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Dissertation Abstract

Analysis of an Application where the Unscented Kalman Filter is Not

Appropriate

Abby Anderson

Doctor of Philosophy, December 18, 2009
(M.S., Auburn University, 2006)
(B.E.E., Auburn University, 2003)

241 Typed Pages

Directed by A. Scottedward Hodel and Robert Dean

In this work a spin stabilized rocket with a ring of lateral pulse jets for attitude correction

and fins that open early in flight is simulated. The rocket is simulated with five different sensor

packages: rate gyros only, rate gyros and an ideal magnetometer, rate gyros and a magnetometer,

rate gyros and angle gyros, and rate gyros and angle gyros and a magnetometer. The gyros are

microelectromechanical systems (MEMS) devices. All control effort must be applied in the first

seconds of flight because of the properties of the rocket. A comparison of the Extended Kalman

Filter (EKF) and the Unscented Kalman Filter (UKF) for each sensor suite is presented to determine

the best approach to improve the circular probable error (CEP) of the rocket. A solution to Wahba’s

problem, the EStimator of the Optimal Quaternion (ESOQ) algorithm, is used for state estimation

for certain sensor configurations. Wahba’s problem has traditionally been used for state estimation

of orbiting satellites.
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Chapter 1

Introduction

Increasing the accuracy of munitions while reducing cost is of key interest to the military. One

method is to use onboard guidance systems that can steer a missile to within meters or less of its

target. However, this approach is expensive. A less costly but less accurate alternative is the spin

stabilization approach. These systems lack closed-loop flight control and many of the sophisticated

sensors found in onboard guidance systems. The accuracy of spin stabilized rockets is affected by

many factors including motor misalignments, tip-off error, and wind.

One method to improve the accuracy of spin stabilized rockets is to include microelectrome-

chanical system (MEMS) sensors. MEMS sensors have the advantages of low cost since they are

batch producible using conventional IC technology and light weight. However, they are subject to

various errors including constant biases, walking biases, and additive noise.

In this work we compare state estimation techniques to improve the accuracy of a spin sta-

bilized rocket equipped with various sensor suites which include MEMS devices. We compare the

improvement in rocket accuracy when states are estimated by a Kalman Filter (KF), an Extended

Kalman Filter (EKF), and an Unscented Kalman Filter (UKF) for various sensor configurations.

We also use the EStimator of the Optimal Quaternion (ESOQ) algorithm, a solution to Wahba’s

problem, alone and in conjunction with the EKF and UKF to estimate states with certain sensor

suites. The first sensor configuration consists only of MEMS gyros to measure the rocket’s rota-

tional rates. The second sensor suite consists of MEMS gyros and an ideal sensor that measures

a known inertial frame vector in the body frame. The third sensor suite is comprised of MEMS

gyros and a tri-axial magnetometer. The next sensor suite consists of MEMS rate gyros and MEMS

gyros that directly measure rotational angles. The final sensor suite combines the rate gyros, angle

gyros, and magnetometer into one package.
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For this work we make several assumptions about the rocket. The rocket is launched from

a stationary ground launcher. A main thruster propels the rocket, and a ring of lateral thrusters

located at the rocket’s rear supply torque for control. Fins are located at the back of the rocket

that open shortly after launch. Due to aerodynamic forces, control of such a rocket is only feasible

during the first seconds of flight so state estimation is confined to that time interval.

In this dissertation we present previous work pertaining to improving munition accuracy, de-

velop system models for the various sensor suites, and present the results of state estimation. In

Chapter 2 we present several solutions to Wahba’s problem, a method of determining a vehicle’s

attitude using pairs of sensors such as accelerometers and magnetometers. Next, in Chapter 3 we

review concepts associated with navigation via magnetometers. In Chapter 4 we present methods

for controlling rockets with a focus on rockets with lateral jets. We develop the system equations

for our various rocket models in Chapter 5. We present the results of simulating the systems from

Chapter 5 in Chapter 6 and draw some conclusions.

In this work we make the following contributions:

∙ We estimate the states of a rocket that is controlled solely with a ring of lateral thrusters.

∙ We concentrate on estimation of a rocket’s states during the first seconds of flight. Other

work focuses on controlling munitions later in flight.

∙ We compare the effects that various sensor suites have on munition accuracy.

∙ We use a magnetometer to estimate the states of a rocket. Magnetometers are conventionally

used on satellites rather than rockets. Usually a satellite has a model of the magnetic field

of the body it is orbiting on board. A rocket, however, does not have a magnetic field model

available.

∙ We apply a solution of Wahba’s problem to estimate the states of a rocket. Wahba’s prob-

lem is traditionally applied to orbiting satellites since magnetic field and gravitational field

measurements can be found with magnetometers and accelerometers.
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∙ We compare the performances of various state estimators including the KF, EKF, UKF, and

ESOQ algorithm to estimate the states of a rotating rocket and present conclusions about

which estimator performs best.
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Chapter 2

Wahba’s Problem

Wahba’s problem is a minimization problem most often applied to find the attitude of space-

craft with a fixed attitude. Measurements are taken in the spacecraft’s body frame that give the

angles between known objects and the spacecraft. Often the known objects are stars and the sen-

sors are star trackers. The difference between the body frame measurements and known inertial

frame values are used to derive an attitude solution for the spacecraft. The relationship between

the body frame and the inertial frame is illustrated in Figure 2.1. The origin of the inertial frame

(with axes denoted by a subscript i) is located at the center of the earth while the origin of the

body frame (with axes denoted by a subscript b) is located at the center of gravity of the rocket.

Various algorithms have been developed based on Wahba’s cost function. While the cost function

as originally posed is for static systems, researchers have extended it for use with dynamic systems.

2.1 Problem Statement

Grace Wahba first presented what has become known as Wahba’s Problem in 1965 in SIAM Re-

view [1]. The problem is as follows: Given two vector sets {v1, v2, . . . ,vn} and {v∗
1, v

∗
2, . . . ,v

∗
n}

with n ≥ 2 entries, find the rotation matrix M (an orthogonal matrix with determinant +1) that

minimizes
n
∑

j=1

∥v∗
j −Mvj∥2.

In other words, find the rotation matrix M that minimizes the mean square error between the

two vector sets. A solution to this problem means that given at least two noncolinear, nonzero

measurements (such as magnetic field and gravitational acceleration) in the body frame of a moving

vehicle and known values of the measured quantities in a stationary reference frame (i.e. an inertial

reference frame), the attitude of the vehicle can be found via the rotation matrix M .
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Figure 2.1: Inertial and Body Reference Frames
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2.2 Problem Solutions

Various solutions to Wahba’s Problem were published in 1966 [2]. The solution given by Farrell

and Stuelpnagel, based on the polar decomposition, proceeds as follows. Let the column vectors

v1, . . . ,vn, v
∗
1, . . . ,v

∗
n have dimension k, and let V and V ∗ denote the two k×n matrices formed

from the two vector sets. Then the problem can be rewritten as

Q(M) =

n
∑

j=1

∥v∗
j −Mvj∥2 = tr((V ∗ −MV )T (V ∗ −MV )), (2.1)

where Q(M) is defined as the sum of squares to be minimized.

Proof. Let a k × n matrix A be defined as [a1 a2 . . . an] where aj are column vectors of length k.

Then

ATA =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

aT1

aT2
...

aTn

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

[

a1 a2 . . . an

]

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

aT1 a1 aT1 a2 . . . aT1 an

aT2 a1 aT2 a2 . . . aT2 an
...

...
...

...

aTna1 aTna2 . . . aTnan

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

tr{ATA} = aT1 a1 + aT2 a2 + . . . + aTnan =

n
∑

j=1

∥aj∥2

Expand expression (2.1) so that Q(M) becomes

Q(M) = tr((V ∗T − V TMT )(V ∗ −MV ))

= tr(V ∗TV ∗) + tr(V ∗TMV )− tr(V TMTV ∗) + tr(V TMTMV ).

Since M is orthogonal (i.e. MTM = MMT = I) and tr(ABC) = tr(CTBTAT ), Q(M) can be

written as

Q(M) = tr(V ∗TV ∗) + tr(V TV )− 2 tr(V TMTV ∗). (2.2)

6



Since only the last term of Equation (2.2) is dependent on M , Q(M) is minimized when F (M) =

tr(V TMTV ∗) is maximized. F (M) may be written as

F (M) = tr(MTV ∗V T )

because tr(ABC) = tr(BCA) = tr(CAB) when the matrices’ dimensions are conformable. By the

polar decomposition, V ∗V T can be written as UP where U is orthogonal (and unique if V ∗V T is

nonsingular) and P is symmetric and positive semidefinite. So

F (M) = tr(MTUP ).

Because P is a real symmetric matrix, it has a spectral decomposition P = NDNT where N is an

orthogonal matrix and D = diag(d1, . . . , dn) with di ≥ di+1. Defining X = NMTUNT results in

F (M) = tr(MTUNTDN) = tr(NMTUNTD) = tr(XD) =

k
∑

i=1

dixii.

F (M) attains its maximum value when the elements xii are all at their maximum value. Since

X is an orthogonal matrix, all of its elements lie between the values 1 and -1. This means the

diagonal elements are maximized when they are equal to 1, which means the F (M) is the identity

matrix.

Since M is a rotation matrix, its determinant is required to be 1. Thus the determinant of X

is

∣X∣ = ∣NMTUNT ∣ = ∣N ∣∣MT ∣∣U ∣∣NT ∣ = ∣N ∣2∣M ∣∣U ∣ = ∣U ∣.

If det(U) = 1, then X = I maximizes F (M). If det(U) = −1, then det(X) = −1, and a solution is

X =

⎡

⎢

⎣

Ik−1 0

0 −1

⎤

⎥

⎦
.
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Define X0 as the matrix which maximizes F (M) according to the determinant of U so that X0 =

NMT
0 UN

T . Then the rotation matrix that minimizes the sum of squares of Q(M) is

M0 = UNTXT
0 N.

The matrix is unique if V ∗V T is nonsingular.

Wessner offers another solution to Wahba’s problem [2]. Like Farrell and Stuelpnagel, Wessner

recasts the problem to maximize

F (M) = tr(MTV ∗V T ).

If V ∗V T is nonsingular, then V ∗V T has the polar decomposition

V ∗V T = A = UP.

Define U = (AT )−1(ATA)1/2 and P = (ATA)1/2 where (ATA)1/2 is the symmetric square root

of ATA with positive eigenvalues. From Farrell and Stuelpnagel, the optimal solution is Mo =

UNTXoN where N is orthogonal. Wessner assumes that the determinant of A is positive; thus,

Xo = I. Then Mo = UNTN = U , which results in

Mo = (AT )−1(ATA)1/2

= (V ∗V T )−1(V ∗V TV ∗V T )1/2

2.3 Davenport’s q-Method

Another method for the solution of Wahba’s problem is the q-method developed by Paul

Davenport in 1968 [3]. Davenport defines a rotation vector to solve the problem. We discuss the

q-method in two parts. We first present an overview of rotation vectors, followed by a discussion of

Wahba’s problem. Davenport often uses the notation X2 to represent XTX where X is a vector.

Thus, in Davenport’s notation, X2 is a scalar value not to be confused with the vector value X.

For simplicity, we use Davenport’s notation in this discussion.
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2.3.1 Rotation Vectors

A rotation of an angle 0 ≤ � ≤ � about a unit vector X =

[

x1 x2 x3

]

∈ ℝ
3 can be

represented as the 3× 3 matrix operator

Rx(�) = cos(�)

⎡

⎢

⎢

⎢

⎢

⎣

1 0 0

0 1 0

0 0 1

⎤

⎥

⎥

⎥

⎥

⎦

+ (1− cos(�))

⎡

⎢

⎢

⎢

⎢

⎣

x21 x1x2 x1x3

x1x2 x22 x2x3

x1x3 x2x3 x23

⎤

⎥

⎥

⎥

⎥

⎦

+ sin(�)

⎡

⎢

⎢

⎢

⎢

⎣

0 x3 −x2
−x3 0 x1

x2 −x1 0

⎤

⎥

⎥

⎥

⎥

⎦

(2.3)

and

R = (BT )−1B (2.4)

where

B =

⎡

⎢

⎢

⎢

⎢

⎣

1 x3 tan
(

�
2

)

−x2 tan
(

�
2

)

−x3 tan
(

�
2

)

1 x1 tan
(

�
2

)

x2 tan
(

�
2

)

−x1 tan
(

�
2

)

1

⎤

⎥

⎥

⎥

⎥

⎦

. (2.5)

In order to simplify notation, define

Y = tan

(

�

2

)

X and Z = sin

(

�

2

)

X

from which we obtain sin
(

�
2

)

=
√
Y 2√

1+Y 2
=

√
Z2, cos

(

�
2

)

= 1√
1+Y 2

=
√
1− Z2, sin(�) = 2

√
Y 2

1+Y 2 =

2
√

Z2(1− Z2), and cos(�) = 1−Y 2

1+Y 2 = 1− 2Z2. Hence Equation (2.3) can be rewritten as

R =
1

1 + Y 2

⎛

⎜

⎜

⎜

⎜

⎝

(1− Y 2)

⎡

⎢

⎢

⎢

⎢

⎣

1 0 0

0 1 0

0 0 1

⎤

⎥

⎥

⎥

⎥

⎦

+ 2

⎡

⎢

⎢

⎢

⎢

⎣

y21 y1y2 y1y3

y1y2 y22 y2y3

y1y3 y2y3 y22

⎤

⎥

⎥

⎥

⎥

⎦

+ 2

⎡

⎢

⎢

⎢

⎢

⎣

0 y3 −y2
−y3 0 y1

y2 −y1 0

⎤

⎥

⎥

⎥

⎥

⎦

⎞

⎟

⎟

⎟

⎟

⎠

(2.6)
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or

R = (1− 2Z2)

⎡

⎢

⎢

⎢

⎢

⎣

1 0 0

0 1 0

0 0 1

⎤

⎥

⎥

⎥

⎥

⎦

+ 2

⎡

⎢

⎢

⎢

⎢

⎣

z21 z1z2 z1z3

z1z2 z22 z2z3

z1z3 z2z3 z23

⎤

⎥

⎥

⎥

⎥

⎦

+ 2
√

1− Z2

⎡

⎢

⎢

⎢

⎢

⎣

0 z3 −z2
−z3 0 z1

z2 −z1 0

⎤

⎥

⎥

⎥

⎥

⎦

. (2.7)

Alternatively, B may be written in terms of the elements of the vector Y as

B =

⎡

⎢

⎢

⎢

⎢

⎣

1 y3 −y2
−y3 1 y1

y2 −y1 1

⎤

⎥

⎥

⎥

⎥

⎦

. (2.8)

Let R be a rotation matrix, and separate R into symmetric and skew symmetric parts

R =
1

2
(R+RT ) +

1

2
(R −RT ) (2.9)

where R+RT is symmetric and R−RT is skew symmetric. Then a comparison of Equation (2.9)

to Equation (2.7) yields nine conditions for the vector Z. Taking the trace � of Equation (2.7)

yields

� = 3− 4Z2 = 1 + 2 cos(�) (2.10)

and inspection of the skew symmetric portion of R yields

2
√

1− Z2Z =
1

2

⎡

⎢

⎢

⎢

⎢

⎣

r23 − r32

r31 − r13

r12 − r21

⎤

⎥

⎥

⎥

⎥

⎦

. (2.11)

Rearrange Equations (2.10) and (2.11) to obtain

Z2 =
3− �

4
and Z =

1

2
√
1 + �

⎡

⎢

⎢

⎢

⎢

⎣

r23 − r32

r31 − r13

r12 − r21

⎤

⎥

⎥

⎥

⎥

⎦

.
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We write Z2 in terms of � which results in

Z2 =
1

2
− 1

2
cos(�),

which means that Z2 ≤ 1. Thus, the mapping defined by Equation (2.7) is a mapping of three-

dimensional vectors over the field of real numbers whose Euclidean length is less than or equal to

one (denote this set of vectors by �) onto the group of rotation matrices. The mapping is one-to-one

except when Z2 = 1 (� = −1).

Since Y = Z
cos( �

2)
, Y = 1√

1−Z2
Z. Then using the same methods as above

Y =
1

1 + �

⎡

⎢

⎢

⎢

⎢

⎣

r23 − r32

r31 − r13

r12 − r21

⎤

⎥

⎥

⎥

⎥

⎦

.

Y is undefined when � = −1. To avoid this singularity, allow vectors of infinite magnitude whose

direction is given by a unit vector X. When � = −1, Equation (2.6) reduces to

R = −I + 2XXT . (2.12)

Let � denote the set of all real three-dimensional vectors augmented by the vectors of infinite

magnitude just discussed. Then Equations (2.6) and (2.12) define a mapping from � onto the group

of rotation matrices. Thus, either � or � may be used to parametrize the group of rotations. To

distinguish between the new type of vector and ordinary vectors, Davenport defines the rotation

vector: Given a set � of real three-dimensional vectors and a mapping � that maps � onto the group

of rotation matrices, then two elements of � are said to be equivalent if they map into the same

rotation matrix. Normal vector operations are applied to rotation vectors.

Rotation vectors can be combined to yield new rotation vectors. Given two rotation vectors Y1

and Y2, there are two associated rotation matrices R1 and R2. Then R = R2R1 is also a rotation
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matrix, and there exists an associated rotation vector Y . This vector Y is given by

Y =
1

1− Y1Y2
(Y1 + Y2 + Y1 × Y2) . (2.13)

Similarly, for the two rotation vectors Z1 and Z2 which define rotations R1 and R2, there exists a

Z that gives R = R2R2. Z is defined by

Z = sgn

(

√

1− Z2
1

√

1− Z2
2 − Z1 ⋅ Z2

)

Z0 (2.14a)

Z0 =
√

1− Z2
2Z1 +

√

1− Z2
1Z2 + Z1 × Z2. (2.14b)

This leads to the definition of Davenport’s rotation product: Let � be a set of vectors, let ∗ be a

binary operation on �, and let � be a mapping of � onto the group of rotation matrices. Then ∗ is

said to be a rotation product if it is preserved by � , i.e. if �(V ∗W ) = �(V )�(W ) for every V and

W in �.

Davenport also develops other useful relationships between rotation matrices, vectors, and

rotation vectors. Assume a vector V is rotated by R to yield V ′ = RV . If Y and Z are the rotation

vectors defining R, then V ′ is

V ′ = Y V

=
1

1 + Y 2
[(1 − Y 2)V + 2(V ⋅ Y )Y + 2V × Y ], Y 2 <∞ (2.15a)

= −V + 2(V ⋅X)X, Y 2 = ∞ (2.15b)

V ′ = ZV = (1− 2Z2)V + 2(V ⋅ Z)Z + 2
√

1− Z2V × Z. (2.16)

To determine R from V ′ and V where V ′ = RV

Y =
1

1 + V ⋅ V ′V
′ × V, V ⋅ V ′ ∕= −1 (2.17)

Z =
1

√

2(1 + V ⋅ V ′)
V ′ × V, V ⋅ V ′ ∕= −1 (2.18)
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If V ⋅ V ′ = −1, then Z is any vector satisfying the two conditions Z2 = 1 and Z ⋅ V = 0 and Y has

infinite magnitude with direction defined by Z.

2.3.2 q-Method

Davenport poses Wahba’s problem in the following manner

�(R) =

n
∑

i=1

(Wi −RVi)
2

=
n
∑

i=1

[W 2
i + V 2

i − 2Wi ⋅ (RVi)]

where Vi is a vector in the inertial frame and Wi is a vector in the body frame. Recasting the

problem in terms of the rotation vector Y results in

�(Y ) =

n
∑

i=1

(V 2
i +W 2

i − 2

1 + Y 2
[(1 − Y 2)Vi ⋅Wi + 2(Vi ⋅ Y )(Wi ⋅ Y )

+ 2(Wi × Vi) ⋅ Y ]), Y 2 <∞ (2.19a)

=
n
∑

i=1

(

V 2
i +W 2

i − 2[−Vi ⋅Wi + 2(Vi ⋅X)(Wi ⋅X)]
)

, Y 2 = ∞ (2.19b)

where X2 = 1. Take the derivative of Equation (2.19a) with respect to yj, where j refers to the

jtℎ component of a vector, to obtain

∂�

∂yj
=

−4

(1 + Y 2)2

n
∑

i=1

(2[(Vi ×Wi) ⋅ Y − (Vi ⋅ Y )(Wi ⋅ Y )− ViWi]yj

+ (1 + Y 2)[(Vi ⋅ Y )wij + (Wi ⋅ Y )vij − (Vi ×Wi)j ]).

Thus, for � to have a minimum, we must have

2

n
∑

i=1

[(Wi×Vi)⋅Y +(Vi ⋅Y )(Wi ⋅Y )+Vi ⋅Wi]Y = (1+Y 2)

n
∑

i=0

[(Vi ⋅Y )Wi+(Wi ⋅Y )Vi+Wi×Vi]. (2.20)
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Take the dot product with Y of both sides and rearrange terms, which results in

2

n
∑

i=1

(Vi ⋅ Y )(Wi ⋅ Y ) =

n
∑

i=1

[(Wi × Vi) ⋅ Y + 2Vi ⋅Wi]Y −
n
∑

i=1

(Wi × Vi) ⋅ Y (2.21)

Substituting Equation (2.21) into Equation (2.19a) results in the expression

�(R) =

n
∑

i=1

(V 2
i +W 2

i − 2Vi ⋅Wi)− 2Y ⋅
n
∑

i=1

Wi × Vi

which implies that � is minimized when 2Y ⋅∑n
i=1Wi × Vi is maximized. Substituting Equation

(2.21) into Equation (2.20) yields

n
∑

i=1

([(Wi × Vi) ⋅ Y + 2Vi ⋅Wi]Y − [(Vi ⋅ Y )Wi + (Wi ⋅ Y )Vi +Wi × Vi]) = 0

which can be written as

(ATY I +B)Y = A (2.22)

where I is identity, A is the vector
∑n

i=1Wi × Vi, and B is a symmetric matrix with elements

bjk = −
n
∑

i=1

(vijwik + vikwij), j ∕= k (2.23)

bjj = 2

n
∑

i=1

(Vi ⋅Wi − vijwij). (2.24)

If A = 0, then Y = 0 is the desired solution. For A ∕= 0, multiply each side of Equation (2.22)

by the adjoint of (ATY I +B) to yield

det(ATY I +B)Y = adj(ATY I +B)A.

Then multiply the result by AT to get

det(ATY I +B)ATY = AT adj(ATY I +B)A.
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Define the scalar AT = �, det(�I +B) = f(�), and AT adj(�I +B)A = g(�). Then

ℎ(�) = �f(�)− g(�) = 0.

The maximum value of Y ⋅∑n
i=1(Wi × Vi) (which minimizes �(Y )) is the largest zero of ℎ(�), �0,

where ℎ(�) is a fourth-degree polynomial in � and −f(�) is the characteristic polynomial of B.

Since �(Y ) is a nonnegative function,

�0 ≤
1

2

n
∑

i=1

(Vi −Wi)
2,

which gives an upper bound on �0.

Since B is symmetric, an orthogonal matrix P exists such that P−1BP is diagonal. Let Y ′

and U be vectors such that Y = PY ′ and A = PU . Then

((UTY ′)I +B)PY ′ = PU.

Multiply both sides by P−1 to get

((UTY ′)I +D)Y ′ = U

where D is a diagonal matrix with the eigenvalues of B arranged in increasing order (�1 ≤ �2 ≤ �3)

as its entries. Multiply by adj((UTY ′)I +D) and then by UT to get

det(UTY ′I +D)UTY ′ = UT adj(UTY ′I +D)U.

Since UTY ′ = ATY = � and D is diagonal,

�(�+ �1)(�+ �2)(�+ �3) = u21(�+ �2)(�+ �3) + u22(�+ �1)(�+ �3) + u23(�+ �1)(�+ �2).
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Some analysis on this equation yields a lower bound for �0:

�0 ≥ −�1

A numerical algorithm can then be used to find �0.

Since the above analysis is derived from Equation (2.19a), the solution is only valid for rotations

of less than 180∘. To obtain the minimum among all 180∘ rotations, a Lagrange multiplier term is

added to the derivative of Equation (2.19b) with respect to xj , which yields

−4

n
∑

i=1

(Vi ⋅X)wij + (Wi ⋅X)vij + 2�xj = 0, j = 1, 2, 3.

Writing the above equation in terms of a single vector equation results in

((

�

2
− 2

n
∑

i=1

Vi ⋅Wi

)

I +B

)

X = 0 (2.25)

where the matrix B is as defined in Equations (2.23)-(2.24). The roots of Equation (2.25) are

�k
2

− 2
n
∑

i=1

Vi ⋅Wi = �k, k = 1, 2, 3

where the �k’s are the eigenvalues of B. The condition equations then become

(B − �kI)X = 0, X2 = 1,

and the solutions are the unit eigenvectors of B. Then the solution �(R) for rotations of 180∘ is

�(R) =
n
∑

i=1

(Vi −Wi)
2 + 2�k

and

�(R) =
n
∑

i=1

(Vi −Wi)
2 − 2�0
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for rotations other than 180∘. Thus, the rotation minimizing �(R) is

Y = (�0I +B)−1A

when f(�0) ∕= 0 or

(�0I +B)X = 0 and X2 = 1

when f(�0) = 0, where �0 is the largest zero of ℎ(�).

For the case where f(�0) is near zero, a near-singular matrix occurs. This can be avoided by

using the Z vector representation. This is given by

Z =
sgn(f(�0))

√

f2(�0) +AT (adj(�0I +B))2A
adj(�0I +B)A

when f(�0) ∕= 0 and

(�0I +B)Z = 0 and Z2 = 1

when f(�0) = 0 where

adj(�I +B) = �2I + �(tr(B)I −B) + adj(B)

f(�) = �3 + tr(B)�2 + tr(adj(B))�+ det(B)

g(�) = AT adj(�I +B)A.

For the case where n = 2, V 2
1 = V 2

2 , and W 2
1 = W 2

2 , the least squares solution is found as

follows. Define

U1 =
V1 − V2
∣V1 − V2∣

U ′
1 =

W1 −W2

∣W1 −W2∣

U2 =
V1 + V2
∣V1 + V2∣

U ′
2 =

W1 +W2

∣W1 +W2∣
,

17



and use the rotation vector techniques to obtain the rotation that maps Ui to U
′
i to yield the least

squares solution.

A concise summary of Davenport’s q-method is given in [4]. Wahba’s problem is presented as

J(A) =
n
∑

i=1

wi∥ûiB −AûiR∥2

where wi is the weight of the ith vector measurement, ûiB are inertial frame vectors, ûiR are the

corresponding vectors in the body frame, and A is a rotation matrix. The cost function may also

be written as

J(A) = −2
n
∑

i=1

WiAVi + constant terms

where the unnormalized vectors Wi and Vi are defined as

Wi =
√
wiû

i
B Vi =

√
wiû

i
R.

The loss function is a minimum when

J ′(A) =
n
∑

i=1

WiAVi = tr(W TAV )

W =

[

W1 W2 . . . Wn

]

V =

[

V1 V2 . . . Vn

]

and is maximized.

To find the attitude matrix A, write A in terms of the quaternion q

A(q) = (q24 − q ⋅ q)I + 2qqT − 2q4Q
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where

q =

⎡

⎢

⎣

q

q4

⎤

⎥

⎦

Q =

⎡

⎢

⎢

⎢

⎢

⎣

0 −q3 q2

q3 0 −q1
−q2 q1 0

⎤

⎥

⎥

⎥

⎥

⎦

.

Substitute A(q) into the cost function to yield

J ′(q) = qTKq (2.26)

where

K =

⎡

⎢

⎣

S − I� Z

ZT �

⎤

⎥

⎦

B =WV T

S = BT +B

Z =

[

B23 −B32 B31 −B13 B12 −B21

]T

� = tr(B).

The extrema of J ′, subject to the constraint qT q = 1, can be found using Lagrange multipliers.

Define

g(q) = qTKq − �qT q

where � is the Lagrange multiplier. Differentiating the equation with respect to qT and setting the

result equal to zero results in

Kq = �q. (2.27)
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Thus, the quaternion that gives the optimal attitude is an eigenvector of K. Substitute Equation

(2.27) into Equation (2.26) to get

J ′(q) = qTKq = qT�q = �.

Thus, J ′ is maximized when the eigenvector corresponding to the largest eigenvalue is chosen.

2.4 QUEST Algorithm

The quaternion estimation (QUEST) algorithm is a method to solve Wahba’s problem. The

algorithm is a single-point algorithm so attitude estimates are based solely on current measurements.

The following is a summary of the QUEST algorithm as presented in [5].

Wahba’s problem can be posed in terms of quaternions as

J(q) =
1

2

k
∑

i=1

ai∥bi −A(q)ri∥2 (2.28)

where bi are measured body frame unit vectors, ri are the corresponding vectors in the inertial

frame, and ai are positive weights. The goal is to find the quaternion q that minimizes the cost

function J . The minimization of Equation (2.28) can be written as the maximization of the cost

function g(q)

g(q) = 1− J(q)/

(

1

2

k
∑

i=1

ai

)

,

which can be written as

g(q) = qTKq. (2.29)

The matrix K is formed as follows. Define

mk =
k
∑

i

ai (2.30a)

� =
1

mk

k
∑

i=1

aib
T
i ri (2.30b)
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B =
1

mk

k
∑

i=1

aibir
T
i (2.30c)

S = B +BT (2.30d)

z =
1

mk

k
∑

i=1

ai(bi × ri) (2.30e)

K =

⎡

⎢

⎣

S − �I z

zT �

⎤

⎥

⎦
. (2.30f )

The optimal unit quaternion q∗ that maximizes g(q) satisfies

Kq∗ = �q∗

where � is a Lagrange multiplier. Then � is an eigenvalue of K and q∗ is an eigenvector. Thus,

g(q∗) = �. Because it is desired to maximize g, choose � = �MAX , the largest eigenvalue of K,

and q∗ as the corresponding eigenvector. Rodrigues parameters (or Gibbs vector) can be used to

calculate the eigenvector:

y∗ = [(�MAX + �)I − S]−1z (2.31a)

q∗ =
1

√

1 + ∣y∗∣2

⎡

⎢

⎣

y∗

1

⎤

⎥

⎦
. (2.31b)

The maximum eigenvalue is exactly one when error free measurements are used; otherwise the

eigenvalue is close to one.

2.5 Kalman Filter Type Approach

In [6] and [7] Shuster develops the basis to cast the QUEST algorithm as a Kalman filter-

type problem. In [6] it is shown that Wahba’s problem can be equivalent to maximum likelihood

estimation through the appropriate choice of weights. In [7] Shuster extends the results of [6] to
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form a filter QUEST algorithm that is comparable to a Kalman filter. [6] is summarized in §2.5.1

and [7] in §2.5.2.

2.5.1 Wahba’s Problem as Maximum Likelihood Estimation

Wahba’s loss function can be written as

L(A) =
1

2

n
∑

k=1

ak∥Ŵk −AV̂k∥2

where Ŵk are body-fixed unit vectors and V̂k are the same unit vectors in an inertial frame. Assume

Ŵk is the measurement provided by sensor k and take the unit vector measurement to have the

probability density

�Ŵk
(Ŵ ′

k, A) = Nk exp

(

− 1

2�2k
∣Ŵ ′

k −AV̂k∣2
)

(2.32)

which is defined over the unit sphere

∣Ŵ ′
k∣ = 1. (2.33)

Ŵ ′
k is the value of the random variable Ŵk which satisfies Equation (2.33), and Nk is chosen to

ensure that the probability density function is valid:

N−1
k =

∫ 2�

0

∫ �

0
exp

(

− 1

2�2k
(1− cos(�))

)

sin(�)d�d�

Nk = [2��2k(1− e−2/�2
k)]−1. (2.34)

The probability density function is about the direction AV̂k and can be approximated by a

tangent plane

Wk = AV̂k +ΔWk, ΔWk ⋅AV̂k = 0.

The sensor error ΔŴk is approximately Gaussian with

E[ΔWk] = 0, E[ΔWkΔW
T
k ] = �2k[I − (AV̂k)(AV̂k)

T ]
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It can be shown that for Ŵk

E[ΔŴk] = −�2k�kAV̂k

E[ΔŴkΔŴk] = �2k[I − (3− 2�k)(AV̂k)(AV̂k)
T ]

�2k =
1

2
E[∣Ŵk × (AV̂k)∣2]

�k =
1

�2k
E[1− Ŵk ⋅AV̂k].

which means that

�2k = �2k − �4k +O(e−2/�2
k)

�k =
1

1− �2k
+O(e−2/�2

k ).

