit table for class ClassInfo

71

For example, there are two methods in column B, getPackageName() and

setPackageName(), for an attribute PackageName, and two methods in column E,

getParentClassName() and setParentClassName(), for an attribute ParentClassName.

Since the attributes/methods in the same column are related to each other, if a user

wants to reuse method getModifier() in column D, he/she would need to reuse attribute

cModifier and method setModifier(). In that case, these three software components in

column D can be identified as a reusable unit. Since attribute cIndex in column A has no

relation to other classes and other parts in this class, this attribute can be classified as a

dead code thus should be deleted. A user would first browses the connected unit table to

identify the reusable units and then inspect their connection patterns to see how such

software components are connected and/or used in the software package. By examining

the measurement tables, a user can also decide whether he/she can reuse the whole or part

of the reusable unit. Locating related components and inspecting their use pattern can

guide a user to reuse them.

72

4.4 Measurement Result Export for Spreadsheet

When the Measurement Table Generator in JamTool creates tables, it generates

the measurement results in the CSV (Comma Separated Values) file format. The CSV file

format is a file type that stores tabula data which uses a comma to separate values and is

supported by almost all spreadsheets. Therefore, JamTool exports measurement results

directly into a spreadsheet application such as Microsoft Excel.

Exporting to spreadsheet expands the power of JamTool by enabling further

analysis and graphing. Spreadsheet application provides some of the statistical analysis or

presentation capabilities required to investigate the measurement results. Therefore it

does provide a great advantage to help the JamTool users to derive meanings from the

measurement data.

With Export to spreadsheet we can:

• Display measurement results in spreadsheet instead of JamTool

• Analyze measurement data with a spreadsheet application

• Configure and format reports to represent the measurement data in an easy to

understand style such as graph

Spreadsheet application offers the ability to perform calculations and complex

mathematical, statistical, and data analysis functions on numbers and text. JamTool’s

tabular data is suitable to take these advantages.

Figures 4-23 and 4-24 show an example of Measurement Result Export for

Spreadsheet. Figures 4-23 (a) and (b) are maintainable/reusable units for coupled

73

classes in a project, and they are the same as Figures 4-14 and 4-15, but exported to Excel

for analysis report.

Figure 4-24 displays fan-in/out couplings and their visual graphs. Column A in

Figure 4-24 (a) displays all classes in the selected project. For the corresponding class,

Columns B and C in Figure 4-24 (a) show the number of classes fan-in coupled and the

number of classes fan-out coupled, respectively, and they are obtained from the

reusable/maintainable units in Figure 4-23. For instance, if we look at class

BallListenerThread, this class is used/invoked by only one class (OverallStatusPane) as

shown in the maintainable units of Figure 4-23 (a), having -1 for fan-in of column B in

Figure 4-24 (a), and uses/invokes four classes (BallListener, BingoBall, Constants, and

ListenerThread) as shown in the reusable units Figure 4-23 (b), having 4 for fan-out of

column C in Figure 4-24 (a). The negative sign (-) of column B is to graph fan-in

couplings under the x-axis to visually compare them to fan-out couplings above the x-

axis. Their actual strengths of coupling (Number of times they are coupled in the coupled

classes) are shown and graphed in Figure 4-24 (b). For example, BallListenerThread

class has -1 for fan-in and 10 for fan-out, which means that this class is used/invoked by

OverallStatusPane class only once, but uses/invokes four classes (BallListener,

BingoBall, Constants, and ListenerThread) 10 times for total. The negative sign (-) is for

the same purpose as Figure 4-24 (a).

These tabular data and comparative graphic representation will clearly assist and

aid JamTool users in a better understanding of software reuse and maintenance. For

instance, class OverallStatusPane, which has the highest fan-out coupling, will decrease

74

the reusability of the class, and class BingoBall, which has the highest fan-in coupling,

will decrease the maintainability of the class.

(a) Maintainable units exported to Excel

(b) Reusable units exported to Excel

Figure 4-23: Maintainable/Reusable units exported to Excel

75

(a) Maintainable/Reusable units – number of classes

(b) Maintainable/Reusable units – strength of coupling

Figure 4-24: Maintainable/Reusable units graphed in Excel

76

5 UNDERSTANDING SOFTWARE EVOLUTION USING
METRICS AND VISUALIZATION

This chapter presents an empirical study to investigate if the metrics defined and

implemented by JamTool can be used to assess the quality of software evolution. The

empirical study is an analysis of reusability and maintainability during the evolution of an

open source software system, JFreeChart, which is a charting library [25]. We observe

the quality change along the evolution of the twenty-two released versions of JFreeChart

and discuss its quality change based on the Lehman’s laws of evolution. We derive

software metrics from the twenty-two releases of the target system and determine

whether software quality has significantly changed over this period. More specifically,

we compare the fan-in and fan-out couplings of the removed and the added classes from

one version of the software to the next in order to find out if the quality of each release

has improved or declined.

 A separate, but related case study to analyze how a software system has evolved

was conducted. The case study is to present the global visualization of the evolution of a

software system and provide effective ways to analyze the evolution of the system. Since

the study does not utilize the developed metrics, the results of study are included in

Appendix A.

77

5.1 Empirical Study: Measuring Quality on Software Evolution

Fan-in is the number of references made from outside a class to entities defined

within the class, and fan-out is the number of references made from within a class to

entities defined outside the class. While fan-in coupling is very useful when assessing the

impact of a change, fan-out is very useful when partitioning programming elements and

figuring out what other classes a given class needs in order to run. Therefore a low fan-

out is desirable since a high fan-out is a characteristic of the large number of classes

needed by the particular class and makes the class difficult to reuse [3, 6, 23, 37, and 38].

A high fan-in normally represents a good object design and a high level of reuse.

Although a system is useless without any coupling, for any given software

solution there is a baseline or necessary coupling level and that developer's goal should

be the elimination of extraneous coupling. Such unnecessary coupling needlessly

decreases the reusability of the classes [43].

For library software like JFreeChart, high fan-out coupling decreases its

reusability. Because it is an open source library and it has been used by other applications

for a long time, we expect to find the quality of JFreeChart to improve along with its

evolution in terms of reusability.

On the other hand, as summarized in [33], the laws of software evolution have

been proposed and formalized in [30, 31, and 32] since 1974. The statement of Lehman’s

laws refers to E-type software, which cannot be completely specified and once the system

is operational, the development with new requirements of the software is essential.

78

Evolution is intrinsic and inevitable for this type of software. Eight Lehman’s laws are

given in Table 5-1.

In this empirical study, we explore the evolution of the JFreeChart in terms of

size, coupling and cohesion, which are measurable from software source code, and

discuss its quality change based on the Lehman’s laws of evolution. The study indicates

that our experimental results follow three laws (I: Continuing change, II: Increasing

complexity, VI: Continuing growth) out of eight. But this indicates more research is still

needed for one law (VII: Declining quality). Each of the laws is explained here:

Continuing change: An E-type system must be continually adapted otherwise it becomes

progressively less satisfactory in use

Increasing complexity: As an E-type system is evolved its complexity increases unless

work is done to maintain or reduce the complexity

Continuing growth: The functional capability of E-type systems must be continually

enhanced to maintain user satisfaction over the system lifetime

Declining quality: Unless rigorously adapted and evolved to take into account changes

in the operational environment, the quality of an E-type system will decline

79

Table 5-1: Latest formulation of Lehman’s laws of software evolution

No./year of first

formulation
Name

No./year of first

formulation
Name

 I 1974 Continuing change V 1991
 Conservation of

 familiarity

 II 1974 Increasing complexity VI 1991 Continuing growth

 III 1974 Self regulation VII 1996 Declining quality

 IV 1978

 Conservation of

 organizational

 stability

 VIII 1971/96 Feedback system

5.1.1 Objective

The objectives of this empirical study are two fold. First, we investigate if there is

any relationship between the class growth of the target software and the metric values

(coupling and cohesion) measured by JamTool. We normally assume that if the number of

classes increases, then the coupling between classes will increase as well since the

coupling measures the degree to which a program module (i.e., class) relies on other

modules. However, the class growth should not affect the cohesion metric values, since

the cohesion metric measures the strength of relationship among internal components

within a single class.

Secondly, we observe the quality change along the software evolution by

comparing the fan-in/out couplings and the cohesion metrics of the removed and added

classes of each version of the software. We expect quality software to have low coupling

and high cohesion. When a software system requires updates, i.e., changes to the software

to correct bugs or to install new functionalities, some classes in the software are removed

and the classes with new functionalities are added to the software. At this point we

80

assume the removed classes have poorer quality and the added classes should have better

quality. Therefore, in terms of coupling/cohesion metrics, the newly added classes should

have lower coupling and higher cohesion than the removed classes.

We investigate fan-in and fan-out couplings separately since a high fan-in

coupling and a low fan-out coupling are desirable for a class. A high fan-in coupling

indicates the class that is called upon by many other classes. Thus, it is reused. A low fan-

out coupling means independence and encapsulation, and this kind of class/module is

easier to reuse.

5.1.2 Methodology

The software used in the experiment was JFreeChart which is a powerful and

flexible open source charting library. We choose JFreeChart as the target software system

because it is a long-term open source library with many releases. To obtain information

about the version differences, we used an evolution track table to compare two versions

of a program and report all the differences. A very detailed explanation of an evolution

track table is provided in section 5.2.

First, we extract information of classes in terms of size, coupling and cohesion

metrics from all twenty-two versions of JFreeChart and analyze the relationship between

the classes and the metrics. According to [13], the size of a system is defined as the

number of program units it contains, thus it should be based on the number of “modules’

rather than source code size. This is the main reason we use the number of classes as size

metrics.

Second, we focus on the removed and added classes of the target software. We

81

extract metrics of the removed classes in each version and the newly added classes,

divide them into two groups, and compare them to investigate any differences between

the groups. Then we perform an analysis by examining the coupling and cohesion metrics

of the removed and the added classes over releases.

Third, we present empirical studies of the relationships between the number of

classes and the derived coupling/cohesion metrics, and the relationships between the

removed and the added classes throughout a software evolution.

Metric extraction can be a difficult task due to the size of the system and the

number of versions. We use an evolution track table to extract the number of classes and

the removed and added classes, and JamTool collects coupling and cohesion metrics from

JFreeChart.

