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Directed by Michel Smith

Nonmetric hereditarily indecomposable subcontinua of finite products of Lexicographic

arcs are examined. It is shown that these subcontinua cannot intersect certain subsets of the

products. Then nonmetric hereditarily indecomposable subcontinua of these same products

cross the Hilbert cubes are examined and are shown to not intersect certain subsets. In

conclusion, it is shown that all hereditarily indecomposable subcontinua of the product of
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Chapter 1

Introduction and Background

A continuum is traditionally defined as a compact, connected, metric space. One of the

simplest examples is an arc, which is a space homeomorphic to the unit interval. Basically

it is a continuum with two endpoints, one of which is mapped to 0, and the other which

is mapped to 1. In this paper we are concerned with one of many nonmetric analogs to

the arc, the Lexicographic arc. Throughout we will define a continuum to be a compact,

connected Hausdorff space. If a continuum is metric, it will be stated.

In 1951, Bing showed that higher dimensional metric continua must contain non-

degenerate hereditarily indecomposable subcontinua [1]. He also is responsible for showing

that the set of all pseudo-arcs is a dense Gδ set in Rn [2]. In a sense this means that the set of

all hereditarily indecomposable subcontinua of Euclidean space is large. Recently, Michel

Smith has been studying how hereditarily indecomposable continua sit inside nonmetric

continua [6] [7] [8] [9] [10] [11]. Surprisingly, it seems that metrizability and hereditary

indecomposability could possibly be linked. He has shown that all hereditarily indecompos-

able subcontinua of the inverse limit of both Souslin arcs and Lexicographic arcs are metric

[8] [9]. Also, he has shown that the product of two Souslin arcs contain only metric hered-

itarily indecomposable continua [10] [11]. The purpose of this paper is to investigate the

existence of hereditarily indecomposable continua in finite products of Lexicographic arcs.

Michel Smith, in conjunction with Jennifer Stone, showed that every hereditarily indecom-

posable subcontinuum of the product of two Lexicographic arcs is metric [11]. The author

will develop a technique to restrict the existence of nonmetric hereditarily indecomposable

subcontinua in finite products, and in finite products cross the Hilbert cube. Most of the

techniques used can be extended to a countable product of Lexicographic arcs.
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The goal is to show that any hereditarily indecomposable subcontinuum of a finite

product of Lexicographic arcs is metrizable. In this paper, the author will prove it for the

product of three of these arcs.

Let us start by describing the Lexicographic arc and by introducing some notation

that will be used throughout the paper. The Lexicographic arc is the set [0, 1]× [0, 1] given

an order topology based on the following order. We say that (a, b) < (c, d) provided that

either a < c, or a = c and b < d. This produces a compact, connected, Hausdorff space

with endpoints (0, 0) and (1, 1). We will denote the Lexicographic arc with L, and we

will introduce a notation of a point in [0, 1] × [0, 1] to simplify the interval notation and

points in higher dimensional products. Let the point (x, y) = xy. Further research into the

Lexicographic arc can be found in the author’s Masters Thesis [13].

One way to think of the lexicographic arc is to think of the unit square as an arc which

has each point replaced with another arc. Refer to Figure 1.1.

Figure 1.1: The Lexicographic Arc

In turn, products of n Lexicographic arcs can be thought of as the unit n-cube with

each point replaced with an n-cube. Figure 1.2 depicts the product of two and three said

arcs. We will denote the product of n Lexicographic arcs as
∏n
i=1 L = Ln.

During our exploration we will have need of two more spaces, the Hilbert cube and the

compact Double Arrow Space. The Hilbert cube is defined as the countable product of unit

intervals, and it will be denoted by [0, 1]∞ =
∏∞
i=1[0, 1] with the usual topology on [0, 1].
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Figure 1.2: L2 and L3

The Double Arrow space is the order topology induced by the lexicographic order described

at the beginning of this chapter on the set [0, 1]× {0, 1}.

The following definitions and theorems will be used extensively throughout the paper.

Definition 1.1. A space is said to be separable if it contains a countable, dense subset.

Definition 1.2. A space is said to be completely separable given it has a countable basis.

Definition 1.3. A continuum is indecomposable if it cannot be written as the union of

two proper subcontinuum.

Definition 1.4. A continuum is hereditarily indecomposable if every subcontinuum is

indecomposable.

Definition 1.5. Let A be a subset of a space X. The component of x ∈ A is the union

of all connected subsets of A containing x.

Definition 1.6. Let A and B be subsets of a space X. X can be separated over A and

B provided that there exist disjoint open sets, U and V , such that U ∪ V = X, A ⊂ U , and

B ⊂ V .

Definition 1.7. A point x ∈ X is a cut point of X if X − {x} is not connected.

Definition 1.8. An arc is a continuum having exactly two non-cut points.
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Further exploration of the properties of a metric arc was done by Nadler [4].

Definition 1.9. A subset of a space is nowhere dense in the space if it has empty interior.

Definition 1.10. Let X be a topological space. Then the hyperspace of X denoted by 2X

is the space of nonempty compact subsets of X. Let {U1, U2, U3, ..., Un} be a finite collection

of open subsets of X. Then the collection of sets of the form {K ∈ 2X |K ∈
⋃n
i=1 Ui and for

each 1 ≤ i ≤ n, Ui ∩K 6= ∅} constitutes a basis for 2X .

Definition 1.11. Let X be a topological space. Then we denote the subspace of 2X known

as the hyperspace of continua as C(X) = {K ∈ 2x|K is a continuum}.

For a more in depth look at hyperspaces refer to [5].

Definition 1.12. Let x be a point in a continuum X. Define a partial order on C(X) using

inclusion. Then an order arc of x in X is an arc in C(X) with endpoints {x} and X.

Theorem 1.1. If A is a proper subcontinuum of an indecomposable continuum X, then A

is nowhere dense in X.

Theorem 1.2. If a space X is compact and completely separable, then X is metrizable.

Theorem 1.3. If an arc is separable, then it is completely separable.

Corollary 1.1. If an arc is separable, then it is metrizable.

Theorem 1.4. Let X be a compact Hausdorff space, and let A and B be disjoint closed

subsets of X such that no component intersects both A and B. Then X can be separated

over A and B.

Theorem 1.5. Let X be a hereditarily indecomposable continuum. If E and F are disjoint,

closed subsets of X contained in open sets U and V respectively, then there exist closed sets

A, B, and C such that X = A ∪B ∪ C, E ⊂ A, F ⊂ C, A ∩B ⊂ V − F , B ∩ C ⊂ U − E,

and A ∩ C = ∅.

A proof of the metric case can be found in [3].
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Theorem 1.6. The order arc generated by a hereditarily indecomposable subcontinuum is

unique.