Define Z ′
k as a sequence of measurements and �z1,...,zn(Z

′
1, . . . Z

′
n, x) as a joint probability

distribution where x is a parameter vector. Then for the model given by Equation (2.32)

�z1,...,zn(Z
′
1, . . . , Z

′
n, A) =

n
∏

k=1

1

2��2kfk
exp(−∥Ŵk −AV̂k∥2/2�2k)

fk = 1− e−2/�2
k .

Define the negative-log-likelihood function as

J(x) = − log
(

�z1,...,zn(Z
′
1, . . . , Z

′
n, x)

)

so that

J(A) =

n
∑

k=1

(

1

2�2k
∥Ŵ ′

k −AV̂k∥2 + log �2k + log 2� + log fk

)

. (2.35)

Allowing ak =
1
�2
k

, the negative-log-likelihood function becomes equivalent to the Wahba loss func-

tion.
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The QUEST algorithm gives an estimate of attitude. To get an estimate of the error covariance

matrix, the Fisher information matrix is used. The Fisher information matrix for x is defined by

Fxx = E

[

∂2

∂x∂xT
J(x)

]

xtrue

.

As more data is gathered, the Fisher information matrix approaches the inverse of the error covari-

ance matrix

lim
n→∞

Fxx = P−1
xx .

The Fisher information matrix is not defined in terms of the quaternion, but rather in terms of

incremental error angles � for which

A = e[[�]]Atrue

where the notation [[x]] denotes the matrix

[[x]] =

⎡

⎢

⎢

⎢

⎢

⎣

0 x3 −x2
−x3 0 −x1
x2 −x1 0

⎤

⎥

⎥

⎥

⎥

⎦

for some vector x. Then

J(�) = �
(0)
MAX − tr(e[[�]]AtrueB

T )

which leads to

F�� = tr(AtrueB
T
true)I −AtrueB

T
true

=
n
∑

k=1

1

�2k
(I − (Ŵk)true(Ŵ

T
k )true)

where

(Ŵk)true = AtrueV̂k.
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Evaluated at the maximum likelihood estimate of the attitude, F�� is approximated as

F�� ≈ tr(A∗′
MLB

′T )I −A∗′
MLB

′T .

Then

B′ =

[

1

2
tr(F��)I − F��

]

A∗′
ML.

2.5.2 Filter QUEST Algorithm

The attitude estimate A∗
k based on the first k estimates and the error covariance matrix Pk∣k

are determined by

Bk =

k
∑

l=1

alŴlV̂
T
l .

For the reasons presented in §2.5.1 Shuster chooses al = 1/�2l . Thus,

Bk = Bk−1 +
1

�2k
ŴkV̂

T
k . (2.36)

When Ak is constant, Equation (2.36) is the filter.

For dynamic systems

d

dt
= [[!(t)]]A(t).

Let A(tk) satisfy Ak+1 = �kAk with known �k. Define

d

dt
Ŵk(t) = [[!(t)]]Ŵk(t)

with boundary condition Ŵk(t) = Ŵk where Ŵk is the time tk measurement. So

Ŵl(tk+1) = �kŴl(tk).

Then Bk at time tk is

Bk =

k
∑

l=1

1

�2l
�k−1�k−2 . . . �lŴlV̂

T
l
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which satisfies

Bk = �k−1Bk−1 +
1

�2k
ŴkV̂

T
k .

Define

Bk∣k−1 = B(tk) given Ŵ1, . . . , Ŵk−1

=
k−1
∑

l=1

1

�2l
Ŵl(tk)V̂

T
l

Bk∣k = B(tk) given Ŵ1, . . . , Ŵk

=

k
∑

l=1

1

�2l
Ŵl(tk)V̂

T
l .

Then the filter QUEST algorithm is

Bk∣k = �k−1Bk−1∣k−1 (2.37a)

= Bk∣k−1 +
1

�2k
ŴkV̂

T
k . (2.37b)

Information from the previous attitude A∗
0∣0 and corresponding estimate error covariance matrix

P0∣0 can be included

B0∣0 =

[

1

2
tr(P−1

0∣0 )I − P−1
0∣0

]

A∗
0∣0. (2.38)

Otherwise, if no a priori information is available

B0∣0 = 0. (2.39)

Direct incorporation of process noise into the QUEST algorithm problem statement results in

prohibitively expensive computational costs in the resulting algorithm. An alternative approach is
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to use a fading memory approximation. With this method the filter QUEST formulation becomes

B0∣0 =

[

1

2
tr(P−1

0∣0 )I − P−1
0∣0

]

A∗
0∣0 or 0 (2.40)

Bk+1∣k = ��kBk∣k (2.41)

Bk∣k = Bk∣k−1 +
1

�2k
ŴkV̂

T
k . (2.42)

For � = 1 the usual QUEST algorithm results and for � = 0 only the current measurements

contribute to the estimate. Notice that unlike a traditional Kalman filter, the QUEST algorithm

computes only attitude. It does not include estimates of biases or misalignments.

2.6 REQUEST Algorithm

The REQUEST (recursive quaternion estimation) algorithm, developed by Bar-Itzhack [5], is

a recursive version of the QUEST algorithm. Rather than updating the attitude profile matrix B

as Shuster does in the filter QUEST algorithm [7], the REQUEST algorithm recursively updates

the QUEST algorithm’s K matrix. An algorithm is developed for both the time-invariant case and

time-varying case.

2.6.1 Time-Invariant REQUEST

For the time-invariant case, the vehicle’s body frame axes are assumed to be nonrotating with

respect to the reference axes. The algorithm begins by first processing k sets of vectors with the

QUEST algorithm. Let Kk denote the K matrix computed by the QUEST algorithm. It is desired

to update K with j new pairs of vectors. Then define bi as measured body frame unit vectors, ri
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as the corresponding vectors in the inertial frame, and ai as positive weights, and let

�mk+j =

k+j
∑

i=k+1

ai (2.43a)

��k+j =

k+j
∑

i=k+1

aib
T
i ri (2.43b)

�Bk+j =

k+j
∑

i=k+1

aibir
T
i (2.43c)

�Sk+j = �Bk+j + �BT
k+j (2.43d)

�zk+j =

k+j
∑

i=k+1

ai(bi × ri) (2.43e)

�Kk+j =

⎡

⎢

⎣

�Sk+j − ��k+jI �zk+j

�zTk+j ��k+j

⎤

⎥

⎦
. (2.43f )

Then the new algorithm is

mk+j = mk + �mk+j (2.44a)

Kk+j = (mk/mk+j)Kk + (1/mk+j)�Kk+j . (2.44b)

The maximum eigenvalue of Kk+j is then calculated, and Equations (2.31a)-(2.31b) are used to

find the optimal attitude quaternion.

2.6.2 Time-Varying REQUEST

In the time-varying case, the body frame has rotation with respect to the reference frame.

Bar-Itzhack develops the REQUEST algorithm [5] both for the case of error-free measurements

(i.e. no process noise) and for the case of noisy measurements.

28



Error-Free Propagation

Assume that at time tn, k pairs of vectors bi and ri are processed using the QUEST algorithm.

Immediately afterward, the body frame axes rotate to a new orientation and at time tn+1 j new

vector measurements are taken. It is desired to find the attitude quaternion estimate q∗n+1∣n at time

tn+1 based on the first k measurements. Then the cost function g(q) = qTKq can be written as

g(qn∣n) = qTn∣nKn∣nqn∣n.

The dynamics of a rotation are described by the differential equation

q̇ =
1

2
Ωq (2.45)

where Ω is a skew symmetric matrix of angular velocities

Ω =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 !z −!y !x

−!z 0 !x !y

!y −!x 0 !z

−!x −!y −!z 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Then

q(tn+1) = Φ(tn+1, tn)q(tn)

where Φ(tn+1, tn) is the state transition matrix. Set q(tn) = qn∣n, where qn∣n is the quaternion to

be transformed from time tn to time tn+1, and q(tn+1) = qn+1∣n where qn+1∣n is the transformed

quaternion qn∣n to get

qn+1∣n = Φqn∣n.

Because Ω is skew symmetric, Φ is orthogonal so

qn∣n = ΦT qn+1∣n.
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Then

g(qn∣n) = g′(qn+1∣n) = qTn+1∣nΦKn∣nΦ
T qn+1∣n.

Thus, the problem has been transformed into finding the quaternion estimate qn+1∣n that

maximizes g′. Let

Kn+1∣n = ΦKn∣nΦ
T .

Since Kn+1∣n is obtained through a similarity transform, it has the same eigenvalues as Kn∣n. Then

g′(qn+1∣n) = qTn+1∣nKn+1∣nqn+1∣n.

Adding the constraint that ∣qn+1∣n∣2 = 1 by using the Lagrange multiplier �n+1∣n, q
∗
n+1∣n satisfies

the equation

Kn+1∣nq
∗
n+1∣n = �n+1∣nq

∗
n+1∣n

and is the eigenvector of Kn∣n that corresponds to the largest eigenvalue. So the algorithm becomes

Kn+1∣n = ΦKn∣nΦ
T (2.46a)

Kn+1∣n+1 = (mn/mn+1)Kn+1∣n + (1/mn+1)�Kn+1 (2.46b)

where mn = mk and mn+1 and �Kn+1 are calculated using Equations (2.44a) and (2.43f), respec-

tively.

Noisy Propagation

For the case of noiseless propagation, it is assumed that the rotation rates ! are known perfectly.

That is, there is no process noise, only noise from the sensors. With noisy propagation, the measured

angular rate can be described as

!m = ! + �

where � is the error component. Bar-Itzhack assumes that the gyros are of good quality with

slowly varying biases. To handle noisy measurements, two different possible modifications to the
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REQUEST algorithm are proposed:

Kn+1∣n+1 = �n(mn/mn+1)(Kn+1∣n + 1/mn+1)�Kn+1

and

Kn+1∣n+1 =
�nmn

pnmn + �mn+1
Kn+1∣n +

1

�nmn + �mn+1
�Kn+1

where 0 < �n ≤ 1 is a forgetting factor to determine how much weight is placed on past measure-

ments.

2.7 Extended QUEST Algorithm

The QUEST algorithm and the previously presented algorithms based on QUEST have the

disadvantage of being unable to estimate anything other than attitude. Other dynamic states -

for example, gyro bias - cannot be estimated. In [8] Psiaki presents an extension of the QUEST

algorithm called Extended QUEST that attempts to overcome these limitations.

Yet another way to write Wahba’s loss function as given by Equation (2.28) is

JQUEST [A(q)] =
m
∑

i=1

1

�2i
+

1

2
qTHmeasq (2.47a)

where the symmetric Hessian matrix Hmeas is given by

Hmeas =

m
∑

i=1

2

�2i

⎡

⎢

⎣

[I(bTi ri)− rib
T
i − bir

T
i ] −(bi × ri)

−(bi × ri)
T −bTi ri

⎤

⎥

⎦
(2.47b)

and ri is a set of known unit vectors in the inertial frame, bi is the set ri measured in the body

frame, q is the quaternion that rotates from the inertial frame to the body frame, and �i are

weights. Differentiating Equation (2.47a) with respect to q and adding the constraint qT q = 1 with

a Lagrange multiplier � results in

(Hmeas + �I)q = 0 or Hmeasq = −�q.
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q is both a quaternion and a normalized eigenvector of Hmeas, and −� is the corresponding eigen-

value. The optimal solution to the problem occurs when q corresponds to the most negative −�.

The extended QUEST filter solves a more general quadratic function of the form

min
q J(q) =

1

2
qTHq + gT q (2.48a)

subject to qT q = 1 (2.48b)

where H is the cost function’s Hessian matrix and g is the cost function’s gradient vector at q = 0.

Solving the problem results in

J ′(q) =
1

2
qTHq + gT q +

1

2
�qT q

∂J ′(q)
∂q

= 0 = Hq + g + �Iq

0 = (H + �I)q + g.

Solving for q results in q = −(H + �I)−1g, which can be substituted into Equation (2.48b) to yield

gT (H + �I)−2g = 1. (2.49)

Multiplying both sides of Equation (2.49) by (det(H + �I))2 results in an eighth-order polynomial

in � from which the optimal (largest) � can be found using numerical algorithms.

The problem statement for the extended QUEST algorithm is then

min
q(k),x(k)J =

1

2

m(k)
∑

i=1

1

�2i (k)
{bi(k)−A[q(k)]ri(k)}T {bi(k)−A[q(k)]ri(k)}

+
1

2
[Rww(k − 1)w(k − 1)]T [Rww(k − 1)w(k − 1)]

+
1

2
{Rqq(k − 1)[q(k − 1)− q̂(k − 1)]}T {Rqq(k − 1)[q(k − 1)− q̂(k − 1)]}

+
1

2
{Rxq(k − 1)[q(k − 1)− q̂(k − 1)] +Rxx(k − 1)[x(k − 1)− x̂(k − 1)]}T

× {Rxq(k − 1)[q(k − 1)− q̂(k − 1)]

+ Rxx(k − 1)[x(k − 1)− x̂(k − 1)]} (2.50a)
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subject to

q(k) = Φ[t(k), t(k − 1); q(k − 1),x(k − 1),w(k − 1)]q(k − 1) (2.50b)

x(k) = fx[t(k), t(k − 1); q(k − 1),x(k − 1),w(k − 1)] (2.50c)

qT (k)q(k) = 1 (2.50d)

where q is the attitude quaternion, x is the vector of filter states, and w is the process noise vector.

The vectors q̂(k− 1) and x̂(k− 1) are the a posteriori estimates of q and x at sample time t(k− 1).

The matrices Rww(k−1), Rqq(k−1), Rxq(k−1), and Rxx(k−1) are penalizing weights. Equations

(2.50b) and (2.50c) are the filter’s dynamic model. Φ is the state transition matrix associated with

the quaternion’s kinematic differential equation given by Equation (2.45).

The first of the two parts of the extended QUEST algorithm is the propagation step. This

step begins with obtaining a priori estimates of q(k) and x(k)

q̃(k) = Φ[t(k), t(k − 1); q̂(k − 1), x̂(k − 1), 0]q̂(k − 1) (2.51)

x̃(k) = fx[t(k), t(k − 1); q̂(k − 1), x̂(k − 1), 0]. (2.52)

The next step in part one is to develop a linearized dynamic model from Equations (2.51)-(2.52)

⎡

⎢

⎣

Δq(k)

Δx(k)

⎤

⎥

⎦
=

⎡

⎢

⎣

Φqq(k − 1) Φqx(k − 1)

Φxq(k − 1) Φxx(k − 1)

⎤

⎥

⎦

⎡

⎢

⎣

Δq(k − 1)

Δx(k − 1)

⎤

⎥

⎦
+

⎡

⎢

⎣

Γq(k − 1)

Γx(k − 1)

⎤

⎥

⎦
w(k − 1)

where

Δq(k) = q(k)− q̃(k)

Δx(k) = x(k)− x̃(k)

Δq(k − 1) = q(k − 1)− q̂(k − 1)

Δx(k − 1) = x(k − 1)− x̂(k − 1)
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Φqq(k − 1) = Φ +

[

∂Φ

∂q

]

q̂(k − 1)

Φqx(k − 1) =

[

∂Φ

∂x

]

q̂(k − 1)

Γq(k − 1) =

[

∂Φ

∂w

]

q̂(k − 1)

Φxq(k − 1) =
∂fx
∂q

Φxx =
∂fx
∂x

Γx(k − 1) =
∂fx
∂w

with all partial fractions evaluated at [q(k−1),x(k−1),w(k−1)] = [q̂(k−1), x̂(k−1), 0]. Δq(k−1)

and Δq(k) are not quaternions. The final propagation step is to form an information matrix and

left QR-factorize

Q

⎡

⎢

⎢

⎢

⎢

⎣

R̃qq(k) 0 0

R̃xq(k) R̃xx(k) 0

R̃wq(k) R̃wk(k) R̃ww(k − 1)

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎣

R1 R2 R3

0 0 Rww(k − 1)

⎤

⎥

⎦

where

R1 =

⎡

⎢

⎣

Rqq(k − 1) 0

Rxq(k − 1) Rxx(k − 1)

⎤

⎥

⎦

R2 =

⎡

⎢

⎣

Φqq(k − 1) Φqx(k − 1)

Φxq(k − 1) Φxx(k − 1)

⎤

⎥

⎦

−1

R3 =

⎡

⎢

⎣

I 0 −Γq(k − 1)

0 I −Γx(k − 1)

⎤

⎥

⎦
.
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The matrices R̃qq(k), R̃xx(k), and R̃ww(k−1) are square, and R̃xx(k) and R̃ww(k−1) are nonsingular.

The propagation step results in the modified cost function

J =
1

2

m(k)
∑

i=1

1

�2i(k)
{bi(k)−A[q(k)]ri(k)}T {bi(k)−A[q(k)]ri(k)}

+
1

2
{R̃qq(k)[q(k) − q̃(k)]}T {R̃qq(k)[q(k) − q̃(k)]}

⋅ 1

2
{R̃xq(k)[q(k) − q̃(k)] + R̃xx(k)[x(k) − x̃(k)]}T

× {R̃xq(k)[q(k) − q̃(k)] + R̃xx(k)[x(k) − x̃(k)]}. (2.53)

It is assumed that w(k − 1) is set to

[w(k − 1)]opt = −R̃−1
ww(k − 1){R̃wq(k)[q(k) − q̃(k)] + R̃wx(k)[x(k) − x̃(k)]}.

The second phase of the algorithm is a measurement update. Equations (2.47a) and (2.47b)

express the squared measurement error cost terms quadratically in q(k). The resulting measurement

error Hessian matrix Hmeas(k) is used to pose the measurement update problem as

min
q(k),x(k)J =

1

2
qT (k)Hmeas(k)q(k) +

1

2
{R̃qq(k)[q(k) − q̃(k)]}T {R̃qq(k)[q(k) − q̃(k)]}

⋅ 1

2
{R̃xq(k)[q(k) − q̃(k)] + R̃xx(kk)[x(k) − x̃(k)]}T

× {R̃xq(k)[q(k) − q̃(k)] + R̃xx(k)[x(k) − x̃(k)]} (2.54a)

subject to

qT (k)q(k) = 1. (2.54b)

To find the optimum filter state estimate x(k), set the derivative of J with respect to x to zero to

get

[x(k)]opt = x̃(k)− R̃−1
xx (k)R̃xq[q(k)− q̃(k)]. (2.55)
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A least squares optimization problem results from substituting Equation (2.55) into the cost func-

tion

min
q(k)J =

1

2
qT (k)Hmeas(k)q(k) +

1

2
{R̃qq[q(k) − q̃(k)]}T

× {R̃qq(k)[q(k) − q̃(k)]} (2.56a)

subject to

qT (k)q(k) = 1, (2.56b)

which is equivalent to Equation (2.47a) as seen by letting

H = Hmeas + R̃Tqq(k)R̃qq(k) (2.57)

and

g = −R̃Tqq(k)R̃qq(k)q̃(k). (2.58)

The measurement update is then complete by solving Equation (2.47a) with Equations (2.57) and

(2.58). The solution is the a posteriori estimate of the attitude quaternion at sample k, q̂(k). q̂(k)

is substituted into Equation (2.55) to compute x̂(k).

To apply the algorithm recursively, it is necessary to express the cost function as

J =
1

2
{Rqq(k)[q(k) − q̂(k)]}T {Rqq(k)[q(k) − q̂(k)]}

+
1

2
{Rxq(k)[q(k) − q̂(k)] +Rxx[x(k) − x̂(k)]}T

× {Rxq(k)[q(k) − q̂(k)] +Rxx[x(k) − x̂(k)]}

where Rqq(k) is a matrix square root RTqq(k)Rqq(k) = [Hmeas(k)+ R̃
T
qq(k)R̃qq(k)+�(k)I], Rxq(k) =

R̃xq(k), andRxx(k) = R̃xx(k). The matrix square root exists since [Hmeas(k)+R̃
T
qq(k)R̃qq(k)+�(k)I]

is at least positive semidefinite at the global minimum.
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2.8 Energy Approach Algorithm

In [9] Mortari develops several solutions to Wahba’s problem through a unique physical inter-

pretation. Mortari poses Wahba’s problem as

�w =
1

2

n
∑

i=1

�i∥si −Avi∥2 = 1−
∑

i

�is
T
i Avi (2.59)

where
∑

i �i = 1 and si and vi are body frame and inertial frame unit vectors, respectively. The

weights �i are derived from a measure of the sensors’ accuracy. Let

�i =
1

E[cos−1(STi si)]

where Si is a unit vector of true values and si is a unit vector of observed values as defined previously.

Then �i = �i/
∑

k �k. It is assumed that errors in observed directions are less than 0.5∘ so that the

angles #i between si and Avi (where s
T
i Avi = cos(#i)) can be considered small (cos(#i) ≈ 1−#2i /2).

Then Equation (2.59) can be expressed as

�w = 1−
∑

i

�is
T
i Avi = 1−

∑

i

�i cos(#i)

≈ 1−
∑

i

�i(1− #2i /2) =
1

2

∑

i

�i#
2
i . (2.60)

The expression in Equation (2.60) is the same as the expression for the energy in n springs

with displacements #i and stiffnesses �i. Applying the rotation matrix A to the vi unit vectors

is like a rigid rotation with the rotation being optimal when the rotated unit vectors are as close

as possible to the sensed vectors as if they were attracted with a torque proportional to �i. The

more accurate the sensors are (the greater �i), the more strongly Avi is attracted. Therefore, the

vi can be thought of as a rigid body free to rotate about the origin and constrained by n spherical

springs with stiffnesses �i applied between the directions Avi and si. This formulation is identical

to Wahba’s problem.

37



The minimum value of stored spring energy E is defined from Equation (2.60)

E =
1

2

∑

i

�i#
2
i .

Then

E ≈ �w = 1−
∑

i

�is
T
i Avi = 1− �M .

E is minimized when �M is maximized

�M =
∑

i

�is
T
i Avi = tr(ABT )

B =
∑

i

�isiv
T
i .

Since A is a rotation matrix, the cost function must include the constraint ATA = I where det(A) =

1. The augmented cost function is then

�∗M = tr(ABT )− tr

(

1

2
L(ATA− I)

)

= tr

(

ABT − 1

2
L(ATA− I)

)

where L is a symmetric matrix of Lagrange multipliers. The maximization of �∗M leads to one of

the following expressions (depending on the method used):

L =

⎧



⎨



⎩

BTA

BAT .
(2.61)

Since L is symmetric, BTA = ATB and BAT = ABT . Since AT = A−1, both expressions of L lead

to

ABTA = B, (2.62)

which Mortari calls the R-equation. All solutions of the R-equation, A, are orthonormal.
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One method to solve the R-equation is an eigenanalysis of the 6× 6 matrix

H =

⎡

⎢

⎣

0 B

BT 0

⎤

⎥

⎦
.

This is just one formulation of the H-matrix; other formulations give alternative solutions. Since it

is symmetric, H has only real eigenvalues. Also, if �i is an eigenvalue of H, then so is −�i. Let ui
be the upper three elements of the itℎ eigenvector of H and di be the lower three elements. Then

�i has eigenvector

⎡

⎢

⎣

ui

di

⎤

⎥

⎦
and −�i has eigenvector

⎡

⎢

⎣

−ui

di

⎤

⎥

⎦
. It is assumed that 0 ≤ �1 ≤ �2 ≤ �3.

Let U =

[

u1 u2 u3

]

, D =

[

d1 d2 d3

]

, and Λ = diag(�1, �2, �3). Then

⎡

⎢

⎣

0 B

BT 0

⎤

⎥

⎦

⎡

⎢

⎣

U

D

⎤

⎥

⎦
=

⎡

⎢

⎣

U

D

⎤

⎥

⎦
Λ

BD = UΛ

BTU = DΛ

U−1BD = Λ.

So

BTU = DU−1BD ⇒ (UD)−1BT (UD−1) = B.

Thus, A = UD−1 satisfies the R-equation.

It can be shown that 2UTU = I and 2DTD = I where multiplying by 2 ensures orthonormality.

Since H is symmetric, its eigenvectors wi = {uTi dTi } are orthonormal. So

wT
i wk = uTi uk + dTi dk = �ik �ik =

⎧



⎨



⎩

1, i = k

0, i ∕= k.
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When i = k, uTi ui + dTi di = 1 for �i, and −uTi ui + dTi di = 0 for −�i. Then if

[

uTi dTi

]T

is

an eigenvector, then

[

uTi −dTi
]T

is an eigenvector as well. Further, these two eigenvectors are

orthogonal to each other. So dTi di = uTi ui, which means 2uTi ui = 1 and 2dTi di = 1. So

uTi ui = dTi di =
1

2
.

The matrices U and D are orthogonal. Also

BT (BD) = BT (UΛ) = DΛ2

B(BTU) = B(DΛ) = UΛ2,

which means

(BTB)D = DΛ2 (2.63a)

(BBT )U = UΛ2. (2.63b)

This implies that

2UTU = 2DTD = I. (2.64)

So

AI = 2UDT . (2.65)

Note that Equations (2.63a)-(2.63b) represent the singular value decomposition of the B matrix

(B = UΛDT ).

The solution form given by Equation (2.65) has a singularity. It occurs if det(B) = 0, which

always happens when n = 2 and in some cases when n > 2. When det(B) = 0, �1 = 0, and

the eigenvectors associated with the eigenvalues ±�1 = 0 cannot be discriminated. This can be

overcome due to the orthogonality of U and D. Once (u2,d2) and (u3,d3) are found

u1 =
√
2u2 × u3 d1 =

√
2d2 × d3.
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An alternate solution form that does not have singularities can be found by performing an

eigenanalysis on Equations (2.63a)-(2.63b). The resulting U and D matrices are orthonormal, and

the conditions of Equation (2.64) do not hold. The first alternative solution form is

AII = UD−1 = UDT .

The eigenvectors U =

[

u1 u2 u3

]

and D =

[

d1 d2 d3

]

must refer to the same eigenvalues

sequence 0 ≤ �1 ≤ �2 ≤ �3, and the condition det(U) = det(D) must be satisfied.

Since BBT and BTB have the same eigenvalues, let M = BBT (or M = BTB). Then the

characteristic equation of M is

�3 + c2�
2 + c1�+ c0

where

c2 = − tr(M) = −m11 −m22 −m33

c1 = tr(adj(M)) = m11m22 +m11m33 +m22m33 −m2
12 −m2

13 −m2
23

c0 = − det(M) = m11m22m13 + 2m12m13m23 −m2
22m

2
13 −m11m

2
23 −m33m

2
12.

M is symmetric so all of its eigenvalues are real. Setting

p =
√

(c2/3)2 − c1/3

q = [c1/2− (c2/3)
2]c2/3− c0/2

z =
1

3
cos−1(q/p3),

then
⎡

⎢

⎢

⎢

⎢

⎣

�1

�2

�3

⎤

⎥

⎥

⎥

⎥

⎦

= −p

⎡

⎢

⎢

⎢

⎢

⎣

cos(z) +
√
3 sin(z)

cos(z)−
√
3 sin(z)

−2 cos(z)

⎤

⎥

⎥

⎥

⎥

⎦

− c2
3
.
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When n = 2, c0 = − det(M) = 0. Then (M − �iI)fi = 0 where fi is ui or di depending on the

choice of M . The row vectors of (M − �iI) must lie on the same plane. The solution fi can be

computed by normalizing the cross product between two row vectors of the matrix (M − �iI).

It is desired to compute fi from the cross product having the highest modulus. The 3 × 3

symmetric matrix (M − �iI) can be written as

M − �iI =

⎡

⎢

⎢

⎢

⎢

⎣

mT
1

mT
2

mT
3

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

ma mx my

mx mb mz

my mz mc

⎤

⎥

⎥

⎥

⎥

⎦

.

Then the eigenvector fi is chosen from among

e1 = m2 ×m1 =

[

mbmc −m2
z mymz −mxmc mxmz −mymb

]T

e2 = m3 ×m1 =

[

mymz −mxmc mamc −m3
y mxmy −mzma

]T

e3 = m1 ×m2 =

[

mxmz −mymb mxmy −mzma mamb −m2
x

]T

which are parallel. The ei with highest modulus has the maximum element pk

p1 = (mbmc −m2
z)

2

p2 = (mamc −m2
y)

2

p3 = (mamb −m2
x)

2.

Then

fi = ek/
√

eTk ek.

By this method the evaluation of the eigenvectors f2 and f3 is sufficient. Then f1 = f2 × f3.

Mortari gives several other possible solution forms. Other previously known solutions can be

derived from the R-equation as well. Appropriate manipulation of the R-equations gives the “direct
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solution” developed by Stuelpnagel as well as a solution based on the singular value decomposition

of B.

Some algorithms become singular when the B matrix is singular (as is always the case when

n = 2). Mortari offers a general method to eliminate the singularity for the case n = 2. When

n = 2, it is possible to add the unit vector s3 = (s1 × s2)/ sin(#s) and the associated vector

v3 = (v1 × v2)/ sin(#v) to the data without affecting the computed optimal attitude. So s3 and

v3 can be added to the data to avoid a singularity. New weights �1 and �2 that replace �1 and

�2 are such that �1/�2 = �1/�2 and �1 + �2 + �3 = 1. Mortari suggests the values �1 = 2�1/3,

�2 = 2�2/3, and �3 = 1/3 because these values maximize the distance from the singularity provided

by the value of ∣det(B)∣.

2.9 Singular Value Decomposition Algorithm

In [10] a singular value decomposition approach is used to solve Wahba’s problem by finding

the matrix Aopt that minimizes

L(A) =
1

2

n
∑

i=1

ai∥bi −Ari∥2 (2.66)

where ri are inertial frame unit vectors, bi are the corresponding unit vectors in the body frame,

ai are weights, and n is the number of observations. The weights are normalized so that

n
∑

i=1

ai = 1. (2.67)
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Then

L(A) =
1

2

n
∑

i=1

ai(bi −Ari)
T (bi −Ari)

=
1

2

n
∑

i=1

ai(b
T
i − rTi A

T )(bi −Ari)

=
1

2

n
∑

i=1

ai[b
T
i − 2bTi Ari + rTi A

TAri]

=
1

2

n
∑

i=1

ai[2− 2bTi Ari]

=

n
∑

i=1

ai −
n
∑

i=1

bTi Ari

= 1−
n
∑

i=1

bTi Ari.

Then the cost function can then be written as

L(A) = 1− tr(ABT ) (2.69)

where

B =
n
∑

i=1

aibir
T
i . (2.70)

The singular value decomposition of the matrix B is given by

B = USV T

where U and V are orthogonal matrices and

S = diag(s1, s2, s3) s1 ≥ s2 ≥ s3 ≥ 0.
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Define

U+ = U [diag(1, 1,det(U))]

V+ = V [diag(1, 1,det(V ))]

and

W = UT+AV+ = cos(Φ)I + (1− cos(Φ))eeT − sin(Φ)[e×]

where

[e×] =

⎡

⎢

⎢

⎢

⎢

⎣

0 −e3 e2

e3 0 −e1
−e2 e1 0

⎤

⎥

⎥

⎥

⎥

⎦

.

Thus W can be represented by a Euler axis/angle rotation with unit vector e and rotation angle

Φ. Define

S′ = diag(s1, s2, ds3) (2.71)

d = det(U) det(V ) = ±1. (2.72)

Then B can be written as

B = U+S
′V T

+ . (2.73)

Substitute Equation (2.73) into Equation (2.69) to get

L(A) = 1− tr(S′W )

= 1− cos(Φ) tr(S′)− (1− cos(Φ))[s1e
2
1 + s2e

2
2 + ds3e

2
3] + tr(S′)− tr(S′)

= 1− tr(S′) + (1− cos(Φ))[s1 + s2 + ds3 − s1e
2
1 − s2e

2
2 − ds3e

2
3]

= 1− tr(S′) + (1− cos(Φ))[s1(e
2
1 + e22 + e33) + s2 + ds3 − s1e

2
1 − s2e

2
2 − ds3e

2
3]

= 1− tr(S′) + (1 + cos(Φ))[s2 + ds3 + (s1 − s2)e
2
2 + (s1 − ds3)e

2
3].
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L(A) is minimized when Φ = 0, which gives W = I so

L(Aopt) = 1− tr(S′) = 1− s1 − s2 − ds3

and

Aopt = U+V
T
+ = U [diag(1, 1, d)]V T . (2.74)

The minimum is unique unless s2 + ds3 = 0, in which case there is a family of minimizing W

matrices given by setting e2 = e3 = 0

W =

⎡

⎢

⎢

⎢

⎢

⎣

1 0 0

0 cos(Φ) sin(Φ)

0 − sin(Φ) cos(Φ)

⎤

⎥

⎥

⎥

⎥

⎦

.

