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Abstract 
 

 

Due to the popularity of internet ordering and intelligent logistic and supply chain 

management systems, customers tend to order more frequently, in smaller quantities, and 

they require more customized service. As a result, the turn-over rate of SKUs in many 

warehouses is significantly increasing.  The distribution center in this study is zone-based 

carton picking system and it is dynamically replenished with specific SKUs for next pick 

wave after pickers complete the picking for the current pick wave. In other words, the 

picking area is completely reslotted between each pick wave.  In this distribution center 

environment, the long-term demand is of limited value in determining the appropriate 

assignment of SKUs to slots and items to cartons for the specific pick wave. Thus, the 

distribution center has two NP-hard assignment problems: slotting –assigning SKUs to 

slots in the picking area; and cartonization – assigning individual items to cartons. The 

two primary assignment problems are interrelated and are simultaneously solved at the 

beginning of the pick wave.  

The primary objective in this dissertation is to develop an efficient iterative heuristic 

methodology for systematically solving two interrelating complex decision problems 

based on simulated annealing slotting heuristic using correlated SKUs and cartonization 

heuristic using bin-packing heuristic considering slotting. The proposed heuristic 

improves the performance of makespan of pickers assigned in each zone compared to two 

independent heuristics being given does not guarantee a good solution.  
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Chapter 1 

Introduction 

 
Inventory, which exists because of a mismatch between supply and demand, is an 

important supply chain driver because changing inventory policies can dramatically alter 

the supply chain’s efficiency and responsiveness. Therefore, the warehouse that stores 

inventory also plays an important role in supply chain management. According to the 

19th Annual State of Logistic Report sponsored by the Council of Supply Chain 

Management Professionals, U.S business logistics costs hit $1.4 trillion in 2007. In 

addition, warehouse-related costs, which make up 9.9% of the total logistics cost, are 

approximately $100 billion (Council of supply chain management professionals, 2008). 

This means that managing the warehouse efficiently is essential to reduce logistics cost in 

a supply chain. 

Frazelle (2002) classified the warehouse into seven types, which includes raw 

material warehouse, work in process warehouse, finished goods warehouse, distribution 

warehouse (or distribution center), fulfillment warehouse, local warehouse, and value-

added service warehouse. The first three types store raw materials, work in process, and 

finished goods, respectively. The distribution warehouse accumulates and consolidates 

products from various points of manufacture within a single firm, or from several firms, 

for combined shipment to common customer. The goal of a fulfillment warehouse is to 
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receive, pick, and ship small orders for individual consumers. The local warehouses are 

distributed in the field in order to shorten transportation distances and permit rapid 

response to customer demand. In the value-added service warehouse, finally, some 

product customization activities are executed, including packaging, labeling, pricing, and 

returning processes. Among these types, we focus mainly on the distribution warehouse 

(See Figure 1.1 for a description).  

The decision problems for the distribution warehouse can generally be classified into 

three categories according to the timeframe of decisions needed. The first decision 

problem is to find the location(s) of warehouse(s). If a firm is designing the logistics 

network, it has to decide the number of distribution warehouses and their locations to 

minimize the service time for customers and/or to minimize transportation cost. Once the 

location of a distribution warehouse is found, the next decision problem to be solved is 

designing the warehouse configurations. This problem consists of two main research 

areas: overall warehouse design and internal warehouse design. In the overall warehouse 

design area, the physical warehousing system is constructed by selecting appropriate 

storage facilities (e.g. block stacking, single-deep lane storage, double-deep lane storage, 

carton flow-rack, AS/RS, carton/case picking, small item picking, etc.) and material 

handling equipment (e.g. fork-lift, conveyor, hoist, stacker crane, etc.), while the internal 

layout of the warehouse is made through solving the internal warehouse design problems.  
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The above two decision problems are long-term strategic and/or mid-term tactical 

problems in a supply chain management. However, the third decision problem includes 

short-term operational problems, which are the main focus of this dissertation. The 

warehouse managers are most frequently faced with this kind of problems. The 

warehouse operation problem can be classified into four areas according to four main 

operations of a warehouse as follows: 

1) Receiving: This operation is the collection of activities involved in the receipt 

of all products coming into the warehouse. 

2) Storing: This operation is assigning storage space to inventory items. Three 
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fundamental decisions are introduced for storing operation such as how much 

inventory should be kept for a SKU (stock keeping unit) in the warehouse, how 

frequently or when should the inventory for a SKU be replenished, and where 

should the individual SKUs be stored in the warehouse. The first two decisions 

belong to the traditional inventory control area. Throughout this dissertation, 

we confine the storing operation to third decision of the storing operation   

3) Order picking: This is the collection of activities to pick items ordered. Major 

decision problems in this operation include order batching, order picking, and 

routing. The order-batching problem is to decide how many and which orders 

should be picked in a batch (in other words, grouping of customer orders into 

pick lists). The order picking method in which a batch is comprised of a single 

order is called discrete order picking. In the meantime, the routing (or 

sequencing) problem in order picking operation determines the best pick 

sequence and the route of locations for the retrieval orders in a pick list. 

4) Shipping: This operation assigns the product ordered to a shipping dock and 

schedules shipping trucks. 

From an economical point of view, the order picking operation is most important 

because it constitutes about 55% of the total operating costs for a typical warehouse 

(Tompkins et al., 2003). But the efficiency of the order picking operation is closely 

related with operating policies on storing as well as order picking. One of the main issues 

in the order picking operation is the order batching problem. Order batching is to group 

line-items in several orders together in a single picking tour.  Batching can be expected to 
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reduce the average travel time per order by sharing a pick tour with orders. In the zone-

based carton picking systems, we have to group and assign line-items within an order to 

cartons with limited capacity. We refer to this as cartonization. The cartonization 

essentially has the same characterization with order batching for grouping line-items into 

a carton to reduce the order picking cost by sharing a picking tour with line-items that are 

located in near slots. However the cartonization is different from order batching in that it 

groups line-items from the same order into cartons.  

In traditional warehouse, there is a dependency between the slotting and order 

picking operations. Slotting operation has been performed efficiently using long-term 

demand so that the warehouse is not frequently replenished (i.e., yearly). Order picking 

operation (i.e., order batching, cartonization, and routing) is frequently performed based 

on the slot assignment of the SKUs by the slotting operation using the long-term demand. 

Due to the popularity of internet ordering systems and intelligent logistic and supply 

chain management systems, customers tend to order more frequently, in smaller 

quantities, and they require customized service. Companies tend to accept late orders 

while still needing to provide rapid and timely delivery within tight time windows (thus 

the time available for order picking is shorter). Turn-over rate of SKUs in the warehouse 

become short and diverse. Therefore, the determining of timing of the replenishment of 

distribution center and slotting of SKUs are not long-term decision and the warehouse 

operations become more complex and important to meet the dynamic demand trend. The 

distribution center in this dissertation is dynamically replenished specific SKUs for next 

pick wave, after pickers complete to retrieve all the SKUs for current pick wave. In this 
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warehouse environment, the long-term demand is of limited value for the specific pick 

wave and the slotting operation and order picking operation have to determine 

simultaneously at the beginning of the pick wave. In the zone-based carton picking 

system in this dissertation, we face two primary assignment problems: assignment of 

SKUs to slots in the picking area (slotting); and assignment of line-items to cartons 

within an order (cartonization). The two primary assignment problems are interrelated 

with each other. In order to assign SKUs into slots efficiently, it is necessary to know that 

which line-items in an order are grouped together into the same carton. On the other hand, 

in order to assigning line-items into cartons efficiently, it is necessary to decide where 

SKUs are slotted and which SKUs are closely slotted together. This dissertation therefore 

deals mainly with two interrelating problems to reduce the order picking cost in a 

distribution warehouse as a part of order picking problem. 

1.1 Problem statement 

As stated earlier, this dissertation focuses on the order picking cost in a distribution 

warehouse. A typical distribution warehouse consists of two distinctive areas; forward 

picking area and reserve storage area. In the forward picking area, the items are stored 

and picked in SKUs (stock keeping units). Figure 1.2 shows the configuration of the 

forward picking area in a target distribution warehouse. An individual SKU is stored in a 

slot of the storage rack. The SKUs are replenished on a daily basis from the reserve 

storage area, which stores items in lots. This is an example of the warehouse under 

consideration in this study. This warehouse adopts the so-called zone-based picking 
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system, which means the picking area is divided into several zones and an order picker is 

dedicated to each zone. In this warehouse, the turnover rates of items stored are so high 

that a picker is needed to serve a rack-face, in other words, a zone means a rack-face in 

this study. Since an order picker works for only one rack face, the routing problem, which 

is one of the main problems in order picking operation, is of little significance in this 

situation. There are two main decision variables to determine the order picking cost in the 

zone-based carton picking systems. The zone-based carton picking systems use cartons 

containing line-items to construct a single picking tour. Since the carton is directly 

shipped to a customer, the carton must contain line-items within a single order. Thus, the 

cartonization is one of decision variables to determine the order picking cost because it 

defines the assignment of line-items traveling a same picking tour and can construct a 

travel distance for pickings within a zone by referring given SKUs locations with the 

corresponding line-items. The cartonization becomes critical if the distribution warehouse 

has to ship large size orders being over-carton-capacity to the retail stores. In the zone-

based carton picking system, assigning SKUs into slots in the racks within the zones in 

order picking area is called slotting.  
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The slotting is the other decision variable to determine the order picking cost because 

it defines the assignment of slot locations of SKUs and it can construct a travel distance 

for pickings within a zone by referring given line-items in a carton with the 

corresponding SKUs.  

In this warehouse, different sets of SKUs are picked on different days of the week 

and the picking area is re-slotted on a daily basis specifically for each pick wave. We 

called the warehouse environment as dynamic whole warehouse replenishment 

environment. In this warehouse environment, the long term SKU demand correlations are 

of limited use and the specific correlations in a given pick wave can be exploited to 

identify good slotting for the specific pick wave. In the dynamic whole warehouse 

environment, the order picking time is not able to construct in the zone-based picking 

system without both decisions for slotting and cartonization. The problems studied in this 

dissertation, therefore, are related with the slotting and cartonization operations affecting 

the order picking cost in the zone-based carton picking system. To clarify the 

configuration of the order picking system in this dissertation, we state several physical 

descriptions and operational descriptions that are valid for all the models to be proposed 

in the following chapters.  

1) An order is comprised of a number of line-items. Each line-item in an order 

has a quantity (>= 1). Each line-item matches exactly one SKU in the picking 

area.  

2) The slotting facility in the forward storage area is a set of equal-sized and 

double-sided racks. In each slot of the racks, a unique SKU is assigned. Each 



 10 

SKU has an unique unit-volume respectively. We assume that each slot of the 

racks can contain total ordered quantity of the SKU in the pick wave. In other 

words, multiple slots cannot be assigned for a single SKU. 

3) All cartons have the same fixed capacity. Since a carton must directly ship to a 

customer, cartons can contain only items for a single order  

4) The SKUs in the order picking area are entirely replenished on a short-term 

periodic basis (i.e., daily basis) from the reserve storage area, which stores 

items in lots. 

5) The cartons are transported between aisles and also through an aisle via an 

automated conveyor system (called pick-and-belt system). If the picker is 

working when an empty carton arrives at a zone, the carton waits at the zone 

initiation point until the picker completes the current job and returns to zone 

initiation point. To start picking process for a carton in a zone, the picker scans 

bar code on the carton so that the WMS (warehouse management system) can 

identify the carton. The time required to set up a zone at the beginning of a 

pick wave is called the zone setup time. The WMS uses a pick-to-light system 

and the slots corresponding to the line-items within the zone assigned to that 

carton are identified by a small light in front of the slot. The operator then 

walks down the aisle picking the specific quantity of each SKU with the “light 

on”. The time required for identifying the slot locations of the line-items of the 

specific carton visiting the zone, which are assigned in the zone is called the 
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carton setup time.  

6) Once an order picker completes the picking process for a carton, the carton is 

conveyed to the end of the aisle and is transferred to the next zone using a fast 

moving a conveyor system circulating zone-to-zone. The order picker returns 

to the zone initiation point to pick next carton waiting in the zone initiation 

point. Once a carton is completed in picking process visiting zones, it is loaded 

for direct shipment to the customer. 

7) The picker’s service time for a carton consists of carton setup time, the 

walking time, and the picking time. The first one is time to scan bar code on 

the carton and identify it. Since the picker always returns to the zone initiation 

point to pick the next carton, the walking time for a carton is double the walk-

time from the zone initiation point to the farthest slot storing a SKU to be 

picked for the carton. The picking time depends not only on the number of slots 

to be visited, but also on the rack-levels (in other words, heights) of the slots. 

8) The completion time of a picker in a pick wave is the sum of the zone setup 

time and the service times for all cartons assigned to the picker in the pick 

wave. Note that if we assume that there is a sufficient queue of cartons waiting 

at each zone initiation point so that the starved time is negligible, the pick 

wave makespan can be computed given these assignments. Since the target 

order picking system deals with a high quantity of cartons for a pick wave, this 

assumption appears reasonable.  
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In the zone-based picking systems, both balancing the zone-to-zone workload and 

improving the utilization of pickers among zones are important. To balance and improve 

the utilization of pickers in zone-based carton picking systems, we adopt that the main 

goal of this study is to minimize the pick wave makespan, which is defined as the 

maximum completion time over all the pickers in a pick wave. To minimize pick wave 

makespan in our warehousing system, both the slotting problem and the cartonization 

problem are important. This study proposes three optimization models to improve those 

two problems. First of all, under the assumption that the line-items in an order assigned to 

cartons with a limited capacity are known, a procedure that assigns the SKUs in the 

orders to slots is developed. Second model is to cluster line-items in an order into cartons 

with a limited capacity to reduce the pick wave makespan of pickers, when the slotting 

schedule (SKU-slot assignment) is given. Since one of the two variables is fixed in these 

two models, the results are sub-optimal. Therefore, we finally propose a model to solve 

the two problems simultaneously. To summarize, while the five sequential problems in 

Figure 1.3 can be included in the warehouse operation problems for the above-mentioned 

distribution warehouse system, this dissertation narrows down the interested research 

areas to slotting and cartonization problems.  
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Although the first two approaches, in which the slotting problem (or the 

cartonization problem) is solved when the slotting (or cartonization) is given, have been 

extensively studied, we provide new approaches that are adapted to the situation in this 

study. For the third model that tries to solve the slotting and the cartonization problems 

simultaneously, there is no earlier study, and so we provide a new problem and its 

solution approach. From the studies, we can expect several contributions as follows: 

Contribution 1: For slotting problem in the zone-based carton picking system, both 

SKUs individual popularity and the correlation between SKUs are important. In this 

dissertation, we develop a meta-heuristic using the simulated annealing method (SA-C). 

It improves the solution quickly based on a COI initial slotting solution. The proposed 

SA-C heuristic is relatively simple and provides a good solution of SKUs to specific slot 

locations using specific pick wave information in the zone-based carton picking system in 

the limited planning time.  

Contribution 2: For the cartonization problem, we develop a cartonization heuristic 

algorithm. The cartonization essentially has the same characterization with order batching 

for grouping line-items into a carton to reduce the order picking cost by sharing a picking 

tour with line-items that are located in near slots. However, the cartonization is different 

from order-batching in that it groups line-items from the same order into cartons. There 

have been no relating studies on cartonization problem. The proposed heuristic algorithm 

has a relatively simple procedure using a classical bin-packing problem and slotting 

information of SKUs. Based on the cartoniztation heuristic, we can assign specific line-

items in an order into cartons with a limited capacity to minimize pick wave makespan. 
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The performance of the proposed heuristic improves, as the number of line-items 

increases and the ratio of the mean order-volume to the carton capacity increases. The 

heuristics in this study shows a good performance consuming the reasonable number of 

cartons compared to the number of cartons using classical bin-packing problem. 

Contribution 3: Under dynamic whole warehouse replenishment environment, 

independent solutions of the previous two problems (i.e., slotting and cartonization) result 

in a sub-optimal solution. Thus, we must deal with solving the both problems 

simultaneously to avoid the local optimum solutions in two sub-problems. To solve the 

slotting and cartonization problems simultaneously, this study proposed iterative heuristic 

solution approach. Using the previous heuristics in Chapter 3 and 4, this heuristic 

iteratively solved the slotting/cartonization heuristic in current stage based on the 

previous solution of cartonization/slotting in the previous stage. The method we 

developed for generating artificial correlated data is a contribution. 

Contribution 4:  We developed the first random pick wave generating method 

reflecting the correlation between SKUs. In multiple picking, the slotting method is 

highly dependent upon the correlation between SKUs in a pick wave. This method 

provides the effect of the correlation between SKUs on the performance of the slotting 

methods by controlling the number of correlated SKUs per each specific SKU and the 

strength of the correlation. 
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1.2 Scope of the study 

The rest of this dissertation is organized as follows. Chapter 2 discusses a 

comprehensive literature on the warehouse operation problems. In Chapter 3, a mixed 

integer programming (MIP) model and several heuristic algorithms for slotting problem 

are provided, while the cartonization problem for given slotting schedules are studied in 

Chapter 4. Chapter 5 proposes an iterative heuristic approach for the combined problem 

of both the slotting problem and the cartonization problem. The approach is based on the 

methodologies proposed in Chapter 3 and 4. The structure of the problems in this study is 

depicted in Figure 1.4. Chapter 6 ends this dissertation with some concluding remarks 

and future research directions.  
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Chapter 2  

Comprehensive Literature Review  

on Warehouse Operations 

2.1 Introduction 

Warehouse management problems are classified into three categories: warehouse 

location, warehouse design, and warehouse operation. The warehouse operation problems 

are the major focus of the dissertation. In this chapter, therefore, we present a literature 

review on the warehouse operation problems. As stated earlier, the warehouse operation 

problem can be classified into four areas according to the main operations of a 

warehouse: receiving, storing, order picking, and shipping. Figure 2.1 describes the 

typical functional areas and material flows within warehouse. The receiving operation 

includes the unloading of products from the transport carrier, updating the inventory 

records, inspecting to find if there is any quantity or quality inconsistency. Then it is 

transferred to the reserved area for pallet picking or the forward area for case picking and 

to the broken case picking or to the directly cross-dock area in shipping area. The storing 

operation includes indentifying an appropriate location in the slotting area and storing 

items for future picking. It can be included as a full pallet into reserved area or as a case 

into case picking area and individual small items into broken case picking area. The main 

issue of the slotting function is to find the method of slotting to effectively support future 
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retrieval. The order picking operation is labor intensive and expensive and is the primary 

component of warehouse operations. 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 shows the order picking cost is estimated to be as much as 55% of 

warehouse operating costs (Tomkins et al., 2003) and Drury (1988) and Coyle et al. 

(1996) also reported that it is estimated about 65% of the total operating costs for a 

typical warehouse. Order picking involves the process of picking products from slotting 

area to reflect a set of customer orders. It also includes order batching, assigning pickers 

into zones, the routing of pick-device or pickers. The shipping operation is the last 

operation in the warehouse. It determines shipping dock for arriving items from order 

picking area and controls cross-docking operation when the received products are 

Figure 2.1 Typical warehouse operations and material flow (Tompkins et al., 2003) 
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transferred directly to the shipping docks. In this chapter, we review earlier researches 

classified by the four main warehouse operations. Some other review papers dealing with 

the warehouse operation problems can be referred (Wascher, 2004; Gu et al., 2007; De 

Koster et al., 2007).  

 

2.2 Receiving and shipping operation 

The receiving operation is a set-up operation for all other warehouse operations. It 

includes unloading products from the transport carrier, updating the inventory records, 

inspecting the inventory to find if there is any quantity or quality inconsistency. Then it is 

transferred into traditional put-away areas or cross-docking area. The traditional put-

away areas indicate the reserved storage area for the pallet-picking or the forward-picking 

area for the case-picking and the broken case picking store. For cross-docking areas, 

received products are sent directly from the receiving docks to the shipping dock. The 

Receiving 
10% 

Order picking 
55% 

Storing 
15% 

Shipping 
20% 

Figure 2.2 Typical warehouse operations cost (Tompkins et al. 2003) 
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cross-docking area requires the ability to schedule inbound loads to match outbound 

requirement on a daily or even hourly basis. In addition to the balancing of personnel, 

docking doors, and staging space are also necessary for efficient shipping.  

The shipping operation is the last operation of warehouse (chronologically). 

Shipping operation should be performed within a limited shipping staging area. Shipping 

dock management is important for steady outbound load shipping control. Outbound 

truck shipping dock-loading scheduling should be done before picking items into 

shipping area. The research on shipping has been focused on the truck-to-dock 

assignment problem. In general warehouse, the number of receiving-docks and shipping-

docks is not fixed, because it can be dynamically controlled by receiving and shipping-

waves arriving into warehouse during a day.  

2.3 Storing operation 

In general, three fundamental decisions are introduced for the storing operation ( i.e., 

how much inventory should be kept for a SKU (stock keeping unit) in the warehouse, 

how frequently or when should the inventory for a SKU be replenished, and where 

should the SKU be stored in the warehouse). The first two decisions belong to the 

traditional inventory control area. In this section, we only focus on third decision. We 

called this slotting. The slotting method is the rule based on which SKUs are assigned 

into slots to optimize the warehouse objectives. The objectives of slotting operations 

usually involve either maximizing resource utilization while satisfying customer 

requirements or minimizing material handling cost subject to resource constraints. The 
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basic decisions, propositions, and constraints in slotting operations can be described in 

Table 2.1.  

2.3.1 Dedicated slotting policy 

In dedicated slotting, each SKU is permanently assigned a dedicated slot (or set of 

slots). A major disadvantage of the dedicated slotting method is that space utilization can 

be quite low in dedicated storage environments as space must be allocated for the 

maximum inventory level of all SKUs regardless of their actual inventory levels. An 

advantage of this slotting method is that human order pickers become familiar with SKU 

locations and this familiarity can save both slotting and picking time in the warehouse. 

This slotting policy can save work because the items can be logically grouped and assign 

the slotting area. If there are special products (i.e., heavy, fragile, or risky products), the 

dedicated slotting is often appropriate considering product characterization. 

Table 2.1 Basic decisions, given information, and constraints in slotting operation  

Decisions: Given information: Constraints: 

Assigning SKUs into 
the storage location 
(slotting)  
 

Physical configuration and 
storage layout 
 
Storage locations with dimension 
and sizing 
 
The set of SKUs to be stored 
 
Demands and order quantity, 
arrival and departure time of 
orders 

Storage area capacity 
 
The utility of pickers 
based on the picking 
ability of pickers 
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2.3.2 Random slotting policy 

In a random slotting policy, slots for incoming SKUs are assigned in a completely 

random manner. That is, an incoming SKU will be assigned any available slot with equal 

probability. High space utilization and ease of slot selection are the primary advantages 

of the random slotting method. In randomized slotting, however, it can be hard to find the 

locations of retrieval SKUs during the picking process (Choe and Sharp, 1991), and the 

use of a computer-controlled warehouse management system (WMS) is generally 

required. If product storing employees choose the slot for storage of SKUs, then they will 

generally choose the closest empty slot. The slotting method is that the first empty slot 

encountered by an employee is chosen as the slot for a storing SKU. This slotting 

decreases travel-distance, however, it is concentrated to slots fully around the depot and 

gradually more empty towards the back if there is excessive warehouse containing 

capacity. This can lead to blocking and congestion during picking. Hausman et al. (1976) 

argued that the closest open location slotting and random slotting have a similar 

performance if products are moved by full pallets only.  

2.3.3 Full-turnover based slotting policy 

This policy distributes items over the storage area according to their turnover. In the 

full-turnover based policy, the items with the highest demand are assigned to the easiest 

accessible slot locations and the items with low demand are assigned to somewhere 

towards the back of warehouse. One of the most popular types in the dedicated slotting 

policy is Cube-per-order index (COI) storage assignment, where the COI of an item is 
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defined as the ratio of the required storage space to the order frequency of the item 

(Heskett, 1963, 1964, Kallina and Lynn, 1976, Malmborg and Bhaskaran, 1987, 1989, 

1990, and Malmborg, 1995, 1996). The COI-based slotting method sorts items by 

increasing COI ratio and sorts locations on increasing distance from the I/O point. Next, 

items are assigned one by one to locations in this sequence (items with the next lowest 

COI ratio to next quickest-to-access locations). The first reported COI-based storage 

assignment is given in Heskett (1963, 1964). Then, many authors have emphasized on his 

work under different picker travel operation policies (Caron et al, 1998, Petersen and 

Schmenner, 1999, Hwang et al. 2004). Harmatuck (1976) and Kallina and Lynn (1976) 

proved the optimality of COI for single command traveling operation. Malmborg and 

Bhaskaran (1987, 1990) proved the optimality of COI for dual command traveling 

operation in unique and non-unique layout. Malmborg and Bhaskaran (1989) 

demonstrated the order picking cost optimality of the COI if vehicles are routed to 

execute multiple commands in single-aisle traveling operation. The main disadvantage 

stems from the dynamic change of demand rates and SKUs in the warehouse. In COI 

slotting policies, re-slotting is periodically required due to changes in the SKU order 

frequencies. If the SKUs assortment changes too fast to build the slotting of SKUs, 

reliable demand statistics may not be expected. In this case, the COI-based slotting is not 

effective. (De Koster et al., 1999). 

Volume-based (frequency-based or turn-over based) storage assignment is the other 

type of the dedicated storage assignment method. It is studied by, for example, Petersen 

(1997, 1999, 2000), Petersen and Schmenner (1999), Petersen et al. (2004), and Petersen 
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and Aase (2003). This method assigns items to storage locations according to their 

(expected) pick volume and it usually locate the item with high pick volume closest to the 

I/O point. The pick volume of an item can be expressed in the number of units or pick 

lines during a certain time horizon. The difference between this method and COI-based 

storage is that the volume-based assignment only considers the popularity of items 

without considering their space requirements for individual items. 

2.3.4 Class-based slotting policy 

Class-based slotting is adopted from the idea of Pareto's method in inventory control. 

The basic idea of the Pareto's method groups items into several classes and the grouped 

inventories are controlled differently. In class-based slotting, the fast moving class 

contains only about 15% of the items stored but contributes to about 85% the turnover. 

This method assigns items to storage locations based on item class. It divides both items 

and storage locations into an identical number of classes. Item classes are based on 

turnover rate. The item classes are sorted on decreasing turnover rate and the storage 

location classes on increasing travel distance from the I/O point. Next, the item classes 

are sequentially assigned to the storage location classes (which should be large enough to 

contain the SKUs) in this sequence. Within a storage class, items are randomly stored. 