Theorem 1.7. Let X be a hereditarily indecomposable continuum, and let α(p) denote the

order arc of some point p ∈ X. If there exists an open neighborhood, U of p, containing a

countable collection of open subsets, {Gi}∞i=1, having the properties that for each H ⊂ K ∈

α(p) such that H 6= K, there is an i < ∞ such that Gi ∩ (K − H) 6= ∅ and Ḡi ∩ H = ∅,

then α(p) is separable.

Proof. Let X be a hereditarily indecomposable continuum, and choose p ∈ X. Let U be

an open neighborhood, U of p, containing a countable collection of open subsets, {Gi}∞i=1,

having the properties that for each H ⊂ K ∈ α(p) such that H 6= K, there is an i < ∞

such that Gi ∩ (K −H) 6= ∅ and Ḡi ∩H = ∅. Let Xi be the irreducible subcontinuum of X

between p and Ḡi. Then {Xi}∞i=1 is countable.

We claim that {Xi}∞i=1 is dense in α(p). Let H ⊂ K ∈ α(p) such that H 6= K. Then

we must show that there exists i < ∞ such that H ⊂ Xi ⊂ K and H 6= Xi 6= K. By

the hypothesis, there exists i < ∞ such that Gi ∩ (K − H) 6= ∅ and Ḡi ∩ H = ∅. Since

Ḡi∩H = ∅, we have that H ⊂ Xi and H 6= Xi. Since Xi∩Gi = ∅, by virtue of irreducibility,

and Gi ∩ (K − H) 6= ∅, Xi ⊂ K and Xi 6= K. Thus {Xi}∞i=1 is dense in α(p). Therefore

α(p) is separable.
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Chapter 2

Nonmetric Hereditarily Indecomposable Subcontinua

of Finite Products of Lexicographic Arcs

In this chapter we will restrict the subsets that a nonmetric hereditarily indecomposable

subcontinuum of Ln can intersect. We will start with a metric subset and add in a dimension

of L at a time. We will define some notation for the subsets we will be using. Fix ai ∈ [0, 1]

for each 1 ≤ i ≤ n.

1. Let S =
∏n
i=1(ai0, a

i
1). We will refer to this set as the interior of a metric cube.

2. Let Sj0 =
∏

1≤i<j(a
i
0, a

i
1)×{aj0}×

∏
j<i≤n(ai0, a

i
1) be known as the “jth” lower metric

face.

3. Let Sj1 =
∏

1≤i<j(a
i
0, a

i
1)×{aj1}×

∏
j<i≤n(ai0, a

i
1) be known as the “jth” upper metric

face.

4. Let P j =
∏

1≤i<j(a
i
0, a

i
1)× L×

∏
j<i≤n(ai0, a

i
1). We will refer to this set as the “jth”

tube.

5. Let P j0 =
∏

1≤i<j(a
i
0, a

i
1)× [00, a

j
0)×

∏
j<i≤n(ai0, a

i
1) be the “jth” lower tube.

6. Let P j1 =
∏

1≤i<j(a
i
0, a

i
1) × (aj1, 11] ×

∏
j<i≤n(ai0, a

i
1) be known as the “jth” upper

tube.

First we will show that if M is a nonmetric hereditarily indecomposable subcontinuum

of Ln, then it cannot intersect the interior of a metric cube. Please note that the following

theorems are also true for a countable product of lexicographic arcs.

For the following propositions fix ai ∈ [0, 1] for each 1 ≤ i ≤ n.
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Proposition 2.1. If M is a nonmetric hereditarily indecomposable subcontinuum of Ln,

then M ∩ S = ∅.

Proof. Let M be a nonmetric hereditarily indecomposable subcontinuum of Ln. Since M is

nonmetric, we may assume wlog that π1(M) = L. Suppose M ∩ S 6= ∅. Then there exists

a point, ~a ∈ M ∩ S. Notice that the boundary of S is homeomorphic to a sphere which is

metrizable. Let B be a countable basis for bd(S), and let {Dj}∞j=1 be the collection of all

finite unions of elements of B.

Let us assume that a1 < 1, and let K be an irreducible subcontinuum of M from ~a to

{11}×
∏n
i=2 L. Then we will let {Kα}α∈Γ denote the components of K in Ln−S indexed by

the set Γ. Then for each α ∈ Γ, let K̂α = Kα ∩ bd(S). Notice that K̂α is a nonempty closed

subset of bd(S). For each j < ∞ let Kj =
⋃
K̂α⊂Dj Kα. Finally, let xj = lub{π1(Kj)}. So

we have used K to construct {xj}j<∞, a countable subset of L.

We will now use Theorem 1.5 and the metrizability of bd(S) to show that {xj}j<∞ is

uncountable, contradicting its construction. Let b ∈ (a1, 1). We claim that there exists j <

∞ such that xj ∈ (b0, b1). Let E = M ∩ ([b1, 11]×
∏n
i=2 L), F = {~a}, U = (b0, 11]×

∏n
i=2 L,

and V = S. Then by Theorem 1.5, there exists closed subsets A, B, and C of Ln such that

M = A∪B ∪C, E ⊂ A, F ⊂ C, A∩B ⊂ (V −F ), B ∩C ⊂ (U −E), and A∩C = ∅. Refer

to Figure 2.1.

Figure 2.1: Proposition 2.1: A, B, and C
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Let Â = A∩ bd(S), B̂ = B ∩ bd(S), and Ĉ = C ∩ bd(S). Then B̂ and Â∪ Ĉ are disjoint

closed subsets of bd(S). Hence by normality there exists disjoint open subsets of bd(S), O

and W , such that B̂ ⊂ O and Â ∪ Ĉ ⊂ W . By compactness, there exists j <∞ such that

B̂ ⊂ Dj ⊂ O. Then B̂ ⊂ Dj and (Â ∪ Ĉ) ∩ Dj = ∅. By the Theorem 1.4, there exists a

component, I, of B intersecting both A ∩B and B ∩ C.

Figure 2.2: Proposition 2.1: The Component I

Since I ⊂ B, I ∩ bd(S) ⊂ B̂ ⊂ Dj . So I −S is a subset of Kj . Now B ∩C ⊂ (U −E) =

(b0, b1) ×
∏n
i=2 L, implying that xj > b0. Also since Â ∩Dj = ∅, we have Â ∩Kj = ∅ and

A ∩Kj = ∅. So E ∩Kj = ∅ which implies that xj < b1. So for each b ∈ (a1, 1) there is a

j < ∞ such that xj ∈ (b0, b1). Thus {xj}j<∞ is uncountable, a contradiction. Therefore

M ∩ S = ∅.

Next we will note that M cannot intersect an isolated metric face. Recall that a metric

face is defined as Sj0 =
∏
i<j(a

i
0, a

i
1) × {aj0} ×

∏
i>j(a

i
0, a

i
1) or Sj1 =

∏
i<j(a

i
0, a

i
1) × {aj1} ×∏

i>j(a
i
0, a

i
1). The proof follows a similar argument to the proof of Proposition 2.1.