Equation (2.74) is a transformation from the inertial frame to the body frame via two transfor-

mations. The matrix V T
+ transforms from the inertial frame to an intermediate from (S-frame),

and U+ transforms from the S-frame to the body frame. The rank of B determines the solution’s

uniqueness. If B has rank less than two, the solution is not unique. The sensitivity in the attitude

as a function of the variations �ri and �bi is given by

z =

n
∑

i=1

ai[(U
T
+�bi)× (V T

+ ri) + (UT+bi)× (V T
+ �ri)].

In summary the algorithm is as follows:

1. Compute B from Equation (2.70).

2. Find the singular value decomposition of B.

3. Compute d from Equation (2.72).

4. Compute Aopt from Equation (2.74).

5. Compute L(Aopt) and any desired statistics.

46



2.10 Fast Optimal Attitude Matrix (FOAM) Algorithm

In [11] Markley develops the FOAM algorithm to solve Wahba’s problem. Markley presents

Wahba’s loss function as detailed in §2.9. The cost function can be rewritten as

L(A) = �0 − tr(ABT )

�0 =

n
∑

i=1

ai

B =
n
∑

i=1

aibir
T
i .

The orthogonal matrix A that maximizes tr(ABT ) minimizes the expression

∥A−B∥2 = tr[(A−B)(A−B)T ] = tr(I)− 2 tr(ABT ) + ∥B∥2

so Wahba’s problem is equivalent to finding the orthogonal matrix A that is closest toB in Euclidean

norm.

The matrix B has the decomposition

B = U+ diag[S1, S2, S3]V
T
+

where U+ and V+ are orthogonal matrices required to have positive det

S1 ≥ S2 ≥ ∣S3∣.

The optimal attitude estimate is then

Aopt = U+V
T
+ .
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Matrix B has the properties

∥B∥2F = S2
1 + S2

2 + S2
3

det(B) = det(U+ diag[S1, S2, S3]V
T
+ )

= det(U+) det(diag[S1, S2, S3]) det(V
T
+ )

= (1)(S1S2S3)(1)

= S1S2S3

adj(BT ) = U+ diag[S2S3, S3S1, S1S2]V
T
+

BBTB = U+ diag[S3
1 , S

3
2 , S

3
3 ]V

T
+

all of which can be evaluated without computing the SVD. They are used to compute Aopt

Aopt = [(�+ ∥B∥2)B + � adj(BT )−BBTB]/� (2.75)

� = S2S3 + S3S1 + S1S2 (2.76)

� = S1 + S2 + S3 (2.77)

� = (S2 + S3)(S3 + S1)(S1 + S2). (2.78)

The SVD is not necessary to calculate the coefficients �, �, and �. The coefficients � and �

can be written in terms of �

� =
1

2
(�2 − ∥B∥2) (2.79)

� = ��− det(B) (2.80)

so A(�) = Aopt when � = S1 + S2 + S3. � can be found with the quartic polynomial

0 = p(�) = (�2 − ∥B∥2)2 − 8�det(B)− 4∥ adj(B)∥2.
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The roots are all real, and the maximum root is required (it is unique unless S2 + S3 = 0 in which

case the attitude solution is not unique). � can be found by applying Newton’s method.

The covariance matrix P for Aopt can be given as

P = �0�
2
tot(�I +BBT )/� (2.81)

where

�2tot =

(

n
∑

i=1

�−2
i

)−1

. (2.82)

The itℎ measurement error vector components are assumed to have a Gaussian distribution with

respect to the actual vector, and phase is assumed to have a uniform distribution with variance

�2i per axis. The two choices for �0 are 1 and �−2
tot . The normalized (�0 = 1) form is useful with

fixed-point arithmetic or if measurement weights are arbitrarily assigned. The unnormalized form

(�0 = �−2
tot ) is good if weights are computed with measurement variances.

2.11 Alternative Quaternion Attitude Estimation Algorithm

In [12] Markley presents another method for attitude estimation based on Wahba’s problem.

This method also uses SVD the formulation of Wahba’s problem presented in §2.9. The loss function

can be rewritten as

L(A) = �0 − tr(ABT ) (2.83)

�0 =

n
∑

i=1

ai (2.84)

B =
n
∑

i=1

aibir
T
i . (2.85)

The assumed orthogonality of A gives

∥A−B∥2 = tr[(A−B)(A−B)T ] = 3− 2 tr(ABT ) + ∥B∥2.

This norm is minimized by the same matrix that maximizes tr(ABT ).
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Let

�(�,B) =
1

2
�(�2 − ∥B∥2)− det(B).

Then the optimal matrix Aopt is given by

A(�) =

[

1

2
(�2 + ∥B∥2)B + � adj(BT )−BBTB

]

/�(�,B) (2.86)

where � is the largest root of the quartic equation resulting from

� = tr[A(�)BT ].

Several methods exist to solve for Aopt that involve the computation of �. � should be close to the

value of �0 from Equation (2.84) since

L(Aopt) = �0 − � ≥ 0,

and with small measurement errors the loss function should be close to zero. The resulting attitude

estimate is

A0 = M/�(�0, B) (2.87)

M =
1

2
(�20 + ∥B∥2)B + �0 adj(B

T )−BBTB. (2.88)

The estimate A0 is only approximately orthogonal.

A variant of Shepperds’ algorithm can be used to obtain the normalized attitude quaternion q

from A0 to construct an orthogonal attitude matrix Aest

Aest =

⎡

⎢

⎢

⎢

⎢

⎣

q24 + q21 − q22 − q23 2(q1q2 + q3q4) 2(q1q3 − q2q4)

2(q2q1 − q3q4) q24 − q21 + q22 − q23 2(q2q3 + q1q4)

2(q3q1 + q2q4) 2(q3q2 − q1q4) q24 − q21 − q22 + q23

⎤

⎥

⎥

⎥

⎥

⎦

. (2.89)
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If i, j, k is a cyclic permutation of 1, 2, 3, the quaternion components obey the relations

4�(�0, B)q2i ≈ �(�0, B) +Mii −Mjj −Mkk = vi

4�(�0, B)qiqj ≈ Mij +Mji = vj

4�(�0, B)qiqk ≈ Mik +Mki = vk

4�(�0, B)qiq4 ≈ Mjk −Mkj = v4 = wi

4�(�0, B)qjq4 ≈ Mki −Mik = wj

4�(�0, B)qkq4 ≈ Mij −Mji = wk

4�(�0, B)q24 ≈ �(�0, B) +Mii +Mjj +Mkk = w4.

Let i correspond to the index of the largest diagonal element of M , and define the quaternion

components for l = 1, . . . , 4 by

ql = vl/∥v∥ for Mjj +Mkk < 0

or

ql = wl/∥w∥ for Mjj +Mkk ≥ 0

where ∥v∥ and ∥w∥ are the Euclidean norms of the v and w.

2.12 Euler-q Algorithm

In [13] Mortari develops the Euler-q algorithm. It is desired to find the attitude matrix A that

rotates unit vectors vi from the inertial frame to corresponding unit vectors si in the body frame.

A can be expressed in terms of the Euler axis e, a unit 3-vector about which a rotation takes place,

and the the Euler angle �, the angle of rotation about the Euler axis, as follows

A = I cos(�) + (1− cos(�))eeT − ẽ sin(�)
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where ẽ is the 3× 3 skew-symmetric, cross-product matrix

ẽ =

⎡

⎢

⎢

⎢

⎢

⎣

0 −e3 e2

e3 0 −e1
−e2 e1 0

⎤

⎥

⎥

⎥

⎥

⎦

.

Let �i represent the accuracy of the itℎ sensor. Then the sensor relative precision can be defined as

�i = 1/

(

�i

n
∑

k=1

(1/�k)

)

.

Wahba’s problem is to find the 3× 3 matrix A that minimizes the loss function

LW (A) =
1

2

n
∑

i=1

�i∥si −Avi∥2 = 1−
n
∑

i=1

�is
T
i Avi

or equivalently maximizes the gain function

GW (A) = 1− LW (A) =

n
∑

i=1

�is
T
i Avi = tr(ABT )

B =
n
∑

i=1

�isiv
T
i .

The gain function can be rewritten as

GW (e, �) = cos(�) tr(B) + (1− cos(�))eTBe+ sin(�)zT e

z =

n
∑

i=1

�isi × vi.
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Define a loss function

LM (e) =

n
∑

i=1

�i�
2
i =

n
∑

i=1

�ie
Tdid

T
i e = eTHe

di = vi − si/∥vi − si∥

�i = eTdi = dTi e

H = HT =

n
∑

i=1

�idid
T
i

where �i are relative weights. The worst case for the di direction deviation vector occurs at the

angle �∗i when Si is displaced from the measured si by the angle �i and the spherical triangle is

right. The value of �∗i is obtained from

sin(!i) sin(�
∗
i ) = sin(�i)

where !i is the angle between the si and vi directions. The relative weights �i are then derived

from �∗i in the same way that �i are obtained from �i

�i = 1/

(

�∗i

n
∑

k=1

(1/�∗k)

)

.

The augmented cost function is defined as

L∗
M(e) = eTHe− �(eT e− 1)

which leads to

He = �e.

Thus, the Euler axis is the eigenvector of the H matrix associated with the eigenvalue � so

LM (e) = � = eTHe.
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Since LM (e) has to be a minimum, the unknown eigenvalue has to be the smallest �

Heopt = �mineopt.

�min can be found using the characteristic equation of H

0 = �3 + a�2 + b�+ c

a = − tr(H)

b = tr(adj(H))

c = − det(H).

Since H is symmetric positive semidefinite, its eigenvalues are real and nonnegative. Let 0 ≤ �1 ≤

�2 ≤ �3, and define the variables

p2 = (a/3)2 − (b/3)

q = [(b/2) − (a/3)2](a/3) − (c/2)

w =
1

3
cos−1(q/p3)

which leads to

�1 = −p(
√
3 sin(w) + cos(w)) − a/3

�2 = p(
√
3 sin(w)− cos(w)) − a/3

�3 = 2p cos(w)− a/3.

The calculation of eopt proceeds as follows

(H − �minI)eopt =Meopt =

⎡

⎢

⎢

⎢

⎢

⎣

mT
1

mT
2

mT
3

⎤

⎥

⎥

⎥

⎥

⎦

eopt =

⎡

⎢

⎢

⎢

⎢

⎣

ma mx my

mx mb mz

my mz mc

⎤

⎥

⎥

⎥

⎥

⎦

eopt = 0.
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The direction of the optimal Euler axis can be found from the cross product of any two row vectors

of M

e1 = m2 ×m3

e2 = m3 ×m1

e3 = m1 ×m2.

The most accurate ei is the one with the greatest modulus, which is determined by finding the

greatest pi

p1 = ∣mbmc −m2
z∣

p2 = ∣mamc −m2
y∣

p3 = ∣mamb −m2
x∣.

Let pk = max(p1, p2, p3). Then Euler axis with the greatest modulus is

eopt = ek/∥ek∥.

The optimal Euler angle can be derived from

sin(�opt) = (1/D)zT eopt

cos(�opt) = (1/D)(tr(B)− eToptBeopt)

D2 = (zT eopt)
2 + (tr(B)− eToptBeopt)

2.

The matrixM is singular or ill-conditioned under one of three conditions: a) if the row vectors

ofM are parallel (colinear), b) the Euler axis e and all observed vectors are approximately coplanar

(one vector is nearly linearly dependent on the other two), or c) the row vectors of M become 0.

For case (a) there is no solution, but for cases (b) and (c) the method of sequential rotations (MSR)

can be applied. MSR states that if an optimal attitude matrix exists for the n unit vector pairs
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(si,vi), then there exists n unit vector pairs (si,wi) that imply an optimal attitude matrix F .

The vectors si and wi are related by any rotation matrix R: wi = Rsi. A is related to F by

F =

[

f1 f2 f3

]

= ART . If the (si,vi) data set implies a singularity, the set (si,wi) would

not necessarily imply a singularity. So MSR evaluates the attitude of F by using the rotated unit

vector wi and then computes A as A = FR. By using one of the following rotation matrices

R1 =

⎡

⎢

⎢

⎢

⎢

⎣

1 0 0

0 −1 0

0 0 −1

⎤

⎥

⎥

⎥

⎥

⎦

R2 =

⎡

⎢

⎢

⎢

⎢

⎣

−1 0 0

0 1 0

0 0 −1

⎤

⎥

⎥

⎥

⎥

⎦

R3 =

⎡

⎢

⎢

⎢

⎢

⎣

−1 0 0

0 −1 0

0 0 1

⎤

⎥

⎥

⎥

⎥

⎦

,

no new computation is required, only sign changes.

2.13 ESOQ Algorithm

In [14] Mortari presents the commonly used EStimator of the Optimal Quaternion (ESOQ)

algorithm. The ESOQ algorithm is a singularity-free algorithm that finds a closed form expression

for �max and qopt of the q-method equation (Equation (2.94) below).

Let si be unit vectors measured in the body frame, vi be the actual vectors in the inertial

frame, and A be the matrix that rotates vi to the body frame. Let �i be the precision of the itℎ

sensor such that the angle between the true and observed direction is smaller than �i. The sensor

relative precision is defined as

�i = 1/

(

�i

n
∑

k=1

(1/�k)

)

. (2.90)
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Wahba’s problem can be solved by computation of the 3× 3 rotation matrix A that minimizes

LW (A) =
1

2

n
∑

i=1

�i∥si −Avi∥2 = 1−
n
∑

i=1

�is
T
i Avi (2.91)

or equivalently maximizes the gain function

GW (A) = 1− LW (A) =

n
∑

i=1

�is
T
i Avi = tr(ABT ) (2.92)

B =
n
∑

i=1

�isiv
T
i . (2.93)

The q-method solution equation is

Kqopt = �maxqopt (2.94)

meaning qopt is the eigenvector of the symmetric matrix K

K =

⎡

⎢

⎣

S z

zT t

⎤

⎥

⎦
=

⎡

⎢

⎣

B +BT − I tr(B) z

zT tr(B)

⎤

⎥

⎦
(2.95)

z =

n
∑

i=1

�isi × vi. (2.96)

associated with its maximum eigenvalue assuming that the vectors si and vi are normalized. The

characteristic equation of the matrix K can be written as

0 = �4 + a�3 + b�2 + c�+ d (2.97)

a = tr(K) = 0 (2.98)

b = −2(tr(B))2 + tr(adj(B +BT ))− zT z (2.99)

c = − tr(adj(K)) (2.100)

d = det(K). (2.101)
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The third order auxiliary equation of the characteristic equation is

u3 − bu2 − 4du+ 4bd− c2 = 0 (2.102)

which has the solution

u1 = 2
√
p cos

(

1

3
cos−1(q/p3/2)

)

+ b/3 (2.103)

p = (b/3)2 + 4d/3 (2.104)

q = (b/3)3 − 4db/3 + c2/2. (2.105)

Then

�1 =
1

2

(

−g1 −
√

−u1 − b+ g2

)

(2.106)

�2 =
1

2

(

−g1 +
√

−u1 − b+ g2

)

(2.107)

�3 =
1

2

(

g1 −
√

−u1 − b− g2

)

(2.108)

�4 =
1

2

(

g1 +
√

−u1 − b− g2

)

(2.109)

g1 =
√

u1 − b (2.110)

g2 = 2
√

u21 − 4d (2.111)

where

−1 ≤ �1 ≤ �2 ≤ �3 ≤ �4 = �max ≤ 1. (2.112)

If n = 2

�4 = −�1 = (g3 + g4)/2 (2.113)

�3 = −�2 = (g3 − g4)/2 (2.114)

g3 =

√

2
√
d− b (2.115)

g4 =

√

−2
√
d− b. (2.116)
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The q-method solution equation is equivalent to

(K − �maxI)qopt = Hqopt = 0 (2.117)

which means qopt is perpendicular to each row vector hi of symmetric H. Four different and parallel

cross-products qk can be evaluated using the 4-D cross-product

qk(i) = (−1)k+i det(Hki)

where i = 1, . . . , 4 and the 3× 3 submatrices Hki are obtained from matrix H by deleting the ktℎ

row and the itℎ column. The optimal q is then

qopt = qG/∥qG∥

where G is the index associated with the element qk(k) with the largest magnitude.

2.14 ESOQ2 Algorithm

In [15] Mortari presents the ESOQ2 algorithm, an Euler angle variation of the ESOQ algorithm.

The same procedure as outlined in §2.13 in Equations (2.90)-(2.117) is used to develop the ESOQ2

algorithm.

The quaternion solution to the q-method equation (Equation (2.94)) can be expressed in terms

of an Euler axis and angle

q = {eT sin(�/2) cos(�/2)}T .

It can be shown that the equation for determining the optimal Euler axis is

[(t− �max)(S − �maxI)− zzT ]e =Me = 0
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where

M =

⎡

⎢

⎢

⎢

⎢

⎣

mT
1

mT
2

mT
3

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

ma mx my

mx mb mz

my mz mc

⎤

⎥

⎥

⎥

⎥

⎦

.

All row vectors of M are perpendicular to e. The optimal Euler axis e can be found by taking the

cross-product of two rows of M . This fails in two cases:

1. When the rows of M become zero which occurs if �→ 0 (the Euler angle singularity).

2. When the rows of M become parallel (an unresolvable case).

The three choices for e are

e1 = m2 ×m3

e2 = m3 ×m1

e3 = m1 ×m2

where the ei’s differ only in modulus. The most accurate ei is the one with the greatest modulus,

which is determined by finding the greatest pi

p1 = ∣mbmc −m2
z∣

p2 = ∣mamc −m2
y∣

p3 = ∣mamb −m2
x∣.

Let pk have the largest value. Then the most reliable Euler axis is

eopt = ek/∥ek∥.
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The optimal Euler angle is then derived from

X(k) = ℎ sin(�/2) (2.118)

Y (k) = ℎ cos(�/2) (2.119)

where ℎ is a proportional constant and k identifies the element of vector X with the greatest

modulus. The optimal quaternion can then be computed from e and �. To avoid the singularity

that occurs when �→ 0, the MSR can be applied.

2.15 A Slightly Sub-Optimal Algorithm

In [16] an algorithm for the solution of Wahba’s problem that requires no iterations and little

computation but results in a slightly nonorthogonal matrix solution is presented. Wahba’s loss

function can be written as

L(A) =
1

2

n
∑

j=1

∥vj −Auj∥2

where uj are unit vectors in the inertial frame of n observations and vj are the corresponding unit

vectors in the body frame. The loss function can be generalized by using an n × n symmetric

positive-definite weight matrix W

L(A) =
1

2
tr(W (AU − V )T (AU − V ))

U = [u1,u2, . . . ,un]

V = [v1, v2, . . . ,vn].

The loss function can be written as

L(A) =
1

2
tr(W (UTU + V TV ))− tr(ABT )

B = VWUT .

61



The loss function is minimized when tr(ABT ) is maximized. This occurs when A is the orthogonal

matrix that is closest to B in the Euclidean (or Frobenius) norm. The loss function can be further

generalized to

L(A) =
1

2
tr(W (AU − V )TZ(AU − V ))

where Z is a 3× 3 symmetric positive-definite weight matrix.

Let A0 be an extremum of the loss function and � an arbitrary variation in the direction of an

arbitrary non-zero matrix H. Then

L(A0 + �H) =
1

2
∥Z1/2(A0U − V )W 1/2∥2F + � tr(HTZ(A0U − V )WUT ] (2.120)

+
1

2
�2∥Z1/2HUW 1/2∥2F . (2.121)

In order for Equation (2.121) have a solution, the following condition must hold

(A0U − V )WUT = 0.

If U is full rank

A0 = VWUT (UWUT )−1 = B(UWUT )−1.

The solution provides an unbiased estimate of A under some assumptions:

1. Error-free reference vectors

2. Additive random measurement errors

vj = Atrueuj + nj ∀j

V = AtrueU +N

3. E[N] = 0.

62



The attitude estimate is given by

A0 = (AtrueU +N)WUT (UWUT )−1

= Atrue + �A

�A = NWUT (UWUT )−1.

An estimate of the deviation of A0 from Atrue is

P = E[(�A)T �A]

= (UWUT )−1UWRWUT (UWUT )−1

R = E[NTN ].

If we choose W = R−1, then

P = (UWUT )−1 = (UR−1UT )−1.

If {nj} is a white sequence, then R and W are diagonal matrices.

This method requires a minimum of three observations (n = 3). In the unconstrained problem,

a third observation can be added (the cross-product v1×v2 as a measurement of u1×us) to make

U rank 3.

2.16 Conclusions

Many algorithms have been developed to find solutions to Wahba’s problem. While many

mathematical solutions are offered to solve the problem, Davenport is the first to present a solution

in the form of a practical algorithm. Davenport’s algorithm develops what has become known as

Davenport’s equation but does not provide a quick way to solve the equation. However, Davenport’s

equation is the foundation of many other algorithms. The QUEST algorithm is one such algorithm.

Faster than Davenport’s method, the QUEST algorithm has the major disadvantage of using only

single measurements. Past information is not taken into account so anomalous data can cause
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bad estimates. To overcome these limitations, variations of the QUEST algorithm have been

developed to make the algorithm more like Kalman filtering. These algorithms cannot compute

sensor biases and accounting for process noise proves to be too computationally expensive. The

REQUEST algorithm makes the QUEST algorithm recursive, but REQUEST only works if high

quality sensors are used to get attitude measurements and does not estimate biases. The extended

QUEST algorithm is developed to estimate biases but is slow. The energy approach algorithm

offers a new formulation of Wahba’s problem that is analogous to a physical system; therefore, it

is easy to understand. The algorithm has the drawbacks of assuming small errors in measurements

and of often encountering singularities when finding a solution. The SVD algorithm, which requires

taking a computationally expensive SVD, provides the basis for the FOAM algorithm, which does

not require computing an SVD. The FOAM algorithm and most algorithms developed after the

FOAM algorithm provide the same solution, but the speeds at which the solution is derived differ.

The ESOQ algorithm provides the same optimal solution as the FOAM algorithm but is faster

and guaranteed singularity free. The ESOQ2 algorithm differs from the ESOQ algorithm in that it

provides a solution in terms of Euler angles rather than a quaternion. The sub-optimal algorithm

is computationally inexpensive and the fastest of all the algorithms presented; however, it has the

drawback of computing a rotation matrix that is nonorthogonal.

The ESOQ algorithm is best suited for estimating the states of a ballistic rocket in the early

stages of flight. This algorithm is fast while providing an orthogonal rotation matrix estimate. As

much accuracy in an attitude estimate as possible as quickly as possible is necessary for the system

presented in this work. The ESOQ algorithm also accounts for past measurements rather than

being a single-point algorithm like other Wahba’s problem algorithms. No assumptions are made

about the quality of sensors used, which is essential since MEMS sensors are not as accurate as

more conventional sensors.
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Chapter 3

Magnetometer Navigation

Magnetometers are a key component of solving Wahba’s problem as discussed in Chapter 2.

In this chapter we present information relevant to the use of a magnetometer for state estimation

of a vehicle. In §3.1 we develop equations to model the earth’s magnetic field and present a

model that implements those equations. Next, in §3.2 we present a model for a magnetometer, a

device that measures magnetic fields. We also present several possible error sources that corrupt

magnetometer measurements. In §3.3 we present methods to calibrate a magnetometer in order to

minimize measurement errors. In §3.4 we present an algorithm that estimates angular rates based

on magnetometer measurements. Finally, in §3.5 we evaluate the presented algorithms as they

pertain to the problem in this work.

3.1 Modeling Earth’s Magnetic Field

To simulate a magnetometer’s behavior, a model of the earth’s magnetic field is necessary. In

[17] Roithmayr develops equations that are necessary to construct such a model.

3.1.1 Equation Development

An infinite series of spherical harmonics can be used to describe magnetic fields in general.

Then at a point Q above the earth’s surface, the magnetic field vector B is given by

Bn,m =
Kn,ma

n+2

Rn+m+1

{gn,mCm + ℎn,mSm
R

[(s�An,m+1 + (n+m+ 1)An,m)r̂−An,m+1ê3]

− mAn,m[(gn,mCm−1 + ℎn,mSm−1)ê1 + (ℎn,mCm−1 − gn,mSm−1)ê2]
}

(3.1)

where

B =

∞
∑

n=1

n
∑

m=0

Bn,m. (3.2)

65



In Equation (3.1) a is the earth’s average radius (6371 km), R is the magnitude of the position

vector R from the earth’s center to point Q, r̂ is a unit vector in the direction of R, and gn,m and

ℎn,m are degree n, order m Gauss coefficients. ê1, ê2, and ê3 are unit vectors of an Earth-fixed

coordinate system. The coefficients Kn,m are determined recursively from either

Kn,m =

(

n−m

n+m

)1/2

Kn−1,m m = 1, . . . ,∞, n ≥ m+ 1

or

Kn,m = [(n+m)(n −m+ 1)]−1/2Kn,m−1 m = 2, . . . ,∞, n ≥ m

whereKn,0 = 1 wheneverm = 0 andK1,1 = 1. An,m and An,m+1 are degree n Legendre polynomials

(see §B.2) with orders m and m+ 1, respectively. When n = m, the polynomial is given by

An,n = (1)(3)(5) . . . (2n − 1) n = 1, . . . ,∞

= (2n − 1)An−1,n−1 n = 2, . . . ,∞

and A0,0 = 1. In general,

An,m(u) =
1

n−m
[(2n − 1)uAn−1,m(u)− (n+m− 1)An−2,m(u)] m = 0, . . . ,∞, n ≥ (m+ 1).

Arguments of the Legendre polynomials are s� = sin(�) = r̂ ⋅ ê3 where � is the geographic latitude.

The variables Sm and Cm are defined recursively as

Sm = S1Cm−1 + C1Sm−1

Cm = C1Cm−1 − S1Sm−1
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where

S0 = 0

S1 = R ⋅ ê2

C0 = 1

C1 = R ⋅ ê1.

the earth’s magnetic field can be modeled as a tilted dipole as long as the point Q is not near

the magnetic poles. For the dipole model

A1,0(s�) = s�

A1,1(s�) = 1

A1,2(s�) = 0

K1,1 = K1,0 = 1.

Then

B1,0 =
( a

R

)3
g1,0(3s�r̂− ê3)

B1,1 =
( a

R

)3
[3(g1,1r̂ ⋅ ê1 + ℎ1,1r̂ ⋅ ê2)r̂− (g1,1ê1 + ℎ1,1ê2)].

So

B1,0 +B1,1 =
( a

R

)3
[3(r̂ ⋅M)r̂ −M]

where the terrestrial dipole moment M is defined as

M = g1,1ê1 + ℎ1,1ê2 + g1,0ê3.
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3.1.2 Model Implementation

Two implementations of models of the earth’s magnetic field are commonly used: the Inter-

national Geomagnetic Reference Field (IGRF) [18] and the World Magnetic Model (WMM) (an

eighth-order model) [19] which is used by the U.S. DoD and NATO. Due to the changes in the be-

havior of the earth’s magnetic field such as from secular variation (slow changes in time of the main

magnetic field), these models are updated every five years (last updated in 2005). Our development

is based on the WMM, and further discussion is concentrated solely on the WMM.

the earth’s magnetic field is generated mainly by three sources:

1. The main field generated by the earth’s outer core (Bm).

2. The crustal field generated by the earth’s crust and upper mantle (Bc).

3. Electrical currents in the upper magnetosphere and atmosphere which induce electrical cur-

rents in the ground and oceans (Bd).

The total magnetic field can then be written as

B(r, t) = Bm(r, t) +Bc(r) +Bd(r, t)

where r is a position vector and t is time. To model the earth’s magnetic field the WMM uses data

gathered from the Danish Ørsted and German CHAMP satellites, which have good global coverage

and low noise, as well as data from ground observatories.

The WMM only takes into account the contributions of Bm. This introduces errors into the

model since Bc and Bd are ignored. The WMM also has other error sources. A magnetic sensor will

not match the WMM in all locations on the earth; it may observe spatial and temporal anomalies.

Spatial anomalies on land are caused by mountain ranges, ore deposits, geological faults, trains,

railroad tracks, power lines, and other such conditions. Disturbances in the atmosphere from ionic

activity from space will also cause variations in the magnetic field.

Seven quantities describe the geomagnetic field vector B. These quantities are northerly inten-

sity X, easterly intensity Y , vertical intensity (positive downwards) Z, total intensity F , horizontal
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intensity H, inclination (or dip) I which is the angle between the horizontal plane and the field

vector (measured positive downwards), and declination (or magnetic variation) D which is the hor-

izontal angle between true north and the field vector (measured positive eastwards). These values

are calculated as follows

H =
√

X2 + Y 2

F =
√

H2 + Z2

D = arctan(Y,X)

I = arctan(Z,H)

GV = D − � for � > 55∘

GV = D + � for � < −55∘

where GV is grid variation, � is longitude, and � is latitude. The WMM algorithm is used to

compute the magnetic field for a given location and time (ℎ, �, �, t) (see §D.2 for a more complete

discussion of these variables), where ℎ is geodetic altitude, � and � are geodetic latitude and

longitude, and t is the time given in decimal year. The algorithm proceeds as follows:

1. Convert ellipsoidal geodetic coordinates (ℎ, �, �) to spherical geocentric coordinates (r, �′, �).

2. Determine the Gauss coefficients of degree n and order m for the desired time.

3. Compute the field vector components in geocentric coordinates.

4. Convert the field vector components to the geodetic reference frame.

5. Compute H, F , D, I, and GV .

For a more complete discussion of the algorithm details, see [19].
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3.2 Magnetometer Modeling

A magnetometer is a device that measures magnetic field strength and direction and in nav-

igation can be used to obtain heading information. A summary of some basics concerning mag-

netometers as well as a new off-line calibration technique are given by McClendon in his master’s

thesis [20]. A brief overview of some points in the thesis follows.

In order to properly use magnetometer data, relationships among reference frames must be

established. An inertial frame is an Earth-fixed set of axes with the xy-plane tangent to the earth’s

surface. The x-axis points to the earth’s magnetic north. (Declination angles can be used to

reconcile magnetic north and true north.) The y-axis points east, and the z-axis points downward.

The heading frame is defined such that it shares its z-axis with the inertial frame z-axis. The

heading frame’s x- and y-axes are coplanar with the inertial frame’s x- and y-axes but may be

rotated by some angle  , the heading. A body frame is defined such that the x-axis points out

the front of the body, the y-axis to the right, and the z-axis down. This reference frame rotates

along with the body of the rocket or aircraft. One frame can be rotated into the other using the

appropriate set of Givens rotations (rotation matrices or quaternions).

Measurements of the earth’s magnetic field can be used to determine vehicle heading

 = − arctan

(

Bℎ
y

Bℎ
x

)

(3.3)

where Bℎ
y and Bℎ

x are the y- and x-axis components, respectively, of the magnetic field measured

in the heading reference frame. Then body frame measurements of magnetic field intensity B̂b =

[B̂b
x, B̂

b
y, B̂

b
z]
T can be rotated to the heading frame via

Bℎ
xyz =

⎡

⎢

⎢

⎢

⎢

⎣

cos(�) sin(�) sin(�) sin(�) cos(�)

0 cos(�) − sin(�)

− sin(�) sin(�) cos(�) cos(�) cos(�)

⎤

⎥

⎥

⎥

⎥

⎦

B̂b.

the earth’s magnetic field has both vertical and horizontal components with magnitudes that vary

with latitude. The horizontal component, which points north, is parallel to the earth’s surface. The
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vertical component does not affect heading calculations unless the magnetometer has a nonzero roll

or pitch angle, in which case coupling between the axes occurs.

Several error sources must be accounted for in order to get an accurate measurement of heading.