5.1.3 Hypotheses

Based on the assumption and expectation above, we set up five hypotheses: Two

to observe if any relationship exists between class growth and metric values measured by

JamTool, and three for the added classes (i.e., group A) and the removed classes (i.e.,

group R).

• Hypothesis 1: Class growth throughout all versions will be positively reflected in the

fan-in/fan-out coupling metric values.

• Hypothesis 2: Class growth throughout all versions of the program will not be

positively reflected in the cohesion metric values.

 These two are actually to confirm the findings of the previous studies and our

82

expectation about class growth and metrics [32].

• Hypothesis 3: The average fan-in coupling of group A will be higher than the average

fan-in of group R.

• Hypothesis 4: The average fan-out coupling of group A will be lower than the average

fan-out of group R.

• Hypothesis 5: The average cohesion of group A will be higher than the average

cohesion of group R.

We believe that group A and group R can be categorized in a certain way based on

the metric values of coupling and cohesion measured by JamTool. In other words, the

added class group should have better software quality than the removed class group does.

5.1.4 Results

We applied an evolution track table and JarJarDiff (File comparison tool) to find

the differences between two subsequent versions starting with JFreeChart-0.9.0 and

ending with JFreeChart-0.9.21. According to the results obtained by evolution track table

and JarJarDiff, we found that whenever a version is newly evolved, the software had a

many changes. It modified interfaces and/or classes, removed interfaces and/or classes,

and/or added new packages, interfaces, and/or classes.

Normally, the number of classes gradually increases as a new version is released.

Also, there are some huge changes in the middle of releases. With these reasons, in this

experimental study, we investigate if the class growth shows any observable phenomenon

on the coupling and cohesion metric values, and if the newly added classes show any

83

observable trend in comparison with the removed classes.

Class Growth, Coupling, and Cohesion

Table 5-2 gives an overview of the version differences of the software and

coupling/cohesion metric values obtained by JamTool. It shows the number of classes

(Removed, Added, total), average fan-in/-out coupling metrics, and average cohesion

metrics in each version of the JFreeChart.

Figure 5-1 shows the class growth across all versions of the program and Figure

5-2 reveals an increasing trend for the average fan-in/fan-out coupling. We can easily

recognize that the number of class increases gradually as new versions of the program

evolve and the significant class growth occurred between versions 0.9.3 and 0.9.5,

otherwise the number of classes increases consistently.

There was a more than 300% class growth in the number of classes from the

beginning of the program (i.e., 139) to the final version of the program (i.e., 460). This is

a confirmation of the study by [6] and Lehman’s 6
th

 law of software evolution [32] that

the evolution of an object-oriented system reveals an increasing trend of the number of

classes.

For the Fan-in/fan-out coupling, a noticeable change appeared between versions

0.9.3 and 0.9.4. We could say that this is because 113 classes were newly added to

version 0.9.4 and it affects the average metric values. After that the growth trend is

consistent while the average cohesion seems not to grow as the class does.

84

Table 5-2: Version differences and Coupling/Cohesion metrics

Version of

JFreeChart

No. of

Removed

classes

No. of

Added

classes

Total no.

of classes

Avg. fan-

in

coupling

Avg. fan-

out

coupling

Average

cohesion

0.9.0 139 11.9 12.1 12.7

0.9.1 1 0 138 12.0 12.2 12.9

0.9.2 0 6 144 11.8 12 12.9

0.9.3 0 113 257 11.0 11 11.6

0.9.4 3 21 275 13.1 14.1 12.8

0.9.5 22 74 327 12.8 13.8 12.6

0.9.6 0 2 329 12.8 13.8 12.6

0.9.7 1 25 353 12.7 13.5 12.4

0.9.8 0 3 356 12.8 13.6 12.5

0.9.9 43 48 361 13.0 14.2 12.7

0.9.10 11 2 352 13.2 14.1 13.2

0.9.11 0 13 365 13.4 14.4 13.4

0.9.12 5 17 377 13.6 14.4 13.5

0.9.13 0 6 383 14.0 14.8 13.8

0.9.14 3 15 395 15.3 15.4 14.1

0.9.15 0 9 404 15.2 15.3 14.0

0.9.16 2 10 412 15.1 15.2 13.8

0.9.17 19 30 423 15.0 15.2 9.8

0.9.18 1 10 432 14.7 14.7 9.9

0.9.19 9 24 447 14.2 14.3 9.8

0.9.20 0 1 448 14.3 14.3 9.8

0.9.21 3 15 460 14.5 14.6 9.8

Total 123 444

The cohesion metric between versions 0.9.16 and 0.9.17 suddenly drops and this

becomes a key reason to affect the average. This can be explained by the fact that 115

classes were modified not included in this research as well as 19 removed and 30 added

at version 0.9.17.

To test the hypotheses if the growth trend of classes is actually related to the

metric values, we calculated correlations between the number of classes and one of the

average fan-in coupling, fan-out coupling and cohesion.

85

 Classe growth

0

50

100

150

200

250

300

350

400

450

500

Version

N
u

m
b

e
r

o
f

c
la

s
s

e
s

No. of Classes 139138144257275327329353356361352365377383395404412423432447448460

0.9

.0

0.9

.1

0.9

.2

0.9

.3

0.9

.4

0.9

.5

0.9

.6

0.9

.7

0.9

.8

0.9

.9

0.9

.10

0.9

.11

0.9

.12

0.9

.13

0.9

.14

0.9

.15

0.9

.16

0.9

.17

0.9

.18

0.9

.19

0.9

.20

0.9

.21

Figure 5-1: Number of class growth

Average fan-in/out coupling and cohesion

0

2

4

6

8

10

12

14

16

18

Version

C
o

u
p

li
n

g
/c

o
h

e
s

io
n

 m
e

tr
ic

Avg. fan-in coupling Avg. fan-out coupling Avg. cohesion

Avg. fan-in coupling 11.9 12 11.8 11 13.1 12.8 12.8 12.7 12.8 13 13.2 13.4 13.6 14 15.3 15.2 15.1 15 14.7 14.2 14.3 14.5

Avg. fan-out coupling 12.1 12.2 12 11 14.1 13.8 13.8 13.5 13.6 14.2 14.1 14.4 14.4 14.8 15.4 15.3 15.2 15.2 14.7 14.3 14.3 14.6

Avg. cohesion 12.7 12.9 12.9 11.6 12.8 12.6 12.6 12.4 12.5 12.7 13.2 13.4 13.5 13.8 14.1 14 13.8 9.8 9.9 9.8 9.8 9.8

0.9.0 0.9.1 0.9.2 0.9.3 0.9.4 0.9.5 0.9.6 0.9.7 0.9.8 0.9.9
0.9.1

0

0.9.1

1

0.9.1

2

0.9.1

3

0.9.1

4

0.9.1

5

0.9.1

6

0.9.1

7

0.9.1

8

0.9.1

9

0.9.2

0

0.9.2

1

Figure 5-2: Average fan-in/out coupling and cohesion

The average fan-in/out coupling is the average of the fan-in/out coupling metric

values of all classes in each version of the program. The average cohesion is the average

86

of the cohesion metric values of all classes in each version. Underlying assumptions are

that the number of classes is positively related to the average fan-in/out coupling, but is

not positively related to the average cohesion.

As we expected, there are strong correlations between the number of classes and

the average fan-in/fan-out couplings with 0.813 and 0.826, respectively, in the pearson

correlation, and at the significant level of p-value= 0.000 (Table 5-3). This statistical

analysis strongly supports the first two hypotheses we made, and agrees with the previous

research statements about the relationships between the number of classes and the

coupling metrics, which stated that if the number of classes increases then coupling

metrics increase.

Moreover, Lehman’s 2
nd

 law (Increasing complexity) of software evolution states

that as a system evolves the complexity of the system increases unless work is done to

maintain it. Since JFreeChart is an object oriented system written in Java, it is known

that the complexity of a Java program depends largely on the coupling metrics among the

classes.

Table 5-3: Correlation between the number of classes and coupling/cohesion

Number of classes

 At each version

Pearson correlation P-value

Average fan-in coupling 0.813 0.000

Average fan-Out coupling 0.826 0.000

Average cohesion -0.356 0.104

87

0

20

40

60

80

100

120

N
u
m

b
e
r
o
f
C
la

s
s
e
s

Added 0 0 5 113 21 74 2 25 3 48 2 13 17 6 15 9 10 30 10 24 1 15

Removed 0 1 0 0 3 22 0 1 0 43 11 0 5 0 3 0 2 19 1 9 0 3

0.9

.0

0.9

.1

0.9

.2

0.9

.3

0.9

.4

0.9

.5

0.9

.6

0.9

.7

0.9

.8

0.9

.9

0.9

.10

0.9

.11

0.9

.12

0.9

.13

0.9

.14

0.9

.15

0.9

.16

0.9

.17

0.9

.18

0.9

.19

0.9

.20

0.9

.21

Figure 5-3: Number of classes removed and added

Figure 5-2 shows that as JFreeChart evolved, the coupling of the system

increased, thus complexity increases as well, following Lehman’s 2
nd

 law of evolution

with some minor exceptions.

Removed and Added Classes

Figure 5-3 shows the numbers of classes removed (group R) and added (group

A) across all versions. We noticed that the software is constantly changed between

versions and, in most cases, many more classes are added (total of 444) than removed

(total of 123). This changing nature of JFreeChart follows Lehman's 1st law (Continuing

change). Almost 50% of group A were added around the beginning of the evolution (213

out of 444), prior to version 0.9.5. According to [1], this is a common phenomenon.

About 65% of group A were added before version 0.9.9 (291 out of 444). In addition,

there seems to be important changes at version 0.9.9 by adding 48 classes and removing

43 (36% of the removed).

88

0

2

4

6

8

10

12

M
e
tr

ic
 v

a
lu

e

Removed classes 5.715 10.39 8.415

Added classes 8.262 7.415 7.964

Average fan-in

coupling

Average fan-out

coupling
Average cohesion

Figure 5- 4: Average coupling/cohesion of the classes removed and added

To test the last three hypotheses, we calculated average Fan-in/out coupling and

cohesion metrics for both group A and group R. It is the average of metric values of all

classes removed/added in each version. Figure 5-4 shows the metric values and compares

them in bar graphs. We were expecting to see higher Fan-in and cohesion and lower fan-

out in group A than in group R.