Proposition 2.2. Let M be a nonmetric hereditarily indecomposable subcontinuum of Ln,

and choose 1 ≤ j ≤ n such that aj 6∈ {0, 1}. If ~a ∈ M ∩ Sj0, then there is a sequence in

8



M ∩ P j0 converging to ~a. Similarly if ~a ∈ M ∩ Sj1, then there exists a sequence in M ∩ P j1

converging to ~a.

Proof. Let M be a nonmetric hereditarily indecomposable subcontinuum of Ln, and wlog

choose j = 1 to simplify notation. Suppose that a1 6∈ {0, 1} and that π1(M) = L. Let

~a ∈ M ∩ S1
0 . Suppose that there is no sequence in M ∩ P 1

0 converging to ~a. Then there is

an open neighborhood of ~a, O ⊂ P 1
0 such that M ∩O ⊂ S1

0 . Hence O ∩M is metrizable.

Let B be a countable basis for bd(S), and let {Dk}∞k=1 be the collection of finite unions

of elements of B. Notice that a1 6= 1. Let K be an irreducible subcontinuum of M from ~a

to {11}×
∏n
i=2 L. Let {Kα}α∈Γ denote the components of K in Ln−O indexed by Γ. Then

for each α > 0, let K̂α = Kα ∩ bd(S). Notice that K̂α is a nonempty closed subset of bd(S).

Using compactness, for each k <∞, let Kk =
⋃
K̂α⊂Dk Kα. Finally, let xk = lub{π1(Kk)}.

We will now use Theorem 1.5 and the metrizability of bd(S) to show that {xk}j<∞

is uncountable, a contradiction. Let b ∈ (a1, 1). We claim that there exists j < ∞ such

that xk ∈ (b0, b1). Let E = M ∩ ([b1, 11] ×
∏n
i=2 L), F = {~a}, U = (b0, 11] ×

∏n
i=2 L, and

V = O. Then by Theorem 1.5, there exists A, B, and C, closed subsets of Ln such that

M = A∪B∪C, E ⊂ A, F ⊂ C, A∩B ⊂ (V −F ), B∩C ⊂ (U −E), and A∩C = ∅. Notice

that A ∩ V , B ∩ V , and C ∩ V are each subsets of S1
0 . Let Â = A ∩ bd(S), B̂ = B ∩ bd(S),

and Ĉ = C ∩ bd(S). Refer to Figure 2.3.

Figure 2.3: Proposition 2.2: Convergent Sequence in P 1
0

9



Notice that Ĉ and Â∪B̂ are disjoint closed subsets of bd(S). By normality, there exists

disjoint open sets W1 and W2 such that Ĉ ⊂W1 and (Â∪B̂) ⊂W2. By compactness, we may

assume that there exists k <∞ such that W1 = Dk. Then Ĉ ⊂ Dk and (Â∪ B̂) ⊂ Dk = ∅.

By Theorem 1.4, there exists a component of C intersecting both {~a} and B∩C as depicted

in Figure 2.4.

Figure 2.4: Proposition 2.2: Convergent Sequence and the component I

Since I ⊂ C, I ∩ (Ln − O) is a subset of Kk. Since B ∩ C ⊂ (b0, b1) ×
∏n
i=2 L, we

have that xk > b0. Now Kk ∩ Â = ∅, implying that Kk ∩ E = ∅. Thus xk < b1. Thus

xk ∈ (b0, b1). So for each b ∈ (a1, 1) there is a k <∞ such that xk ∈ (b0, b1). Thus {xk}k<∞

is uncountable, a contradiction. Therefore there exists a sequence in M ∩P 1
0 converging to

~a.

Similarly, if ~a ∈ M ∩ S1
1 , then we can use K irreducible from ~a to {00} ×

∏n
i=2 L to

show that (0, a1) is countable, a contradiction. Therefore there exists a sequence in M ∩P 1
1

converging to ~a.

Proposition 2.1 states that if ~z ∈ M , then there is at least one coordinate, say xiyi ,

for some 1 ≤ i ≤ n such that yi ∈ {0, 1}. In other words, M is restricted to metric faces.

Proposition 2.2 states that these faces cannot be isolated.

10



For the following corollary, note that the subspace of L restricted to xy ∈ L such that

y ∈ {0, 1} is homeomorphic to the Double Arrow Space, Z.

Corollary 2.1. If M is a nonmetric hereditarily indecomposable subcontinuum of Ln, then

M ∩ P j is embeddable in Z ×
∏n
i=2(0, 1).

Proof. Let M be a nonmetric hereditarily indecomposable subcontinuum of Ln, and choose

j = 1 to simplify notation. We claim that f : (M ∩ P 1) → (Z ×
∏n
i=2(0, 1)) defined by

f(a1
y1 , a

2
y2 , · · ·, a

n
yn) = (a1

y1 , y
2, · · ·, yn) is an embedding. Since P 1 = L ×

∏n
i=2(ai0, a

i
1), we

have that f is an embedding if it is well-defined. By Proposition 2.1, since yi 6∈ {0, 1} for

1 < i ≤ n, y1 ∈ {0, 1}. Hence a1
y1 ∈ Z, and f is well-defined.

We will now use Proposition 2.1 along with Theorem 1.4 to produce a separable order

arc in C(M). We will then use this order arc to show that M cannot intersect a tube.

Recall that a tube is P j =
∏
i<j(a

i
0, a

i
1)× L×

∏
i>j(a

i
0, a

i
1).

Proposition 2.3. If M is a nonmetric hereditarily indecomposable subcontinuum of Ln,

and p ∈M ∩ P j, then α(p) is separable.

Proof. Let M be a nonmetric hereditarily indecomposable subcontinuum of Ln, and choose

j = 1 to simplify notation. Choose p ∈ M ∩ P 1. Let U = M ∩ P 1. Then U is an open

neighborhood of p in M . Let B be a countable basis for
∏n
i=2(ai0, a

i
1), B0 be a countable basis

for [00, 01) ×
∏n
i=2(ai0, a

i
1), and B1 be a countable basis for (10, 11] ×

∏n
i=2(ai0, a

i
1). Define

G = {(q0, r1) × B|q < r, q, r ∈ Q and B ∈ B} ∪ {L × B|B ∈ B} ∪ B0 ∪ B1. Notice that G

is a countable collection of open subsets of U . To use Theorem 1.7, we will need to show

that for each H ⊂ K ∈ α(p) such that H 6= K, there is a G ∈ G such that Ḡ ∩H = ∅ and

G ∩ (K −H) 6= ∅.