The first commonly encountered error source is soft iron error. This error occurs when materials

(typically ferromagnetic metals such as iron, nickel, or cobalt) near the magnetometer warp existing

magnetic fields. Soft iron error is a function of the magnetometer’s orientation. Another error source

is hard iron error. Hard iron error is interference from objects near the magnetometer that emit

their own magnetic field. This error can be corrected through calibration. Yet another error source

is misalignment of the magnetometer’s measurement axes with body axes of the vehicle on which

the magnetometer is mounted. A final error source is scale factor errors in the sensor. These errors

can be used to produce the following model for a magnetometer:

B̂b = KsKsiKm(B
b + �Bb). (3.4)

Bb is a 3× 1 vector of the true magnetic field in the body frame, Km is a 3× 3 matrix representing

measurement transformation from mounting error, Ksi is a 3 × 3 matrix that factors in soft iron

error, Ks is a 3× 3 matrix of sensor scale factor errors, and �Bb is a vector of measurement biases

resulting from hard iron error sources. A more complete model includes the addition of �M , a

zero-mean Gaussian noise term with variance �M :

B̂b = KsKsiKm(B
b + �Bb) + �M . (3.5)

3.3 Magnetometer Calibration

In this section we present some methods for the calibration of a magnetometer. In §3.3.1 we

review methods presented by Alonso and Shuster [21] to estimate magnetometer bias when attitude

is unknown. Next, we summarize the TWOSTEP algorithm [22] in §3.3.2. Finally, in §3.3.3 we

present a recursive least squares method developed by Hodgart and Tortora [23].
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3.3.1 Attitude Independent Bias Estimation

In [21] Alonso and Shuster present several algorithms that estimate magnetometer bias without

knowledge of attitude. The magnetometer model used is

Bk = AkHk + b+ �k, k = 1, . . . , N (3.6)

(Bk is the magnetic field measurement at time tk, Hk is value of the geomagnetic field in an Earth-

fixed reference frame, Ak is the magnetometer’s attitude with respect to the earth-fixed frame, b is

the magnetometer’s constant bias, and �k is measurement noise). Scalar measurements and scalar

noise values can be used to estimate bias. Define

zk = ∥Bk∥2 − ∥Hk∥2

�k = 2(Bk − b) ⋅ �k − ∣�k∣2.

Then AkHk = Bk − b − �K . Since Ak is a rotation matrix, it does not change the magnitude of

Hk. Thus,

∥Hk∥2 = ∥AkHk∥2 = (Bk − b− �k)
T (Bk − b− �k)

= ∥Bk∥2 − 2Bk ⋅ b+ ∥b∥2 + ∥�k∥2 − 2Bk�k + 2b�k

= ∥Bk∥2 − 2Bk ⋅ b+ ∥b∥2 + ∥�k∥2 − 2(Bk − b) ⋅ �k

= ∥Bk∥2 − 2Bk ⋅ b+ ∥b∥2 − �k.

So

zk = ∥Bk∥2 − ∥Bk∥2 + 2Bk ⋅ b− ∥b∥2 + �k

= 2Bk ⋅ b− ∥b∥2 + �k, k = 1, . . . , N. (3.7)
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It is assumed that �k ∼ N (0,Σk). Then �k ∼ N (�k, �
2
k) where

�k = E{�k} = − tr(Σk)

�2k = E{�2k} − �2k = 4(Bk − b)TΣk(Bk − b) + 2 tr(Σ2
k).

This model is the basis for the following bias estimators presented.

Scoring

The negative-log-likelihood function for magnetometer bias as modeled by Equation (3.6) is

J(b) =
1

2

N
∑

k=1

[

1

�2k
(zk − 2Bk ⋅ b+ ∥b∥2 − �k)

2 + log �2k + log 2�

]

,

which is quartic in b. The maximum-likelihood estimate b∗ for b satisfies

∂J

∂b

∣

∣

∣

∣

b∗

= 0.

One solution procedure is to use scoring (taking the partial derivative a log-likelihood function with

respect to some parameter), which for this case is the Newton-Raphson approximation

bNR0 = 0

bNRi+1 = bNRi −
[

∂2J

∂b∂bT
(bNRi )

]−1
∂J

∂b
(bNRi )

where

∂2J

∂b∂bT
=

N
∑

k=1

1

�2k

[

4(Bk − b)(Bk − b)T + 2(zk − 2Bk ⋅ b+ ∥b∥2 − �k)I3×3

]

∂J

∂b
= −

N
∑

k=1

1

�2k
(zk − 2Bk ⋅ b+ ∥b∥2 − �k)2(Bk − b).
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Estimates of bias by scoring can also be obtained with the Gauss-Newton algorithm. The

algorithm proceeds as follows

bGN0 = 0

bGNi+1 = bGNi − F−1
bb

∂J

∂b

(

bGNi
)

where

Fbb =
N
∑

k=1

1

�2k
4(Bk − b)(Bk − b)T .

The estimate error covariance is then given by Pbb = F−1
bb . For quadratic functions both the Newton-

Raphson and Gauss-Newton methods tend to converge rapidly once the estimate is sufficiently close

to the minima. However, for quartic functions the possibility exists to become stuck in local minima

rather than converging to the global minimum.

Fixed-Point Method

The fixed-point method proceeds as follows. First, define

G =
N
∑

k=1

1

�2k
[4BkB

T
k + 2(zk − �k)I3×3]

a =

N
∑

k=1

1

�2k
(zk − �k)2Bk

f(b) =

N
∑

k=1

1

�2k
[4(Bk ⋅ b)b+ 2∥b∥2(Bk − b)].

Then the optimal solution is given by

b∗ = G−1[a+ f(b∗)].
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This can be solved iteratively via

bFP0 = 0

bFPi+1 = G−1[a+ f(bFPi )].

Convergence is usually poor.

Davenport’s Approximation

Davenport’s method gives an estimate of the bias, but the estimate is inconsistent. That is, the

mean-squared error of the estimates does not tend to zero as the number of observations increases.

The method begins with the approximate cost function

JD(b) =
1

2

N
∑

k=1

1

�2k
(zk − 2Bk ⋅ b+ �2 − �k)

2

where � is a constant. Then

b∗
D = U+ �2V

U =

[

N
∑

k=1

1

�2k
4BkB

T
k

]−1 [ N
∑

k=1

1

�2k
(zk − �k)2Bk

]

V =

[

N
∑

k=1

1

�2k
4BkB

T
k

]−1 [ N
∑

k=1

1

�2k
2Bk

]

.

Then choose �:

�2 =
−b±

√
b2 − 4ac

2a

a = ∣V∣2

b = 2U ⋅V− 1

c = ∣U∣2.

Usually, the ± is chosen to be minus.
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Acuña’s Algorithm

Acuña’s algorithm does not rely on a field model. The derived measurement zk,l and effective

measurement error Δk,l are defined as

zk,l = ∥Bk∥2 − ∥Bl∥2

= 2(Bk −Bl) ⋅ b+Δk,l

Δk,l = ∥Hk∥2 − ∥Hl∥2 + �k − �l

where k and l are two different time indices. The cost function is then defined as

J(b) =
1

2

′
∑

k,l

[zk,l − 2(Bk −Bl) ⋅ b]2

where the prime indicates that no index occurs more than once. In other words, n individual

magnetometer measurements can yield no more than n/2 effective measurements. Then the optimal

solution is

b∗
A =

⎡

⎣

′
∑

k,l

4(Bk −Bl)(Bk −Bl)
T

⎤

⎦

−1 ′
∑

k,l

2(Bk −Bl)zk,l

= b+ΔbA

where

ΔbA =

⎡

⎣

′
∑

k,l

4(Bk −Bl)(Bk −Bl)
T

⎤

⎦

−1 ′
∑

k,l

2(Bk −Bl)Δk,l.

The estimation error contains both random and systematic terms. The dominate error source

determines how to best construct zk,l. For a more detailed discussion of Acuña’s algorithm, see

[21].
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3.3.2 TWOSTEP Algorithm Calibration

The TWOSTEP algorithm is a robust algorithm that is commonly used to estimate magne-

tometer bias. Full calibration had not been achieved with the TWOSTEP algorithm until recently.

In [22] Alonso and Shuster outline how the TWOSTEP algorithm estimates a magnetometer’s

biases and extend the algorithm for full magnetometer calibration.

Bias Estimate

It is desired to find an estimate of b where the measurement model is given by Equation (3.6).

Then b can be estimated in the maximum likelihood sense by minimizing the cost function

J(b) =
1

2

N
∑

k=1

[

1

�2k
(zk − 2Bk ⋅ b+ ∥b∥2 − �k)

2 + log(�2k) + log(2�)

]

.

where zk is defined by Equation (3.7), and the Gaussian noise �k ∼ N (�k, �
2
k) is

�k = 2(Bk − b ⋅ �k − ∥�k∥2).

The minimization involves a quartic (or fourth degree polynomial) in b so multiple minima and

maxima exist. To find the global minimum reliably, a good starting estimate of b is needed.

The centering approximation gives a reliable starting estimate of b. For a sequence of variables

Xk, k = 1, . . . , N , center values are defined as

X = �2
N
∑

k=1

1

�2k
Xk

1

�2
=

N
∑

k=1

1

�2k
,

and centered values are defined as

X̃k = Xk −X, k = 1, . . . , N.
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Then the cost function can be written in terms of centered and center values as

J(b) = J̃(b) + J(b)

where

J̃(b) =
1

2

N
∑

k=1

1

�2k
(z̃k − 2B̃k ⋅ b− �̃k)

2 + terms independent of b

and

J(b) =
1

2

1

�2
(z − 2B ⋅ b+ ∥b∥2 − �)2 + terms independent of b.

The TWOSTEP algorithm is then used on the cost function to estimate b. First, the b that

minimizes J̃(b) is found. The minimum, guaranteed since the function is quadratic in b, is equal

to

b̃∗ = P̃bb

N
∑

k=1

1

�2k
(z̃k − �̃k)2B̃k

where

P̃bb = F̃−1
bb =

[

N
∑

k=1

1

�2k
4B̃kB̃

T
k

]−1

.

The algorithm then uses b̃∗ as an initial guess for the Gauss-Newton algorithm, which is applied

to the full negative-log-likelihood cost function

J(b) =
1

2
(b− b̃∗)T P̃−1

bb (b− b̃∗) +
1

2�2
(z − 2B ⋅ b+ ∥b∥2 − �)2 + terms independent of b,

to find the final estimate of b. Then the iteration to find the bias estimate is

bGN1 = b̃∗

bGNi+1 = bGNi −
[

P̃−1
bb +

4

�2
(B− bGNi )(B− bGNi )T

]−1 ∂J

∂b
(bGNi ).
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Full Calibration

Alonso and Shuster [22] give a more general model for the magnetic field measured by a

magnetometer that includes scale factors and nonorthogonality of measurement axes

Bk = T−1[AkHk + b′ + �′k] k = 1, . . . , N.

Through a polar decomposition T can be written as T = Q(I + D) where Q is an orthogonal

matrix and D is symmetric. Then b = QTb′ and �k = QT �′k. When Ak is unknown, Q cannot be

estimated, and ∥Hk∥2 becomes

∥Hk∥2 = ∥(I +D)Bk − b− �k∥2.

Therefore, only b and D can be estimated.

Rewriting the magnetometer model as

Bk = (I +D)−1(QTAkHk + b+ �k) k = 1, . . . , N

yields

zk = ∥Bk∥2 − ∥Hk∥2

= −BT
k (2D +D2)Bk + 2BT

k (I +D)b− ∥b∥2 + �k

�k = 2[(I +D)Bk − b] ⋅ �k − ∥�k∥2.

To estimate D and b define

E = 2D +D2

c = (I +D)b.
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Then

zk = −BkEBk + 2BT
k c− ∥b(c,E)∥2 + �k

where

E =

[

E11 E22 E33 E12 E13 E23

]

.

After writing BT
kEBk = KkE where

Kk =

[

B2
1,k B2

2,k B2
3,k 2B1,kB2,k 2B1,kB3,k 2B2,kB3,k

]

,

zk can be written as

zk = −KkE+ 2BT
k c− ∥b(c,E)∥2 + �k

= LkΘ
′ − ∥b(Θ′)∥2 + �k

where

Lk =

[

2BT
k

... −Kk

]

Θ′ =

⎡

⎢

⎣

c

E

⎤

⎥

⎦
.

Then the center and centered values can be calculated

Lk = �2
N
∑

k=1

1

�2k
Lk, L̃k = Lk − L.

The center and centered measurements are

z̃k = L̃k ⋅Θ′ + �̃k, k = 1, . . . , N

zk = LΘ′ − ∥b(Θ′)∥2 + �,

and

∥b(Θ′)∥2 = cT (I +D)−2c = cT (I + E)−1c.

80



The cost function is then

J̃(Θ′) =
1

2

N
∑

k=1

1

�2k
(z̃k − L̃kΘ

′ − �̃k)
2 + terms independent of Θ′

where

Θ̃′∗ = P̃Θ,Θ

N
∑

k=1

1

�2k
(z̃k − �̃k)L̃

T
k

P̃−1
Θ,Θ =

N
∑

k=1

1

�2k
L̃kL̃

T
k .

The center cost function is

J(Θ′) =
1

2�2
(z − LΘ′ + ∥b(Θ′)∥2 − �)2,

and the complete cost function is

J(Θ′) =
1

2
(Θ′ −Θ′∗)T P̃Θ,Θ(Θ

′ −Θ′∗) + J(Θ′).

The Gauss-Newton algorithm is applied to find c∗ and E∗ where

∂

∂cm
∥b(Θ′)∥2 = 2((I +E)−1c)m

∂

∂Em,n
∥b(Θ′)∥2 = −(2− �m,n)((I + E)−1c)m((I + E)−1c)n.

((I +E)−1c)m denotes the mtℎ element of ((I +E)−1c), and �m,n is the Kronecker delta (�m,n = 1

when m = n and 0 otherwise). Then E∗ may be written as E∗ = USUT where U is an orthogonal

matrix and S is diagonal. Then define a matrix W such that S = 2W +W 2 where W is diagonal

so that

wj = −1 +
√

1 + sj j = 1, 2, 3.
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In general, sj is much less than one so a solution exists. Then the desired parameters D and b may

be estimated as

D∗ = UWUT

b∗ = (I +D∗)−1c∗.

3.3.3 Recursive Least Squares Method

In [23] Hodgart and Tortora develop a recursive least squares method to calibrate a magne-

tometer that is onboard a satellite orbiting Earth. The method makes some assumptions. First,

the satellite points roughly in a zenith-nadir direction. Second, the satellite slowly spins about the

zenith-nadir axis about which it is symmetric.

The magnetometer measurement is modeled as

⎡

⎢

⎢

⎢

⎢

⎣

Bx

By

Bz

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

c11 c12 c13 c14

c21 c22 c23 c24

c31 c32 c33 c34

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Bxn

Byn

Bzn

Bon

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

or

B = CBn

where B is an optimal estimate of the magnetic field, Bn =

[

Bxn Byn Bzn

]T

is a vector of

nominal values obtained a priori through on-ground calibration, and Bon is an arbitrary offset.

Coefficients c11, c22, c33, c14, c24, and c34 are magnitude dependent, and the authors cite batch

methods to find these values. The remaining coefficients are direction dependent, and a recursive

least squares algorithm is used to obtain those values.

Before the algorithm can be performed, several preliminary steps must be taken. Data must

be collected to obtain a file of magnetic data for each axis of the magnetometer. That data is then

converted to rough nominal values B
(k)
xn , B

(k)
yn , and B

(k)
zn for 0 ≤ k ≤ k0 by some nominal calibration.

Next, the latitude and longitude of each sample must be calculated to obtain a reference field B
(k)
x0 ,
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B
(k)
y0 , and B

(k)
z0 . Finally, a reference magnetic angle �k must be computed at each reference point

where

�k = 4arctan

(

Bk
z0,

√

(B
(k)
x0 )

2 + (B
(k)
y0 )2

)

.

Once the preliminary steps have been performed, the algorithm to find the direction-dependent

coefficients can be used. It is assumed that the magnitude-dependent coefficients have already been

calculated. The method proceeds as described in Algorithm 3.3.1.

Initialize x̂0 =
[

c
(0)
12 c

(0)
13 c

(0)
21 c

(0)
23 c

(0)
31 c032

]T
;

Initialize P0 = diag(
[

P12 P13 P21 P23 P31 P32

]

) and R which are found empirically;
for k = 1, . . . , k0 do

Form C
(k−1)
2 =

⎡

⎢

⎣

1 c
(k−1)
12 c

(k−1)
13 0

c
(k−1)
21 1 c

(k−1)
23 0

c
(k−1)
31 c

(k−1)
32 1 0

⎤

⎥

⎦
;

B
(k)
2 = C

(k−1)
2 B

(k)
1 where B

(k)
1 is nominal calibration data;

�(k) = 4arctan(B
(k)
z2 ,
√

(B
(k)
x2 )

2 + (B
(k)
y2 )

2);

gTk =
[

Bx2By2Bz2

Bt2∣B2∣2
Bx2Bz1Bz2

Bt2∣B2∣2
Bx1By2Bz2

Bt2∣B2∣2
By2Bz1Bz2

Bt2∣B2∣2 −Bt2Bx1

∣B2∣2 −Bt2By1

∣B2∣2
]

where

B
(k)
t2 =

√

(B
(k)
x2 )

2 + (B
(k)
y2 )

2 and gk is a linearized observation vector.;

Kk =
Pk−1gk

(gT
k
Pk−1gk+w2R)

where 0 < w ≤ 1 is a forgetting factor.;

x̂k = Kk(�k − �k) + x̂k−1 where �k is known before hand.;
Pk = (I −Kkg

T
k )Pk−1/w

2;

end

Algorithm 3.3.1: RLS Magnetometer Calibration

3.4 Angular Rate Estimation

In [24] the authors propose an Extended Kalman Filter with time propagation based on the

solution of Jacobian elliptic functions to estimate a satellite’s angular rates from magnetometer

measurements. No modeling of the earth’s magnetic field is necessary. Further, no knowledge of

the satellite’s attitude is needed. The satellite is assumed to be in a tumbling mode, which means

that the only applied torques are stochastic torques (i.e. there is no input).
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The satellite’s dynamics are modeled by

!̇ = J−1(−! × J!) + �

or

ẋ = f(x, J) + � (3.8)

where ! is a vector of angular rates, J is the inertia matrix, and � ∼ N (0, Qc) is Gaussian noise.

The observation model is based on

db̆

dt
=
∂b̆

∂t
+ ! × b̆ (3.9)

where b̆ is the earth magnetic field vector, db̆
dt is the derivative of the magnetic field vector in an

inertial reference frame, and ∂b̆
∂t is the derivative of the magnetic field in the body reference frame.

For most orbits db̆
dt ≈ 0 so

∂b̆

∂t
≈ −! × b̆ = [b̆×]!

where

[b̆×] =

⎡

⎢

⎢

⎢

⎢

⎣

0 −b̆x b̆y

b̆z 0 −b̆x
−b̆y b̆x 0

⎤

⎥

⎥

⎥

⎥

⎦

.

A continuous model must be discretized since sensor measurements are not continuous. The

nonlinear state equation is discretized to

xk+1 = �kxk + uk

where �k is the linearized state transition matrix, and uk ∼ N (0, Q) where Q = QcΔt. Instead of

conventional integration methods at the time propagation step of the EKF, the authors propose

using the analytical solution for rigid body motion in terms of the Jacobian elliptic function. They

assert that this greatly reduces the number of FLOPs required in computation. The linearized

state transition matrix is used to propagate the error covariance matrix Pk. The transition matrix
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is approximated as

�k ≈ I + FkΔt

where

Fk =
∂f

∂x

∣

∣

∣

∣

x=x̂

=

⎡

⎢

⎢

⎢

⎢

⎣

0
(Jyy−Jzz)x̂3

Jxx

(Jyy−Jzz)x̂2
Jxx

(Jzz−Jxx)x̂3
Jyy

0 (Jzz−Jxx)x̂1
Jyy

(Jxx−Jyy)x̂2
Jzz

(Jxx−Jyy)x̂1
Jzz

0

⎤

⎥

⎥

⎥

⎥

⎦

,

and J is assumed to be diagonal.

The magnetometer measurement model used is

b̃k = b̆k + �k

where �k ∼ N (0, RTAM ) is the stationary measurement noise. The body-referenced temporal

derivative is approximated with a backwards difference. Then the observation equation is

zk = Hkxk + nk

where Hk = [b̃k−1×]Δt, zk = b̃k − b̃k−1 is the effective measurement vector, and nk = �k − �k−1 is

the effective measurement noise, which is colored.

The EKF can be augmented to deal with the colored noise. nk can be modeled as a first-order

Markov process

nk = �cknk−1 +wk−1

where wk ∼ N (0, Rwk ) and �
c
k is related to the process autocorrelation. This yields

�ck = −0.5I = �c

Rwk = 1.5RTAM = Rw.
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The original EKF state vector is augmented with xk =

[

xTk nTk

]T

. The new state transition

matrix, observation matrix, and Q matrix are

�k =

⎡

⎢

⎣

�k 0

0 �c

⎤

⎥

⎦

Hk =

[

Hk I3×3

]

Q =

⎡

⎢

⎣

Q 0

0 Rw

⎤

⎥

⎦
.

The entries in Q are found through a trial-and-error tuning process. Augmenting the system

results in a singular measurement model. This difficulty can be overcome by replacing the singular

measurement noise by a small positive-definite matrix in the Kalman filter measurement update

equation or implementing a reduced-order filter.

3.5 Conclusions

Several algorithms have been presented in this chapter to estimate the constant bias of a

magnetometer. In order for an algorithm to be suitable for estimating the bias of a magnetometer

on a rocket, the algorithm must be fast since all bias estimation must occur while the rocket is

still in the launch mechanism. The scoring method has the benefit of being recursive but requires

taking partial derivatives, which is time consuming. This method can also become stuck in local

minima. The fixed point method also has the benefit of being iterative, but it requires taking the

inverse of a matrix, a costly operation. This algorithm also exhibits poor convergence, which makes

it unsuitable for our rocket problem. Davenport’s method of estimating bias has the disadvantage

of producing inconsistent bias estimates, and this algorithm requires taking the inverse of a matrix,

which makes it too slow for our problem. The TWOSTEP algorithm requires a good starting

point for estimates of bias, which is not available in the rocket problem so this method of bias

estimation is unsuitable. The recursive least squares method has the advantage of being a quick

and simple method to estimate biases. However, this algorithm is not suitable since the rocket does
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has neither the orientation required by the algorithm nor is it spinning slowly as required by the

algorithm. Acuña’s algorithm is the best algorithm for calibrating a magnetometer on a rocket in

a launch mechanism. This algorithm does not require a model and is simple to implement. It does

require taking the inverse of a matrix, but this computational cost can be minimized by using as

few measurements as possible in constructing the matrix to be inverted.

We have also presented a Kalman filter based algorithm for angular rate estimation using only

a magnetometer. This algorithm has the benefits of not requiring a magnetic field model of the

earth and no knowledge of the attitude of the vehicle is needed. However, this algorithm assumes

the vehicle is tumbling and no input torques are applied making it unsuitable for use on a rocket.

The use of magnetometers primarily on satellites has resulted in many algorithms that are useful

for orbiting bodies but few that can be used on ballistic projectiles.
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Chapter 4

Estimation And Control

Many methods have been developed to control missiles. In this chapter we present some of

these control methods with emphasis on reaction jet control. The various sensor suites assumed to

be present on the missiles are also considered. In §4.1 we present several works that address control

laws for various kinds of missiles including skid-to-turn, air-to-air, surface-to-air, and surface-to-

surface. Next, in §4.2 we present control methods for missiles with reaction jets. First, we present a

variable-structure (sliding-mode) control method. A presentation of a time-optimal control method

for missiles with a single reaction jet follows. In §4.2 we present control methods for missiles with

multiple reaction jets. In §4.2.4 we conclude the section with a presentation of a control method

that uses projectile linear theory. We draw some conclusions in §4.3.

4.1 Current Missile Control Methods

In the literature to date, little if any work has been presented on controlling a projectile solely

during the first few seconds of flight. Most work focuses on maneuverable projectiles such as skid-

to-turn (STT) missiles [25], [26], projectiles with thrust vectoring [27], and projectiles with other

forms of control [28], [29]. Moreover, the projectiles presented in the literature have various sensor

suites that allow them to perform tasks such as target tracking to aid in guidance and navigation

[30], [31], [32]. The projectiles in the literature that do have thrusters or reaction jets also have

other control mechanisms [33], [34], [35], [36], [37], [38].

Various control methods have been investigated to increase the accuracy and performance of

missiles (air-to-air, surface-to-air, surface-to-surface). One of the simplest control techniques is

linear control. In [35] time-varying pole placement is used to develop a controller while [39] use

linear-parameter-varying control. Due to the complex dynamics of missiles and the uncertainties

in system models, nonlinear control techniques are often applied to the problem. Backstepping is
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a relatively simple nonlinear control technique [40]. Sliding-mode control is a common technique

applied to missiles [33], [41], [42]. In [26] a combination of sliding-mode control and adaptive

feedback linearization is used. Dynamic inversion [43], [44] or input/output linearization [25] are

also possible methods of deriving a solution. H∞ control is commonly used to obtain an optimal

solution [45], [46], [31]. The use of fuzzy logic and neural networks is also common [47], [48], [32],

[36], [49].

In [50] Kuhn addresses the issue of navigation of gun-launched munitions; however, a variety of

sensor readings are assumed to be available. Kuhn proposes an Extended Kalman Filter (EKF) to

calibrate gyros in-flight and suggests that better results can be obtained by including accelerometer

and GPS data to improve estimates of aerodynamic drag. Kuhn notes that the use of low-cost

sensors can result in uncompensated sensor errors such as random walk and nonlinearity. In other

words, the use of inexpensive gyros alone is unreliable for navigation. Kuhn proposes the use of a

magnetometer to improve state estimates.

An estimator to predict vehicle attitude and gyro bias is presented in [51]. Gyros are modeled

to have random walk bias and additive noise. Estimates of attitude and gyro bias are obtained with

the proposed state observer, which uses quaternions to represent attitude estimations obtained from

the vehicle’s kinematic equations. The gyro bias estimates are shown to converge exponentially to

a root mean square (RMS) bound. However, for the bias estimates to converge, both the noise

driving the random walk bias and the additive noise must be bounded.

In [52] Gebre-Egziabher et al. present a gyro-free method of determining attitude using only

low-cost accelerometers and magnetometers. The work is based on Wahba’s problem, which shows

that attitude can be determined from two noncolinear vectors that are known in one frame and

measured in another frame [1] (see Chapter 2). In the proposed estimator, the accelerometers are

used to measure gravity in the body frame, and the magnetometers are used to measure the Earth’s

magnetic field in the body frame. Using the solution to Wahba’s problem, the rotation is found

that puts the body frame into an Earth-fixed frame.

Although much literature exists for navigational solutions for maneuverable projectiles with

various control mechanisms and various sensor suites, little has been written about projectiles
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controlled solely by reaction jets. An overview of the existing literature is presented in §4.2. Even

less has been written about controlling such projectiles with only gyros and accelerometers. The

relatively recent rise in popularity of MEMS technology has yielded little work in controlling a

projectile using only MEMS inertial sensors.

4.2 Reaction Jet Control

While much work has been developed for controlling missiles through aerosurfaces, relatively

little attention has been given to control of missiles with on/off reaction jets. In this section we first

present an overview of work on variable-structure control, which has been developed for missiles

with both aerosurfaces and reaction jets. We then present an overview of a method to control a

missile with only a single reaction jet. We conclude the section with a presentation of a control

method for the case of a missile with multiple reaction jets.

4.2.1 Variable-Structure Control

Variable-structure control, also called sliding-mode control, has the defining characteristic that

system states are driven discontinuously toward a hyperplane in state space. The control is designed

so that all motion near the hypersurface is directed toward the hypersurface. The states’ approach

to the hypersurface will be at least asymptotic. This is the type of control law developed for missiles

that are controlled with both aerosurfaces and reaction jets in [29], [37], and [53].

In [53] Weil and Wise develop an autopilot based on variable-structure control for a missile at

a trim flight condition. The nonlinear equations that describe the missile’s dynamics are linearized

about the trim conditions. The model has two sets of inputs: fin deflection and reaction jet

condition. The linearized equations are used to derive a linear switching surface for the reaction

jet control and a linear feedback controller for the fins. The problem is then split into two linear

quadratic regulator (LQR) problems, which are solved to find the optimal balance between fin

actuator rates and reaction jet output.

Thukral and Innocenti use variable-structure control systems to develop an autopilot so that

a high-performance missile with both on/off reaction jets and control fins can perform a 180∘

90



maneuver to reverse heading [29], [37]. This maneuver requires the missile to go through three

phases of flight: pitching to the point of stall, turning while stalled, and recovery from the stall

in the desired attitude and direction. Of particular interest is the second phase in which only

the reaction jets control the missile’s performance. In the first and third stages both the fins and

reaction jets are used. Thukral and Innocenti develop a model for the missile’s behavior during

each phase of the maneuver, since the aerodynamic properties vary widely from stage to stage. In

each model the missile is treated as a rigid body with a first bending-mode natural frequency of

about 30 Hz [29]. Aerodynamic data for the modeled missile is not available for the second stage

of the maneuver, so Thukral and Innocenti base their model on a worst-case scenario with attitude

described by

Iy q̇ = QSCNLcp + LRCSTRCSuT (4.1)

where Iy is the pitch axis moment of inertia, q̇ is pitch angular acceleration, Q is dynamic pressure,

S is cross sectional area, CN is the normal force coefficient, Lcp is the distance between the center

of pressure and the center of mass, LRCS is the jets’ moment arm, TRCS is the reaction jet thrust,

and uT is the throttle variable for the reaction jets.

Variable-structure control is applied to the second-stage dynamics by choosing a desired model

for the missile’s pitch rotational dynamics from which error dynamics are defined. The desired

model has the form

ẋm = Amxm +Bmum, (4.2)

and the actual system dynamics are

ẋ = Ax+BuT. (4.3)

The error dynamics are modeled by

ė = Ame+ [Am −A]x+Bmum −D −BuT (4.4)
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where D is a disturbance vector, e = xm− x. The control law implementation (nonlinear) is given

by

uT = sgn(s) (4.5)

s = Ge (4.6)

where G is chosen to ensure a desirable response during sliding [29].

4.2.2 Time-Optimal Control with A Single Reaction Jet

In [54], [55], [56], and [57] Jahangir and Howe develop methods to control the attitude of a

missile with a single thruster located at right angles to the missile’s spin axis. The final desired

attitude is known, and the goal is to drive the missile to the desired attitude in the minimum

amount of time. The missile, which is assumed to have a large roll rate, is controlled by turning

on the thruster for a short period of time during each roll cycle. In [56] Jahangir and Howe

develop a method to generate thruster firing times that does not require the solution of a Two-

Point Boundary-Value Problem (TPBVP). In [54] and [55] Jahangir and Howe develop a method

of control for the case when two pulses are sufficient to drive the missiles’s attitude to the desired

state. The remainder of this section summarizes [57], in which the Jahangir and Howe develop a

method of attitude control for the case where two thruster pulses are insufficient to achieve the

desired final attitude.

Jahangir and Howe develop a state vector of dimensionless variables and then transform this

vector so that boundary-condition points with known thruster firing times can be generated without
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the need to solve a TPBVP. To this end the following variables are defined

Ωy =
!y
!x

(4.7)

Ωz =
!z
!x

(4.8)

�y =
My

Iy!2
x

(4.9)

A = 1− Ix
Iy

= 1− Ix
Iz

(4.10)

T = !xt (4.11)

where !x, !y, and !z are rotational rates, Ix, Iy, and Iz are the missile’s moments of inertia, My

is the moment applied about the missile’s y-axis in the body frame, and t is time. Then the state

equations are given by

Ω̇y = AΩz + �y (4.12)

Ω̇z = −AΩy (4.13)

 ̇ = (Ωy sin(�) + Ωz cos(�)) sec(�) (4.14)

�̇ = Ωy cos(�)− Ωz sin(�) (4.15)

�̇ = 1 + (Ωy sin(�) + Ωz cos(�)) tan(�) (4.16)

where all derivatives are taken with respect to T . Then the state space representation is given by

ẋ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Ax2

−Ax1
(x1 sin(x5) + x2 cos(x5)) sec(x4)

x1 cos(x5)− x2 sin(x5)

1 + (x1 sin(x5) + x2 cos(x5)) tan(x4)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1

0

0

0

0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

�y (4.17)

ẋ = f(x) + gu (4.18)
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where x =

[

Ωy Ωz  � �

]T

and the control input is u = �y. The initial state vector is

x0 =

[

x1,0 x2,0 0 0 0

]T

, (4.19)

and the desired final state vector is

[

0 0 x3,d x4,d free

]T

(4.20)

where the fifth term can have any value since roll angle does not matter. The control input has a

maximum umax so the bounds on the control are given by

0 ≤ u ≤ umax.

The solution of the developed system involves a TPBVP (an iterative problem) so thruster

firing times for the desired boundary conditions are found off-line and stored in a look-up table.

