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Systems characterized by non-linear interactions among diverse agents often exhibit

emergent behavior that may be very different from what the initial conditions of these sys-

tems would suggest. Traditional simulation techniques that rely on accurate knowledge of

these conditions typically fail in these cases. The goal of Symbiotic Adaptive Multisimula-

tion (SAMS) is to enable robust decision making in real-time for these problems. Rather

than rely on a single authoritative model, SAMS explores an ensemble of plausible models,

which are individually flawed but collectively provide more insight than would be possible

otherwise.

The insights derived from the model ensemble are used to improve the performance

of the system under study. Likewise, as the system develops, observations of emerging

conditions can be used to improve exploration of the model ensemble. In essence, a useful

coevolution between the physical system and SAMS occurs. In this thesis, an outline of the

core techniques of SAMS is provided. In addition, a parallel simulation application for the

study of autonomous Unmanned Aerial Vehicle (UAV) teams was developed. Experimental
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results from this application are presented and their implications for further study are

discussed.
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Chapter 1

Introduction

Dynamic updating of simulation models is a key requirement for using simulation as a

tool to improve systems in which information only becomes available once the system is in

progress (Yilmaz & Ören, 2004). In these types of systems, the initial conditions provide

little or no insight into how the system may develop over time. Emergent behavior that

arises dynamically is a primary source of information in these systems. Exploiting this

information to enable robust decision making in a timely manner requires the ability to

observe the system in real-time and adapt useful characteristics for the system with as little

computational effort as possible.

Symbiotic Simulation (S2) involves the use of simulation systems that are synchronized

with the physical systems they model to enable mutually beneficial adaptation (Fujimoto,

Lunceford, Page, & Uhrmacher, 2002). In S2, simulation outputs are examined and used

to determine how the physical system may be optimized. Similarly, measurements from

the physical system are used to validate the simulation. When uncertainty in the physical

system is present, multiple “what-if” simulation experiments can be helpful in adjusting

the physical system. However, since the number of “what-if” experiments that may be

performed is limited by both computational and real-time constraints, the ability to conduct

an efficient search of the model space is essential.

As evidence of current interest in S2 techniques, extensive research in this field is

already being applied to the problem of coordinating Unmanned Aerial Vehicles (UAVs) by

the Swedish Defence Research Agency (Lozano, Kamrani, & Moradi, 2006). This problem
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is significant because the physical system is distributed across a number of agents with

varying degrees of autonomy that must perform in a dynamic and uncertain environment.

Much of the research in the field of cooperative UAV control has focused on optimizing

team behavior for a narrow range of conditions. Given the dynamic and uncertain nature

of this problem however, it may be better to emphasize robust systems capable of handling

a diverse range of conditions. In order to meet this challenge using S2, any search of a model

space should be exploratory in nature, covering a large range of possible circumstances while

still providing an efficient system configuration.

Symbiotic Adaptive Multisimulation (SAMS) is intended as an S2 technique appropri-

ate for physical systems characterized by distributed, dynamic, and uncertain conditions.

It is heavily inspired by the fields of Multisimulation (Yilmaz, 2007), Exploratory Analysis

(Davis, 2000), and Exploratory Modeling (Bankes, 2005) which all involve the use of an en-

semble of plausible models to provide insight in the absence of a single authoritative model.

The salient feature of SAMS is the use of a Genetic Algorithm (GA) to evolve the model

ensemble in response to changes in the physical system. With this feature, it was theorized

that an efficient search of an uncertain model space would be possible, thus permitting

synchronization with the physical system.

The goal of this thesis is to formulate a description of SAMS as an S2 methodology

and to examine its utility involving a distributed, dynamic, and uncertain system. Toward

this end, a parallel application for simulation experiments has been developed along with

a simple, proof-of-concept structural model of UAV behavior. This model is parameterized

to allow creation of a virtually infinite number of distinct models. Experiments with this

application with an emulator of the system under study have been conducted to assess
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the potential effectiveness of SAMS. They appear to show that SAMS can provide an

improvement in system performance when it is coupled with a dynamic system.

In Chapter 2, various related methodologies and supporting techniques are examined.

In Chapter 3, a Symbiotic Adaptive Simulation is fully described as a simulation method-

ology. In Chapter 4, the SAMS Parallel Application itself is discussed. Finally, in Chapter

5, an agent-based model of autonomous UAV behavior, which was used in conjunction with

the Parallel Application is described. The experiments with this system are also presented.

The thesis concludes with Chapter 6.
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Chapter 2

Literature Review

2.1 Symbiotic Simulation

Symbiotic Simulation was originally described at a Dagstuhl Grand Challenges work-

shop in 2002 (Fujimoto et al., 2002) although the idea of using simulation to enhance the

real time performance of a system had previously existed in the form of on-line simulation.

Since that time, two noteworthy efforts in S2 have examined its usage in the context of

semiconductor manufacturing (Low et al., 2005) and UAV path planning (Lozano et al.,

2006). In addition, there is also an effort underway to create a generic architecture for

symbiotic simulation (Ayani, 2007).

In (Low et al., 2005), the use of S2 was motivated by the need for a more rapid sim-

ulation analysis technique. The semiconductor industry is characterized by short product

life cycles and complex manufacturing processes that are highly sensitive to disruption. As

such, the time required to perform conventional simulation analysis typically exceeds pro-

duction constraints. The authors of this study implemented a proof-of-concept system in

which online agents monitor the production line for potential delays and perform what-if

simulation experiments to examine the consequences of adjusting various portions of the

production line using an iterative search to compensate. Although the production life cycles

examined in this paper occurred over several months, the high degree of fidelity required

by the simulations meant that only a small number of experiments could be carried out.

In (Lozano et al., 2006), S2 is examined as a means of providing decision support for

UAV path planning. Although the research in this paper is not yet complete at the time
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of this writing, it appears that the authors are implementing a high fidelity model of UAV

team behavior. The means for selecting “what if” experiments is a transition model in

which experiments branch from the current system state according to a physics model and

known enemy doctrine.

2.2 Uncertainty and Plausible Models

The S2 approaches described above use models that are believed to be accurate and

valid descriptions of a physical system. In problem domains characterized by a large de-

gree of uncertainty, it may not be possible to construct such models. For these cases, the

preferred approach is to use an ensemble of models that need not be accurate and valid,

but only plausible. This is a key feature of the fields of Exploratory Modeling, Exploratory

Analysis, and Multisimulation. In (Bankes, 1998) plausible models are described as pre-

dicting “how the system would behave if the assumptions the model is based on were true”.

When model excursions are viewed collectively, the behavior of plausible models can be

informative despite the flaws of each individual model. Because of the presence of uncer-

tainty, there may be many plausible models that could represent a system (Bankes, 1993).

Conversely, knowledge of the system limits the set of plausible models. Multisimulation,

Exploratory Analysis and Exploratory Modeling all experiment with ensembles of mod-

els as experimentation with a single plausible model would be just as likely deceptive as

informative.

Among a set of plausible models, variation occurs according to input uncertainty and

structural uncertainty (Davis, 2000). Input uncertainty which deals with the possible values

that model input factors may assume can be further subdivided into model uncertainty and
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parameter uncertainty (Henderson, 2003). Model uncertainty is dependent on the choice

of distribution function for a particular input whereas parameter uncertainty relates to the

choice of parameters that govern the shape of those distributions. Classical experimental

design techniques can be useful in dealing with input uncertainty (Barton, 2004) provided

the factors to be examined are relatively few in number and their interactions are linear.

Structural uncertainty can be much more challenging to deal with. This includes such things

as the actual choice of variables used to represent a system. It may arise from difficulty in

analyzing a system or even from differences of expert opinion.

Because of the variation that can occur across a set of plausible models, methods for

consistently representing them have been of interest. In the fields of Exploratory Modeling

and Exploratory Analysis, there has generally been a focus toward parameterizing both

kinds of uncertainties. In the field of Multisimulation, there has been an emphasis toward

the use of an emerging multimodel formalism. An examination of the kinds of models

described by this formalism can be found in (Yilmaz, Ören, & Ghasem-Aghaee, 2006).

In general, the multimodel formalism provides a specification of how models may vary in

relation to each other. This specification is necessary to permit dynamic replacement and

updating of models which is an area of specific interest in Multisimulation.

Multiresolution Modeling (MRM) is a type of multimodel that is likely to be useful

in SAMS. MRM has been extensively studied in the fields of Exploratory Modeling, Ex-

ploratory Analysis, and Multisimulation. MRM is described in (Bigelow & Davis, 1999) as

“constructing a model or family of models that describe consistently the same system or

process at different levels of resolution”. In that paper, the authors outline several moti-

vations for MRM. With respect to SAMS, the two most important of these are economy
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and dealing with chaos. In the first case, exploring a set of models in a high level way

before examining certain phenomena in more detail can make efficient use of computational

resources. Chaos on the other hand means that minute details may result in significantly

different end states of a system, even when the initial states of two models appear similar.

Davis and Bigelow point out that chaos is common in systems with non-linear dynamics.

MRM goes against the usual technique of modeling a system from the bottom up. It sug-

gests that models with varying amounts of detail can be informative in dealing with chaos

and thus mutually calibrating. This notion is also discussed in (Davis & Bigelow, 2003).

One issue raised there is that of aggregation and disaggregation of input factors. In order to

maintain consistency between levels of resolution, there needs to be an appropriate mapping

between factors in low resolution models to their constituents in high resolution models.

