
  

DEMOGRAPHICS OF ADWARE AND SPYWARE 

 

Except where reference is made to the work of others, the work described in this thesis is 
my own or was done in collaboration with my advisory committee. This thesis does not 

include proprietary or classified information. 
 

 
 

_______________________________________________ 
Kavita Sanyasi Arumugam 

 
 

 
 

 
 

Certificate of Approval: 
 
 
 
 
_____________________________                            _____________________________ 
Dean Hendrix                                                                David A Umphress, Chair 
Associate Professor                                                       Associate Professor 
Computer Science and                                                  Computer Science and 
Software Engineering                                                    Software Engineering 
 
 
 
 
_____________________________                            _____________________________ 
Cheryl Seals                                                                  George T. Flowers 
Assistant Professor                                                        Interim Dean 
Computer Science and                                                  Graduate School 
Software Engineering 
 



  

DEMOGRAPHICS OF ADWARE AND SPYWARE 

 
 

Kavita Arumugam 
 

 

A Thesis 

Submitted To 

the Graduate Faculty of 

Auburn University 

in Partial Fulfillment of the  

Requirements for the  

Degree of  

Master of Science 

 

Auburn, Alabama 
December 17, 2007



 iii 
 
 
 
 

DEMOGRAPHICS OF ADWARE AND SPYWARE 

 
 

Kavita Arumugam 
 
 

Permission is granted to Auburn University to make copies of this thesis at its discretion, 
upon the request of individuals or institutions and at their expense. The author reserves 

all publication rights. 
 
 
 
 

____________________________ 
                                 Signature of Author 

 
 
 
 

____________________________ 
                      Date of Graduation 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 iv 
 
 
 
 

THESIS ABSTRACT 

DEMOGRAPHICS OF ADWARE AND SPYWARE 

 
Kavita Arumugam 

 
Master of Science, December 17, 2007 

(B.E., Sir M Visveswaraya Institute of Technology, 2004) 
 

60 Typed Pages 

Directed by David Umphress 

 

The World Wide Web is the most popular use of the Internet. Information can be 

accessed from this network of web pages. Unknown to users, web pages can access their 

personal information and, sometimes, also provide information that the user has not asked 

for. Various kinds of software are used in the web pages. Web pages use Java, Perl 

scripts, XML, etc. There are additional software like adware and spyware being used. 

This software could be useful or threatening. Our interest lies in knowing which software 

being used presents a threat on the web. 

  A user who is worried about his online privacy may be more interested in 

knowing what types of technology is being used on the web. Adware and spyware are 

types of software that are present in web pages unknown to the user. If they are present 

when a web page is accessed, they make use of the user’s Internet connection to track and 

send data and statistics via a server installed on the user's computer or the users’ client. 

Most of the legitimate adware and spyware companies disclose in their 



 iii 
 
 
 
 

privacy statement the nature of data that is collected and transmitted; but there is no way 

a user can control the kind of data that is being sent.  

A study was conducted to determine the percentage of web pages that contained 

certain types of adware and spyware. It was found that 16% of web pages contained web 

bugs while 1% of web pages contained ActiveX objects. 

 

 

 

 

 

 

 

 

 



 iii 
 
 
 
 

ACKNOWLEDGMENTS 

 

 I wish to express my deepest gratitude to Dr. David Umphress for his motivation 

and guidance throughout the research work.  I wish to thank Dr. Dean Hendrix and Dr. 

Cheryl Seals for their time and unwavering support. My gratitude goes out to my parents, 

my sister, and my friends who have supported me and helped me in all the phases of my 

life at Auburn.  I wish to thank Santosh for helping me during my stay in Auburn. A big 

thanks to all my teachers who have taught me to stay focused on my goals and the 

Almighty God for showing me the way. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 



 iv 
 
 
 
 

Style manual used: ACS Computing Surveys. 

Computer software used: Microsoft Word, Microsoft Excel, Microsoft Access, Java. 

 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 v 
 
 
 
 

TABLE OF CONTENTS 

 

LIST OF FIGURES ............................................................................................................ v 

1 INTRODUCTION ........................................................................................................... 1 

1.1 Background............................................................................................................... 1 

1.2 Problem Statement .................................................................................................... 4 

2 RELATED WORK .......................................................................................................... 6 

2.1 Background Information............................................................................................... 6 

2.1.1 Web Bug ............................................................................................................ 7 

2.1.2 Adware Networks .............................................................................................. 8 

2.1.3 Backdoor Santas................................................................................................. 9 

2.1.4 Trojan Horse .................................................................................................... 10 

2.1.5 Browser Hijackers............................................................................................ 11 

2.1.6 Dialers .............................................................................................................. 12 

2.2 Related Work .......................................................................................................... 13 

3 APPLICATION DEVELOPMENT............................................................................... 16 

3.1 System Architecture................................................................................................ 16 

3.1.1 Web crawler ..................................................................................................... 16 

3.1.2 JDBM............................................................................................................... 19 

3.2 Architecture of the program.................................................................................... 20



 iii 
 
 
 
 

 

3.3 Understanding the program..................................................................................... 22 

3.3.1 Class IDemo..................................................................................................... 23 

3.3.2 Class crawlthread ............................................................................................. 23 

3.3.3 Class identifyToken ......................................................................................... 24 

3.3.4 Class connectionThread ................................................................................... 26 

3.3.5 Class urlTokenServer....................................................................................... 26 

3.3.6 Class connectionTimer..................................................................................... 26 

3.3.7 Class theCount ................................................................................................. 27 

3.3.8 Class cookie ..................................................................................................... 27 

3.3.9 Class GUI......................................................................................................... 27 

3.3.10 Class theDatabase .......................................................................................... 29 

3.3.11 Class theDomain ............................................................................................ 29 

3.3.12 Class theDepthCheck ..................................................................................... 30 

3.3.13 Class theQueue............................................................................................... 31 

3.3.14 Class reporter ................................................................................................. 32 

3.4 Designing the software ........................................................................................... 32 

3.4.1 Web bug detection ........................................................................................... 32 

3.4.2 ActiveX objects detection ................................................................................ 35 

4 VALIDATION AND RESULTS................................................................................... 37 

4.1 Validation of web bugs ........................................................................................... 37 

4.2 Validation of ActiveX objects ................................................................................ 39 

4.3 Results..................................................................................................................... 41 



 iv 
 
 
 
 

5 CONCLUSIONS AND FUTURE WORK .................................................................... 43 

BIBLIOGRAPHY............................................................................................................. 45 



 v 
 
 
 
 

LIST OF FIGURES 

 
 
Figure 3. 1: Web crawler architecture............................................................................... 17 

Figure 3. 2: A B+ tree ....................................................................................................... 20 

Figure 3. 3: System Architecture of Internet Demographics ............................................ 22 

Figure 3. 4: Internet Demographics GUI .......................................................................... 28 

Figure 3. 5: Code snippet to detect web bugs ................................................................... 34 

Figure 3. 6: Code to detect ActiveX objects ..................................................................... 36 

Figure 4.1: Screenshot of the results from www.af.mil.....................................................38 

Figure 4.2: Screenshot of the results from www.cnn.com.................................................38  

Figure 4.3: Screenshot of the results from www.indiatimes.com......................................39 

Figure 4. 4: Screenshot of the results from www.navy.mil ..............................................40 

Figure 4. 5: Screenshot of the results from http://grail.sourceforge.net ........................... 40 



 1 
 
 
 
 

1 INTRODUCTION 
 

1.1 Background 

In today’s world, one can shop online for clothes, tickets, etc., schedule payments of 

bills, and transfer money between different banks. Sensitive information such as credit 

card details; bank routing and account numbers; and social security number are used to 

complete these transactions. Most websites that carry out these transactions are secure. 