The major difference between this method and the volume-based assignment method is 

that this method assigns items to storage locations based on a class basis, while the 

volume-based method uses an individual basis. In general, the number of classes is 

restricted by three. 
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Most of the research on the class-based storage has been performed for AS/RS 

systems. Firstly, Hausman et al. (1976) considered the problem of finding class regions 

for an AS/RS using the class-based storage assignment method with single traveling 

operation. They proved that L-shaped class regions where the boundaries of zones 

accommodating the corresponding classes are square-in-time and are optimal, minimizing 

the mean single-command travel time. Starting from this study, a number of papers on 

class-based storage are studied in AS/RS (Graves et al., 1977 and Rosenblatt and Eynan, 

1989, etc.). In low-level aisle of picker-to-part systems, there are various possibilities for 

positioning the class A, B, and C. Jarvis and McDowell (1991) suggested that each aisle 

should contain only one class, resulting in within aisle storage. They compared random 

slotting and several COI-based class-based slotting policies based on different ABC 

inventory curves in a rack based slotting area. The results showed that the class-based 

slotting decreases more travel time than a random slotting. But their research is limited in 

that it assumes that the aisles only allow one-way travel and are limited to traversal 

routing. Petersen (1999, 2002) and Petersen et al. (2004) compared multiple 

configurations of pick-and-walk order picking systems with across aisles. Roodbergen 

(2004) compared various slotting methods for warehouse layouts with multiple cross 

aisles. Le-Duc and De Koster (2005) optimized the storage-class positioning. They 

claimed that the slotting with across aisles is close to optimal. De Koster et al. (2007) 

from the literature review paper concluded that there is no firm rule to define a class 

partition in lower-level picker-to-part order picking systems. 
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2.3.5 Correlated slotting policy 

None of the previous slotting assignment policies mentioned above consider the 

relation between items. Sometimes in practice, the correlation between items is important 

to assign SKUs into slot area to pick efficiently for customer orders. For example, 

customers may tend to order an item with other related items. In this case, the correlated 

items should be assigned to closer slots to reduce travel time. The main issue of 

correlated slotting policy is to locate similar items in the same region of the storage area. 

To do this, the statistical correlation between items should be known and predictable. 

Frazelle and Sharp (1989) and Frazelle (1990) developed a procedure to assign items to 

locations based on the correlation between items. This approach recognizes that items 

that are likely to appear in the same order should be stored in nearby locations. Brynzer 

and Johansson (1996) developed a heuristic for slotting problem emanating from the 

product structure. Manzini (2006) developed three order clustering heuristic rules based 

on a strategy of correlation between SKUs in picker-to-part order picking systems using 

the correlation index from Frazelle and Sharp (1989).  

In complementary-based correlated slotting method, two major phases are performed. 

In the first phase, it clusters the items into groups based on a measure of strength of joint 

order such as the correlation between items. In the second phase, it assigns items within 

the cluster and the next cluster assigned close to the previous cluster. Rosenwein (1994) 

showed that the clustering problem can be formulated as a p-median problem. For finding 

the position of clusters, Liu (1999) suggests that the item type with the largest demand 

should be assigned to the location closest to the depot (volume-based strategy), while Lee 
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(1992) proposed a new heuristic of slotting problem in a man on board AS/RS with 

multi-address picking. In this heuristic, he considers both order frequency and order 

structure. He clustered the items and assigned the cluster by COI-based slotting method 

using the space requirement as an initial slotting assignment of SKUs and then perform 

improving search by using the pairwise interchange of SKUs. The second type of 

correlated slotting is called the contact-based method. This method is similar to the 

complementary method, except it uses contact frequencies to cluster items. The contact-

based method is considered, for example, in Van Oudheusden et al. (1988) and Van 

Oudheusden and Zhu (1992).  

In zone-based batch picking systems, Jane and Laih (2005) proposed MIP model for 

assignment problem of items to zones and developed on items-to-zone assignment 

heuristic to balance the workload among all pickers using the correlation list in a 

synchronized zone order picking. Peters and Smith (2001) and Smith and Kim (2008) 

proposed the assignment for specific SKUs to slots in the zone. Peters and Smith (2001) 

paper served as the initial inspiration for this dissertation. They proposed the COI-based 

initial slotting and then improved the initial solution using the correlated slotting (CS) 

improvement search method. Smith and Kim (2008) compared the performance of 

correlated improvement with COI slotting using artificially generated correlated carton 

list. 
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2.3.6 Dynamic slotting policy  

Most of the literature related in slotting and order picking assume that the slotting 

location of SKUs is dedicated or random in static warehouse environment. More 

intelligently the warehouse uses a long-term demand historical data for slotting. The 

storage location assignment problem (SLAP) problem in the literature has mostly used a 

static demand (i.e., it assumes that the incoming and outgoing SKUs flow patterns are 

stationary over the planning horizon). In some cases in reality, the patterns of SKUs 

changes dynamically due to factors such as seasonality and the life-cycle or turnover rate 

of the SKUs. Therefore the slotting location of SKUs should be controlled to reflect 

changing products flows. We call this as dynamic slotting.  

There are two types of the dynamic slotting. The first type of the dynamic slotting is 

the dynamic partial slotting of warehouse. In the dynamic partial slotting, each SKU in 

the warehouse has different turnover rate. Therefore, only some SKUs which have out of 

stock for next pick-wave should be replenished at the end of the current pick-wave. The 

SKUs that have inventories in the slot should be relocated to other SKUs for an efficient 

slotting of the next pick-wave. Therefore, two movements of SKUs are potentially 

required in the dynamic partial slotting (i.e. the replenishment movement of SKUs from 

the reserved area to the forward area and the relocation movement of slot from the rest 

SKUs after picking the current pick-wave). The relocations of SKUs within forward 

picking area are only beneficial when the expected savings in order picking outweighs 

the corresponding relocation cost. Therefore, decisions must be made concerning which a 
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set of items to be relocated, where those to be relocated, and how to schedule the 

relocations. In the partial slotting, the decisions for relocation must be carefully executed 

concerning which set of SKUs to be relocated, where to relocate them, and how to 

schedule the relocations. The replenishment planning problem from the forward to the 

reserved area has been studied in Hackman and Plazman (1990), Frazelle (1994), Van 

den berg et al. (1998), and Bartholdi and Hackman (2008). In these studies, the main 

objectives are to decide how much of each SKU is placed in the forward picking area and 

where areas in which a single SKU can be stored and picked, depending on the storage 

and pick quantity under the restricted small forward picking area. In relocation of SKUs 

within the forward picking area, Christofides and Colloff (1972) studied finding the 

optimal ways of rearranging items in a warehouse from their initial positions to their 

desired final locations. The authors proposed a two-stage algorithm that produces the 

sequence of item movements necessary to achieve the desired rearrangement and incur 

the minimum cost spent in the rearranging process. Roll and Rosenblatt (1987) described 

the situation when the storage area is divided into separate zones and any incoming 

shipment must be stored within a single zone. It might happen that none of the zones has 

sufficient space to accommodate an incoming shipment. In this case, it is advisable to 

free some space in a certain zone to accommodate the incoming shipment by shifting 

some stored products in that zone to other zones. Muralidharan et al. (1995) proposed the 

shuffling algorithms that the set of high-demand items are relocated to the near I/O point 

to minimize the total relocation cost, when the stacker crane is idle in AS/RS. Two 

shuffling algorithms are proposed named shuffling with nearest neighbor heuristic (SNN) 
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and shuffling with insertion (SI). Both algorithms first define relocation arcs. Then the 

relocation route of the stacker crane is determined. In the SNN heuristic, an arc i  with 

minimum distance, in terms of travel time, between the I/O and the beginning node of arc 

i  is chosen as the first arc to travel. Then, another arc j  with the minimum distance 

between its beginning node and the ending node of arc i  is selected as next arc to travel. 

In the SI heuristic, an arc i  from the unsequenced arc set is chosen that is closest to the 

I/O point first. Then the heuristic chooses another arc j  from the unsequenced arc set 

that is nearest to the head of previously chosen arc i  and arc j is inserted before it. The 

time to cover the arc sequence (from arc j  to arc i ), and its reversed sequence (from arc 

i  to arc j ) is calculated. The arc sequence (from arc j  to arc i ) is included in the tour 

route if the time to cover this arc sequence is less than the time to cover its reversed 

sequence. Otherwise, the reversed sequence (from arc i  to arc j ) is included in the tour. 

The heuristic is repeated until all the arcs in the unsequenced set are exhausted or the 

time to travel these arcs becomes greater than the idle time. Jaikumar and Solomon 

(1990) determined the products to be relocated and their destinations with the objective to 

find the minimum number of relocations that result in a throughput satisfying the 

throughput requirement in the following busy periods. 

The second type of dynamic slotting is the dynamic whole slotting of warehouse. In 

this environment, the number of SKUs and their quantities in current pick-wave should 

be determined. After order picking process for the current pick-wave, the forward picking 

area is emptied. The warehouse should then replenish the SKUs into the whole forward 

picking area for the next pick-wave. In this case, the reslotting procedure is performed at 
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the end of the turnover. The main decision of the dynamic whole slotting is to select 

SKUs into the forward pick area from the reserved area and where the selected SKUs are 

slotted. Goetschalckx and Ratliff (1990) studied a shared slotting policy for a unit load 

warehouse where over time different SKUs are stored in the same storage slot. Their 

work was focused on the fact that individual unit loads of the same SKU will stay in the 

storage area for different amounts of time. Thus, the shared storage policy tries to exploit 

the difference between products in terms of inventory profiles and usage patterns. 

Landers et al. (1994) and Sadiq et al. (1996) also investigated the problem of reslotting 

SKUs over time. Under less than unit load picking, they consider dynamic environments 

where the products evolve through a life cycle and thus the product mix varies over time, 

which creates a need to resize SKU slots and reassign the SKU locations. Their procedure 

addresses a wide range of issues related to this reassignment problem. Part of their 

procedure includes a clustering algorithm that attempts to determine which SKUs should 

be stored together based on their long-run average correlation. The paper tested the 

performance of these procedures but doesn't provide details of the clustering algorithms 

used. Kim and Smith (2008) proposed an efficient slotting mythology under dynamic 

whole warehouse replenishment environment. Using the correlation among SKUs per 

pick-wave in zone-based order picking systems, they proposed the correlated slotting 

improvement heuristic, in which it assigns the correlated SKUs to the near to each other 

based on a COI initial slotting. It shows almost 20% improvements under high correlated 

orders than the COI based slotting policy. 
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2.4 Order picking operation 

The order picking operation is the most labor intensive operation in the warehouse. 

The primary goal in the order picking systems is to pick orders accurately and efficiently 

before they are sorted/packed and shipped for delivery to the customer using minimum 

number of labors or cost. To resolve the goal of order picking systems, a variety of 

literatures are focused on the problem. In this section, we classified the order picking 

problem into three picking types: single order picking, batch order picking, and zone 

order picking and we reviewed comparative studies for factors affecting the performance 

of order picking operation. At the end of this section, we reviewed on packing algorithms. 

The packing operation is usually performed after order picking operation. However, the 

packing process should be performed during picking in the target carton picking systems, 

because the cartons after order picking process ships directly to customer. The planning 

of items packed together must be finished at the beginning of the order picking operation. 

Therefore, we assign the packing operation into one of sub-operations of the order 

picking operation and one of key factors to determine the efficient order picking cost in 

this dissertation. While there are many good studies of the routing operation (Ratliff and 

Rosenthal, 1983, Hall, 1993, Peterson, 1997, Roodbergen, 2001, Roodbergen and De 

Koster, 2001, De Koster et al., 2007) we do not study this work because the routing 

decision is not on issue in the target environment.   
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2.4.1 Single order picking  

Single order picking in industry is popular picking method which comprises of single 

or double-deep pallet racks. In single order picking, each order picker completes one 

order at a time. If SKUs are palletized and unitized, this warehouse is called aisle-based 

unit-load warehouse. The major advantage of single order picking is that picking is 

simple and order integrity is never jeopardized. The major disadvantage is that the order 

picker is likely to travel over large portion of the warehouse to pick a single order. 

 There are several reasons for few literatures found, even if the single order picking 

in aisle based warehouse system is popular in practice. First, it is easy to control the 

picking process once a storage assignment is given. Second, it is a special case of batch 

picking if each picking tour has only one pick. Most of the papers in single order picking 

with single command and dual command are focused on an analytical expected travel 

time model for a given warehouse design (Francis, 1967, Bassan, 1980, Larson et al. 

1997, Pohl et al, 2009b). Recently, Gue (2006), Gue and Meller (2008), and Pohl et al 

(2009a) studied a unit-load warehouse picking system with non-horizontal and vertically 

aligned aisles. 

2.4.2 Order batching  

A second order picking policy for order picking is batch picking. When orders are 

small, there is a potential benefit for reducing travel times by picking a set of orders in 

single picking tour. Thus an order picker picks a number of orders (a batch of orders) 

during his picking tour. The major advantage of the batch picking is reduction in travel 
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time per item. The disadvantages of the batch picking are the time required to consolidate 

the items into customer orders and the potential for picking errors. Orders are 

consolidated in two different ways. First, the order picker uses separate containers to sort 

line-items of different order during picking tour (sort-while-pick). Second, the line-items 

and quantities of different orders are picked together and the orders are sorted after 

picking (pick-and-sort). The general objective in order batching in aisle-based order 

picking systems is to minimize travel time to pick line-items in all orders. Gademann et al. 

(2001) considered the maximum batch travel-time among batches. Meanwhile, 

Gademanne et al. (2005) and Bozer and Kile (2008) considered their objective as 

minimizing total batch travel times. If a zone picking system is employed under batch 

picking, the picking time among zones should be balanced during pick-wave or specific 

time window to improve the overall productivity of zone-based picking systems (Jane 

and Laih, 2005, DeKoster and Yu, 2008, Kim and Smith, 2008). Several studies proposed 

MIP formulations in manual aisle based order picking systems. Hwang and Kim (2005) 

also measured the similarity between orders by three types of routing policies in low-

level order picking systems with front and back cross-aisles and P/D point located in the 

most left-point in the front cross-aisle. Both studies developed clustering models using 

MIP programming to maximize the total association of batches. Bozer and Kile (2008) 

formulated MIP model minimizing sum of batch traveling distance in low-level order 

picking systems with front and back cross aisles and P/D point located in the center-point 

in the front cross-aisle. In synchronized zone-based batch picking systems, Parikh and 

Meller (2006) proposed MIP model maximize total number of items fulfilled. There is no 
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literature to formulate MIP model on catonization problem minimizing pick-wave 

makespan of pickers in zone-based carton picking systems. The basic decisions, 

propositions, and constraints in the order batching problem can be described in table 2.2.  

 

Choe and Sharp (1991) classified two criteria for order batching: the proximity of 

pick location and the time windows for picking. Proximity batching assigns each order to 

a batch based on proximity of its storage location to those of the order. The main issue in 

proximity batching algorithm is how to measure the proximity metric among orders, 

which implicitly assumes a pick sequencing rule to visit a set of locations. Wascher 

(2004) classified the proximity batching proposed by Choe and Sharp (1991) into three 

types of heuristic algorithms such as priority rule-based algorithm, seed algorithm, and 

savings algorithm. Table 2.3 presents a summary of the literature on various criteria of 

the order batching and their algorithms.  

Table 2.2 Basic decisions, given information, and constraints in order batching 
operation 

Decisions: Given information: Constraints: 

Grouping orders for 
assignment to picking 
devices or picking 
resources  
 

Warehouse configuration 
 
A set of orders to pick during 
a shift or a pick-wave 
 
Information of SKU-slot 
Pick-wave schedule 

Capacity of picking 
resources 
Picking shift time  
 
Order or pick-wave due-date  
Picking time balance of 
pickers 
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Table 2.3 Order batching criteria 

Order batching 
criterion: Algorithm: Example 

Proximity batching 
 

Priority-rule 
algorithm 

Gibson and Sharp (1992) 

Seed algorithm Elsayed (1981) 
Elsayed and Stern (1984) 
Elsayed and Unal (1989) 
Gibson and Sharp (1992) 
Hwang and Lee (1988) 
Hwang et al (1988) 
Pan and Liu (1995) 
De Koster (1999) 

Time saving 
algorithm 

Rosenwein (1996) 
Hwang and Lee (1988) 
Elsayed and Unal (1989) 
De Koster et al. (1999) 

Time window batching 
 

Tardiness or lead 
time 
 
 
 

Comier (1987) 
Elsayed  et al. (1993) 
Elsayed and Lee (1996) 
Won and Olafsson (2005) 

 

In priority rule-based algorithms, an initial priority is assigned to each customer 

order. Then, in the order given by the priorities, the customer orders are assigned one by 

one to batches until the capacity constraint is violated. Several methods have been 

suggested for the priority rule-based algorithm. The most straightforward method is the 

first-come-first-serve (FCFS) rule. Gibson and Sharp (1992) suggested two-dimensional 

and four-dimensional space-filling curve and mapped the coordinates of the locations of 

the items of a customer order into a value on the unit circle. Bin-packing methods are the 

other class of the priority rule-based algorithm. Next-fit (NF) batches are completed with 
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in the sequence given by the priorities. When the addition of another customer order is 

performed, a new batch is started if the batch violated the capacity constraint. In first-fit 

(FF) method, batches are numbered in the sequence in which they are started. Then the 

current customer order is assigned to a batch with the smallest number into which it fits. 

Best-fit (BF) method grouped batches into which a customer order would fit. Then it is 

assigned to the one where the batch leaves the smallest remaining capacity. In the second, 

seed algorithm methods generate batches sequentially (i.e., a new batch is not started 

before the current one has been closed). In order to construct a batch, an order is selected 

as the so called “seed” of the batch. Succeeding orders following the seed order are added 

to the batch until the capacity of the batch is exhausted. Elsayed (1981) and Elsayed and 

Stern (1984) have developed the seed algorithm and applied in AS/RS. In manual aisle 

based warehouse, De Koster (1999) systematically proposed several seed-selection rules 

(i.e., selection of a random order, an order with the largest number of positions, an order 

with the longest picking tour, and an order with the largest aisle length, etc). The seed-

selection rule can be applied in two ways. Under single model, the originally selected 

customer order only serves as the seed for the present batch. Meanwhile, in cumulative 

mode, all customer orders already assigned in the current batch make up for the seed of 

the batch. The order-addition rule determines which an unassigned order should be the 

next one to be added to the current batch. In this rule, an order having a minimum 

proximity with the seed is selected into the current batch among unassigned orders. 

Usually, an order is selected whose “distance” to the seed of the current batch is 

minimized. The distance between an unassigned order and the seed can be defined in 
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several ways such as the sum of the travel distances between every location of a seed 

item and the closest location of any item in the order, the sum of the travel distance 

between every location of an item in the order and the closest location of any item in the 

seed, the number of additional aisles which have to be visited if the order would be added 

to the seed, and the difference between the gravity centre of the seed and the gravity 

centre of the order, etc., (De Koster, 1999). As the last algorithm, Savings algorithms are 

based on the well-known Clarke-and-Wright (C&W) algorithm for the vehicle routing 

problem (Clarke and Wright, 1964).   

In time window batching, Won and Olafsson (2005) used customer response time by 

jointly considering the batching and picking operations. Usually the time window may be 

fixed or variable. Tang and Chew (1997), Chew and Tang (1999) and Le-Duc and De 

Koster (2003, 2007) considered variable time window order batching (i.e. number of 

items per batch is fixed) with stochastic order arrivals for manual order picking. They 

model the problem as a batch service in queuing model. For each possible picking batch 

size, they first estimate the first and second moments of the service time. Then using the 

first and second moments, they can find the time in systems of a random order. Finally 

the optimal batch size is then determined. Simulation model was then compared with the 

analytical stochastic model. Comier (1987) proposed a heuristic for batching and 

sequencing orders to minimize the weighted sum of order picking time and tardiness in 

an AS/RS. Elsayed et al. (1993) and Elsayed and Lee (1996) considered the order 

batching problem in a man-aboard order picking system with minimizing the penalties 

and the tardiness of orders. They proposed a heuristic which first establishes batches and 
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then determines the release times for the batches. The main issue of the seed algorithm 

and the combination rule in the savings algorithm and in the proximity batching is to how 

closeness metric is defined between orders for adding an order into batch. Gu et al. 

(2007) classified the order batching studies into a various closeness metrics. We also 

summarized the closeness metrics for batching and related literatures in Table 2.4.  

Table 2.4 Closeness metrics for batching and related literatures 

Closeness metrics: Literatures (metrics used) 

1. Number of common locations between two orders 
2. Combined number of locations of two orders 
3. Sum of the distance between each location of one 
order and the closest location on the other order 
4. Difference of the order-theta values of two orders 
defined based on space-filling curves 
5. The number of additional aisles to travel when 
two orders are combined 
6. Savings in travel when two orders are combined 
7. Center of gravity metric 
8. Economic convex hull based metric 
9. Common covered regions or areas 
10. Travel time 
11. Association between orders 
12. Routing or geographic region similarity   

Chrisman (1976,1977) (10) 
Elsayed (1981) (1) 
Elsayed and Stern (1983) (1,2,3) 
Elsayed and Unal (1989) (6) 
Gibson and Sharp (1992) (3, 4) 
Hwang and Lee (1988) (8) 
Hwang et al. (1988) (9) 
Pan and Liu (1995) (1,3,4,6,8) 
Rosenwein (1996) (5,7) 
De Koster (1999) (3,5,6,7)  
Gademann et al (2001, 2005) (10) 
Chen and Wu (2005) (11) 
Hwang and Kim (2005) (12) 
Bozer and Kile (2008) (10) 
Ho et al (2006, 2008) (12) 

 

Chisman (1975, 1977) presented two heuristics for the order batching problem by 

considering vehicle routing problem. Hwang and Kim (2005) measured the proximity of 

the similarity between orders to three routing policies. They include the similarities into 

p-median clustering integer programming formulation for order batching. They also 

suggest a heuristic clustering algorithm. The majority of literature has been focused on 

the objective of minimizing the total order picking time of batches. In practice, there 
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might be other important criteria, for example, lead time and tardiness of shipping due-

date. This criterion is called as time-window batching. In this batching method, the orders 

arriving in the same time interval or window are grouped as batch. Several studies are 

grouped into a set of orders and pick-devices by the order due date or by the penalty of 

violating the due-date. Chen and Wu (2005) measured the similarity between orders by 

taking into account the level of association between orders in order picking systems with 

front and back cross-aisles and P/D point located in the most left-point in the front cross-

aisle. They develop a clustering model based on 0-1 integer programming to maximize 

the total association of batches. Hsu et al. (2005) developed genetic algorithm to solve 

batching problem. 

2.4.3 Zone-based order picking  

The previous two picking policies are defined that the order picker picks line-items 

in whole picking area. Zone-based order picking divides order picking area into zones. 

Each order picker is assigned to pick the part of order that is in his assigned zone. The 

zone-based order picking problem has received little attention despite its important 

impact on the performance of order picking systems. The basic decisions, propositions, 

and constraints in order batching problem are described in Table 2.5.  

The major advantage of zone-based order picking is that travel congestion is reduced 

because each order picker is assigned to pick a part of the order. In addition, the order 

picker assigned to a small zone is familiar with item locations in the zone and picking 

time for a batch is reduced because line-item is separated by zones. The major 
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disadvantage of zone-based order picking is that orders are split and must be consolidated 

again before shipping. 

 
 
Table 2.5 Basic decisions, given information, and constraints in zone-based 
picking operation 

Decisions: Given information: Constraints: 

Assigning zone to 
pickers. 
 
Assigning zone to SKUs 

Warehouse configuration 
 
SKUs information to be 
stored  

Utility of pickers 
 
Slots size in a zone  
 
Balance of picking 
time of pickers 

 

Two types of zone order picking systems can be used. The first zone-based picking 

system is pick-and-pass system. Using this system, one order picker starts on an order (or 

batch of orders) and, when he finishes his part of line-items of an order (or batch of 

orders), the carton containing the line-items and pick list passes over to the picker in the 

next zone. Once the carton containing an order (or batch of orders) visits all relevant 

zones where the line-items are included, it has finished picking. Carton pick-and-belt 

picking eliminates the consolidation procedure. In this picking procedure, a carton is 

assigned an order or a part of order and travels the zones in which SKUs in the order are 

slotted. After the carton finishes picking the SKUs, it is directly shipped to the customer. 

The second zone-based picking system is parallel (or synchronized) picking, where a 

number of order pickers located in their zone start picking operation of the same order. 

The partial orders are merged after picking.  

De Koster (1994) developed an analytical model for a zone-based pick-to-belt order 
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picking systems using a Jackson queuing network which allows rapid estimation of order 

throughput times and average work-in-process. He compared the analytical results with 

simulations. Recently, Yu and De Koster (2008) proposed an approximation model based 

on G/G/m queuing network modeling using Whitt’s queuing network analyzer to analyze 

pick and pass order picking systems. The pick-and-pass system proposed is also 

decomposed into conveyor segments and pick stations like the study on De Koster (1994). 

Then the decomposed conveyor segments have a constant processing time, whereas the 

service times at a pick station depend upon the number of line-items in the order to be 

picked at the station. Based on the analytical model, Yu and De Koster (2009) studied the 

impact of order batching and zone size on the mean order throughput time. They found an 

optimal batch size is always exists and the batch size has large impact on mean order 

throughput time. 

Petersen (2000) mentioned that the choice of a picking strategy can have a 

tremendous effect on the efficiency and the cost of a picking system in mail order 

companies. To this end, he evaluates five order picking strategies: discrete (or strict), 

batch, sequential (or pick and pass) zone, simultaneous zone (which he calls batch-zone), 

and simultaneous zone-wave using a simulation model. Based on the results, he 

concludes that simultaneous zone-wave picking and batch picking are superior, and that 

their performance is not adversely affected by changes in demand skewness patterns or 

daily order volume. On the other hand, he notes that the performance of sequential zone-

based picking with batch deteriorates as order volume increases. Jane (2000) considered a 

sequential zone picking system, which he refers to as a relay picking system. He 
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addressed the problem of assigning n products into m storage zones (one picker per zone) 

with the objective of minimizing the differences that might exist between each picker's 

total numbers of picks. Jane and Laih (2005) proposed a clustering algorithm for item 

assignment in a simultaneous zone picking system. They propose a similarity measure 

between any two items for measuring the co-appearance of both items in the same order. 