While multimodel techniques like MRM are helpful in dealing with the variation among

a set of plausible models, the size of a typical ensemble can pose equally difficult challenges

in terms of computational resources. Knowledge of the system under inquiry can reduce

the size of the model ensemble, but even with extensive knowledge, the number of plausible

models could still be infinite (Bankes, 1993). In light of this problem, effective techniques

for sampling a model ensemble are of interest. Bankes asserts that the choice of technique

is largely dependent on the purpose of the study and for models that maximize certain

outputs of interest, a search strategy should be used.

Additional insight into the problem of sampling model ensembles can be found in

(Davis, 2000). The author makes a distinction between controllable and uncontrollable

input factors of a model. In general, controllable inputs are considered to be the factors

that a decision maker can change within the physical system in response to observations

7



made within a simulation study. Uncontrollable factors represent environmental conditions

within which a proposed system operates. This distinction is also mentioned on page 620 of

(Law, 2007). For each type of factor, a different sampling technique is appropriate. Davis

asserts that for uncontrollable inputs, Probabilistic Exploration should be used. With

Probabilistic Exploration an attempt is made to identify a suitable distribution function

for each uncontrollable input. The choice of function is often based on the subjective

knowledge of the analyst. For the controllable input factors of a model, a Parametric

Exploration strategy is suggested. In Exploratory Analysis, Parametric Exploration involves

a combination of classical experimental design with software visualization tools. Using such

tools, an analyst is capable of identifying significant interactions between factors in a matter

of minutes. Davis refers to this strategy of using different techniques to explore controllable

and uncontrollable inputs as Hybrid Exploration.

2.3 Evolutionary Algorithms

Effective sampling of a model space of potentially infinite size requires a robust and

efficient search algorithm. Such an algorithm should be capable of broad exploration while

uncertainty is pervasive within the model space. This requirement implies the need for

some stochastic element to deal with the combinatorial explosion of potential configurations

(Dreo, Petrowski, Siarry, & Taillard, 2006). Conversely, if uncertainty is decreasing, an

appropriate search algorithm should also be capable of rapid exploitation of increasing

information. This requirement rules out a simple random walk of the search space. In

addition, since the search space itself involves a set of models and not a differentiable
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function, any potential search technique must not rely on derivatives or other gradient

techniques. This eliminates calculus-based methods such as hill-climbing (Goldberg, 1989).

The field of Evolutionary Computation (EC) provides several techniques for imple-

menting search algorithms with effective exploration and exploitation properties. These

algorithms model the processes of Darwinian evolution as a means of accomplishing a ro-

bust stochastic search. The term Evolutionary Computation itself was coined in 1993 as a

class of methods originally including Evolutionary Programming, Genetic Algorithms, and

Evolution Strategies (Fogel, 2006). Prior to that time, these three algorithms were studied

largely in isolation and each was characterized by distinct differences from the others. The

incorporation of these three techniques under the rubric of EC has encouraged a tremen-

dous cross-fertilization of ideas. As a result, it has now become common to refer to any

algorithm from the field of EC as an Evolutionary Algorithm (EA) (Dreo et al., 2006).

EAs employ multiple candidate solutions, collectively referred to as a population. This

population is evolved over a number of generations, with the evolutionary process favoring

solutions of increasing fitness. The exact means of accomplishing this evolution varies

depending on the design of a particular EA. However, all techniques rely on some degree of

selection pressure to determine which individuals survive and reproduce, thus guiding the

evolutionary process (Dreo et al., 2006). Increasing selection pressure results in more rapid

improvement to population fitness. Too much selection pressure, however, can result in

convergence to a sub-optimal solution in multimodal problem spaces. Decreasing selection

pressure can enable better exploration of the problem space and the eventual discovery of

the global optimum. If there is too little selection pressure, genetic drift can occur. This
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results in an increasingly homogeneous population of inferior candidate solutions and is

caused by sampling error resulting from the stochastic search process (DeJong, 2006).

In order to explore additional candidate solutions outside the initial population, diver-

sity must be introduced. This may be done by means of either sexual recombination or

asexual mutation. As the name suggests, recombination (also referred to as crossover) uses

information gained from the solutions of multiple parent individuals to create one or more

children with characteristics of each of the parents. It offers a powerful means of rapidly

exploring the solution space, particularly in dynamic environments (Fogel, 2006). Muta-

tion on the other hand can introduce fine grained variation that is usually impossible with

recombination alone, but it has a tendency to disrupt improvements from recombination

when used excessively (DeJong, 2006).

The encoding of candidate solutions, or individuals, is an important consideration in

the design of an EA. The field of Genetic Algorithms, inspired directly by biological genetics

makes a distinction between the genotype, which serves as blueprint for the creation of an

individual and its phenotype, the resulting individual formed by the interaction of the

genotype and the surrounding environment (Goldberg, 1989). In GAs, the data structure

encoding the genotype is referred to as a chromosome, with specific characteristics referred

to as genes. Early examples of GAs described by John Holland (Holland, 1975) and his

students used a string of bits to encode the genotype of individuals but in recent years it has

become more common to use real-valued encodings for problems in the continuous domain

(Fogel, 2006).
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2.4 Adaptive Agents

Learning agents can be considered to possess two major computational features, namely

a performance element, and a learning element(Russell & Norvig, 2003). The performance

element represents a system of rules that govern an agent’s behavior at a single instant.

These rules may be modified by the learning element over time as the agent receives in-

formation from its environment and other agents. In the context of Complex Adaptive

Systems, learning agents have been referred to as Adaptive Agents (Holland, 1995).

The notion of Complex Adaptive Systems is relevant to this research as much of the

work in Exploratory Modeling and other agent-based simulation approaches have been

directly applied to problems in this area of study(Yilmaz, 2007). A useful definition of what

constitutes a Complex Adaptive System can be found in (Singer, 1995). In this article, a

Complex Adaptive System is defined as having a large number of diverse agents that produce

an aggregate behavior through non-linear interactions. Furthermore, the diversity of agents

is robust to change and may evolve to produce new specializations of agent behavior.

Self-organization is a kind of aggregate behavior that is often associated with Complex

Adaptive Systems. Self-organization as a property of an engineered system has been de-

scribed as being one in which individual agents or units respond to local stimuli to achieve

through a division of labor the efficient performance of some task (Collier & Taylor, 2004).

The collective efficiency of this task performance must be greater than what could be accom-

plished individually. Additionally, self-organization involves the creation of an equilibrium

state that arises from the local interactions of agents (Namatame & Sasaki, 1998). This

equilibrium may be achieved through either competition or cooperation.
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Particle Swarm Optimization (PSO) is one possible technique for implementing the

learning element of an adaptive agent. A broad introduction of PSO can be found in

(Kennedy & Eberhart, 2001). PSO is a continuous numeric optimization technique in

which a potential solution to a problem is characterized as a point in some n-dimensional

space, with the number of dimensions being equal to the number of decision variables. As

the name suggests, PSO uses a population of potential solutions. These solutions “fly”

through the problem space over time. As each particle moves through the problem space,

it records the best solution, pbest that it has found so far as well as the best solution, gbest

discovered by the other members of the swarm. Particles tend to gravitate toward these

two positions over time as they search for better solutions.

In (Bratton & Kennedy, 2007), a precise specification of the canonical PSO is given.

In this specification, each dimension d of the velocity vector −→v of a particle i is calculated

according to equation 2.1. In this equation, it can be seen that −→v is a function of the

particle’s current position x, personal best pi, and global best pg. A constriction factor χ

is included to prevent explosive growth of the particle’s velocity. In addition, randomness

is included by ǫ1 and ǫ2 which are independent uniformly random variables that govern

cognition and social influence respectively. The constants c1 and c2 affect the relative

contributions from the cognition and social components. These components also appear in

many sources listed as ϕ1 and ϕ2.

−→v id = χ(vid + c1ǫ1(pid − xid) + c2ǫ2(pgd − xid)) (2.1)
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The social aspect of PSO presents intriguing possibilities for use in multi-agent systems.

One example can be found in (Hereford, 2006) where the operation of a PSO was distributed

across a number of simulated robots in a 2-dimensional search problem. Each simulated

robot acted as a particle with decision variables being the x and y coordinates of the search

space. Each robot would attempt to move toward the position specified by its particle. As

a robot moved from one position to the next, it would attempt to detect a hidden target.

Detection was modeled according to a sphere function and thus as robots moved closer to

the target, the fitness of their particle solutions improved. These results were broadcast to

other robots resulting in social coordination.

The social influence within a particle swarm propagates according to the communica-

tion topology of its members. An in depth discussion of this topic can be found in (Richards

& Ventura, 2003). Richards and Ventura performed experiments with the two most com-

mon topologies (star and ring) and presented a dynamic topology as well that begins as a

ring topology and adds communication links over time. Star topologies rapidly converge

to a good, but not necessarily optimal solution. On the other hand, ring topologies tend

to be more successful in discovering a global optimum (especially for nonlinear functions

with numerous local optima) but at the cost of additional search time (Bratton & Kennedy,

2007). The authors hypothesized that increasing the number of communication links over

time would allow the PSO to perform a good initial exploration of the problem followed by

a rapid local search and their experiments provide some evidence to support this. Beyond

these observations, a dynamic communication topology may have interesting consequences

for agents interacting in an environment where signal attenuation and interference is per-

vasive.
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Chapter 3

Conceptual Framework and Methodology

3.1 Complex Adaptive Systems

Symbiotic Adaptive Multisimulation is intended as a technique for symbiotic simula-

tion of problem domains characterized by massive uncertainty in a dynamic environment.