Let H ⊂ K ∈ α(p) such that H 6= K. Now H and K are subcontinua of M implying

that they are each hereditarily indecomposable. Hence H is nowhere dense in K. Thus

there exists k ∈ U ∩ (K−H) and there exists V , an open neighborhood of k in U , such that

V ∩H = ∅. By Proposition 2.1, k cannot be contained in a metric cube, thus k is contained

in a face. Now we will use a basis for P 1 to find a G ∈ G satisfying the desired properties.
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Notice that either K is metric or nonmetric. If K is metric, then by Proposition 2.1

K cannot intersect any metric cube. So K ⊂ {xy} ×
∏n
i=2(ai0, a

i
1) where y ∈ {0, 1}. Hence

there exists B ∈ B such that k ∈ B × {xy} ⊂ B̄ × {xy} ⊂ V . Let G = B × L. Then G ∈ G,

k ∈ G ∩ (K −H), and Ḡ ∩H = ∅.

Figure 2.5: Proposition 3.3: K is metric.

Now suppose that K is nonmetric. Again, by Proposition 2.1, k ∈ {xy} ×
∏n
i=2(ai0, a

i
1)

for x ∈ [0, 1] and y ∈ {0, 1}. This gives rise to three cases:

1. k ∈ {00} ×
∏n
i=2(ai0, a

i
1),

2. k ∈ {11} ×
∏n
i=2(ai0, a

i
1), or

3. k ∈ [01, 10]×
∏n
i=2(ai0, a

i
1).

Case 1

Suppose k ∈ {00} ×
∏n
i=2(ai0, a

i
1).

Then k ∈ V ∩ [00, 01) ×
∏n
i=2(ai0, a

i
1). So there exists B ∈ B0 such that k ∈ B ⊂ B̄ ⊂

V ∩ [00, 01)×
∏n
i=2(ai0, a

i
1). Let G = B. Then G ∈ G, k ∈ G ∩ (K −H), and Ḡ ∩H = ∅.

Case 2

Suppose k ∈ {11} ×
∏n
i=2(ai0, a

i
1).

12



Figure 2.6: Proposition 3.3: Case 1

Similar to Case 1, there is a B ∈ B1 such that k ∈ B ⊂ B̄ ⊂ V ∩ (10, 11]×
∏n
i=2(ai0, a

i
1).

Let G = B. Then G ∈ G, k ∈ G ∩ (K −H), and Ḡ ∩H = ∅.

Figure 2.7: Proposition 3.3: Case 2

Case 3

Suppose k ∈ [01, 10]×
∏n
i=2(ai0, a

i
1).

Then k is in a metric face, and V is a nonmetric open subset of U . Since P 1 =

L ×
∏n
i=2(ai0, a

i
1), we have ab, cd ∈ L such that a < c and W open in

∏n
i=2(ai0, a

i
1) such

that k ∈ (ab, cd) ×W ⊂ V . By propositions 1 and 2, k is on an unisolated face. So there

exists k̂ ∈ (a1, c0) ×W ⊂ V . Now there exists B ∈ B and q, r ∈ Q such that B̄ ⊂ W and

a < q < r < c. Let G = (q0, r1)×B. Then G ∈ G, k̂ ∈ G ∩ (K −H), and by proposition 3

Ḡ = [q1, r0]× B̄ = (q0, r1)× B̄ ⊂ V . Hence Ḡ ∩H = ∅.

13



Figure 2.8: Proposition 3.3: Case 3

Hence we have satisfied the hypothesis for Theorem 1.7. Therefore α(p) is separable.

We will now show thatM cannot intersect a tube, by using Proposition 2.3 to contradict

the uncountability of an interval in L.

Proposition 2.4. If M is a nonmetric hereditarily indecomposable subcontinuum of Ln,

then M ∩ P j = ∅ for each 1 ≤ j ≤ n.

Proof. Let M be a nonmetric hereditarily indecomposable subcontinuum of Ln, and choose

j = 1 to simplify notation. Suppose that p ∈ M ∩ P 1. Then by Proposition 2.3 α(p)

is separable. Let D = {Di}∞i=1 be a countable dense subset of α(p), and wlog assume

π1(M) = L. So π1(p) = xy for some xy ∈ L. By Proposition 2.1, y ∈ {0, 1}. We can assume

that x < 1.

Let yi = lub{π1(Di)} for each i <∞, and let Y = {yi}∞i=1. We claim that Y is dense in

(xy, 11]. We must show that for ab < cd ∈ (xy, 11] there exists i <∞ such that yi ∈ (ab, cd).

Let ef , gh ∈ (ab, cd) such that ef < gh. Let H be an irreducible subcontinuum of M from p

to {ef}×
∏n
i=2 L, and let K be an irreducible subcontinuum of M from p to {gh}×

∏n
i=2 L.

Then H ⊂ K ∈ α(p). Hence there exists i < ∞ such that Di ∈ (H,K) ⊂ α(p). Since

Di ⊂ K, we have that Di ∩ (gh, 11]×
∏n
i=2 L = ∅. So yi ≤ gh. Since H ⊂ Di, we have that
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Di ∩ [ef , 11] ×
∏n
i=2 L 6= ∅. so yi ≥ ef . Then yi ∈ [ef , gh] ⊂ (ab, cd). Thus Y is dense in

(xy, 11] implying that (xy, 11] is separable, a contradiction. Therefore M ∩ P 1 = ∅.
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Chapter 3

Nonmetric Hereditarily Indecomposable Subcontinua

of Finite Products of Lexicographic Arcs and Hilbert Cubes

Our investigation continues with an exploration of how hereditarily indecomposable

continua behave in products of Lexicographic arcs and Hilbert cubes. The arguments in

this chapter are generalizations of the arguments in the previous chapter. The first theorem

follows from Theorem 1.5.

Theorem 3.1. If M is a hereditarily indecomposable subcontinuum of L× [0, 1]∞, then M

is metric.