Accordingly, items frequently ordered together are located in different zones to minimize 

the idle time in the simultaneous zone systems.  Le-Duc and De Koster (2005a) studied 

the same pick-to-belt systems. They extended their cost modeling analysis to a forward 

picking area including packing. This system is usually called a pick and pack system. 

They developed probabilistic MIP optimization model determining the zone size of a 

picker. The objective function of the optimization model is the overall time to complete a 

batch. It consists of four time components: travel time, set-up time, picking time, and 

correction time. Meller and Parikh (2006) focused on the problem of selection between a 

batch picking and a zone picking strategy. For this problem, they proposed a cost model 

to estimate the cost of each type of picking strategy. In their cost model, they considered 

the effects of pick-rate, picker blocking, workload-imbalance, and the sorting system 

requirement. 

If one picker is assigned to more than one zone, there is sequencing problem of zone-

visitation for a picker. Ho and Chien (2006) studied that a picker visits more than one 

zone to pick all the items in an order. They assume that no more than one picker can 

simultaneously be in the same zone. Then they determine the best zone-visitation 

sequence for a picker.  
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2.4.4 Comparative study for factors affecting on the performance of order picking 
operation   

There are several factors that greatly affect the performance and efficiency of the 

pick operation. Major factors include the demand pattern of the items, the configuration 

of the warehouse, the slotting location of SKUs in the warehouse, the order batching 

method and the routing method used by the pickers to determine the sequence of the 

items to be picked. A variety of papers have been focused on the order picking 

performance. It is however difficult to find general conclusions since the performance 

depends heavily on the factors above mentioned. A comprehensive study that considers 

all the above factors has not been published at this time. A few results have been 

published where two factors are studied jointly.   

De Koster et al. (1999) evaluated order batching and routing algorithms together, and 

Rubin and Jacobs (1999) studied order batching algorithms with different slotting 

policies. There are several studies on evaluating routing algorithms with different slotting 

policies. Petersen (1997) evaluated various routing heuristics and an optimal routine in a 

volume-based and random storage environment, comparing the performance of volume-

based storage to random storage and examining the impact of travel speed and picking 

rates on routing and storage policy performance. The experimented results show the 

solution gap between routing heuristics and optimal routing is highly dependent on the 

travel speed and picking rate, the storage policy, and the size of the pick list. In addition, 

volume-based storage produced significant savings over random storage. Caron et al. 

(1998) developed a random and COI based slotting using ABC curve for assigning items 
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to locations, and then developed analytical models for the expected travel distance of 

return and traversal picking policies required to pick the orders. In general, for COI-based 

storage systems, the return policy outperforms the traversal policy only for a low number 

of average picks per aisle and for skewed COI-based ABC curves. Hwang et al. (2004) 

evaluated the performance of three routing policies in the order picking policies (i.e. 

return, traversal, and midpoint policy) and compared the results of their analytical model 

with the results of simulation model developed. It is assumed that items are assigned to 

storage locations on the basis of the cube-per-order index (COI) rule in a low-level 

picker-to-part warehousing system. It is observed that for very small order size the return 

policy shows better performance, while for very large order size traversal policy performs 

better. In general, midpoint policy outperforms the other two. It indicates order picking 

heuristic performance in COI based slotting is similar to the random slotting (Hall, 1993). 

Le-Duc and De Koster (2005b, c) proposed a travel distance model for estimating the 

average tour length in 2-block warehouse when either S-shape or return method is used. 

The numerical results show that the return method is only better than S-shape for 

relatively small pick-list size and for very skewed storage assignments (ABC curves). 

This is similar to the finding in Caron et al. (1998) for the COI-based storage assignment. 

2.4.5 Packing   

Packing usually proceeds after the order picking operation and the consolidation 

operation. However, in the target zone-based carton picking system, the packing process 

should be performed during the order picking operation and the cartons after the order 
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picking operation directly ship to customers. In this study, the packing operation (i.e., 

grouping line-items within an order into cartons with a limited capacity) is called 

cartonization. The planning of the cartonization should be finished before the order 

picking operation starts. It is necessary in practice to obtain the potential savings of order 

picking travel time by grouping line-items that are located in near slots, if order size is 

larger than carton capacity (shipping unit). The simplest way to reduce order picking 

travel time is to minimize the number of cartons by reducing the potential number of 

carton visit set-up time and travel time within zone by sharing a picking tour. There are a 

variety of traditional packing algorithms performed in the previous studies. In this section, 

we classified the several popular bin-packing algorithms by the compact of packing.   

The description of the classical (general) Bin Packing (BP) problem is defined as 

follows: Given a finite set of { }nuuuU ,,, 21 =  items and a rational size ( ) [ ]1,0∈us  for 

each item Uu∈ , find a partition of U  into disjoint subsets kUUU ,,, 21  such that the 

sum of the sizes of the items in each iU  is no more than 1 and such that k is as small as 

possible. Thus we can view each subset iU  as specifying a set of items to be placed in a 

single unit-capacity “bin”, with our objective being to pack the items from U  in as few 

such bins as possible. BP is polynomially equivalent to 3-PARTITION (BP ∝ 3-

PARTITION). Because 3-PARTITION problem is well-known NP-complete class 

problem, we can say that BP is also NP-complete class problem. Since BP has “threshold 

existence” analog from the standard formulation such that “Is there a partition of U into 

disjoint sets KUUU ,,, 21   such that the sum of the sizes of the items in each iU is B or 

less?”. Thus, BP can be transformed into the optimization problem such that “minimizing 
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the number of equal capacity bins necessary for the placement of a fixed set of pieces”. 

Therefore, BP is NP-hard (Garey and Johnson, 1979). 

1) Next fit algorithm (NF) 

The simplest algorithm for the classical one-dimensional bin packing problem is 

Next Fit (NF). The algorithm first described by Johnson (1973). NF algorithm is 

described as follows: The next item is removed from the sorted list and tries to fit it onto 

the current bin. If the item fits, it is added and the process continues; otherwise the 

current bin is deemed full and closed and never reconsidered. A new empty bin becomes 

the current bin and the process continues until there is no item to be packed.  

2) First fit algorithm (FF) 

NF removes the next item from the sorted list and tries to fit it on a bin, but here is 

enhancement: FF tries the item on each partially-loaded bin, in order, and puts it on the 

first bin on which it fits. If it does not fit on any open bin, FF opens a new empty bin, put 

the item there and continues until there is no item to be packed. FF’s worst-case behavior 

improves dramatically as the size of the largest item decline. Moreover, it maintains its 

advantage over NF in a certain situation.     

3) Best fit (BF), worst fit (WF), and almost any fit algorithm (AAF) 

The most famous of these rules is Best Fit (BF) algorithm. BF is similar to FF, but, 

BF tries the item on each partially-loaded shelf, in order, and puts it on the best bin on 
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which it fits. BF seems better in principle than FF but has same worst case performance. 

Moreover, it is not observed to perform any better on average case analysis. FF packing 

rule can be implemented to run in time ( )nnO log . BF and FF can provide much different 

packing for individual lists. Nevertheless, all the performance results in worst case for FF 

hold for the performance results for BF as well (Johnson 1973, Johnson et al. 1974, 

Johnson 1974).  

There are plausible packing rules for which the results of FF and BF are not able to 

hold in worst fit (WF). Consider the algorithm WF, in which each item ia  is packed in 

the partially-filled bin with the lowest level, assuming it fits, and otherwise starts in a 

new bin. Worst case performance ratio of WF and NF is same so that WF gets no value 

out of the fact that it never closes a bin. It takes only a slight modification to this 

algorithm to dramatically improve it. Let us say that an online bin packing algorithm is 

Any Fist (AF) algorithm if it never starts a new bin unless the item to be packed does not 

fit in any partially-filled bin in the current packing, and that it is in addition Almost Any 

Fit (AAF) algorithm if it never packs an items into a partially-filled bin with the lowest 

level unless there is more than one such bin or that bin is the only one that has enough 

room.  

4) First fit decreasing (FFD) and best fit decreasing (BFD) algorithm  

There are dangers in lists of items sorted by increasing size. Thus a natural idea for 

improving on FF once the online restriction is removed would be to sort the list in some 

other way before applying the First Fit packing rule. In the First Fit Decreasing (FFD) 
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algorithm, the items are first sorted in order of non-increasing order size, and then the FF 

packing rule is applied. The algorithm best Fit Decreasing (BFD) is defined analogously, 

using the BF packing rule. The performance of FFD and DFD over FF and BF is 

dramatically improved (Johnson, 1973).  

2.5 Summary 

In this chapter, we surveyed the literature on warehouse operations. The warehouse 

operations are classified into four main areas: receiving, storing, order picking, and 

shipping. We mainly focused on the slotting operation and the order picking operation in 

this dissertation. There are two decision problems in the zone based carton picking 

systems. First one is slotting problem which determines an assignment of SKUs to slots. 

The other one is cartonization problem which determines a grouping of line-items within 

an order to cartons with a limited capacity.  

In chapter 3, we propose a MIP model and heuristic models on the slotting problem 

given specific information of slotting of SKUs for the zone-based carton picking systems. 

When the number of picking items per picking tour is increased, we need more efficient 

slotting method to reduce order picking cost. The correlated slotting using the correlation 

between SKUs is one of the efficient slotting methods to minimize order picking cost in 

large number of items per picking tour. In chapter 3, we propose a MIP model and a 

simulated annealing improvement heuristic method using the correlation between SKUs 

based on a COI–based initial slotting solution under specific information of the cartons in 

a pick wave for the zone-based carton picking systems. In zone-based order picking 
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systems, there are a few assignment problems about SKUs to zone or picker to zone (Jane 

2000, Jane and Laih 2005, and De Koster and Yu 2008) and about an analytical modeling 

for expected picking time (DeKoster, 1994 and Yu and DeKoster, 2008, 2009). However, 

we have found no research for the slotting problem finding SKUs to specific slot 

locations using specific pick wave information in the zone-based carton picking systems.  

In chapter 4, we propose a MIP model and a heuristic on the cartonization problem 

given specific information of slotting of SKUs for the zone-based carton picking systems. 

The cartonization essentially has the same characterization with order batching in the fact 

that it groups line-items into a carton to reduce the order picking cost by sharing a 

picking tour with the line-items being located in near slots. Several papers are found 

developing MIP model for the order batching. Most of the papers deal with the order 

picking systems with a specific front and back cross aisles, a P/D point being located in 

the left or center-point in the front cross-aisle, and a objective function to maximize the 

proximity between orders or minimize the sum of batch traveling distance (Chen and Wu 

2005, Hwang and Kim 2005, Bozer and Kile 2008). However, there is no study to 

formulate mathematical model on catonization in zone-based carton picking systems. In 

heuristics, a variety of the order-batching heuristics have been studied in a number of 

specific order-picking systems. Since the order batching has essentially same 

characterization with the cartonization by sharing a picking tour with line-items being 

located in near slots, we searched and classified a variety of order batching papers for 

finding whether the grouping methodologies in the order batching can be applied in 

cartonization. As we mentioned above, the cartonization in this dissertation is different 
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from the order batching in that the cartonization grouped line-items within an order into 

cartons being different from grouping orders in the order batching. As far as we know, 

there have been no literatures directly related to the catonization in zone-based carton 

picking systems. The cartonization is necessary in practice to obtain the potential savings 

of order picking travel time, if the size of an order is over the carton capacity or even less 

than the capacity. To solve the cartonization, we first considered the packing algorithms. 

A various traditional packing algorithms known as bin-packing have been studied. By 

applying the traditional packing algorithm into cartonization, it can obtain the potential 

picking time saving by sharing line-items with a picking-tour by reducing the number of 

cartons or carriers defining a picking-tour. The packing algorithms, however, minimize 

the number of cartons/carriers. Thus, it potentially provides a sub-optimal solution 

minimizing the order picking time or travel-distance in cartonization. In this chapter, we 

propose a new cartonization heuristic using a traditional bin-packing algorithm and 

geographical slotting information of SKUs adapting in order batching research.  

The slotting operation in this dissertation is controlled in a more dynamic manner. In 

particular, different sets of SKUs are picked on short-term periodically and the entire 

picking area is periodically re-slotted, in the target environment the periods are typically 

quite short (e.g. one day). The decision for an efficient slotting depends on the decision 

for an efficient cartonization of a pick wave. Therefore, the decisions for the slotting and 

the cartonization must solve simultaneously. The slotting problem (or the cartonization) 

under the cartonization (or the slotting) being given, has been extensively studied. 

However, we have found no research to study both operations simultaneously under 
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dynamic warehouse replenishment environment. To improve an additional performance, 

it is necessary to develop the two problems simultaneously in a dynamic whole 

warehouse replenishment environment. In chapter 5, we proposed an iterative slotting 

and cartonization heuristic using the slotting heuristic procedure in chapter 3 and 

cartonization heuristic procedure in chapter 4.   

The literature on warehouse problem has been grown, because warehouse cost 

substantially increased (Council of Supply Chain Management Professionals, 2003-2008). 

Based on the literature review paper (Gu et al. 2007), more than 95% papers (120 papers / 

124 papers) on warehouse operations are focused on slotting and order picking operation. 

Thus, the scope of the literature review in this chapter is confined the slotting operation 

and the order batching operation in order picking operation, because the targeting zone-

based carton picking system in this dissertation is also closely related to both operations. 

We believe that this chapter enhances the understanding of the relation between two 

critical warehouse operations for the zone-based carton picking system and the difference 

of problem solving methods with the previous research. 
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Chapter 3 

Slotting Method for Zone-based Carton Picking Systems 

3.1 Introduction 

The warehouse slotting problem involves determining an assignment of SKUs to 

picking slots to support order picking systems. Clearly a “good” slotting is one in which 

SKUs that are picked together into the same carton are also located near one another in 

the picking area. The traditional slotting problem uses long-term SKU demand 

correlations to identify a good slotting and re-slots the warehouse warranted when the 

SKU correlation structure is changed. The slotting operation in this study is based on a 

more dynamic environment. In particular, different sets of SKUs are picked on different 

days or short-term period and the entire picking area is re-slotted between each pick wave. 

As such, the long-term SKU demand correlations are of limited use and the specific 

correlations in a given pick wave can be exploited to identify good slotting for the 

specific pick wave. In this chapter, we address an efficient slotting method for zone-

based carton picking systems under the dynamic replenishment environment described in 

Chapter 1. (i.e., entire warehouse is replenished with SKUs for a pick wave on the next 

short-term period).  

The rest of Chapter 3 is organized as follows. Section 3.2 describes a mixed integer 

programming (MIP) slot assignment model for zone-based carton picking systems and a 
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two-phase heuristic is developed to solve the dynamic slotting problem for large 

problems in Section 3.3. In the first phase, COI based slotting is performed. In the second 

phase, four types of improvement heuristics are developed to solve the dynamic slotting 

problem. In Section 3.4, the experimental parameters are presented. Three main results 

are reported in Section 3.5. First, a solution of the best heuristic model is compared with 

the optimal solution of MIP model. It shows that how the heuristic provides a good 

solution within a short computing time. Second, heuristic convergence test is presented. 

Last, the performance of four heuristics is presented in the large problems. It shows how 

the performance of the heuristics is affected by changing the experimental factors. Finally, 

Section 3.6 concludes the chapter with some promising research directions for further 

research. 

3.2 MIP model for slotting problem 

In this section, we introduce a MIP formulation to determine the slotting of SKUs in 

a carton picking system. The subscripts, parameters, and variables for the model are 

defined as follows: 

J :  number of cartons, ( )Jj ,1=  

K : number of SKUs in forward picking area, ( )Kk ,1=  

M : number of zones, ( )Ml ,1=  

N : number of slots per aisle, ( )Nm ,1=  

jkC : indicator parameter set to 1 if SKU k  is assigned to carton j , otherwise 0. 
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CS : carton setup time for pick-to-light loading due to a carton visiting to a 

  zone.   

mS : setup time for zone m  at the beginning or a pick wave.  

nP : picking time in slot n . 

nW :  walking time to slot n .  

F : maximum available picking time. 

The decision variable set for this slotting model is kmnx , which is equal to 1 if SKU 

k  is assigned to slot n  in zone m ; and 0 otherwise. The remaining variables depend 

on the value of kmnx  and are defined as follows: 

mp :  total completion time of a picker in zone m  for processing cartons  

t : pick wave makespan 

jmd : total walking time and carton setup time of carton j  visiting zone m . 

 

The completion time for cartons of a picker assigned in zone m is as follows 

ignoring starvation time as described in Section 1.1: 
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Then the 0-1 mixed integer formulation of dynamic slotting model (DS_MIP) is 
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formulated as follows: 

  (DS_MIP):  min  t    (3.2) 

 subject to:   
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  mm pp ≤+1 , for Mm \∀  (3.8) 

  { }1,0∈kmnx , for nmk ,,∀  (3.9)  

  0,, ≥tpd mjm , for mj,∀  (3.10) 

Constraint set (3.3) ensures that each SKU is assigned exactly one slot. Constraint set 

(3.4) ensures that each slot contains at most one SKU. Constraint set (3.5) ensures that 

the total picking process time for a picker assigned in zone m  for carton j  is greater 

than the setup time for visit zone m  for carton j  plus the two times of the travel time 

to the slot assigned a SKU k  in carton j  from the zone initiation point. Constraint set 

(3.6) ensures that the pick time per picker in zone m  is less than the pick wave 
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makespan of pickers, t . Constraint (3.7) ensures that the variable t  is less than the 

maximum available picking time. Constraint set (3.8) helps us to ignore the symmetry of 

solutions and reduces feasible solution search space. This constraint set forces the total 

picking processing time for picker in zone m to be greater than the time for picker in zone 

m+1. It eliminates alternative optimal solutions when zone size increases (Bozer and Kile, 

2008). Constraint set (3.9) and (3.10) indicate that the decision variables are 0-1 integer 

and non-negative. The proposed MIP formulation provides an optimal solution. The size 

of formulation makes it difficult, if not impossible, to solve. This difficulty stems from 

the number of constraints and integer variables. This formulation has KMN binary 

variables and K+2M+MN+JMN constraints. For example, the total number of variables 

and constraints from the target DC in a medium size of problem (Cartons: 300, SKUs: 

540, Zones: 15) includes 296,116 variables and 167,611 constraints. Thus, CPLEX failed 

to find exact solutions before running out of memory in a number of cases. Also, this 

problem is known as NP-hard. If there is only one zone and each carton has only two 

line-items, this problem is equivalent to a well-known Quadratic assignment problem 

(QAP) (Frazelle, 1990). According to Garey and Johnson (1979), the QAP problem is 

strongly NP-hard, and then, our problem is strongly NP-hard, too. Thus, it is necessary to 

develop heuristic to solve the problem within a limited time constraint. However, the best 

feasible solutions obtained by CPLEX are useful to show the efficiency of the heuristic 

solution. 
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3.3 Heuristics for slotting problem 

The MIP model for the slotting problem is NP-hard. Thus, an efficient heuristic 

method is needed to find a good solution among the large number of potential solutions. 

A proposed approach for such a situation is to use a search procedure. The search 

procedure attempts to explore a subset of the solution space in an attempt to identify a 

good solution. However, there is a trade-off between the computational efficiency and the 

solution quality. The basic search procedures have two phases such that a good initial 

solution is found by using a pick wave demand and then the initial solution is improved 

by changing it in some way. For initial slotting assignment, a slotting using cube-per-

order index (COI) is proposed in that the most demanded SKUs are assigned into the 

“best” slots. The best slot means the nearest slot in time from a depot. SKUs are sorted in 

a descending order of quantity picked. Slots are sorted in increasing order of travel time 

to the picking location. In the special case of each carton having one line-item, the COI-

based slotting represents the optimal solution. However, in the case of multiple line-items 

in a carton, the COI-based slotting cannot guarantee the optimal solution. For finding a 

better solution, the initial solution then is perturbed or altered in some way and the new 

solution is evaluated. If the new solution improves the objective, the change is kept and 

the new solution becomes the current solution. Otherwise, the change is discarded. The 

process repeats until a stopping criterion is satisfied. We propose four different types of 

improving search heuristics in this study. There are several issues that distinguish various 

search heuristics: how to perturb or alter the solution, which changed solutions to keep, 

and when to stop the search heuristic.  
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One common method for perturbing a solution is to perform pairwise interchange. In 

this method, two slots are selected and SKUs in the slots are exchanged. Other method 

for perturbing a solution is to perform correlated interchange. The method is based on the 

idea that items that appear together in the same carton should be located near each other 

in the picking area. Thus, the procedure first calculates the correlation between each pair 

of SKUs. Correlation is defined as the number of times that two SKUs are assigned in the 

same carton during a pick wave. The correlation list is then used to improve the base 

solution. The pair of SKUs with the highest correlation is selected and an interchange is 

made such that these SKUs are located next to each other in the rack face. If the 

interchange improves the solution, then it is kept. Otherwise, the interchange is not used. 

The procedure continues by considering the next pair of SKUs in the list. The correlated 

interchange is originally proposed by Smith and Peters (2001) and Smith and Kim (2008) 

examined the performance of correlated slotting method using correlated interchange by 

the various correlated carton lists. Pairwise interchange and correlated interchange 

methods are used as the basis for the second-phase of the heuristics in this study.  

The second issue, which solutions to keep, also varies based on the heuristic method. 

Most of the search heuristics focused on keeping solutions which improve the objective, 

although these methods may become trapped in local optima. In local search, two types 

of acceptance rules to keep the improved solution are found. Common method is to 

accept any solution that improves the objective. The other method is to accept the 

solution that provides the best improvement in the objective among a set of improving 

solutions. Some heuristics probabilistically accept non-improving solutions in the 
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objective hoping to expand search space. In these heuristic procedures, a global optimum 

can sometimes be found by escaping the local optima accepting the non-improved 

solutions. However, note that these procedures are not guaranteed to find the global 

optimal solution. In this study, we propose two types of local search heuristics and two 

types of global search heuristics.  

Finally, the issue of when to stop the search must be addressed. This issue impacts 

the trade-off between computational time and solution quality in that the longer the 

search procedure is allowed to continue the more opportunity to improve the solution. 

Common approaches are to terminate when no further improvement is possible, when no 

improvement has been achieved for some predetermined number of solutions, when a 

specified number of solutions have been tried, and/or when a predetermined time limit is 

exceeded. For the comparison of heuristics in Section 3.5.2., the heuristics are terminated 

when no further solution is found for SA-C heuristic. For the comparison of heuristics for 

large size of problems in Section 3.5.3, the heuristics are terminated when no 

improvement has been achieved for some predetermined number of solutions and when a 

predetermined time limit is exceeded.  

Based on the three issues for a search heuristic, we propose two local heuristics and 

two global heuristic using simulated annealing algorithms with pairwise interchange and 

correlated interchange for COI-based initial slotting. The detail algorithms are explained 

as following sections. 
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3.3.1 Steepest descent neighborhood slotting heuristic (SD) 

The steepest descent neighborhood slotting improvement methodology (SD) uses 

pairwise interchanges for improving an initial solution in second-phase in this section. It 

evaluates all pairs of potential interchanges and chooses the solution with the most 

improved objective. It then reevaluates all pairs and continues this process until there is 

no improvement by interchanging solutions. Unfortunately, it is not guaranteed to reach 

the global optimal solution, and the starting solution obtained is important for solution 

quality for the final solution. Furthermore, it is time-consuming since it must evaluate the 

square of the total number of slots per iteration.  

3.3.2 Correlated slotting heuristic (CS) 

The correlated slotting improvement methodology (CS) developed attempts to 

exploit the problem using specific information about the cartonization. This procedure is 

based on the idea that items that appear together in the same carton should be located 

near to each other in the picking area. Thus, the procedure first calculates the correlation 

between each pair of SKUs. Correlation is defined as the number of items that two SKUs 

are assigned in the same carton during a pick wave. The correlation list is then used to 

improve the base solution. The pair of SKUs with the highest correlation is selected and 

an interchange is made such that these SKUs are located next to each other in the rack 

face. If the interchange improves the solution, then it is kept. Otherwise, the interchange 

is not used. The procedure continues by considering the next pair of SKUs in the list. The 
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general steps of the slotting improvement procedure are as follows: 

 

Step 1 Find an initial assignment based on the relative demand for particular 

SKUs and the relative preference of slot assignment of slots based on 

their proximity to the zone initiation point. This procedure is the 

traditional cube-per-order index (COI) based method. 

Step 2 Calculate the correlation between each pair of SKUs and sort all pairs of 

SKUs in descending order. (The correlation list orders all pairs of SKUs 

in decreasing order of the number of times that the SKUs appear together 

in the same cartons. As such, this method attempts to iteratively move 

SKUs that appear together in the same carton closer to one another in the 

picking area.) 

Step 3 Pick the pair of SKUs with the highest correlation and generate a new 

solution using a correlated interchange, in which the SKUs in the selected 

pair are located next to each other in the rack face. Update the correlated 

list by the pair of SKUs with the highest correlation as the pair of SKUs 

with the next highest correlation. 
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Step 4 Evaluate the new solution with the correlated interchange and compare 

the new solution with the best solution. If the new solution is better than 

the best solution, update the best solution and go back to Step 3. 

Otherwise, the correlated interchange is not to be used and go back to 

Step 3. If the solution is improved after the correlated list is consumed, 

then go back to Step 2. Otherwise STOP. 

 

The correlated slotting (CS) provides better performance than the steepest decent 

heuristic (SD) in the large scale problems, because the CS quickly finds improved 

solutions by the correlated SKUs being slotted together, while the SD heuristic should 

search the entire neighbor-hood solution space to obtain an improved solution. However, 

the CS cannot escape a local optimal solution, once the solution falls in the local optimal 

solution. In order to escape the local optima, we propose simulated annealing slotting 

algorithms (SA) in the study in following section.  

3.3.3 Simulated annealing slotting heuristic  

Simulated annealing was first proposed by Kirkpatrick et al. (1983). SA is a 

technique developed to overcome some of the difficulties associated with the local 

optimum heuristic methods such as the steepest decent or the correlated slotting 

improvement heuristics mentioned in previous sections. SA differs in that the procedure 

uses random selection and will sometimes accept non-improving moves hoping to expand 

the search space and ultimately reach a better overall solution. The non-improving moves 

are probabilistically performed using Boltzman probability mass function as follows 
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(Wolsey 1998): 

( ) ( )TZTp ∆−= exp , 
 
 

where T  is the current temperature, ( ) ( )ss ZZZ c −=∆ , and ( )cZ s  and ( )sZ  are 

the candidate and the current objective function value after and before interchange of 

SKUs, respectively. 