Such problems may possess one or more characteristics of a Complex Adaptive System.

In particular, an appropriate problem for SAMS involves autonomous agents that produce

an aggregate behavior through non-linear local interactions. This aggregate behavior is

self-organizing to the extent that the collective performance of the physical system’s task

is enhanced through cooperation or competition among these agents. Additionally, these

systems may have real time constraints that require the ability to vary model resolutions

based on the computing resources available. Possible examples of problems appropriate to

SAMS include emergency response, and cooperative UAV behavior.

Because of the nonlinear interactions among autonomous agents in systems for which

SAMS is intended, SAMS makes use of an ensemble of plausible models rather than a single

authoritative model of system behavior. The nonlinear interactions in these types of systems

often makes it impossible to create an accurate and detailed model of their behavior. It

was also thought that the use of an ensemble of plausible models in SAMS would provide

a rapid exploratory capability of the kinds of circumstances that may arise in an uncertain

system.
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3.2 Hybrid Exploration

Symbiotic Adaptive Multisimulation supports decision making by conducting a search

through a potentially infinite space of models. The search works by evolving a set of

potential system configurations for a dynamic set of environmental conditions. In order

to efficiently search a potentially infinite number of plausible models, SAMS uses a hybrid

exploration technique. As shown in Figure 3.1, uncontrollable inputs and controllable inputs

are handled with an input analysis module and an output analysis module respectively.

Measurements of the physical system’s behavior are used to hypothesize distributions for

uncontrollable inputs. As more details of the physical system’s environment become known,

the fidelity of these distributions with the actual values of the physical system should

improve. Controllable input factors representing the configuration of the physical system

are evolved using a genetic algorithm. A set of controllable inputs that completely describes

a potential system configuration can be thought of as an individual. The controllable

factors therefore, are considered to be the decision variables of a given problem while the

uncontrollable factors determine the shape of a dynamic fitness landscape. An evolutionary

algorithm enables the adaptation of individuals through a process of natural selection, with

better performing individuals being more likely to survive and ultimately be used as the

configuration settings for agents within the physical system itself.

3.2.1 Physical System Measurement

In order to hypothesize distributions for uncontrollable inputs and estimate their pa-

rameters, a means of observing the physical system is required. As real-time symbiotic sim-

ulation is performed, observations of the physical system enable more accurate estimates of
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Figure 3.1: Symbiotic Adaptive Multisimulation

the input distribution parameters. With these improvements, the space of plausible models

shrinks, allowing the system to simulate fewer models in greater detail. While exact meth-

ods for accomplishing this are beyond the scope of this thesis, the experiments presented in

Chapter 5 appear to support the validity of these assumptions.

3.2.2 Partial Model Ensembles

Once a distribution has been hypothesized for each uncontrollable factor in the physical

system, and the associated parameters for those distributions have been estimated, each

factor is sampled multiple times. These samples are stored in a 2-dimensional array referred

to as a Partial Model Ensemble (PME). Variates for each sampled distribution are associated

on a per-sample basis and placed into the same row of an array. Each column of the array

stores variates from a single input factor, and each row of the array is considered to be a
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partial plausible model of the physical system. Later, these partial models are combined

with potential system configurations to create fully specified plausible models for simulation.

One question regarding construction of the PME concerns the number of samples for

each input factor that should be made. In the experiments performed for this research,

PMEs with 30 rows were created. This number, while obtaining some benefit from the

Central Limit Theorem was an arbitrary choice, and may be too small for most real-world

applications. However, even with this limited number of samples, an apparent benefit from

SAMS was realized. Details of these experiments are discussed in Section 5.5.

3.2.3 Genetic Search of Potential System Configurations

SAMS evolves potential system configurations for use within the physical system. As

information is gained and improved PMEs are generated. Unlike the creation of a PME,

however, a search of the space of potential system configurations requires the exploitation

of a different type of system information, namely the performance characteristics of the

configuration. Evolutionary Algorithms are very good at exploiting this type of information

to improve a search as they are well suited for optimization problems (DeJong, 2006).

Among Evolutionary Algorithms, Genetic Algorithms have a feature useful to SAMS,

which is the distinction between genotypic and phenotypic representation. A genetic en-

coding of the characteristics of a potential system configuration allows the same system to

be interpreted in different ways and in varying levels of detail. This topic is discussed in

greater detail in Section 3.2.5.

The structure of a typical GA is shown in Algorithm 1. An initial population of m

individuals is randomly created in line 1 and the fitness values of the resulting individuals are
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evaluated. The algorithm then enters a loop in which successive generations of individuals

are evolved. An inner loop beginning on line 7 continues until a group of n children are

created. In line 8, two individuals are chosen to be parents. Crossover combines the

characteristics of both parents to create a new child. A mutation operator is then applied

which may modify the child with characteristics not possessed by either parent. The fitness

of the new child is then evaluated.

Algorithm 1 : A genetic algorithm.

1: pop[m] ⇐ createInitialPopulation( )
2: for i = 1 to m do

3: pop[i] ⇐ calculateFitness( pop[i] )
4: end for

5: repeat

6: children[n]
7: for i = 1 to n do

8: parents[2] ⇐ selectParents( pop )
9: children[i] ⇐ crossover( parents )

10: children[i] ⇐ mutatation( children[i] )
11: children[i] ⇐ calculateFitness( children[i] )
12: end for

13: pop[m] ⇐ selectSurvivors( pop, children )
14: until termination = true

Once the children have been created, the total population of individuals is then reduced

back to m on line 8. Depending on the design of the GA, survivor selection may or may

not involve direct competition between parents and children. The evolutionary process

continues until some termination condition (such as a fixed number of fitness evaluations)

is reached. Many variations of GAs are possible, including encodings and operators. Some

discussion of the encoding used in the experiments for this thesis is presented in Section

3.2.5, while details of the selected genetic operators is postponed until Section 5.5.
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In SAMS, potential system configurations are individuals created by the evolutionary

process of a GA. The fitness of each individual is determined by the performance of its

phenotype (the system itself) within multiple simulations. The fitness of the best individual

at any generation is used to update the physical system. In order to make an assessment

of fitness, each individual in the population must be simulated using a number of plausible

models.

3.2.4 Combined Model Ensembles

In SAMS, a Combined Model Ensemble (CME) is a specification for conducting a se-

ries of simulation experiments involving a single individual from a population of potential

system configurations. The goal of these experiments is to test an individual in multiple

possible environments. Each simulation experiment examines the individual in the context

of a set of uncontrollable factors representing a single possible environment. An objective

fitness of the individual for a particular environment is obtained as an output from a simu-

lation experiment. The resulting fitness values from all experiments with the individual in

each respective environment are then averaged together to obtain an overall fitness for the

individual which is used to determine its probability for reproduction and survival within

the genetic search.

The layout of a CME is shown in Table 3.1. The possible environments with which

the individual is to be tested are determined by a PME of Uncontrollable Factors making

up the left hand side of the table. Copies of the individual are paired with each row of

the PME. A single row of the CME thus includes both a sampled set of values from the

uncontrollable factor distributions and a copy of the individual which specifies the settings
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of the controllable model factors. Taken together, these two sets of elements form a single

plausible model described by the entire row of values in the CME.

Uncontrollable Factors Controllable Factors

X11 X12 · · · X1m G1 G2 · · · Gℓ

X21 X22 · · · X2m G1 G2 · · · Gℓ

...
...

. . .
...

...
...

. . .
...

Xn1 Xn2 · · · Xnm G1 G2 · · · Gℓ

Table 3.1: A Combined Model Ensemble of n models is composed of a Partial Model
Ensemble of m sampled variables, X, and an individual of ℓ genes, G. Each row represents
a single model for which one or more simulation replications should be performed. Note
that the same individual is used in each model.

Note that for a given CME, the same individual is paired with each row of the PME.

Furthermore, the same PME is combined with each individual in the population to create

a set of unique CMEs, one for each individual. Since the same PME is used in each

CME, each individual is evaluated using the same environmental conditions. In essence,

the uncontrollable factor settings of the PME, which change each time a new PME is

created, become a dynamic fitness landscape.

3.2.5 Multiresolution Modeling with a Binary Representation

As mentioned in Section 2.2, an implementation of SAMS is likely to benefit from

some degree of Multiresolution Modeling. Real-time constraints imposed by the systems

for which SAMS is intended require the efficient use of computing resources. Additionally,

the complexity of these systems makes it likely that there will be a high degree of variance

in model outputs despite similar, even identical input settings. By creating multiple models

that represent the same phenomena at varying levels of detail, MRM helps to solve both of

these problems (Bigelow & Davis, 1999).
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In a given situation, if the primary concern is to improve computational efficiency,

the initial simulations within SAMS may all be run with low resolution models. This

would permit a large exploration of possible conditions during early execution. Later, as

information from the physical system becomes known and is used to update the distributions

of uncontrollable factors, the system may switch to higher resolution models to examine

fewer cases in greater detail.

When widely varying simulation outputs are a concern it might also be desirable to

run models at multiple resolution levels concurrently. This would allow mutual calibration

between resolutions, thus improving the overall accuracy of the system. Further research

is needed to elaborate on how mutual calibration of varying model resolutions might be

accomplished within a SAMS context. However, it is clear that before this problem can be

examined, a mapping between model resolutions must be maintained during a search of the

model space.