Proof. Let M be a hereditarily indecomposable subcontinuum of L× [0, 1]∞. Suppose that

M is nonmetric. Then it can be assumed that π1(M) = L. For each 0 < ε < 1
4 , let

Eε = M ∩ ([00, ε0]× [0, 1]∞) (3.1)

Fε = M ∩ ([(1− ε)1, 11]× [0, 1]∞) (3.2)

Uε = [00, ε1) (3.3)

Vε = ((1− ε)0, 11] (3.4)

Then Eε, Fε are closed subsets of M , and Uε, Vε are open subsets of L × [0, 1]∞

containing Eε and Fε respectively. By Theorem 1.5, there exists nonempty closed subsets,

Aε, Bε, and Cε such that

M = Aε ∪Bε ∪ Cε (3.5)
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Eε ⊂ Aε (3.6)

Fε ⊂ Cε (3.7)

Aε ∩ Cε = ∅ (3.8)

Aε ∩Bε ⊂ (Vε − Fε) (3.9)

Bε ∩ Cε ⊂ (Uε − Eε) (3.10)

We will now focus on the subset of L × [0, 1]∞, X = [1
2 0
, 1

2 1
] × [0, 1]∞. This subset is

homeomorphic to the Hilbert cube, [0, 1]∞, and thus it is metrizable. Refer to Figure 3.1

Figure 3.1: Theorem 2.1: Aε, Bε, and Cε

Recall that these sets exist for each 0 < ε < 1
4 . Let Âε = X ∩ (

⋂
ε≤α< 1

4
Aα), and let

Ĉε = X ∩ (
⋂
ε<α< 1

4
Aα) ∩ Cε. We claim that Âε and Ĉε are nonempty. Note that each

is an intersection of a collection of closed subsets of a compact space. We will show that

the intersection of a finite collection of these sets is nonempty. By compactness, the finite

intersection property applies. So let ε < α1 < · · · < αm < 1
4 . For each 1 ≤ i < j ≤ m we

have that Uαi ⊂ Eαj ⊂ Aαj and that Vαi ⊂ Fαj ⊂ Cαj by (3.1), (3.4), (3.6), and (3.9). Now

we have that Aαi ∩Aαj 6= ∅, Cε ∩Aαi 6= ∅, Aαi ∩X 6= ∅, and Cαi ∩X 6= ∅ as in Figure 3.2.

Thus X ∩ (Aα1 ∩ · · · ∩ Aαm) ∩ Aε 6= ∅ and X ∩ (Aα1 ∩ · · · ∩ Aαm) ∩ Cε 6= ∅. Hence by

the finite intersection property, Âε 6= ∅ and Ĉε 6= ∅.

Now recall that X = [1
2 0
, 1

2 1
] × [0, 1]∞ is homeomorphic to the Hilbert cube, and we

have shown that Âε and Ĉε are nonempty closed subsets of X. Notice since Aε and Cε are
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Figure 3.2: Theorem 2.1: ε ≤ α1 ≤ α2 ≤ 1
4

disjoint, Âε and Ĉε are disjoint. Hence by normality, there exist disjoint open subsets, Oε,

Wε, of X such that Âε ⊂ Oε and Ĉε ⊂ Wε. Let B be a countable basis of X. Let D be

the collection of all finite unions of elements of B. By construction, D is countable. By

compactness, it may be assumed that Oε and Wε are elements of D. Thus we have that

Oα = Oβ for uncountably many 0 < α < 1
4 and 0 < β < 1

4 . Straight from this construction,

we get that there exist α and β ∈ (0, 1
4) such that α < β and O = Oα = Oβ. Since Âα ⊂ Âβ

and Ĉα ⊂ Âβ, we have that Ĉα ⊂ Oα ∩Wα. By normality, Oα ∩Wα = ∅, a contradiction.

Therefore M is metrizable.

Now that we have shown that L × [0, 1]∞ does not contain a nonmetric continuum,

let’s explore the subsets of Ln × [0, 1]∞. We will start with a metric subset of Ln × [0, 1]∞,

same as in the previous chapter, and add in a dimension of L at a time. Notation for

the subsets we will be using is redefined. Fix ai ∈ [0, 1] for each 1 ≤ i ≤ n. Recall that

[0, 1]∞ =
∏∞
i=1[0, 1], the space known as the Hilbert cube.

1. Let S =
∏n
i=1(ai0, a

i
1) × [0, 1]∞. We will refer to this set as the interior of a metric

cube.
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2. Let Sj0 =
∏

1≤i<j(a
i
0, a

i
1) × {aj0} ×

∏
j<i≤n(ai0, a

i
1) × [0, 1]∞ be known as the “jth”

lower metric face.

3. Let Sj1 =
∏

1≤i<j(a
i
0, a

i
1) × {aj1} ×

∏
j<i≤n(ai0, a

i
1) × [0, 1]∞ be known as the “jth”

upper metric face.

4. Let P j =
∏

1≤i<j(a
i
0, a

i
1) × L ×

∏
j<i≤n(ai0, a

i
1) × [0, 1]∞. We will refer to this set as

the “jth” tube.

5. Let P j0 =
∏

1≤i<j(a
i
0, a

i
1)×[00, a

j
0)×

∏
j<i≤n(ai0, a

i
1)×[0, 1]∞ be the “jth” lower tube.

6. Let P j1 =
∏

1≤i<j(a
i
0, a

i
1)× (aj1, 11]×

∏
j<i≤n(ai0, a

i
1)× [0, 1]∞ be known as the “jth”

upper tube.

For the following propositions, fix ai ∈ [0, 1] for 1 ≤ i ≤ n.

Proposition 3.1. If M is a nonmetric hereditarily indecomposable subcontinuum of Ln ×

[0, 1]∞, then M ∩ S = ∅.

Proof. Let M be a nonmetric hereditarily indecomposable subcontinuum of Ln × [0, 1]∞.

Since M is nonmetric, we may assume wlog that π1(M) = L. Suppose M ∩ S 6= ∅. Then

there exists a point, ~a ∈M ∩S. Notice that the boundary of S is homeomorphic to a sphere

which is metrizable. Let B be a countable basis for bd(S), and let {Dj}∞j=1 be the collection

of all finite unions of elements of B.

Let us assume that a1 < 1, and let K be an irreducible subcontinuum of M from

~a to {11} ×
∏n
i=2 L × [0, 1]∞. Then we will let {Kα}α∈Γ denote the components of K in

(Ln× [0, 1]∞)−S indexed by the set Γ. Then for each α ∈ Γ, let K̂α = Kα ∩ bd(S). Notice

that K̂α is a nonempty closed subset of bd(S). By compactness, there is a jα < ∞ such

that K̂α ⊂ Djα . Let Kj =
⋃
{Kα|jα = j} =

⋃
K̂α⊂Dj Kα. Finally, let xj = lub{π1(Kj)}. So

we have used K to construct {xj}j<∞, a countable subset of L.

We will now use Theorem 1.5 and the metrizability of bd(S) to show that {xj}j<∞

is uncountable, contradicting its construction. Let b ∈ (a1, 1). We claim that there exists
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j < ∞ such that xj ∈ (b0, b1). Let E = M ∩ ([b1, 11] ×
∏n
i=2 L × [0, 1]∞), F = {~a},

U = (b0, 11]×
∏n
i=2 L×[0, 1]∞, and V = S. Then by Theorem 1.5, there exists closed subsets

A, B, and C of Ln × [0, 1]∞ such that M = A ∪B ∪ C, E ⊂ A, F ⊂ C, A ∩B ⊂ (V − F ),

B ∩ C ⊂ (U − E), and A ∩ C = ∅. Refer to Figure 3.3.