The control is real-time implementable by table look-up and interpolation. Another approach is

to use a transformation that allows the boundary condition points for which thruster firing times

are known to be generated without the requirement of an iterative solution of a TPBVP. By using

a transformation of the state vector, time-optimal trajectories can be computed by integrating

backwards from the desired final condition.

The transformation begins by defining a new reference frame. For this new frame, the axes

are fixed in the target with the x-axis pointing in the desired direction of the missile’s body frame

x-axis. The Euler angles that convert from the missile’s body frame to the new frame are y3, y4,

and y5 corresponding to yaw, pitch, and roll, respectively. Define y1 = x1 and y2 = x2. Then the

new state vector is

y =

[

y1 y2 y3 y4 y5

]T

, (4.21)

and the transformed system is

ẏ = f(y) + gu. (4.22)
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The initial and final conditions are given by

y(T0) = y0 =

[

y1,0 y2,0 y3,0 y4,0 y5,0

]T

(4.23)

y(Tf ) = yf =

[

0 0 0 0 free

]T

, (4.24)

respectively. The transformation from the new frame to the body frame is given by

C(x3,d, x4,d, x5,d) = ΦC(y3, y4, y5)
T (4.25)

where

C( , �, �) =

⎡

⎢

⎢

⎢

⎢

⎣

c c� s c� −s�
−s c� + c s�s� c c� + s s�s� c�s�

s s� + c s�c −c s� + s s�c� c�c�

⎤

⎥

⎥

⎥

⎥

⎦

(4.26)

Φ =

⎡

⎢

⎢

⎢

⎢

⎣

1 0 0

0 cos(y5,f ) sin(y5,f )

0 − sin(y5,f ) cos(y5,f )

⎤

⎥

⎥

⎥

⎥

⎦

. (4.27)

ci and si are cos(i) and sin(i), respectively.

With the transformation defined, a time-optimal control law can be found. Define the cost

function as

J =

∫ Tf

T0

1dt. (4.28)

Necessary conditions for optimality are obtained from the Hamiltonian

H = qT ẏ− 1 (4.29)
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where q is the costate vector. This leads to an optimal control u∗ from the conditions

ẏ∗ =
∂H

∂q
= f(y∗) + gu∗ (4.30)

q̇ = −∂H
∂y

= H(y∗)q∗ (4.31)

u∗ =

⎧



⎨



⎩

umax if q∗1 > 0

0 if q∗q < 0
(4.32)

where H(y) = −∂f/∂y. The boundary conditions of the Hamiltonian and costate vector are

H(Tf ) = 0 (4.33)

q(T0) = q0 =

[

free free free free free

]T

(4.34)

q(Tf ) = qf =

[

free free free free 0

]T

. (4.35)

A control history can be generated with the following steps:

1. Initialize yf and qf .

2. Integrate the ẏ and q̇ equations backward in time, and at each T ′
n = nΔT obtain y(T ′

n) where

ΔT is the time interval chosen to give desired data point spacing between y(T ′
n) and y(T ′

n+1)

and n is a positive integer.

3. Transform y(T ′
n) to obtain the boundary conditions in the original form x1,0, x2,0, x3,d, and

x4,d. Store the thruster switching times as functions of these four variables.

4.2.3 Multiple-Reaction Jet Control

Costello et al. [58], [59], [60] are the only authors that investigate control of a projectile solely

through multiple reaction jets. In [58] a rocket is simulated that has a main thruster that has a

limited burn time and is stabilized by three pop-out fins. Lateral pulse jets, each of which can only

be fired once, are located toward the front of the rocket. Lateral pulse jet control is investigated to

improve the dispersion pattern of direct-fire atmospheric rockets. This method of control falls under
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the category of impulse control, unlike other common rocket control methods such as proportional

navigation guidance (PNG), which is continuous. In [58] Jitpraphai et al. investigate PNG,

parabolic and proportional navigation guidance (PAPNG), and trajectory tracking (TT) applied

to a direct-fire atmospheric rocket equipped with a lateral pulse jet control mechanism. All three

control laws use the same control logic to fire the lateral pulse jets.

Proportional Navigation Guidance (PNG)

The guidance law for PNG is

AC = NVc�̇ (4.36)

where N is the proportional navigation constant (typically valued between 3 and 5), VC is rocket

closing velocity, and �̇ is line-of-sight (LOS) angular rate. PNG has horizontal plane and vertical

plane control law components and three reference frames are used: the LOS frame, the target

frame, and the inertial frame. For the following equations, the target is assumed to be stationary.

All axes in [58] are labeled (I, J,K) with a subscript to indicate the reference frame. The I-axis of

the LOS frame points from the rocket to the target.

The horizontal component of � is then

�H = tan−1

(

yT − y

xT − x

)

(4.37)

and

�̇H =
−ẏ(xT − x) + ẋ(yT − y)

(xT − x)2 + (yT − y)2
. (4.38)

Then the horizontal acceleration command is

ÃY C = NH �̇HuH (4.39)

uH = cos(�H)ẋ+ sin(�H)ẏ (4.40)
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where the ∼ indicates the LOS frame. The vertical plane component is given as

�V = tan−1

(

zT − z

xT − x

)

(4.41)

�̇V =
−ż(xT − x) + ẋ(zT − z)

(xT − x)2 + (zT − z)2
(4.42)

ÃZC = NV �̇V uV (4.43)

uV = cos(�V )ẋ+ sin(�Y )ż (4.44)

The total acceleration command is then

ÃC = ÃY CJL + ÃZCKL = AXCIB +AY CJB +AZCKB (4.45)

where (I, J,K) are unit vectors. The input to the lateral pulse ring firing logic is the magnitude of

the off-axis command acceleration. This magnitude is given by

Γ =
√

A2
Y C +A2

ZC (4.46)

and, the error signal phase is given by


 = tan−1(AZC/AY C). (4.47)

Parabolic and Proportional Navigation Guidance (PAPNG)

PAPNG uses the same horizontal control law as PNG. In the vertical plane, a desired parabolic

trajectory is described as

ẑP = ẑT +K1x̂p +K2x̂
2
P (4.48)

where the x̂P and ẑP are components of the rocket position in the target frame, x̂T and ẑT are

components of the target position in the target frame, and K1 and K2 are defined by Equations

(4.49)-(4.50). The desired angle at which the rocket passes through the target is defined as �f .
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Then

K1 = tan(�F ) (4.49)

K2 =
−(K1

√

(xT − x)2 + (yT − y)2 + ẑT − ẑP )

(xT − x)2 + (yT − y)2
. (4.50)

The command acceleration in the vertical LOS plane is

ÃZC =
VL(�D − �)

�
(4.51)

where VL is the rocket velocity magnitude in the LOS frame, � is the flight path angle in the LOS

frame, � is the acceleration command time constant, and �D is the rocket’s desired flight path

angle. The acceleration command is then given by

ÃC = −ÃZC sin(�)IL + ÃY CJL − ÃZC cos(�)KL (4.52)

= AXCIB +AY CJB +AZCKB . (4.53)

Trajectory Tracking (TT)

In this method a command trajectory is assumed to be known prior to launch. From this infor-

mation the error between the desired path and the actual path can be computed. The magnitude

of this error is used as control input to the thruster firing logic. The magnitude of the error and

the error phase angle are

Γ =
√

e2Y + e2Z (4.54)


 = tan−1(ez/eY ). (4.55)

Lateral Pulse Jet Firing Logic

In order for a jet to fire, four requirements must be met. The following two requirements apply

to all lateral jets.
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∙ The error magnitude must be greater than some tolerance.

∙ The time between thruster firings must be greater than some threshold.

The next two requirements are for a specific lateral jet.

∙ The difference between the error phase angle and the individual pulse jet force must be less

than some threshold angle.

∙ The pulse jet has not been previously fired.

The last condition enforces the requirement that each jet can only be fired once.

In [59] the path control system is designed to track a specific trajectory. To do this the rocket’s

measured position is compared to the commanded position to create an error signal, which in the

rocket body frame is given by

⎡

⎢

⎢

⎢

⎢

⎣

eX

eY

eZ

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

c�c c�s −s�
s�s�c − c�s s�s�s� + c�c s�c�

c�s�c� + s�s c�s�s − s�c c�c�

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

xC − x

yC − y

zC − z

⎤

⎥

⎥

⎥

⎥

⎦

(4.56)

where �, �, and  are the roll, pitch, and yaw Euler angles. Magnitude and phase error are defined

as

Γ =
√

e2Y + e2Z (4.57)


 = tan−1(ez/eY ). (4.58)

With this information available at each computation cycle, four criteria are checked to see if an

individual thruster should be fired (lateral jet thrust is modeled as a constant of a known duration).

The four conditions are

1. The tracking error magnitude must be greater than some threshold

Γ > etℎres. (4.59)
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2. A certain amount of time must have passed since the last jet firing

t− t∗ > Δttℎres (4.60)

where t∗ is the time of the most recent pulse jet firing.

3. The angle between the tracking error and the individual pulse jet under consideration must

be less than a threshold

∣�i − pi− 
 − 
̇(ΔPJ/2)∣ < �tℎres (4.61)

where �i is the angle between the body frame y-axis and the itℎ pulse jet and ΔPJ is the pulse

jet firing duration.

4. The pulse jet under consideration must not have been previously fired.

The purpose of Δttℎres is to ensure that the rocket has enough time to respond to a command to a

particular pulse firing as well as to ensure that many pulse firings at once do not overcompensate

for trajectory errors.

4.2.4 Projectile Linear Theory

In [60] Costello et al. utilize projectile linear theory to develop a control law. Dynamic

equations have been developed to allow the closed-form solution of a missile under restricted flight

conditions. The equations and the solutions to the equations have become known as projectile

linear theory. Projectile linear theory uses a reference frame that is attached to the projectile but

does not roll. A dimensionless variable arc length s is used rather than time, and a change of

variables from the velocity along the projectile’s axis of symmetry to total velocity V is used. The

model also assumes that Euler pitch and yaw angles and the aerodynamic angle of attack are small.
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Costello et. al. convert their model of a projectile according to this theory to yield

y(s)

D
=

y0
D

+ ( 0 + v0/V0)s+
(�SD

2m

)(CX0 − CNA)

V0

{Ωvf
�2f

[exp(�∗fs) sin(�fs+ �vf − �)

− sin(�vf − �)− �f cos(�vf − �)s]
}

+
(�SD

2m

) (CX0 − CNA)

V0

{Ωvs
�2s

[exp(�∗ss) sin(�ss+ �vs − �)

− sin(�vs − �)− �s cos(�vs − �)s]
}

(4.62)

z(s)

D
=

z0
D

+ (−�0 + w0/V0)s+ gD
[ m

�SDV0CX0

]2
×
{

exp
(�SDCX0s

m

)

− �SDCX0s

m
− 1
}(�SD

2m

)CX0 − CNA
V0

{Ωwf
�2f

[exp(�∗fs) sin(�fs+ �wf − �)

− sin(�wf − �)− �f cos(�wf − �)s]
}

+
(�SD

2m

) (CX0 − CNA)

V0

{Ωws
�2s

[exp(�∗ss) sin(�ss+ �ws − �)− sin(�ws − �)

− �s cos(�ws − �)s]
}

. (4.63)

D is projectile characteristic length, (u, v, w) are the translational velocity components of the

projectile center of mass resolved in the fixed plane reference frame, V is the magnitude of the mass

center velocity, � is air density, m is projectile mass, CNA and CX0 are aerodynamic coefficients,

and (x, y, z) are position vector components of the projectile mass center expressed in the inertial

reference frame. Ωvf , Ωvs, �
∗
f , �

∗
s, �f , �s, �vf , �vs, Ωwf , Ωws, �wf , and �ws are all constants. These

equations are used to predict the impact point of the projectile given the current state of the system

which is obtained from an IMU.

Thus, the problem is recast to control the impact point of the projectile in the target plane

rather than controlling the trajectory. Control input is based on the difference between the actual

target location and the predicted impact point. Costello et. al. make two key assumptions: the

control law has full state feedback (x, y, z,  , �, �, u, v, w, p, q, and r) and the projectile has been

provided with the target’s inertial coordinates. The distance by which the projectile is predicted

to miss the target is calculated as

� =
√

(yT − yI)2 + (zT − zI)2 (4.64)
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where the subscript T indicates the target frame and the subscript I indicates the inertial frame.

The miss distance phase angle is defined as


 = − tan−1
( yt − yI
zT − zI

)

(4.65)

A radius SW defines a circle around the target in which it is desired for the missile to impact. As

the missile gets closer to the target, SW gets smaller. If the computed miss distance is greater than

SW , a thruster is fired. Linear impact theory is used to determine if firing a specific thruster will

result in the missile hitting the target area.

Simple logic is used to decide if a pulse jet should be fired. A line segment from the target to

the predicted impact point is computed via

Sp = (yI − yT )/(zI − zT ). (4.66)

Then if the two inequalities

yI ≥ [(yT − 1)/Sp](zI − zT ) (4.67)

y∗I ≥ [(yT − 1)/Sp](z
∗
I − zT ) (4.68)

are both true or both false (meaning both points are on the same side of a curve that defines an

allowable overshoot region) a jet is fired. The asterisk denotes controlled impact point coordinates.

Next, � is calculated. If � is smaller than the allowable overshoot, a thruster is fired regardless of

the results of the two inequalities.

4.3 Conclusions

We have presented several control methods in this chapter. Those methods that apply to

missiles with control actuators other than reaction jets cannot be applied to our problem since

the only control method available is reaction jets. Innocenti and Thukral present a sliding mode

control law for a missile during a flight phase in which only reaction jets are available. This flight
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phase is well after the missile has been launched; therefore, the missile is not subjected to the

disturbances of initial flight while only reaction jet control is used. The sliding mode control law

presented does not address the challenges of flight immediately after launch to which our rocket

is subjected. Further, sliding mode control is subject to chattering, oscillation about the sliding

surface. Chattering is not acceptable in a problem in which a rocket must be controlled accurately

within seconds during large disturbances. Jahangir and Howe’s control method is for a rocket

controlled solely with a reaction jet, but their rocket has a single reaction jet that can be fired

multiple times. This method will not work for the rocket in this work because the rocket of concern

has multiple, single-fire reaction jets. Jahangir and Howe’s method also optimizes control of the

rocket over the entire flight whereas the rocket of concern can only be controlled for a few seconds.

Costello develops a few algorithms for a rocket controlled with multiple, one-shot reaction jets.

The PNG algorithm controls attitude in the horizontal and vertical planes, but requires multiple

reference frames including a target reference frame. For our problem a target reference frame is

unavailable. The PAPNG method uses a desired parabolic path in the vertical frame to derive

control commands, but this method also requires the use of a target reference frame. The TT

method uses the error between a desired path and the actual path of the rocket. This method is

best suited for controlling the rocket of this work since the TT method assumes multiple, one-shot

reaction jets and needs no information about the target, only a desired trajectory to the target.

This method can be used for the first few seconds of flight as well as over the entire flight. The

control law based on linear projectile theory proposed by Costello is not suitable for our problem

since this method assumes full state feedback, which is unavailable to the rocket in this work.
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Chapter 5

Rocket Dynamics and State Estimation

In this chapter the dynamics for a ballistic projectile are developed as well as methods for

estimating the projectile’s attitude. As shown in Figure 2.1, the body frame axes are located at

the rocket’s center of gravity with the x-axis passing through the nose. The rocket is symmetric

about the x-axis, which means that the moment of inertia in the y-direction is equal to the moment

of inertia in the z-direction. The rocket has a main thruster that propels it and a ring of lateral

thrusters located at the back of the rocket to provide control. Fins, which pop open shortly after

the rocket clears the launch mechanism, are also located at the rocket’s rear. As for the notation in

this chapter, all zero-mean white noise values given by the variable � are independent. All constant

biases are assumed to be estimated before the rocket leaves the launch platform; therefore, they do

not appear in the estimation schemes.

5.1 Rotational Rate Modeling

The rotational dynamics of a rigid body are given by

d!

dt
= J−1(� − ! × (J!)) (5.1)

where ! =

[

p q r

]T

is a vector of rotational rates, J is the moment of inertia matrix, and

� is a vector of torques (moments) applied to the body frame. For a rotating rocket, the applied

moments are

� = �aero + �prop + �control

where �aero, �prop, and �control respectively refer to the moments introduced by the aerodynamic,

propulsion, and attitude control systems. Similarly, the forces that affect the rocket’s body frame
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are given by

F = Fgrav + Faero + Fprop + Fcontrol

where the subscripts grav, aero, prop, and control refer to the gravitational, aerodynamic, propul-

sion, and control forces, respectively.

Wind affects the rocket’s angle of attack �tot. In the body frame x-direction, the wind is

assumed to be zero. Angle of attack is computed from the relative velocity

vr =

⎡

⎢

⎢

⎢

⎢

⎣

vr,x

vr,y

vr,z

⎤

⎥

⎥

⎥

⎥

⎦

as

tan�tot =

∥

∥

∥

∥

∥

∥

∥

⎡

⎢

⎣

vr,y

vr,z

⎤

⎥

⎦

∥

∥

∥

∥

∥

∥

∥

2

vr,x
.

The wind azimuth angle is then

tan�b =
vr,y
vr,x

.

The aerodynamic moments are given by

�aero = qSrefDref

⎛

⎜

⎜

⎜

⎜

⎝

rref

⎡

⎢

⎢

⎢

⎢

⎣

cLp(t) 0 0

0 cmqr(t) 0

0 0 cmqr(t)

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

p

q

r

⎤

⎥

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎢

⎣

cL(t)

cM (t)

cN (t)

⎤

⎥

⎥

⎥

⎥

⎦

⎞

⎟

⎟

⎟

⎟

⎠

(5.2)

where q is dynamic pressure, Sref , Dref , and rref are constants, cLp(t) and cmqr(t) are dynamic

derivatives that are a function of Mach number, and cL(t), cM (t), and cN (t) are base coefficients.

The roll base coefficient cL(t) is given by

cL(t) = �fincLD(t) + cL0(t)
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where �fin is the fin cant. cLD(t) and cL0(t) are functions of mach number when the fins are

deployed and equal to zero otherwise. Then cL(t) can be written as

cL(t) = ef (�fincLD(t) + cL0(t))

where

ef =

⎧



⎨



⎩

0 if fins are closed

1 if fins are open
.

The pitch and yaw base coefficients are given by

⎡

⎢

⎣

cM (t)

cN (t)

⎤

⎥

⎦
=

⎡

⎢

⎣

cos(�b)

− sin(�b)

⎤

⎥

⎦
c′m(t)

where

c′M (t) = cwM (t) + cwz (t)cgx.

cwM (t) is the wind frame pitch moment, cwz (t) is the z-axis force coefficient, and cgx is the x-

coordinate center of gravity. Both cwM (t) and cwz (t) depend on angle of attack. Thus,

�aero = qSrefDref

⎛

⎜

⎜

⎜

⎜

⎝

rref

⎡

⎢

⎢

⎢

⎢

⎣

cLp(t)p

cmqr(t)q

cmqr(t)r

⎤

⎥

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎢

⎣

ef (�fincLD(t) + cL0(t))

cos(�b)c
′
m(t)

− sin(�b)c
′
m(t)

⎤

⎥

⎥

⎥

⎥

⎦

⎞

⎟

⎟

⎟

⎟

⎠

.

The propulsion torque is given by

�prop = rprop × fprop +

⎡

⎢

⎢

⎢

⎢

⎣

�motor

0

0

⎤

⎥

⎥

⎥

⎥

⎦
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where

rprop =

⎡

⎢

⎢

⎢

⎢

⎣

rx

0

0

⎤

⎥

⎥

⎥

⎥

⎦

Dref

is the motor lever arm with rx being a constant. The propulsion force is given by

fprop = T (t)

⎡

⎢

⎢

⎢

⎢

⎣

cos(e ) cos(e�)

sin(e ) cos(e�)

− sin(e�)

⎤

⎥

⎥

⎥

⎥

⎦

where T (t) is the main motor thrust and e and e� are motor misalignment angles. When �motor

is assumed to be zero,

�prop =

⎡

⎢

⎢

⎢

⎢

⎣

0

rxDref sin(e�)T (t)

rxDref sin(e ) cos(e�)T (t)

⎤

⎥

⎥

⎥

⎥

⎦

. (5.3)

Then from Equation (5.1), the rocket’s rotational dynamics are

!̇ =

⎡

⎢

⎢

⎢

⎢

⎣

1
Ixx(t)

0 0

0 1
Iyy(t)

0

0 0 1
Iyy(t)

⎤

⎥

⎥

⎥

⎥

⎦

⎛

⎜

⎜

⎜

⎜

⎝

�control + qSrefDref

⎛

⎜

⎜

⎜

⎜

⎝

rref

⎡

⎢

⎢

⎢

⎢

⎣

cLp(t) 0 0

0 cmqr(t) 0

0 0 cmqr(t)

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

p

q

r

⎤

⎥

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎢

⎣

ef (�fincLD(t) + cL0(t))

cos(�b)c
′
m(t)

− sin(�b)c
′
m(t)

⎤

⎥

⎥

⎥

⎥

⎦

⎞

⎟

⎟

⎟

⎟

⎠

+

⎡

⎢

⎢

⎢

⎢

⎣

0

rxDref sin(e�)T (t)

rxDref sin(e ) cos(e�)T (t)

⎤

⎥

⎥

⎥

⎥

⎦

−

⎡

⎢

⎢

⎢

⎢

⎣

0

(Ixx(t)− Iyy(t))pr

−(Ixx(t)− Iyy(t))pq

⎤

⎥

⎥

⎥

⎥

⎦

⎞

⎟

⎟

⎟

⎟

⎠

.
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The model then becomes

!̇ =

⎡

⎢

⎢

⎢

⎢

⎣

�1(t)

�2(t)

�3(t)

⎤

⎥

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎢

⎣

1
Ixx(t)

0 0

0 1
Iyy(t)

0

0 0 1
Iyy(t)

⎤

⎥

⎥

⎥

⎥

⎦

�control. (5.4)

where

�1(t) = (qSrefDrefrrefcLp(t)p + qSrefDrefef (�fincLD(t) +

cL0(t)))/Ixx(t)

�2(t) = (qSrefDref (rref cmqr(t)q + cos(�b)c
′
m) + rxDref sin(e�)T (t)−

(Ixx(t)− Iyy(t))pr)/Iyy(t)

�3(t) = (qSrefDref (rref cmqr(t)r − sin(�b)c
′
m) + rxDref sin(e ) cos(e�)T (t) +

(Ixx(t)− Iyy(t))pq)/Iyy(t)

We make the following assumptions for the purposes of state estimation. First, due to the

available sensors used for this problem, the angle of attack � cannot be determined. It is reasonable

to assume that the angle of attack is small, so it is assumed to be zero. Second, the motor is assumed

to be aligned properly so that e and e� are both zero. When the fins are closed, ef = 0, and the

model becomes

!̇ =

⎡

⎢

⎢

⎢

⎢

⎣

qSrefDrefrrefcLp(t)p/Ixx(t)

(qSrefDrefrrefcmqr(t)q − (Ixx(t)− Iyy(t))pr)/Iyy(t)

(qSrefDrefrrefcmqr(t)r + (Ixx(t)− Iyy(t))pq)/Iyy(t)

⎤

⎥

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎢

⎣

1
Ixx(t)

0 0

0 1
Iyy(t)

0

0 0 1
Iyy(t)

⎤

⎥

⎥

⎥

⎥

⎦

�control. (5.5)
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5.2 Pitch Rate and Yaw Rate Estimation

In this section the estimation of angular rates using only gyroscopes is considered. The output

from the gyros is modeled as

!s = ! + wi + bi + �i (5.6)

where !s is the sensed angular rate, ! is the actual angular rate, wi is a walking bias, bi is a

constant bias, and i = {x, y, z}. The walking bias dynamics are modeled as a first-order Markov

process

ẇi = ciwi + �i

where ci is a constant and �i is zero-mean Gaussian noise. Define � as the time constant of the

Markov process. Then ci = − 1
� . With the assumption that the roll rate is a known function, the

system model from Equation (5.5) becomes a linear time-varying (LTV) system given by

ẋ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

a11(t) a12(t) 0 0

−a12(t) a22(t) 0 0

0 0 cy 0

0 0 0 cz

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

x+

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1
Iyy

(t) 0

0 1
Iyy

(t)

0 0

0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

�control(t) +w(t) (5.7)

y =

⎡

⎢

⎣

1 0 1 0

0 1 0 1

⎤

⎥

⎦
x+ v(t) (5.8)

where w(t) ∼ N (0,Σw) is process noise, x =

[

q r wy wz

]T

, y =

[

!sy !sz

]T

, v(t) ∼

N (0,Σv) is sensor noise, and

a11(t) = qSrefDrefrrefcmqr(t)q/Iyy(t)

a12(t) = −(Ixx(t)− Iyy(t))pr/Iyy(t)

a22(t) = qSrefDrefrrefcmqr(t)r/Iyy(t).
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5.2.1 Kalman Filter

Let Equation (5.7) be given by

ẋ = A(t)x(t) +B(t)u(t) +w(t). (5.9)

Since the system is LTV, the states can be estimated with a time-varying Kalman filter [61]. The

Kalman filter is run in discrete time so the matrices A and B must be converted to discrete time

via the matrix exponential [62]. To generate time-varying model lookup tables we compute the

matrix exponential off-line
⎡

⎢

⎣

F G

0 I

⎤

⎥

⎦
= exp

⎛

⎜

⎝

⎡

⎢

⎣

A B

0 0

⎤

⎥

⎦
Ts

⎞

⎟

⎠
(5.10)

where Ts is sampling time. The Kalman filter then has the form

x[k∣k] = x[k∣k − 1] + L(k)(y(k) − Cx[k∣k − 1]) (5.11)

x[k + 1∣k] = F (k)x[k∣k] +G(k)(u(k) + w(k)) (5.12)

where F (k) ∈ ℜ4×4, G(k), L(k) ∈ ℜ4×2 are gains calculated off-line, and u(k) is the thrust provided

by the control thrusters. The vector w(k) represents the moment contribution due to aerodynamic

forces that arise due to angle of attack and is set to zero. The off-line design procedure schedules

the gains every 0.01 s for the first two seconds of flight, after which the system becomes inactive.

There are a total of 32 lookup tables involved in these coefficients plus one more for estimation of

pyrotechnic thruster moments.

5.3 State Estimation with a Direction Vector

In this section we expand the system model in order to permit the estimation of angular

position in addition to roll, pitch, and yaw rates. The angular position is determined from a sensor

that measures a vector in the body frame that is fixed in the inertial frame.
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Angular position can be represented with either Euler angles or quaternions. Euler angle

dynamics are given by
⎡

⎢

⎢

⎢

⎢

⎣

�̇

�̇

 ̇

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

1 s�s�/c� c�s�/c�

0 c� −s�
0 s�/c� c�/c�

⎤

⎥

⎥

⎥

⎥

⎦

!

where si and ci are sin(i) and cos(i), respectively. Quaternion dynamics are given by

dq

dt
=

1

2

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 r −q p

−r 0 p q

q −p 0 r

−p −q −r 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

qi

qj

qk

qr

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

An attitude quaternion that rotates from a fixed frame to a rotating frame can be converted to

corresponding Euler angles with the following equations

⎡

⎢

⎢

⎢

⎢

⎣

�

�

 

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

arctan
(

2(qrqi+qjqk)

2(q2r+q
2
k
)−1

)

arcsin(2(qrqj − qiqk))

arctan
(

2(qrqk+qiqj)

2(q2r+q
2
i )−1

)

⎤

⎥

⎥

⎥

⎥

⎦

.

It is no longer possible to cast the system as linear when angular position is included in the

model; it is a nonlinear, time-varying system.
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ẋE =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

ccL(t)
Ixx(t)

0 0 0 0 0 0 0 0

0
ccmqr(t)
Iyy(t)

− (Ixx(t)−Iyy(t))p
Iyy(t)

0 0 0 0 0 0

0
(Ixx(t)−Iyy(t))p

Iyy(t)
ccmqr(t)
Iyy(t)

0 0 0 0 0 0

1 s�s�/c� c�s�/s� 0 0 0 0 0 0

0 c� −s� 0 0 0 0 0 0

0 s�/c� c�/c� 0 0 0 0 0 0

0 0 0 0 0 0 cx 0 0

0 0 0 0 0 0 0 cy 0

0 0 0 0 0 0 0 0 cz

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

xE +

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0

1
Iyy(t)

0

0 1
Iyy(t)

0 0

0 0

0 0

0 0

0 0

0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

�control +w(t) (5.13)

yE,Q =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

p+ wx

q + wy

r + wz

c c�H
I
x + s c�H

I
y − s�H

I
z

(c s�s� − s c�)H
I
x + (s s�s� + c c�)H

I
y + c�s�H

I
z

(c s�c� + s s�)H
I
x + (s s�c� − c s�)H

I
y + c�s�H

I
z

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

+ v(t) (5.14)
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or

ẋE = A(x, t)x +B(t)u+w(t)

yE,Q = ℎ(x, t) + v(t)

where c = qSrefDrefrref ,

xE =

[

p q r � �  wx wy wz

]T

,

and

yE,Q =

[

!sx !sy !sz HB
x HB

y HB
z

]T

+ v(t).

HB
i is the measured direction vector in the body frame, and HI

i is the corresponding vector in the

inertial frame. Likewise, the quaternion formulation of the system is
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ẋQ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

ccLp(t)
Ixx(t)

0 0 0 0 0 0 0 0 0

0
ccmqr(t)
Iyy(t)

− (Ixx(t)−Iyy(t))p
Iyy(t)

0 0 0 0 0 0 0

0
(Ixx(t)−Iyy(t))p

Iyy(t)
ccmqr(t)
Iyy(t)

0 0 0 0 0 0 0

0 0 0 0 r
2 − q

2
p
2 0 0 0

0 0 0 − r
2 0 p

2
q
2 0 0 0

0 0 0 q
2 −p

2 0 r
2 0 0 0

0 0 0 −p
2 − q

2 − r
2 0 0 0 0

0 0 0 0 0 0 0 cx 0 0

0 0 0 0 0 0 0 0 cy 0

0 0 0 0 0 0 0 0 0 cz

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

xQ +

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0

1
Iyy(t)

0

0 1
Iyy(t)

0 0

0 0

0 0

0 0

0 0

0 0

0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

�control +w(t) (5.15)

yE,Q =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0 0 1

0 0 0 � 
HI
z −
HI

y 0 0 0 0

0 0 0 −
HI
z � 
HI

x 0 0 0 0

0 0 0 
HI
y −
HI

x � 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

xQ + cos(2 cos−1(qbi,r))

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0

0

0

HI
x

HI
y

HI
z

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

+ v(t) (5.16)
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where

� = − 1

sin2(cos−1(qbi,r))
(HI

xqbi,i +HI
yqbi,j +HI

z qbi,k)(1 − cos(2 cos−1(qbi,r)))


 =
1

sin(cos−1
(qbi,r)) sin(2 cos

−1(qbi,r))

and xQ =

[

p q r qib,i qib,j qib,k qib,r wx wy wz

]T

. The quaternion subscripts bi and

ib denote rotations from the body to inertial frame and inertial to body frame, respectively. These

two quaternions are related by qib = q∗bi (see §A.2).