The results reveal higher fan-in coupling and lower fan-out coupling for the added

class group than those for the removed class group thus, support Hypotheses 3 and 4. It

implies directly that the added classes have better software quality than the removed

classes in terms of coupling. This result is very interesting because the 7
th

 law (Declining

quality) of Lehman’s software evolution states that E-type programs will be perceived as

of declining quality unless adapted to a changing operation environment. We defined

reusability as a quality factor for JFreeChart since it is a library which is intended to be

reused by other applications. We measured fan-out and fan-in coupling metrics over time

to see the trend of the quality in terms of reusability. As we mentioned earlier, low

89

fan-out and high fan-in coupling are desirable for the classes to be reused. Therefore we

can say that with few exceptions, the evolution of the JFreeChart does not follow

Lehman's 7
th

 law of evolution.

Based on the average cohesion metric values as shown in Figure 5-4, we found no

big difference between the two groups and therefore reject Hypothesis 5.

For the averages of the metrics, we looked into each version as shown in Figures

5-5, 5-6, and 5-7. Since we have different numbers of classes across all versions, we

normalized the average metric values by dividing the number of classes at each version.

For the fan-in coupling in Figure 5-5, we observe two spikes at versions 0.9.3 and

0.9.9. The first is for the added and the second is for the removed. Although the overall

average seems to be influenced by them, the metrics for the added are higher and stronger

than the removed, which is desirable and expected because it is reusable. More

importantly the average at version 0.9.3 is the one with 113 added classes.

Normalized fan-in coupling for the classes removed and added

0

0.5

1

1.5

2

2.5

0.
9.

1
0.

9.
2

0.
9.

3
0.

9.
4

0.
9.

5
0.

9.
6

0.
9.

7
0.

9.
8

0.
9.

9

0.
9.

10

0.
9.

11

0.
9.

12

0.
9.

13

0.
9.

14

0.
9.

15

0.
9.

16

0.
9.

17

0.
9.

18

0.
9.

19

0.
9.

20

0.
9.

21

Version

F
a

n
-i

n
 c

o
u

p
li

n
g

Removed

Added

Figure 5-5: Normalized fan-in coupling

90

Figure 5-6: Normalized fan-out coupling

Normalized cohesion for the classes removed and added

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0.
9.

1
0.

9.
2

0.
9.

3
0.

9.
4

0.
9.

5
0.

9.
6

0.
9.

7
0.

9.
8

0.
9.
9

0.
9.

10

0.
9.

11

0.
9.

12

0.
9.

13

0.
9.

14

0.
9.

15

0.
9.
16

0.
9.

17

0.
9.
18

0.
9.

19

0.
9.

20

0.
9.

21

Version

C
o

h
e

s
io

n

Removed

Added

Figure 5-7: Normalized cohesion

For the fan-out coupling in Figure 5-6, we again notice a spike at version 0.9.9.

This one is especially important because it is the average of 43 removed classes out of

123. It is almost 40% of all the removed classes at a single version, and this plays an

important role toward the undesirable quality of software because it is hard to maintain,

91

thus removed.

For the cohesion value per version in Figure 5-7, the removed classes at version

0.9.9 have high cohesion, even though this could be explained that they were removed

because of the high fan-out coupling. However, the high cohesion for the added at

version 0.9.3 is meaningful because it is the average of 113 classes while we can’t say

that the added class group has better quality in terms of cohesion because of the data in

Figure 5-4.

Obvious common phenomena from these three Figures (5-5 – 5-7) is that the 113

classes added at version 0.9.3 represent high fan-in coupling and cohesion, which is ideal,

and the 43 classes removed at version 0.9.9 represent high fan-in/out and cohesion. The

high fan-out coupling resulted in having these 43 classes removed from the software.

5.1.5 Summary

In this empirical study, we have mainly focused on tracking the reusability of an

open software system, JFreeChart, over its evolution with fan-in and fan-out couplings

for added and removed classes. We found that the number of classes increases gradually

over most releases, and they have strong correlations with coupling metrics but not

positively related to the cohesion. These confirm the expectations about the relationship

between them. We also found that the added classes have higher fan-in coupling and

lower fan-out coupling comparing to the removed classes. Low fan-out and high fan-in

are desirable in term of reusability since a high fan-out means difficulty to reuse a class

and a high fan-in represents a high level of reuse. It also has been found that evolution of

this software system is consistent with Lehman's 1st, 2nd, and 6th laws of software

92

evolution.

While more research would be required to make any firm conclusions, this

observation leads us to believe that the reusability of JFreeChart has improved along

with its evolution. In this way, applying metrics from JamTool over the evolution of the

software can aid a software engineer to understand how a system has evolved over time.

93

6 ANALYZING SOFTWARE FOR REUSE AND
MAINTENANCE

 We applied software metrics and visualization approach to understand the

software evolution in Chapter 5. According to the empirical study, there was a big change

of coupling metric values from 0.9.3 to 0.9.4 as reported in Table 5-2 and Figure 5-2.

This chapter presents a case study to investigate if the metrics defined and implemented

by JamTool can be used to capture the difference between two consecutive versions on

the evolution of JFreeChart.

6.1 Added and Removed Classes

When JFreeChart evolves from version 0.9.3 to version 0.9.4, twenty-one new

classes were added and three classes were removed. Tables 6-1 and 6-2 summarize fan-in

and fan-out couplings for the added and removed classes. The Class Counting Coupling

(CCC) fan-out of a class, C, is the number of other classes that are referenced in C. A

reference to another class, A, is a reference to a method or a data member of class A. In

the CCC fan-out of a class, multiple accesses to the same method or data element are

counted as one access. The CCC fan-in of a class, C, is the number of other classes that

reference class C. In the CCC fan-in of a class, multiple accesses are also counted as one

94

access.

High CCC fan-out of a class represents couplings to many other classes and thus

the class is hard to be reused because this class depends on many other classes. High

CCC fan-in of a class represents good object design and high level of reuse but it may be

risky to change this class because many classes depend on it.

Strength Counting Coupling (SCC) fan-in and fan-out coupling counts all

references between classes. As shown in Table 6-1, added classes have higher (CCC

average 2.5) fan-out coupling than fan-in coupling (CCC average 1.3).

Table 6-1: Added classes into 0.9.4

CCC SCC Class Name

Fan-out Fan-in Fan-out Fan-in

ArrowNeedle 1 2 1 3

CompassPlot 14 0 27 0

DatasetGroup 0 4 0 8

DrawableLegendItem 1 3 3 48

FastScatterPlot 7 0 21 0

Function2D 0 2 0 2

IntervalCategoryToolTipGenerator 2 1 4 1

JThermometer 5 0 35 0

LineFunction2D 1 0 1 0

LineNeedle 1 1 1 1

LongNeedle 1 1 1 1

MeterNeedle 0 8 0 11

PinNeedle 1 1 1 1

PlumNeedle 1 1 1 1

PointerNeedle 1 1 1 1

PowerFunction2D 1 0 1 0

Regression 0 0 0 0

ShipNeedle 1 1 1 1

XYDotRenderer 2 0 2 0

WindNeedle 1 1 1 1

ThermometerPlot 13 1 62 15

Average 2.5 1.3 7.8 4.5

95

Six classes (XYDotRenderer, FastScatterPlot, JThermometer, LineFunction2D,

PowerFunction2D, and CompassPlot) have only fan-out couplings and three classes

(DatasetGroup, Function2D, and MeterNeedle) have only fan-in couplings. Class Regression

is added without any relation to other classes. This class may be ready to provide

independent service to other software application.

Class ThermometerPlot depends on 13 classes with 62 fan-out couplings and 1

class depends on this class with 15 fan-in couplings. Nine added classes have both fan-

out and fan-in couplings. Class DrawableLegendItem has 1 fan-out class and 3 fan-in

classes with 3, and 48 couplings, respectively. Therefore, we need to pay more attention

to this class than other classes among the added classes.

In Table 6-2, Class WindAxis is removed, but it does not affect the rest of the

system because no other classes depended on this class. Classe ToolTipsCollection is

removed and one class depends on this class with one coupling. Class ToolTip is removed

and one class depends on this class with six couplings. Even if only one class depends on

the removed classes, we still need to test the effect of the removed classes because this

one class may trigger riffle effects to other classes in the system.

Table 6-2: Removed classes from 0.9.3

 CCC SCC

Class Fan-out Fan-in Fan-out Fan-in

WindAxis 2 0 6 0

ToolTipsCollection 0 1 0 1

ToolTip 0 1 0 6

96

6.2 Modified Classes

 We compare CCC fan-in and fan-out couplings between 0.9.3 and 0.9.4 to see if

there are changes in terms of the number of coupled classes. Table 6-3 shows the changed

classes that have big differences in terms of the number of coupled classes. As shown in

Table 6-3 (a), class ChartFactory depends on 15 new classes; there are only 2 classes

depend on more than 3 new classes, but 4 classes decrease the number of coupled classes

in version 0.9.4.

Table 6-3: Changed classes with at least 3 differences.

CCC(Fan-out) 0.9.3 0.9.4 Change

ChartFactory 38 53 15

StandardLegendItemLayout 2 6 4

AbstractXYItemRenderer 6 9 3

AreaCategoryItemRenderer 2 5 3

DateAxis 5 8 3

HorizontalDateAxis 9 12 3

StandardCategoryToolTipGenerator 1 4 3

ChartUtilities 6 3 -3

StandardLegend 5 2 -3

JThermometer 4 0 -4

StackedHorizontalBarRenderer 5 1 -4

(a) Changed classes with big difference of fan-out (CCC)

CCC(Fan-in) 0.9.3 0.9.4 Change

LegendItemCollection 1 13 12

CategoryURLGenerator 2 13 11

LegendItem 3 10 7

EntityCollection 20 24 4

StandardCategoryToolTipGenerator 0 4 4

TickUnits 3 7 4

CategoryPlot 7 10 3

DateTickUnit 0 3 3

Plot 17 20 3

StackedVerticalBarRenderer3D 10 1 -9

(b) Changed classes with big difference of fan-in (CCC)

97

In Figure 6-3 (b), classes LegendItemCollection, CategoryURLGenerator, and

LegendItem in version 0.9.4 depend on more than 7 new classes and 9 classes stop

depending on class StackedVerticalBarRenderer3D. Table 6-4 and Figure 6-1 summarize

fan-in/out differences in these two versions. CCC represents the number of coupled

classes and SCC represents the coupling strength.