SA algorithm was introduced as a heuristic approach to solve numerous 

combinatorial optimization problems. Burkard and Rendl (1984) and Whilhelm and Ward 

(1987), Herague and Alfa (1990) and Meller and Bozer (1996) solved QAPs using SA. 

Burkard (2002) states that SA yields excellent performance in QAPs. We also choose SA 

to solve the slotting problem, because both problems essentially have a same decision; 

i.e., departments to locations and SKUs to slots even if the slotting problem in this study 

is the larger number of assignments than facility layout problem.  

In this section, we proposed two types of SA algorithms using pairwise interchange 

and correlated interchange. Meller and Bozer (1996) reported 7% improvement 

comparing steepest decent algorithm to SA algorithm using pairwise interchange (SA-P) 

in 40 department facility layout problem. As the problem size (i.e., SKUs, cartons, and 

line-items per cartons) becomes larger, the SA algorithm using pairwise improvement 

takes quite a long time to find a good solution given limited running time. In this section, 

we propose a SA algorithm using correlated interchange (SA-C) by a correlated list from 

the carton assignment. The SA-C algorithm dramatically improves solution performance 

in the initial stage comparing to SA-P, as well as it provides a good solution without 
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converging to local optima. The general annealing scheme in this study is similar to 

Wilhelm and Ward (1987) and Meller and Bozer (1996).  

The detailed algorithm for the SA-P and SA-C heuristic are given by following 

notations. Let 

csss //0 : the initial/current/candidate slotting solution vector 

*s :  the current best slotting solution vector, which corresponds to the lowest 

  pick wave makespan slotting by the algorithm. 

( ) ( ) ( )cZZZ sss //0 : the objective values of initial/current/candidate slotting vector. 

( )*sZ : the objective values of the current best slotting vector. 

( )sjZ : the objective values of the j th accepted candidate slotting vector in an epoch. 

eZ :  the mean objective function value of an epoch, i.e., ( ) eZZ
e

j
je /

1
∑
=

= s . 

eZ 2 :  the overall mean objective function value accepted in both the previous epoch 

  and current one. 

α :  the temperature cooling rate, which controls how fast the algorithm is  

  “cooled-down”. 

0t :  the initial temperature. 

T:  a set of annealing schedule temperatures{ },,, 321 ttt , where ( )ii tt α0= , 

  for 1>∀i . 

e  :  the epoch length-fixed number of candidate solutions within each temperature. 

iε :  the threshold value used to determine whether the system is in equilibrium.  

  at temperature i. 
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( )jiC , :  the number of times SKUs i and j appear in the same carton for the given 

   pick wave. 

( )kL  : a SKU pair with kth high-ranked correlation of SKUs i and j, ( )jiC , . 

  where, ( ) 0, >jiC is sorted in decreasing order of ( )jiC , . 

N :  the maximum number of successive temperature setting which do not produce  

  a new *s . 

T :  the termination time. 

K :  the number of correlated list from ( )kL , Kk ,,1=  

The parameters Met i ,,,,, 0 εβα  and N  are specified a priori. Using the above 

notation, the detailed two SA heuristics are presented as follows.  

In SA-P, we swap two SKUs in randomly selected slots. If the number of SKUs is 

less than the total number of slots, the swapping may move a SKU into empty slot. SA-C 

uses the information of correlated list and performs correlated interchange. This 

procedure is based on the idea that items that appear together in the same carton should 

be located near each other in the picking area. The SA-C improves the solution more 

quickly than SA-P in the initial stage. Therefore, The SA-C expects better performance 

than SA-P in large size problem within a given time limit. The general steps of the 

slotting improvement procedure for SA-P and SA-C are as follows: 

Step 1 Generate an initial slotting vector 0s using COI slotting method. Based 

on the carton assignment of a given pick wave, generate the correlated 

SKU pairs ( ) .,,1, KkkL =  
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Step 2 Set .0ss =  Given 0s , compute the initial pick wave makespan, ( )0sZ , 

and set ( ) τ/0
0 sZt = , 01 tt α= , 1=i  and 1=m   

Step 2a-SA-P Randomly select two SKUs and swap the SKUs. Store the resulting 

slotting vector (i.e. the candidate vector) as cs . 

Step 2a-SA-C Select a random variable ( )KUk ,1~  and perform the correlated 

interchange using ( ).kL Store the resulting slotting vector (i.e. the 

candidate vector) as cs  and increase m by 1. 

Step 2b Compute decrease in pick wave makespan, ( ) ( )cZZZ ss −=∆ . If 

0>∆Z , go to Step 2d; otherwise go to Step 2c. 

Step 2c Select a random variable ( )1,0~ Ur . If r < exp ( )itZ /∆ , go to Step 2d, 

otherwise go to Step 2a-SA-P or go to Step 2a-SA-C. 

Step 2d Accept the candidate slotting solution vector cs  and current pick wave 

makespan; i.e., set css = and ( ) ( )cZZ ss = . If ( )sZ < ( )*sZ , then update 

the “current best” slotting solution vector and pick wave makespan; i.e., 

set *ss =  and ( ) ( )*ss ZZ = . If e candidate slotting vectors have been 

accepted, go to Step 3; otherwise, go to Step 2a-SA-P or go to Step 2a-

SA-C. 
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Step 3 If equilibrium has not been reached at temperature it ; i.e., if 

ieee ZZZ ε≥− 22 / , reset the counter for accepted candidate solutions 

and go to Step 2a; otherwise, set the number of epochs as 0, 1+= ii  

and ( )ii tt α0= . If Ni < , go to Step 4; otherwise, STOP.   

Step 4 If the running time is less thanT , increase the number of epochs by 1 

and go to Step 2a; otherwise STOP. 

3.4 Experimental parameters  

Four heuristics were coded in C++ and tested on several problems based on the 

experimental factors with several levels. Two types of parameters (i.e., system and 

operating parameters and SA parameters) are chosen before experimental testing. The 

system and operating parameters are chosen by the order picking system structure and 

operations of the order pickers. The parameters are referred by the technical report (Smith 

and Peters, 2001) which is studied on the case study of JC Penney distribution center in 

Plano, TX. The SA parameter values used for the experiment are: τ = 100, e =50, 

iε =0.01, N =10, T =10800, and α =0.997. The SA parameters were chosen based on 

preliminary experiments. Table 3.1 illustrates the order picking system parameters in this 

study. Each zone includes a rack with 54 slots (3 rows and 18 columns, and the slots are 

indexed as (current rack column – 1) ×  rack rows + current rack row. Walking and 

picking time are constant without acceleration. Since the picker picks items in different 

levels, the picking time is different by the level. Thus, the picking time weight are 
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included based on the level. Two kinds of setup times (i.e., carton setup time and zone 

setup time) are considered.  

 
 

The heuristic experiments need to observe how the heuristics are affected by 

changing the level of factors for large problems. Since the performance heuristic 

algorithms depend on the number of SKUs (S), the number of cartons (C), the number of 

line-items per carton (LI), degree of correlation (CR), and the types of objective (O). We 

control these five parameters to several levels. To set up the experiment tests of the 

performances of heuristic for large problems in Section 3.5.3, we consider the following 

factors and the levels of the corresponding factors presented in Table 3.2. Since we could 

not have a real carton list data in this study, we have to generate a random carton list. In 

order to include the correlation between SKUs in the random carton list, we propose an 

effective correlated random carton list generation methodology with SKUs correlation. 

Based on the experimental factors, the generation of carton list is explained in detail in 

Appendix A. Using three randomly generated correlated carton lists, the above factors 

and their levels results in 2×3×3×3×2×3 = 324 instances of four heuristics, respectively. 

The running time was limited by three hours. 

Table 3.1 Order picking system parameters 
System parameters Operational parameters 
Rack rows (levels)  3 Bottom level weight 1.20 
Rack columns 18 Middle level weight  1.00 
Num. slots per zone 54 Top level weight 1.05 
Unit walking time  1.4 secs/column Carton setup time 10.80 secs/carton 
Unit picking time 2.9 secs/SKU Zone setup time 43.00 secs/zone 
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Table 3.2 Experimental factors 
Factors Levels 
Number of SKUs ( )S / Number of zones ( )54S  540/10, 1080/20 
Number of cartons ( )C   300, 500, 700 
Number of line-items per carton ( )LI   10, 15, 20 
Degree of correlation { }( )Snw i 1.0,30,2,1 ==  Low(w=1), Medium(w=2), High(w=30)  

Types of objective Pick wave makespan, Total cartons 
completion time 

 

3.5 Experimental results 

The MIP solution for slotting problem is executed by CPLEX 10.2. Because of the 

complexity of the problem, the MIP solution is difficult, if not impossible, to find an 

optimal solution within limited time in large size problem. We first compare SA-C 

heuristic with the optimal solution by using MIP model in small problems. For larger 

problems, the solution improvement between several heuristics is compared as computing 

time increases and then we test solution efficiency of the several heuristics by changing 

the experimental factors. The slotting heuristics are developed using C++ with Pentium 

IV 2.0 GHz CPU with 2.0 GB memory. 

3.5.1 MIP and heuristic model comparison test 

In the case of small size problems, we can compare MIP and SA-C heuristic. The 

factors on this test are number of zones ( )z , total number of SKUs stored ( )s , and 

number of cartons ( )c . The CPU time in MIP model is limited by 10 hours. The CPU 
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time in the SA-C heuristic model is less than 60 seconds in the all the cases. In z , 2, 3, 4, 

and 5 zones are considered. Assuming that an even number of SKUs is stored in each 

zone, 3, 4, and 5 SKUs per zone are tested so that the total number of SKUs is ,4,3 zz  

and z5 , (i.e., the total number of SKUs stored is 15, 20, and 25 in 5 zones). In c , 10, 20, 

and 30 cartons are considered. We fixed the average number of line-items in a carton and 

the degree of correlation is fixed as 5 and high ( )30=w . Therefore a total of 4 ×3×3 = 

36 problem cases are tested. In each problem case, 10 instances are generated. Table 3.4 

illustrates a summary of the average pick wave makespan of MIP solution and SA-C 

heuristic solution, the average relative deviation percentages between the makespan of 

MIP and SA-C, and the CPU time of finding a MIP solution. The average relative 

deviation percentages between the makespan of MIP and SA-C,  h∆  is defined as 

follows: 

  ∑
=

×




 −=∆
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where, h
iZ  be the average pick wave makespan of i th instance founded by using SA-C 

heuristic and OPTZ  be the pick wave makespan founded by using MIP model. We 

replicate the heuristic solution by 10 times to obtain a stationary solution. Therefore, 

10/
10

1
∑
=

=
i

h
i

h
i ZZ .  

Some problem instances remained unsolved even if we allowed 10 hours of CPU 

time. For calculating the average percentage deviation between the makespan of MIP and 

SA-C, we only considered the problems for which an optimal solution is found within the 
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CPU time limit. If more than 50% of instances of MIP solutions (more than 5 instances) 

were not able to solve within 10 hours, we concluded that the MIP solution is failed. NA 

in table 3.4 indicates the problem cases that are failed. Overall, the average percentage 

deviation shows less than 5% from the optimal pick wave makespan even if the CPU 

time for finding an optimal solution using the MIP model exponentially increases (i.e., 

the number of SKUs stored in the zone and the number of cartons increase). 
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Table 3.3 Solution comparison between MIP and SA-C (APD: 
Average percent deviation, NOSF: Number of optimal solution 
found in MIP model) 
Problems MIP SA-C APD NOSF MIP time 
Z2S06C10 256.16 256.16 0.00 10 0.07 
Z2S08C10 265.27 265.61 0.15 10 0.78 
Z2S10C10 263.45 267.07 1.39 10 17.17 
Z3S09C10 224.12 224.97 0.41 10 3.28 
Z3S12C10 223.03 227.26 1.95 10 393.10 
Z3S15C10 216.88 223.74 3.22 10 3786.99 
Z4S12C10 201.26 203.26 1.07 10 60.80 
Z4S16C10 195.31 197.13 3.65 7 1372.39 
Z4S20C10 193.68 201.45 2.89 5 5620.40 
Z5S15C10 181.18 186.05 2.72 10 96.61 
Z5S20C10 189.80 194.75 2.70 10 3221.63 
Z5S25C10 172.61 177.63 3.15 5 9117.66 
Z2S06C20 466.03 466.03 0.00 10 0.33 
Z2S08C20 487.83 489.57 0.47 10 1.45 
Z2S10C20 478.84 486.47 1.66 10 26.79 
Z3S09C20 410.45 413.19 0.66 10 10.88 
Z3S12C20 399.12 403.22 1.04 10 590.19 
Z3S15C20 380.74 395.69 3.34 10 7023.91 
Z4S12C20 363.60 369.23 1.86 10 699.61 
Z4S16C20 326.95 342.45 4.12 8 13638.37 
Z4S20C20 NA NA NA 1 NA 
Z5S15C20 337.63 332.56 0.46 8 1354.38 
Z5S20C20 312.93 320.69 3.87 6 20722.90 
Z5S25C20 NA NA NA 1 NA 
Z2S06C30 682.86 683.18 0.05 10 0.22 
Z2S08C30 702.41 703.62 0.23 10 2.06 
Z2S10C30 698.65 702.74 0.60 10 81.24 
Z3S09C30 589.72 593.22 0.59 10 18.06 
Z3S12C30 575.14 581.43 1.13 10 530.08 
Z3S15C30 529.15 564.61 4.24 6 22929.65 
Z4S12C30 517.20 522.85 1.15 10 494.11 
Z4S16C30 477.10 490.37 3.53 5 26342.48 
Z4S20C30 NA NA NA 1 NA 
Z5S15C30 448.61 454.92 1.49 10 8069.86 
Z5S20C30 447.10 452.98 3.44 5 35908.00 
Z5S25C30 NA NA NA 1 NA 
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3.5.2 Heuristic convergence test  

In this section, we compared the four improvement search heuristics during the entire 

running time: steepest decent neighborhood slotting (SD), correlated slotting (CS), 

simulated annealing using pairwise interchange (SA-P), and simulated annealing using 

correlated interchange (SA-C). Figure 3.1 presents the makespan improvement of each 

heuristic. In this test, we tested the same problem in three heuristic methods and truncated 

right when the solution in SA-C is stable. Two problems are executed to show the 

correlation impact on heuristic performance by changing different experimental factors. 

Based on 540 SKUs and 100 cartons, we tested two cases (i.e., 5 average line-items with 

low correlation between SKUs and 15 average line-items with high correlation between 

SKUs). In both the graphs in Figure 3.1, the worst heuristic is steepest decent 

neighborhood search (SD) and the best heuristic is simulated annealing using correlated 

interchange (SA-C). It shows about 35~45% savings from SD search heuristic. The main 

reason that SD heuristic finds a poor solution is that it takes substantial time to improve 

solution within the limited computing time because the current problem has large 

neighborhood sets. The correlated slotting improvement heuristic shows relatively a good 

solution in larger numbers of line-items with high correlation between SKUs. The 

correlated slotting method (CR) decreases the solution improvement gap with SA-C 

method from 32% in 5 line-items with low correlation to 10% in 15 line-items with high 

correlation. It indicates that the heuristics using correlation of SKUs performed better in 

the problems under larger pick-density (the picking numbers per picking tour) and larger 

feasible solution space. It also implies that the correlation information between SKUs is 
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critical to improve the slotting solution under the carton data with high correlation and 

large number of line-items in the carton. The SA-C is quickly improved and it gives the 

best solution among other heuristics. In 5 average line-items with low correlation, the 

makespan of 706.12 is obtained in 592 seconds in SA-C compared to 950 seconds in the 

SA-P. In 15 average line-items with high correlation, the makespan of 1973.69 is 

obtained in 1778 seconds in SA-C compared to 2132 seconds in the SA-P. Thus, the 

computing time of SA-C is reduced by about 17~38% in obtaining a reasonable solution 

than the computing time of SA-P. We expect that the difference between the computing 

times of finding a reasonable solution using SA-P and SA-C increases as the number of 

line-items in carton increases and correlation of SKUs is high, because SA-C can quickly 

improve the solution using more correlated list generated by larger line-item and higher 

correlation. 
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Figure 3.1 Heuristic solutions during computing time 
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3.5.3 Heuristic performance for large problems  

To evaluate the performance of four different heuristic algorithms, we compare the 

pick wave makespan of each heuristic using a number of randomly generated problems. 

Since the complexity of the problem depends on the number of SKUs (S), the number of 

cartons (C), the number of line-items per cartons (LI), and the correlation of SKUs (CR), 

we control these four parameters to several levels. The levels of each control parameters 

are already shown in table 3.2. We randomly generated 3 problems and find an average 

pick wave makespan for each heuristic, respectively. The running time of the algorithms 

is fixed as 3 hours. Since SD and CR heuristic algorithms are local search algorithms, we 

added another termination condition, in which the algorithms stop when there is no 

improvement.  

Table 3.4 shows the results of the pick wave makespan of each heuristic. The pick 

wave makespans of each of the four heuristics increase, as the number of SKUs, the 

number of cartons, and the number of line-items are large. In general, SA-C provides 

better pick wave makespan than other heuristics. In this table, the percent improvement 

between SD and SA-C in this table varies from 3.2% to 26.2% (the value of the most 

bottom right cells in SD and SA-C: 100 x (14089.5-13644.0)/14089.5 and the values of 

most upper left cells in SD and SA-C: 100 x (5354.4-7254.2)/5354.4). These values mean 

that 7.5 to 31.7 minutes of the working time savings of pickers can be obtained during 

one shift (8 hours) by the three hour slotting algorithm is performed. Since the running 

time is limited, the difference of the makespans among CR, SA-P, and SA-C becomes 

small as the number of SKUs becomes large and the number of line-items and the 
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number of cartons become large. The heuristics using correlated interchange (CR and 

SA-C) has a relatively good performance compared to the heuristic without using 

correlated interchange (SD and SA-P). When the number of SKUs is 1080 (20 zone 

problem), we found five cases that CR (one of local search) performed better than SA-C 

in a 3 hour running time because SA-C takes considerable time to find a good solution 

due to a very large feasible solution space (i.e., the representation of the one solution in 

SA-C is a 1x1080 array). Thus, we performed additional tests for the five problem cases 

(i.e., S1080C700LI10H, S1080C700LI15H, S1080C700LI20H, S1080C700LI20L, and 

S1080C700LI10M) by increasing the running time from 3 to 6 hours. As we expected, 

the performance of the five the cases shows the makespan of the SA-C is 1.7~1.9 % 

better than CR. 

The result of the percent improvement between COI initial solution and SA-C is 

presented in Table 3.5 and Table 3.6. Since the correlation list using the SA-C algorithm 

affects not only the performance of the COI solution but also the performance of the 

solution improvement using the SA-C, it is difficult to find a consistent trend in the 

performance of solution improvement by changing the degree of correlation in Table 3.5. 

Therefore, we present the average percent improvement of three degrees of correlations 

in Table 3.6. The cell in Table 3.6 is indicated by a set of a level of the number of SKUs, 

a level of the number of cartons, and a level of the number of line-items. The percent 

improvement between COI and SA-C is shown from 5.5% to 27%. The percent 

improvement becomes large as the number of line-item is small and the number of SKUs 

is small because the problem with small number of line-items and SKUs provides 
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relatively smaller feasible solution space than the problem with large number of line-

items and SKUs and it can obtain better solution more quickly under the 3 hours running 

time. 

In the zone based picking systems, both the total carton processing time of the 

warehouse and the balance of the working time of pickers assigned to each zone are 

important to improve the productivity of the order picking process. Thus, we compared 

the performance of two objective functions (i.e, minimizing the pick wave makespan of 

pickers and minimizing the completion of total carton processing time). Table 3.7 

summarizes the results of the percent improvement between SA-C under pick wave 

makespan objective function and SA-C under total carton completion time objective 

function. This table shows that there is a consistent increase in solution performance 

when the objective function is switched from pick wave makespan to the total carton 

completion time. The difference between pick wave makespan and total carton 

completion time increases, as the number of SKUs and the number of cartons increase.   
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Table 3.4 
                Average pick wave makespan for four heuristics                       

   
SD 

   
CR 

   
SA-P 

   
SA-C 

  S C CR LI = 10 LI = 15 LI = 20 
 

LI = 10 LI = 15 LI = 20 
 

LI =10 LI = 15 LI = 20 
 

LI = 10 LI = 15 LI = 20 
540 300 L 7254.2 9677.9 11467.0 

 
5757.7 8108.6 10001.7 

 
5550.3 7843.5 9746.5 

 
5354.4 7678.0 9616.1 

  
M 7166.9 9545.2 11386.0 

 
5679.7 8031.4 9922.4 

 
5464.7 7800.2 9659.7 

 
5282.5 7571.3 9479.4 

  
H 6352.3 8023.9 9258.8 

 
5135.6 6881.4 8103.7 

 
4946.4 6675.7 7722.2 

 
4795.5 6597.6 7696.3 

 
500 L 12526.3 16661.7 19413.5 

 
10676.9 14774.3 17841.8 

 
10500.0 14351.5 17511.0 

 
10255.2 14366.7 17499.2 

  
M 12248.6 16090.9 19167.6 

 
10589.1 14499.8 17568.7 

 
10347.1 14271.2 17291.9 

 
10165.0 14114.4 17232.1 

  
H 10927.8 13504.7 15904.9 

 
9301.6 12256.4 14444.6 

 
9275.5 12059.3 14020.3 

 
9122.3 12046.8 14001.8 

 

700 L 17926.3 23360.4 27385.7 
 

15908.2 21573.4 25675.7 
 

15633.5 21260.5 25477.0 
 

15468.9 21090.7 25540.5 

  
M 17252.1 22840.2 27014.4 

 
15436.0 21133.0 25272.1 

 
15321.0 20944.8 25080.9 

 
15067.5 20754.9 25103.0 

  
H 15338.3 19288.3 22654.3 

 
13757.6 17865.7 20950.0 

 
13562.9 17619.6 20415.0 

 
13560.1 17714.0 20542.6 

1080 300 L 4030.2 5766.1 7225.0 
 

3279.6 5018.0 6564.7 
 

3408.0 5056.4 6515.2 
 

3083.8 4787.8 6307.4 

  
M 3962.9 5716.2 7277.6 

 
3243.1 4976.6 6490.0 

 
3379.3 5041.3 6432.2 

 
3047.1 4797.6 6241.0 

  
H 3519.6 4695.9 5827.4 

 
2886.1 4174.4 5106.9 

 
2985.9 4200.4 5286.4 

 
2754.0 4058.2 5011.0 

 
500 L 7013.8 9958.5 12483.5 

 
6222.6 9185.9 11719.0 

 
6335.6 9198.9 11706.3 

 
6026.3 8990.3 11567.9 

  
M 6816.9 9726.0 12236.8 

 
6087.4 9042.5 11476.9 

 
6241.2 9143.4 11601.5 

 
5982.9 8835.2 11420.1 

 

 
H 5996.6 8145.5 9850.4 

 
5412.3 7551.5 9106.3 

 
5512.6 7614.2 9287.1 

 
5272.3 7499.8 9001.2 

 
700 L 9912.6 14219.0 17792.9 

 
9132.5 13341.1 16817.6 

 
9324.7 13436.1 17018.2 

 
9051.5 13261.9 16869.4 

  
M 9876.0 13813.8 17502.6 

 
9067.7 13107.7 16528.4 

 
9229.1 13288.7 16792.4 

 
9039.4 13078.9 16643.5 

  
H 8640.5 11568.1 14089.5 

 
7934.8 10951.5 13449.5 

 
8146.8 11000.3 13647.6 

 
7954.1 11003.8 13644.0 
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Table 3.5 
            Percentage improvement between COI initial solution and SA-C heuristic 

   
COI 

   
SA-C 

   
% improvement 

 S C CR LI = 10 LI = 15 LI = 20   LI = 10 LI = 15 LI = 20   LI = 10 LI = 15 LI = 20 
540 300 L 7437.2 9899.1 11567.3 

 
5354.4 7678.0 9616.1 

 
28.0 22.4 16.9 

  
M 7286.6 9631.6 11460.3 

 
5282.5 7571.3 9479.4 

 
27.5 21.4 17.3 

  
H 6428.7 8105.3 9397.5 

 
4795.5 6597.6 7696.3 

 
25.4 18.6 18.1 

 
500 L 12717.1 16804.9 19499.5 

 
10255.2 14366.7 17499.2 

 
19.4 14.5 10.3 

  
M 12417.0 16281.8 19265.5 

 
10165.0 14114.4 17232.1 

 
18.1 13.3 10.6 

  
H 11063.7 13639.9 16020.3 

 
9122.3 12046.8 14001.8 

 
17.5 11.7 12.6 

 
700 L 18233.4 23478.0 27656.7 

 
15468.9 21090.7 25540.5 

 
15.2 10.2 7.7 

 

 
M 17451.1 23066.2 27233.8 

 
15067.5 20754.9 25103.0 

 
13.7 10.0 7.8 

  
H 15636.4 19376.0 22893.1 

 
13560.1 17714.0 20542.6 

 
13.3 8.6 10.3 

1080 300 L 4040.0 5831.4 7326.5 
 

3083.8 4787.8 6307.4 
 

23.7 17.9 13.9 

  
M 4069.7 5809.8 7328.3 

 
3047.1 4797.6 6241.0 

 
25.1 17.4 14.8 

  
H 3508.0 4774.4 5891.9 

 
2754.0 4058.2 5011.0 

 
21.5 15.0 11.6 

 
500 L 7084.4 10026.9 12615.5 

 
6026.3 8990.3 11567.9 

 
14.9 10.3 8.3 

  
M 6910.4 9838.0 12318.9 

 
5982.9 8835.2 11420.1 

 
13.4 10.2 7.3 

  
H 6050.1 8279.0 9939.9 

 
5272.3 7499.8 9001.2 

 
12.8 9.4 6.4 

 
700 L 9956.7 14347.0 17973.1 

 
9051.5 13261.9 16869.4 

 
9.1 7.6 6.1 

  
M 9970.7 13915.0 17635.7 

 
9039.4 13078.9 16643.5 

 
9.3 6.0 5.6 

    H 8764.0 11690.6 14320.3   7954.1 11003.8 13644.0   9.2 5.9 4.7 
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 Table 3.6 
           Average percentage improvement between COI initial solution and SA-C heuristic 

  
COI 

   
SA-C 

   
% improvement 

 S C LI = 10 LI = 15 LI = 20   LI = 10 LI = 15 LI = 20   LI = 10 LI = 15 LI = 20 
540 300 7050.8 9212.0 10808.4 

 
5144.1 7282.3 8930.6 

 
27.0 20.8 17.4 

 
500 12065.9 15575.5 18261.8 

 
9847.5 13509.3 16244.4 

 
18.3 13.2 11.2 

 
700 17107.0 21973.4 25927.9 

 
14698.8 19853.2 23728.7 

 
14.1 9.6 8.6 

1080 300 3872.6 5471.9 6848.9 
 

2961.6 4547.9 5853.1 
 

23.4 16.8 13.4 

 
500 6681.6 9381.3 11624.8 

 
5760.5 8441.8 10663.1 

 
13.7 10.0 7.3 

  700 9563.8 13317.5 16643.0   8681.7 12448.2 15719.0   9.2 6.5 5.5 
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3.6 Conclusions 

The problem in this chapter is the slotting problem of zone-based carton picking 

order picking systems given cartonization. For solving the problem, a MIP programming 

model is introduced and solved by CPLEX 10.2. Since the problem is NP-hard and the 

size of a real problem is very large, we proposed four different heuristic algorithms: two 

local search based heuristics and two simulated annealing heuristics. Before we test large 

size problems, we compare the SA-C heuristic (the most sophisticated heuristic we 

proposed) with MIP solution in small size problems. The average relative percentage 

deviation between the makespan of MIP and SA-C provide less than 5% from the optimal 

pick wave makespan even if the CPU time for finding an optimal solution using the MIP 

model exponentially increases, as the number of SKUs stored in the zone and the number 

of cartons increase. For large size problems, we compared the performance of four 

Table 3.7 
        Comparison of the percentage improvement between SA-C under pick wave 

makespan objective function and SA-C under total carton completion time 
objective function  

  
% improvement of MS 

 
% improvement of TC 

S C LI = 10 LI = 15 LI = 20   LI = 10 LI = 15 LI = 20 
540 300 27.0 20.8 17.4 

 
27.7 25.1 23.4 

 
500 18.3 13.2 11.2 

 
21.8 19.7 18.1 

 
700 14.1 9.6 8.6 

 
17.9 16.0 14.3 

1080 300 23.4 16.8 13.4 
 

32.3 28.0 25.9 

 
500 13.7 10.0 7.3 

 
24.0 19.7 17.3 

  700 9.2 6.5 5.5   18.3 14.7 14.3 
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heuristics in a 3 hour running time. From these results, we highly recommend that one 

should use the SA-C heuristic under the slotting problem with a limited slotting planning 

time and large size of solution space, because it quickly decreases solution without 

converging to local optima in the large size of problem solution space. SA-C heuristic 

uses the correlated list, which is the set of SKU pairs assigned in at least one carton and it 

dramatically improves solution in initial stage. The size of the correlated list and the 

correlation strength of the correlated SKU pairs affect both COI initial solution 

performance and SA-C improvement performance. The percent improvement between 

SD and SA-C in this table varies from 3.2% to 26.2%. These values mean 7.5 to 31.7 

minutes of working time savings of pickers can be obtained during one shift (8hours) by 

the three hour slotting algorithm is performed.  