But sometimes, websites are monitored by certain programs and the user’s online activity 

communicated to a third party. These programs are called adware and spyware. They are 

also known under the names of malware or trackware. They can be present in web pages 

as a hidden addition to a legitimate program that is being downloaded from a website, or 

can be directly installed on a computer.  

Spyware and adware may be written so as not to reveal their existence on web pages. 

They take advantage of users’ consent to install some piece of legitimate software. For 

example, Audio Galaxy is a company that makes Napster-style file sharing software. 

When users download Audio Galaxy, they also download VX2’s spyware program. 

Audio Galaxy is a legitimate piece of software. VX2 is not. This spyware program keeps 

track of the websites a user visits and passes on user information to the company’s 

servers [Benner 2002].



 2 
 
 
 
 

Adware is software that is usually free. When it is executed, it displays 

advertisements from the Internet. The advertisements can be viewed through pop-up 

windows or through search bars that appear at the bottom of the screen. The justification 

for adware is that it helps recover programming development costs through ad revenue. 

For example, Google’s Blogspot service contains JavaScript that tries to convince users 

to install software. Pop up boxes appear to come from a website iWebTunes.com. This 

website gives bloggers music to add to their blogs or other websites. When a user views 

this blog, iWebTunes attempts to install extra programs on the users’ machine. These 

programs pay iWebTunes a commission for every installation made [Edelman 2005]. 

Software components used for tracking and reporting user information are included in 

most adware. These components collects web browsing history, on-line purchasing 

behavior, and an inventory of the computer hardware and software it runs on. After 

collecting information from the user, companies target users with specific advertisements 

based on browsing history. 

Spyware is software that is installed on the computer without the user’s knowledge. It 

exists as an independent executable program, unlike adware. It is designed to track the 

surfing habits of a user, collect personal information such as credit card number, the 

games the user plays, the software being used, the keystrokes etc, all without the user’s 

permission [Zhang 2005], [Anonymous 2004], [Daniels 2004], [Doyle 2003] and [Taylor 

2002]. The software sends this information back to the origin (creator's servers) where it 

is collected [Urbach et al. 2004] and possibly used for identity theft operations including 

password harvesting and credit card number theft [Radcliff 2004]. Sometimes, the 

software hides the information on the user’s hard drive for later retrieval [Doyle 2003].  



 3 
 
 
 
 

Surveillance spyware is used by law enforcers and industrial spies, or by corporations 

to keep a check on their employees. This software monitors and records keystrokes or 

web activity, or occasionally captures an image of the monitor screen. That information is 

then either e-mailed to the spying party or hidden on the hard drive for later retrieval 

[Ferrer and Mead 2003]. 

Spyware is often concealed within another application. Web pages contain code that 

downloads and installs spyware, usually through exploits. Spyware is installed without 

the user's consent, as a drive-by-download, or as the result of clicking some option in a 

pop-up window [Thompson 2005]. Drive-by downloads are applications that install 

themselves on computers without the user’s knowledge during visits to websites. Drive- 

by download is capable of remote monitoring and reporting to actual Trojans with remote 

administration capabilities [Schwartz et al. 2004]. 

When someone installs adware and spyware components, they are often assigned a 

unique identifier by the software. Thus, the program can track the user and target 

advertisements catered to the users’ choice. For example, if a user is looking to buy a new 

house, the software provides housing advertisements and house loans as well as 

additional pop-up ads to match his needs. Some users like to view advertisements 

targeted to their needs; however, these users are not aware that the information collected 

by these marketers is then sold to third parties. The information can include the user’s 

name, address, email address and any other information they may have gathered from the 

user’s personal profile. 



 4 
 
 
 
 

1.2 Problem Statement 

Adware and spyware are not illegal; however, a user who is worried about his 

privacy may want to know what private information is being divulged without his 

consent. The issue that is of concern involves the use of the user’s Internet connection to 

track and send data and statistics via a server installed on the user's computer or the 

users’ client. Most of the legitimate adware and spyware companies disclose in their 

privacy statement the nature of data that is collected and transmitted. But there is no way 

a user can control the kind of data that is being sent.  

Spyware wastes bandwidth, interferes with the programs running on the machine 

and uses disk space. Some spyware is also known to cause crashes and stability problems 

on users' computers [Digital Insight Security Bulletin 2005]. Other spyware offers a 

serious security risk by opening a backdoor on the system, offering the capability to 

secretly install additional software.  

The web is very accessible. As long as the users do not face a problem in 

accessing the web, they are least worried about the kind of software being used on the 

web. Most users are unaware of the adware or spyware embedded in them. Users hence 

have no statistics of how many web pages have this kind of information. The goal of this 

research is to identify what percentage of web pages contain adware or spyware.   

The main work is identifying the various kinds of adware or spyware embedded 

in web pages and how they can be detected in web pages. A web crawler with the ability 

to crawl through a representative number of web pages is used to search for adware or 

spyware embedded in them.  



 5 
 
 
 
 

This work will benefit people who use the Internet. Most people are unaware of 

the spyware and adware that gets downloaded to their machine when they are using the 

web [Zhang 2005].  This work will give people an idea of what is present on the web.



 6 
 
 
 
 

2 RELATED WORK 

 

2.1 Background Information 
 

Millions of users have been impacted by the World Wide Web. The WWW is so 

popular that various kinds of software are integrated into it. It usually gives information 

to a user. Sometimes, it also takes information from the user. Users, most often, willingly 

give their information, but there is some software that does not ask the user for any 

information. It takes the information without the users’ knowledge. This information 

usually is bought by a third party who uses it to his advantage.  

Malware is short for malicious software. Malware requires special conditions if it 

is to execute and produce the intended results. The code most software vendors produce 

nowadays is not carefully designed or tested. This brings about software that has so many 

vulnerabilities. This gives perpetrators a chance to execute malware that exploits the 

vulnerabilities [Skoudis and Zeltser, 2003]. In some cases, malware gets installed on a 

computer without the user’s knowledge. It can change browser settings as well as system 

settings, causing potentially harmful effects to occur on the computer.  

 



 7 
 
 
 
 

2.1.1 Web Bug 
 

A Web Bug is usually invisible to the user. It is also called a Web Beacon. It is a 

graphic image of size 1-by-1 pixel found on a web page or an email message [Doyle 

2003]. Web bugs are represented by HTML IMG tags. The web bug might allow a third 

party to send pop up ads or just collect demographics. Usually, the web bug is loaded 

from a different web server than the remainder of the page. This is how a web bug can be 

differentiated from a normal 1-by- 1 pixel image [Smith 2003]. This spyware monitors 

the IP address of the machine that opened the page with the web bug. It also sends 

information about the type of the browser that opened it, the time it was viewed and the 

URL of the web page that had the bug. 

If the web bug is embedded in an email, the image is requested when the user 

reads the email for the first time. It can also be requested every time the user opens the 

email again. 

When a web page with a bug is downloaded, the server where the page resides 

stores the IP address of the computer requesting the page. This information can be 

retrieved from the server log files. When files are transferred using the Hypertext 

Transfer Protocol, web bugs send the server their URL, and the URL of the page 

containing them. The URL of the page containing the bug allows the server to determine 

which particular Web page the user has accessed. The URL of the bug can be appended 

with an arbitrary string in various ways while still identifying the same object. This extra 

information can be used to better identify the conditions under which the bug has been 

loaded. This information can be added while sending the page or by Java scripts after the 

download. 



 8 
 
 
 
 

The following is an example of a web bug found on Quicken’s home page 

www.quicken.com :  

 

<img src="http://ad.doubleclick.net/ad/pixel.quicken/NEW" width=1 height=1 border=0> 

 

This bug provides to DoubleClick, an Internet advertising company, information about 

the number of visitors [Smith 2003]. 