Figure 3.3: Proposition 3.1: A, B, and C

Let Â = A∩ bd(S), B̂ = B ∩ bd(S), and Ĉ = C ∩ bd(S). Then B̂ and Â∪ Ĉ are disjoint

closed subsets of bd(S). Hence by normality there exists disjoint open subsets of bd(S), O

and W , such that B̂ ⊂ O and Â ∪ Ĉ ⊂ W . By compactness, there exists j < ∞ such

that B̂ ⊂ Dj ⊂ O. Then B̂ ⊂ Dj and (Â ∪ Ĉ) ∩Dj = ∅. By Theorem 1.4, there exists a

component, I, of B intersecting both A ∩B and B ∩ C.

Since I ⊂ B, I ∩ bd(S) ⊂ B̂ ⊂ Dj . So I −S is a subset of Kj . Now B ∩C ⊂ (U −E) =

(b0, b1)×
∏n
i=2 L× [0, 1]∞ implying that xj > b0. Also, since Â∩Dj = ∅, we have Â∩Kj = ∅

and A∩Kj = ∅. So E ∩Kj = ∅, which implies that xj < b1. So for each b ∈ (a1, 1) there is

a j <∞ such that xj ∈ (b0, b1). Thus {xj}j<∞ is uncountable, a contradiction. Therefore

M ∩ S = ∅.

Now we will show that if a point of M lies on a face, then there is a sequence of points

in M converging to it.

Proposition 3.2. Let M be a nonmetric hereditarily indecomposable subcontinuum of Ln,

and choose 1 ≤ j ≤ n such that aj 6∈ {0, 1}. If ~a ∈ M ∩ Sj0, then there is a sequence in
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Figure 3.4: Proposition 3.1: The Component I

M ∩ P j0 converging to ~a. Similarly if ~a ∈ M ∩ Sj1, then there exists a sequence in M ∩ P j1

converging to ~a.

Proof. Let M be a nonmetric hereditarily indecomposable subcontinuum of Ln × [0, 1]∞,

and choose j = 1 to simplify notation. Suppose that a1 6∈ {0, 1} and that π1(M) = L. Let

~a ∈ M ∩ S1
0 . Suppose that there is no sequence in M ∩ P 1

0 converging to ~a. Then there is

an open neighborhood of ~a, O ⊂ P 1
0 such that M ∩O ⊂ S1

0 . Hence O ∩M is metrizable.

Let B be a countable basis for bd(S), and let {Dk}∞k=1 be the collection of finite unions

of elements of B. Notice that a1 6= 1. Let K be an irreducible subcontinuum of M from ~a

to {11}×
∏n
i=2 L× [0, 1]∞. Let {Kα}α∈Γ denote the components of K in (Ln× [0, 1]∞)−O

indexed by Γ. Then for each α > 0, let K̂α = Kα ∩ bd(S). Notice that K̂α is a nonempty

closed subset of bd(S). By compactness, there is a kα < ∞ such that K̂α ⊂ Dkα . Let

Kk =
⋃
{Kα|kα = k} =

⋃
K̂α⊂Dk Kα. Finally, let xk = lub{π1(Kk)}.

We will now use Theorem 1.5 and the metrizability of bd(S) to show that {xk}j<∞ is

uncountable, a contradiction. Let b ∈ (a1, 1). We claim that there exists j < ∞ such that

xk ∈ (b0, b1). Let E = M ∩ ([b1, 11]×
∏n
i=2 L), F = {~a}, U = (b0, 11]×

∏n
i=2 L, and V = O.

Then by Theorem 1.5, there exists A, B, and C, closed subsets of Ln × [0, 1]∞ such that
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M = A∪B∪C, E ⊂ A, F ⊂ C, A∩B ⊂ (V −F ), B∩C ⊂ (U −E), and A∩C = ∅. Notice

that A ∩ V , B ∩ V , and C ∩ V are each subsets of S1
0 . Let Â = A ∩ bd(S), B̂ = B ∩ bd(S),

and Ĉ = C ∩ bd(S). Refer to Figure 3.5.

Figure 3.5: Proposition 3.2: Convergent Sequence in P 1
0

Notice that Ĉ and (Â∪B̂) are disjoint closed subsets of bd(S). By normality there exists

disjoint open sets W1 and W2 such that Ĉ ⊂W1 and (Â∪B̂) ⊂W2. By compactness, we may

assume that there exists k <∞ such that W1 = Dk. Then Ĉ ⊂ Dk and (Â∪ B̂) ⊂ Dk = ∅.

By Theorem 1.4, there exists a component of C intersecting both {~a} and B∩C as depicted

in Figure 2.4.

Since I ⊂ C, I ∩ [(Ln× [0, 1]∞)−O] is a subset of Kk. Since B ∩C ⊂ (b0, b1)×
∏n
i=2 L,

we have that xk > b0. Now Kk ∩ Â = ∅ implying that Kk ∩ E = ∅. Thus xk < b1. Thus

xk ∈ (b0, b1). So for each b ∈ (a1, 1) there is a k <∞ such that xk ∈ (b0, b1). Thus {xk}k<∞

is uncountable, a contradiction. Therefore there exists a sequence in M ∩P 1
0 converging to

~a.

Similarly, if ~a ∈M∩S1
1 , then we can use K irreducible from ~a to {00}×

∏n
i=2 L× [0, 1]∞

to show that (0, a1) is countable, a contradiction. Therefore there exists a sequence inM∩P 1
1

converging to ~a.

For the next proposition we will need a direct corollary of Proposition 3.1. Recall that

the “jth” tube is defined as P j =
∏

1≤i<j(a
i
0, a

i
1)× L×

∏
j<i≤n(ai0, a

i
1)× [0, 1]∞.
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Figure 3.6: Proposition 3.2: Convergent Sequence and the Component I

Corollary 3.1. If M is a nonmetric hereditarily indecomposable subcontinuum of Ln ×

[0, 1]∞, then M ∩ P j can be embedded in Z × [0, 1]∞.

Proof. Let M be a nonmetric hereditarily indecomposable subcontinuum of Ln × [0, 1]∞,

and choose j = 1 to simplify notation. We claim that f : (M ∩ P 1) → (Z ×
∏n
i=2(0, 1))

defined by f(a1
y1 , a

2
y2 , · · ·, a

n
yn , ~x) = (a1

y1 , y
2, · · ·, yn, ~x) is an embedding. Since P 1 = L ×∏n

i=2(ai0, a
i
1)× [0, 1]∞, we have that f is an embedding if it is well-defined. By Proposition

3.1, since yi 6∈ {0, 1} for 1 < i ≤ n, we have y1 ∈ {0, 1}. Hence a1
y1 ∈ Z, and f is

well-defined.