In the study of EAs, genotypic representation of individuals by means of a binary

string has become less common in recent years. Nevertheless, a binary string representation

seems promising in the context of SAMS. The fitness landscape within a CAS is likely to be

subject to a large degree of noise, making the increased precision of real-valued encodings

redundant. Secondly, a binary string representation permits the same code implementing

genetic operators to be used at all resolution levels. This ability to use the same generic

operator regardless of the actual genetic specification is one advantage of a binary encoding

(DeJong, 2006).
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As an example of these ideas one can consider the case of an autonomous UAV Search

and Attack Model (which will be discussed in more detail in Section 5). This is an agent-

based model in which each UAV within a team is specified separately with two variables.

The first is a Boolean value indicating whether or not each UAV is a “Leader”, to which

other UAVs look for guidance. The second variable is a floating point value representing the

“Cooperation Threshold” of a given UAV. Cooperation Threshold determines how likely the

given UAV is to work closely with its team mates or else strike out on its own. The Leader

variable is represented with a single bit. The Cooperation Threshold variable requires

multiple bits depending on the degree of precision desired. In this case it was anticipated

that the model would be subject to significant noise and so three bits are chosen to represent

8 possible values for this variable. In terms of canonical GAs, each of these variables

constitutes a gene with the entire binary string making up a chromosome. Since UAVs are

specified individually, the length of this string depends on the number of UAVs in the team.

One can also consider a hypothetical low resolution model of the same phenomenon.

In this model, UAVs are not specified individually. There are only two variables of interest

within this model: “Decentralization” and “Cooperativeness”. The first variable is an

abstract measurement of how leadership capabilities are distributed through the UAV team.

It is a floating point value on the interval [0, 1] and is obtained by dividing the number of

bits in the Decentralization gene equal to 1 by the length of the gene. The second variable

measures the overall degree to which the UAV team tends to work together. In the high

resolution model, Cooperativeness is considered individually for each UAV in the team as

the Cooperation Threshold gene. In the low resolution model, however, Cooperativeness
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applies to the team as a whole. The Cooperativeness variable is, like Decentralization, a

floating point value on the interval [0, 1] and is obtained in the same way.

A possible mapping between these two model resolutions is shown in Figure 3.2. Here,

the low resolution specification is presented above with the corresponding high resolution

specification on bottom. In the low resolution specification, the genes D and C represent

Decentralization and Cooperativeness respectively. The high resolution specification in this

example shows a chromosome representing a team of 2 UAVs. The genes L1 and L2 repre-

sent the Leader values for each UAV while C1 and C2 represent each UAV’s Cooperation

Threshold setting. In the high resolution model, the individual 11000111 indicates that one

of the UAVs is a leader and that the Cooperation Threshold of each UAV is 0.57 and 1.0

respectively. In the low resolution model the same string indicates a UAV team with a De-

centralization of 0.5 and Cooperativeness of 0.67. With this mapping, the total number of

UAVs within the team does not matter from the point of view of the low resolution model.

Any valid high resolution mapping is also a valid low resolution mapping.

Figure 3.2: The low resolution mapping interprets the bit string as representing 2 genes,
Decentralization (D) and Cooperativeness (C) for a UAV team as a whole. The high reso-
lution mapping uses 4 genes to represent the Leader and Cooperation Thresholds for each
UAV in a team of 2 UAVs.
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3.3 Independent Component Architecture

A full SAMS implementation, designed to operate in mission critical environments,

could be based on an independent component architecture in which the individual compo-

nents of the system could execute in parallel and communicate via message passing (Braude,

2004). This could be especially useful for entities operating in the physical environment that

would likely not have the hardware resources to process simulations. Rather, these entities

would only need some means of measuring the physical system and sending those measure-

ments to the components running the simulations (admittedly a non-trivial requirement

itself).

Figure 3.3 shows the essential components of a SAMS system. Observations from

the physical system are passed to an Input Exploration Component (IEC) responsible for

conducting input analysis and selecting appropriate distributions for the uncontrollable

model factors. Samples from these distributions are then used to create a PME, a copy of

which is integrated with each individual to form one CME for each Agent-based Simulation

Process (ASP).

The Genetic Algorithm Controller (GAC) is responsible for evolving the population

of individuals which are used to form the CMEs. and a number of Agent Simulation

Instances (ASPs) to simulate CMEs in parallel. Ideally, each ASP is mapped to one or

more CPU cores. If the population used by the GAC is large, or if hardware resources are

limited, multiple ASPs can run on a single core. If there is an excess of hardware, a SAMS

implementation should be capable of offloading models within the CME to multiple CPU

cores.
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Outputs from the ASPs take the form of objective fitness values of the individuals that

have been averaged across all of the replications specified by the CME. These are passed to

the GAC which then assigns the fitness values to the simulated individuals before continuing

execution of the GA. Ideally, it should be possible for a user to interact with the GAC in

real time to examine the individuals generated and possibly seed new configurations to the

population.

Figure 3.3: SAMS Components

3.4 System Execution

The sequence of operations that occur within the main execution loop of a SAMS im-

plementation are shown in a UML sequence diagram in Figure 3.4. Active components and
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processes, displayed as boxes across the top of the diagram include the Genetic Algorithm

Controller, Agent-based Simulation Processes (of which several run simultaneously), an In-

put Exploration Component and the Physical System. An initial message is passed from

the GAC to the IEC requesting a new Partial Model Ensemble. The IEC takes observations

from the physical system and uses them to produce uncontrollable factor settings which are

incorporated into the PME. The PME is then passed to the GAC which uses them to create

a CME for each ASP.

Figure 3.4: The main loop of SAMS.

When created, the CMEs are passed to the ASPs and simulated in parallel. Simulation

results are examined on a per CME basis so that a fitness can be assigned to a given

individual based on its performance against the environmental settings specified in the PME.

After fitness values have been assigned to individuals, the GAC evolves the population.

Individuals with higher fitness are given preference for producing offspring which are created
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using genetic operators of crossover and mutation. Due to the need to maintain a naturally

parallel structure for the algorithm, large numbers of children should be generated before

selecting survivors.

In addition to evolving the existing population, the GAC also selects the most fit

individual of each generation to update the physical system’s configuration. This continual

process of dynamically updating the physical system helps ensure that the physical system

is responding correctly to observed changes in the environment. This process continues as

long as symbiotic simulation is required for the physical system.

With each iteration of the loop, the physical system must again be observed, and these

observations are used to determine the shape parameters of the random variable distribu-

tions from which uncontrollable factors are sampled. As the physical system develops, it is

expected that the variance of observations from these distributions will lessen, permitting

a more exploitative search for improved individuals. As this occurs, SAMS should also be

able to switch to higher resolution models for the simulation step since fewer loop iterations

should be needed after the initial uncertainty in the system has decreased. In addition, it

is anticipated that many of the factors which are initially controllable will tend to become

uncontrollable as conditions in the physical system converge to their final state. Because

of this, constraints on controllable inputs will tend to become increasingly strict over time

and some controllable inputs will also transition into the uncontrollable input set.
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Chapter 4

Design and Implementation

A SAMS Parallel Application was developed in order to examine the effectiveness of the

SAMS methodology. The application is capable of spawning multiple ASPs with which to

simulate plausible models, while the GAC and system emulator execute in their own CPU

process. The application was written in C, providing exceptional performance, and offers

potential for scalability as inter process communication only occurs during the transmission

of CMEs and fitness values for individuals.

4.1 Hardware Design and Implementation

Each run of the parallel application requires several thousand model replications, mak-

ing experimentation on a single CPU impractical. As an alternative, experiments with the

application were performed on an SGI Altix 350 Shared Memory Supercomputer operated

by the Alabama Supercomputer Authority (ASA)(Authority, 2007). This system has a

total of 144 CPU Cores, although the job queuing system typically allocates only a fraction

of these to the user. While shared memory is not a requirement of the application, the

Altix is capable of running applications that use MPI (Authority, 2005), and was therefore

chosen over the Cray XD1 Supercomputer, also available at the ASA.
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4.2 Software Design and Implementation

The SAMS Parallel Application including the agent-based simulation with which it

operates was developed using functional decomposition and is integrated into a single ex-

ecutable. The application was developed and compiled using Suse Linux GCC 3.3.3 on

the Altix. It was intended to be portable to other platforms and only has dependencies

with MPI and the Standard C libraries. MPI allows the user to run the application with a

variable number of processes. In the current version, a separate ASP is allocated to all but

one of the processes which is reserved for the GAC.

In addition to the parallel application, a stand-alone version of the UAV simulation was

developed for testing. This version includes a rudimentary 2D graphical display that makes

use of OpenGL and the Simple DirectMedia Layer for rendering in the X-Window system.

The purpose of this display was to allow a simple visual examination of UAV movement

behavior within the simulation.

The SAMS Parallel Application is a work in progress and does not yet include all of

the features of a true SAMS system. For the research presented in this thesis, the system

included a fully functional GAC and ASPs. However, the ability to measure a physical

system or emulator has not yet been implemented. Thus, as will be described in Section

5.5, certain assumptions were made during experimentation.