In this study, we assume that the line-items per carton are given generated by the 

correlated random carton list generation method (Kim and Smith, 2008, Appendix A). 

The best slotting depends on how to assign orders to cartons given the number of orders 

in a pick wave (i.e., cartonization) and also the best cartonization depends on how to 

assign SKUs to slots (i.e., slotting). Clearly these two assignment problems affect one 

another. In the further study, we expect that a potential improvement can be obtained by 

considering the two interrelating assignment problems concurrently or systematically. 

Before we consider the interrelating problems, it is necessary to develop an efficient 

cartonization method of our order picking systems. 
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Chapter 4 

 Cartonization Method for Zone-based Carton Picking Systems 

4.1 Introduction 

Cartonization groups line-items within an order into cartons with a limited capacity. 

It is necessary in practice to obtain the potential savings of order picking travel time by 

grouping line-items that are located in near slots. The simplest way to reduce order 

picking travel time is to minimize the number of cartons by reducing the potential travel 

time within zone by sharing a picking tour. However, minimizing the number of cartons 

cannot guarantee to minimize carton set up time because more items are contained in a 

carton and the carton potentially visits more zones than the carton containing small items. 

Clearly a “good” cartonization is one in which SKUs in the same order that are assigned 

together into the same carton and are also slotted near one another in the picking area. In 

this chapter, we address an efficient cartonization method for zone-based carton picking 

system under dynamic replenishment environment described in Chapter 1. (i.e., entire 

warehouse is short-term periodically replenished with SKUs for a pick wave on the next 

period). 

The rest of Chapter 4 is organized as follows. Section 4.2 describes a mixed integer 

programming (MIP) cartonization model for zone-based carton picking system. Since the 

problem is known as NP-hard in Section 4.2, we develops two types of cartonization 
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heuristics, in which one class is heuristics without slotting information and the other class 

is heuristics with slotting information in Section 4.3. For the cartonization heuristics 

without slotting information, both carton capacity compared to mean SKU volume (the 

expected number of items per carton) and the ratio of carton capacity to mean order 

volume are critical issues to minimize pick wave makespan. In Section 4.4, we examine 

the cartonization heuristics by various experiment parameters and compare the 

performance of the proposed cartonization heuristics. Finally, we conclude the study with 

a summary and discuss some future research in Section 4.5.  

4.2 MIP model for cartonization problem 

In this section, we propose a mixed-integer programming (MIP) formulation to 

determine the grouping of orders into a carton given the slotting and a specific pick wave 

in a zone-based carton picking system. The general subscripts, parameters, variables are 

already explained in Section 3.2. Additional subscripts, parameters, and variables for the 

model are defined as follows: 

Subscripts 

I :  number of orders in a pick wave, ( )Ii ,,1= . 

0N :  set of non-negative integers, { }N,2,1,0 =0N .  

Parameters 

ikQ :  required number of SKU k in order i. 

kmnX : indicator parameter set to 1 if SKU k is assigned to slot n in zone m. 

kV :  unit volume of SKU k expressed in cubic feet. 
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V :  carton capacity expressed in containable cubic feet in a carton. 

Variables 

ijkq :  number of SKU k in order i assigned to carton j. 

iju :   1, if order i is assigned into carton j. 0, otherwise. 

ijkc  : 1, if SKU k in order i is assigned into carton j. 0, otherwise.  

 

The decision variable set for this cartonization model is ijkq , which is the number of SKU k 

in order i assigned into carton j. The remaining variables depend on the value of ijkq . 

The completion time for cartons of a picker assigned in zone m is as follows ignoring 

starvation time as described in Section 1.1: 

  ,
1 1 1 1 1
∑∑∑∑ ∑
= = = = =

++=
I

i

J

j

K

k

N

n

J

j
jmijkkmnnmm dqXPSp  for m∀  (4.1) 

 

Then the 0-1 mixed integer model for the cartonization (C_MIP) is formulated as follows: 

 

  (C_MIP): min t   (4.2) 

 subject to: 

  ,1
1

≥∑
=

J

j
iju  for i∀   (4.3) 

  ,1
1

≤∑
=

I

i
iju  for j∀   (4.4) 

  ij

K

k
ijk Muc∑

=

≤
1

 for ji,∀  (4.5) 
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  ij

K

k
ijk uc ≥∑

=1

, for ji,∀  (4.6) 

  ,
1

ik

J

j
ijk Qq =∑

=

 for ki,∀  (4.7) 

  ,
1 1
∑∑
= =

≤
I

i

K

k
ijkk VqV  for j∀   (4.8) 

  ,ijkijk Mcq ≤  for kji ,,∀  (4.9) 

  ( )∑∑
= =

≤+
I

i
jm

K

k
kmnijkn dXcWCS

1 1

,2  for nmj ,,∀  (4.10)  

  ,tpm ≤  for m∀  (4.11) 

  ,1 mm pp ≤+  for Mm \∀  (4.12) 

  { },1,0, ∈ijkij cu  for kji ,,∀  (4.13)  

  0N∈ijkq  for kji ,,∀  (4.14) 

  ,0,, ≥tpd mjm  for mj,∀  (4.15) 

Constraint set (4.3) ensures that an order must be assigned to at least one carton. 

Constraint set (4.4) ensures that all SKUs assigned to a carton belong to the same order. 

Constraint set (4.5) and (4.6) ensure couple iju  and ijkc . The constraint sets provide all 

the SKUs in a carton must belong to the same order. Constraint set (4.7) ensures that total 

number of units of a given SKU for an order must be equal to the required number of 

SKUs for that order. Constraint set (4.8) ensures that the total volume of line-items 

assigned to a carton from a certain order must be less than or equal to the carton capacity. 

Constraint set (4.9) ensures that two variables, iju  and ijkc  are coupled. Constraint set 

(4.10) ensures that the total picking process time for a picker assigned in zone m for 
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carton j is greater than or equal to the carton visiting set up time plus two times of the 

travel time to the slot assigned a SKU k in the carton j. Constraint set (4.11) ensures that 

the pick time per picker in zone m is less than pick wave makespan t. Constraint set 

(4.12) helps us to ignore the symmetry of solutions and reduces feasible solution search 

space. This constraint set forces the total picking processing time for picker in zone m to 

be greater than the time for picker in zone m+1. It eliminates alternative optimal solutions 

when zone size increases. Constraint set (4.13) and (4.14) indicate that the decision 

variables are 0-1 integer and non-negative integer. Constraint set (4.15) ensures the 

remaining variables are non-negative.  

The number of binary variables, which is a key point to decide the difficulty of an 

integer programming problem, in this formulation is IJ + IJK (0-1 integers) and IJK 

(non-negative integers). For the number of constraints, our formulation has 

I+2J+2M+2IJ+IK+IJK+JMN-1. If there is only one zone, one unit in the line-items in 

each orders and the processing time (picking and walking time of a picker) of each line-

items is same, the problem is equivalent to a well-known bin packing problem. Thus, the 

cartonization problem is equivalent to a set of I bin packing problems, because it has I 

orders. According to Garey and Johnson (1979), the bin packing problem is strongly NP-

hard and then, our problem is strongly NP-hard, too. Thus, it is necessary to develop 

heuristic to solve the problem within a limited time constraint.  
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4.2.1 MIP testing in small problems 

Several small problems are solved with the MIP model on with Pentium IV, 2.8 GHz 

CPU using ILOG CPLEX 10.2. Before the MIP model is tested, we defined several 

testing parameters. The number of line-items in each order is fixed at 5. The unit of each 

line-item in an order is generated by the discrete uniform distribution, DU(1,10). The 

volumes of SKUs are generated by the continuous uniform distribution, U(0.025, 0.500) 

ft3

There are three control factors to decide the complexity of the problem. The control 

factors are number of zones

. The carton capacity is defined by the mean value of SKU unit multiplied by the mean 

value of volume of SKU. 

( )z , total number of SKUs stored ( )s , and number of 

cartons ( )c . First, we should define the number of cartons to contain the line-items 

ordered enough. If the number of cartons is defined as an arbitrarily large value to contain 

the line-items fully assignable, an optimal solution is not able to be found within a given 

MIP processing time. If the number of cartons is defined too small, we obtain a local 

optimal solution for a given the number of cartons. To decide the number of cartons, we 

assume that each line-item individually requires a carton in the worst case. We thus 

define the number of cartons ( )c  as the number of orders multiplied by the mean 

number of line-items within an order. For example, the number of line-items per order is 

fixed as 5 and the number of orders can be one of two values (2 and 4) in this test. Then 

the number of cartons ( )c  can be one of two values (10 and 20). The number of 

zones ( )z can be one of four values (2, 3, 4, and 5). Since we assigned the even number of 
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SKUs in each zone to balance the storing items throughout the zones, the number of 

SKUs per zone is 3, 4, and 5. We vary the total number of SKUs ( )s  from 6 to 25 (6, 8, 

and 10 SKUs in 2 zones, 9, 12, and 15 SKUs in 3 zones, 12, 16, and 20 SKUs in 4 zones, 

and 15, 20, and 25 SKUs in 5 zones). In each problem, 10 instances are generated. 

Therefore, total tested problems are 4 x 2 x 3 x 10 = 240. The CPLEX running time in 

MIP model is limited by 10 hours. Table 4.1 shows the results of the number of optimal 

solutions found, the average MIP objective value, and average running time of the 

optimal solutions found. During MIP tests, we found that some instances remained 

unsolved even if 10 hours of running time is consumed and some instances are stopped 

unsolved because of insufficient memory. For calculating average MIP solution and 

average CPLEX running time, we only considered the problems for which optimal 

solutions are found within the CPLEX running time limit.  



 93 

 

Table 4.1 Mixed integer model test results (RT: Running 
time (seconds) for MIP model, NOP: Number of optimal 
solution found, NFE: the number of problems for which 
feasible solutions were found but failed to reach the optimal 
solutions within a pre-set running time limit, NFA: the 
number of problems that CPLEX running fails because of 
insufficient memory during branch and cut algorithm during 
the pre-set running time limit) 

Problems MIP RT NOP NFE NFA 
Z02S06C10 193.9 0.6 10 0 0 
Z02S08C10 185.1 26.6 10 0 0 
Z02S10C10 206.3 17.6 8 2 0 
Z03S09C10 170.0 1.0 10 0 0 
Z03S12C10 152.2 0.4 10 0 0 
Z03S15C10 164.6 0.4 10 0 0 
Z04S12C10 156.5 0.5 10 0 0 
Z04S16C10 148.1 0.1 10 0 0 
Z04S20C10 144.4 4.3 10 0 0 
Z05S15C10 138.7 0.3 10 0 0 
Z05S20C10 128.4 0.3 10 0 0 
Z05S25C10 126.5 0.1 10 0 0 
Z02S06C20 NA NA 3 5 2 
Z02S08C20 315.9 819.7 5 2 3 
Z02S10C20 NA NA 2 2 6 
Z03S09C20 284.4 2322.9 9 1 0 
Z03S12C20 268.6 102.1 7 2 1 
Z03S15C20 NA NA 2 2 6 
Z04S12C20 223.2 794.5 10 0 0 
Z04S16C20 235.1 168.2 10 0 0 
Z04S20C20 248.3 2208.6 9 0 1 
Z05S15C20 215.7 116.1 10 0 0 
Z05S20C20 210.9 609.7 10 0 0 
Z05S25C20 200.1 1686.9 10 0 0 
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If more than 50% of instances of MIP solutions (more than 5 instances) could not 

solve within 10 hours, we concluded that the MIP solution has failed. NA in Table 4.1 

indicates the problem cases that have failed. The values in the ‘NOP’ column indicate 

the number of problems that could be solved optimally. The ‘NFE’ column shows the 

number of instances for which feasible solutions were found but failed to reach the 

optimal solutions within a running time limit (10 hours). The values in the ‘NFA’ 

column indicates the number of instances that CPLEX running fails because of 

insufficient memory during branch and cut algorithm during the running time limit. In 

MIP test, we found that the running time exponentially increases and the number of 

optimal solutions decreases within running time limit of CPLEX, as the number of 

cartons increases. As shown in Table 4.1, ‘NFE’ or ‘NFA’ become larger, as the number 

of cartons increased. This shows that an increase of the number of cartons inreases the 

running time and computing memory required to solve the problem optimally. Therefore, 

we conclude that the proposed MIP cartonization model is impractical as the complexity 

of the problem increases. Therefore, it is necessary to develop an efficient heuristic to 

solve for larger number of cartons. 

4.3 Heuristics for cartonization problem  

In this section, we classified the cartonization heuristics into two types, in which one 

class is the heuristics without slotting information and the other class is the heuristics 

with slotting information. In general, carton density (the number of items per carton) and  

grouping of the corresponding items to be assigned together in a carton are critical factors 
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to minimize pick wave makespan in cartonization. The cartonization heuristics without 

slotting information cannot guarantee a good solution, because the geographical slot 

locations of the items cannot be known. Therefore, we can only control the number of 

items per carton to reduce pick wave makespan. As increasing the number of items per 

carton, we can obtain a potential reduction of the pick wave makespan by sharing the 

items in a picking tour. In this case, the cartonization is similar in characteristic with a 

classical bin packing problem because the objectives on both problems are to minimize 

the number cartons by increasing items per carton. Therefore, we propose several 

cartonization heuristics without slotting information using classical bin packing heuristics. 

For the heuristics with slotting information, both carton density (the number of items 

per carton) and grouping of items to be assigned together in a carton are critical factors to 

minimize pick wave makespan. In this case, we propose several cartonization heuristics 

with slotting information for considering both the number of items per cartons and 

geographical slot locations for the items. 

4.3.1 Heuristics without slotting information 

Johnson et al. (1974) examine next fit decreasing and first fit decreasing heuristic, 

which are two of the most famous heuristics and show excellent worst case performances. 

The heuristics show a good performance in the batch loading and scheduling problem 

(BLSP) with non-identical job sizes and no grouping concept (Uzsoy, 1994). BLSP has a 

similarity with cartonization without slotting information and scheduling in this study. 

Therefore, we propose the next fit decreasing and first fit decreasing bin packing 
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heuristics as the heuristic without slotting information. We call two cartonization 

heuristics as next fit by volume decreasing (NFVD) and the first fit by volume decreasing 

(FFVD) and both algorithms make cartonization as follows: 

Procedure: NFDV  
Step 1: Sequence orders in a pick wave in FCFS order. 

Step 2: If there are no remaining orders in the pick wave, go to Step 4.  

For each order in pick wave, sort the line-items within an order in 

decreasing order of the unit-volume of them and select a line-item in the 

sequence of the sorted line-items. 

Step 3: If the remaining carton capacity of the current carton is available, assign 

one unit of the line-item in the order into the current carton. Otherwise, 

close the current carton, open a new carton as the current carton, and 

assign one unit of the line-item in the order into the current carton.  

Recalculate the remaining carton capacity of the current carton. 

Repeat Step 3, until every unit of the line-item is assigned into the 

carton. 

If all of the units of the line-item are assigned into the carton, move to 

the next line-item for assignment. Repeat Step 3. 

If there are no remaining line-items in the order, move to the next order 

and go to Step 2.  

Step 4: Assign the cartons to the order picking system in an arbitrary order. 
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Procedure: FFDV  
Step 1: Sequence orders in a pick wave in FCFS order. 

Step 2: If there are no remaining orders in the pick wave, go to Step 4. 

For each order in pick wave, sort the line-items within an order in 

decreasing order of the unit-volume of them and select a line-item in the 

sequence of the sorted line-items. 

Step 3: Find the first available carton from first carton to the current carton and 

assign one unit of the line-item in the order into the carton. 

If there is no available carton from first carton to the current carton, open 

a new carton as the current carton and assign one unit of the line-item in 

the order into the current carton. 

Recalculate the remaining carton capacity of the current carton. 

Repeat Step 3, until every unit of the line-item is assigned into the 

carton. 

If all of the units of the line-item are assigned into the carton, move to 

the next line-item for assignment. Repeat Step 3. 

If there are no remaining line-items in the order, move to the next order 

and go to Step 2. 

Step 4 Assign cartons to the order picking system in an arbitrary order. 
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4.3.2 Heuristics with slotting information 

In the cartonization, the assignment of line-item slotted in a zone to a carton is 

critical to reduce the pick wave makespan, because both walking time and carton set up 

time for a carton visit to a zone affects the processing time of a picker in each zone. 

Therefore the critical issues in the cartonization with slotting information are 

1) How many items in the same zone are assigned together into a carton? 

2) How close the items in the same zone are assigned into a carton? 

In the heuristic using slotting information, we split line-items within an order into 

zones and sort line-items within the zone in decreasing order of the proximity from a 

zone initiation point to the slot location of the line-items. Then, we sequence the picking 

zone in descending order of the number of line-items to be picked and select a zone to 

assign associated line-items to be picked in the zone to cartons in the sequence of the 

sorted zones. In each zone, the sorted line-items are sequentially assigned to the opened 

carton. Once the line-items are completed in a zone, there are two types of heuristics. The 

current carton is closed and a new carton is opened for the next available zone with zone 

separation and the current carton continues to assign line-items for next zone without 

zone separation. Using the same procedure, we perform the cartonization process to the 

last zone. The cartonization procedure repeats until the last order performed. We call this 

heuristic as bin-packing heuristic using proximity with zone separation. Two types of the 

bin-packing heuristic using proximity with zone separation are proposed in this study (i.e., 

the next fit proximity decreasing with zone separation (NFDP-Z) and the first fit 
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proximity decreasing with zone separation (FFDP-Z). The cartonization heuristics using 

proximity with zone separation by carton are expected to be better performance than the 

cartonization heuristics without slotting information (NFDV, FFDV) by reducing pickers 

walking time and the reduction of the carton set up time. However, it clearly results in 

more cartons than it is necessary used. Hence, we also proposed two relaxed heuristics by 

eliminating the procedure that a new carton is opened whenever the first line-item in a 

new zone is considered in NFDP-Z or FFDP-Z heuristic. We call the heuristics with 

relaxation as next fit proximity decreasing without zone separation (NFDP-WZ) and the 

first fit proximity decreasing without zone separation (FFDP-WZ). The algorithms are 

described in detail as follows: 

Procedure: NFDP-Z or NFDP-WZ  
Step 1: Sequence orders in a pick wave in FCFS order. 

Step 2: If there are no remaining orders in the pick wave, go to Step 6. 

For each order in pick wave, split the line-items into zones being 

assigned, in which the corresponding SKUs are slotted.  

Step 3: For each zone, sort the line-items in each zone in decreasing order of the 

proximity from the zone initiation point to the slot of the line-item 

assigned. 

Sequence the picking zone in descending order of the number of line-

items to be picked. 

Step 4: Select a zone to be cartonization in the sequence of the sorted zones. 

If the algorithm is NFDP-Z, close the current carton and open a new 

carton. 
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Step 5: If the remaining carton capacity is available, assign one unit of the line-

item in the order into the current carton. Otherwise, close the current 

carton and open a new carton as the current carton, and assign one unit of 

the line-item in the order into the current carton.  

Recalculate the remaining carton capacity of the current carton. 

Repeat Step 5, until every unit of the line-item is assigned into the carton. 

If there are no remaining line-items in the zone, go to Step 5. 

If all of the units of the line-item are assigned into the carton, move to the 

next line-item for assignment. Repeat Step 4. 

If there are no remaining line-items in the order, move to the next order 

and go to Step 2. 

Step 6: Assign cartons to the order picking system in an arbitrary order. 

 
Procedure: FFDP-Z or FFDP-WZ  
Step 1: Sequence orders in a pick wave in FCFS order. 

Step 2: If there are no remaining orders in the pick wave, go to Step 6. 

For each order in pick wave, split the line-items into zones, in which the 

corresponding SKUs are slotted. 

Step 3: For each zone, sort the line-items in each zone in decreasing order of the 

proximity from the zone initiation point to the slot of the line-item 

assigned. 

Sequence the picking zone in descending order of the number of line-

items to be picked. 
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Step 4: Select a zone to be cartonization in the sequence of the sorted zones. 

If the algorithm is FFDP-Z, close every carton assigning line-items in 

the previous zone even if the remaining capacities of cartons are 

available to assign quantities of the line-items in current zone and create 

a new carton. 

Step 5: Find the first available carton from first carton to the current carton and 

assign one unit of the line-item in the order into the carton. 

If there is no available carton from first carton to the current carton, open 

a new carton as the current carton remaining the previous carton is 

opened and assign one unit of the line-item in the order into the current 

carton.  

Recalculate the remaining carton capacity of the current carton. 

Repeat Step 4, until every unit of the line-item is assigned into the carton. 

If all of the units of the line-item are assigned into the carton, move to the 

next line-item for assignment. Repeat Step 4. 

If there are no remaining line-items in the order, move to the next order 

and go to Step 2. 

Step 6: Assign cartons to the order picking system in an arbitrary order. 
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4.4. Computational experiments 

To evaluate the performance of heuristics, we mainly compare the average pick wave 

makespan and the number of cartons used using a randomly generated problems. For 

achieving practical pick wave results, we define the base parameters. The value of the 

number of orders per pick wave is fixed as 200. The value of the number of line-items per 

order is classified into three levels: 5, 10, and 15. The value of the volume of SKUs is 

generated by a uniform distribution with U(0.025, 0.475) ft3. The value of the unit of 

line-items is generated by a discrete uniform distribution with DU(1, 9). The carton 

capacity is fixed to 4.25 ft3. Based on the base parameters, the mean order volume is 

12.5ft3 

The order picking system parameters are followed by the parameters in Chapter 3. 

Each zone includes a rack with 54 slots (3 rows and 18 columns, and the slots are indexed 

as (current rack column - 1) 

(=10x0.25x5). Therefore it approximately 3 cartons per order (=12.5/4.25) are 

required. In this study, we assume that the slotting of SKUs is predetermined. We can 

produce the slotting information for two types of slotting methods (i.e., random slotting 

or COI slotting) using a randomly generated pick wave (a set of orders).  

×  rack levels + current rack row). Walking time and 

picking time are constant without acceleration being considered. As having different 

picking levels, the picking time weights are included (Bottom: 1.20, Middle: 1.00, 

Bottom: 1.05). Two kinds of set up times, carton set up time and zone set up time are 

considered.  

Since we expect that the solution performance depends on several factors, we set the 

factors as control parameters. Based on the base parameters and system parameters, we 
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analyze the solution performance by changing controlling parameters based on the base 

parameters. The three control parameters in this study are presented (the capacity 

compared to mean SKU volume (the expected number line-items per carton), the ratio of 

the carton capacity to the mean order volume, and the slotting methods)). In each testing 

problem, 30 test problems that are randomly generated. All solution approaches have 

been coded in C++ and run on a 3.4 GHz Pentium 4 PC with 2.99 GB of memory and 

operating system of Windows XP. Under these conditions, the CPU time to get a solution 

from each heuristic algorithm is less than 5 seconds in the various experimental test sets. 