 

2.1.2 Adware Networks  
 

When companies want online publicity, they approach software developers or 

web sites and pay them to allow their advertisements to be displayed when people use 

their software. This software is called adware networks [BLEEPING COMPUTER]. 

These ads are generally in the form of popups. The problem with these networks is that 

they place cookies on the computer each time the user opens an ad served by the 

particular network. This allows the advertising network to track the user’s movements 

across the Internet by reading the information contained in the cookies every time a user 

connects to a site. Networks that employ this method include DoubleClick 

[www.doubleclick.com], Value Click [www.valueclick.com], Gain 

[www.gainpublishing.com], and Radiate [www.cexx.org/aureate.htm].  

A very good example of adware networks is the 180solutions.com website. This is 

the world’s largest adware networks. Software from 180solutions redirects many affiliate 

commissions to 180solutions. This transmits information about the web sites that the user 



 9 
 
 
 
 

visits to its server. 180solutions.com shows pop up ads which cover all of the targeted 

web sites.  Programs from 180solutions monitor users' activities and show targeted 

advertisements, but 180 programs also overwrite affiliate commissions to cause 

180solutions to receive payments from merchants when users make online purchases. 

Benjamin Edelman, an assistant professor at Harvard Business School, conducted an 

extensive study and published results of his study on his web site. In his study, he showed 

that when he browsed for www.delta.com, the instructions caused 180solutions’ software 

to show an ad for Hawaiian airlines that covered almost the entire delta.com web page 

that opened on his machine. Further in his research, he found that the advertisers who 

sponsored 180 solutions’ web site paid as little as $0.015 per display of their ads 

[Edelman 2004].  

 

2.1.3 Backdoor Santas 
 

Users download programs from the Internet. On the surface, programs appear 

valid. However, they collect statistics on computer usage, browsing history, hardware a 

computer uses and transmit the information back to servers. These programs are called 

Backdoor Santas. A Backdoor Santa is a stand - alone program that gathers user 

information. It bypasses normal security controls to give the attacker access to useful and 

potentially valuable data; hence the name Backdoor Santa [Sipior et al. 2005]. 

A good example of a Backdoor Santa is a novelty cursor representing a seasonal 

icon or the likeness of Dilbert or a Peanuts character. When a program to make the 

customized cursor is downloaded, a Globally Unique Identifier (GUID) is issued. This 



 10 
 
 
 
 

GUID helps the provider’s servers to record without the users’ permissions logs of cursor 

impressions/ cursor themes, the identity of referrers, Internet Protocol (IP) addresses, and 

system information. This data is sold by the providers to clients to inform them how 

many users have customized cursors obtained from certain websites [Tipton and Krause 

2006], [Sipior et al. 2005] and [Smith 1999]. 

Programs of this type are distributed by Comet Cursor [www.cometcursor.com], 

Alexa [www.alexa.com], Hotbar [www.Hotbar.com], and Cuteftp [www.cuteftp.com].  

 

2.1.4 Trojan Horse 
 

Trojan horse is named after the Trojan horse tactic in Greek history, where 

something unknown and unexpected is delivered to the user in the form of a package, 

which the user normally accepts [Pastore 2002]. These types of software are often 

popular programs and are usually free downloads. Trojan horses involve installing 

programs that can be contacted by remote machines which take over control over the 

user’s machine. Email attachments are a popular mechanism for delivering Trojan horses 

[Mikusch 2003].  

A Trojan horse program masquerading as an advertising application was included 

with versions of programs BearShare [www.bearshare.com], LimeWire 

[www.limewire.com], Kazaa [www.kazaa.com] and Grokster [www.grokster.com]. The 

Trojan, called "W32.Dlder.Trojan”, is found within an application called 

"ClickTillUWin" which promises users a chance to win prizes [Borland 2002]. The 

Trojan file Dlder is installed when users set up the file sharing applications. After 



 11 
 
 
 
 

installation, this Trojan downloads an additional file called explorer.exe from a website 

2001-007.com and installs it in the system folder. It then creates a startup key for the 

explorer.exe file. When the system is restarted the next time, the Trojan is connected to 

the 2001-007.com website. It keeps track of the users’ web activity and reports this to a 

web server.  

In some situations, if a user chooses not to install the program containing the 

Trojan horse, he/she will not be able to use main program. Examples of such programs 

are KaZaA Media Desktop [www.kazaa.com], Grokster [www.grokster.com], and 

Morpheus [morpheus.com].  

 

2.1.5 Browser Hijackers  
 

Browser hijackers change the default web page setting on the user’s browsers 

without permission. The software changes the default homepage to another homepage no 

matter how many times a user changes it. It does this by making changes to the system 

registry [Mikusch 2003]. Sometimes Internet shortcuts will be added to the Favorites 

folder of the web browser without the user’s permission. The purpose of this is to force 

the user to visit a web site of the hijacker's choice so that they can inflate their web site's 

traffic for higher advertising revenues [Healan 2005]. 

In 2005, AOL was labeled a browser hijacker.  AOL placed its web site 

free.aol.com in Internet Explorer's trusted sites security zone, thus bypassing the most 

frequently used security settings. This occurred only after a user installed the AOL 

software. After that, AOL downloaded ActiveX components to the computer without the 

user’s consent. These components led to pornographic web sites [Healan 2005]. 



 12 
 
 
 
 

One of the infamous hijackers known to date is the CoolWebSearch. It registers 

Winres.dll under the Windows directory and then changes the Start page to about-blank. 

It downloads and installs other searches such as 2020search, isearch, etc. which offer 

CoolWebSearch a fee in exchange for a visitors’ use of their search program 

[Spywareguide 2007]. 

 

2.1.6 Dialers  
 

Dialer is a colloquial term for Dialing Software. This software gets installed on a 

user’s computer and has the ability to make phone calls from the computer if a modem is 

connected to it. These programs will connect to other computers, through the phone line, 

without the user’s permission. Most of these numbers are not toll-free calls; 

consequently, the user gets charged for the amount of time the computer is connected to it 

[Shukla and Nah 2005], [Pastore 2002]. 

A good example is the Fairtale Dialer. A computer user downloads a software 

package. Among the programs is a dialer application that was not mentioned in any of the 

licenses or advertisements associated with the package. The dialer application is not an 

integral part of the software package. When the user opens the Web browser after 

installation of the software, the dialer opens in a hidden window, turns off the sound of 

the user’s computer, and calls a phone number without the user’s permission [Internet 

Security Services]. Once this is installed, it makes long distance calls or calls to 900 and 

976 phone numbers without asking for the user’s approval. These calls are usually adult 



 13 
 
 
 
 

pay-per minute phone services. Thus, the user pays for the call even though he did not 

make it. 

 

2.2 Related Work 

Alexander Moshchuk, Tanya Bragin, Steven D. Gribble, and Henry M. Levy from 

the University of Washington conducted a crawler-based study of spyware on the web 

[Moshchuk et al. 2006]. In this experiment, the group studied and confirmed the 

existence of spyware. The objective of this study was to quantify the amount of spyware 

in executable web content and the number of web pages that contained embedded drive-

by download attacks. These programs get downloaded by exploiting the web browser, or 

operating system bug. 

To conduct the study, they used the Heritrix public domain web crawler. The data 

captured was analyzed using a virtual machine (VM) and Ad-Aware, an anti-spyware 

product from Lavasoft. Once installed, this product reduces the risks of pop-up ads, 

browser hijacks and theft of any information from that machine. It uses a technology that 

can detect known and unknown variants of malware. The web crawler crawled sites from 

eight different categories: adult entertainment, gaming, music, celebrity, screensaver, 

children zones, online news, and pirate sites. For each of these categories, web sites were 

selected using Google directory and key-word searches specific to that particular 

category.  