4.2.1 Random Variate Generation

Rather than make use of the Standard C Library rand() function, a random number

generator was implemented according to a specification provided in (Press, Teukolsky, Vet-

terling, & Flannery, 2007). Implementing a custom generator allows for the incorporation
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of a more reliable generator than that provided by the Standard Library. The generator

described by (Press et al., 2007) and incorporated into the parallel application uses 64 bit

integers and has a period of approximately 3.18 × 1057 which is ample for the purposes of

this system. The generator features uniform distributions for double precision floats as well

as integers. In addition, the application makes extensive use of normal deviates and the

Box-Muller method of normal deviate generation, also described in (Press et al., 2007), was

implemented.

4.2.2 System Emulator

Since experimentation with physical UAVs was not possible for this study, a system

emulator was incorporated into the Parallel Application. The emulator is an additional

simulation which resides in the same CPU process as the GAC. Unlike the simulations in

the ASPs, the input factors of the emulator are not modified by the creation of a CME.

The emulator is assumed to have the true settings of the physical system. These settings

are unknown to the IEC, GAC, and ASPs. However, the IEC does begin with an initial

distribution for each uncontrollable factor which includes the true value for the respective

setting in the emulator.

4.2.3 Model Execution

In this section, a sample of a stand-alone model’s execution within the application is

presented along with screen shots from the graphical display of an early build. In Figure

4.1, the first group of UAVs (represented by triangles) can be seen launching from the base

located in the center of the map. Dotted lines behind the UAVs indicate their path of

movement. Targets are represented by ‘x’ marks.
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As the situation develops, UAVs come into contact with the targets and begin massing

their fires on specific targets. Figure 4.2 shows that even with a rudimentary set of movement

rules and adaptive capabilities, some surprising examples of coordinated behavior emerge.

Finally, as the scenario winds down with only one target remaining, the UAVs spread

out to resume reconnaissance duties. In this model run, Maximum Target Visibility and

Communication Range were set to fairly small values. As shown in Figure 4.3, only 1 UAV

appears to be aware of the last target. Meanwhile, a large group of UAVs above the base

flock together, advancing along a wide front in search of any remaining targets. The UAVs

have no global knowledge of the number of remaining targets. These aggregate behavioral

changes emerge from local interactions and changing conditions in the learning element of

each UAV.
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Figure 4.1: Initial launch of UAVs from the base.
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Figure 4.2: UAVs begin cooperative behavior to mass their fires on individual targets.
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Figure 4.3: With only one target remaining, UAVs begin spreading out to conduct mopping
up operations.
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Chapter 5

Case Study: A UAV Search and Attack Model

In order to perform an assessment of the potential of the SAMS methodology, a model

based on the features of Complex Adaptive Systems was integrated into the parallel ap-

plication. The field of autonomous UAV cooperation provides a natural environment from

which to create such a model. Toward this end, an agent-based model of an autonomous

UAV team in a Search and Attack mission was developed. The UAVs in this model in-

teract through local communication only. There is no global system of coordination or

prior intelligence of targets. The simulation software for this model was written in the C

programming language which provides excellent run time efficiency, ease of use, portability,

and compatibility with MPI for parallel programming.

A rule-based approach for UAV movement was implemented for this model, inspired

by the work described in (Price, 2006). This set of movement rules, which is based on

general knowledge of the problem domain, results in a robust performance element for UAVs

capable of both independent and cooperative actions. These rules are implementations of

the steering behaviors described in (Reynolds, 1999). Similar implementations of these

steering behaviors have been featured in a number of autonomous UAV studies including

(Price, 2006) and (Crowther, 2004).

5.1 Design of the Model

A Search and Attack scenario was chosen for the UAV model. As the name suggests,

the objective of the UAV team is to effectively sweep an area in order to locate targets,
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and eliminate them from play once they are discovered. This scenario was selected because

it requires the UAV team to establish a balance between independent and cooperative

behavior. UAVs must spread out to efficiently search the area, but must also be capable of

massing their attacks in order to effectively prosecute targets. Numbers, communication,

and coordination all play a role.

The Search and Attack scenario takes place in a 2-dimensional space of equal dimen-

sions. UAVs begin play from a base located at the center of the map. Targets are distributed

randomly across the map and their positions are initially unknown to the UAVs. Once they

are launched, the UAVs must find and destroy all of the targets as quickly as possible. Fig-

ure 5.1 depicts the opening simulation steps in which UAVs are in the process of launching

from the base (represented by a gray hexagon) and sweeping the map. Targets (represented

by gray triangles) within the sensor envelope of a UAV have a chance of being discovered

while those outside remain hidden.

Figure 5.1: The Search and Attack scenario shortly after simulation start. UAVs depart
from the centrally located airbase (represented by a hexagon) with uniformly random initial
movement vectors. The sensor envelopes of individual UAVs are represented by dotted
circles.
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Progression of the model is simulated through time-stepped execution, dividing simu-

lation time into a number of equal size increments. During a simulation step, each UAV

may act. The results of these actions are updated synchronously and may affect actions

performed by other UAVs in the same time step. In distributed simulation, this scheme can

complicate the processing of events on different CPUs (Fujimoto, 2000). However, since

this model is designed for simulation using a single CPU process, processing of concurrent

events does not require separate time steps.

5.1.1 Input Factors

The UAV model has numerous variables that can potentially be parameterized. How-

ever, in order to more easily assess the model (and the effectiveness of SAMS as a whole)

the number of parameters has been kept small. It was theorized that propagation of target

information within the UAV team as well as the command structure of the team itself would

play decisive roles in determining success or failure in a given simulation run. These aspects

of the model were parameterized as shown in in Table 5.1. The Leader and Cooperation

Threshold parameters are controllable factors evolved by the GAC. Maximum Communi-

cation Range limits the extent of local communication among UAVs and is intended to

loosely model interference from ground clutter or active radio jamming. Maximum Tar-

get Visibility models both natural target concealment provided by terrain as well as active

camouflaging techniques. Toughness determines the amount of damage a target can sustain

from UAVs before being eliminated. These last three factors are initially unknown to the

SAMS application. Estimates of their actual values are produced by the IEC.
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Input Factor Controllable? Range

Leader Yes 0, 1
Cooperation Threshold Yes 0 ≤ x ≤ 1

Maximum Communication Range No 0 ≤ x ≤ 100
Maximum Target Visibility No 0 < x ≤ 100

Toughness No 1 ≤ x ≤ 10

Table 5.1: Inputs include both uncontrollable and controllable factors. Uncontrollable fac-
tors represent enemy characteristics and environmental conditions while controllable factors
represent aspects of the UAV team that may be modified.

5.1.2 Agent Specifications

Each UAV, U , within the model possesses a number of member variables and constants.

These are listed in Table 5.2 and represent both the physical state of a UAV as well as its

internal cognitive state during a given time step. The physical state includes the UAV’s

movement characteristics. The cognitive state of a UAV is based on an associated particle

in a distributed PSO (discussed in Section 5.3). Each variable or constant has a data type,

some of which are vectors. The initial values for some of these variables apply only to

simulations which occur when the SAMS application is initiated. Subsequent simulations

which are created in ASPs may have different values depending on observations made within

the emulator. These variables are indicated with a ‘†’. Some variables are also directly

evolved by the GAC and thus their initial settings are based on the values encoded within

an individual’s genotype. Many of these variables are described in more detail in the

following sections and may be referred to with their respective symbol listed in in Table 5.2.

The other entities within the model, the targets and base, while not strictly agents,

are described in this section as well. Targets are immobile and do not actively resist the

UAVs. They are specified with two variables listed in Table 5.3. The initial setting for a

target’s position is a polar coordinate with a normally distributed distance and uniformly
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Name Symbol Type Initial Value Constant?

mass m double 2 yes
position r double[2] (0, 0)† no
velocity v double[2] (0, 0)† no

maximum force |F|max double 1.0 yes
maximum speed |v|max double 0.5 yes

fuel f double 1.0† no
leader flag l Boolean by genotype yes

cooperation threshold ct double by genotype yes
particle position −→x double[2] U(0, 1)†, U(10, 50)† no
particle velocity −→v double[2] U(−0.25, 0.25)† , U(−10, 10)† no

personal best
−→p double[2] −→x † no

local best
−→pl double[2] −→x † no

Table 5.2: The member variables of a UAV affect both its movement physics in 2-D sim-
ulation space and the movement of its particle within the space defined by its decision
variables. Physics vectors are distinguished by boldface symbols while particle vectors are
given with an ‘−→’. A ‘†’ indicates an initial setting that is dependent on the emulator state.

distributed angle. This setting is discussed in more detail in Section 5.1.5. As previously

described in Table 5.1, Toughness is an uncontrollable factor estimated by the IEC and

therefore its initial setting is based on observations from the emulator.

Name Symbol Type Initial Value Constant?

position r double[2] (N(µ, σ), U(0, 2πradians)) yes
toughness tough double [1, 10]† no

Table 5.3: The member variables of a target determine its location in the 2D simulation
space and whether or not it is currently ’alive’. A ‘†’ indicates an initial setting that is
dependent on the emulator state.

The member variables of the base are shown in Table 5.4. The base provides two service

queues: fuel and launch, each with one service resource. In the ASP simulations produced

by the first generation of CMEs, the fuel queue is empty and the launch queue is full. This

reflects the starting condition of the model in which UAVs are considered to be fueled but

not yet launched. Later ASP simulations may have different initial settings for these queues
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to reflect the servicing of UAVs in the emulator. The launch and fuel queues are discussed

in more detail in Section 5.1.8.