Table 6-4: Fan-in/out differences in two versions

Average Min Median Max

0.9.3 0.9.4 0.9.3 0.9.4 0.9.3 0.9.4 0.9.3 0.9.4

Fan-in 2.9 3.1 0 0 1 1 36 38 CCC

Fan-out 2.9 3.1 0 0 2 2 38 53

Fan-in 12.8 16.2 0 0 3 3 255 398 SCC

Fan-out 12.8 16.2 0 0 3 2 331 447

Figure 6-1: Average coupling comparison of changed classes

Average Coupling

0

2

4

6

8

10

12

14

16

18

CCC SCC

0.9.3
0.9.4

98

Fan-in coupling distribution (CCC)

0

50

100

150

200

250

Number of fan-in coupling

N
u

m
b

e
r

o
f

c
la

s
s

0.9.3 198 25 8 3 1 0 0 1

0.9.4 210 25 13 3 1 1 0 1

0-5 6-10 11-15 16-20 21-25 26-30 31-35 36-40

Fan-out coupling distribution (CCC)

0

50

100

150

200

250

Number of fan-out coupling

N
u

m
b

e
r

o
f

c
la

s
s

0.9.3 195 34 5 1 0 0 0 1 0 0 0

0.9.4 209 33 10 1 0 0 0 0 0 0 1

0-5 6-10 11-15 16-20 21-25 26-30 31-35 36-40 41-45 46-50 51-55

(a) Fan-in coupling distribution

(b) Fan-out coupling distribution

Figure 6-2: Coupling (CCC) distribution in two versions

99

Fan-in coupling distribution (SCC)

0

50

100

150

200

250

Number of fan-in coupling

N
u

m
b

e
r

o
f

c
o

u
p

li
n

g

0.9.3 207 14 6 4 1 3 0 0 1 1 0 0 0 0 0

0.9.4 220 16 6 4 2 1 1 1 0 0 1 0 0 1 1

0-25
26-

50

55-

75

76-

100

101-

125

126-

150

151-

175

176-

200

201-

225

226-

250

251-

275

276-

300

301-

325

326-

350

351-

375

(a) Fan-in coupling distribution

Fan-out coupling distribution (SCC)

0

50

100

150

200

250

Number of fan-out coupling

N
u

m
b

e
r

o
f

c
o

u
p

li
n

g

0.9.3 202 22 7 1 1 0 2 0 1 0 0 0 0 0 0

0.9.4 212 24 10 2 1 0 2 0 0 0 0 0 0 1 2

0-25
26-

50

55-

75

76-

100

101-

125

126-

150

151-

175

176-

200

201-

225

226-

250

251-

275

276-

300

301-

325

326-

350

351-

375

(b) Fan-out coupling distribution

Figure 6-3: Coupling (SCC) distribution in two versions

100

When JFreeChart evolves from 0.9.3 to 0.9.4, the average number of coupled

classes is increased from 2.9 to 3.1 and the average coupling strength is increased from

12.8 to 16.2. This result means that, in version 0.9.3, each class depends on 2.9 classes on

average and references/uses other classes about 12.8 times. Each class, in version 0.9.4,

depends on 3.1 classes on average and references/uses other classes about 16.2 times.

Therefore, we can say that version 0.9.4 is more difficult to reuse and maintain than 0.9.3.

Figures 6-2 and 6-3 summarize fan-in/out coupling distributions for these two

versions. There are classes with high coupling metrics which we need to pay more

attention and monitor their changes. Figure 6-2 shows fan-in/out coupling distributions in

terms of the number of classes. Most classes have coupled to fewer than 5 classes.

Figure 6-3 shows fan-in/out coupling distribution in terms of the number of actual

couplings. It is a distribution of the SCC metrics. Most classes have fewer than 25

couplings and only very few classes have high couplings.

101

6.3 Reusable Unit and Maintainable Unit

Reusable unit is a collection of a target class and its related classes we should

reuse together. Identifying a reusable unit means that each class has its own reusable unit

with other classes which the class depends on. The identification of a reusable unit of

classes requires an understanding of the relation of classes in a software system. A

maintainable unit contains a target class and its related classes we should test together.

Reusable unit and maintainable unit are necessary to understand software

structure and, more importantly, to serve as a source of information for reuse and

maintenance.

Figure 6-4 shows the reusable units in versions 0.9.3 and 0.9.4. From these

reusable units, progression of the reusable units are captured. For example, class

AbstractCategoryItemRender depends on 5 classes (StandardCategoryToolTipGenerator,

CategoryRender, CategoryToolTipGenerator, AbstractRender, CategoryURLGenerator)

in version 0.9.3, which make a unique reusable unit, but 2 new classes (CategoryDataset,

LegendItem) are added into the reusable unit in version 0.9.4.

102

(a) Reusable unit in version 0.9.3

(b) Reusable unit in version 0.9.4

Figure 6-4: Reusable unit

103

(a) Maintainable unit in version 0.9.3

(a) Maintainable unit in version 0.9.4

Figure 6-5: Maintainable unit

104

Figure 6-5 shows maintainable units in two versions. From these maintainable

units, we can capture the progression how classes depend on a particular class. For

example, class DateTickUnit has no classes that depend on it in version 0.9.3, but 2

classes (DateAxis. HorizonDateAxis) depend on it in version 0.9.4

6.4 Connected Unit

 In a connected unit table, directly and indirectly coupled classes are located in the

same column, thus a set of classes in the same column is a connected unit. Figure 6-6

shows part of connected units of JFreechart in two versions. From these connected units,

(a) Connected unit in 0.9.3 (b) Connected unit in 0.9.4

Figure 6-6 : Connected units in two versions

105

we find that version 0.9.3 establishes a main connected unit which has 224 classes out of

a total of 257 classes as shown in column A in Figure 6-6 (a), and a minor connected unit

with 3 classes in column D of Figure 6-6(a). The three classes

(StandardToolTipsCollection, ToolTip, and ToolTipsCollection) belong to the same

package named "com.jrefinery.chart.tooltips". There are also 11 independent classes, e.g.,

DatasetChangeListener in column E, which have no relation to other classes in Figure 6-

6(a). The independent classes are listed in Table 6-5.

 We also find that version 0.9.4 has a main connected unit with 254 classes out of a

total of 275 as shown column A in Figure 6-6 (b), and a minor connected unit with 3

classes in column K of Figure 6-6 (b). These three classes (Function2D, LineFunction2D,

PowerFunction2D) belong to the same package named "com.jrefinery.data ". There are

18 independent classes which have no relation to other classes in Figure-6(b). The

independent classes are listed in Table 6-5.

6.5 Comparing of Coupling Type

 We compare the types of fan-in and fan-out couplings to see which type of the

coupling is most affected by the evolution from version 0.9.3 to version 0.9.4. Seven

types of couplings for these two versions are partially shown in Figure 6-7 and their

actual metrics are shown in Table 6-6. Something very noticeable here is that 48% (1413

out of 3024 in version 0.9.3) and 53% (2192 out of 4111 in version 0.9.4) of the

couplings are IM (Invoked Method Type) while none of them is RV (Referenced

Variable).

106

Table 6-5: Independent classes in two versions

0.9.3 (11 classes) 0.9.4 (18 classes)

JFreeChartInfo, PlotException,

DatasetChangeListener, Values,

XisSymbolic,YisSymbolic,

DataPackageResources,

DataPackageResources_de,

DataPackageResources-es,

DataPackageResources_fr,

DataPackageResources_pl

DataUnit, JFreeChartInfo,

PlotException, ChartChangeListener,

LegendChangeListener,

lotChangeListener, TitleChangeListener,

JFreeChartResource,

DatasetChangeListener, Regression,

Values, XisSymbolic, YisSymbolic,

DataPackageResources,

DataPackageResources_de,

DataPackageResources-es,

DataPackageResources_fr,

DataPackageResources_pl

Every coupling metric type has increased from version 0.9.3 to version 0.9.4, and

the average increasing rate of the coupling is 35.95%. In particular, Method Invocation

type (IM) has increased 55.48%, which is 72.13% (784 out of 1087) of the total number

of the increased. This implies that the most significant difference is Method Invocation

coupling between these two versions.

Table 6-6: Comparison of Fan-in and fan-out Coupling Types

Version Fan-in/out coupling

0.9.3 0.9.4

Increased Increasing rate

TA 70 83 13 18.57%

TM 221 297 76 34.39%

TL 495 594 99 20%

IM 1,413 2,197 784 55.48%

MP 634 733 99 15.62%

RV 0 0 0 0%

PC 191 207 16 8.38%

Total 3024 4,111 1,087 35.95%

107

(a) Fan-in coupling in version 0.9.3 (a) Fan-in coupling in version 0.9.4

(c) Fan-out coupling in version 0.9.3 (d) Fan-out coupling in version 0.9.4

Figure 6-7: Fan-out/Fan-out coupling

108

6.6 Size and Complexity

 Four size and one complexity metrics for these two versions are partially shown

in Figure 6-8 and their differences are in Table 6-7. The metrics have all increased from

version 0.9.3 to version 0.9.4. Figure 6-9 graphs the LOCC distributions these two

versions, and it is clear that most classes have fewer than 50 lines.

(a) Size & complexity in version 0.9.3 (a) Size & complexity in version 0.9.4

Figure 6-8: Size & complexity

109

Table 6-7: Size & complexity differences

Version Size & complexity

0.9.3 0.9.4

Increased Increasing rate

LOCC 9,820 11,287 1,467 14.94%

nMC 2,040 2,302 262 12.84%

nAC 822 910 88 10.71%

aLOCM 944 1,087 143 15.15%

aCX 106 118 12 11.32%

Table 6-8: Cohesion differences

Version Cohesion

0.9.3 0.9.4

Increased Increasing rate

MI 756 1,028 272 35.98%

AR 2,551 2,867 316 12.39%

Total 3,307 3,895 588 17.78%

LOCC

0

20

40

60

80

100

120

140

160

180

Lines of class

N
u

m
b

e
r

o
f

c
la

s
s

0.9.3 166 40 22 3 1 3 0 1 0

0.9.4 161 39 22 6 3 4 0 1 0

0-50 51-100 101-150 151-200 201-250 251-300 301-350 351-400 401-450

Figure 6-9: LOCC distribution

110

(a) Cohesion in version 0.9.3 (a) Cohesion in version 0.9.4

Figure 6-10: Cohesion

6.7 Cohesion

 Cohesion metrics for the two studied versions are partially shown in Figure 6-10

and their differences are in Table 6-8. Something noticeable is that 77% (2,551 out of

3,307 in version 0.9.3) and 74% (2,867 out of 3,895 in version 0.9.4) of the cohesion are

AR (Attribute Reference) while MI (Method Invocation) has increased 35.98% in version

0.9.4.