Their study was divided into two parts. In the first part, almost 20 million URLs 

were crawled in search of executable content. They reached the conclusions that adware 



 14 
 
 
 
 

constituted the largest portion of spyware. It also showed that gaming sites and sites that 

allowed wallpaper downloads had more spyware in them than the other categories. The 

second part of their study involved three crawls of 45,000 URLs in the eight web 

categories. In this part of the study, they examined drive-by download attacks over a time 

slot of 5 months.  

This study has a few limitations. The results were based on samplings of web 

pages on Google selected domains and URLs in the eight categories. Using an anti-

spyware tool like Ad-Aware allows the detection of only what it considers a threat.  

Overall, the study was able to quantify the nature of the spyware threat and thus 

confirmed the existence of spyware over the web. 

In another work carried out at the University of Washington, the authors used 

passive network monitoring to measure the extent to which four specific adware 

programs had affected computers in the university [Saroiu et al. 2004]. This work used 

the honeypot technique. A honeypot is a closely monitored network that can provide 

early warning about new attacks and exploitation trends, and allow detailed examination 

of adversaries during and after the attack. Since physical honeypots are time consuming 

and expensive to set up, Niels Provos came up with a framework for virtual honeypot 

called Honeyd. This simulates computer systems at the network level [Provos 2004]. 

The Strider HoneyMoney project developed by the Microsoft Research team is 

also inspired by honeypot techniques. The system the researchers built was called 

HoneyMonkey Exploit Detection System. This consists of a pipeline of monkey 

programs running possibly vulnerable browsers on virtual machines [Wang et al. 2006]. 

A monkey program is a program that drives a browser in a way that mimics a human user 



 15 
 
 
 
 

operation. These virtual machines have different patch levels and they patrol the web to 

seek and classify web sites that exploit browser vulnerabilities. The HoneyMonkey 

project report focuses more on the construction and design of the tool.  

Quite a few commercial anti-spyware companies have used web crawlers to find 

new spyware on the web. Webroot’s Phileas system uses a cluster of computers to scan 

web content for known threats and patterns that suggest of new browser threats [Webroot 

Software Inc, 2007]. Sunbelt Software has also built a web crawler SPECTRE that 

identifies new spyware outbreaks [Sunbelt Software 2007].



 16 
 
 
 
 

3 APPLICATION DEVELOPMENT 

 

3.1 System Architecture 

When users surf the internet, they have little knowledge of how much malware is 

there. A study of the amount of malware over the internet will enlighten users with what 

technology they are encountering in their daily life. To study the web, a stable, powerful, 

and accurate web crawler is needed. Once the crawler gets the results, the results need to 

be stored for later retrieval. JDBM is a package that is used for this purpose. It stores data 

using a hash table and a B+ tree data structure. In order to study the data collected, the 

results need to be imported into a database like MS Access. A statistical analysis of the 

data will help people make a decision of what malware is being found excessively in web 

pages. 

3.1.1 Web crawler 
 

In order to detect adware and spyware on the web, the program written needs a 

web crawler that can search the web thoroughly. A web crawler is a program that 

browses the World Wide Web in a systematic fashion. A crawler resides on a single 

machine. Web crawlers start by parsing a specified web page, noting any hypertext links 

on that page that point to other web pages. They then parse those pages for new links, and 

keep doing it in a recursive manner. Figure 3.1 shows a generic web crawler architecture.



 17 
 
 
 
 

 

 

 

 

 

Web crawler starts from seed URL 

 

         Checks for particular tags 

  

 

 

 

 

 

                                  Read content 

 Find Links 

 Follow Links 

 
Figure 3. 1: Web crawler architecture 

 
 

Search engines such as Google, etc. use web crawlers [Hawking 2006]. These 

engines operate multiple data centers that are distributed throughout the world. This 

ensures fault tolerance. Fault tolerance is important because should an agent crash, the 

other agents will decide who should fetch a certain host. Within a data center, PCs are 

Web 
page 

 
HOMEPAGE 

Web 
page 

 
HOMEPAGE 

Web 
page 



 18 
 
 
 
 

clustered according to the services they provide. Clusters are dedicated to specialized 

functions, such as crawling, query processing, and result caching. Currently, the amount 

of web data that search engines crawl and index is in the order of 400 terabytes [Hawking 

2006].  

Certain terms used frequently while discussing web crawlers need to be defined. 

A URL or Uniform Resource Locator is a web page address. The term crawling refers to 

traversing the web by recursively following links from a seed. A seed is a URL provided 

at the start of the crawl. 

The simplest web crawling algorithm uses a queue of URLs yet to be visited and a 

fast mechanism for determining if it has already seen a URL. The crawler initializes the 

queue with one or more seed URLs. Crawling proceeds by making a HTTP request to 

fetch the page at the first URL in the queue. When the crawler fetches the page, it scans 

the contents for links to other URLs and adds each previously unseen URL to the queue. 

The crawler saves the page content for indexing. Crawling continues until the queue is 

empty.  

Web crawlers start by parsing a specified web page, noting any hypertext links on 

that page that point to other web pages. They then parse those pages for new links, and so 

on, recursively. Web-crawler software doesn't actually move around to different 

computers on the Internet, as viruses or intelligent agents do. A crawler resides on a 

single machine. The crawler simply sends HTTP requests for documents to other 

machines on the Internet, just as a web browser does when the user clicks on links. All 

the crawler really does is to automate the process of following links. 



 19 
 
 
 
 

3.1.2 JDBM 
 

JDBM is a transactional persistence engine for the crawler. This is used to store 

objects and Binary Large objects (BLOB), and all updates are done in a transaction safe 

manner.  It provides data structures such as B+ tree to support persistence of large objects 

[Groot 2000]. 

A B+ tree is a specialized tree designed to branch out in a number of directions 

such that the height of the tree is relatively small. A B+ tree of order M is an m- ary tree 

that has the data items stored in its leaves and whose root is either a leaf or has between 2 

and M children. There are two types of nodes. The internal nodes contain key values and 

node pointers. The leaf nodes contain key and record pointer pairs. Each internal node is 

designed to fit into one I/O block of data. Hence, an internal node can keep a lot of keys. 

Each node except the root has between |m/2| to m children.  Each node except the root 

has between |m/2|-1 and m-1 keys. Figure 3.2 sketches a B+ tree with keys stored in the 

node. 

In a B+ tree, data records are only stored in the leaves. If a target key is less than a 

key in an internal node, then the pointer just to its left is followed. If a target key is 

greater or equal to the key in the internal node, then the pointer just to its right is 

followed. The leaves are also linked together so that all of the keys in the B+ tree can be 

traversed in ascending order, just by going through all of the nodes in this linked list 

along the bottom level of the tree [Carlson 2007]. 

 



 20 
 
 
 
 

 

 
Figure 3. 2: A B+ tree 

 

3.2 Architecture of the program 

Figure 3.3 shows the system architecture for the IDemo application. The 

application is composed of seven core components which interact with each other in 

order to crawl the web and record data. Among all, the GUI component is primarily 

responsible for handling all the user interface related operations of the application. Apart 

from displaying the results and allowing the user to configure various run-time 

parameters like the number of threads, the total number of links, etc., the GUI is also 

responsible for receiving the seed URL for IDemo component from the user. On 

receiving the seed URL, the IDemo component - which controls the entire application - 

sets up other components like the queue component (theQueue) to store various URLs 

found during the crawl, the depth check component (theDepthCheck) to store the depth of 

the parsed URLs for each domain crawled and the database component (theDatabase) to 

store the parsed URLs as well as their statistics. IDemo then spawns a specified number 

of connection Threads (CThread) to crawl the web starting from the seed URL received. 



 21 
 
 
 
 

The connectionThreads then crawl the web and record its demographics in the database. 