Name Symbol Type Initial Value Constant?

position r double[2] (50, 50) yes
fuel queue Sfuel list empty† no

launch queue Slaunch list full† no

Table 5.4: In addition to its location, the airbase consists of a single-server fuel queue and
a single-server launch queue. All UAVs are considered fueled but not yet launched when
a simulation begins, hence the initial settings of those queues. A ‘†’ indicates an initial
setting that is dependent on the emulator state.

5.1.3 UAV Movement

Each UAV is modeled as a point with mass, m, maximum velocity, |v|max, and maxi-

mum thrust, |F|max. Thrust may be applied in any direction in an effort to steer the UAV

toward a desired location, but the UAV’s mass decreases maneuverability due to inertia.

Note that since a UAV is modeled as a point, collisions with other UAVs do not occur.

The original physics modeling techniques on which this system is based are described in

(Reynolds, 1999). The physics algorithms and most of the movement rules used in the UAV

model are 2D implementations of those techniques. Algorithm 2 describes a simple means

of truncating a vector so that it does not exceed a given magnitude. This is useful for

calculating velocity.

Algorithm 2 : truncate( a, b ) - Truncates a vector, a, by a maximum magnitude, b.

1: if |a| > b then

2: a ⇐ ba
|a|

3: end if
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For any given time step, the next position of a UAV is calculated by Algorithm 3. It

considers inertia caused by changing velocity but does not consider aerodynamics or the

effect of gravity. UAVs cannot crash regardless of their actual velocity.

Algorithm 3 : nextPosition( U , d ) - Calculate the next position, r(t + 1), of a UAV, U ,
given a steering direction, d.

1: truncate( d, |F|max )

2: d ⇐ d
m

3: U.v ⇐ U.v + d

4: truncate( U.v, |v|max )
5: U.r ⇐ U.r + U.v

A basic rule for UAV movement is seek, which causes a UAV to move toward some

specified position on the map. This rule is illustrated in Algorithm 4 and is based on the

steering behavior of the same in (Reynolds, 1999). Like Algorithm 3, seek takes a steering

direction vector, d, as an argument. In seek, d is assumed to already have some setting

other than (0, 0) and thus seek only modifies the value of d instead of over writing it. Other

movement rules use the same calling scheme so that composite rules of complex behavior

can be made from seek as well as some other basic movement rules.

Algorithm 4 : seek( U , s, d ) - Modify the steering direction, d given a UAV, U , and a
position toward which the UAV should move s.

1: s ⇐ s − U.r

2: s ⇐ sU.v
|s|

3: d ⇐ d + s − U.v

In addition to seek, the model has the following basic movement rules: offset seek,

arrival, orbit, cohesion, separation, and alignment. Offset seek allows a UAV to approach a

position from a slight offset, similar to the way in which an aircraft might maneuver into

a strafing run against a ground target. This is a modification of the offset pursuit steering

behavior described in (Reynolds, 1999). The arrival rule is identical to seek except that
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it causes the UAV to decelerate as it approaches a position. This is useful for simulating

a UAV’s landing approach to the base for refueling. It is an implementation of a steering

behavior of the same name in (Reynolds, 1999). The orbit rule is a modification of the path

following behavior found in (Reynolds, 1999) that allows a UAV to orbit a position from a

desired distance.

The cohesion, separation, and alignment rules are useful for coordinating group behav-

ior among UAVs. Cohesion causes a UAV to move toward the average position, or centroid,

of a group of other UAVs. In contrast, separation causes a UAV to move away from other

UAVs. Separation is scaled so that the separating force becomes stronger as a UAV gets

closer to another UAV. Finally, alignment causes a UAV to align its velocity vector with the

velocities of other UAVs. When taken together as a linear combination with weight con-

stants for each rule, the advanced movement rule, flocking, occurs. These rules are shown

in Figure 5.2. Like the other movement rules listed above, flocking and its constituent rules

are based on steering behaviors presented in (Reynolds, 1999).

(a) Cohesion (b) Separation (c) Alignment

Figure 5.2: Flocking is a linear combination of three rules that affect the movement of a
given UAV (U1) relative to other members of the flock.
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Another advanced movement rule implemented in the model is leader following. Like

flocking, this rule affects group coordination among UAVs. The flocking rule, however, is

completely decentralized, relying on no commands or guidance from a leader. The movement

and direction of a flock are therefore emergent, arising from the interaction of movements

made by individual flock mates. In leader following, UAVs attempt to steer toward a

position immediately behind another UAV that is designated as a leader. The separation

rule is also incorporated in leader following to prevent UAVs from clustering too tightly.

This is shown in Figure 5.3. The leader is completely unaware of the other UAVs following

it and behaves exactly as if it were acting independently. The implementation of leader

following in this model is based on the description provided in (Reynolds, 1999).

Figure 5.3: In leader following, a cooperating UAV (U1) attempts to move toward a position
behind the nearest leader (L1). This movement is somewhat inhibited by separation from
other cooperating UAVs.

5.1.4 UAV Communication

UAVs coordinate their behavior through local communication which is limited by the

Maximum Communication Range input factor. UAVs receive all messages that are trans-

mitted as long as the distance from the sender is less than this range. All UAVs from

43



whom a given UAV receives messages are considered to be within its neighborhood, which

affects its cooperative behavior as discussed in Section 5.2. A message transmitted from

a given UAV includes a list of targets detected by that UAV as well as the best position

of the UAV’s particle, −→p . UAVs do not retransmit messages that they have received, thus

resulting in a single hop wireless network as shown in Figure 5.4.

Figure 5.4: Communication range, indicated by dotted lines, affects the ability of UAVs to
send messages, indicated by solid lines. In a single hop network, U2 can receive data from
U1, but cannot receive data from U3. In a multihop network, U1 can act as a transceiver,
passing a message from U3 to U2.

5.1.5 Target Distribution

Targets are placed on the map according to a randomly distributed polar coordinate

relative to the base in the map’s center. The angle is uniformly distributed from 0 to 2π

radians. The distance is normally distributed with the model setting, Mean Target Distance,

determining the µ parameter and Target Standard Deviation determining σ. As shown in

Figure 5.5, this usually results in targets positioned in a ring encircling the base.
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Figure 5.5: Targets are positioned at a polar coordinate relative to a distribution point
represented by the crosshair in the center of the diagram. The target angle is distributed
uniformly on the interval [0, 2π) in radians. The radial coordinate, r, is normally distributed
according to the model settings of Mean Target Distance, and Target Standard Deviation.

5.1.6 Target Detection

During each simulation time step, A UAV may discover a target either by making a

successful detection attempt, or by receiving the target’s location data via a message from

another UAV. Detection attempts are possible within a maximum sensor range of a given

UAV, defined by the Maximum Target Visibility model setting, which is also an uncontrol-

lable input factor. The probability of a given UAV detecting a given target decreases linearly

as distance between the UAV and the target increases. Equation 5.1, below, illustrates this

rule.

p = 1 −
TargetDistance

MaximumTargetV isibility
(5.1)
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Target detection must be reattempted during each simulation time step so it is possible

that previously detected targets may revert to an undetected status. A UAV that detects

a target will include the target’s position data in its communication message during that

same time tick. At the end of the time step, however, all targets are cleared from a UAV’s

memory so it is not possible for a UAV to receive target information from another UAV in

one time step and then retransmit that target information in the next time step.

5.1.7 Combat

In order to attack a target in a given time step, the UAV must have either successfully

detected the target in the same step, or received the target’s position data from another UAV

that made a successful detection attempt. UAVs always attack the nearest known target

once during each time step regardless of the direction of the target relative to the UAV.

However, only known targets whose distance to the UAV does not exceed the Weapon Range

model setting may be attacked. Attacks always hit and inflict a normally distributed amount

of damage with parameters determined by model settings of Average Weapon Effect and

Weapon Effect Standard Deviation. Once a target’s Toughness variable has been reduced

to 0 or less from UAV attacks, it is considered eliminated and removed from play. Targets

do not repopulate the map once removed. In addition, targets do not attack UAVs.

In some studies of autonomous UAV teams, such as (Lua, Altenburg, & Nygard, 2003),

the notion of “multi-point attack” has been of interest. This is essentially the idea of

flanking an opponent. This concept has been implemented in the UAV model to reflect an
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additional benefit of cooperative behavior. When at least 2 UAVs attack the same target

in the same time step, and the smallest angle between them relative to the target is at least

frac23π radians, a multi-point attack bonus is applied. These conditions are illustrated in

Figure 5.6. When applied, this bonus doubles the damage inflicted by every UAV attacking

the target in that time step.

Figure 5.6: A multipoint attack bonus occurs when the shortest angle between any 2 at-
tacking UAVs relative to the target is at least 2

3π radians. In this case, a bonus occurs if
U1 attacks T2 in conjunction with U3, but not if U1 attacks T1 instead.

5.1.8 Supply

A simple model of resupply has been implemented in the UAV model to penalize

inefficient UAV behavior. While UAVs are considered to have unlimited ammunition, their

fuel supply is finite. This supply is initially set to 1. A certain amount of fuel is consumed

each time step that a UAV is in flight according to Equation 5.2, where m is the mass of

the UAV, vt and vt−1 are the UAV’s velocity vectors during the current and previous time

steps, and C is a constant equal to the Fuel Consumption model setting.

fuelt = fuelt−1 − (m ∗ (|vt − vt−1|) ∗ C) (5.2)
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Once the fuel supply of a UAV is exhausted, it must return to the base for resupply.