By using the Pythagorean theorem and some trigonometric identities, the quaternion equations

can be reformulated to remove all of the trigonometric functions. Since the quaternion used in the

system model is an attitude quaternion, it has a magnitude of unity or

q2ib,i + q2ib,j + q2ib,k + q2ib,r = q2bi,i + qbi, j2 + q2bi,k + q2bi,r = 1. (5.17)

This relationship is shown in Figure 5.1 where a =
√

q2ib,i + q2ib,j + q2ib,k and b = qib,r. The results

are the same for qbi. By the Pythagorean theorem # = cos−1(b) = sin−1(a) or # = cos−1(qib,r) =

Figure 5.1: Relationship Among Rotation Quaternion Components
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sin−1
(√

q2ib,i + q2ib,j + q2ib,k

)

. Then using the identities

sin2(#) =
1

2
− 1

2
cos(2#)

sin(2#) = 2 sin(#) cos(#)

cos(2#) = 1− 2 sin2(#),

HB
x =

1− cos(2#

sin2(#)
(qib,iH

I
x + qib,jH

I
y + qib,kH

I
z )qib,i +

sin(2#)

sin(#)
HI
z qib,j −

sin(2#)

sin(#)
HI
yqib,k + (2 cos2(#)− 1)HI

y

HB
y = −sin(2#)

sin(#)
HI
z qib,i +

1− cos(2#

sin2(#)
(qib,iH

I
x + qib,jH

I
y + qib,kH

I
z )qib,j +

sin(2#)

sin(#)
HI
xqib,k + (2 cos2(#)− 1)HI

y

HB
z =

sin(2#)

sin(#)
HI
yqib,i −

sin(2#)

sin(#)
HI
xqib,j +

1− cos(2#

sin2(#)
(qib,iH

I
x + qib,jH

I
y + qib,kH

I
z )qib,k + (2 cos2(#)− 1)HI

z

Then using the fact that sin(�) =
√

q2ib,i + q2ib,j + q2ib,k and cos(�) = qib,r,

HB
x = 2(qib,iH

I
x + qib,jH

I
y + qib,kH

I
z )qib,i + 2qib,rH

I
z qib,j + 2qib,rH

I
yqib,k −

(2q2ib,r − 1)HI
x (5.18a)

HB
y = −2qib,rH

I
z qib,i + 2(qib,iH

I
x + qib,jH

I
y + qib,kH

I
z )qib,j + 2qib,rH

I
xqib,k +

(2q2ib,r − 1)HI
y (5.18b)

HB
z = 2qib,rH

I
yqib,i − 2qib,rH

I
xqib,j + 2(qib,iH

I
x + qib,jH

I
y + qib,kH

I
z )qib,k +

(2q2ib,r − 1)HI
z (5.18c)
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Then


 = 2qib,r (5.19a)

� = 2(qib,iH
I
x + qib,jH

I
y + qib,kH

I
z ). (5.19b)

The output equation is thus

yE,Q =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0 0 1

0 0 0 � 
HI
z −
HI

y 0 0 0 0

0 0 0 −
HI
z � 
HI

x 0 0 0 0

0 0 0 
HI
y −
HI

x � 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

xQ+(2q2ib,r−1)

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0

0

0

HI
x

HI
y

HI
z

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

+v(t). (5.20)

Extended Kalman Filter (EKF)

Implementation of an EKF requires the availability of a linearized model of the nonlinear

systems given by Equations (5.13)-(5.14) and Equations (5.15)-(5.16). To linearize the output

equations, partial derivatives of Equations (5.18a)-(5.18c) are necessary

∂HB
x

∂qib,i
= 2qib,iH

I
x + 2(qib,iH

I
x + qib,jH

I
y + qib,kH

I
z ) (5.21)

∂HB
x

∂qib,j
= 2qib,iH

I
y + 2qib,rH

I
z (5.22)

∂HB
x

∂qib,k
= 2qib,iH

I
z − 2qib,rH

I
y (5.23)

∂HB
x

∂qib,r
= 2qib,jH

I
z − 2qib,kH

I
y + 4qib,rH

I
x (5.24)
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∂HB
y

∂qib,i
= −2qib,rH

I
z + 2qib,jH

I
x (5.25)

∂HB
y

∂qib,j
= 2qib,jH

I
y + 2(qib,iH

I
x + qib,jH

I
y + qib,kH

I
z ) (5.26)

∂HB
y

∂qib,k
= 2qib,jH

I
z + 2qib,rH

I
x (5.27)

∂HB
y

∂qib,r
= −2qib,iH

I
z + 2qib,kH

I
x + 4qib,rH

I
y (5.28)

∂HB
z

∂qib,i
= 2qib,rH

I
y + 2qib,kH

I
x (5.29)

∂HB
z

∂qib,j
= −2qib,rH

I
x + 2qib,kH

I
y (5.30)

∂HB
z

∂qib,k
= 2qib,kH

I
z + 2(qib,iH

I
x + qib,jH

I
y + qib,kH

I
z ) (5.31)

∂HB
z

∂qib,r
= 2qib,iH

I
y − 2qib,jH

I
x + 4qib,rH

I
z . (5.32)

Equation (5.5) can be written as

!̇ =

⎡

⎢

⎢

⎢

⎢

⎣

f1(x, t)

f2(x, t)

f3(x, t)

⎤

⎥

⎥

⎥

⎥

⎦

+B(t)�control. (5.33)

B(t) is already linear so no action is necessary. The remainder of the equation is linearized as

follows
∂f1
∂p = ccLp(t)/Ixx(t)

∂f1
∂q = 0 ∂f1

∂r = 0

∂f2
∂p = − (Ixx(t)−Iyy(t))r

Iyy(t)
∂f2
∂q = ccmqr(t)/Iyy(t)

∂f2
∂r = − (Ixx(t)−Iyy(t))p

Iyy(t)

∂f3
∂p = − (Ixx(t)−Iyy(t))q

Iyy(t)
∂f3
∂q = − (Ixx(t)−Iyy(t))p

Iyy(t)
∂f3
∂r = ccmqr(t)/Iyy(t).

Then the system model becomes
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ẋQ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

ccLp(t)
Ixx(t)

0 0 0 0 0 0 0 0 0

− (Ixx(t)−Iyy(t))
Iyy(t)

r
ccmqr(t)
Iyy(t)

− (Ixx(t)−Iyy(t))
Iyy(t)

p 0 0 0 0 0 0 0

− (Ixx(t)−Iyy(t))
Iyy(t)

q − (Ixx(t)−Iyy(t))
Iyy(t)

r
ccmqr(t)
Iyy(t)

0 0 0 0 0 0 0

0 0 0 0 r
2 − q

2
p
2 0 0 0

0 0 0 − r
2 0 p

2
q
2 0 0 0

0 0 0 q
2 −p

2 0 r
2 0 0 0

0 0 0 −p
2 − q

2 − r
2 0 0 0 0

0 0 0 0 0 0 0 cx 0 0

0 0 0 0 0 0 0 0 cy 0

0 0 0 0 0 0 0 0 0 cz

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

xQ +

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0

1
Iyy(t)

0

0 1
Iyy(t)

0 0

0 0

0 0

0 0

0 0

0 0

0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

�control

+w(t)

yE,Q =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0 0 1

0 0 0 ∂HB
x

∂qib,i

∂HB
x

∂qib,j

∂HB
x

∂qib,k

∂HB
x

∂qib,r
0 0 0

0 0 0
∂HB

y

∂qib,i

∂HB
y

∂qib,j

∂HB
y

∂qib,k

∂HB
y

∂qib,r
0 0 0

0 0 0 ∂HB
z

∂qib,i

∂HB
z

∂qib,j

∂HB
z

∂qib,k

∂HB
z

∂qib,r
0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

xQ + v(t)
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or

ẋQ = AExQ +Bu+w

yE,Q = CExQ + v

where v is zeros for the elements corresponding to the ideal vector output. The matrices AE , B,

and CE are formed by evaluating each entry at a specific time value and the state estimate at the

previous time step.

5.3.1 Ideal Vector

One method to estimate the rocket’s attitude is to have a sensor that measures a vector in the

body frame that is known in the inertial frame. The measurement taken in the body frame can be

rotated to match the the known vector in the inertial frame to determine the rocket’s attitude. In

this section the ideal case where a known unit vector HI =

[

1 0 0

]T

pointing in the x-direction

in the inertial frame is considered. Although any known vector in the inertial frame is valid, the

x-direction unit vector is used for simplicity.

With HI
x = 1 and HI

y = HI
z = 0, Equations (5.18a)-(5.18c) become

HB
x = 2q2ib,i + 2q2ib,r − 1

HB
y = 2qib,iqib,j + 2qib,kqib,r

HB
z = 2qib,iqib,k − 2qib,rqib,j.

Then the coefficients 
 and � of the system output yE,Q (Equation (5.20)) are


 = 2qib,r

� = 2qib,i.
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The output equation yE,Q is then

yE,Q =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0 0 1

0 0 0 � 0 0 
 0 0 0

0 0 0 0 � 
 0 0 0 0

0 0 0 0 −
 � 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

xQ −

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0

0

0

HI
x

HI
y

HI
z

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

The linearized equations used for an EKF are then

∂HB
x

∂qib,i
= 4qib,i

∂HB
x

∂qib,j
= 0 ∂HB

x

∂qib,k
= 0 ∂HB

x

∂qib,r
= 4qib,r

∂HB
y

∂qib,i
= 2qib,j

∂HB
y

∂qib,j
= 2qib,i

∂HB
y

∂qib,k
= 2qib,r

∂HB
y

∂qib,r
= 2qib,k

∂HB
z

∂qib,i
= −2qib,k

∂HB
z

∂qib,j
= 2qib,r

∂HB
z

∂qib,k
= −2qib,i

∂HB
z

∂qib,r
= 2qib,j.

5.3.2 Magnetometer Measurements

The ideal vector situation represents the best possible scenario, but a magnetometer gives

realistic performance. The Earth’s magnetic field is fixed in the inertial frame, so a magnetometer

measuring the field in the body frame can be used to determine attitude. However, the Earth’s

magnetic field is not constant, as discussed in Chapter 3. In this section, for the short time intervals

of the estimation process, the magnetic field can be approximated as being constant. The magnetic

field is determined by taking measurements of the magnetic field with a magnetometer attached to

the rocket prior to the launch.

The magnetometer sensor readings are modeled as

HB
si = HB

i + wmi + bmi + �mi (5.34)
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where i = {x, y, z}, �i is zero-mean white noise, and bi is a constant bias. wmi is a walking bias

modeled as a first order Markov process with dynamics

ẇmi = cmiwmi + �i. (5.35)

Then with a magnetometer and rate gyros, the system model is
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ẋE =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

ccL(t)
Ixx(t)

0 0 0 0 0 0 0 0 0 0 0

0
ccmqr(t)
Iyy(t)

− (Ixx(t)−Iyy(t))p
Iyy(t)

0 0 0 0 0 0 0 0 0

0
(Ixx(t)−Iyy(t))p

Iyy(t)
ccmqr(t)
Iyy(t)

0 0 0 0 0 0 0 0 0

1 s�s�/c� c�s�/s� 0 0 0 0 0 0 0 0 0

0 c� −s� 0 0 0 0 0 0 0 0 0

0 s�/c� c�/c� 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 cx 0 0 0 0 0

0 0 0 0 0 0 0 cy 0 0 0 0

0 0 0 0 0 0 0 0 cz 0 0 0

0 0 0 0 0 0 0 0 0 cmx 0 0

0 0 0 0 0 0 0 0 0 0 cmy 0

0 0 0 0 0 0 0 0 0 0 0 cmz

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

xE +

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0

1
Iyy(t)

0

0 1
Iyy(t)

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

�control

+ w(t)
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yE,Q =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

p+ wx

q + wy

r + wz

c c�H
I
x + s c�H

I
y − s�H

I
z + wmx

(c s�s� − s c�)H
I
x + (s s�s� + c c�)H

I
y + c�s�H

I
z + wmy

(c s�c� + s s�)H
I
x + (s s�c� − c s�)H

I
y + c�s�H

I
z + wmz

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

T

+ v(t)

where

xE =

[

p q r � �  wx wy wz wmx wmy wmz

]T

and

yE,Q =

[

!sx !sy !sz HB
sx HB

sy HB
sz

]T

+ v(t)

for the Euler angle formulation. For the quaternion formulation the system is
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ẋQ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

ccLp(t)
Ixx(t)

0 0 0 0 0 0 0 0 0 0 0 0

0
ccmqr(t)
Iyy(t)

− (Ixx(t)−Iyy(t))p
Iyy(t)

0 0 0 0 0 0 0 0 0 0

0
(Ixx(t)−Iyy(t))p

Iyy(t)
ccmqr(t)
Iyy(t)

0 0 0 0 0 0 0 0 0 0

0 0 0 0 r
2 − q

2
p
2 0 0 0 0 0 0

0 0 0 − r
2 0 p

2
q
2 0 0 0 0 0 0

0 0 0 q
2 −p

2 0 r
2 0 0 0 0 0 0

0 0 0 −p
2 − q

2 − r
2 0 0 0 0 0 0 0

0 0 0 0 0 0 0 cx 0 0 0 0 0

0 0 0 0 0 0 0 0 cy 0 0 0 0

0 0 0 0 0 0 0 0 0 cz 0 0 0

0 0 0 0 0 0 0 0 0 0 cmx 0 0

0 0 0 0 0 0 0 0 0 0 0 cmy 0

0 0 0 0 0 0 0 0 0 0 0 0 cmz

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

xQ + (5.36)

⎡

⎢

⎣

0 1
Iyy(t)

0 0 0 0 0 0 0 0 0 0

0 0 1
Iyy(t)

0 0 0 0 0 0 0 0 0

⎤

⎥

⎦

T

�control +w(t) (5.37)
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yE,Q =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 0 0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0 0 1 0 0 0

0 0 0 � 
HI
z −
HI

y 0 0 0 0 1 0 0

0 0 0 −
HI
z � 
HI

x 0 0 0 0 0 1 0

0 0 0 
HI
y −
HI

x � 0 0 0 0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

xQ +

(2q2ib,r − 1)

[

0 0 0 HI
x HI

y HI
z

]T

+ v(t) (5.38)

where xQ =

[

p q r qib,i qib,j qib,k qib,r wx wy wz wmx wmy wmz

]T

and 
 and �

are given by Equations (5.19a) and (5.19b).

5.4 Estimation with Rate and Angle Gyros

This section develops estimators for the rocket when the onboard sensors are rate gyros and

gyros that sense angular position directly. A rate gyro can be used to estimate angular position

by integrating the sensor output. But due to noise on the sensor output, integration causes the

angular position estimates to become increasingly inaccurate in a matter of milliseconds. Shkel and

Painter [63], [64], [65] have proposed a type of MEMS gyroscope (referred to in this paper as an

angle gyro) that directly measures rotational angles, thus eliminating the problem of integrating

noise associated with a typical MEMS gyro (referred to hence forward as a rate gyro). The angle

gyro is still in the developmental stages; however, it is still a MEMS device, and its output can be

modeled in the same manner as a rate gyro. A gyro that senses angular position directly avoids

the problem of integrating noise, thereby producing more accurate readings. Such gyro readings
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are modeled as

�s = �+ w� + b� + �� (5.39)

�s = � + w� + b� + �� (5.40)

 s =  +w + b + � (5.41)

where �, �, and  are Euler angles, bi are constant biases, and �i are zero-mean Gaussian noise.

wi is a walking bias modeled as a first-order Markov process with dynamics

ẇi = ciwi + �i. (5.42)

The system can be modeled in terms of Euler angles as follows. The state vector is given by

xE =

[

p q r � �  wx wy wz w� w� w 

]T

,

and the output vector is given by

yE,Q =

[

!sx !sy !sz �s �s  s

]T

+ v(t).

Then the system model is
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ẋE =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

ccLp(t)
Ixx(t)

0 0 0 0 0 0 0 0 0 0 0

0
ccmqr(t)
Iyy(t)

− (Ixx(t)−Iyy(t))p
Iyy(t)

0 0 0 0 0 0 0 0 0

0
ccmqr(t)
Iyy(t)

(Ixx(t)−Iyy(t))p
Iyy(t)

0 0 0 0 0 0 0 0 0

1
s�s�
c�

c�s�
c�

0 0 0 0 0 0 0 0 0

0 c� −s� 0 0 0 0 0 0 0 0 0

0
s�
c�

c�
c�

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 cx 0 0 0 0 0

0 0 0 0 0 0 0 cy 0 0 0 0

0 0 0 0 0 0 0 0 cz 0 0 0

0 0 0 0 0 0 0 0 0 c� 0 0

0 0 0 0 0 0 0 0 0 0 c� 0

0 0 0 0 0 0 0 0 0 0 0 c 

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

xE +

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0

1
Iyy(t)

0

0 1
Iyy(t)

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

�control +w(t) (5.43)
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yE,Q =

[

I6×6 I6×6

]

xE + v(t). (5.44)

The system dynamics can be formulated in terms of quaternions as follows. The state vector

is given by

xQ =

[

p q r qib,i qib,j qib,k qib,r wx wy wz w� w� w 

]T

,

and the output vector is the same as for the Euler formulation. The system model is then
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ẋQ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

ccLp(t)
Ixx(t)

0 0 0 0 0 0 0 0 0 0 0 0

0
ccmqr(t)
Iyy(t)

− (Ixx(t)−Iyy(t))p
Iyy(t)

0 0 0 0 0 0 0 0 0 0

0
ccmqr(t)
Iyy(t)

(Ixx(t)−Iyy(t))p
Iyy(t)

0 0 0 0 0 0 0 0 0 0

0 0 0 0 r
2 − q

2
p
2 0 0 0 0 0 0

0 0 0 − r
2 0 p

2
q
2 0 0 0 0 0 0

0 0 0 q
2 −p

2 0 r
2 0 0 0 0 0 0

0 0 0 −p
2 − q

2 − r
2 0 0 0 0 0 0 0

0 0 0 0 0 0 0 cx 0 0 0 0 0

0 0 0 0 0 0 0 0 cy 0 0 0 0

0 0 0 0 0 0 0 0 0 cz 0 0 0

0 0 0 0 0 0 0 0 0 0 c� 0 0

0 0 0 0 0 0 0 0 0 0 0 c� 0

0 0 0 0 0 0 0 0 0 0 0 0 c 

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

xQ +

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0

1
Iyy(t)

0

0 1
Iyy(t)

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

�control

+w(t) (5.45)
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yE,Q =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

p+ wx

q + wy

r + wz

tan−1

(

2(qib,jqib,k+qib,iqib,r)

2(q2
ib,r

+q2
ib,k

)−1

)

sin−1(2(qib,rqib,j − qib,iqib,k))

tan−1

(

2(qib,rqib,k+qib,iqib,j)

2(q2
ib,r

+q2
ib,i

)−1

)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

+ v(t). (5.46)

5.4.1 EKF

Implementation of an EKF requires the linearization of the system model given Equations

(5.43) and (5.45). The Euler angle dynamic equations are

�̇ = p+
sin(�) sin(�)

cos(�)
q +

cos(�) sin(�)

cos(�)
r

�̇ = cos(�)q − sin(�)r

 ̇ =
sin(�)

cos(�)
q +

cos(�)

cos(�)
r.

The associated partial derivatives are

∂�̇
∂p = 1 ∂�̇

∂q = sin(�) sin(�)
cos(�)

∂�̇
∂r = cos(�) sin(�)

cos(�)

∂�̇
∂� = cos(�) sin(�)

cos(�) q − sin(�) sin(�)
cos(�) r ∂�̇

∂� = sin(�)
cos2(�)

q + cos(�)
cos2(�)

r ∂�̇
∂ = 0

∂�̇
∂p = 0 ∂�̇

∂q = cos(�) ∂�̇
∂r = − sin(�)

∂�̇
∂� = − cos(�)r ∂�̇

∂� = − sin(�)q ∂�̇
∂ = 0

∂ ̇
∂p = 0 ∂ ̇

∂q = sin(�)
cos(�)

∂ ̇
∂r = cos(�)

cos(�)

∂ ̇
∂� = cos(�)

cos(�) q −
sin(�)
cos(�)r

∂ ̇
∂� = sin(�) sin(�)

cos2(�)
q + cos(�) sin(�)

cos2(�)
r ∂ ̇

∂ = 0
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For the quaternion formulation, f1, f2, and f3 of Equation (5.33) are

f1 = tan−1

(

2(qib,jqib,k + qib,iqib,r)

2(q2ib,r + q2ib,k)− 1

)

(5.47)

f2 = sin−1(2(qib,rqib,j − qib,iqib,k)) (5.48)

f3 = tan−1

(

2(qib,rqib,k + qib,iqib,j)

2(q2ib,r + q2ib,i)− 1

)

. (5.49)

Since

d tan−1(x)

dx
=

1

1 + x2

and

d sin−1(x)

dx
=

1√
1− x2

,

the partial derivatives of Equations (5.47)-(5.49)are developed as follows. The partial derivative of

f1 with respect to qib,r is

∂f1
∂qib,r

=

(

2qib,i(2(q
2
ib,r + q2ib,k − 1))− 4qib,r(−qib,rqib,i + qib,jqib,k)

)

(

1 +
4(−qib,rqib,i+qib,jqib,k)2

(2(q2
ib,r

+q2
ib,k

−1)2

)

(2(q2ib,r + q2ib,k)− 1)2

=
2qib,i(2(q

2
ib,r + q2ib,k)− 1)− 8qib,r(qib,jqib,k + qib,rqib,i)

(2(q2ib,r + q2ib,k)− 1)2 + 4(qib,jqib,k + qib,rqib,i)2
.

The denominator of ∂f1
∂qib,r

can be rewritten as

(2(q2ib,r + q2ib,k)− 1)2 + 4(qib,jqib,k − qib,rqib,i)
2

= 4(q2ib,r + q2ib,k)(q
2
ib,r + q2ib,k)− 4(q2ib,r + q2ib,k) + 1 + 4q2ib,jq

2
ib,k +

8qib,iqib,jqib,kqib,r + 4q2bi,rq
2
bi,i

= 4q4ib,r + 4q4ib,k + 8q2ib,rq
2
ib,k − 4q2ib,r − 4q2ib,k + 1 + 4q2ib,jq

2
ib,k +

8qib,iqib,jqib,kqib,r + 4q2ib,rq
2
ib,i

= 1− 4(qib,rqib,j − qib,iqib,k)
2.
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Then

∂f1
∂qib,r

=
4qib,i(q

2
ib,k − q2ib,r)− 8qib,jqib,kqib,r − 2qib,i

1− 4(qib,rqib,j − qib,iqib,k)2
. (5.50)

The remaining derivatives are

∂f1
∂qib,i

=
4qib,r(q

2
ib,r + q2ib,k)− 2qib,r

1− 4(qib,rqib,j − qib,iqib,k)2
(5.51)

∂f1
∂qib,j

=
−4qib,k(q

2
ib,r + q2ib,k)− 2qib,k

1− 4(qib,rqib,j − qib,iqib,k)2
(5.52)

∂f1
∂qib,k

=
4qib,j(q

2
ib,r − q2ib,k)− 8qib,iqib,kqib,r − 2qib,i

1− 4(qib,rqib,j − qib,iqib,k)2
(5.53)

∂f2
∂qib,r

=
2qib,j

√

1− 4(qib,rqib,j − qib,iqib,k)2
(5.54)

∂f2
∂qib,i

=
−2qib,k

√

1− 4(qib,rqib,j − qib,iqib,k)2
(5.55)

∂f2
∂qib,j

=
2qib,r

√

1− 4(qib,rqib,j − qib,iqib,k)2
(5.56)

∂f2
∂qib,k

=
−2qib,i

√

1− 4(qib,rqib,j − qib,iqib,k)2
. (5.57)

With respect to qib,r the partial derivative of f3 is

∂f3
∂qib,r

=
4qib,k(q

2
ib,r + q2ib,i)− 2qib,k − 8qib,r(qib,iqib,j − qib,rqib,k)

(2(q2ib,r + q2ib,i)− 1)2 + 4(qib,iqib,j − qib,rqib,k)2
.

By the same method used to calculate the denominator of ∂f1
∂qib,r

, it can be shown that

(2(q2ib,r + q2ib,i)− 1)2 + 4(qib,iqib,j − qib,rqib,k)
2 = 1− 4(qib,rqib,j − qib,iqib,k)

2.
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Then

∂f3
∂qib,r

=
4qib,k(q

2
ib,r − q2ib,i)− 8qib,rqib,iqib,j − 2qib,k

1− 4(qib,rqib,j − qib,iqib,k)2
(5.58)

∂f3
∂qib,i

=
4qib,j(q

2
ib,r − q2ib,i)− 8qib,rqib,iqib,k − 2qib,j

1− 4(qib,rqib,j − qib,iqib,k)2
(5.59)

∂f3
∂qib,j

=
4qib,i(q

2
ib,r + q2ib,i)− 2qib,i

1− 4(qib,rqib,j − qib,iqib,k)2
(5.60)

∂f3
∂qib,k

=
4qib,r(q

2
ib,r + q2ib,i)− 2qib,r

1− 4(qib,rqib,j − qib,iqib,k)2
(5.61)

5.5 Estimation with Magnetometer, Rate Gyros, and Angle Gyros

In this section estimators are developed for the rocket when the sensors used are a magnetome-

ter, rate gyros, and angle gyros. The sensor models are the same as used in the previous sections.

Linearizations derived in previous sections are also used in developing the EKF in this section.

By using both angle sensing gyros and a magnetometer, two sensors are being used to determine

angular position.

For the Euler formulation the state vector is

xE =

[

p q r � �  wx wy wz w� w� w wmx wmy wmz

]T

.

The output vector is

yE,Q =

[

!sx !sy !sz �s �s  s HB
x HB

y HB
z

]T

+ v(t).

The system is then given by
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ẋE =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

ccLp(t)
Ixx(t)

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0
ccmqr(t)
Iyy(t)

− (Ixx(t)−Iyy(t))p
Iyy(t)

0 0 0 0 0 0 0 0 0 0 0 0

0
ccmqr(t)
Iyy(t)

(Ixx(t)−Iyy(t))p
Iyy(t)

0 0 0 0 0 0 0 0 0 0 0 0

1
s�s�
c�

c�s�
c�

0 0 0 0 0 0 0 0 0 0 0 0

0 c� −s� 0 0 0 0 0 0 0 0 0 0 0 0

0
s�
c�

c�
c�

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 cx 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 cy 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 cz 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 c� 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 c� 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 c 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 cmx 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 cmy 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 cmz

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

xE +

⎡

⎢

⎣

0 1
Iyy(t)

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1
Iyy(t)

0 0 0 0 0 0 0 0 0 0 0 0

⎤

⎥

⎦

T

�control +w(t)
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yE,Q =

[

p+ wx q + wy r + wz �+ w� � +w�  + w y7 y8 y9

]T

+ v(t)

where

y7 = cos( ) cos(�)HI
x + sin( ) cos(�)HI

y − sin(�)HI
x

y8 = (cos( ) sin(�) sin( ) − sin( ) cos(�))HI
x + (sin( ) sin(�) sin(�) +

cos( ) cos(�))HI
y + cos(�) sin(�)HI

z

y9 = (cos( ) sin(�) cos(�) + sin( ) sin(�))HI
x + (sin( ) sin(�) cos(�)−

cos( ) sin(�))HI
y + cos(�) cos(�)HI

z

The quaternion formulation state vector is

xQ =

[

p q r qib,i qib,j qib,k qib,r wx wy wz w� w� w wmx wmy wmz

]

.

The output vector is

yE,Q =

[

!sx !xy !sz �s �s  s HI
x HI

y HI
z

]

+ v(t).

The system dynamics are then
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ẋQ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

ccLp(t)
Ixx(t)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0
ccmqr(t)
Iyy(t)

− (Ixx(t)−Iyy(t))p
Iyy(t)

0 0 0 0 0 0 0 0 0 0 0 0 0

0
(Ixx(t)−Iyy(t))p

Iyy(t)
ccmqr(t)
Iyy(t)

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 r
2 − q

2
p
2 0 0 0 0 0 0 0 0 0

0 0 0 − r
2 0 p

2
q
2 0 0 0 0 0 0 0 0 0

0 0 0 q
2 −p

2 0 r
2 0 0 0 0 0 0 0 0 0

0 0 0 −p
2 − q

2 − r
2 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 cx 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 cy 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 cz 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 c� 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 c� 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 c 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 cmx 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 cmy 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 cmz

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

xQ +

⎡

⎢

⎣

0 1
Iyy(t)

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1
Iyy(t)

0 0 0 0 0 0 0 0 0 0 0 0 0

⎤

⎥

⎦

T

�control +w(t) (5.62)
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y =

[

p+ wx q + wy r +wz f1 +w� f2 + w� f3 + w HB
x + wmx

HB
y + wmy HB

z + wmz

]

+ v(t) (5.63)

where HB
x , H

B
y , and HB

z are given by Equations (5.18a)-(5.18c) and f1, f2, and f3 are given by

Equations (5.47)-(5.49).

5.5.1 EKF

For the Euler formation these additional linearizations are necessary for an EKF:

∂y7
∂�

= 0

∂y7
∂�

= − sin(�)(cos( )HI
x + sin( )HI

y +HI
z )

∂y7
∂ 

= cos(�)(− sin( )HI
x + cos( )HI

y )

∂y8
∂�

= (cos( ) sin(�) cos(�) + sin( ) sin(�))HI
x + (sin( ) sin(�) cos( )−

cos( ) sin(�))HI
y + cos(�) cos(�)HI

z

∂y8
∂�

= cos( ) cos(�) sin(�)HI
x + sin( ) cos(�) sin(�)HI

y − sin(�) sin(�)HI
z

∂y8
∂ 

= (− sin( ) sin(�) sin(�)− cos( ) cos(�))HI
x + (cos( ) sin(�) sin(�)−

sin( ) cos(�))HI
y

∂y9
∂�

= (− cos( ) sin(�) sin(�) + sin( ) cos(�))HI
x + (− sin( ) sin(�) sin(�) −

cos( ) cos(�))HI
y − cos(�) sin(�)HI

z

∂y9
∂�

= cos( ) cos(�) cos(�)HI
x − sin( ) cos(�) cos(�)HI

y − sin(�) cos(�)HI
z

∂y9
∂ 

= (− sin( ) sin(�) cos(�) + cos( ) sin(�))HI
x + (cos( ) sin(�) cos(�) +

sin( ) sin(�))HI
y .
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For the quaternion formulation, the necessary linearizations for the fourth through sixth terms of

y are given by Equations (5.50)-(5.61) and for HB
x , H

B
y , and H

B
z by Equations (5.21)-(5.32).

5.6 Wahba’s Problem Applied to a Rocket

In this section we develop the equations necessary to use a Wahba’s problem solution for state

estimation of a rotating rocket. As presented in Chapter 2, it is possible to get an estimate of

attitude if two noncolinear vectors that are measured in the rocket’s body frame are known in

the inertial frame. For satellites these two measured vectors are usually a magnetic field vector

(measured with a magnetometer) and a gravitational field vector (measured with an accelerometer).

However, an accelerometer cannot be used to measure the gravitational field vector of a rocket in

flight.

To get the two needed vector sets to solve Wahba’s problem, we use a magnetometer and

angle gyros. The angle gyros measure the rocket’s rotational angles, which can then be used to

rotate a vector known in the inertial frame to the rocket’s body frame. We rotate the inertial

vector 1√
3

[

1 1 1

]T

into the body frame. With two sets of vectors from the magnetometer

measurements and angle gyro readings, we apply the ESOQ algorithm (see §2.13) to estimate the

rocket’s attitude quaternion. The ESOQ algorithm is chosen because it provides a closed-form

solution in the form of a quaternion to the attitude estimation problem at a low computational

cost. Estimates of the rotational rates can be found via Euler differentiation by first converting

the quaternion to a set of Euler angles. Then subtract the Euler angles of the current time step’s

Euler angles from the Euler angles of the previous time step, and divide by the time step.

The remainder of this section is organized as follows. In §5.6.1 we develop a model for using

the ESOQ algorithm in conjunction with an EKF and a UKF. The ESOQ algorithm provides

an estimate of the attitude quaternion from magnetometer and angle gyro measurements. The

quaternion is then provided as a sensor reading to the system model. Since the ESOQ algorithm

provides a quaternion solution, Euler angle formations for the systems are omitted in §5.6.1. Finally,

in §5.6.2, we present a model using the ESOQ algorithm to estimate angular position and Kalman

filtering to estimate angular rates.
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5.6.1 Wahba’s Problem Solution as Input to an EKF and UKF

In this section we develop the system model when the solution to Wahba’s problem (found via

the ESOQ algorithm) is modeled as a sensor measurement for an EKF and a UKF. The rocket is

assumed to be equipped with a magnetometer, rate gyros, and angle gyros as in §5.5. The rate gyro

and magnetometer measurements are inputs to the ESOQ algorithm, which estimates the rocket’s

attitude quaternion. The estimated quaternion along with measurements from the rate gyros are

used as sensor readings for the EKF and UKF.

The state vector xQ for the system is

xQ =

[

p q r qib,i qib,j qib,k qib,r wx wy wz wi wj wk wr

]T

where wi, wj , wk, and wr are walking biases associated with the quaternion estimate from the

ESOQ solution with dynamics

ẇn = cnwn + �n n = {i, j, k, r}.