For each valid URL retrieved from the queue, the connectionThread checks to see if the 

depth check fails for that domain. If not, the connectionThread parses the URL for known 

technologies and records the results in the database. URLs discovered during such parses 

are inserted into the queue for a later retrieval. The connectionThread continues this 

fetch-check-parse-record cycle till it either has recorded the specified number of URLs in 

the database or till the queue component runs out of URLs. In case of the latter the user is 

prompted to enter the seed URL again. In the case of the former, it has to run till 

completion. 

Upon completion, the user can generate a report of the IDemo run by invoking the 

reporter component. The reporter reads the database populated by the connectionThreads 

and outputs a text file containing technology statistics recorded for every URL in the 

database. This file can then be used by the user to analyze the demographics of the 

Internet. 

 



 22 
 
 
 
 

 
 

Figure 3. 3: System Architecture of Internet Demographics 

 

3.3 Understanding the program 

The program contains several classes. An understanding of the classes is essential 

to understand the various aspects of the program. 

Generate Report 

Input 

Depth for 
given 

domain 

Spawn Threads 

URL Fetch 

Seed URL 

Thread 
Thread 

 
IDemo 

Thread 

 
GUI 

CThread 

 
theQueue 

 
theDepthcheck 

 
theDatabase 

URL Insert 

Technology Stats for given 
URL 

Report 

 
reporter 



 23 
 
 
 
 

3.3.1 Class IDemo 
 

This is the root class. It is the main controller of the entire application. It is 

responsible for creating the queue, database and depth. When the queue is empty, IDemo 

creates the GUI object so that the user can enter the seed URL. When the “Start” button is 

clicked on the GUI, IDemo creates and starts the specified number of crawl threads. If the 

queue becomes empty at any point of time, it prompts the user to enter a seed URL again. 

After the program is ended, it closes all the data structures created. 

 

3.3.2 Class crawlthread 
 

This class is the worker bee of this application. It makes use of two variables: One to 

name the thread and the other to keep track of the current thread number. When started, 

the thread does the following: 

• Retrieves a new URL from IDemo’s queue. 

• Converts the URL to a proper URL by removing hex symbols from the URL and 

concatenating a “/” to the ones with no path. 

• Makes sure that the user-specified depth limit is not exceeded. 

• Creates a new connection to the URL obtained through the previous steps. 

If the established connection is good, the following steps occur: 

• Makes sure that the URL has MIME type text/html.  

• Makes sure that the URL is not already in the database. 

• Makes sure that the URL does not have a null domain. 

• Makes sure that the user specified depth limit is not exceeded. 



 24 
 
 
 
 

• Creates token server and passes token stream of the above URL to it. 

For every token retrieved, it does the following: 

• Tries to identify the token. 

• Checks if the token is a link whose technology can be identified. 

• Makes sure that the link is a valid URL. 

• Makes sure that the depth or the max limits are not exceeded. 

• Finally, makes sure that the link is already not in the database before inserting it 

into the queue. 

If the established connection was good, it adds the URL entry to the depth tree and 

adds the URL to the database. Otherwise, it discards the entry. The statistics on GUI is 

updated. It also checks if the thread needs to be killed. 

 

3.3.3 Class identifyToken 
 

This class is used to parse all the tokens returned from the token server. It is also used 

to maintain statistics on the various technologies found in a given URL. The constructor 

identifyToken does the following: 

• Checks to see if the no-follow flag is set on the token. 

• Checks to see if the token returned indicates an applet. 

• Checks to see if the token returned indicates a form. 

• If the token begins with “base” 

o Extracts the base URL enclosed along with “href”. 

o Store the base URL if it starts with “http”. 



 25 
 
 
 
 

• If the token begins with “script” 

o Checks to see if the script present is javascript or vbscript. 

• If the token begins with “object” 

o Checks to see if the application type is “activex”. 

• If the token begins with “img”. 

o Checks to see if the dimensions are 1x1 in order to find “web bugs”. 

• Invokes method lookforlinks(). 

The method lookforlinks does the following: 

• Extracts the link from tokens with tags like a, area, link, frame and iframe. 

• Ignores links to extensions such as .jpg, .mpg, .gz, etc. 

• Resolves relative links. 

• Makes sure that the links are of type “http” only. 

• Invokes countTechnologies() for the candidate link in order to update stats and 

examines what is returned. 

• If countTechnologies() was able to determine the link technology the isLink flag 

is set to true. 

For a given candidate link, the method countTechnologies checks to see if the link 

has 

• ActiveX  

• Web bugs 

 

If the technology on the given link has been found, it returns NULL. Otherwise, it 

returns a crawl link. 



 26 
 
 
 
 

3.3.4 Class connectionThread 

This class is responsible for establishing a HTTP connection to the given URL. When 

started, this thread does the following: 

• Opens a HTTP connection to the URL taking into account redirections. 

• If there are already a set of cookies for the URL, it retrieves them and sets them in 

the HTTP connection request property. 

• Establishes connection to the URL. 

• Handles cookies. 

• Opens a buffered reader to the URL and sets up a tokenizer to tokenize stream 

based on angular brackets. 

 

3.3.5 Class urlTokenServer 
 

This class returns HTML tokens from the input stream. The method returnToken does 

the following: 

• Returns NULL only if the end of stream is encountered. 

• Ignores comments if encountered. 

• Ignores new line while returning a token. 

• Returns tokens enclosed between angular brackets one at a time. 

3.3.6 Class connectionTimer 

This class sets up a timer for specified number of seconds. It sets a flag called 

‘loop’ to indicate that the timer has started at the start. When the timer has expired, the 

flag is turned off. 



 27 
 
 
 
 

3.3.7 Class theCount 
 

This class maintains a variable called ‘countOfPages’ to keep track of the page 

count. The functionality of this class can in fact be accomplished with the help of a 

simpler static variable. This class contains only basic functionalities like set, get and 

increment of ‘countOfPages’ variable. 

 

3.3.8 Class cookie 

This class is used to store session related information for a given connection. The 

whole class consists of a bunch of set() and get() methods for values like name, 

information, domain, path, secure and expiry. 

 

3.3.9 Class GUI 

This class is responsible for handling all the UI related operations of the 

application. Figure 3.4 illustrates the GUI in operation: 

 



 28 
 
 
 
 

 

 
Figure 3. 4: Internet Demographics GUI 

 

The UI allows the user start/stop the crawl. It lets the user configure the number 

of threads that can be run, the timeout value for each connection, the total links that are to 

be passed and the maximum depth of the tree. If the queue is empty the user is prompted 

to enter a seed URL. The user entered value is then inserted in the queue. 

The progress of the whole operation is displayed in the progress bar at the bottom 

of the screen. The statistics of the number of links in the database, in the queue, depth 

checker and the total links examined are all displayed in the ‘Statistics’ frame.  

The class also handles typical window operations like minimize, maximize and 

close. The window close operation also triggers IDemo’s data structure cleanup. 

 



 29 
 
 
 
 

3.3.10 Class theDatabase 

This is the main data structure where all the parsed URLs and their associated 

technologies are stored. It makes use of java RecordManager and java BTree to 

implement a database. First, it creates record manager for the indicated file (“dbasefile”). 

Then it checks to see if a persistent binary tree for the above record manager already 

exists. If so, that binary tree is loaded off the disk. If a persistent binary tree does not 

exist, a new one is created and a reference for the tree is stored in the record manager 

using setNamedObject(). 

Insertion is done using dinsert() – which does the following: 

• Creates a database entry for the given URL and technology stats array. 

• Stores the above created entry with the URL in the binary tree making sure that 

duplicate entries are not allowed. 

• The transaction for the record manager is then committed. 

The method dsize() returns the current size of the tree. The dsearch() method is used 

to search for an entry in the database. If found, the technology stats array associated with 

the URL is returned. 