Table 4.2 shows the result of performance for NFDV, NFDP-Z and NFDP-WZ under 

COI slotting and random slotting. We compare the mean pick wave makespan (Mean) 

and the number of cartons (NC) with different level of line-items per orders (LI). NFDP-

Z heuristic gives the lowest average pick wave makespan by showing 4732.0 and 7670.5 

under COI and random slotting, respectively. Even though NFDP-Z presents lower pick 

wave makespan than DFDV, it requires impractical number of cartons used by showing 

almost twice number of cartons than NFDV to satisfy the pick wave makespan. 
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Table 4.2  Heuristic performance for NFDV, NFDP-Z, and DFDP-WZ  
(a) COI slotting 

   
  NFDV 

 
NFDP-Z 

 
NFDP-WZ    

LI Mean NC  Mean NC  Mean NC    
5 3448.7  423  

 
2788.8  853  

 
3508.3  370     

10 6770.8  739  
 

4834.3  1444  
 

6279.5  709     
15 9814.4  1071    6572.9  1903    8392.5  1057     
Average 6678.0  744    4732.0  1400    6060.1  712     

            (b) Random slotting    
  NFDV 

 
NFDP-Z 

 
NFDP-WZ    

LI Mean NC 
 

Mean NC 
 

Mean NC    
5 5278.1  423  

 
4314.9  850  

 
5391.7  367     

10 11228.1  759  
 

7918.0  1445  
 

10182.0  727     
15 16913.4  1089    10778.5  1896    13824.2  1071     
Average 11139.9  757    7670.5  1397    9799.3  722     

 

To reduce the number of cartons in NFDP-Z, we propose DFDP-WZ by relaxing the 

constraint for zone separation in NFDP-Z. In this heuristic, we follow the general 

procedures in MFDP-Z except eliminating a procedure in MFDP-Z that a new carton is 

opened whenever the first line-item in a new zone. NFDP-WZ still shows better pick 

wave makespan than NFDV by showing the relative percent improvement of pick wave 

makespan from 9.3% (=100 x (6678.0 - 6060.1) / 6678.0) to 12.0% (=100 x (11139.9 - 

9799.3) / 11139.9) in COI slotting and random slotting, respectively. Furthermore, 

NFDP-WZ shows the reduction of the number of cartons used from 4.3% (=100 x (744 - 

712) / 744) to 4.6% (=100 x (757 - 722) / 757) in COI slotting and random slotting, 

respectively. Therefore, we select NFDP-WZ as a representative cartonization method 
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with slotting information for further tests. 

We present the results of performance between two cartonziation heuristic methods 

without slotting information (FFDV and NFDV) and two cartonization heuristic methods 

with slotting information (FFDP-WZ and NFDP-WZ) in Table 4.3. To compare four 

heuristics, we control two parameters, the mean number of line-items and the slotting 

methods. The mean number of line-items per order (LI) can be one of the five values (5, 

10, 15, 20, and 25) and slotting method can be one of the two slotting methods (COI and 

random slotting).  

Since we randomly generate 30 instances for the combination of the levels for the 

control parameters, we compare the mean pick wave makespan (Mean), the standard 

deviation of the pick wave makespan (SD), and the mean number of cartons (NC) 

between the heuristics. In general, NFDV and NFDP-WZ provide lower pick wave 

makespan than FFDV and FFDP-WZ, because FFDV and FFDP-WZ search all the 

previous available cartons. Therefore, FFDV and FFDP-WZ require additional carton set 

up time and picking and walking time for the SKUs in the additional zones compared to 

NFDV and NFDP-WZ.  

The heuristics with slotting information (NFDP-WZ and FFDP-WZ) provide less 

pick wave makespan than the heuristics without slotting information (NFDV and FFDV), 

as the number of line-items per order increases. With 5 line-items per order (LI), NFDV 

shows the lowest pick wave makespan and NFDP-WZ heuristic shows the lowest mean 

pick wave makespan as the number of line-items increases. Furthermore, NFDP-WZ 

needs only from 41 to 43 more cartons to FFDV (the densest packing method among four 
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testing heuristics) for the case with 25 line-items per order (LI). These differences 

indicate that NFDP-WZ heuristic only requires more cartons from 2.4% (= 43/1697x100) 

to 2.5% (= 41/1693x100) than FFDV. Each heuristic achieves the better pick wave 

makespan in COI slotting than random slotting, but cartonization in the random slotting 

shows better relative percent improvement between NFDV (cartonization without slotting 

information) and NFDP-WZ (cartonization with slotting information) than cartonization 

in the COI slotting. For example, the percent improvement between NFDV and NFDP-

WZ in the number of line-items per order (LI) as 25 under COI slotting is 24.2% (100 x 

(15861.5 - 12028.8) / 15861.5) and the percent improvement between NFDV and NFDP-

WZ in the number of line-items per order (LI) as 25 under random slotting is 30.3% (100 

x (30385.5 - 21194.3) / 30385.5). The example indicates that the cartonization with the 

poor slotting (random slotting) results in higher percent improvement between NFDV 

and NFDP-WZ than sophisticate slotting (COI slotting), because the travel time reduction 

is already obtained by the sophisticated slotting (COI slotting) when cartonization 

methods are tested under COI slotting. Therefore, there is relatively a small impact on the 

performance by the cartonization methods.   
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Table 4.3 Four heuristic methods performance comparison  
(a) COI slotting                           
  FFDV   NFDV   FFDP-WZ   NFDP-WZ 
LI Mean  SD NC 

 
Mean  SD NC 

 
Mean  SD NC 

 
Mean  SD NC 

5 3751.7  105.5  420    3448.7  81.2  423    3749.8  134.5  420    3519.8  117.6  370  
10 7663.3  233.6  726  

 
6770.8  155.2  739  

 
7344.5  234.9  729  

 
6275.8  201.0  709  

15 11333.4  327.2  1047  
 

9814.4  326.5  1071  
 

10342.9  465.9  1052  
 

8429.6  279.1  1057  
20 14906.5  379.7  1374  

 
12817.3  274.5  1411  

 
13193.0  584.9  1381  

 
10324.5  300.0  1403  

25 18355.8  493.9  1697    15861.5  434.0  1744    15794.1  845.4  1704    12028.8  324.0  1740  

                (b) Random slotting                           
  FFDV   NFDV   FFDP-WZ   NFDP-WZ 
LI Mean  SD NC 

 
Mean  SD NC 

 
Mean  SD NC 

 
Mean  SD NC 

5 5709.0  266.3  419    5278.1  237.2  423    5807.5  392.7  420    5410.5  220.9  367  
10 12716.4  867.9  744  

 
11228.1  751.2  759  

 
11675.3  731.3  748  

 
10264.6  635.6  727  

15 19508.8  1137.4  1063  
 

16913.4  1127.5  1089  
 

16997.3  1049.8  1069  
 

14026.7  730.2  1070  
20 26970.4  1956.7  1368  

 
23463.7  2105.0  1406  

 
21958.9  1597.6  1374  

 
17789.3  1396.0  1396  

25 34958.5  3298.6  1693    30385.5  2779.2  1739    27943.5  2505.6  1700    21194.3  1729.6  1734  

107 
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Table 4.5 compares the performance between NFDV and NFDP-WZ heuristic 

algorithms by changing the carton capacity compared to mean SKU volume (the expected 

number line-items per carton) and the ratio of the mean volume per order to the carton 

capacity. In this study, the number of line-items per carton is a decision variable. 

However, we can indirectly control the expected number of line-items per carton by 

adjusting a carton capacity given a mean line-item (SKU) volume, because the NFDV 

and NFDP-WZ cartonization methods are the assignment methods using bin packing 

heuristic and the line-items in a carton must be contained as many as possible in a fixed 

carton capacity.  

Since NFDV performs better in the case without slotting information than FFDV and 

NFDP-WZ performs better in the case with slotting information than NFDP-Z in Table 

4.3, we compare only two representative cartonization methods in Table 4.5. To evaluate 

the performance between the heuristic algorithms, we compare the relative percent 

improvement and the relative difference of number of cartons between NFDV and 

NFDP-WZ. Since the performance of the heuristics depends on the expected number of 

line-items per carton and the ratio of the carton capacity to the mean order volume, we 

fixed the mean volume of a line-item (SKU) as 1.250 ft3

Hence we control other two parameters to several levels. First, the carton capacity 

(CP) can be one of the four values, 6.25 ft

 (=5x0.25), which is generated by 

the mean unit of line-items per carton as 5 from DU(1,9) and then the mean volume of 

line-items as 0.25 from U(0.025, 0.475).  

3, 12.50 ft3, 18.75 ft3, and 25.00 ft3. In each 

carton capacity, a carton can contain 5, 10, 15, and 20 line-items, respectively because 
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the mean volume of line-item (SKU) is 1.250 ft3 (=5x0.25). Second, the ratio of carton 

capacity to the mean order volume (RT) are 1:1, 1:2, 1:5, and 1:10. Then there are 16 

pairs of (CP, RT): (6.25, 1:1), (6.25, 1:2),…, and (25.00, 1:10). For each pair out of these 

16 pairs, we randomly generate 30 problems. Each of Table 4.5(a) and 4.5(b) consists of 

16 cells according to the level of CP and RT and each cell represents a summary of the 

results for the 30 test problems that are randomly generated. Each cell contains four kinds 

of values, each of which represents the average relative percent improvement (PI) and the 

standard deviation of the relative percent improvement in the first column in the cell and 

the average relative difference of the number of cartons (DNC) and the standard 

deviation of the number of cartons in the second column of the cell. For example, the 

values 2.3 and 4.8 in the first column and 51, and 6 in the second column of upper left 

corner, in the cell (6.25, 1:1) in Table 4.5(a) are derived in Table 4.4. The average and 

standard deviation of the relative percent improvement in the cell (6.25, 1:1) in Table 

4.5(a) are 1.3 and 4.7 and the average and standard deviation of the difference of the 

number of cartons are 51 and 6, respectively. 
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Table 4.4 Mean and standard deviation of % improvement (PI) of pick wave 
makespan and difference (DF) of number cartons used between NFDV and 
NFDP-WZ heuristics for 30 problems in cell (6.25, 1:1) 
        NFDV     NFDP-WZ Comparison 
Problems MS NC MS NC PI DF 

1.0  5104.5  303.0  4510.6  238.0  11.6  65.0  
2.0  4566.7  291.0  4741.6  240.0  (3.8) 51.0  
3.0  4573.3  282.0  4798.5  235.0  (4.9) 47.0  
4.0  4732.4  295.0  4113.2  247.0  13.1  48.0  
5.0  4825.4  283.0  4502.0  225.0  6.7  58.0  
6.0  4381.7  274.0  4261.2  226.0  2.8  48.0  
7.0  4221.1  270.0  4167.7  235.0  1.3  35.0  
8.0  4831.8  304.0  4522.9  252.0  6.4  52.0  
9.0  4343.1  293.0  4124.0  242.0  5.0  51.0  

10.0  4894.9  283.0  4662.5  232.0  4.7  51.0  
11.0  4626.5  299.0  4734.3  247.0  (2.3) 52.0  
12.0  4569.4  292.0  4673.7  237.0  (2.3) 55.0  
13.0  4400.8  299.0  4584.4  244.0  (4.2) 55.0  
14.0  4468.0  295.0  4737.8  236.0  (6.0) 59.0  
15.0  4314.2  268.0  4409.1  219.0  (2.2) 49.0  
16.0  4720.6  284.0  4663.0  229.0  1.2  55.0  
17.0  4554.9  290.0  4532.1  249.0  0.5  41.0  
18.0  4780.7  283.0  4599.5  228.0  3.8  55.0  
19.0  4280.8  288.0  4299.8  232.0  (0.4) 56.0  
20.0  4162.6  294.0  4370.8  237.0  (5.0) 57.0  
21.0  4469.5  270.0  4336.6  226.0  3.0  44.0  
22.0  4735.6  297.0  4760.1  251.0  (0.5) 46.0  
23.0  4680.8  289.0  4521.5  246.0  3.4  43.0  
24.0  4299.2  290.0  4371.1  238.0  (1.7) 52.0  
25.0  5075.3  299.0  4915.3  249.0  3.2  50.0  
26.0  4636.0  278.0  4369.3  232.0  5.8  46.0  
27.0  4660.8  310.0  4632.7  250.0  0.6  60.0  
28.0  4112.0  289.0  4097.1  235.0  0.4  54.0  
29.0  4998.7  293.0  4792.2  239.0  4.1  54.0  
30.0  4565.5  287.0  4773.0  233.0  (4.5) 54.0  

    Mean 1.3  51.4  

    SD 4.7  6.2  
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The relative percent improvement between NFDV and NFDP-WZ vary from -1.3 to 

64.6 in Table 4.5(a) and 4.5(b). Since the practical order picking system has a picking 

time restriction for a pick wave, the 64.6 percent improvement seems to be a significant 

one. For example, if we have 8 hours picking time restriction per pick wave, the 64.6 

improvement in the pick wave makespan value under random slotting with 25ft3 of the 

carton capacity and (1:10) of the ratio of carton capacity to the mean order volume means 

that we can save almost 18.57 hours (103532.0 - 36672.5 = 66859.5 seconds) by 

changing cartonization method from NFDV to NFDP-WZ. In these tables, one can find 

the relative percent improvement between NFDV and NFDP-WZ become larger, as the 

carton capacity and the ratio of carton capacity to the mean order volume increase. 

However, the difference of the number of cartons decreases and become similar each 

other between the heuristics as the carton capacity and the ratio of carton capacity to the 

mean order volume increase. The result indicates that NFDP-WZ is able to assign more 

line-items in the same zone to same carton as the mean order volume becomes larger than 

the carton capacity. Then the order can include more line-items in a carton and NFDP-

WZ is also able to contain more line-items with the close proximity within zone, as the 

number of line-items per order becomes larger. Therefore, the relative percent 

improvement between NFDV and NFDP-WZ becomes larger. Furthermore, NFDV using 

the line-items in decreasing order of volume and NFDP-WZ using the line-items in 

decreasing order of proximity becomes a small difference in the number of cartons, as the 

number of line-items per order and/or the volume of order increase.  
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Table 4.5 Performance comparison between NFDV and NFDP-WZ 
(a) Random slotting 
CP(ft3   ) RT=(1:1)   RT=(1:3)   RT=(1:5)   RT=(1:10) 
    PI DNC   PI DNC   PI DNC   PI DNC 

6.25  Mean 1.3 51 
 

8.1 32 
 

32.6 10 
 

48.8 2 

 
SD 4.7 6 

 
4.1 5 

 
3.2 8 

 
2.6 4 

12.50  Mean 3.6 30 
 

21.3 11 
 

47.2 1 
 

60.1 0 

 
SD 3.7 6 

 
5.1 7 

 
2.2 4 

 
1.7 2 

18.75  Mean 6.9 19 
 

27.2 3 
 

52.8 0 
 

63.2 0 

 
SD 4.1 6 

 
4.2 4 

 
2.4 1 

 
1.4 2 

25.00  Mean 9.4 12 
 

30.0 1 
 

54.1 0 
 

64.6 0 
  SD 5.5 8   4.1 2   1.6 2   0.9 2 

             (b) COI slotting 
CP(ft3   ) RT=(1:1)   RT=(1:3)   RT=(1:5)   RT=(1:10) 
    PI DNC   PI DNC   PI DNC   PI DNC 

6.25  Mean -1.3 51 
 

5.5 31 
 

26.3 5 
 

40.2 1 

 
SD 2.6 4 

 
3.1 5 

 
1.6 3 

 
2.0 3 

12.50  Mean 3.3 30 
 

14.5 8 
 

39.6 1 
 

53.6 1 

 
SD 2.8 4 

 
2.5 3 

 
1.6 2 

 
0.9 3 

18.75  Mean 2.4 16 
 

18.7 3 
 

45.1 0 
 

57.3 0 

 
SD 2.4 3 

 
2.5 2 

 
1.1 1 

 
1.0 2 

25.00  Mean 1.6 8 
 

20.4 1 
 

48.8 1 
 

61.1 1 
  SD 2.4 3   2.6 2   1.0 1   0.8 2 

 

The results of the performance comparison between NFDV and NFDP-WZ for COI 

slotting are presented in Table 4.5(b). The relative percent improvement and the 

difference between the number of cartons between NFDV and NFDP-WZ show similar 

results in Table 4.5(a). To compare Table 4.5(a) and 4.5(b), the relative percent 

improvement in COI slotting in Table 4.5(b) is worse than the relative percent 

improvement in random slotting in Table 4.5(a). As we earlier mentioned in the results in 
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Table 4.3, we can obtain high percent improvement between the NFDV and NFDP-WZ 

in poor slotting by showing a lot more reduction of the travel time. Meanwhile, in a 

sophisticated slotting, we are not able to obtain high percent improvement, because it 

already reduced the travel distance between the correlated line-items during the slotting 

process. Therefore, there is not much the relative percent improvement obtained by the 

cartonization (DNFP-WZ) with slotting information. 

4.5 Conclusion 

In this study, we considered the cartonization problem, which is the assignment 

problem for the line-items within orders to cartons. Since each carton directly ships to a 

customer after picking process, the line-items in the carton are assigned from a set of 

line-items in one order. We present a new mixed integer programming formulation to 

minimize pick wave makespan. Since the problem is NP-hard and the size of problem is 

very large, we propose a number of heuristic algorithms. Two types of cartonization 

heuristic methods without slotting information (FFDP-WZ, NFDP-WZ) and two types of 

cartonization heuristic methods with slotting information (FFDV, NFDV) are presented, 

respectively. The FFDP-WZ and NFDP-WZ provide a dominant pick wave makespan 

comparing to FFDV and NFDV, as the number of line-items in orders increase.  

The cartonization problem becomes critical as mean order volume is larger than the 

carton capacity and the expected number of line-items per carton increases. In the number 

of line-items as 5 per order (LI), NFDV shows the lowest pick wave makespan and 

NFDP-WZ heuristic shows the lowest mean pick wave makespan as the number of line-
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items increases. Furthermore, NFDP-WZ heuristic requires more cartons from 2.4% (= 

43/1697x100) to 2.5% (= 41/1693x100) than FFDV in the number of line-items per order 

(LI) as 25 (the largest number of line-items we tested). The relative percent improvement 

between NFDV and NFDP-WZ becomes larger as the carton capacity and/or the ratio of 

carton capacity to the mean order volume increase. This result indicates that NFDP-WZ 

shows better performance than NFDV as the containable line-items per carton become 

larger and the volume of order become larger than the carton capacity. The relative 

percent improvement between NFDV and NFDP-WZ is shown from -1.3% to 64.6%. 

The high percent improvement between the cartonization method without slotting 

information (NFDV) and the cartonization method with slotting information (NFDP-WZ) 

is shown in random slotting (RS) compared to COI slotting. RS potentially obtain more 

pick wave improvement by cartonization than COI, because RS is slotted without using 

any information of demand. Therefore, we can find that the slotting methods provide a 

significant impact for the performance of pick wave makspan. 
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Chapter 5 

 Iterative Slotting and Cartonization Method under  

Dynamic Warehouse Replenishment   
 

Under the replenishment of the entire warehouse for a specific pick wave, slotting 

and cartonization should be decided at the same time. In this chapter, we propose a 

systematic slotting and cartonization method based on the slotting methods in chapter 3 

and the cartonization methods in chapter 4 in zone-based carton picking system. 

The rest of chapter 5 is organized as follows. In Section 5.1, we develop a nonlinear 

mixed integer programming (NL-MIP) slot assignment model for zone-based carton 

picking system. Then, three heuristics algorithms are proposed in Section 5.2. We report 

the results of computational experiments and analyze the performance of proposed 

heuristics in Section 5.3. Finally, we conclude the study with a summary and discuss 

some directions for future research in Section 5.4. 

5.1 NL-MIP model for slotting and cartonization problem 

In this section, we develop a nonlinear mixed-integer programming (NL-MIP) 

formulation for determining the assignment of SKUs into slots and the grouping of orders 

into cartons for a specific pick wave in a zone-based carton picking system. The general 

subscripts, parameters, variables are already explained in Section 3.2 and Section 4.2. 
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There are two primary decision variable sets in this formulation. First primary variable 

set is the slotting variable set, which decides the SKU to slot assignment. This variable 

set is shown in the decision variable set in chapter 3. The other one is the cartonization 

variable set, which decides the sepcific line-items grouped into the same carton. This 

variable set is shown in the decision variable set in chapter 4. The two primary decision 

variable sets are defined as follows: 

:kmnx  indicator variable set, which is equal to 1 if SKU k  is assigned to slot n   

 in zone m ; and 0 otherwise    

:ijkq  number of SKU k in order i assigned to carton j. 

The remaining variables depend on the value of kmnx and ijkq .    

The completion time for a picker assigned to zone m is as follows ignoring starvation 

time as described in Section 1.1: 

  ,
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The nonlinear 0-1 mixed integer model for the cartonization (NL_MIP) is formulated 

as follows: 

  (NL_MIP): min t   (5.2) 
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  ,tpm ≤  for m∀  (5.13) 

  ,1 mm pp ≤+  for Mm \∀  (5.14) 

  { },1,0,, ∈ijkijkmn cux  for nmkji ,,,,∀  (5.15)  

  0N∈ijkq  for kji ,,∀  (5.16) 

  ,0,, ≥tpd mjm  for mj,∀  (5.17) 

 

In this formulation, we have four classes of the main constraint sets. The first class of 

constraint sets is the total picking processing time of picker constraints, second one is the 

slotting constraint set, third one is cartonization constraint set, and last one is carton 
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capacity constraint set. The main constraint sets are partially introduced in the MIP 

models in chapters 3 and 4. Constraint set (5.3) ensures that each SKU is assigned to 

exactly one slot. Constraint set (5.4) ensures that each slot contains at most one SKU. 

Constraint set (5.5) ensures that an order must be assigned to at least one carton. 

Constraint set (5.6) ensures that all SKUs assigned to a carton belong to the same order. 

Constraint set (5.7) and (5.8) ensure that two variables, iju  and ijkc  are coupled. The 

constraint sets provide all the SKUs in a carton must belong to the same order. Constraint 

set (5.9) ensures that total number of units of a given SKU for an order must be equal to 

the required number of SKUs for that order. Constraint set (5.10) ensures that the total 

volume of line-items assigned to a carton from a certain order must be less than or equal 

to the carton capacity. Constraint set (5.11) ensures the coupling constraint which couples 

ijkc  and ijkq . Constraint set (5.12) ensures that the total picking process time for a picker 

assigned in zone m for carton j is greater than or equal to the carton visiting set up time 

plus two times of the travel time to the slot assigned a SKU k in the carton j. Constraint 

set (5.13) ensures that the pick time per picker in zone m is less than pick wave makespan 

t. Constraint set (5.14) helps us to ignore the symmetry of solutions and reduces feasible 

solution search space. This constraint set forces the total picking processing time for 

picker in zone m to be greater than the time for picker in zone m+1. It eliminates 

alternative optimal solutions when zone size increases. Constraint set (5.15) and (4.16) 

indicate that the decision variables are 0-1 integer and non-negative integer. Constraint 

set (5.17) ensures the remaining variables are non-negative. There is a non-linear 

constraint set by multiplying the decision variable sets kmnx  and ijkq in constraint (5.1) 
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and this formulation contains two NP-hard problems, (slotting and cartonization), 

Therefore, it is necessary to develop heuristic to solve the large problems within a limited 

time constraint.   

5.2 Heuristic algorithms 

Since the slotting and cartonization problem in this chapter is NP-hard, it is generally 

impossible to find guaranteed optimal solutions for the case of large problems. Before we 

propose the heuristic algorithms, the basic slotting heuristic and cartonization heuristic 

are already mentioned in previous chapters. For development of heuristic methods in this 

chapter, we used the most efficient slotting improvement heuristic as the simulated 

annealing using the correlated interchange (SA-C) in chapter 3 and we used two 

cartonization heuristics in chapter 4. We used the next fit decreasing by volume (NFDV) 

as the cartonization heuristic without slotting information and we also used the next fit 

decreasing by proximity without zone separation  (NFDP-WZ) as the cartonization with 

slotting information. Based on the slotting and cartonization heuristics, we develop three 

types of heuristic procedures for slotting and cartonization problem in this chapter.  

In first heuristic, we first randomly assign SKUs into slots and then we next 

proposed NFDP-WZ heuristic based on the slotting information obtained by the random 

slotting. We called it as slotting first and cartonization next heuristic (SFCN). In second 

heuristic, we first assign line-items within an order to cartons using NFDV cartonization 

heuristic and then we next construct correlated list and perform COI slotting based on 

cartonization information obtained by NFDV heuristic. In second heuristic, we call it as 
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cartonization first and slotting next heuristic (CFSN). 

In the final heuristic, we first performed the random slotting and then we next 

proposed NFDP-WZ heuristic based on the slotting information obtained by the random 

slotting. Once the initial slotting is constructed, we iteratively reassign line-items into 

cartons using NFDP-WZ based on the slotting information in the previous stage and 

reassign SKUs into slots using SA-C slotting heuristic based on the cartonization 

information in the previous stage. We call it as iterative approach on slotting and 

cartonization heuristic (ISC). In ISC, the pick wave makespan decreases and converges to 

a stable pick wave makespan as the number of stages (a set of slotting heuristic and 

cartonization heuristic) increases, because the each heuristic improves the solution in 

slotting and cartonization information in the previous stage. The general heuristic 

procedure in three heuristics is shown in the following section.  

5.2.1 SFCN heuristic  

If there is no cartonization information, the random slotting policy is popular and 

general. Based on the random slotting information, we can propose a sophisticated 

cartonization method. In this heuristic, we randomly assign SKUs into slots and then we 

propose NFDP-WZ heuristic based on the random slotting information. The detailed 

NFDP-WZ heuristic procedure is described in Section 4.3.2 in Chapter 4. 
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Procedure: SFCN 

Step 1: Use a random slotting (RS) as an initial slotting. 

Step 2: Use a NFDP-WZ cartonization heuristic, based on the slotting 

information of SKUs by RS slotting. 

Step 3 Calculate pick wave makespan in an arbitrary order of cartons. 

 5.2.2 CFSN heuristic  

If there is no slotting information of SKUs, the NFDV cartonization method is one of 

efficient cartonization methods. It reduces the number of picks per cartons by assigning 

as many items as possible into a carton. In this case, there is a potential reduction of 

picking travel time within a zone and carton set up time between the line-items per carton. 

However the NFDV cartonization method may contain additional zones or additional 

farthest slots within a zone by including the items into a carton until the capacity of the 

carton is reached and it potentially results in a higher pick wave makespan by increasing 

total picking time of one or more pickers. Therefore, we need more sophisticated slotting 

method based on cartonization information of NFDV. In this heuristic, we first assign 

line-items within an order into carton using NFDV cartonization heuristic, and then we 

perform COI slotting based on the cartonization information. The detailed heuristic 

algorithms are described in Section 3.3 in Chapter 3 and Section 4.3.1 in Chapter 4. 
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Procedure: CFSN 

Step 1: Use a NFDV as an initial cartonization. 

Step 2: Generate a correlated list based on the NFDV cartonization and perform 

COI slotting based on the cartonization information by NFDV. 

Step 3 Calculate pick wave makespan in an arbitrary order of cartons. 