The system dynamics are then
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ẋQ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

ccLp(t)
Ixx(t)

0 0 0 0 0 0 0 0 0 0 0 0 0

0
ccmqr(t)
Iyy(t)

− (Ixx(t)−Iyy(t))p
Iyy(t)

0 0 0 0 0 0 0 0 0 0 0

0
(Ixx(t)−Iyy(t))p

Iyy(t)
ccmqr(t)
Iyy(t)

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 r
2 − q

2
p
2 0 0 0 0 0 0 0

0 0 0 − r
2 0 p

2
q
2 0 0 0 0 0 0 0

0 0 0 q
2 −p

2 0 r
2 0 0 0 0 0 0 0

0 0 0 −p
2 − q

2 − r
2 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 cx 0 0 0 0 0 0

0 0 0 0 0 0 0 0 cy 0 0 0 0 0

0 0 0 0 0 0 0 0 0 cz 0 0 0 0

0 0 0 0 0 0 0 0 0 0 ci 0 0 0

0 0 0 0 0 0 0 0 0 0 0 cj 0 0

0 0 0 0 0 0 0 0 0 0 0 0 ck 0

0 0 0 0 0 0 0 0 0 0 0 0 0 cr

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

xQ

+

⎡

⎢

⎣

0 1
Iyy(t)

0 0 0 0 0 0 0 0 0 0 0 0

0 0 1
Iyy(t)

0 0 0 0 0 0 0 0 0 0 0

⎤

⎥

⎦

T

�control +w(t) (5.64)

.
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The output equation y is

y =

[

p+ wx q + wy r + wz qib,i + wi qib,j + wj qib,k + wk qib,r + wr

]T

+ v(t) (5.65)

=

[

I7×7 I7×7

]

xQ + v(t).

5.6.2 Wahba’s Problem Solution Combined with an EKF and UKF

In this section we develop the system model when the ESOQ algorithm and Kalman filtering

are used independently. The rocket’s attitude is estimated using the ESOQ algorithm, and an EKF

or UKF is used to estimate angular rates. The state vector xQ is

xQ =

[

p q r wx wy wz

]T

.

The system dynamics are then

ẋQ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

ccLp(t)
Ixx(t)

0 0 0 0 0

0
ccmqr(t)
Iyy(t)

− (Ixx(t)−Iyy(t))p
Iyy(t)

0 0 0

0
(Ixx(t)−Iyy(t))p

Iyy(t)
ccmqr(t)
Iyy(t)

0 0 0

0 0 0 cx 0 0

0 0 0 0 cy 0

0 0 0 0 0 cz

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

xQ +

⎡

⎢

⎣

0 1
Iyy(t)

0 0 0 0

0 0 1
Iyy(t)

0 0 0

⎤

⎥

⎦

T

�control +w(t). (5.66)
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The output equation y is given by

y =

[

p+ wx q + wy r + wz

]T

+ v(t) (5.67)

=

⎡

⎢

⎢

⎢

⎢

⎣

1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1

⎤

⎥

⎥

⎥

⎥

⎦

xQ + v(t). (5.68)

144



Chapter 6

Results

In this chapter we present the results of simulating the flight of a rotating rocket as modeled

in Chapter 5 when the missile’s control law is provided state estimates from a KF, an EKF, a UKF

[66] (see Appendix C.3 for a discussion of the UKF), and the ESOQ algorithm. We simulate the

rocket with various sensor suites and compare the performances of the various estimators. In §6.1

we examine estimator performance when the rocket is equipped only with rate gyros. Next, in §6.2

we simulate both rate gyros and an ideal sensor that perfectly measures a known inertial frame

vector in the body frame, and we compare the EKF and UKF performances. In §6.3 we replace the

ideal sensor of §6.2 with a magnetometer and analyze estimator performance. In §6.4 we compare

the performance of the EKF and the UKF when the available sensors are rate gyros and angle

gyros, which directly measure the rocket’s attitude. Next in §6.5 we compare the performance of

the ESOQ algorithm to estimators based on Kalman filtering. Finally in §6.6, we summarize our

findings and draw some conclusions.

Monte-Carlo simulations of a spinning rocket are used to compare the performance of the EKF,

UKF, and ESOQ for estimation of angular rates and position. 250 simulations are run with varied

parameters, which include rocket mass properties, main motor misalignment, wind disturbances,

the time at which the tail fins deploy, and tip-off error (angular rates experienced immediately

after exit from the launcher). The various estimators are run in tandem for each simulation. The

method we use to evaluate system performance is circular error probability (CEP), the radius of

the circle in which the rocket impacts 50% of the time. To calculate CEP exactly is difficult, so

several approximations have been developed. The third method proposed by Taub and Thomas
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[67] is used in this work:

CEP =
(

2�2
�,0.5/�

)1/2

(

�2x + �2y
2

)1/2

(6.1a)

� =

(

�2x + �2y
)2

�4x + �4y
(6.1b)

where �2x is cross range variance, �
2
y is down range variance, and �2

�,0.5 is the chi-squared distribution

with � degrees of freedom. We also use the average of the mean squared error (MSE) over all Monte

Carlo runs of rocket angular rates and position to evaluate performance. For the CEP all values

are normalized, and for MSE all values are scaled by dividing by a maximum value.

6.1 Rate Gyros

In this section we compare the KF (implemented for the system model given by Equations

(5.7)-(5.8) with the method of §5.2.1) and UKF (implemented with Algorithm C.3.1 for the system

model given by Equation (5.4)) performances when rate gyros are the only sensors used for state

estimation. In Figures 6.1-6.3 and 6.4-6.6 we show the average MSE of the KF and UKF estimates

of rotational rates and angular position. The KF average MSEs are plotted in blue, and the UKF

average MSEs are plotted in green. As we show in Figure 6.1, the KF estimates of roll rate p

have an MSE around 0 while the UKF estimates have an MSE of almost 1. However, we see from

Figures 6.2 and 6.3 that the KF and UKF have comparable average MSEs for estimates of pitch

rate q and yaw rate r. The UKF average MSE spikes at approximately 1 s while the KF estimates

remain fairly smooth.

In Figures 6.4-6.6 we see the MSEs of the KF and UKF estimates of roll �, pitch �, and yaw  

angles. The MSE of the roll angle oscillates for both the KF and the UKF with the UKF settling to

a smaller MSE than the KF after 1.5 s. The KF and UKF have almost identical MSEs for pitch as

shown in Figure 6.5. The KF MSE of yaw angle is almost 0 while the UKF MSE oscillates between

0 and 1.

We show normalized CEP plotted versus time in Figures 6.7 and 6.8. The baseline (uncon-

trolled) CEP is shown with a blue line, the controlled CEP is shown with a green line, and the
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difference between the uncontrolled and controlled CEP is shown with a red line. In Figure 6.7 we

show the CEP when the KF provides estimates to the rocket’s control law, and in Figure 6.8 we

show the CEP when the UKF provides estimates to the rocket’s control law. Controlling the rocket

with the KF as its estimator lowers the CEP by more than 9 units while the UKF only lowers CEP

by a little less than 4 units.
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Figure 6.1: Scaled MSE of Roll Rates of KF and UKF Estimates from Rate Gyros
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Figure 6.2: Scaled MSE of Pitch Rates of KF and UKF Estimates from Rate Gyros
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Figure 6.3: Scaled MSE of Yaw Rates of KF and UKF Estimates from Rate Gyros
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Figure 6.4: Scaled MSE of Roll Angles of KF and UKF Estimates from Rate Gyros
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Figure 6.5: Scaled MSE of Pitch Angles of KF and UKF Estimates from Rate Gyros
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Figure 6.6: Scaled MSE of Yaw Angles of KF and UKF Estimates from Rate Gyros
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Figure 6.7: Normalized CEP for KF Estimates from Rate Gyros
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Figure 6.8: Normalized CEP for UKF Estimates from Rate Gyros

6.2 Rate Gyros and an Ideal Vector

In this section we compare the EKF (implemented with Algorithm C.2.1 for the system model

given by Equations (5.15) and (5.20) using the equations developed in §5.3) and UKF (implemented

with Algorithm C.3.1 for the system model given by Equations (5.15) and (5.20)) performances

when rate gyros and an ideal vector sensor are used for state estimation (for details of model

development see Chapter 5 and details of algorithm implementation see C). In Figures 6.9-6.11

and 6.12-6.14 we show the average MSEs of the EKF and UKF estimates of rotational rates and

angular position. The EKF average MSEs are plotted in blue, and the UKF average MSEs are

plotted in green. As we see from Figure 6.9, the UKF roll rate MSE starts at 0, increases to almost

0.6, and approaches 0 within the first half second. The MSE jumps to 1 and then steadily decreases.

The EKF roll rate MSE increases quickly from 0 to more than 0.2 and then more slowly increases

to 0.3 until 1 s at which point it remains constant. The EKF MSE is consistently smaller than
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the UKF MSE after 0.5 s. In Figures 6.10 and 6.11 we see that the EKF provides better initial

estimates of the pitch and yaw rate, and then the UKF average MSE approaches that of the EKF.

As shown in Figure 6.12, the EKF MSE for roll angle oscillates between 0 and 1 with an

average value of around 0.5. The UKF oscillates about 0.5 between 0.3 and 1 and settles to 0.6.

The UKF MSE for pitch angle as shown in 6.13 oscillates until reaching steady state at around

1.75 s. The EKF MSE exhibits the same behavior, but while the EKF MSE oscillations have the

same phase as the UKF MSE, the magnitude is larger. In Figure 6.14 it is shown that both the

EKF and UKF MSE oscillate, but the EKF MSE oscillates between 0.5 and 1 for the first second

while the UKF MSE oscillates between 0 and 1. The UKF MSE settles to just under 0.6 at about

1.75 s while the EKF MSE does not settle within 2 s.

In Figure 6.15 we show the CEP resulting from the EKF, and in Figure 6.16 we show the CEP

resulting from the UKF. The baseline case is shown in blue, the controlled case is shown in green,

and the difference between the baseline and controlled cases is shown in red. The EKF reduces the

base line CEP from about 15 units to almost 6 units for a difference of about 9 units. The UKF

only reduces the baseline CEP by a little over 1 unit.

152



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1  1.5  2

M
S

E
 (

S
ca

le
d)

Time (s)

p

EKF
UKF

Figure 6.9: Scaled MSE of Roll Rates of EKF and UKF Estimates from Rate Gyros and an Ideal
Vector
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Figure 6.10: Scaled MSE of Pitch Rates of EKF and UKF Estimates from Rate Gyros and an Ideal
Vector
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Figure 6.11: Scaled MSE of Yaw Rates of EKF and UKF Estimates from Rate Gyros and an Ideal
Vector
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Figure 6.12: Scaled MSE of Roll Angles of EKF and UKF Estimates from Rate Gyros and an Ideal
Vector
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Figure 6.13: Scaled MSE of Pitch Angles of EKF and UKF Estimates from Rate Gyros and an
Ideal Vector
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Figure 6.14: Scaled MES of Yaw Angles of EKF and UKF Estimates from Rate Gyros and an Ideal
Vector
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Figure 6.15: Normalized CEP for EKF Estimates from Rate Gyros and an Ideal Vector
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Figure 6.16: Normalized CEP for UKF Estimates from Rate Gyros and an Ideal Vector
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6.3 Rate Gyros and a Magnetometer

In this section we compare the EKF (implemented with Algorithm C.2.1 for the system model

given by Equations (5.37) and (5.38) using the equations developed in §5.3) and UKF (implemented

with Algorithm C.3.1 for the system model given by Equations (5.37) and (5.38)) performances

when rate gyros and a magnetometer are used for state estimation. In Figures 6.17-6.19 and 6.20-

6.22, we show the average MSE of EKF and UKF estimates of rotational rates and angular position,

respectively. EKF average MSEs are plotted in blue, and UKF average MSEs are plotted in green.

As we see in Figure 6.17, the EKF provides estimates of roll rate with the same average MSE as

the UKF. For pitch and yaw rate, the EKF and UKF MSEs are almost the same with no significant

differences, as shown in Figures 6.18 and 6.19.

In Figures 6.20-6.22 we show the average MSE of the roll �, pitch �, and yaw  angles,

respectively. The roll angle MSE for the EKF and UKF both oscillate between 0 and 0.8 but have

opposing phases. The UKF pitch angle MSE holds almost constant at a little over 0.3 units while

the EKF MSE oscillates approximately about 0.4 before it settles to about that value. The UKF

MSE for yaw angle oscillates between the 0 and 1. The EKF MSE oscillates about 0.6 faster than

the UKF MSE before reaching steady state.

The MSE plots of pitch rate and yaw rate estimates in Figures 6.10, 6.18, 6.11, and 6.19 explain

why the ideal vector case improves the CEP less than the magnetometer case for UKF estimates.

The MSE of the UKF estimates spikes almost immediately for the ideal vector case while for the

magnetometer case the MSE does not spike until 1 s. The ideal vector case estimates become much

better than the magnetometer case estimates after 1 s. Since control effort is most effective before

the fins open at 1 s, the inaccuracy of the early estimates in the ideal case detrimentally affects the

CEP.

We show in Figures 6.23 and 6.24 the normalized CEP resulting from the EKF and UKF

estimates, respectively. The blue lines depict the baseline case, the green lines depict the controlled

case, and the red lines depict the differences between the baseline and controlled cases. The EKF

estimates improve the CEP from the baseline case by almost 9 units while the UKF only improves

the baseline case by not quite 4 units.
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Figure 6.17: Scaled MSE of Roll Rates of EKF and UKF Estimates from Rate Gyros and a
Magnetometer
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Figure 6.18: Scaled MSE of Pitch Rates of EKF and UKF Estimates from Rate Gyros and a
Magnetometer
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Figure 6.19: Scaled MSE of Yaw Rates of EKF and UKF Estimates from Rate Gyros and a
Magnetometer
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Figure 6.20: Scaled MSE of Roll Angles of EKF and UKF Estimates from Rate Gyros and a
Magnetometer
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Figure 6.21: Scaled MSE of Pitch Angles of EKF and UKF Estimates from Rate Gyros and a
Magnetometer
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Figure 6.22: Scaled MSE of Yaw Angles of EKF and UKF Estimates from Rate Gyros and a
Magnetometer
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Figure 6.23: Normalized CEP for EKF Estimates from Rate Gyros and a Magnetometer
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Figure 6.24: Normalized CEP for UKF Estimates from Rate Gyros and a Magnetometer
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6.4 Rate Gyros and Angle Gyros

In this section we compare the EKF (implemented with Algorithm C.2.1 for the system model

given by Equations (5.45) and (5.46) using the equations developed in §5.4.1) and UKF (imple-

mented with Algorithm C.3.1 for the system model given by Equations (5.45) and (5.46)) perfor-

mances with a sensor suite of both rate gyros and angle gyros. In Figures 6.25-6.27 and 6.28-6.30,

we show the average MSE of EKF and UKF estimates of rotational rates and angular position,

respectively. The EKF average MSEs are plotted in blue, and the UKF average MSEs are plotted

in green. As we see from Figure 6.25, the EKF MSE is slightly better than the UKF MSE until

shortly after 1.5 s, when the UKF MSE peaks while the EKF MSE begins to decrease. In Figures

6.26 and 6.27 we see that the EKF and UKF MSEs are almost identical, with the EKF MSE being

only slightly better. Both UKF pitch rate and yaw rate MSEs spike to 1 shortly after launch while

the EKF MSEs remain constant.

In Figures 6.28, 6.29, and 6.30 we show the average MSE of the EKF and UKF estimates

for the roll angle �, pitch angle �, and yaw angle  , respectively. The EKF average MSE for roll

angle oscillates about 0.4. The UKF average MSE oscillates about 0.5, and the error spikes to

values greater than or equivalent to that of the EKF error. For pitch angle the UKF average MSE

remains constant at a value slightly greater than 0.2. The UKF average MSE remains smaller than

the EKF average MSE, which increases to 1 before 0.25 s and then settles to 0.8. For yaw angle

the EKF average MSE settles to slightly greater than 0.4 after spiking to 0.7 before 0.25 s. The

UKF average MSE oscillates between 0 and 1. After 1 s the magnitude of the oscillations begin to

decrease.

In Figures 6.31 and 6.32 we show the normalized CEP. We show the CEP for EKF estimates

in Figure 6.31 and the CEP for UKF estimates in Figure 6.32. The blue lines depict the baseline

case, the green lines depict the controlled case, and the red lines depict the differences between the

baseline and controlled cases. The EKF estimates reduce the controlled CEP from the baseline

CEP by approximately 9 units while the UKF only reduces the CEP between the controlled and

baseline cases by about 3 units.
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Figure 6.25: Scaled MSE of Roll Rates of EKF and UKF Estimates from Rate Gyros and Angle
Gyros
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Figure 6.26: Scaled MSE of Pitch Rates of EKF and UKF Estimates from Rate Gyros and Angle
Gyros
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Figure 6.27: Scaled MSE of Yaw Rates of EKF and UKF Estimates from Rate Gyros and Angle
Gyros
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Figure 6.28: Scaled MSE of Roll Angles of EKF and UKF Estimates from Rate Gyros and Angle
Gyros
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Figure 6.29: Scaled MSE of Pitch Angles of EKF and UKF Estimates from Rate Gyros and Angle
Gyros
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Figure 6.30: Scaled MSE of Yaw Angles of EKF and UKF Estimates from Rate Gyros and Angle
Gyros
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Figure 6.31: Normalized CEP for EKF Estimates from Rate Gyros and Angle Gyros
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Figure 6.32: Normalized CEP for UKF Estimates from Rate Gyros and Angle Gyros
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6.5 Rate Gyros, Angle Gyros, and Magnetometer

In this section we focus on the results of using the ESOQ algorithm to estimate the rocket’s

states. In §6.5.1 we present the results of ESOQ state estimations with ideal sensors and nonideal

sensors. Next, in §6.5.2 we present the results of using the EKF and UKF to estimate states when

rate gyro, angle gyro, and magnetometer measurements are all available in order to compare the

results to ESOQ-based estimators in following sections. Finally, in §6.5.3 we present the results of

combining the ESOQ algorithm with the KF, EKF, and UKF.

6.5.1 ESOQ Algorithm

In Figures 6.33 and 6.34 we show the results of the rocket being controlled with estimates

from the ESOQ algorithm. The only sensors used for these simulations are angle gyros and a

magnetometer. In Figure 6.33 the results of the ESOQ algorithm are shown when ideal sensors

are used. The top line indicates the baseline CEP when no control is applied to the rocket, the

middle line is the rocket’s controlled CEP, and the bottom line is the difference between the two

cases. The ESOQ estimator with ideal sensor readings alone only improves the the CEP by about

1.5 units. The CEP resulting from nonideal sensor readings is shown in Figure 6.34. The top line

is the controlled CEP, the middle line is the baseline CEP, and the bottom line is the difference

between the two CEPs. The controlled CEP is worse than the baseline CEP when nonideal sensor

readings are provided to the ESOQ algorithm. One reason for these results is that the control law

relies heavily on rotational rate estimates. The ESOQ algorithm only provides angular position

estimates so rotational rates are estimated by Euler differentiation. We show normalized roll rates

for all 250 dispersion runs in Figure 6.35, and we show the normalized roll rates as estimated by

the ESOQ algorithm with nonideal sensors in Figure 6.36. In Figure 6.37 we show the normalized

actual roll angles, and in Figure 6.38 we show the normalized roll angles as estimated by the ESOQ

algorithm with nonideal sensors. While the ESOQ algorithm predicts roll angle well, the Euler

differentiation yields poor estimates of roll rate. The ESOQ algorithm yields similar results for

pitch angles and rates as shown in Figures 6.39-6.42. As we see from Figures 6.43-6.46, the ESOQ

algorithm poorly estimates yaw angles and therefore yaw rates.

167



 0

 2

 4

 6

 8

 10

 12

 14

 16

 0  10  20  30  40  50

C
E

P
 (

no
rm

al
iz

ed
)

time (s)

Baseline
Controlled
Difference

Figure 6.33: CEP for ESOQ Controlled Rocket with Ideal Angle Gyros and Magnetometer
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Figure 6.34: CEP for ESOQ Controlled Rocket with Nonideal Angle Gyros and Magnetometer
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Figure 6.35: Actual Roll Rates (Normalized)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0  0.5  1  1.5  2

p 
(S

ca
le

d)

Time (s)

ESOQ

Figure 6.36: ESOQ Estimated Roll Rates with Nonideal Sensors (Normalized)
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Figure 6.37: Actual Roll Angles (Normalized)
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Figure 6.38: ESOQ Estimated Roll Angles with Nonideal Sensors (Normalized)
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Figure 6.39: Actual Pitch Rates (Normalized)
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Figure 6.40: ESOQ Estimated Pitch Rates with Nonideal Sensors (Normalized)
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Figure 6.41: Actual Pitch Angles (Normalized)
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Figure 6.42: ESOQ Estimated Pitch Angles with Nonideal Sensors (Normalized)
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Figure 6.43: Actual Yaw Rates (Normalized)
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Figure 6.44: ESOQ Estimated Yaw Rates with Nonideal Sensors (Normalized)
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Figure 6.45: Actual Yaw Angles (Normalized)
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Figure 6.46: ESOQ Estimated Yaw Angles with Nonideal Sensors (Normalized)
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6.5.2 EKF and UKF with All Sensors

We show the CEPs resulting from EKF and UKF estimates with rate gyros, angle gyros, and

a magnetometer as described by Equations (5.62) and (5.63) in Figures 6.47 and 6.48, respectively.

In Figure 6.47 the top line is the baseline CEP, the bottom line is the EKF-controlled CEP, and

the middle line is the difference between the two. The EKF performs well reducing the CEP by

about 9 units. The UKF, however, performs poorly as we show in Figure 6.48, where the top line is

the UKF controlled CEP, the middle line is the baseline CEP, and the bottom line is the difference

between the baseline and controlled cases. The CEP is actually increased over the baseline case by

about 1 unit.
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Figure 6.47: CEP for EKF Controlled Rocket with Rate Gyros, Angle Gyros, and Magnetometer

6.5.3 ESOQ Algorithm Combined with Kalman Filters

In Figures 6.49-6.52 we show the CEPs resulting from combining estimates from the ESOQ

algorithm with Kalman filter based estimators. We show the results of attitude estimates from the

ESOQ algorithm being used as inputs to an EKF as described by Equations (5.64) and (5.65) in
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Figure 6.48: CEP for UKF Controlled Rocket with Rate Gyros, Angle Gyros, and Magnetometer

Figure 6.49. For this case the ESOQ algorithm provides an estimate of the rocket’s attitude in the

form of a quaternion. This attitude estimate is then treated as a sensor reading which is provided

to the EKF. The EKF then provides rotational rate and attitude estimates based on readings from

the rate gyros and the ESOQ algorithm estimates. In Figure 6.49 the top line is the baseline CEP,

the bottom line is the controlled CEP, and the middle line is the difference between the two cases.

The CEP is improved by about 9 units. In Figure 6.50 the results of controlling the rocket with

estimates from a EKF/ESOQ hybrid are shown. The EKF is used to estimate angular rates, and

the ESOQ algorithm is used to estimate angular position. The top line in the figure is the baseline

CEP, the bottom line is the controlled CEP, and the middle line is the difference between them.

The CEP is improved by about 9 units. We show the results for a hybrid UKF/ESOQ estimator in

Figure 6.51. The top line in Figure 6.51 is the baseline CEP, the middle line is the controlled CEP,

and the bottom line is the difference between the baseline and controlled cases. The UKF/ESOQ

hybrid estimator improves the CEP by just under 4 units. In Figure 6.52 is shown the results of

the rocket controlled with a hybrid KF/ESOQ estimator, where the KF estimates rotational rates,

and the ESOQ algorithm estimates attitude. The top line in the figure is the baseline CEP, the
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bottom line is the controlled CEP, and the middle line is their difference. The KF/ESOQ estimator

improves the CEP by slightly more than 9 units.
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Figure 6.49: CEP for Rocket Controlled by Estimates from an EKF with Inputs from the ESOQ
Algorithm

In Figures 6.53-6.58 we show the MSE of the state estimates of the EKF, UKF, and the EKF

that has ESOQ estimates as inputs. Roll rate, pitch rate, and yaw rate MSEs are shown in Figures

6.53, 6.54, and 6.55, respectively. In these three figures the EKF MSE and the EKF/ESOQ MSE

are identical as shown by the blue EKF line being directly under the red EKF/ESOQ line. The

EKF estimators have better MSEs than the UKF roll rate until the fins open at 1 s. At this point

the UKF MSE steadily decreases. The UKF MSE for pitch rate is much smoother than the MSEs

for the EKF estimator. The UKF MSE spikes shortly after the rocket’s launch and then falls below

the EKF MSEs after 0.2 s. The MSEs of the EKF estimator begin to spike when the rocket’s fins

open. For yaw rate the UKF MSE peaks shortly after 0.1 s at which point it slowly decreases, not

falling below the MSEs of the EKF estimator until shortly before 1 s. As in the pitch rate case,

the EKF estimators’ MSEs spike when the rocket’s fins open. In Figures 6.56, 6.57, and 6.58 we

show the roll angle, pitch angle, and yaw angle MSEs, respectively. The roll angle MSEs for all
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Figure 6.50: CEP for EKF/ESOQ Hybrid Estimator Controlled Rocket

three estimators oscillate with there being little difference between the EKF and UKF estimators’

MSEs. The EKF/ESOQ estimator’s MSE stays less than the MSEs of the other estimator after

1.5 s. For pitch angle the UKF yields the worst MSE, which consistently stays near 0.8 units. The

MSEs of the EKF and EKF/ESOQ estimators oscillate with the EKF settling to a slightly higher

value of 0.6 units than the EKF/ESOQ estimator, which settles to around 0.55 units. The yaw

angle MSEs behave similarly to the pitch angle MSEs. The UKF MSE stays consistently around

0.65 units, while the MSEs of the other estimators oscillate. Unlike the pitch angle MSE, the EKF

MSE settles to a lower value of 0.6 while the EKF/ESOQ MSE reaches about 0.7 units.
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Figure 6.51: CEP for UKF/ESOQ Hybrid Estimator Controlled Rocket
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Figure 6.52: CEP for KF/ESOQ Hybrid Estimator Controlled Rocket
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Figure 6.53: Roll Rate MSE for ESOQ Estimates as Input to an EKF
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Figure 6.54: Pitch Rate MSE for ESOQ Estimates as Input to an EKF
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Figure 6.55: Yaw Rate MSE for ESOQ Estimates as Input to an EKF
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Figure 6.56: Roll Angle MSE for ESOQ Estimates as Input to an EKF
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Figure 6.57: Pitch Angle MES for ESOQ Estimates as Input to an EKF
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Figure 6.58: Yaw Angle MSE for ESOQ Estimates as Input to and EKF
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In Figures 6.59-6.64 we show the MSEs for the UKF and EKF estimators as well as the

EKF/ESOQ hybrid estimator, where the EKF is used to estimate angular rates, and the ESOQ

algorithm is used to estimate angular position. As shown in Figures 6.59, 6.60, and 6.61, the roll,

pitch, and yaw rate MSEs behave identically to those found in Figures 6.53-6.55. This is to be

expected, since the EKF and UKF estimators are identical in both cases and the EKF/ESOQ

hybrid is yielding purely EKF estimates for rate estimates. From this point forward UKF and pure

EKF estimator MSEs will not be discussed, since they will be identical to those of Figures 6.53-6.58

for all remaining plots in which they appear. They appear in the plots to more easily compare their

performances to the performance of the ESOQ estimators. In Figure 6.62 we show the roll angle

MSEs. The EKF/ESOQ hybrid estimator has a fairly steady MSE at less than 0.1 units with an

occasional spike for slightly more than 1 s. After 1 s the MSE begins to increase and settles to

around 0.2 units while the EKF and UKF MSEs are greater than 0.55 units. The EKF/ESOQ

hybrid MSE is worse than both the EKF and UKF MSEs for pitch angle as shown in Figure 6.63,

holding steady at 1 unit. The yaw angle MSE is shown in Figure 6.64. The EKF/ESOQ hybrid

oscillates between 0 and 1 units until the rocket’s fins open at 1 s. The magnitude of the oscillations

then begins to decrease until the MSE settles to 0.6 units.
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Figure 6.59: Roll Rate MSE for EKF/ESOQ Hybrid
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Figure 6.60: Pitch Rate MSE for EKF/ESOQ Hybrid
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Figure 6.61: Yaw Rate MSE for EKF/ESOQ Hybrid
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Figure 6.62: Roll Angle MSE for EKF/ESOQ Hybrid
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Figure 6.63: Pitch Angle MSE for EKF/ESOQ Hybrid
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Figure 6.64: Yaw Angle MSE for EKF/ESOQ Hybrid
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In Figures 6.65-6.70 we show the MSEs for the EKF, UKF, and UKF/ESOQ hybrid estimators.

The UKF/ESOQ hybrid estimator uses the UKF to provide angular rate estimates and the ESOQ

algorithm to provide angular position estimates. The MSE results of the UKF/ESOQ hybrid

estimator are identical to those of the EKF/ESOQ hybrid.
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Figure 6.65: Roll Rate MSE for UKF/ESOQ Hybrid
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Figure 6.66: Pitch Rate MSE for UKF/ESOQ Hybrid
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Figure 6.67: Yaw Rate MSE for UKF/ESOQ Hybrid
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Figure 6.68: Roll Angle MSE for UKF/ESOQ Hybrid
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Figure 6.69: Pitch Angle MSE for UKF/ESOQ Hybrid
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Figure 6.70: Yaw Angle MSE for UKF/ESOQ Hybrid
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In Figures 6.71-6.76 we show the MSEs for the EKF, UKF, and KF/ESOQ hybrid estimators.

The KF/ESOQ hybrid estimator uses the KF to provide angular rate estimates and the ESOQ al-

gorithm to provide angular position estimates. We present roll rate MSEs in Figure 6.71. Although

the roll rate is modeled as a known function, we show the roll rate MSE to validate our model. The

MSE spikes when the rocket launches but falls shortly thereafter to remain just above 0 until the

fins open. Once the fins open, the MSE slightly increases but is still under 0.1 units. As shown in

Figure 6.72, the EKF/ESOQ hybrid has a worse MSE than both the EKF and UKF for pitch rate.

While the MSE is initially near 0, it jumps to more than 0.4 units and remains near 0.5 units until

the fins open at 1 s. At this point the MSE spikes to 1 unit and oscillates about 0.6 until finally

falling to about 0.3 units. Yaw rate MSE for the KF/ESOQ hybrid is almost identical to the pitch

rate MSE as shown in Figure 6.73. As we see in Figures 6.74, 6.75, and 6.76, the roll angle, pitch

angle, and yaw angle MSEs, respectively, are identical to those of Figures 6.68-6.70 since the same

estimator is used.
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Figure 6.71: Roll Rate MSE for KF/ESOQ Hybrid
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Figure 6.72: Pitch Rate MSE for KF/ESOQ Hybrid
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Figure 6.73: Yaw Rate MSE for KF/ESOQ Hybrid
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Figure 6.74: Roll Angle MSE for KF/ESOQ Hybrid
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Figure 6.75: Pitch Angle MSE for KF/ESOQ Hybrid
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Figure 6.76: Yaw Angle MSE for KF/ESOQ Hybrid
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6.6 Conclusions

We have presented the results of simulating a rocket that is controlled with estimates from a

variety of estimators. The best performing estimators are the KF-based estimators, followed by the

EKF-based estimators. The UKF-based estimators perform poorly, and the pure ESOQ estimators

perform the worst of all. These results directly related to the ability of each estimator to accurately

estimate roll rate. The control law uses the estimate of roll rate to determine if a lateral thruster

will be in the correct position to improve the rocket’s attitude when fired. As the roll rate estimate

becomes more accurate, the control law is better able to yield the desired attitude. The KF-based

estimators do not estimate roll rate; rather, they use a model of roll rate. Thus, the KF estimators

yield the best results. The EKF- and UKF-based estimators estimate roll rate based on dynamic

equations rather than using a model. The estimated roll rates are not as accurate as the modeled

roll rates so the EKF and UKF do not perform as well as the KF. The worst-performing estimator,

the ESOQ algorithm, does not provide a roll rate estimate at all. The ESOQ algorithm estimates

roll angle, and Euler differentiation is used to estimate roll rate. The Euler differentiation poorly

approximates roll rate so the ESOQ algorithm has the worst performance.

The importance of roll rate estimation explains why the KF with only rate gyros has better

performance than other estimators with more sensors. The addition of angle gyros and magnetome-

ters does nothing to improve estimates of roll rate. Angle gyros directly measure angular position,

and magnetometers indirectly measure angular position. While the additional sensors do improve

the performance of the EKF and UKF estimators, none of them approach the performance of the

KF estimators.

Aside from the poor roll rate estimation, another factor affects the performance of the UKF

estimator. A quaternion formulation of the system is used. The UKF algorithm is performed on

vector space, which is closed under addition; however, rotation quaternions are not a member of

vector space and are not closed under addition. Thus, the method the UKF uses to create sigma

points does not guarantee that a valid attitude quaternion will result from the operation. To ensure

that the quaternion component of the state vector is a valid rotation quaternion, it is normalized

as necessary in the algorithm. This repeated normalization causes the mean and covariance of the
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random variable not to be preserved. A method to avoid this linearization is proposed by Cheon

and Kim in [68] but was not used in this work.