 

3.3.11 Class theDomain 

The methods in this class are used to determine the domain name of the given URL. 

By default, all unknown domains are set to “???”. By default, all numeric domains are set 

to “999”. The function parseTLD() does the following: 

• Ignores the initial string of “http://” 



 30 
 
 
 
 

• Gets the name of the domain from the substring found before the first ‘/’ and after 

the first ‘.’ 

• Checks to see if the domain is numeric or not. 

• Returns string if valid domain found, NUMERIC_DOMAIN if domain was 

numeric and UNKNOWN_DOMAIN if the domain is unknown. 

 

3.3.12 Class theDepthCheck 
 

This class is used to control the number of URLs that can be retrieved from a 

domain. It defines the upper limit on the URLs that can be retrieved from a given domain. 

It makes use of java RecordManager and java BTree to implement a database. First, it 

creates record manager for the indicated file (“depthfile”). Then, it checks to see if a 

persistent binary tree for the above record manager already exists. If so, that binary tree is 

loaded off the disk. If a persistent binary tree does not exist, a new one is created and a 

reference for the tree is stored in the record manager using setNamedObject(). 

The depthInsert() method is used to insert an entry into the database. It checks to 

see if an entry for the URL already exists. If there is no new entry, then a new entry is 

created and the count is set to 1. Otherwise, the count is retrieved, incremented by one 

and stored again overwriting the previous entry. The transaction for the record manager is 

then committed. 

The method depthSize () returns the current size of the tree. The depthSearch () 

method is used to search for an entry in the database. If found it returns the number of 



 31 
 
 
 
 

instances of a particular domain that is found in the tree. The findDomain() method is 

used to extract the host out of the given URL. 

 

3.3.13 Class theQueue 

Technically, this is not a queue as the insertions and deletions are not done in any 

particular order. This class makes use of java RecordManager and java BTree to 

implement a database. First, it creates record manager for the indicated file (“queuefile”). 

Then it checks to see if a persistent binary tree for the above record manager already 

exists. If so, that binary tree is loaded off the disk. If a persistent binary tree does not 

exist, a new one is created and a reference for the tree is stored in the record manager 

using setNamedObject(). 

The qinsert() method is used to insert a URL into the queue. It inserts a URL into 

the database without duplicates. It also performs a mass commit on the insertions when 

100 entries are inserted. This is done to improve performance speed. 

The method qsize() returns the current size of the tree. The qsearch() method is 

used to search for an entry in the database. If found it returns true else it returns false.  

The qretrieve() method is used to retrieve an entry from the queue. It retrieves an 

entry from the tree and converts it into a URL to be returned, removes the entry from the 

tree and returns the URL if successful in the above operations. Otherwise, it returns 

NULL. 

 



 32 
 
 
 
 

3.3.14 Class reporter 

This class is used to convert the statistics collected in “dbasefile” database into a 

human readable format. It makes use of java RecordManager and java BTree to 

implement a database. First, it creates record manager for the indicated file (“dbasefile”). 

Then, it checks to see if a persistent binary tree for the above record manager already 

exists. If so, that binary tree is loaded off the disk. If the persistent binary tree is not 

found, it terminates reporting an error. It prompts the user to enter the path and filename 

where the output is to be stored. For each node found in the tree, the URL and its domain 

along with the technology statistics is output to the file. 

 

3.4 Designing the software 

For the purpose of this thesis, web bugs and embedded objects are the two 

technologies being detected.  

 

3.4.1 Web bug detection 

Typically, web bugs are images of size 1 by 1 pixel that get loaded from a 

different server than the remainder of the web page. However, during the study of web 

bugs, certain images whose sizes were not a 1 by 1 pixel were found to be loaded from a 

different server than the domain server. These images were found to behave like a typical 

web bug. Also, some of the web bugs of both 1 by 1 pixel and an M by N pixel were 

found to contain query strings. URL query strings can be used to pass information to the 

server in order to perform functions like displaying different data, passing information, 



 33 
 
 
 
 

entering different mode and changing display format among a lot of other things. When a 

query string is present in the SRC field of an image tag whose display size is either set to 

1 by 1 or to an M by N pixel, it can be reasonably counted as a web bug. 

So, there are three cases of web bug detection that can be used to find most of the 

web bugs. 

 

Case 1: A 1 by 1 pixel image with no query string 

Since a web bug is always an image, to detect an image in Java requires the use of 

the IMG tag. The web bug is of specific dimensions, that is, height =1 and width =1. 

Figure 3.5 shows the code snippet used to detect these web bugs. The code snippet 

relevant to this case is indicated by the case number. The lowercasetoken looks for a 

particular token, i.e., a string value in the HTML code of a web page. If the image fits the 

specified height and width of one pixel, a successful match is obtained. The variable 

techArray gets incremented and stores the image details, such as the web page address, 

the type of web page, etc. 

 

Case 2: A 1 x 1 image with a query string 

A 1 x 1 image that has a query string in the SRC presents a stronger case for a web bug. 

The query string indicates that some kind of information exchange is taking place.  In 

Figure 3.5, the code snippet under case 2 is relevant to this type of web bugs. 

 

 

 



 34 
 
 
 
 

Case 3: An M x N image with a query string 

An M x N image that is getting loaded from a different server than the web page itself 

may not be considered a web bug. But if the URL has a query string, then it could 

possibly be a web bug. These web bugs are also accounted for. The code snippet for this 

case is shown in Figure 3.5 under case 3. 

 

Pattern heightq = Pattern.compile("height\\s*=\\s*\ "{1}1\"{1}\\s*"); 

Pattern widthq  = Pattern.compile("width\\s*=\\s*\" {1}1\"{1}\\s*"); 

Pattern height  = Pattern.compile("height\\s*=\\s*1 {1}\\s*"); 

Pattern width   =  Pattern.compile("width\\s*=\\s*1 {1}\\s*"); 

Matcher hmatchq = heightq.matcher(parameters); 

Matcher wmatchq = widthq.matcher(parameters); 

Matcher hmatch  = height.matcher(parameters); 

Matcher wmatch  = width.matcher(parameters); 

//CASE 1: This is for links that contain query stri ng 

if(hmatch.find(0) && wmatch.find(0)|| (hmatchq.find (0) && wmatchq.find(0))) 

{   if(lowercasetoken.indexOf("?") == -1) 

   {   techArray[11]++; 

   System.out.println("Caught a web bug with 1x1!!! \n"); 

       return; 

    else{ 

//CASE 2: This is for links that don’t contain the query  

    techArray[12]++; 

    System.out.println("Caught a web bug with 1x1 a nd query !!!\n"); 

        return; 

    }} 

else{ 

//CASE 3: This is for links that contain the query  

        if(lowercasetoken.indexOf("?") != -1) 

         {  techArray[13]++; 

          System.out.println("Caught a web bug with  MxN and query !!!\n"); 

          return; 

         }}} 

  

 
Figure 3. 5: Code snippet to detect web bugs 



 35 
 
 
 
 

 The results from these 3 cases will help in analyzing what percentages of web 

pages contain each category of web bugs. 

 

3.4.2 ActiveX objects detection 
 

ActiveX objects are inserted in web pages using the <OBJECT> tag. The object 

tag is part of standard HTML and is used to insert an object into a web page. The object 

tag contains a classid attribute [Detert 1999]. The classid is a long number that is found in 

the registry. The classid may begin with clsid and is found to be of the following format: 

classid="clsid:CAFEEFAC-xxxx-yyyy-zzzz-ABCDEFFEDCBA" 

 

In this form, the “xxxx”, “yyyy” and “zzzz” are 4 digit numbers that identify the specific 

version of Java plug-in to be used. Java applet, python applet and ActiveX controls use 

the classid attribute of the OBJECT tag [Quinn 2007]. The classid may also have a 

codebase attribute. This attribute tells the browser where to download the program 

needed, if it is not available on the machine [Sun Microsystems 2007].  