5.2.3 ISC heuristic  

Neither SFCN nor CFSN heuristics guarantee a good solution because both heuristic 

approaches are basically assumed to be already determined in one problem without 

having any information and solve the other problem efficiently using the information on 

the first problem. If we decompose the slotting and cartonization problem into two 

independent problems and we iteratively solve one problem under the order problem 

being fixed, we can potentially identify more good solutions (Polito et al. 1980). This is 

the ISC heuristic. 

In this heuristic, we first perform a random slotting as an initial slotting and then we 

propose NFDP-WZ cartonization heuristic based on the slotting information by the 

random slotting. Once the initial slotting and cartonization is constructed, we iteratively 

reassign SKUs into slots using SA-C slotting heuristic based on the cartonization 

information in the previous stage or line-items into cartons using NFDP-WZ based on the 

slotting information in the previous stage until the pick wave is converged and stable. 

The detailed heuristic algorithms are described in Section 3.3 and in Section 4.3.2. 
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Procedure: ISC 

Step 1: Use a random slotting (RS) as an initial slotting. 

Step 2: Use a NFDP-WZ cartonization heuristic, based on the slotting 

information of SKUs by RS slotting. 

Step 3 Generate a correlated list based on the NFDP-WZ cartonization and 

perform SA-C slotting based on the cartonization information by NFDP-

WZ. 

Step 4 Calculate pick wave makespan in an arbitrary order of cartons. Go to 

Step 2 until termination time, N.  

5.3 Computational results 

To evaluate the performance of ISC heuristic, we compare the results of the SFCN 

heuristic and CFSN heuristic. The order picking system parameters are described in table 

3.1 in chapter 3. We fixed the carton capacity as 6.25 ft3. The number of orders is fixed as 

100. Since the performance of problem depends on the number of containable line-items 

per carton (LI), the ratio of the carton capacity to the mean order volume (RT), and the 

ratio of picking time to carton set up time, we control these three parameters. In this 

section, we first present the solution convergence of the ISC heuristic as the iteration of 

slotting and cartonization increases and we next examine the performance of the 

heuristics by changing several control parameters. To show consistent performance for 

each control parameters, we assume that the quantity of each line item in an order is 1. In 
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each parameter set, we generated 10 random problems. The heuristic approaches have 

been coded in C++ and run on Pentium IV 2.0 GHz CPU with 2.0 GB memory. 

5.3.1 Pick wave makespan convergence in ISC heuristic 

ISC heuristic is initiated by a random slotting as an initial slotting and then we 

propose NFDP-WZ cartonization heuristic based on the slotting information by the 

random slotting. Once the initial slotting and cartonization is constructed, we iteratively 

reassign SKUs into slots using SA-C slotting heuristic based on the cartonization 

information in the previous stage or line-items into cartons using NFDP-WZ based on the 

slotting information in the previous stage until the pick wave is converged and stable. 

Figure 5.1(a) shows pick wave makespan convergence for the different ratio of 

carton capacity (CP) to the mean SKUs volume (i.e., (1:1), (1:0.5), (1:0.2), and (1:0.1)) 

and percent improvement from stage 1 to stage 10 is plotted at each ratios in Figure 5.1 

(b). Since the carton capacity is fixed as 6.25ft3, the mean SKUs volume are 6.25, 3.125, 

1.25, and 0.625ft3 for (1:1), (1:0.5), (1:0.2), and (1:0.1), respectively. In Table 5.1(a), the 

pick wave makespan decreases and converges to a low point in each ratio of carton 

capacity to the mean SKU volume except (1:1), as the stage increases. In (1:1), there is 

no improvement as stage increases because only one line-item can be assigned in each 

carton because of carton capacity. Therefore, pick wave makespan cannot be reduced by 

both slotting method and cartonization method. If carton capacity is greater than the mean 

SKU volume, the number of cartons is reduced because more items can be assigned into a 

carton. Thus, an initial pick wave makespan decreases as the ratio is small. From stage 1 
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to stage 2, the pick wave makespan quickly decreases, because SA-C slotting in stage 2 is 

more intelligent slotting method than random slotting in stage 1. From second stage, the 

pick wave makespan of slotting and cartonization is shown in decreasing trend as the 

stage increases, because the both heuristics improves solution based on the previous 

slotting or cartonization domain. However, the decrement of the pick wave makespan by 

SA-C slotting becomes quickly small as the stage increases. 

In this study, SA-C improvement is highly depends on the number of correlated SKU 

pairs. Due to intelligent cartonization heuristic, the number of correlated SKU pairs 

becomes large as the stage increases. However, the increased number of the correlated 

interchange in SA-C is not able to obtain much improvement in the proportions to the 

number correlated SKU pairs, because most of the correlated SKUs pairs in SA-C in the 

current stage are already assigned in next to each other from the SA-C in the previous 

stages. Therefore, the pick wave makespans for each ratio are shown in the convergence 

to a lowest pick wave makespan until the stage 10. In table 5.1(b), the effect of the 

skewness for the percent improvement from stage 1 to stage 10 is diminished, as the ratio 

become small (more items per cartons). ISC heuristic shows almost 35% improvement 

compared SFCN heuristic in (1:0.1).   
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5.3.2 Performance comparison of heuristics for containable line-items per carton 

Several researchers have studied the relation between pick-density and storage 

assignment rule (Hall 1993, Carton, 1998, Hwang, 2004) in the multiple picks per pick 

tour case. From their results, they showed the reduction of travel distance/time as the 

number of picks per picking tour increases and also showed more the reduction of travel 

distance/time when the SKUs are slotted in a sophisticated slotting method. The 

limitation of their studies is that they only performed COI slotting based on an analytical 

model using the different shaped ABC curve. Since we have shown that the SA-C 

slotting using correlated interchange is outperformed than the COI slotting in chapter 3, 

Figure 5.1 Pick wave makespan convergences in ISC heuristic ( (A:B) = the ratio of carton 
capacity to mean SKU volume) 

(a) Pick wave convergence in ISC heuristic 
for different ratios of carton capacity (CP) to 
mean SKU volume  

(b) Percent improvement from stage 1 to stage 
10 for different ratios from carton capacity 
(CP) to mean SKU volume  
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we test the performance for the relation between pick-density and three heuristics using 

different slotting methods.  

Since the number of items per carton is a decision variable in this study, we 

indirectly control the number of containable items per carton by adjusting the mean 

volume of each SKU under the fixed carton capacity. This works because the proposed 

cartonization heuristic is based on bin packing heuristic and it should assign as many 

line-items as possible to a carton. In this section, we first randomly generate pick-waves 

with 5, 10, 15, 20, 25, 30, 40, 50, 70, and 100 line-items per order. Then we have to set 

the mean volume of SKUs for each line-item. Since the carton capacity is fixed 6.25ft3 

and the number of line-items per order is controlled, the mean SKU volume can be set as 

1.250ft3(=6.25/5), 0.625ft3(=6.25/10), 0.416ft3(=6.25/15), 0.312ft3(=6.25/20), 

0.250ft3(=6.25/25), 0.208ft3(=6.25/30), 0.156ft3(=6.25/40), 0.125ft3(=6.25/50), 

0.089ft3(=6.25/70), and 0.0625ft3

Figure 5.2 shows the performance of heuristics for the number of containable items per 

carton. In general, three heuristics have pick wave makespan reduction, as the number of 

containable items per carton increases. Initially, the slope quickly decreases because we 

obtain a potential travel time reduction of pickers by assigning items in near slots to the 

same carton. If the number of containable items per carton is large, the slope of pick 

wave makespan changes to be constant. In this case, all the cartons visit all zones so that 

the carton set up time reduction could not critical effect on the pick wave makespan of 

(=6.25/100) so that all the line-items for an order will fit 

into a single carton. Therefore, we can isolate the effect of the slotting heuristic by 

minimizing the effect of the cartonization heuristic.  
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pickers. The pick wave makespan only depends on the picking time and walking time of 

picker within each zone. The number of items per zone increases, as the number of 

containable items per carton increases. Therefore, the pick wave makespan almost 

linearly increases in large number of containable items per carton, as number of items per 

zone increases. In this figure, ISC heuristic shows the lowest pick wave makespan in all 

the number of containable line-items per carton. Since we minimize the effect on 

cartonization by assigning all the line-items in an order can assign only one carton, the 

pick wave makespan of each heuristic is reduced in the order of random slotting (RS), 

COI slotting, and SA-C slotting at any number of containable items per carton. 

 

 

 

 

 

 

 

 

 

 

 Figure 5.2 Performance comparisons of heuristics for the number of containable 
items per carton 
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The reduction of pick wave makespan in the ISC heuristic is relatively diminished as 

the number of containable items increases compared to SFCN heuristic (RS+NFDP-WZ) 

and CFSN heuristic (NFDV+COI). ISC heuristic uses a number of SKU pairs in the 

correlated list for SA-C slotting. The number of SKU pairs in the correlated list becomes 

extremely large as the number of line-items increases. Then, the exploring space in SA-C 

slotting also becomes dramatically large. Therefore, the large exploring space results in 

poor performance, even if the potential improvement is still existed.  

5.3.3 Performance comparison of heuristics for the ratio of the carton capacity to 
the mean order volume 

The cartonization has a critical effect on the performance of the solution when the 

order volume is greater than carton capacity. For generating the mean order volume, we 

first set the mean unit volume of SKUs as a constant value and then we control the 

number of line-items per order. The ratio of the carton capacity to the mean order volume 

(RT) is defined as ( )ji : , such that an order can be contained in  ij  cartons. For 

example, if we want to set RTs as (1:1), (1:2), (1:3), (1:4), (1:5), (1:7), and (1:10), we 

first set the mean SKUs as a constant value, 1.25ft3 and we already fixed the carton 

capacity as 6.25ft3. Next, we control the number of line-items per order as 5, 10, 15, 20, 

25, 35, and 50, respectively. Then, the right-hand values of RT are determined as 

1(=5x1.25/6.25), 2(=10x1.25/6.25), 3(=15x1.25/6.25), 4(=20x1.25/6.25), 

5(=25x1.25/6.25), 7(=35x1.25/6.25), and 10(=50x1.25/6.25), respectively. If we set the 

mean SKUs as a constant value, 0.625ft3, we can obtain same RTs by increasing twice 

number of line-items per order, 10, 20, 30, 40, 50, and 70, respectively. 
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[1(=10x0.625/6.25), 2(=20x0.625/6.25), 3(=30x0.625/6.25), 4(=40x0.625/6.25), 

5(=50x0.625/6.25), 7(=70x0.625/6.25), and 10(=100x0.625/6.25)]. Then, we can 

generated same RTs as (1:1), (1:2), (1:3), (1:4), (1:5), (1:7), and (1:10) for both mean 

SKU volumes of 1.25ft3 and 0.625ft3

In Figure 5.3(a) and 5.3(b), the mean pick wave makespans for three heuristics are 

plotted for different RTs in the mean SKUs volume of 0.625 ft

.   

3 and 0.125ft3. In this 

figure, ISC shows the lowest pick wave makespan for all RTs. The difference of the pick 

wave makespan between CFSN (RS+NFDP-WZ) and ISC increases as RT increases. 

Since CFSN heuristic performs cartonization without slotting information and ISC 

heuristic performs cartonization using slotting information, the difference of pick wave 

makespan between CFSN and ISC becomes large as RT becomes high. The percent 

improvement between CFSN and ISC varies from 34.9% to 57.6% and the percent 

improvement between SFCN and ISC varies from 13.0% to 60.0%. In Figure 5.3(a), the 

mean SKU volume is 1.250 ft3. Since carton capacity is fixed as 6.25ft3, there are 

approximately 5 items can be included in a carton. In Figure 5.3(b), there are 

approximately 10 items can be included in a carton because the mean SKU volume is 

0.625ft3. If the number of line-items per carton increases, carton picking tour time 

increases. Therefore pick wave makespan in Figure 5.3(b) is almost twice time higher 

than Figure 5.3(a). To compare the performance of pick wave makespan for SFCN and 

CFSN graphs in Figure 5.3(a) and 5.3(b), CFSN shows less pick wave makespan than 

SFCN in low RT. Meanwhile, SFCN shows less pick wave makespan than CFSN in high 

RT. 
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This result indicates the slotting heuristic has a critical effect on the performance of 

the pick wave makespan in the case that there is small difference between mean order 

volume and carton capacity and the cartonization heuristic becomes critical on the 

performance of the pick wave makespan in the case that the order volume is larger than 

carton capacity. As the number of containable items per carton increases by decreasing 

the mean SKU volume, SFCN shows dominant pick wave makespan than CFSN at almost 

the entire ratios, because the pick-density is increased and NFDP-WZ in SFCN can assign 

more items slotted in near slots in the same zone into same carton than NFDV in CFSN.  

 

Figure 5.3 Performance comparison of heuristics for the ratio of the carton capacity to the mean order 
volume (CP: carton capacity, MOV: mean order volume) 

(a) Mean SKU volume: 1.250 ft3 (b) Mean SKU volume: 0.625 ft3 
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5.3.4 Performance comparison of heuristics for the ratio of picking time to carton 
set up time 

The performance of pick wave makespan depends on carton set up time and picking 

time and the number of picks per cartion (pick density). To include the effect on both 

slotting heuristic and cartonization heuristic, we first adjust the mean volume of SKUs for 

each line-items per order (i.e.,1.250ft3 (=6.25/5), 0.625ft3 (=6.25/10), 0.416ft3 (=6.25/15), 

0.312ft3 (=6.25/20), 0.250ft3 (=6.25/25), 0.208ft3 (=6.25/30), 0.156ft3 (=6.25/40), 

0.125ft3 (=6.25/50), 0.089ft3 (6.25/70), and 0.0625ft3

( )ji :

(6.25/100)) and then we can assign 5, 

10, 15, 20, 25, 30, 40, 50, 70, and 100 items into a carton, respectively. Next, we generate 

pick waves with the number of line-items per order as 3 times larger than carton capacity. 

(i.e., 15(=3x5), 30(=3x10), 45(=3x15), 60(=3x20), 75(=3x25), 90(=3x30), 120(=3x40), 

150(=3x50), 210(=3x70), and 300(=3x100)). Then we can include the effect on both 

slotting and cartonization. The ratio of the mean picking time to carton set up time is 

defined into , where ( )ji :  means the carton set up time is ij time longer than the 

mean picking time.  

Figure 5.4 shows the performance of pick wave makespan of ISC heuristic for different 

ratio of picking time and carton set up time. The pick wave makespan increases as the 

ratio increases. In all the ratio of the mean picking time to carton set up time, there is a 

significant reduction of pick wave makespan between 30 and 90 of the number of line-

items per order (the number of containable item per carton between 15 and 30) at each 

ratio graph in 10 zone carton picking system.  
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5.4 Conclusions 

In this study, the distribution center has different sets of SKUs being picked on short-

term period or different days. Thus, the entire picking area is periodically reslotted, and 

in the target environment the periods are typically quite short (e.g., one day). The 

decision for an efficient slotting depends on the decision for an efficient cartonization of 

a pick wave, and vice versa. Therefore, the decisions for the slotting and the cartonization 

should be solved simultaneously. Since solving the slotting problem (or the cartonization) 

under the predetermined cartonization (or the slotting) being given does not guarantee a 

good solution, it is necessary to develop the two problems simultaneously to improve the 

Figure 5.4 Performance comparisons of heuristics for different ratio of picking time 
to carton set up time, (A:B) = the ratio of pick time (A) to carton set up time (B) 
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solution in a dynamic whole warehouse replenishment environment. In chapter 5, we 

proposed an iterative slotting and cartonization heuristic using the slotting heuristic 

procedure in chapter 3 and cartonization heuristic procedure in chapter 4. 

We proposed three types of heuristics in this chapter. In the first heuristic, we 

propose the slotting first and cartonization next heuristic (SFCN). In this heuristic, we 

randomly assign SKUs into slots and then we proposed NFDP-WZ heuristic based on the 

slotting information. In second heuristic, we proposed the cartonization first and slotting 

next heuristic (CFSN). In this heuristic, we assign line-items within an order into carton 

using NFDV cartonization heuristic, and then we perform COI initial slotting. In final 

heuristic, we proposed the iterative approach on slotting and cartonization heuristic 

(ISC). In this heuristic, we first perform a random slotting as an initial slotting and then 

we next proposed NFDP-WZ heuristic based on the slotting information obtained by the 

random slotting. Once the initial slotting and cartonization is constructed, we iteratively 

reassign SKUs into slots using SA-C slotting heuristic based on the cartonization 

information in the previous stage or line-items into cartons using NFDP-WZ based on the 

slotting information in the previous stage until the pick wave is converged and stable.  

In this chapter, we present several interesting testing results. First, we showed ISC 

solution decreases the pick wave makespan quickly converged, as the number of stages 

increases. The percent improvement from first stage to tenth stage increases as the ratio 

of carton capacity to the mean SKU volume increases. However the increment of the 

percent improvement becomes small as the ratio becomes large. Second, ISC heuristic 

shows the lowest pick wave makespan at the various the numbers of containable line-
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items per carton. Since we minimize the effect on cartonization by assigning all the line-

items in an order to one carton, the pick wave makespan of each heuristic is reduced in 

order of random slotting (SFCN), COI slotting (CFSN), and SA-C slotting (ISC) at any 

containable line-items per carton. Third, ISC heuristics shows better performance than 

SFCN and CFSN heuristics at the various ratio of the carton capacity to the mean order 

volume. In this test, the slotting heuristic is a critical effect on the performance of the 

pick wave makespan in the case that there is small difference between order volume and 

carton capacity and the cartonization heuristic becomes a critical effect on the 

performance of the pick wave makespan in the case that the order volume is larger than 

carton capacity. Last, the pick wave makespan linearly increases as the carton set up time 

increased at any given number of line-items per order. The largest pick wave reduction is 

shown in the number of line-items per order between 30 and 90 (the number of 

containable item per carton between 15 and 30) at each ratio graph. Overall, ISC showed 

outperformed performance than SFCN and CFSN heuristics in various control parameters. 
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Chapter 6 

Conclusions and Future Research 

 

Warehouses are essential components to reduce logistics cost in a supply chain. In 

this dissertation, two warehouse operations (slotting and cartonization) are considered in 

a zone-based carton picking system. The slotting operation is determining an assignment 

of SKUs to picking slots to support the order picking system. This operation is essentially 

the same as the storing operation. The cartonization operation is determining an 

assignment of line-items within an order to cartons with a limited capacity. In the target 

warehouse, different sets of SKUs are picked on different days of the week and the 

picking area is short-term periodically re-slotted for each pick wave. Under the dynamic 

whole warehouse replenishment environment, without the both decisions for slotting and 

cartonization, the order picking cost is not able to construct in the zone-based picking 

system. The problems studied in this dissertation, therefore, are related with both the 

slotting and cartonization operations affecting to order picking cost in the zone-based 

carton picking system. Before we proposed a model for both problems, we regard the 

problems as independent one and solved the problem separately. Two MIP formulations 

for slotting and cartonization are proposed. Since both problems are independently NP-

hard, we proposed an efficient heuristics, respectively. In slotting problem, we developed 
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a simulated annealing using correlated list (SA-C).  It provided a good performance in 

large problems under limited planning time. In the cartonization problem, we proposed a 

bin-packing based heuristic considering slotting information. It showed the good 

performance as the number of line-items per order and the ratio of order volume to the 

carton capacity increase. Once we developed the independent models for the slotting and 

the cartonization, we finally proposed a systematic iterative heuristic model based on the 

independent models to control the both two NP-hard problems (i.e., slotting and 

cartonization) for a dynamic pick-wave. 

Several directions for future research are apparent from this dissertation. The current 

study in this dissertation is confined as zone-based carton picking system.  

First, we need to extend the study to more generalized order picking system (i.e. 

manual pick and walk picking system) for controlling dynamic replenishment 

environment. In that case, we need to consider travel routing to estimate order picking 

cost. There are several studies that focus on the evaluation of the routing and slotting 

policies in manual pick and walk order picking systems. However, the slotting policies 

considered are generally limited to random or COI-based slotting. In this dissertation, we 

presented that the correlated slotting (CS) is better performance than COI slotting in the 

zone-based carton picking system. However, the results on this study are limited in the 

zone-based carton picking system. Therefore, we need to generalize the order picking 

system for the performance of CS slotting compared to COI slotting. There are several 
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things to be considered for the extension of the generalized order picking system. First, if 

the study extends to the generalized order picking system (i.e. manual pick and walk 

picking system), routing problem and congestion problem should be considered.  Second, 

we should develop a pick wave generation considering the turn-over rate of SKUs in the 

picking system. Once we generate the pick wave, we can compare the performance of CS 

with COI for a specific pick wave with the turnover items. In the last, if we can develop a 

closed-form expression for representing correlated slotting, we can develop an analytical 

model and probabilistic analysis for the CS slotting in multiple picking. The analysis on 

solutions of the model would be great impact on many order-picking systems or other 

applications.  

Second, in the slotting area in this dissertation, we did not consider cases where a 

SKU must be assigned to multiple slots (i.e., where total number of units demanded in the 

pick-wave exceeds the capacity of a single slot in the pick area). The difficulty here is 

that the criteria used to select a particular slot for a particular carton have not been 

incorporated into the mathematical formulation and we have an additional decision for 

which item ordered is selected to one of slots.  

Third, in the cartonization problem, there are several extensions for the future 

research. As one can see in the problem description and results, this problem is 

significantly more difficult when line-items per carton and the ratio of carton capacity to 

the mean order volume become larger. In this situation, we need meta-heuristics to find a 
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near optimal solution within a reasonable computing time. The heuristics in this study 

shows a good performance consuming the reasonable number of cartons comparing the 

number of cartons using classical bin-packing problem. Therefore, we need to consider 

the multi-objective functions (i.e, the pick-wave makespan and the number of cartons 

consumed to satisfy the makespan, for this problem). Finally, we found the performance 

of cartonization is highly interrelated with the slotting methods. Therefore, both problems 

should be solved simultaneously to achieve the improvement of further solution 

performance. 

Finally, in dynamic slotting in this dissertation, we currently neglect relocation cost, 

because the target order picking system replenishes the entire picking area at every period. 

If the order picking system is in the dynamic partial slotting environment, the order 

picking cost model should be changed. There is no literature considering both 

replenishment cost and relocation cost under a specific pick-wave.  

 

 

 

 



 140 

 

 

References 

Bartholdi, J.J., Hackman, S.T. (2008) Allocating space in a forward picking area of a 
distribution center for small parts. IIE Transaction, 40, 1046-1053. 

Bartholdi, J.J., Hackman, S.T. (2008) Warehouse & distribution science. Available on 
line at: http://www2.isye.gatech.edu/~jjb/wh/book/editions/wh-sci-0.89.pdf. 

Bassan, Y., Roll, Y., and Rosenblatt, M.J. (1980) Internal layout design of a warehouse. 
AIIE Transactions, 12(4), 317–322. 

Bozer, Y.A. and Carlo, H.J. (2008) Optimal inbound and outbound door assignments in 
less-than-truckload crossdocks. IIE Transactions, 40, 1007-1018. 

Bozer, Y.A. and Kile, J. W. (2008) Order batching in walk-and-pick order picking 
systems. International Journal of Production Research, 46(7), 1887-1909. 

Brynzer, H. and Johansson, M.I. (1996) Storage location assignment: using the product 
structure to reduce order picking times. International Journal of Production Economics, 
46, 595–603. 

Bukard, R.E. (2002) Selected topics on assignment problems. Discrete Applied 
Mathematics, 123(1-3), 257-302. 

Bukard, R.E. and Rendl, F. (1984) A thermodynamically motivated simulation procedure 
for combinatorial optimization problems, European Journal of Operational Research, 17, 
169-174. 

Caron, F., Marchet, G., and Perego, A. (1998) Routing policies and COI-based storage 
policies in picker-to-part systems. International Journal of Production Research, 36(3), 
713–732. 

Chen, M.-C., Wu, H.-P. (2005) An association-based clustering approach to order 
batching considering customer demand patterns. Omega, 33(4), 333–343. 

Chew, E.P., Tang, L.C. (1999) Travel time analysis for general item location assignment 
in a rectangular warehouse. European Journal of Operational Research, 112, 582–597. 

http://www2.isye.gatech.edu/~jjb/wh/book/editions/wh-sci-0.89.pdf�


 141 

Chisman, J.A. (1975) The clustered travelling salesman problem, Computers & 
Operations Research 2, 115-119. 

Chisman, J.A. (1977) Optimizing the shipping function, Journal of Industrial 
Engineering, 9, 38-41. 

Choe, K. and Sharp, G. P. (1991) Small parts order picking: design and operation, 
available on-line at: http://www2.isye.gatech.edu/logisticstutorial/order/article.htm. 

Christofides, N. and Colloff, I. (1973) The rearrangement of items in a warehouse. 
Operations Research, 21, 577–589. 

Cormier, G. (1987) On the scheduling of order-picking operations in single-aisle 
automated storage and retrieval systems. In: Kusiak, A. (Ed.), Modern Production 
Management Systems. Elsevier Science Publishers, pp. 75–87. 

Coyle, J.J., Bardi, E.J. and Langley, C.J. (1996) The management of business logistics, 
Thomson West: Mason, OH. 

Council of Supply Chain Management Professionals (2008) The 19th Annual State of 
Logistic Report. 

De Koster, R. and Yu, M. (2008) Minimizing makespan and throughput times at Alsmeer 
flower auction. Journal of Operational Research Society, 59, 1182-1190. 

De Koster, R. (1994) Performance approximation of pick-to-belt orderpicking systems. 
European Journal of Operational Research, 72, 558–573. 

De Koster, R., Le-Duc, T., and Roodbergen, K. J. (2007) Design and control of 
warehouse order picking: A literature review. European Journal of Operational Research, 
182, 481–501. 

De Koster, M.B.M., van der Poort, E.S., and Wolters, M. (1999) Efficient order batching 
methods in warehouses. International Journal of Production Research, 37(7) 1479-1504. 

De Koster, R., Roodbergen, K.J., and Van Voorden, R. (1999) Reduction of walking time 
in the distribution center of De Bijenkorf. In: Speranza, M.G., Sta¨hly, P. (Eds.), New 
Trends in Distribution Logistics. Springer, Berlin, pp. 215–234. 

Drury, J. (1988) Towards more efficient order picking. IMM monograph no. 1, The 
Institute of Materials Managements: Cranfield, UK. 



 142 

Elsayed, E.A. (1981) Algorithms for optimal material handling in automatic warehousing 
systems. International Journal of Production Research, 19(5), 525–535. 