111

6.8 Summary

The goal of this case study is to compare and analyze two versions of JFreeChart

at class level. Specifically, it aims to answer the following questions:

o How does the architecture of JFreeChart change between two consecutive

versions?

o How can the differences between them be compared and detected?

o How can the huge information of source code be filtered and compared?

In this case study, we analyzed the differences between the metrics of two

versions using JamTool and found overall trend of metrics of JFreeChart in versions

0.9.3 and 0.9.4.

From the comparison and analysis of two versions of JFreeChart, we summarize

the following findings:

o 21 classes were added to version 0.9.4

o 3 classes were removed from version 0.9.3

o 44 classes have new fan-out couplings and 60 classes have new fan-in

couplings in version 0.9.4.

o Most classes have low fan-in or fan-out couplings but few classes have high

coupling.

o By comparing reusable units and maintainable units in version 0.9.3 and

version 0.9.4, we found newly added classes to the reusable unit and

maintainable unit.

112

o By analyzing connected unit, we found that most classes are directly or

indirectly related to each other and they form one main connected unit. But we

also found minor connected units with 3 classes, and 11 and 18 independent

classes which have no relations to other classes in versions 0.9.3 and 0.9.4,

respectively.

o More than half of the newly added couplings were Method invocation.

o Size and complexity metrics are also increased in 0.9.4.

Based on the findings above, we conclude that the metrics tables produced by

JamTool can be used in the following tasks:

o To monitor new coupling through evolution of the software system.

o To identify outlier classes based on the metrics

113

7 IDENTIFYING CORRELATION AMONG METRICS

This chapter presents empirical studies that investigate if the metrics defined and

implemented in JamTool are related to each other. The data sets used for the study are

also presented. Finally, the statistical correlation coefficients are described.

Statistical analyses were performed to investigate the following questions:

• Are there correlations in the metrics?

The test programs used in this research are Java classes in the GUI library (i.e.,

Swing in JFC) and GUI applications (i.e., Bingo and Netbean). Metrics for these classes

were automatically collected using JamTool. These applications were written by

developers in the Sun Microsystems. The test programs used in this experiment are

grouped as follows:

SwingLib = {classes in Swing package in JFC},

BingoAppl = {classes in Bingo application},

NetbeanAppl = {classes in Netbean application},

SwingLib contains 502 classes; BingoAppl has 48 classes; NetbeanAppl has 52

classes.

JFC/Swing

The Java Foundation Classes (JFC) is a comprehensive set of GUI components

and services which simplify the development and deployment of desktop and

114

Internet/Intranet applications. JFC extends the original Abstract Window Toolkit (AWT)

by adding a comprehensive set of graphical user interface class libraries.

These components are written in Java, without window-system-specific code.

They facilitate a customizable look-and-feel without relying on the native windowing

system, and simplify the deployment of applications.

Swing is a GUI component kit and is part of JFC integrated into Java 2 platform-

Standard Edition (J2SE). Swing simplifies deployment of applications by providing a

complete set of user-interface elements written entirely in Java. Swing components also

permits a customizable look and feel without relying on any window specific

components. We shall demonstrate our approach by considering code using the

JFC/Swing library.

Bingo

Bingo is a client/server application that implements the game of BINGO and a

comprehensive example of JFC provided by the Sun Microsystems. This application

broadcasts information via a multicast socket, builds its GUI with Swing components,

uses multiple synchronous threads, and communicates with RMI.

NetBean

The NetBean IDE is a development environment - a tool for programmers to

write, compile, debug and deploy programs. It is a development tool written in Java for

writing programs in Java and other programming languages.

115

7.1 Methodology

7.1.1 Experiment 1: Correlation Coefficients among the metrics

The goal of this statistical analysis is to answer the question:

• Are any of the metrics in a group (i.e., SwingLib, BingoAppl, and

NetbeanAppl) correlated?

The Pearson product moment correlation coefficient, r, is a dimensionless index

that ranges from –1.0 to 1.0 inclusive and reflects the extent of a linear relationship

between two data sets. For example, if the r value associated with Metric1 and Metric2 is

close to zero, then the metric values of Metric1 and Metric2 are not linearly related. On

the other hand, if r is close to 1, then large values of Metric1 are associated with large

values of Metric2. Finally, if r is close to –1, then large values of Metric1 are linearly

associated with small values of Metric2. The sign of the correlation coefficient indicates

whether two variables are positively or inversely related. A negative value means that as

Metric1 becomes larger, Metric2 tends to become smaller. A positive correlation means

that both Metric1 and Metric2 go in the same direction.

7.1.2 Experiment 2: Correlation Coefficients among the coupling metrics in a

group

The goal of this statistical analysis is to answer the question:

• Are any of the coupling metrics in a group (i.e., SwingLib, BingoAppl, and

NetbeanAppl) correlated?

In this experiment, we analyze the correlation among the fan-in and fan-out

coupling metrics from SwingLib, BingoAppl, and NetbeanAppl to find internal features of

116

each system.

In this chapter, we apply metrics defined in Section 3.3. For example, LOC

measures number of lines in a class.

7.2 Results

Sections 7.2.1 and 7.2.2 provide the results for each of the statistical analyses

described in section 7.1. First, section 7.2.1 discusses the correlation among the metrics

in a group. Section 7.2.2 discusses the analysis results for the correlation among coupling

metrics in a group.

7.2.1 Result 1: Correlation among the metrics in a group

This section answers the following question:

• Are any of the metrics in SwingLib, NetBeanAppl, and BingoAppl correlated?

Tables 7-1, 7-2, and 7-3 show the correlation coefficients for the metrics and

Table 7-4 shows metrics pairs with r values greater than 0.6. In the traditional procedural

programming paradigm, studies show that defects correlate with LOC and Cyclomatic

complexity [49, 50].

From the correlation results of SwingLib and NetbeanAppl (See Table 7-1 and 7-

2), we found common correlation patterns.

Except for aLOCM, size metrics (i.e., LOC, NOM, NOA), complexity metrics

(i.e., aCx), and cohesion metrics (i.e., cohMI, cohAR) are positively correlated to each

other. Coupling metrics are positively correlated to each other except cplPC and cplMI.

 LOC, NOM, and NOA are representatives of the size of a class; however aLOCM

117

represents the averaged method size in a class.

Size, complexity and cohesion metrics are correlated to each other. But coupling

metrics are not correlated to other metrics like size, complexity and cohesion. Size,

complexity and cohesion metrics represent the volume within a class, but coupling

metrics represent the structure among classes in a system. These two aspects of software

system, obviously, are not correlated.

From the correlation results of BingoAppl (See Table 7-3), Size metrics and

complexity metrics are correlated to each other but cohesion metrics are independent

from other metrics. Some coupling metrics (cplTA, cplMI, and cplTPM) are correlated to

size and complexity metrics. aLOCM and cplPC are independent from other metrics.

Table 7-1: Correlation Coefficients of metrics in SwingLib

 LOC NOM NOA aLOCM aCx cohMI cohAR cplTA cplTP cplTL cplMI cplTPM cplPC

LOC 1.00

NOM 0.94 1.00

NOA 0.70 0.66 1.00

aLOCM 0.31 0.12 0.15 1.00

aCx 0.95 0.87 0.64 0.23 1.00

cohMI 0.85 0.81 0.72 0.15 0.83 1.00

 cohAR 0.82 0.77 0.73 0.17 0.79 0.76 1.00

cplTA 0.34 0.33 0.27 0.07 0.33 0.25 0.27 1.00

cplTP 0.35 0.39 0.20 0.04 0.28 0.29 0.20 0.50 1.00

cplTL 0.38 0.33 0.24 0.08 0.42 0.31 0.26 0.50 0.52 1.00

cplMI 0.52 0.47 0.34 0.16 0.51 0.42 0.47 0.52 0.50 0.89 1.00

cplTPM 0.40 0.33 0.33 0.07 0.45 0.38 0.34 0.43 0.44 0.85 0.77 1.00

cplPC 0.15 0.15 0.17 0.07 0.17 0.15 0.13 0.18 0.21 0.24 0.20 0.20 1.00

118

Table 7-2: Correlation Coefficients of metrics in NetbeanAppl

 LOC NOM NOA aLOCM aCx cohMI cohAR cplTA cplTP cplTL cplMI cplTPM cplPC

LOC 1.00

NOM 0.95 1.00

NOA 0.67 0.61 1.00

aLOCM 0.28 0.05 0.20 1.00

aCx 0.91 0.86 0.49 0.29 1.00

cohMI 0.84 0.89 0.49 0.09 0.86 1.00

cohAR 0.81 0.79 0.81 0.16 0.69 0.65 1.00

cplTA -0.11 -0.05 -0.14 -0.27 -0.08 -0.06 -0.11 1.00

cplTP -0.03 0.05 -0.19 -0.31 0.02 0.08 -0.12 0.90 1.00

cplTL 0.06 0.12 -0.15 -0.17 0.12 0.16 -0.02 0.87 0.88 1.00

cplMI 0.32 0.32 0.16 -0.02 0.36 0.35 0.20 0.19 0.25 0.28 1.00

cplTPM 0.06 0.14 0.07 -0.25 0.03 0.19 0.06 0.86 0.85 0.83 0.21 1.00

cplPC 0.35 0.40 0.06 -0.02 0.47 0.39 0.37 0.17 0.22 0.33 0.18 0.17 1.00

Table 7-3: Correlation Coefficients of metrics in BingoAppl

 LOC NOM NOA aLOCM aCx cohMI cohAR cplTA cplTP cplTL cplMI cplTPM cplPC

LOC 1.00

NOM 0.84 1.00

NOA 0.82 0.64 1.00

aLOCM 0.46 0.12 0.32 1.00

aCx 0.88 0.68 0.58 0.34 1.00

cohMI -0.06 -0.10 -0.16 0.13 -0.03 1.00

cohAR 0.03 -0.04 -0.08 0.20 0.04 0.92 1.00

cplTA 0.87 0.73 0.67 0.25 0.80 -0.11 -0.05 1.00

cplTP 0.52 0.53 0.36 0.09 0.51 -0.12 -0.11 0.71 1.00

cplTL 0.12 0.06 0.09 0.14 0.11 0.04 -0.04 0.14 0.37 1.00

cplMI 0.78 0.60 0.74 0.40 0.61 0.15 0.21 0.75 0.52 0.04 1.00

cplTPM 0.75 0.42 0.87 0.37 0.57 -0.08 -0.02 0.71 0.39 0.06 0.84 1.00

cplPC -0.22 -0.06 -0.16 -0.42 -0.19 -0.16 -0.14 -0.19 -0.22 -0.30 -0.21 -0.21 1.00