 To categorize an ActiveX object, the classid attribute should be of the following 

format: 

classid = “clsid:xxxx” 

These objects begin with clsid and are recorded as ActiveX objects. The code snippet to 

detect this is in Figure 3.6 highlighted as case1. If it is a java applet, the classid attribute 

is of the following format: 

classid = “java: xxx” 



 36 
 
 
 
 

If the classid attribute begins like above, it appears to be a java applet and is recorded 

under the java applet category. The code to detect this category is shown in Figure 3.6 

under case 2. If the object embedded is a python applet, the classid attribute is as follows: 

classid = “xxx.py” 

In this case, the application ends with a .py extension. This kind of applets is recorded 

under the Python applet category. The code to detect python applets is shown in case 4 in 

Figure 3.6.  

 

if(lowercasetoken.startsWith("object")) 

{  if (lowercasetoken.startsWith("clsid")) 

    { 

        /* CASE 1: Found Active X object */ 

        System.out.println("Found Active X object") ; 

          techArray[3]++; 

      } else if (lowercasetoken.startsWith("java:") ) 

     { 

        /* CASE 2: Found Java Applet within <object > tag */  

          System.out.println("Found Java Applet"); 

          techArray[2]++; 

     }  else if (lowercasetoken.endsWith(".py")) 

     { 

      /* CASE 3: Found Python Applet within <object > tag */  

           System.out.println("Found Python Applet" ); 

           techArray[14]++; 

      }  else 

      { 

  /* CASE 4: Found an Unknown Applet within <object > tag */  

           techArray[15]++; 

       } 

       return; 

         }     

 
 

Figure 3. 6: Code to detect ActiveX objects



 37 
 
 
 
 

4 VALIDATION AND RESULTS 
 

The program was tested to detect a few known web sites that contained web bugs 

and ActiveX objects. The program was run with the seed URL being the particular web 

page.  

 

4.1 Validation of web bugs 

 After analyzing web bugs, we came to the conclusion that 3 cases of web bugs 

were to be discussed. A web bug could be a 1 x 1 pixel image and may or may not have a 

query string. A web bug could also be an image of any size and may contain a query 

string. These 3 cases were tested with web sites known to contain them.  

 

Case 1: A 1 x 1 pixel image that contains a query string 

 The U.S. Air Force web site (www.af.mil) is known to have a web bug that also 

had a query string embedded in it. The website was given as the seed URL to the program 

and the results obtained from this experimental study are shown in Figure 4.1. 



 38 
 
 
 
 

 

 
Figure 4. 1: Screenshot of the results from www.af.mil 

 

Case 2: A 1 x 1 pixel image that does not contain a query string 

 The CNN News web site provided a very good test data set for web bugs with no 

query strings. The result of the program run is shown in Figure 4.2. 

 

 

 
Figure 4. 2: Screenshot of the results from www.cnn.com 

 
 

Case 3: An image pixel of any size that contains a query string 

Indiatimes.com is a web site that provides news, shopping information, chat and 

mail features. This web site has web bugs that are not necessarily of size 1 x 1 pixels. A 

look at the page source shows that the web bug contains a query string. The result of the 

program run is shown in Figure 4.3. 



 39 
 
 
 
 

 

 
Figure 4. 3: Screenshot of the results from www.indiatimes.com 

 
 

4.2 Validation of ActiveX objects 

In chapter 3, ActiveX objects were analyzed and it was shown that the object tag 

could have the classid attribute used in various ways. Depending on the inputs to the 

classid attribute, the cases have been formed. The program was tested on a few known 

web sites that satisfied the case requirements. 

 

Case 1: ActiveX objects 

The U.S. Navy website has some ActiveX objects embedded in them. The seed 

URL for this run was www.navy.mil. The results are shown in Figure 4.4.  

 



 40 
 
 
 
 

 

 
Figure 4. 4: Screenshot of the results from www.navy.mil 

 
 

Case 2: Python applets 

The Sourceforge web site offers a few examples for python applets that are found 

in the CLASSID attribute of the object tag. The seed URL given was 

http://grail.sourceforge.net/. The results from the run are shown in Figure 4.5. 

 

 

 
Figure 4. 5: Screenshot of the results from http://grail.sourceforge.net 



 41 
 
 
 
 

4.3 Results 

In order to quantify the amount of adware and spyware on the web, a sizeable 

measure of data was to be collected. For the purpose of this thesis, data collected from 

one million web pages was set as a target.  

The seed URL for this experiment was www.cnn.com. From here, the program 

crawled web pages for four weeks to meet the target. The data base had a collection of 

one million web pages. The results were imported into MS Access for computational 

purposes.  

From the study, it was found that 16.56% of web pages could have web bugs. 

ActiveX objects were found in approximately 1% of web pages. Various types of applets 

accounted for 0.06% of web pages. 

 

Case 1: Web bugs 

 Images of M x N size that contained a query string in the SRC field were found in 

6.5% of web pages. As explained earlier, there is a strong probability that these images 

are being used as web bugs. The images of size 1 x 1 pixel that contained a query string 

in the SRC field were found in 4.75% of web pages. This is a strong indication that a 1 x 

1 pixel containing a query in the SRC field is a web bug. The images of size 1 x 1 pixel 

with no query string were found in 5.35% of web pages. This indicates the presence of 

web bugs. 

  

 

 



 42 
 
 
 
 

Case 2: ActiveX objects 

 ActiveX objects that had the classid attribute beginning with clsid accounted for 

0.97% of web pages. Python applets that make use of the classid attribute were found in 

0.0002% of web pages. Applets which used classid attribute that contained unknown 

extensions were found in 0.01% of web pages. Since the presence of ActiveX objects is 

really low, we can say that these objects are not found too often in web pages. 

 

 

 

  

 

 

 

 

 

 

 

 

 

 



 43 
 
 
 
 

5 CONCLUSIONS AND FUTURE WORK 
 

In accordance with the goal set out in Section 1.2, a program that could detect the 

adware and spyware was set up. The program could detect two types of spyware: web 

bugs and ActiveX objects. Initial experiments were performed to ensure that the program 

would detect the listed spyware without errors. A sample of one million web pages was 

analyzed to quantify the percentage of web bugs and ActiveX objects present. This study 

of web bugs and ActiveX objects enables a web user to know what kind of spyware is 

present in web pages and how many web pages use them. It also indicates the popular 

choice of web technologies for spyware.  

Web bugs constitute 16.56% of web pages. ActiveX objects constitute 

approximately 1% of web pages and applets constitute 0.06% of web pages. Applets and 

ActiveX objects seem to be used less frequently as a spyware as compared to web bugs. 

It was found that 11.5% of web pages that contained web bugs belonged to the .com 

domain. 0.4% of web pages that contained ActiveX objects were found mostly on .com 

domains followed very closely by .org domains which contained 0.39% of web pages that 

had ActiveX objects. Though a web bug is typically defined as a 1 x 1 pixel image, we 

found that M x N images are used more than 1 x 1 images as web bugs. 6.4% of web 

pages contained M x N web bugs while only 4.7% of web pages contained 1 x 1 web 

bugs. 



 44 
 
 
 
 

This program can be extended to detect other types of spyware. Adware networks, 

backdoor santas, Trojan horse, browser hijackers and dialers are becoming very popular 

in web pages. A quantification of these technologies is important, so one can understand 

its use and how widely it is used in web pages. The program used for this study did not 

browse through the robots.txt file. This is a file that every server maintains. This file has 

information that tells a web crawler what folders it should not browse. Browsing through 

the robots.txt before traversing the web site indicates a “well-behaving” crawler. This 

change must be implemented in the program. A research on the target set for this type of 

study is essential. This can give a future researcher a better vision of the data collected 

with respect to the target set. 