Now we can use Proposition 3.2 and Corollary 3.1 to restrict nonmetric hereditarily

indecomposable subcontinua of Ln × [0, 1]∞ even further.

Proposition 3.3. If M is a nonmetric hereditarily indecomposable subcontinuum of Ln ×

[0, 1]∞, and p ∈M ∩ P j, then α(p) is separable.

Proof. Let M be a nonmetric hereditarily indecomposable subcontinuum of Ln × [0, 1]∞,

and choose j = 1 to simplify notation. Choose p ∈ M ∩ P 1. Let U = M ∩ P 1. Then U

is an open neighborhood of p in M . Let B be a countable basis for
∏n
i=2(ai0, a

i
1) × [0, 1]∞,
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B0 be a countable basis for [00, 01) ×
∏n
i=2(ai0, a

i
1) × [0, 1]∞, and B1 be a countable basis

for (10, 11] ×
∏n
i=2(ai0, a

i
1) × [0, 1]∞. Define G = {(q0, r1) × B|q < r, q, r ∈ Q and B ∈

B}∪{L×B|B ∈ B}∪B0 ∪B1. Notice that G is a countable collection of open subsets of U .

To use Theorem 1.7, we will need to show that for each H ⊂ K ∈ α(p) such that H 6= K,

there is a G ∈ G such that Ḡ ∩H = ∅ and G ∩ (K −H) 6= ∅.

Let H ⊂ K ∈ α(p) such that H 6= K. Now H and K are subcontinua of M implying

that they are each hereditarily indecomposable. Hence H is nowhere dense in K. Thus

there exists k ∈ U ∩ (K−H) and there exists V , an open neighborhood of k in U , such that

V ∩H = ∅. By Proposition 3.1, k cannot be contained in a metric cube, thus k is contained

in a face. Now we will use a basis for P 1 to find a G ∈ G satisfying the desired properties.

Notice that either K is metric or nonmetric. If K is metric, then by Proposition 3.1 K

cannot intersect any metric cube. So K ⊂ {xy} ×
∏n
i=2(ai0, a

i
1) × [0, 1]∞ where y ∈ {0, 1}.

Hence there exists B ∈ B such that k ∈ B × {xy} ⊂ B̄ × {xy} ⊂ V . Let G = B × L. Then

G ∈ G, k ∈ G ∩ (K −H), and Ḡ ∩H = ∅.

Figure 3.7: Proposition 2.3: K is metric.

Now suppose that K is nonmetric. Again, by Proposition 3.1, k ∈ {xy}×
∏n
i=2(ai0, a

i
1)×

[0, 1]∞ for x ∈ [0, 1] and y ∈ {0, 1}. This gives rise to three cases:

1. k ∈ {00} ×
∏n
i=2(ai0, a

i
1)× [0, 1]∞,
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2. k ∈ {11} ×
∏n
i=2(ai0, a

i
1)× [0, 1]∞, or

3. k ∈ [01, 10]×
∏n
i=2(ai0, a

i
1)× [0, 1]∞.

Case 1

Suppose k ∈ {00} ×
∏n
i=2(ai0, a

i
1)× [0, 1]∞.

Then k ∈ V ∩ ([00, 01) ×
∏n
i=2(ai0, a

i
1) × [0, 1]∞). So there exists B ∈ B0 such that

k ∈ B ⊂ B̄ ⊂ V ∩([00, 01)×
∏n
i=2(ai0, a

i
1)×[0, 1]∞). LetG = B. ThenG ∈ G, k ∈ G∩(K−H),

and Ḡ ∩H = ∅.

Figure 3.8: Proposition 2.3: Case 1

Case 2

Suppose k ∈ {11} ×
∏n
i=2(ai0, a

i
1)× [0, 1]∞.

Similar to Case 1, there is a B ∈ B1 such that k ∈ B ⊂ B̄ ⊂ V ∩((10, 11]×
∏n
i=2(ai0, a

i
1)).

Let G = B. Then G ∈ G, k ∈ G ∩ (K −H), and Ḡ ∩H = ∅.

Case 3

Suppose k ∈ [01, 10]×
∏n
i=2(ai0, a

i
1)× [0, 1]∞.

Then k is in a metric face, and V is a nonmetric open subset of U . Since P 1 = L ×∏n
i=2(ai0, a

i
1)×[0, 1]∞, we have ab, cd ∈ L such that a < c andW open in

∏n
i=2(ai0, a

i
1)×[0, 1]∞

such that k ∈ (ab, cd)×W ⊂ V . By Propositions 3.1 and 3.2, k is on an unisolated face. So

there exists k̂ ∈ (a1, c0)×W ⊂ V . Now there exists B ∈ B and q, r ∈ Q such that B̄ ⊂W
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Figure 3.9: Proposition 2.3: Case 2

and a < q < r < c. Let G = (q0, r1)×B. Then G ∈ G, k̂ ∈ G ∩ (K −H), and by Corollary

3.1 Ḡ = [q1, r0]× B̄ = (q0, r1)× B̄ ⊂ V . Hence Ḡ ∩H = ∅.

Figure 3.10: Proposition 2.3: Case 3

Hence we have satisfied the hypothesis for Theorem 1.7. Therefore α(p) is separable.

In other words, if M is a nonmetric hereditarily indecomposable subcontinuum of Ln×

[0, 1]∞, it must travel along the “edges” of a metric subspace, where an “edge” constitutes

the subspace of Ln × [0, 1]∞ which restricts two of the Lexicographic coordinates to single

points of the form xy for y ∈ {0, 1}.
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Chapter 4

Conclusions for the Product of Three Lexicographic Arcs

and the Product of Two Lexicographic Arcs

with the Hilbert Cube

Our first conclusion follows from the results of Chapter 2. There we discovered that

adding nonmetrizability restricts a hereditarily indecomposable subcontinuum of Ln from

intersecting metric cubes, or their faces. A nonmetric hereditarily indecomposable subcon-

tinuum must then travel along the edges of the metric cubes. In the case of L3, these edges

are arcs. This contradicts the hereditary indecomposability.

Theorem 4.1. If M is a hereditarily indecomposable subcontinuum of L3, then M is metriz-

able.

Proof. Let M be a hereditarily indecomposable subcontinuum of L3. Suppose that M is

nonmetric. We can assume that pi1(M) = L. Then by Theorem 1.4, there is an irreducible

subcontinuum of M from {00}×L×L to {01}×L×L. We will denote this subcontinuum

as K0. Now either K0 is metric or nonmetric.