119

Table 7-4: Pairs in SwingLib, NetbeanAppl, and BingoAppl with r-value > 0.6

r value r value

Pair Swing
Lib

Netbean
Appl

Bingo
Appl

Pair Swing
Lib

Netbean
Appl

Bingo
Appl

LOC and
NOM

0.94 0.94 0.84
NOA and

cplTA
 0.67

LOC and
NOA

0.70 0.70 0.82
NOA and

cplMI
 0.74

LOC and
aCx

0.95 0.95 0.88
NOA and
cplTPM

 0.87

LOC and
cohMI

0.85 0.85
aCx and
cohMI

0.83 0.83

LOC and
cplTA

 0.87
aCx and

cplTA
 0.80

LOC and
cohAR

0.82 0.82
aCx and

cplMI
 0.61

LOC and
cplMI

 0.78
aCx and
cohAR

0.79 0.79

LOC and
cplTPM

 0.75
cohMI
and

cohAR

0.76 0.76

NOM and
NOA

0.66 0.66
cplTL and

cplMI
0.89

NOM and
aCx

0.87 0.87
cplTA and

cplTP
 0.89 0.71

NOM and
NOA

 0.64
cplTA and

cplMI
 0.75

NOM and
aCx

 0.68
cplTA and

cplTL
 0.86

NOM and
cplTA

 0.73
cplTA and
cplTPM

 0.95 0.71

NOM and
cohMI

0.81 0.81
cplMI and
cplTPM

 0.84

NOM and
cohAR

0.77 0.77
cplTP and

cplTL
 0.88

NOA and
aCx

0.64
cplTP and
cplTPM

 0.85

NOA and
cohMI

0.72
cplTL and
cplTPM

0.86 0.77

NOA and
cohAR

0.73 0.73
cplMI and
cplTPM

0.77

120

7.2.2 Result 2: Correlation among the coupling metrics in a group

We have found the followings from the previous experiments:

• Size, complexity and cohesion metrics are correlated to each other with some

exceptions.

• Coupling metrics are relatively independent from other metrics (i.e., size,

complexity, and cohesion)

• Some coupling metrics are correlated to each other.

In this experiment, we also measure fan-in and fan-out coupling metrics for each

software system and analyze the measurement results. We collect and analyze the

measurement results from SwingLib, NetbeanApp, and BingoAppl. In this section, we

add in and out to the end of the metrics name to indicate fan-in and fan-out coupling

instead prefix cpl. For example, TAin represents fan-in coupling with cplTA type.

In Tables 7-5, 7-6 and 7-7, some fan-in coupling metrics are positively correlated

to each other and some fan-out coupling metrics are positively correlated to each other as

well. However, fan-in coupling metrics are not correlated to fan-out coupling metrics.

The following are our interpretation of the measurement results in this

experiment.

• All fan-in coupling metrics are correlated with each other and all fan-out

coupling metrics are correlated with each other except PCin, PCout, and

TMout.

o There are two types of classes in SwingLib: fan-in coupled classes and

fan-out coupled classes. Fan-in coupled classes are used by (i.e.,

121

export) other classes, but do not use (i.e., import) other classes. Fan-

out coupled classes use other classes, but are not used by other classes.

o Fan-in coupled classes in SwingLib are used by other classes with

diverse connection types.

o Fan-out coupled classes in SwingLib use other classes with diverse

connection types.

o Classes in SwingLib are designed with a specific role – import or

export.

• In BingoAppl and NetbeanAppl not all fan-in coupling metrics are correlated

to each other and not all fan-out coupling metrics are correlated to each other

either.

• There is no correlation between fan-in and fan-out coupling metrics in

SwingLib, NetbeanAppl, and BingoAppl.

122

Table 7-5: Correlation of coupling metrics in SwingLib

 TAin TMin TLin IMin IMPin PCin TAout TMout TLout IMout IMPout PCout

TAin 1.00

TMin 0.72 1.00

TLin 0.84 0.72 1.00

IMin 0.76 0.59 0.89 1.00

IMPin 0.78 0.60 0.75 0.68 1.00

PCin 0.08 0.38 0.12 0.08 0.09 1.00

TAout 0.12 0.06 0.13 0.18 0.09 0.08 1.00

TMout 0.08 0.05 0.13 0.27 0.07 0.05 0.57 1.00

TLout 0.02 0.00 0.05 0.09 0.03 0.08 0.58 0.52 1.00

IMout 0.01 -0.02 0.03 0.09 0.02 0.08 0.60 0.50 0.89 1.00

IMPout 0.01 -0.02 0.03 0.05 0.08 0.02 0.49 0.44 0.85 0.77 1.00

PCout 0.21 0.16 0.25 0.22 0.26 -0.02 0.19 0.21 0.24 0.20 0.20 1.00

Table 7-6: Correlation of coupling metrics in NetbeanAppl

 TAin TMin TLin IMin IMPin PCin TAout TMout TLout IMout IMPout PCout

TAin 1.00

TMin 0.97 1.00

TLin 0.96 0.96 1.00

IMin 0.28 0.28 0.28 1.00

IMPin 0.92 0.89 0.88 0.23 1.00

PCin 0.28 0.29 0.30 0.07 0.23 1.00

TAout -0.10 -0.12 -0.05 -0.09 -0.04 0.00 1.00

TMout -0.08 -0.09 -0.12 -0.05 -0.09 -0.01 0.36 1.00

TLout -0.07 -0.08 -0.10 -0.03 -0.11 0.33 0.24 0.51 1.00

IMout -0.11 -0.10 -0.15 0.01 -0.11 0.30 0.05 0.43 0.61 1.00

IMPout -0.10 -0.11 -0.15 -0.07 -0.12 0.04 0.24 0.59 0.72 0.48 1.00

PCout -0.07 -0.09 -0.10 -0.09 -0.08 -0.03 0.00 0.23 0.13 0.35 0.12 1.00

Table 7-7: Correlation of coupling metrics in BingoAppl

 TAin TMin TLin IMin IMPin PCin TAout TMout TLout IMout IMPout PCout

TAin 1.00

TMin 0.67 1.00

TLin -0.11 0.29 1.00

IMin 0.57 0.47 0.03 1.00

IMPin 0.33 0.53 0.39 0.19 1.00

PCin -0.23 -0.16 -0.14 -0.32 0.00 1.00

TAout 0.46 0.49 -0.14 0.34 0.49 -0.22 1.00

TMout 0.11 0.06 -0.16 0.11 -0.19 -0.18 0.33 1.00

TLout 0.24 0.13 -0.13 -0.09 -0.02 -0.17 0.34 0.51 1.00

IMout 0.36 0.36 -0.15 0.25 0.37 -0.18 0.90 0.43 0.57 1.00

IMPout 0.33 0.14 -0.16 0.29 0.20 -0.19 0.61 0.26 0.37 0.64 1.00

PCout 0.16 -0.01 -0.24 0.14 -0.23 -0.16 0.08 0.04 0.03 0.11 0.04 1.00

123

8 CONCLUSIONS

The primary objective of this research is to provide an automated measurement

tool (i.e., JamTool) to guide a programmer for software reuse and maintenance.

Measuring how well software components can be reused and maintained helps

programmers not only write reusable and maintainable software, but also identifies

reusable or fault-prone components.

The following research contributions have been achieved in this study.

Quality Measurement Model Development

We developed a quality model that leads to a metric set implemented in JamTool.

We first identified essential software properties that have been suggested as having an

impact on software reusability and maintainability. Then we divided these quality factors

into five subfactors (i.e., identification, separation, modification, validation, and

adaptation) in a top-down fashion. We also applied bottom-up approach to develop

quality measurement models for reusability and maintainability based on available

measurement types that are related to reuse and maintenance properties. Using these top-

down and bottom-up approaches, we constructed a concise quality measurement model

for reusability and maintainability.

Automated Measurement Tool

An automated measurement tool, JamTool, for object-oriented software

124

system was developed in this work. This research describes how this tool can guide a

programmer through measuring internal characteristics of a program for software reuse

and maintenance.

In this work, primitive but comprehensive metrics for object-oriented language

have been extensively studied and statistically analyzed to show internal characteristics

from the classes selected from various applications. The automatically identified

connected units, reusable units, and maintainable units have been discussed.

JamTool’s capabilities have been demonstrated through case studies.

1. Measuring Quality on Software Evolution: It shows that the metrics defined

and implemented by JamTool can be used to assess the quality on the

evolution of a software system.

2. Visualizing Software Evolution: The evolution track-table visualizes the

evolution of a software system.

3. Analyzing Software for Reuse and Maintenance: It shows how the

architecture of a software system changes between two consecutive versions.

It also shows the usage of connect unit, reusable unit, and maintainable unit.

4. Identifying Correlation among Metrics: It shows the correlation among the

metrics defined and implemented by JamTool.

The first case study investigated whether JamTool can be used to assess the

reusability of an open software system, JFreeChart, over its evolution with fan-in and

fan-out couplings for added and removed classes. We found that the number of classes

increases gradually over most releases, and they have positive improvement with respect

125

to the coupling metrics but not positively related to the cohesion. It has also been found

that evolution of this software system is consistent with Lehman's 1st, 2nd, and 6th laws

of software evolution. We found that the added classes have higher fan-in coupling and

lower fan-out coupling comparing to the removed classes, which is desirable in term of

reusability. This observation leads us to believe that the reusability of JFreeChart has

improved along with its evolution and reject Lehman's 7th laws of software evolution. In

this way, applying metrics from JamTool over the evolution of software can aid a

software engineer to understand how a system has evolved over time.