 



 45 
 
 
 
 

BIBLIOGRAPHY 
 

ANONYMOUS, Spyware: Spycatcher New Media Age, (January 8, 2004), 24. 

BENNER, http://www.wired.com/science/discoveries/news/2002/01/49960, (2002). 

BLEEPING COMPUTER, Bleeping Computer, 

http://www.bleepingcomputer.com/glossary/definition231.html, Last accessed in 2006. 

BLUM Thom, KEISLAR Doug, WHEATON Jim, WOLD Erling, Writing a Web crawler 

in the Java Programming Language, Muscle Fish, LLC, January 1998. 

BORLAND John, File sharing program carry Trojan horse, CNET, 

http://news.com.com, January 2002. 

CARLSON Br. David, Software Design Using C++, Computing and Information Science 

Department, St. Vincent College, Last accessed: January 9, 2007. 

CEES DE GROOT, JDBM, http://jdbm.sourceforge.net, 2000. 

COMPUTER ASSOCIATES SECURITY ADVISOR, 

http://www3.ca.com/securityadvisor/glossary.aspx 

DANIELS J, Scumware.biz Educates about Dangers of Adware/Scumware, Computer 

Security Update, (5)2, (February 2004). 

DELIO Michelle, What they know could hurt you, 

http://www.wired.com/politics/security/news/2002/01/49430 , (January 3, 2002) 

DENIZ Ekram, http://www.ekremdeniz.com/article3.htm, (January 11, 2005).



 46 
 
 
 
 

DETERT Ryan, The Amazing ActiveX - Part 1, Internet Related Technologies, (August 

9, 1999). 

URL: http://www.irt.org/articles/js178/index.htm 

DOYLE E, Not All Spyware is as Harmless as Cookies: Block it or Your Business Could 

Pay Dearly, Computer Weekly, (November 25, 2003), 32. 

EDELMAN Ben, http://www.benedelman.org/news/022205-1.html , (February 22, 

2005). 

EDELMAN Ben, The Effects of 180solutions on Affiliate Commissions and Merchants, 

http://www.benedelman.org/spyware/180-affiliates/#targeted-ads, (2004). 

FERRER Daniel Fidel, MEAD Mary, Uncovering the Spy Network, Computers in 

Libraries, (23)5, (2003), 16. 

HAWKING David, Web Search Engines: Part 1, IEEE Computer Society, (39)6, (June 

2006).  

HEALAN Mike, www.spywareinfo.com, (January 12, 2005). 

HOWES Eric, Spyware Warrior, http://www.spywarewarrior.com/, (2006). 

INTERNET SECURITY SERVICES, http://xforce.iss.net/xforce/xfdb/14338, IBM 

Internet Security Systems. 

LAVASOFT, Lavasoft (2007). 

MIKUSCH R., Adware, Spyware – Oh My!, Beyond Numbers, (427),  (October 16, 

2003). 

MORRIS John, Programming Languages, Data Structures and Algorithms, 

http://www.cs.auckland.ac.nz/software/AlgAnim/ds_ToC.html, 1998. 



 47 
 
 
 
 

MOSHCHUK Alexander, BRAGIN Tanya, GRIBBLE Steven D and LEVY Henry M., A 

Crawler based study of Spyware on the Web, Network and Distributed System Security 

Symposium (NDSS), (February 2006). 

NASD www.nasd.com, (January 28, 2005). 

PASTORE Michael, Inside Spyware: A Guide to Finding, Removing and Preventing 

Online Pests, Intranet Journal, (2002). 

PROVOS Niels, A virtual honeypot framework, In Proceedings of the 13th USENIX 

Security Symposium, San Diego, CA, (August 2004). 

QUINN Liam, Object- Embedded Object, Web Design Group, 

http://htmlhelp.com/reference/html40/, (Last accessed: August 14, 2007). 

RADCLIFF Deborah, Spyware, Network World, (21)4, (2004), 51. 

SANDERS Tom, http://www.vnunet.com/vnunet/news/2152335/anti-adware-group-

threatens, (2006). 

SAROIU Stefan, GRIBBLE Steven D, LEVY Henry M., Measurement and Analysis of 

Spyware in a University Environment, Proceedings of the First Symposium on Networked 

Systems Design and Implementation, San Francisco, CA, USA, (March 29–31, 2004). 

SCHWARTZ A, DAVIDSON A and STEFFAN M, Ghosts in Our Machines: 

Background and Policy Proposals on the “Spyware” Problem, Washington, D.C.: Center 

for Democracy and Technology, (July 16, 2004). 

URL: http://www.cdt.org/action/spyware/ 

SHUKLA Sudhindra, NAH Fiona Fui-Hoon, Web browsing and Spyware Intrusion, 

Communications of the ACM, 48(8), (August 2005), 85-90. 



 48 
 
 
 
 

SIPIOR Janice C, WARD Burke T, ROSELLI Georgina R, A United States Perspective 

on the Ethical and Legal Issues of Software, ACM International Conference Proceeding 

Series, Vol. 113, (August 2005), 738-743. 

SKOUDIS Ed, ZELTSER Lenny, Malware- Fighting Malicious Code, (2003). 

SMITH G, Tracking brawl: Is Big Brother watching you online, or are you just 

paranoid?, ABCNews.com, (17 December, 1999). 

SMITH Richard M, http://www.computerbytesman.com/ , (2003). 

Spywareguide, Facetime Communications Inc., www.spywareguide.com , Last accessed 

June 7, 2007. 

STAFFORD Thomas F, Introduction to the special issue on spyware, Communications of 

the ACM, 48 (8), (August 2005), 34-36. 

SUN MICROSYSTEMS, The Java Tutorials, http://www.irt.org/articles/js178/index.htm, 

(Last accessed: August 14, 2007). 

SUNBELT SOFTWARE Inc., Sunbelt Software,                 

http://www.sunbelt-software.com/CounterSpy/docs/battling_spyware_3.pdf, (2004). 

SUNBELT SOFTWARE Inc., Counterspy Enterprise, http://www.sunbelt-

software.com/Business/Counterspy-Enterprise/ , (Last accessed: June 4, 2007). 

TAYLOR C, What Spies Beneath, Time, (160)15, (October 7, 2002), 106. 

THOMPSON Roger, Why spyware poses multiple threats to security? Communications 

of the ACM, 48 (8), (August 2005), 41-43. 

TIPTON Harold F., KRAUSE Micki Information Security Management Handbook. Fifth 

edition, Volume 3, Auerbach Publications, 2006. 



 49 
 
 
 
 

UMPHRESS D, Web Software Demographics, Proceedings of the 41st Southeastern 

Conference, (March 2003, Savannah, GA), 457-462. 

UNKNOWN, Spyware Causes, Effects and Prevention, Digital Insight Security Bulletin, 

(March 16, 2005). 

URBACH Ronald R, KIBEL Gary A. Adware/Spyware: An Update Regarding Pending 

Litigation and Legislation, Intellectual Property & Technology Law Journal, (16)7, 

(2004), 12-16. 

WEBROOT SOFTWARE Inc Automated threat research, 

http://research.spysweeper.com/automated_research.html, (Last accessed: June 4, 2007). 

ZHANG Xiaoni What do consumers really know about spyware?, Communications of the 

ACM, 48 (8), (August 2005), 44-48. 

WANG Yi-Min, BECK Doug, JIANG Xuxian, ROUSSEV Roussi, VERBOWSKI Chad, 

CHEN Shuo, KING Sam Automated Web Patrol with Strider HoneyMonkeys: Finding 

web sites that exploit browser vulnerabilities, Proceedings of the Network and 

Distributed System Security Symposium, San Deigo, CA, (February 2006). 

 

 

 

 