Suppose that K0 is metrizable. Then there exists a and b ∈ [0, 1] such that K0 is a

subset of [00, 01] × [a0, a1] × [b0, b1]. By Proposition 2.3 M ∩ ((00, 01) × (a0, a1) × L) = ∅,

M ∩ ((00, 01) × L × (b0, b1)) = ∅, and M ∩ (L × (a0, a1) × (b0, b1)) = ∅. This implies

that K0 ∩ ((00, 01) × (a0, a1) × [b0, b1]) = ∅, M ∩ ((00, 01) × [a0, a1] × (b0, b1)) = ∅, and

M ∩ ([00, 01]× (a0, a1)× (b0, b1)) = ∅. In other words, each point of K0 has two coordinates

that are of the form x0 or x1. This implies, along with the fact that K0 is irreducible from

{00}×L×L to {01}×L×L, that π−1
1 ([00, 01])∩K0 contains [00, 01]×{ay}×{by} where y,

z ∈ {0, 1}. Hence K0 contains an arc contradicting the hereditary indecomposability of M .
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Therefore K0 is nonmetric. Thus it can be assumed that pi2(K0) = L. By Theorem 1.4

there exists an irreducible subcontinuum of K0 from [00, 01]×{a0}×L to [00, 01]×{a1}×L

for some fixed a ∈ [0, 1], say K1. So K1 is contained in [00, 01] × [a0, a1] × L which by

Theorem 3.1 means that K1 is metrizable. Hence by the same argument as in the case

that K0 was metrizable, we have that K1 contains an arc of the form {0y} × [a0, a1]× {bz}

for some fixed b ∈ [0, 1] and y, z ∈ {0, 1}. This in turn again contradicts the hereditary

indecomposability of M . Therefore M is metrizable.

The generalization in Chapter 3 was that instead of Euclidean cubes, our points were

replaced with Hilbert cubes. This means that each point is replaced with a space for which

all metric continua are embedded. The same argument as in L3 generalizes with a few

changes to L2 × [0, 1]∞.

Theorem 4.2. If M is a hereditarily indecomposable subcontinuum of L2 × [0, 1]∞, then

M is metrizable.

Proof. Let M be a hereditarily indecomposable subcontinuum of L2 × [0, 1]∞. Suppose

that M is nonmetric. We can assume that pi1(M) = L. Then by Theorem 1.4, there is

an irreducible subcontinuum of M from {1
2 0
} × L × [0, 1]∞ to {1

2 1
} × L × [0, 1]∞. We will

denote this subcontinuum as K0. Now either K0 is metric or nonmetric.

Suppose that K0 is metrizable. Then there exists a ∈ [0, 1] such that K0 is a subset

of [1
2 0
, 1

2 1
] × [a0, a1] × [0, 1]∞. By Proposition 3.1 M ∩ ((1

2 0
, 1

2 1
) × (a0, a1) × [0, 1]∞) =

∅ which implies that K0 ∩ ((1
2 0
, 1

2 1
) × (a0, a1) × [0, 1]∞) = ∅. By Proposition 3.3, M ∩

((1
2 0
, 1

2 1
) × L × [0, 1]∞) = ∅ and M ∩ (L × (a0, a1) × [0, 1]∞) = ∅. This implies that

K0 ∩ ((1
2 0
, 1

2 1
) × [a0, a1] × [0, 1]∞) = ∅, and K0 ∩ ([1

2 0
, 1

2 1
] × (a0, a1) × [0, 1]∞) = ∅. This

implies, along with the fact that K0 is irreducible from {1
2 0
}×L×[0, 1]∞ to {1

2 1
}×L×[0, 1]∞,

that π−1
1 ([1

2 0
, 1

2 1
])∩K0 contains [1

2 0
, 1

2 1
]×{ay}×{~z} where y ∈ {0, 1} and ~z ∈ [0, 1]∞. Hence

K0 contains an arc, contradicting the hereditary indecomposability of M .

Therefore K0 is nonmetric. Thus it can be assumed that pi2(K0) = L. By Theorem

1.4 there exists an irreducible subcontinuum of K0 from [1
2 0
, 1

2 1
]×{a0}× [0, 1]∞ to [1

2 0
, 1

2 1
]×
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{a1}×[0, 1]∞ for some fixed a ∈ [0, 1], say K1. So K1 is contained in [1
2 0
, 1

2 1
]×[a0, a1]×[0, 1]∞

which by Theorem 3.1 means that K1 is metrizable. Hence by the same argument as in the

case that K0 was metrizable, we have that K1 contains an arc of the form {1
2y
}×[a0, a1]×{~z}

for some fixed ~z ∈ [0, 1]∞ and y ∈ {0, 1}. This in turn again contradicts the hereditary

indecomposability of M . Therefore M is metrizable.

Theorem 4.2 is the beginning of the next step to showing that the product of four

Lexicographic arcs contains only metric hereditarily indecomposable subcontinua. From

there the author is working on establishing a inductive argument to show the same for all

finite products of Lexicographic arcs.
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Appendix A

Notes on the style-file project

These style-files for use with LATEX are maintained by Darrel Hankerson1 and Ed
Slaminka2.

In 1990, department heads and other representatives met with Dean Doorenbos and
Judy Bush-Crofton (then responsible for manuscript approval). This meeting was prompted
by a memorandum3 from members of the mathematics departments concerning the Thesis
and Dissertation Guide and the approval process. There was wide agreement among the
participants (including Dean Doorenbos) to support the basic recommendations outlined in
the memorandum. The revised Guide reflected some (but not all) of the agreements of the
meeting.

Ms Bush-Crofton was supportive of the plan to obtain “official approval” of these style
files.4 Unfortunately, Ms Bush-Crofton left the Graduate School before the process was
completed. In 1994, we were revisiting some of the same problems which were resolved at
the 1990 meeting.

In Summer 1994, I sent several memoranda to Ms Ilga Trend of the Graduate School,
reminding her of the agreements made at the 1990 meeting. Professors A. Scottedward
Hodel and Stan Reeves provided additional support. In short, it is essential that the Grad-
uate School honor its commitments of the 1990 meeting. It should be emphasized that Dean
Doorenbos is to thank for the success of that meeting.

Maintaining these LATEX files has been more work than expected, in part due to contin-
uing changes in requirement by the graduate school. The Graduate School occasionally has
complete memory loss about the agreements of the 1990 meeting. If the Graduate School
rejects your manuscript based on items controlled by the style-files, ask your advisor to
contact the Graduate school (and copy to me) to urge cooperation.

Finally, there have been several requests for additions to the package (mostly formatting
changes for figures, etc.). While such changes are not really part of the thesis-style package,
it could be beneficial to collect these options and distribute with the package (making
it easier on the next student). I’m especially interested in changes needed by various
departments.

1Mathematics and Statistics, 221 Parker Hall, 844-3641, hankedr@auburn.edu
2Mathematics and Statistics, 218 Parker, slamiee@auburn.edu
3Originally, the memorandum was presented to Professor Larry Wit. A copy is available on request.
4Followup memoranda gave a definition of “official approval.” Copies will be sent on request.

32