(UAVs are assumed to have a spare capacity for the return trip.) Once at the base, it is

placed in the base’s fuel queue. The service time for the fuel queue is a number of time

steps uniformly distributed by the model settings Minimum Fuel Time and Maximum Fuel

Time. Once serviced, the UAV is placed in the base’s launch queue, also with a uniform

distribution and associated model settings for the distribution parameters. Both queues

are single server, and while a UAV is at the base it may not send or receive messages from

UAVs in flight.

5.2 Design of the UAV Performance Element

The UAV performance element affects only the movement of a UAV as the actions a

UAV performs during a time step such as message sending and attacking are purely deter-

ministic. The performance element incorporates the movement rules described in Section

5.1.3 into a decision tree. As shown in Figure 5.7, the various movement rules occupy the

leaf nodes within the tree. The decision process begins at the top of the tree. If a UAV’s

fuel is exhausted, the arrival rule is selected with the base as the desired movement location.

Otherwise, the UAV must choose whether or not to act cooperatively or independently dur-

ing that time step. This decision is based on a Cooperation Threshold, ct, and a current

Cooperation value, stored in −→x . The value of ct is fixed for the duration of a simulation

run, as it is determined by the genotype of the simulated individual. The Cooperation

value is modified by the Learning Element during each time step, discussed in Section 5.3.

If Cooperation is not greater than ct, the UAV will choose cooperative behavior. If a leader

is within the UAV’s neighborhood (defined in Section 5.1.4), leader following will occur.
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Otherwise, the UAV will flock with other cooperating UAVs if any are present in its neigh-

borhood. When independent behavior is chosen and known targets are present, the UAV

will perform the offset seek rule with the nearest target as its destination. If no known

targets are present, the UAV will perform the orbit rule using a Base Distance variable

stored in −→x .

Figure 5.7: UAV movement is a based on a decision tree in which leaf nodes represent
steering behaviors and interior nodes are rules implementing considerations such as fuel,
other UAVs in the current UAV’s neighborhood, known targets, and the PSO decision
variable settings of the UAV itself.

The behavior described in the UAV decision tree applies both to leader and non-

leader UAVs. However, a leader cannot act as a leader and perform cooperative behavior

simultaneously. Therefore, a UAV with the leader flag is not recognized by other UAVs as

a leader during any time step in which it chooses to cooperate.
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5.3 Design of the UAV Learning Element

The learning element of a UAV has two features. The first feature is a distributed

particle swarm that adjusts two decision variables: Cooperation and Base Distance. Each

UAV has a single particle associated with it. The position, −→x , and velocity, −→v , of this

particle are updated periodically, according to a specified sampling interval. During this

update, if other UAVs are within communication range, the UAV will exchange personal

best values, −→p , and potentially obtain a new local best value, −→pl . The fitness of a particle’s

position varies from 0 to 1 and is determined by maximizing the objective function 5.3.

In this function, a is the number of attacks performed by the UAV, k is the number of

the UAV’s kills, and d is the number of target detections propagated by the UAV to itself

and its team mates. These variables are counted during the current sampling interval only.

They do not accumulate from one interval to the next.

max(x) = 1 −
1

a(k+1) + 2
−

1

d + 2
(5.3)

The second feature of the learning element is a string of 4 bits which models a rudimen-

tary cognitive bias, or ”personality” and is generated by the GAC of the parallel application

as a part of the UAV team’s specification. The first bit, sets the leader flag value, l. This

value determines whether or not other UAVs consider the UAV to be a “leader” as described

in Section 5.2. The other three bits determine the Cooperation Threshold, ct, which de-

termines how easily the UAV decides to cooperate with other UAVs. Each value of these
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three bits represents one of eight values uniformly ranging from 0 to 1. Thus, when the

Cooperation decision variable stored in −→x is less than ct, it will choose to cooperate with

other UAVs.

5.4 Model Test Results

In order to assess the suitability of the UAV model for use in the parallel application,

a number of experiments were performed to gain insight into the interactions between

various controllable and uncontrollable factors. The results of these experiments are listed

in Table 5.5. In keeping with the theory that a useful model should force autonomous

UAVs to adopt a balance between independent and cooperative behavior, the intent was

to examine the interactions between the number of leaders in a team, the Cooperation

Thresholds of its members, and Communication Range. Toughness was also included in

the experiments as this affects the length of a mission and therefore the amount of time

the team has to adapt. Given this intent, a 24 factorial experimental design was imposed.

Low and high settings for Toughness and Communication Radius were {1, 10} and {6, 60}

respectively. Settings for the number of leaders were {0, 4}. It was thought that leaders

would need lower Cooperation Thresholds than their non-leader counterparts, since only

non-cooperating leaders are recognized by other UAVs. Therefore, leaders and non-leaders

were given different Cooperation Thresholds for each setting, low or high. Leader settings

were given as {0.05, 0.1} while non-leaders used settings of {0.5, 0.9}. The objective for a

mission was to minimize the number of time steps needed to eliminate all targets in play. The

observations for this metric are listed under the “Average Result” column. The number of

time steps required to eliminate all targets was selected as the performance objective because
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it subsumes the goals of reconnaissance, combat, and economy of resources. Simulations

running longer than 5000 time steps were thrown out and repeated. For each experiment,

30 replicates were obtained in an attempt to improve the odds that the average Mission

Complete scores would be normally distributed.

Treatment Uncontrollable Factors Controllable Factors Mission Complete

No. Tough. Comm. Range Leaders Coop. Average Result Standard Dev.

1 Low Low Low Low 462.60 74.28
2 Low Low Low High 468.57 89.52
3 Low Low High Low 433.20 50.32
4 Low Low High High 446.93 79.44
5 Low High Low Low 468.30 132.48
6 Low High Low High 643.33 225.85
7 Low High High Low 473.47 109.47
8 Low High High High 556.87 119.6
9 High Low Low Low 1826.63 139.56
10 High Low Low High 2350.9 293.15
11 High Low High Low 1777.24 129.68
12 High Low High High 1995.90 219.96
13 High High Low Low 1769.18 246.63
14 High High Low High 1926.7 453.9
15 High High High Low 1885.40 526.5
16 High High High High 2475.71 814.61

Table 5.5: The initial tests of the UAV model involved 4 model factors examined with
high and low values for each factor. Toughness and Communication Range settings were
{1, 10} and {6, 60} respectively. Settings for the number of leaders in a team were {0, 4}.
Cooperation Threshold settings differed depending on whether a UAV was a leader or non-
leader. These settings were {0.05, 0.1} for leaders and {0.5, 0.9} for non-leaders.

As can be seen in the table, certain UAV team configurations appeared to perform

better in certain settings. Teams with no leaders and low cooperation values tended to

perform better when Communication Range was increased. Conversely, a slight advantage

appeared to fall toward teams with leaders when Communication Range was decreased. For

52



all replicates, Target Max Visibility and Weapon Range were set to 5. Average Weapon

Effect and Weapon Effect Standard Deviation were set to 0.05 and 0.03 respectively.

One interesting phenomenon observed in some of the experiments was the behavior of

the UAVs’ average Cooperation values due to the influence of the distributed PSO. Figure

5.8 illustrates a single replication from one set of experiments, which was not included in

the original experimental design, but appears instructive. This case involved a high Com-

munication Range setting of 60 and one leader UAV. As mentioned in 5.3, the distributed

PSO evaluates the PSO objective function and updates its decision variables (including

Cooperation and Base Distance) once per 50 time steps. This period is referred to as the

sampling interval, shown across the bottom of the plot. Thus, at sampling interval 10, 500

time steps have elapsed in the simulation. This plot tracks the change in the average of all

Cooperation values within the UAV team across a single model replication. In this case,

by about the 10th sampling interval, the distributed PSO had evolved the team away from

cooperative behavior. This coincided with a dramatic drop in the target population. Al-

though possibly the effect of random chance, it may be that this change allowed the team to

spread out sufficiently to locate and destroy the targets. This case is potentially instructive

because it indicates that Communication Range may have a significant interaction with the

number of leaders within a team and the Cooperation Thresholds of its members.

The behavior shown previously in Figure 5.8 contrasts with what occurs when Com-

munication Range is set to a low value. Figure 5.9 shows that when Communication Range

is set to 6, cooperation is more likely to occur. In this case, the average value of the PSO

Cooperation value stayed relatively close to 0.5. Unfortunately, the standard deviation of
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Figure 5.8: During a single model replication, UAVs choose not to cooperate when long
communication ranges are in effect and only one leader is present. In this case, the Cooper-
ation Threshold was set to 0.9 for all UAVs except for the leader which had a Cooperation
Threshold of 0.1. The increased PSO Cooperation value in 5.8(a) coincides with a sudden
drop in Target Population as shown in 5.8(b).

Cooperation values at each sampling interval were not recorded, so it is impossible to know

how uniform this decision variable was during this model replication.

5.5 Experiments with the Parallel SAMS Application

The goal of computational experimentation for this thesis was to provide an initial

understanding of the potential of SAMS as an S2 methodology. Toward this end, it was

hoped that successful experimentation would help to answer a central question: Can the use

of symbiotic simulation through ensembles of plausible models improve a physical system’s

performance?
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Figure 5.9: During a single model replication, UAVs are more likely to cooperate when
low Communication Ranges settings are in effect. This example involved a Cooperation
Threshold of 0.9 for all non-leader UAVs and 1 leader with a Cooperation Threshold of 0.1.