The second case study investigated whether JamTool can be used to capture the

difference between two consecutive versions on the evolution of JFreeChart. Based on

the findings in this case study, we conclude that the metrics tables produced by JamTool

can be used in the following tasks:

o To monitor the new coupling through evolution of the software system.

o To identify outlier classes based on the metrics

The third case study investigated whether the metrics defined and implemented in

JamTool are related to each other. We have found the followings from this case study:

o Size, complexity and cohesion metrics are correlated to each other with some

exceptions.

o Coupling metrics are relatively independent from other metrics (i.e., size,

complexity, and cohesion)

o All fan-in coupling metrics are correlated with each other and all fan-out

coupling metrics are correlated with each other except PCin, PCout, and

126

TMout.

o There is no correlation between fan-in and fan-out coupling metrics.

Consequently, having achieved our goal of providing an automated source code

measurement environment, we demonstrated that our tool, JamTool, is a valuable tool to

help software engineers understand and explore software reuse and maintenance.

There are several aspects to the work presented in this dissertation that offer potential

for future research. Some of these areas are listed below.

1. Object-oriented metrics and connected units can be used to automate the

recognition of design patterns in existing software components. A specific

area for future research is to characterize the structure of design patterns and

use design metrics and clusters to recognize pattern structures in existing

object-oriented software libraries and systems.

2. To analyze features of application domains: After the analysis of the

measurement results of various application domains, common features of each

domain may be derived.

127

BIBLIOGRAPHY

[1] Alshyeb, M., Li, W., “An empirical study of system design instability metric and

design evolution in an agile software process”, The Journal of Systems and Software 74,

2005, pp 269-274

 [2] Basili, V.R., and Weiss, D.M. “A Methodology for Collecting Valid Software

Engineering Data,” IEEE Trans. on Software Eng., 10(6), pp. 728-738, 1984.

[3] Berard, E.V., "Essays on object-oriented Software Engineering," Prentice Hall,

Englewood Cliffs, NJ, 1992, 392 pp

[4] Bieman, J.M., and Kang, B-K. “Cohesion and Reuse in an object-oriented System,”

Proc. ACM Symposium on Software Reusability (SSR’95), pp 259-262, Apr. 1995.

[5] Boehm, B.W. et al., "Characteristic of Software Quality," TRW Series of Software

Technology, Amsterdam, North Holland, 1978.

[6] Booch, G. “Object Oriented Design with Applications,” Benjamin/Cummings, Menlo

Park, CA, 1991, 580 pp

[7] Briand, L., Morasca, S., and Basili, V. “Assessing Software Maintainability at the end

of high-level design,” Proc. IEEE Conf. on Software Maintenance (CSM’93), Sep. 1993.

[8] Briand, L., Morasca, S., and Basili, V. “Defining and Validating High-Level Design

Metrics,” Technical Report, University of Maryland, CS-TR 3301, 1994.

[9] Briand, L., Daly, J., and Wust, J., “A Unified Framework for Cohesion Measurement

in object-oriented Systems,” Empirical Software Eng.: An Int’l J., vol. 3, no. 1, pp. 65-

117, 1998.

[10] Briand, L., Daly, J., and Wust, J., “A Unified Framework for Coupling Measurement

in object-oriented Systems,” IEEE Trans. on software eng., vol. 25, no. 1, 1999.

128

[11] Card, D.N., Church, V.E., and Agresti, W.W., “An Empirical Study of Software

Design Practices,” IEEE Transactions on Software Engineering 12(2), 264-271, 1986.

[12] Chidamber, S.R, and Kemerer, C.F., "A Metrics Suite for object-oriented Design,"

IEEE Trans on Software Eng., vol. 20, no. 6, pp. 476-493, Jun. 1994.

[13] David, G., and Scott, L. “The Non-Homogeneous Maintenance Periods: A Case

Study of Software Modifications,” International Conference on Software Maintenance,

1996, pp 134-141

[14] Dromey, G.R. "A Model for Software Product Quality," IEEE Trans. on Software

Eng., vol.21, no.2, pp. 146-162, 1995.

[15] Eder, J., Kappel, G, and Schrefl, M. “Coupling and Cohesion in object-oriented

Systems,” Technical Report, University of Klagenfurt, 1994.

[16] Fenton, N.E., Iizuka, Y., and Whitty, R.W. “Software Quality Assurance and

Measurement: A Worldwide Perspective,” ITP, London, 1995.

[17] Fenton, N.E., and Pfleeger, S.L. "Software Metrics - A Rigorous & Practical

Approach," ITP, London, 1997

[18] Fenton, N.E., and Neil, M. “Software metrics: successes, failures and new

directions,” The Journal of Systems and Software, vol. 47, pp.149-157, 1999.

[19] Fisher, M.J. and Light Jr, W.R. “Sofwtare Quality Management,” Petrocelli Books,

New York, 1979.

[20] Gray, A., and MacDonell, S.G. “GQM++ A Full Life Cycle Framework for the

Development and Implementation of Software Metric Programs,” In Proceedings of

ACOSM ’97 Fourth Austrailian Conference on Software Metrics, Canberra, Austrailia,

ASMA, pp. 22-35, 1997.

[21] Harrison, W., Magel, K., Kluczny, R., and DeDock, A. "Applying Software

Complexity Metrics to Program Maintenance," IEEE Computer, vol. 15, pp. 65-79, 1982.

[22] Henderson-Sellers, B., Moser, S., Seehusen, S., and Weinelt, B. “A proposed

multidimensional framework for object-oriented metrics, measurement – for improved IT

management,” Proc. First Australian Conf. Software Metrics, ACOSM ’93, J.M. Verner,

ed. 24-30, 1993.

[23] Henderson-Sellers, B "Object-Oriented Metrics, Measures of Complexity," Prentice

Hall, New Jersey, 1996.

[24] ISO 9126 Information Technology - Software Product Evaluation - Quality

129

Characteristics and Guidelines for Their Use, International Organization for

Standardization, Geneva, 1992.

[25] http://www.jfree.org/jfreechart/

[26] Karlsson, E. "Software Reuse - A Holistic Approach," JohnWiley & Sons, England,

1995.

[27] Kitchenham, B.A., Fenton, N.E., and Pfleeger, S.L. “Towards a Framework for

Software Measurement Validation,” IEEE Trans. Software Eng., vol. 21, no. 12, pp. 929-

944, 1995.

[28] Kitchenham, B.A., and Pfleeger, S.L. "Software Quality: The Elusive Target," IEEE

Software, vol. 13, no.1, pp. 12-21, 1996.

[29] Lee, Young, Chang, Kai H., Umphress, D., Hendrix, Dean, and Cross, James H.,

“Automated Tool for Software Quality Measurement”, The 13
th

 international conference

on software engineering and knowledge engineering (SEKE), Buenos Aires, Argentina,

June 2001,

[30] Lehman, M., “Programs, Cities, Students, Limits to Growth?” Inaugural Lecture,

May 1974, Publ. in Imp. Col of Sc. Tech. Inaug. Lect. Ser., vol 9, 1970, 1974, pp 211-229

[31] Lehman, M., “On Understanding Laws, Evolution and Conservation in the Large

Program Life Cycle”, Journal of Sys. and Software, v. 1, n. 3, 1980, pp 213-221

[32] Lehman, M, “Laws of Software Evolution Revisited”, Position Paper, EWSPT96,

Oct. 1996, LNCS 1149, Springer Verlag, 1997, pp 108-124

[33] Lehman, M., Ramil, J., Wernick, P., Perry, D., “Metrics and laws of software

evolution - the nineties view”, Proceedings of the Fourth International Software Metrics

Symposium (1997), Portland, Oregon., page 20

[34] Li, W., and Henry, S. "Object-Oriented Metrics that Predict Maintainability," J. Sys.

Software, 23, pp 111-122, 1993.

[35] Lorenz, M. "Object-Oriented Software Development: A Practical Guide,” Prentice

Hall, NJ, 227 pp, 1993.

[36] MacDonell, S.G. “Deriving Relevant Functional Measures for Automated

Development Project”, Information and Software Technology 35(9), pp. 499-512, 1993.

[37] Martin, Robert C. Engineering Notebook, C++ Report, Nov-Dec, 1996

[38] Martin, Robert C., Agile Software Development Principles, Patterns, and Practices,

2002, 255 pp

130

[39] McCabe, T. J. "A Complexity Measure," IEEE Trans. on Software Eng., SE-2(4), pp

308-320, Dec. 1976.

[40] McCall, J.A., Richards, P.K., and Walters, G..F. "Factors in Software Quality," vol. 1,

2, and 3, AD/A-049-014/015/055, National Tech. Information Service, Springfield, Va.,

1977.

[41] McQuaid, P.A. "Profiling Software Complexity," Ph.D. Dissertation, Computer

Science and Engineering Dept., Auburn University, 1996.

[42] Moser, S., and Henderson-Sellers, B. ”Object-Oriented Metrics,” Handbook of

object technology, edited-in –chief, Saba Zamir, Boca Raton, FL, CRC Press, 1999.

[43] Page-Jones, M. "Comparing Techniques by means of Encapsulation and

Connascence," Comm. ACM, 35(10), pp 147-151,1992, pp147-151

[44] Poulin, J. S. “Measuring Software Reusability,” Third International Conference on

Software Reuse, Nov. 1994.

[45] Rajaraman, C., and Lyu, M.R. "Some Coupling Measure for C++ programs," In

Procs. TOOLS USA '92, Prentice Hall, Englewood Cliffs, NJ, pp. 225-234, 1992.

[46] Reyes, M.L. “Assessing the reuse potential of objects,” Ph.D. Dissertation,

Computer Science Dept., Louisiana state university, 1998.

[47] Schneidewind, N.F. “Report on IEEE Standard Software Quality Metrics

Methodology,” Software Engineering Notes. Vol.18,no.3,pp.A-95 – A-98, July 1, 1993.

[48] Stevens, W.P., Myers, G..J., and Constantine, L.L. “Structured Design,” IBM Syst. J.,

13(2), pp115-139, 1974.

[49] Walsh, T.J. “A Software Reliability Study Using a Complexity Measure,” Procs. of

the 1979 Computer Conference, Montville, NJ: AFIPS Press, pp. 761-768, 1979.

[50] Withrow, C. “Error Density and Size in Ada Software”, IEEE Software, pp26-30,

Jan. 1990.

[51] Zuse, H. “Software Complexity: Measures and Methods,” Walter de Gruyter, Berlin,

1991.