Elsayed, E.A., Lee, M.-K. (1996) Order processing in automated storage/retrieval 
systems with due dates. IIE Transactions, 28(7), 567–577. 

Elsayed, E.A., Lee, M.-K., Kim, S., Scherer, E. (1993) Sequencing and batching 
procedures for minimizing earliness and tardiness penalty of order retrievals. 
International Journal of Production Research, 31(3), 727–738. 

Elsayed, E.A., Stern, R.G. (1983) Computerized algorithms for order processing in 
automated warehousing systems. International Journal of Production Research, 21(4), 
579–586. 

Elsayed, E.A., Unal, O.I. (1989) Order batching algorithms and travel-time estimation for 
automated storage/retrieval systems. International Journal of Production Research, 27 
(7), 1097–1114. 

Francis, R.L. (1967) On some problems of rectangular warehouse design and layout. 
Journal of Industrial Engineering, 18(10), 595–604. 

Frazelle, E.A. and Sharp, G.P. (1989) Correlated assignment strategy can improve order-
picking operation. Industrial Engineering, 4, 33–37. 

Frazelle, E.A. (1990) Stock location assignment and order picking productivity, MHRC-
TD-89-11, Material Handling Center, Atlanta, Georgia.  

Frazelle, E.H. (2002) World-Class Warehousing and Material Handling, McGraw Hill, 
New York, NY. 

Frazelle, E.H., Hackman, S.T., Passy, U., Platzman, L.K. (1994) The forward-reserve 
problem. In: Ciriani, T.A., Leachman, R.C. (Eds.), Optimization in Industry, vol. 2. John 
Wiley & Sons Ltd., New York. 

Gademann, A.J.R.N., Van den Berg, J.P., and Van der Hoff, H.H. (2001) An order 
batching algorithm for wave picking in a parallel-aisle warehouse. IIE Transactions, 33, 
385–398. 

Gademann, A.J.R.N.. and Van de Velde, S. (2005) Batching to minimize total travel time 
in a parallel-aisle warehouse. IIE Transactions, 37(1), 63–75. 



 143 

Garey, M.R., Johnson, D.S. (1979) Computers and Intractability: A Guide to the Theory 
of  NP-Completeness. W.H. Freeman, San Francisco. 

Gibson, D.R., Sharp, G.P. (1992) Order batching procedures. European Journal of 
Operational Research, 58(1), 57–67. 

Goetschalckx, M. and Ratliff, H. D. (1990) Shared storage policies based on the duration 
of stay. Management Science, 36(9),  1120-1132. 

Goetschalckx, M. and Ratliff, H. D. (1991) Optimal lane depths for single and multiple 
products in block stacking storage systems. IIE Transactions, 23(3), 245-258. 

Gong, Y. and De Koster, R. (2008) A polling-based dynamic order picking system for 
online retailers. IIE Transactions, 40, 1070–1082. 

Graves, S.C., Hausman, W.H., and Schwarz, L.B. (1977) Storage/retrieval interleaving in 
automatic warehousing systems. Management Science, 23, 935–945. 

Gu, J. 2005. The forwared reserve warehouse sizing dimensioning problem, PhD thesis, 
Geogia Institue Technology, the united state. 

Gu, J., Goetschalckx, M., and McGinnis, L.F. (2007) Research on warehouse operation: 
A comprehensive review. European Journal of Operational Research, 177, 1-21.  

Gue, K. R. and Meller, R.D. (2009) Aisle Configurations for Unit-Load Warehouses. IIE 
Transactions, 43(3), 171-182. 

Gue, K.R., 2006. Very high density storage systems, IIE Transactions, 38, 93–104. 

Hackman, S.T. and Rosenblatt, M.M. (1990) Allocating items to an automated storage 
and retrieval system. IIE Transactions, 22(1) 7-14. 

Hackman, S.T. and Platzman, L.K. (1990) Near optimal solution of generalized resource 
allocation problems with large capacities. Operations Research, 38(5), 902–910. 

Hall, R.W. (1993) Distance approximation for routing manual pickers in a warehouse. IIE 
Transactions, 25, 77–87. 

Harmatuck, D.J. (1976) A comparison of two approaches to stock location, Logistics and 
Transportation reviews, 12(4), 282-284. 

Hausman, W.H., Schwarz, L.B., and Graves, S.C. (1976) Optimal storage assignment in 
automatic warehousing systems. Management Science, 22(6), 629–638. 



 144 

Heskett, J.L. (1963) Cube-per-order index – A key to warehouse stock location. 
Transport and Distribution Management, 3, 27–31. 

Heskett, J.L. (1964) Putting the cube-per-order index to work in warehouse layout. 
Transport and Distribution Management, 4, 23–30. 

Herague, S.S. and Alfa, A.S. (1990) A hybrid simulated annealing based algorithm for 
the layout problem, European Journal of Operational Research, 53, 1-13. 

Ho, Y.-C. and Chen, M.C. (2006) A comparison of two zone-visitation sequencing 
strategies in a distribution centre.  Computers & Industrial Engineering, 50, 426-439. 

Ho, Y.-C. and Tseng, Y.-S. (2006) A study on order-batching methods of order-picking 
in a distribution centre with two cross-aisles. International Journal of Production 
Research, 44(17) 3391-3417. 

Ho, Y.-C., Tseng, Y.-S., and Shi, Z.-B. (2008) Order-batching methods for an order-
picking warehouse with two cross aisles. Computers & Industrial Engineering, 55, 321-
347. 

Hsu, C.M., Chen, K.Y., and Chen, M.C. (2005) Batching orders in warehouses by 
minimizing travel distance with genetic algorithms. Computers in Industry, 56(2), 169–
178. 

Hwang, H. and Kim, D.G. (2005) Order-batching heuristics based on cluster analysis in a 
low-level picker-to-part warehousing system. International Journal of Production 
Research, 43(17), 3657–3670. 

Hwang, H., Baek, W., Lee, M.-K. (1988) Clustering algorithms for order picking in an 
automated storage and retrieval system. International Journal of Production Research, 
26(2), 189–201. 

Hwang, H., Lee, M.-K. (1988) Order batching algorithms for a man-on-board automated 
storage and retrieval system. Engineering Costs and Production Economics, 13, 285–294. 

Hwang, H., Oh, Y.H., and Lee, Y.K. (2004) An evaluation of routing policies for order-
picking operations in low-level picker-to-part system. International Journal of 
Production Research, 42(18), 3873–3889. 

Hwang, H., Song, J.Y. (1993) Sequencing picking operations and travel time models for 
man-on-board storage and retrieval warehousing system. International Journal of 
Production Economics, 29, 75–88. 



 145 

Hwang, H., Yong, H.O., Cha, C.N. (2003) A stock location rule for a low level picker-to-
part system. Engineering Optimization, 35(3), 285–295. 

Jaikumar, R. and Solomon, M.M. (1990) Dynamic operational policies in an automated 
warehouse. IIE Transactions, 22(4), 370–376. 

Jane, C.C. (2000) Storage location assignment in a distribution center. International 
Journal of Physical and Logistics Management, 30(1), 55–71. 

Jane, C.C., Laih, Y.W. (2005) A clustering algorithm for item assignment in a 
synchronized zone order picking system. European Journal of Operational Research, 
166(2), 489–496. 

Jarvis, J.M. and McDowell, E.D. (1991) Optimal product layout in an order picking 
warehouse. IIE Transactions, 23(1), 93–102. 

Johnson, D.S. (1973) Near-optimal bin packing algorithms, Ph.D. thesis, Massachusetts 
Institue of Technology, Department of Mathematics, Cambridge. 

Johnson, D.S. (1974) Fast algorithms for bin packing. Journal of Computer and System 
Science, 8, 272-314. 

Johnson, D.S., Demers, A., Ullman, J.D., Garey, M.R., Graham, R.L. (1974) Worst-case 
performance bounds for simple one-dimensional packing algorithms. SIAM Journal on 
Computing, 3, 299–325. 

Kallina, C. and Lynn, J. (1976) Application of the cube-per-order index rule for stock 
location in a distribution warehouse. Interfaces, 7(1), 37–46. 

Kirkpatrick, S., Gellatt, C.D. Jr., and Vecchl, M.P. (1983) Optimization by simulated 
annealing, Science, 220, 671-680.  

Kim, B.S. and Smith, J.S. (2008) Dynamic slotting for zone-based distribution center 
picking operation. 10th International Material Handling Research Colloquium, 
Dortmund, Germany, 577-599. 

Koopmans, T.C. and Beekman, M. (1956) Assignment problems and the location of 
economic activities. Econometrica, 25(1), 53-76. 

Landers, T.L. and Beaver, M.K., Sadiq, M., and Stuart, D.E. (1994) Software for 
dynamic re-configurable order picking systems. Computers & Industrial Engineering, 1-
4, 245-248.  



 146 

Larson, T.N. and March, H., Kusiak, A. (1997) A heuristic approach to warehouse layout 
with class based storage. IIE Transactions, 29, 337–348. 

Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A. H. G., and Shmoys, D. B. (1995) The 
Traveling Salesman Problem. Wiley, Chichester. 

Le-Duc, T. and De Koster, R. (2003) An approximation for determining the optimal 
picking batch size for order picker in single aisle warehouses. In: Meller, R., Ogle, M.K., 
Peters, B.A., Taylor, G.D., Usher, J. (Eds.), Progress in Material Handling Research: 
2002, pp. 267–286. 

Le-Duc, T. and De Koster, R. (2005a) Determining the optimal number of zones in a 
pick-and-pack order picking system. Report ERS-2005-029-LIS, RSM Erasmus 
University, the Netherlands. 

Le-Duc, T. and De Koster, R. (2005b) Travel distance estimation and storage zone 
optimization in a 2-block class-based storage strategy warehouse. International Journal 
of Production Research, 43(17), 3561–3581. 

Le-Duc, T. and De Koster, R. (2007) Travel time estimation and order batching in a 2-
block warehouse. European Journal of Operational Research, 176(1), 374–388. 

Lee, M.K. (1992) A storage assignment policy in a man-on-board automated 
storage/retrieval system. International Journal of Production Research, 30(10), 2281–
2292. 

Liu, C.M. (1999) Clustering techniques for stock location and order-picking in a 
distribution center. Computers & Industrial Engineering, 26, 989–1002. 

McGinnis, F., Francis, R.L., and White, J.A. (1992) Facility Layout and Location: An 
Analytical Approach. Prentice-Hall, Egnlewood Cliffs, NJ. 

Malmborg, C.J. and Bhaskaran, K. (1987) On the optimality of the cube per order index 
for conventional warehouses with dual command cycles. Material Flow, 4, 169–175. 

Malmborg, C.J. and Bhaskaran, K. (1989) Optimal storage assignment policies for 
multiaddress warehousing systems. IEEE Transactions on Systems, Man and Cybernetics, 
19(1), 197–204. 

Malmborg, C.J. and Bhaskaran, K. (1990) A revised proof of optimality for the cube-per-
order index rule for stored item location. Applied Mathematical Modelling, 14, 87–95. 



 147 

Malmborg, C.J. (1995) Optimization of Cubic-per-Order Index layouts with zoning 
constraints. International Journal of Production Research, 33(2), 465–482. 

Malmborg, C.J. (1996) Storage assignment policy tradeoffs. International Journal of 
Production Research, 34(2), 363–378. 

Manzini, R. (2006) Correlated storage assignment in an order picking system. 
International Journal of Industrial Engineering, 13(4):384-394. 

Meller, R.D. and Bozer, Y.A. (1996) A new simulated annealing algorithm for the 
facility layout problem. International Journal of Production Research, 34(6), 1675-1692. 

Meller, R.D. and Parikh, P.J. (2006) Selecting between batch and zone order picking 
strategies in a distribution center. Technical report, Virginia Tech. 

Muralidharan, B., Linn, R.J., and Pandit, R. (1995) Shuffling heuristics for the storage 
location assignment in an AS/RS. International Journal of Production Research, 33(6), 
1661–1672. 

Pan, C.-H. and Liu, S.-Y. (1995) A comparative study of order batching algorithms. 
Omega International Journal of Management Science, 23(6), 691–700 

Pandit, R. and Palekar, U.S. (1993) Response time considerations for optimal warehouse 
layout design. Journal of Engineering for Industry, 115, 322–328. 

Petersen, C.G. and Schmenner, R.W. (1999) An evaluation of routing and volume-based 
storage policies in an order picking operation. Decision Sciences, 30(2), 481–501. 

Petersen, C.G. (1997) An evaluation of order picking routing policies. International 
Journal of Operations & Production Management, 17(11), 1098–1111. 

Petersen, C.G. (1999) The impact of routing and storage policies on warehouse efficiency. 
International Journal of Operations & Production Management, 19(10), 1053–1064.  

Petersen, C.G. (2000) An evaluation of order picking policies for mail order companies. 
Production and Operations Management, 9(4), 319–335. 

Petersen, C.G. (2002) Considerations in order picking zone configuration. International 
Journal of Operations & Production Management, 27(7), 793–805. 



 148 

Petersen, C.G., Aase, G., and Heiser, D.R. (2004) Improving orderpicking performance 
through the implementation of class based storage. International Journal of Physical 
Distribution & Logistics Management, 34(7), 534–544. 

Petersen, C.G., and Aase, G. (2004) A comparison of picking, storage, and routing 
policies in manual order picking. International Journal of Production Economics, 92, 11–
19. 

Pohl, L.M., Meller, R.D., and Gue, K. R. (2009a) Optimizing fishbone aisle for dual-
command operations in a warehouse.  Naval Research Logistics, 56, 389-403. 

Pohl, L.M., Meller, R.D., and Gue, K. R. (2009b) An analysis of dual-command 
operations in common warehouse designs. Transportation Research Part E, 45, 367-379. 

Polito et al. (1980) Solution of spatial equilibrium problem with benders decomposition, 
Management Science, 26(6) 593-605. 

Roll, Y. and Rosenblatt, M.J. (1987) Shifting in warehouses. Material Flow, 4, 147–157. 

Ratliff, H. D. and Rosenthal, A. S. (1983) Order-picking in a rectangular warehouse: A 
solvable case of the travel salesman problem. Operations Research, 31(3), 481-501.  

Roodbergen, K.J. 2001. Layout and routing methods for warehouses. PhD thesis, RSM 
Erasmus University, the Netherlands.  

Roodbergen, K.J. and de Koster, R. (2001) Routing methods for warehouses with 
multiple cross aisles. International  Journal of Production Research, 39(9), 1865–1883. 

Roodbergen, K.J. and Vis, I.F.A. (2009) A survey of literature on automated storage and 
retrieve systems. European Journal of Operational Research. 194, 343-362. 

Rosenblatt, M.J. and Eynan, A. (1989) Deriving the optimal boundaries for class-based 
automatic storage/retrieval systems. Management Science, 35(12), 1519–1524. 

Rosenwein, M.B. (1994) An application of cluster analysis to the problem of locating 
items within a warehouse. IIE Transactions, 26(1), 101–103. 

Rosenwein, M.B. (1996) A comparion of heuristics for the problem of batching orders for 
warehouse selection. International  Journal of Production Research, 34(3), 657-664 

Sadiq, M., Landers, T.R., and Taylor, G.D. (1996) An assignment algorithm for dynamic 
picking systems. IIE Transactions, 28(8), 607-616. 



 149 

Smith, J.S. and Peters, B.A. (2001) Dynamic reslotting for Distribution Center Picking 
Operation: A Case Study., Technical report, Auburn University. 

Tang, L.C., Chew, E.P. (1997) Order picking systems: batching and storage assignment 
strategies. Computer & Industrial Engineering, 33(3), 817–820. 

Tompkins, J.A., White, J.A., Bozer, Y.A., Frazelle, E.H., and Tanchoco, J.M.A. (2003) 
Facilities Planning. John Wiley & Sons, NJ. 

Ullman, J. D. (1971) The performance of a memory allocation algorithm. Technical 
report 100, Princeton University, Princeton, NJ.   

Uzsoy, R. (1994) Scheduling a single batch processing machine with non-identical job 
sizes. International Journal of Production Research, 32, 1615-1635. 

Van den Berg, J.P. (1999) A literature survey on planning and control of warehousing 
systems. IIE Transactions, 31, 751–762. 

Van den Berg, J.P., Sharp, G.P. Gademann, A.J.R.N., Pochet, Y. (1998) Forward–reserve 
allocation in a warehouse with unit-load replenishments. European Journal of 
Operational Research, 111(1), 98–113. 

Wascher, G. (2004) Order picking: A survey of planning problems and methods. In: 
Supply Chain Management and Reverse Logistics, pp. 323–347. 

Whilhelm, M.R. and Ward, T.L. (1987) Solving quadratic assignment problems by 
‘simulated annealing’, IIE Transactions, 19(1), 107-119. 

Wolsey, L.A. (1998)  Integer programming, Wiley & Sons. 

Won, J., Olafsson, S. (2005) Joint order batching and order picking in warehouse 
operations. International Journal of Production Research, 43(7), 1427–1442. 

Yu, M. and De Koster, R. (2008) Performance approximation and design of pick-and-
pass order picking systems, IIE Transactions, 40, 1054-1069. 

Yu, M. and De Koster, R. (2009) The impact of order batching and picking area zoning 
on order picking system performance, European Journal of Operational Research, 198, 
480-490. 

 



 

150 

 

 

Appendix 

Correlated Pick Wave Generation  

A Correlated Pick Wave Generation 

In this appendix, we provide a simple and effective methodology to generate a carton 

list in a pick wave, in which we can explicitly control the carton size, the total number of 

SKUs, and the correlation between items in specific cartons for a carton picking 

warehouse. In the case that a historical order list or carton list with correlation between 

items is not able to collect from the analyzing warehouse, this methodology is able to 

generate an effective probabilistically correlated random carton list using predefined 

correlation matrix or induced correlation matrix with two factors deciding the degree of 

correlation of SKUs. 

A1 Induced Correlation Matrix 

If one could not have a real carton list data including the correlation between SKUs 

in the warehouse, we have to generate a random carton list. In order to include the 

correlation between SKUs in the random carton list, we propose an effective correlated 

random carton list generation methodology with SKUs correlation. If we generate a 

random carton list including the correlation of a certain SKU, two factors (i.e., the 
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number of correlations and the strength of a correlation) should be considered. In other 

words, we need to consider the following two factors to decide the degree of correlation 

for each SKU i . 

1) How many ordered SKUs are correlated with SKU i ? 

2) How strongly the SKUs are correlated with SKU i ? 

We define ic  as the first factor and w  as the second factor. To define the degree 

of SKUs correlation with ic  and w , the induced correlation matrix of ordered SKUs is 

developed to generate carton list. The index value of row and column in the matrix 

indicates SKUs and the elements in the matrix indicate the correlation probability of 

between the SKUs in the row and column. In the induced correlation matrix, we basically 

should provide higher probability to SKUs ordered together than others. The correlation 

transition probabilities from SKU i  to SKU j  are defined in Equation (A1): 

Parameters: 

N  : Total number of SKUs in the warehouse 

ic  :  Number of correlated items with SKU i  

iS  :  Set of correlated SKUs with SKU i  

iS  :  Set of non-correlated SKUs with SKU i  

w  :  Correlation weight, where ( ) NNw 1−≥  

if  :  The portion of correlated SKUs with SKU i  
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Correlation transition probability from ordered item i  to j  is described as follows : 
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We assume ic  is ifN × . For example, if we assume the portion of correlated 

SKUs if  for all i  is 0.1 and the total number of SKUs in the warehouse N has 1000, 

approximately 100 SKUs are correlated with SKU i . Once the constant ic  and N are 

selected, we can decide the correlation weights w . 

 

Observation 1 There is no correlation within the SKUs if ( ) NNw 1−= and there is 

high correlation between Si and Si if ∞=w . 

 

By Equation (A1), there is no correlation between SKUs with probability ( )11 −N  

if ( ) NNw 1−=  and there is high correlation between correlated SKUs set with 

probability approximately ic1 in the correlated sets if ∞=w . 
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Three degrees of correlation w  can be selected by imposing even correlation 

weight to n correlated SKUs and keeping the even gap of the probability difference 

between the set of the correlated SKUs and the set of the non-correlated SKUs as the total 

number of SKUs in the warehouse N is large. 

Theorem 1 The degree of correlations equally divides in ,2,1=w and N , given constant 

ic  for each SKU i  as ∞→N . 

 

Proof  Let [ ]ii SSD ,  be the difference of probabilities between the set of correlated 

SKUs and the set of non-correlated SKUs with SKU i . Then 

[ ] ( ) iii NwcNNwSSD 1, +−= for any given Nci ≤≤0 . By assigning ,2,1=w  and N  

into the difference, [ ]ii SSD ,  is described in Equation (A2). 

  [ ]















=
+

=
+

=

=

Nw
cN

N

w
Nc

N

w
Nc

SSD

i

i

i

ii

,1

2,
2

1

1,1

,

2

2

  (A2) 

By l’Hopital’s rules, [ ]ii SSD ,  is converged by impacting an equal amount of 

correlation portion to ic number of correlated SKUs as ∞→N . 
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Since the amount of correlation portion to ic1  has equal 1/2 difference of three 

different w  values in Equation (A3), we proved the degree of correlations is equally 

divided in w = 1, 2 and N given a constant ic . 

A2 Correlated Pick Wave Generating Algorithm 

□ 

We provide a probabilistically a set of correlated random carton lists generation 

methodology using predefined or induced correlation matrix in this paper. The induced 

correlation matrix gives a different probability in iS  and iS  of each ordered SKU i . 

Thus, the SKUs with higher probability are likely to select more than the SKUs with 

lower probability. The correlated random carton list generation procedure explains in 

detail at Algorithm A1. 
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Algorithm A1: Correlated pick wave generation  

Step1: 
 

 Define the number of cartons C , the number of line items jL  for   
carton j  for ,,,1 Cj =  and total number of SKUs in the order 
picking system N . 

Step 2: 
 
 

if  Correlation probabilities are predefined  than 
    Select the correlation probabilities and construct a corresponding   
   correlation matrix. 
else 
    Define NN ×  correlation incidence matrix. 
    Select the number correlated SKUs for SKU i of ic for { }Ni ,,1=  
   from the each row i of the NN × matrix. 
    Define the correlation weight w . 
    Generate corresponding correlated probabilities and construct the  
   induced correlation matrix. 
end if 

Step 3:  Construct a cumulative induced correlation matrix from the predefined 
correlation matrix or the induced correlation matrix. 

Step 4:  Let 1=m . 
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Algorithm A1: Correlated pick wave generation (Continue) 

Step 5: while Cj ≤  do 
 Let m  be the index of the first line item in carton j . 
 if m does not decide for carton j  then 
    Randomly generate a integer number m between ( )N,1 . 
 end if 
 Let φ=iS  and =iS {all SKUs}, for { }Ni ,,1= . 

 Let 1=l . 
 while jLl ≤  

   Go to m row to find a next line-item in the cumulative induced 
    correlation matrix. 
   Randomly generate a real number r  between ( )1,0 . 
   Select the column index value n  which includes 
          ( ) ( )nFrnF ≤<−1  from the m th row of the cumulative 
          induced correlation matrix. 
   if  the item iSn∈  then 

      Go back to the second while procedure in Step 5. 
   else 

       Add SKU n  into iS  and eliminate the SKU n  from iS . 
      Change n  into m . 
    end if 
      Increase l  by 1. 
    end while 
    Increase j  by 1.  
        end while 
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A3 Example 

For the simplicity of generating a set of carton list in a pick wave, we simplified that 

ic  for SKU { }Ni ,,2,1 =  as a constant c . Let, 3=c , 7=N , and { }3,2,3=jL  for 

3,2,1=j  and 2=w . The correlated SKUs of SKU i  and the number of correlated 

SKUs with SKU i are shown in Figure A1. 

Figure A1 Corresponding correlated SKUs and 0-1 incident correlation matrix 

 

i  ic  iS  

1 3 2,5,6 

2 3 3,4,7 

3 3 1,2,6 

4 3 3,5,7 

5 3 2,4,6 

6 3 1,5,7 

7 3 2,3,5 
 

 
  
  
 
 

 





























0010110
1010001
0101010
1010100
0100011
1001100
0110010

 

 

Then the induced correlated matrix is generated by Equation (A1). Based on the 0-1 

incident matrix, we can generate the matrix as follows: 
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Based on above induced correlation matrix, the cumulative induced correlation 

matrix can be generated by cumulating of the each row from left to right as follows: 
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Once the cumulative induced correlation matrix is generated, the line-items in the 

carton list begin to generate. Since we already set the number of line-items for the carton 

j  as { }4,2,3=jL  for { }3,2,1=j , we next randomly generate the first line-item of each 

carton. Table A1 describes the first line-items in each carton and the random numbers for 



 

159 

generating the succeeding line-items in the carton. In the Table A1, the first line-item in 

carton 1 is generated SKU 2 by randomly choosing 2 between 1 and 7. For the second 

line-item in carton 1, we start to search the next line-item at the second row of the 

cumulative induced matrix. We can probabilistically select the one of pivot values of the 

second row in the matrix by generating a random real number between 0 and 1. Since the 

selected random number 0.30 for the second line-item is greater than the cumulative 

probability 0.071 (3/42) at the second column and is less than or equal to 0.333 (14/42) at 

the third column, we choose the second line-item as SKU 3. Then we change the active 

searching row into third row. We randomly generate a real number for third line-item in 

carton 1. The random number 0.86 for the third line-item in carton 1 is greater than the 

cumulative probability 0.67 at column 5 (28/42) and less than or equal to 0.93 (39/42) at 

column 6. Thus, the third line-item in carton 1 is selected as SKU 5. Therefore, the line 

items in carton 1 constructed as SKU 2, 3, and 6.  

Table A1 Line-items generation of each carton in a pick wave 

Carton First line-item Random number Succeeding line-item  

1 2 0.30, 0.86 {3,6} 

2 5 0.24 {2} 

3 4 0.30, 0.70, 0.35, 0.17 {3,6,1} 

 
Similarly, we can construct line-items in carton 2 and 3 using the cumulative induced 

correlation matrix. Notice that the third random number 0.35 in row 3 for carton 3 is 

eliminated for deciding a line item because the corresponding line item SKU 3 for 0.35 is 
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already selected in S3. Thus, we generate another random number 0.17 for third line item 

SKU 1 in carton 3. As result, the correlated carton lists in the three cartons are 

successfully generated in Table A2. This methodology provides a simple procedure to 

generate a pick wave reflecting SKUs correlation. 

 Table A2 Correlated Pick wave  

Carton Line-items 

1 {2,3,4} 

2 {2,5} 

3 {1,3,4,6} 
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