The best improvement in controlled CEP over the baseline CEP is yielded by the Kalman

filter with rate gyros and the Kalman filter in conjunction with the ESOQ algorithm. The Kalman

filter with rate gyros, however, is a better choice than the KF/ESOQ hybrid, since the hybrid filter

requires rate gyros, angle gyros, and a magnetometer. The KF/ESOQ hybrid is also more compu-

tationally expensive than the KF. The EKF performs essentially the same for each sensor package,

reducing the baseline CEP almost as much as the KF. However, the EKF is computationally more

expensive than the KF. The UKF performs poorly for each case as compared to the performance of

the KF. The UKF’s best performances are for the rate-gyro-only case and the rate-gyro and magne-

tometer case. The UKF’s reduction in CEP is actually better for the rate gyro and magnetometer

package than for the rate gyro and ideal vector package. This is because of the normalization of the

quaternion component during estimation. The noise present on the magnetometer helps counteract

the multiple normalizations. The UKF provides a worse CEP than the baseline CEP for the rate

gyro, angle gyro, and magnetometer sensor suite. Both the angle gyros and magnetometer output

models are nonlinear functions of the attitude quaternion, which exacerbates the effects of nor-

malizing the quaternion. Thus, poor estimates result. The best-performing UKF based estimator

is the UKF/ESOQ hybrid. Since the ESOQ algorithm is used to estimate attitude instead of the

UKF, no quaternion normalization is needed. However, the results are still poor compared to the

KF results.
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Chapter 7

Conclusions and Future Work

In this chapter we summarize the work presented. In §7.1 we present the contributions this

work has made to the field of state estimation. We conclude the chapter with §7.2 in which we

pose questions that directly follow from the work presented.

7.1 Contributions

In this work, we have made several contributions. We began by presenting various algorithms

that find solutions to Wahba’s problem. We evaluated these algorithms, presenting their advantages

and disadvantages, to choose the appropriate algorithm for the ballistic rocket problem. Next, we

presented several algorithms that were designed to estimate the constant biases of a magnetometer

on a satellite. After reviewing each algorithm, we selected the algorithm best suited for estimating

the constant biases of a magnetometer on a rocket in a launch mechanism. These algorithms had

never previously been applied to a ballistic projectile since magnetometers are usually found on

orbiting satellites. In chapter 4, we presented several algorithms for controlling a rocket using

reaction jets. After evaluating their merits, we selected the algorithm most appropriate for a rocket

controlled solely by reaction jets for the first few seconds of flight.

This work has also made several contributions to the field of state estimation of a ballistic

rocket. We have addressed the issue of state estimation of a rocket that is controlled solely with

a ring of lateral jets. While the control of such a rocket has been previously addressed, state

estimation has not. We also focused on state estimation during the first few seconds of flight

in a harsh environment. During this time the rocket is subject to many error sources including

blow-back and tip-off errors. While previous work has addressed the issue of state estimation of

projectiles during later stages of flight, the first few seconds of flight had been ignored. We also

compared the effect that various MEMS sensor suites had on the state estimation problem. We
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modeled an angle gyro and implemented it in our simulations. Angle gyros, new developmental

sensors, have never previously been simulated in such a manner. A magnetometer also augmented

some sensor suites. The addition of a magnetometer to a rocket equipped only with inertial sensors

had never previously been done.

We used various state estimators in new ways in this work. We compared the performance

of the KF, EKF, UKF, and ESOQ algorithms for estimating the states of a rotating rocket and

evaluated which estimator performed best. The ESOQ algorithm, which provides a solution to

Wahba’s problem, had never previously been applied to a vehicle other than an orbiting satellite.

The use of the ESOQ algorithm was made possible by adding a magnetometer and angle gyros to

the rocket. We also used a solution to Wahba’s problem (the ESOQ algorithm) in conjunction with

Kalman filter based estimators, the EKF and UKF. No previous work has combined any solution

of Wahba’s problem with Kalman filtering for estimating the states of a rocket.

7.2 Future Work

Some questions concerning this work have yet to be answered. One area worth exploring is the

addition of more reaction jets to the rocket. What would be the affect on accuracy if more reaction

jets were available to apply torques? It is also of interest to study the effects of multiple reaction

jets that can be fired multiple times. If the rocket was equipped with more memory capability,

more possibilities would be available. A magnetic field model of the earth could be stored on the

rocket, which would impact the accuracy of a magnetometer on a rocket. Also, better and more

complex sensor calibration algorithms could be implemented. More memory would also allow a

more accurate model of the rocket to be stored onboard. This leads to the question of how would a

more accurate model affect the performance of the various state estimators presented in this work.
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Appendix A

Rotation Sequences

A common problem that arises in modeling the dynamics of a moving body is changing from

one reference frame to another. Many reference frames exist, with the two most common being

the inertial reference frame and the body-fixed reference frame. An inertial reference frame has its

axes fixed relative to the motion of the body. Its positive x-axis points north, its positive y-axis

points east, and its positive z-axis points down. A body-fixed reference frame usually has its origin

located at the body’s center of gravity. Its positive x-axis points toward the front of the vehicle,

such as toward the nose of an airplane. The positive y-axis points to the vehicle’s right, and the

positive z-axis points down. A representation of these two coordinate frames is shown in Figure 2.1.

Converting between the inertial and body frames or any other reference frame involves sequences of

rotations. The most common way to represent these rotation sequences is either via Euler angles or

quaternions. References [69] and [70] give a detailed treatment of the mathematics and applications

of quaternions as well as Euler angles.

A.1 Euler Angles

The group SO(3) is comprised of all 3 × 3 orthogonal matrices with a determinant of +1.

Applying a matrix in SO(3) to a vector is equivalent to rotating that vector by some angle around

a fixed axis. One way of describing the rotation is with Euler angles and Euler axes. An Euler angle

is defined as the angle of rotation about a coordinate axis. By applying these angles of rotation in

a specific order, one reference frame can be rotated into another. Euler’s theorem states: “Any two

independent orthonormal coordinate frames can be related by a sequence of rotations (not more

than three) about coordinate axes, where no two successive rotations may be about the same axis”

[69]. While there exist twelve different sequences of rotations, the sequence z-y-x is commonly used

in aerospace applications.
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In Figure 2.1 the Euler angles are labeled. A rotation about the z-axis is called yaw ( ), a

rotation about the y-axis is pitch (�), and a rotation about the x-axis is roll (�). Given the angles

�, �, and  , any vector in one coordinate frame can be rotated into another coordinate frame. To

rotate from the inertial frame to the body frame

xB =

⎡

⎢

⎢

⎢

⎢

⎣

c c� s c� −s�
c s�s� − s c� s s�s� + c c� c�s�

c s�c� + s s� s s�c� − c s� c�c�

⎤

⎥

⎥

⎥

⎥

⎦

xI

xB = RIBx
I

where cx = cos(x) and sx = sin(x). RIB is a rotation matrix, so it is orthogonal, and its inverse is its

transpose. Therefore, to rotate from the body frame to the inertial frame xI = RTIBx
B = RBIx

B .

A difficulty arises with using Euler angles to represent rotations. No matter what rotation order is

used, there is always a singularity at some angle.

A.2 Quaternions

A quaternion can be thought of as the composition of a scalar value and a three-vector:

q = q0 + q = q0 + iq1 + jq2 + kq3.

Two quaternions p and q are equal if pi = qi for i = 0, 1, 2, 3. The sum of two quaternions is defined

as

p+ q = (p0 + q0) + i(p1 + q1) + j(p2 + q2) + k(p3 + q3).

The product (which is not commutative) of two quaternions is

pq = p0q0 − q ⋅ q+ p0q+ q0p+ p× q.
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The complex conjugate of a quaternion q = q0 + q is q∗ = q0 − q, and the norm of a quaternion is

∣q∣ = √
q∗q =

√
qq∗. A quaternion’s inverse is

q−1 =
q∗

∥q∥2 .

The derivative of a quaternion is another quaternion. Suppose ! is the angular rate at which

a rotation is occurring about some unit vector Ω = i!1 + j!2 + k!3. Then

q̇ = !qΩ

and

q̇∗ = −!Ωq∗.

These can be written in matrix form as

q̇ = !

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 −!1 −!2 −!3

!1 0 !3 −!2

!2 −!3 0 !1

!3 !2 −!1 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

q

and

q̇∗ = !

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 !1 !2 !3

−!1 0 !3 −!2

−!2 −!3 0 !1

−!3 !2 −!1 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

q∗.

Quaternions are a way to represent rotations without singularities. To rotate a vector in ℝ
3,

view the vector as a quaternion with its real part equal to zero (a pure quaternion). Then the

rotation of a vector v via a quaternion q is defined as

w = qvq∗,
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which is a linear operation. A series of rotations on vector v by quaternion p then q is defined as

w = qpvp∗q∗.

A unit quaternion may be written as

q = q0 + q = cos(�) + u sin(�). (A.1)

The rotation of vector v by a unit quaternion q as defined in Equation (A.1) may be interpreted

as a rotation of v through an angle of 2� about the axis q. So to rotate some vector an angle of �

about a vector q, apply a rotation with the following quaternion

q = q0 + q = cos(
�

2
) + u sin(

�

2
).

209



Appendix B

Spherical Mathematics

Since the earth is often modeled as a sphere, we present math associated with spheres that

is used in modeling the earth’s magnetic field. We begin by presenting spherical coordinates and

a method to convert between Cartesian and spherical coordinates. Next, we present Legendre

functions. We conclude the chapter by linking Legendre functions with Laplace’s equation to yield

the equations used to model the earth’s magnetic field.

B.1 Spherical Coordinate System

A common coordinate system used in situations where points are located on a sphere is the

spherical coordinate system. Points in the spherical coordinate system are represented by three

values: a magnitude r, an azimuth angle �, and an elevation angle �. A point P in spherical

coordinates in reference to Cartesian axes is shown in Figure B.1. Let P be located at (r, �, �) in

spherical points. The variable r ≥ 0 describes P ’s distance from the origin. The variable � varies

between 0 and � and describes the angle between the z-axis and some vector from the origin to

P . � varies between 0 and 2�. This variable describes the angle between the x-axis and the vector

from the origin to the projection of point P in the xy plane.

Now let the same point P be located at (x, y, z) in Cartesian coordinates. Equations to

convert between the spherical and Cartesian coordinates can now be developed. Since r is the

distance between the origin and point P ,

r =
√

x2 + y2 + z2. (B.1)

Then from trigonometry

� = arccos
(z

r

)

, (B.2)
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Figure B.1: The Spherical Coordinate System

and

� = arctan
(y

x

)

. (B.3)

By rearranging Equation (B.2)

z = r cos(�). (B.4)

From simple trigonometry the length of the projection of point P onto the xy plane is r cos(�2 −�) =

r sin(�). Then

x = r sin(�) cos(�), (B.5)

and

y = r sin(�) sin(�). (B.6)
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B.2 Legendre Functions

Legendre functions are defined in terms of solutions to Legendre’s differential equation

(1− z2)
d2w

dz2
− 2z

dw

dz
+ [�(� + 1)− �2

1− z2
]w = 0

where z, �, and � are complex variables [71]. The variables � and � are said to be the degree and

order, respectively, of the system. Because the differential equation is second order, two linearly

independent solutions exist for each z, �, and �. The regular solution at z = ±1 is called a Legendre

function of the first kind and shall be labeled P�� (z). Likewise, the irregular solution at z = ±1

is called a Legendre function of the second kind and shall be labeled as Q�� (z). The solutions to

Legendre’s differential equation can be written equivalently in several forms.

It is common to use Legendre functions in the spherical coordinate system. Legendre functions

of the first kind with integer degree and order have symmetry in spherical coordinates. Define a

modified Legendre function as

Smn (x) =

√

(n−m)!

(n+m)!
Pmn (x) n ≥ 0, n ≥ m.

Then

Pm−n(x) = Pmn−1(x),

P−m
n (x) =

(n−m)!

(n+m)!
Pmn (x) n ≥ 0,

S−m
n (x) = Smn (x) n ≥ 0,

and

Pmn (−x) = (−1)n−mPmn (x).
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For a fixed n, the Legendre functions can be defined recursively:

Pmn (x) = [(2n − 1)xPmn−1(x)− (n+m− 1)Pmn−2(x)]/(n −m)

Smn (x) = [(2n − 1)xSmn−1(x)−
√

(n− 1)2 −m2Smn−2(x)]/
√

n2 −m2.

The recursion begins with

Pmm−1(x) = 0

Pmm (x) =
(2m)!(1 − x2)m/2

2mm!

Smm−1(x) = 0

Smm(x) =

√

(2m)!(1− x2)m/2

2mm!
.

B.3 Laplace’s Equation

Laplace’s equation is often encountered when studying and modeling the earth’s magnetic field.

In this section the solution of Laplace’s equation in spherical coordinates is derived. The solution

is then related to Legendre functions. The proceeding analysis is taken from [72].

B.3.1 Solution Derivation

In the spherical coordinate system, Laplace’s equation is

∂

∂r

(

r2
∂V

∂r

)

+
1

sin(�)

∂

∂�

(

sin(�)
∂V

∂�

)

+
1

sin2(�)

(

∂2V

∂�2

)

= 0. (B.7)

Assume that the solution to Laplace’s equation is variable-separable such that

V (r, �, �) = R(r)S(��).
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Then substituting the solution form into Equation (B.7)

0 =
∂

∂r

(

r2
∂

∂r
(RS)

)

+
1

sin(�)

∂

∂�

(

sin(�)
∂

∂�
(RS)

)

+
1

sin2(�)

(

∂2

∂�2
(RS)

)

=
∂

∂r

(

r2
[

R ⋅ 0 + S
∂R

∂r

])

+
1

sin(�)

∂

∂�

(

sin(�)

[

R
∂S

∂�
+ S ⋅ 0

])

+

1

sin2(�)

∂

∂�

[

R
∂S

∂�
+ S ⋅ 0

]

=
∂

∂r

(

Sr2
∂R

∂r

)

+
1

sin(�)

∂

∂�

(

R sin(�)
∂S

∂�

)

+
1

sin2(�)

∂

∂�

(

R
∂S

∂�

)

= S
∂

∂r

(

r2
∂R

∂r
+ 0 ⋅ r2∂R

∂r

)

+
1

sin(�)

[

R
∂

∂�

(

sin(�)
∂S

∂�

)

+ 0 ⋅ sin(�)∂S
∂�

]

+

1

sin2(�)

[

R
∂2S

∂�2
+ 0 ⋅ ∂S

∂�

]

= S
∂

∂r

(

r2
∂R

∂r

)

+R
1

sin(�)

∂

∂�

(

sin(�)
∂S

∂�

)

+R
1

sin2(�)

∂2S

∂�2
.

Divide by RS to yield

0 =
1

R

∂

∂r

(

r2
∂R

∂r

)

+
1

S sin(�)

∂

∂(�)

(

sin(�)
∂S

∂�

)

+
1

S sin2(�)

∂2S

∂�2
,

and rearrange

1

R

d

dr

(

r2
dR

dr

)

= −(S sin(�))−1 ∂

∂�

(

sin(�)
∂S

∂�

)

− (S sin2(�))−1 ∂
2S

∂�2
. (B.8)

The left-hand side of Equation (B.8) depends only on r, and the right-hand side of the equation

depends only on � and �. Both sides are then equal to some constant, assigned value n(n+1), since

the left and right sides must be equal for all values of r, �, and �. The left-hand side of Equation

(B.8) can be expressed as

d

dr

(

r2
dR

dr

)

−Rn(n+ 1) = 0,

which has solutions R = rn and R = r−n−1. The right-hand side is written as

1

sin(�)

∂

∂�

(

sin(�)
∂S

∂�

)

+ sin2(�)
∂2S

∂�2
+ Sn(n+ 1) = 0.
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Assume now that the solution S is variable separable such that

S(�, �) = T (�)F (�).

Then

sin(�)

T

d

d�

(

sin(�)
dT

d�

)

+ sin2(�)n(n+ 1) = − 1

F

d2F

d�2
.

By the same logic as above, both sides of the equation are equal to some constant, m2. Then

dF

d�
+ Fm2 = 0

has solutions F = cos(m�) and F = sin(m�). The right-hand side is written as

d

d�

(

sin(�)
dT

d�

)

+ T

[

n(n+ 1) sin(�)− m2

sin(�)

]

= 0. (B.9)

B.3.2 Relationship with Legendre Functions and Spherical Harmonics

If in Equation (B.9) m = 0, the equation becomes Legendre’s equation

d

dz

[

(1− z2)
dT

dz

]

+ n(n+ 1)T = 0 (B.10)

where z = cos �. Assume that the solution T is in power series form to yield

T = Pn(z) =

k
∑

j=0

(−1)j
(2n − 2j)!

2nj!(n − j)!(n − 2j)!
zn−2j (B.11)
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where k is an integer equal either to 1
2n or 1

2(n − 1). Pn(z) is known as a Legendre polynomial or

a Legendre function of the first kind. The first few Legendre polynomials are

P0(z) = 1

P1(z) = z

P2(z) =
1

2
(3z2 − 1)

P3(z) =
1

2
(5z3 − 3z)

Solutions of Equation (B.9) are also called associated Legendre functions Pmn (cos(�)) since they

can be derived by differentiating Equation (B.10) m times

Pmn (cos(�)) = N sinm(�)
dm

d(cos(�))m
Pncos(�).

N is the Schmidt normalizing factor

N2 = 2
(n−m)!

(n+m)!
,

which makes the average value of (Pmn (cos �))2 constant over the surface of a sphere for all m. The

first few functions Pmn (cos(�)) are

unnormalized Schmidt normalized
P 1
1 (cos(�)) sin(�) sin(�)

P 1
2 (cos(�)) 3 sin(�) cos(�) 3−1/2 sin(�) cos(�)

P 2
2 (cos(�)) 3 sin2(�) 12−1/2 sin2(�)

A solution of Laplace’s equation can then be written as

V = (Arn +Br−n−1)(A′ cos(m�) +B′ sin(m�))Pmn (cos(�)) m ≤ n (B.12)
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where n and m are integers. The last two factors of Equation (B.12) can be combined for all

possible values of m to give the surface spherical harmonic

Sn(�, �) = a0Pn(cos(�)) +
n
∑

m=1

(am cos(m�) + bm sin(m�))Pmn (cos(�)).

Surface spherical harmonics (derived from the Fourier series) are of the form

Y (�, �) =
∞
∑

n=0

n
∑

m=0

Pmn (cos(�))(amn cos(m�) + bmn sin(m�))

where amn and bmn are coefficients that can be used to define an arbitrary function (meeting some

continuity conditions) on the surface of a sphere.
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Appendix C

Kalman Filtering

Assume it is desired to know the states of the system

ẋ = Ax+Bu+w (C.1)

y = Cx+ v (C.2)

where w is zero mean Gaussian process noise and v is zero mean Gaussian measurement noise. Let

Qc = E[wwT ], and R = E[vvT ]. w and v are also assumed to be uncorrelated. Further assume

measurements of some of the states are unavailable. The Kalman filter is an optimal means of

estimating states in the sense that it produces unbiased estimates (E[e] = 0 where e = x− x̂) and

minimizes the error covariance matrix (P = E[eet]).

C.1 Linear Systems

Since sensor measurements usually occur at regular intervals, the Kalman filter is most often

performed on discrete systems. The system of Equations (C.1)-(C.2) discretized for some interval

Δt is

xk+1 = Adxk +Bduk +wk (C.3)

yk = Cdxk + vk (C.4)

where Qd = E[wkw
T
k ], and Rd = E[vkv

T
k ]. The Kalman filter consists of two stages, the time

update stage and the measurement update stage, which are performed in a continuous cycle. Time

218



update can be considered a prediction stage that predicts states before measurements are consid-

ered. Measurement update can be considered a correction stage in which the predicted state from

the time step are corrected with actual measurements.

The Kalman filter for linear systems is given in Algorithm C.1.1. A derivation of the equations

can be found in [73]. A superscript minus sign in the algorithm denotes a time step variable while a

superscript plus sign denotes a measurement update variable. If care is taken, the error covariance

matrix P can be viewed as a measure of how good the filter’s estimate is. As a word of caution

when using the Kalman filter: In order for the Kalman filter’s estimates to be reliable, the system

must be observable.

Data: x̂0 and P0

Result: State estimate x̂ and error covariance matrix P
while Not done do

Time Update;
x̂−
k+1 = Adx̂

+
k +Bduk;

P−
k+1 = AdP

+
k A

T
d +Qd;

Gain calculation: Lk+1 = P−
k+1C

T
d [CdP

−
k+1C

T
d +Rd]

−1;
Measurement Update;
x̂+
k+1 = x̂−

k+1 + Lk+1(y − Cdx̂
−
k+1);

P+
k+1 = (I − LdCd)P

−
k+1;

end

Algorithm C.1.1: Kalman Filter

C.2 Extended Kalman Filter

Suppose a nonlinear system is defined by

ẋ(t) = f(x, t) + g(x, t) +w(t)

y(t) = ℎ(x, t) + �(t)

where w and � are zero-mean Gaussian noise with E[wwT ] = Q and E[��T ] = R. The Kalman

filter is applied only to linear systems. The Extended Kalman Filter (EKF) is the estimator used

for nonlinear systems. The EKF involves using the nonlinear equations in the prediction step and
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a linearized version of the system in the correction step. Before the EKF algorithm is begun, the

Jacobian of f(x, t) and ℎ(x, t) are found: F = ∂f(x,t)
∂x and H = ∂ℎ(x,t)

∂x . The discrete matrices Fd

and Hd can be found by applying the matrix exponential: Fd = eFΔt and Hd = eHΔt.

Once the preliminary steps are completed, the EKF algorithm can be performed. A time

update is performed by using the nonlinear equations to predict the next state via numerical

integration. An error covariance matrix is then computed from discrete matrices Fd and Qd. The

next step is the measurement update. A gain matrix Lk is calculated, and a corrected state estimate

is produced. The complete method is given in Algorithm C.2.1.

Data: x̂0 and P0

Result: State estimate x̂ and error covariance matrix P
while Not done do

Time Update;
x̂−
k+1 = x̂+

k +
∫ tk+1

tk
f(x̂(�), �)d� using a numerical integration technique such as

Runge-Kutta or Euler;
P−
k+1 = FdP

+
k Fd +Qd;

Gain Calculation: Lk+1 = P−
k+1H

T
d [HdP

−
k+1H

T
d +Rk]

−1;
Measurement Update;
x̂+
k+1 = x̂−

k+1 + Lk+1(y − ℎ(x̂−
k+1, t));

P+
k+1 = (I − Lk+1Hd)P

−
k+1;

end

Algorithm C.2.1: Extended Kalman Filter

C.3 Unscented Kalman Filter

Due to errors from linearization, the EKF sometimes fails to converge. The unscented Kalman

filter (UKF), based on the unscented transform developed by Julier and Uhlmann [74], does not

rely on linearization or partial derivatives [66]. Rather it constructs a set of points (sigma points)

that have the same sample mean and covariance as the distribution of the random variable of

interest. Each sigma point has an associated weight. Once the sigma points are constructed, they

are propagated through the nonlinear transform to yield a set of transformed samples. These

samples are then multiplied by their associated weights to yield a predicted mean, which in turn

is used to compute a predicted covariance. The UKF is accurate to the third order for Gaussian

distributions and requires the same order of computation as the EKF.
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Let a nonlinear system be modeled as

xk+1 = F (uk,uk) + vk

yk = H(xk) + nk

where x is of order L, vk is process noise with variance Rv, and nk is sensor noise with variance

Rn. To completely capture the variable’s statistics, 2L + 1 sigma points are needed. The sigma

points and associated weights as described in [75] are constructed as follows:

�0 = x

�i = x+ (
√

(L+ �)Px)i i = 1, . . . , L

�i = x− (
√

(L+ �)Px)i−L i = L− 1, . . . , 2L

W
(m)
0 = �/(L+ �)

W (c)
o = �/(L+ �) + (1− �2 + �)

W
(m)
i = W

(c)
i = 1/{2(L + �)} i = 1, . . . , 2L,

where � = �2(L+�)−L is a scaling parameter, � determines the spread of the sigma points around x

(usually around 1e-3), � is a scaling parameter usually set to zero, and � is used to incorporate prior

knowledge of the distribution of x (for Gaussian distributions � = 2). The notation (
√

(L+ �)Px)i

refers to the itℎ row of the matrix square root. The UKF for state estimation as presented in [76]

is shown in Algorithm C.3.1.

Van der Merwe and Wan developed a more computationally efficient implementation of the

UKF called the square-root UKF (SRUKF)[76]. The SRUKF uses the QR decomposition, Cholesky

factor updating, and efficient least-squares algorithms. The algorithm is presented in Algorithm

C.3.2.
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Initialize: x̂0 = E[x0], P0 = E[(x0 − x̂0)(x0 − x̂0)
T ];

for k = 1, . . . ,∞ do
Calculate Sigma Points:;
�k−1 =

[

x̂k−1 x̂k−1 + �
√

Pk−1 x̂k−1 − �
√

Pk−1

]

;
Time Update;
�k∣k−1 = F [�k−1,uk−1];

x̂−
k =

∑2L
i=0W

(m)
i �i,k∣k−1;

P−
k =

∑2L
i=0W

(c)
i [�i,k∣k−1 − x̂−

k ][�i,k∣k−1 − x̂−
k ]
T +Rv;

 k∣k−1 = H[�k∣k−1];

ŷ−
k =

∑2L
i=0W

(m)
i  i,k∣k−1;

Measurement Update;

Pykyk =
∑2L

i=0W
(c)
i [ i,k∣k−1 − ŷ−

k ][ i,k∣k−1 − ŷ−
k ]
T +Rn;

Pxkyk
=
∑2L

i=0W
(c)
i [�i,k∣k−1 − x̂−

k ][ i,k∣k−1 − ŷ−
k ]
T ;

K = Pxkyk
P−1
ykyk

;

x̂k = x̂−
k +K(yk − ŷ−

k );
Pk = P−

k −KkPxkyk
KT
k ;

end

where � =
√

(L+ �).;

Algorithm C.3.1: UKF for State Estimation
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Initialize: x̂0 = E[x0], S0 = chol{E[(x0 − x̂0)(x0 − x̂0)
T ]};

for k = 1, . . . ,∞ do
Calculate Sigma Points:;
�k−1 =

[

x̂k−1 x̂k−1 + �Sk x̂k−1 − �Sk
]

;
Time Update;
�k∣k−1 = F [�k−1,uk−1];

x̂−
k =

∑2L
i=0W

(m)
i �i,k∣k−1;

S−
k = qr{

[ √

W
(c)
1 (�1:2L,k∣k−1 − x̂−

k )
√
Rv

]

};
S−
k = cholupdate{S−

k , �0,k − x̂−
k ,W

(c)
0 }  k∣k−1 = H[�k∣k−1];

ŷ−
k =

∑2L
i=0W

(m)
i  i,k∣k−1;

Measurement Update;

S−
yk

= qr{
[ √

W
(c)
1 ( 1:2L,k∣k−1 − ŷk)

√

Rnk

]

};
S−
yk

= cholupdate{S−
yk
,  0,k − ŷk,W

(c)
0 }

Pxkyk
=
∑2L

i=0W
(c)
i [�i,k∣k−1 − x̂−

k ][ i,k∣k−1 − ŷ−
k ]
T ;

Kk = (Pxkyk
/STyk

)/Syk
;

x̂k = x̂−
k +K(yk − ŷ−

k );
U = KkSyk

;
Sk = cholupdate{S−

k , U,−1};
end

where � =
√

(L+ �).;

Algorithm C.3.2: Square Root Implementation of the UKF
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Appendix D

Latitude and Longitude

Latitude and longitude are a convenient way to describe position on a spherical surface such as

the Earth. Latitude and longitude are typically divided into units of degrees, minutes, and seconds

where a degree contains 60 minutes, and a minute contains 60 seconds. Lines of latitude run from

+90∘ (or 90∘ N) at the North Pole to −90∘ (or 90∘ S) at the South Pole with the equator being at

0∘. Lines of longitude vary from 180∘ (or 90∘ E) to −180∘ (or 180∘ W) with 0∘ being the Prime

Meridian which runs through Greenwich, England.

D.1 Cartesian Calculations

In this section we summarize a method found in [77] to calculate latitude and longitude in

spherical geocentric coordinates. To use the WMM, it is necessary to have a latitude and a longi-

tude. So given an initial latitude and longitude as well as a distance traveled in the northerly and

easterly directions, it is necessary to calculate the new latitude and longitude. Spherical geometry

can be used to do this if the Earth is modeled as a sphere. The Earth is not actually spherical as

it bulges at the equator.

Several points are labeled in Figure D.1 that aid in finding the new latitude and longitude. Let

point A be the starting point with a known initial latitude lat1 and longitude lon2, and let point

B be the ending point located at latitude lat2 and longitude lon2 after traveling a distance of X in

the easterly direction and Y in the northerly direction. Point D is located at the same latitude as

A and the same longitude as point B. Likewise, point C is located at the same longitude as A and

the same latitude as B. Point E is the point where A’s longitude intersects the equator, and point

F is where B’s longitude intersects the equator. Point O is located at the Earth’s center.

The derivation of lon2 is straightforward. To find lon2 first find the angle ∠AOE which is

equal to lat1 by the definition of latitude. Next, the radius of the circle that passes through points
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Figure D.1: Derivation of Latitudes and Longitudes

A and D at lat1 is needed. This is found by first dropping a perpendicular from A to the line

segment OE. The perpendicular intersects OE at point G. Then the length of segment OG is equal

to the desired radius. From trigonometry the length of OG is

OG = R cos(lat1)

where R is the Earth’s radius. Let O′ be the center of the circle that forms lat1. Then the angle

∠AO′D is given by

∠AO′D =
Y

R cos(lat1)

225



since Y is the arc length from A to D and R cos(lat1) is the circle’s radius. Then lon2 is given by

lon2 = lon1 + ∠AO′D

= lon1 +
Y

R cos(lat1)
. (D.1)

The derivation for lat2 is also relatively simple. First note that the angle ∠AOC is

∠AOC = lat2− lat1

by the definition of latitude. Then the arc length X between points A and C is

X = R∠AOC

= R(lat2− lat1).

Then lat2 is given by

lat2 = lat1 +
X

R
. (D.2)

D.2 Geodetic Coordinates

In this section we summarize the geodetic reference frame as presented in [78]. For geodetic

coordinates the Earth is modeled as an ellipsoid as shown in Figure D.2. The x-axis is in the

equatorial plane and fixed with the Earth’s rotation such that it passes through the Greenwich

meridian. The z-axis is parallel to the Earth’s rotation axis, and the y-axis is perpendicular to the

x- and z-axes according to the right-hand rule. A cross-section is taken such that the major axis of

an ellipse corresponds to the equator. The center of the Earth is at point O. Then the semimajor

axis a has a value equal to the Earth’s mean radius, and the semiminor axis b is equal to the Earth’s

polar diameter. With values a and b determined by which physical model of the Earth is used, the
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Figure D.2: Geodetic Coordinate System

eccentricity e and the flattening f of the ellipsoid are

e =

√

1− b2

a2

f = 1− b

a
.

Geodetic latitude, longitude, and height are defined with respect to the reference ellipsoid. In

Figure D.2 the vehicle’s position is given by point S, which is defined by vector u = (xu, yu, zu)

in geocentric coordinates. Then the geodetic longitude �, defined as the angle between the vehicle

and the x-axis, measured in the xy-plane is

� =

⎧









⎨









⎩

tan−1
(

yu
xu

)

, xu ≥ 0

�
2 + tan−1

(

yu
xu

)

, xu < 0, yu ≥ 0

−�
2 + tan−1

(

yu
xu

)

, xu < 0, yu < 0.
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Geodetic latitude � is the angle between the ellipsoid normal vector n and the projection of n onto

the xy-plane. Geocentric latitude is �′. Geodetic height ℎ is the minimum distance from the vehicle

to the ellipsoid. To convert from geodetic to geocentric coordinates use

xu =
a cos(�)

√

1 + (1− e2) tan2(�)
+ ℎ cos(�) cos(�)

yu =
a sin(�)

√

1 + (1− e2) tan2(�)
+ ℎ sin(�) cos(�)

zu =
a(1− e2) sin(�)
√

1− e2 sin2(�)
+ ℎ sin(�).

228