131

APPENDIX A. Visualization of Software Evolution

Research on how a software system evolves over time is difficult and time

consuming. The enormous amount of work required by analyzing software evolution

makes it difficult without the dedicated tools such as JamTool. Automated environments

could be key factors in conducting a successful empirical study on software evolution.

Moreover, there are two major challenges that must be overcome in software

evolution research. These challenges limit our ability to understand the history of

software systems, thus prevent us from generalizing our observations into software

evolution theory. The first challenge is how to organize the enormous amount of

historical data in a way that allows us to access them quickly and easily. The second

challenge is how to analyze the structural changes of software systems.

To overcome these challenges, we use visualization technique in a form of table to

provide the overview of the evolution history. We observe the evolution history of real

world software system, JFreeChart. This system is investigated to demonstrate the

effectiveness of our approach as an example to demonstrate the use of various

functionalities of JamTool. We also introduce several ways to track and analyze the

software structural changes from past releases.

A.1 Evolution Track Table

In this section we present the global visualization of software evolution using an

132

evolution track table, which is created to visualize the evolution of a software system.

The evolution of classes of a software system can be visualized in an evolution

track table as shown in Figure A-1. This table visualizes each class’s lifecycle for a

software system in Microsoft Excel to achieve various data analysis, and it provides

effective ways to analyze the evolution of the system. Each column of the table represents

a version of the software, while each row represents a class name in each version. To

create the table, we collect and list all class names which are the member of the system at

least once, and display ‘1’ or ‘0’ depending on whether or not a class is a member of a

version of the system. In this way, the class name which lasts the longest in the evolution

appears first.

Characteristics of Evolution Track Table

 From an evolution track table, we are able to obtain the following information

regarding the evolution of a system.

• Size of the system

We can find out how many classes are involved in system evolution. The

summation of ‘1’s in each column is the number of classes existed in that particular

version of the system. For instance, there are 14 classes in versions 1 and 2 and a total of

25 classes are involved in the evolution in Figure A-1.

133

Figure A-1: Software evolution in an evolution track table

• Removed and added classes

The classes which have been removed or added in a certain version can be easily

Class Names

First Version Last Version

Removed

Classes

Added Classes

Persistent

Classes

 Versions

Added and

Persistent Classes

Number of

classes at each

version

Number of

versions a

class has

survived

134

detected. The difference between two subsequent versions tells us that if a class is

removed or added. If the number is changed from ‘1’ to ‘0’ between two consecutive

versions, a class is removed, and if the number is changed from ‘0’ to ‘1’, a new class is

added. For example, in Figure A-1, classes c4, c5, c6, and c7 are removed in version 12

and their absence will leave ‘0’ on the table from that version on. Classes, c15, c16, c17,

c18, and c19 are newly added to version 6. Therefore, in this example, a total of 13

classes are removed and a total of 11 new classes are added. By detecting the removed

and added classes, we see very easily when/how much the system is changed.

• Persistent classes

Persistent classes have the same lifetime as the whole system. They have stayed

from the beginning to the end. Those classes should be examined since they may be

important in performing key functions of the system as being a part of the original system

design. In Figure 5-8, three classes, c1, c2, and c3 are persistent classes.

• Added persistent classes

Some important added classes have stayed until the last version. They might be

created to upgrade or improve system as being a part of redesign of the system with some

problematic classes removed. In Figure A-1, six classes, c17, c18, c19, c20, c21, and c22

are added persistent classes.

A.2 Tracking Class Evolution

Understanding the evolution of an object-oriented system based on various

versions of source code requires analyzing a vast amount of data since an object-oriented

system has a complex structure consisting of classes, methods, attributes and different

135

kinds of relationships between them rather than simply a set of classes. Using an

evolution track table designed for this study, we provide an approach to understand such

an evolution by detecting and visualizing the evolution pattern that characterizes classes.

Evolution track table helps us understand an overall evolution of a system, discover

problematic parts with unusual measurement values, and visually get a quick

understanding of the analyzed history. Thus, in this case study we present the

visualization of the evolution track table, and explain how this table can be read, thus

how an object-oriented system has evolved into its current state based on the source code.

We use 22 versions of JFreeChart as a target system for this study since

JFreeChart is a long-term open source charting library with many releases.

Size of the System

From the evolution track table along with 22 versions of JFreeChart, we collect

the number of classes, the removed, and the added classes in each version as shown in

Table A-1.

Based on this information, we are able to find out how big the system is and how

many classes are involved in the system evolution. This system started with 139 classes

at version 0.9.0 and ended with 460 classes at version 0.9.21, which means a 333% class

growth.

 The number of classes increases gradually and consistently as new versions

evolve. A total of 569 classes are involved in the evolution. During the evolution, 123

classes are removed while 444 classes are added, which is 3.6 times more than the

removed. In most versions more classes are added than removed. Special attention can be

136

given to versions 0.9.3, 0.9.5, 0.9.9, and 0.9.17 since 68% (84 out of 123) of the removed

were removed and 60% (265 out of 444) of the added were added in those particular

versions.

 Table A-1: Number of classes, removed and added

Version of

JFreeChart

No. of

Removed

classes

No. of

Added

classes

Total no.

of

classes

0.9.0 139

0.9.1 1 0 138

0.9.2 0 6 144

0.9.3 0 113 257

0.9.4 3 21 275

0.9.5 22 74 327

0.9.6 0 2 329

0.9.7 1 25 353

0.9.8 0 3 356

0.9.9 43 48 361

0.9.10 11 2 352

0.9.11 0 13 365

0.9.12 5 17 377

0.9.13 0 6 383

0.9.14 3 15 395

0.9.15 0 9 404

0.9.16 2 10 412

0.9.17 19 30 423

0.9.18 1 10 432

0.9.19 9 24 447

0.9.20 0 1 448

0.9.21 3 15 460

Total 123 444

Persistent Classes

Persistent classes have survived through the entire life of a software system. They

can be easily detected by looking at ‘1’ at all versions and the total number of versions in

the last column. As shown in Figure A-2, they have ‘1’s for all versions and ‘22’ in the

137

last column, which is the number of versions of the target system from 0.9.0 to 0.9.21.

We found out that 84 out of the 138 classes in the first version have survived through the

entire life of the target system, which is about 61 % of the original design classes. From

this result, we see that 54 classes of the original were removed during the evolution.

Figure A-2: Persistent classes

Removed Classes

 From an evolution track table, we can find what classes are removed from

138

which version of the system. The removed classes can be detected by finding the

differences between two subsequent versions from ‘1’ to ‘0’ as shown in Figure A-3. In

this way, we found that many classes are removed during the evolution (See Table A-1).

In particular, 22, 43, and 19 classes were removed in versions 0.9.5, 0.9.9, and 0.9.17,

respectively. These data might imply that in those versions the system was aggressively

changed.

Figure A-3: Removed classes

139

Some classes, which were removed in previous version, reappear later, like

classes CategoryToolTipGenerator and StandardCategoryToolGenerator. They are

removed from the system in version 0.9.8, but came back in versions 0.9.18 and 0.9.19,

respectively. Classes StandardXYZToolTipGenerator and XYZToolTipGenerator were

removed in 0.9.16, came back in 0.9.19, and stayed until the last version of the system.

These kinds of interesting changes can be detected by the evolution track table

Added Classes

Figure A-4: Added classes

140

The added classes can be detected by finding the differences between two

subsequent versions from ‘0’ to ‘1’ as shown in Figure A-4. In this way, we find how

many classes were newly added into which version of the system during the evolution

(See Table 5-4). In the case of the target system, many classes were added at almost every

version. In particular, there were 113, 74, 48, and 30 classes added to 0.9.3, 0.9.5, 0.9.9,

and 0.9.17, respectively. Some classes like Pie3DPlot and HorizontalMarkerAxisBand

were removed after staying for several versions. From the results of the removed and

added classes, we found that this system had made huge changes in versions 0.9.3, 0.9.5,

0.9.9, and 0.9.17. These versions may need to be specifically investigated

Figure A-5: Added and persistent classes

141

Added Persistent Classes

 Many classes added in the middle of the evolution have stayed until the last

version of the system. We call them ‘added persistent classes’. Figure A-5 shows

examples of added persistent classes, and they were added in different versions when the

system was changed from one state to another. Table A-2 displays the number of added

persistent classes and their survival rate in each version. If we compare these with the

number of added classes, we find that a total of 444 classes were added to the system and

349 classes (81.35%: 349 out of 429) have survived till the last.

Table A-2: Number of added persistent classes

Version of

JFreeChart

No. of added

classes

No. of added

persistent classes

Survival rate

0.9.1 0 0

0.9.2 6 3 50%

0.9.3 113 89 78.76%

0.9.4 21 19 90.48%

0.9.5 74 61 82.43%

0.9.6 2 0 0%

0.9.7 25 23 92%

0.9.8 3 3 100%

0.9.9 48 35 72.92%

0.9.10 2 2 100%

0.9.11 13 10 76.92%

0.9.12 17 17 100%

0.9.13 6 6 100%

0.9.14 15 15 100%

0.9.15 9 9 100%

0.9.16 10 9 90%

0.9.17 30 24 80%

0.9.18 10 5 50%

0.9.19 24 19 79.17%

0.9.20 1 1 100%

0.9.21 15 -

Total 429 = 444-15 349 81.35%

142

This is certainly comparable to the persistent classes (61% survival rate of the

original design classes).

A.3 Summary

 From the evolution track table of JFreeChart, we summarize the following

findings:

o Started with 139 classes in version 0.9.0

o Ended with 460 classes (333% growth) in version 0.9.21

o 84 (60%) out of the 139 original classes have stayed until the last version

o 569 classes were involved in whole system evolution

o 123 classes were removed during the evolution

o 444 classes were added during the evolution

o 349 (81%) out of the 429 (444 added classes – number of classes in the last

version 0.9.21) added classes have stayed until the last version

o Big changes occurred in versions 0.9.3, 0.9.5, 0.9.9, and 0.9.17 in terms of

removed and added classes.

Based on the findings above, we conclude that the evolution track table can be

used in the following tasks:

o To categorize the evolution of classes

We found the groups of persistent, removed, added, and added persistent

classes from the evolution track table of JFreeChart. They characterize the

evolution pattern of the system

143

o To identify unusual evolution pattern of classes

We found that some classes had stayed unusually for only one, two, or

several versions. These dynamic classes need to be analyzed to understand

the architecture of the system.