5.5.1 Emulator Objective and Individual Fitness

As described in Section 4.2.2, experimentation with the Parallel SAMS Application

involved the use of a system emulator, rather than an actual physical system. This emulator

is itself a simulation with the same structural model of autonomous UAV behavior used by

the ASPs. It only differs in terms of the values used for its input factors and in that its

controllable factor settings are not fixed for the duration of its execution.

Like the model replications examined in 5.4, the performance objective of the Emulator

was to minimize the number of time steps required to eliminate all targets. Therefore, in

order to synchronize the performance of the simulations executed in the ASPs with that

of the emulator, the fitness of an individual was defined to be the average number of time

steps required to eliminate all targets in a replication across all replications specified by

that individual’s CME.
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The emulator is an ordinary UAV model simulation which receives controllable factor

updates from SAMS. Therefore, it was possible to examine the performance of the Parallel

SAMS Application by running an emulator with identical uncontrollable factor settings to

those used in the experiments from Table 5.5. Since the emulator and stand-alone models use

the same model structure, their performance can be compared as long their uncontrollable

factors and fixed model settings are identical.

The theory was that the emulator’s system would have an advantage over the system

in a stand alone model. The controllable factors of Leader flags and Cooperation Thresh-

olds can be modified by SAMS to the benefit of the emulator, whereas the system in the

stand alone model has controllable factor settings that are determined in advance and fixed

for the duration of its execution. In order to compare the performance of the emulator

with SAMS against a stand-alone model, all fixed model settings such as Weapon Range,

Average Weapon Effect, Weapon Effect Standard Deviation, Average Target Distance, and

Target Standard Deviation were set to the identical settings used in the experiments de-

scribed in Section 5.4 as these settings were held constant across all treatments in that

group. Furthermore, a subset of the treatments corresponding to one pair of settings of the

uncontrollable factors was selected.

5.5.2 GA Design

One intent for SAMS is for the Genetic Algorithm Controller to produce a large degree

of exploratory behavior initially, followed by increased exploitative search behavior as the

physical system changes. With this in mind, proportional selection was chosen as a parent
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selection operator for these experiments. The variation operators used for these experi-

ments included one-point crossover, which obtains a single cut point that determines how

the chromosomes will be divided and recombined to produce children as shown in Figure

5.10. Note that one or both of the children shown may actually be created. For these

experiments however, two children were created for each crossover operation. The other

variation operator, mutation rate, was set to 0.05 so that, on average, 4 bits from each

chromosome were flipped. Each individual represented 20 UAVs and thus was 80 bits long.

In addition, a non-overlapping survival model was selected so that all children survive while

parents automatically die. This type of GA, which balances a relatively low selection pres-

sure with low rates of variation from one-point crossover and low mutation, was thought to

be suitable for encouraging exploration of controllable factors early in the physical system’s

development. As will be shown, the results were mostly favorable.

Figure 5.10: In one-point crossover, a single cut point is randomly selected along the length
of each parent’s chromosome. All genes to the left of the cut point are passed on to the
child directly to the parent’s right, while everything on the left is exchanged and given to
the opposite child.
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5.5.3 Emulator Results

The major limitation of these experiments was that the IEC was not yet implemented.

Therefore, certain assumptions were made regarding emulator / physical system measure-

ment and PME generation. The work of the IEC was simulated within the experiments.

At run-time, the simulated IEC was initialized with uniform random distributions for three

uncontrollable factors: Toughness, Communication Range, and Target Max Visibility. Note

that Target Max Visibility was held constant across all treatments in Section 5.4 but it is

considered one of the uncontrollable factors for these experiments as mentioned in Section

5.1.1. The true values used for these factors within the emulator were Toughness 10, Com-

munication Range 6, and Maximum Target Visibility 5. These settings were identical to

those used in Treatments 9, 10, 11, and 12 in 5.4.

The parameterized distributions within the simulated IEC for the uncontrollable factors

were arbitrarily selected to be uniform distributions of length 30 about each factor’s true

setting (truncated by zero as a minimum parameter). This included U(0, 25), for Tough-

ness, U(0, 20) for Maximum Target Visibility, and U(0, 21) for Communication Range. To

simulate the effect of increasing information available from the IEC, the length of each

distribution was divided by half during each iteration of the GAC’s main loop, remaining

centered about each true setting. For example, at the second main loop iteration (genera-

tion 2 in the GAC and time step 200 in the emulator) the distribution for Communication

Range was set to U(0, 13.5). Then, at the third iteration it was set to U(2.25, 9.75) and so

on.

At each iteration, a PME of 30 rows and 3 columns (one for each uncontrollable factor)

was created. When combined with an individual, each CME therefore had 30 rows and
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43 columns (3 columns for the uncontrollable factors and 40 columns representing 2 genes

for each of the 20 UAVs in an individual). Each row, representing a single parameterized

model, was run for one replication resulting in 30 replications for each CME. A population

of 20 individuals mapped to 20 ASPs was used. This resulted in 600 model runs during each

iteration of the main loop. The emulator replications included on average, 16 generations.

Thus, on average, approximately 9600 model replications were performed by the ASPs for

each replication of the emulator. More replications for each row of a CME and a larger

population would have been desirable but were not used due to project time constraints.

For the experiment, 30 replications of the SAMS Parallel Application on the Altix

Supercomputer were run. As can be seen in Table 5.6, the performance of the emulator

enhanced by SAMS within the Parallel Application resulted in a noticeable (though not

necessarily statistically significant) improvement in the number of time steps for mission

completion compared to the best performing UAV team configuration among the stand-

alone model tests. The best stand-alone model configuration was Treatment 11 in this

category. Treatment 11 included 4 leaders and Cooperation Thresholds for the leaders and

non-leaders of 0.05 and 0.5 respectively.

Experiment Average Time Steps Standard Dev.

Emulator with SAMS 1597.5 164.34
Stand-alone model with best average fitness 1777.24 129.68

Table 5.6: The results of the Parallel Application compared to the best performing Stand-
alone Model from Section 5.4. The Parallel Application provides an apparent improvement
in performance on average, but with higher variance.

Although the average reduced number of time steps required for mission completion

obtained by SAMS in this experiment are encouraging, the higher standard deviation in

results compared to the stand-alone model are a source of concern, since it was theorized that
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SAMS would evolve robust configurations that produce less variance in fitness values. One

possible explanation is that the design of the GA used in this experiment does not provide

enough selection pressure to consistently steer the system toward an effective configuration.

Evidence of this seems to be shown in Figure 5.11. This plot tracks the current fitness of

the most fit individual obtained from the GAC over the course of a single replication of the

emulator. Each ‘+’ on the fitness line represents an update of the emulator with a new best

individual. The plot shows an initial worsening in the fitness of the current best individual.

This was common to most of the replications. This may be the result of an initial spurt of

exploration which does not complete early enough to allow significant exploitation to occur

before the emulator runs its course.
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Figure 5.11: During a single replication of the SAMS Parallel Application, the current emu-
lator system configuration is set by the current most fit individual in the GAC’s population.
With Proportional Selection, an initial worsening of fitness is typically followed by a slow
improvement. Every 100 time steps, the emulator’s system configuration is updated with
the most fit individual.
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Another possible explanation for the increased standard deviation in SAMS may be

that the number of replications performed for each CME were simply insufficient to properly

assess the fitness of the CME’s respective individual. This might also explain the initial

decrease in fitness in Figure 5.11 as the initial iterations of the main loop involve increased

uncertainty in the uncontrollable factors.

While these experiments seem encouraging, they do not by themselves show that the

SAMS approach is beneficial for a physical system or emulator. More research and exper-

imentation are needed to explore this question in detail. In particular, experiments with

larger numbers of model replications need to be performed. Secondly, the possibilities for

modification of Genetic Algorithm used by SAMS have barely been scratched. Much more

research needs to be done to identify what design features of a GA (or EA) contribute

most to improved performance. Finally, more refinement to the UAV model should be un-

dertaken. The field of Complex Adaptive Systems is rich with research questions and the

medium of autonomous UAV teams is an interesting venue for investigation.
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Chapter 6

Conclusion

This research has examined the need for dynamic model updating for Symbiotic Sim-

ulation of systems involving interacting agents with complex, non-linear behavior. These

systems cannot be effectively studied with traditional simulation techniques that rely on

valid, authoritative models of the physical system. Instead, techniques such as Multisim-

ulation and Exploratory Analysis, which experiment with an ensemble of plausible models

have been developed to deal with these problems.

The Symbiotic Adaptive Multisimulation approach described here used a Hybrid Ex-

ploration approach to study an ensemble of plausible models. When parameterized to

account for input uncertainty in controllable and uncontrollable factors, SAMS is able to

dynamically update a system emulator resulting in an apparent performance benefit. This

benefit is realized with the help of a Genetic Algorithm that evolves potential system con-

figurations over the lifetime of the system emulator and which can be used to update the

emulator. These updates consist of adaptive strategies that are passed on to the agents

operating within the emulator.

This initial study of SAMS as a simulation methodology has shown encouraging results,

but has also left many problems unsolved. In particular, further experimentation with larger

numbers of model replications is required. Also, experimentation with additional GA de-

signs should be performed to understand the features that make an Evolutionary Algorithm

suitable for SAMS. The understanding gained could provide further improvements to the

methodology in terms of speed and robustness.
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Other significant problems that remain are the incorporation of appropriate Multireso-

lution Modeling, input analysis for estimating uncontrollable factor distributions, and han-

dling of structural uncertainty. Given these challenges, Symbiotic Adaptive Multisimulation

appears to be a rich opportunity for further study.
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