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A knowledge of real time traffic density on different roads has many applications such

as real time navigation for driver, designing efficient vehicular routing protocol and building

fully autonomous vehicles. Forming clusters of vehicle is the first step towards achieving

these goals. Once clusters are formed, distributed servers could be built which would

collect and store all the information. Querying the distributed servers would give density

information at various roads. We propose a clustering protocol, RSDCP which adapts

dynamically to high mobility of vehicles. Our protocol is able to form stable clusters by

choosing the cluster head based on relative speed. To demonstrate this, we compare it

with two other protocols, one which has same clustering mechanism as that of our protocol

but is based on id instead of relative speed (IDDCP) and the second is a simple clustering

protocol (IDS) where cluster head is elected periodically based on id, similar to the one

proposed by Gerla et al. [1]. We did the analysis from three different perspectives, in terms

of time, clustering, and network packets. For evaluating in terms of time, time spent as

part of cluster was measured. From clustering perspective, number of clusters, and number
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of vehicles per cluster were measured. To estimate the network performance, number of

protocol packets, and application packets transmitted were measured. Results show that

in RSDCP, vehicles are part of cluster 30% longer than IDS and nearly 5% longer than

IDDCP. RSDCP on almost all the test scenarios has higher average number of clusters as

well as higher number of vehicles per cluster. Comparing the overall packet overhead, we

notice that IDS has nearly 50% higher overhead than RSDCP while IDDCP has nearly 10%

higher overhead than RSDCP.
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Chapter 1

Introduction

Starting from carriages of olden days to present day supersonic aeroplanes, man has

made numerous inventions to make his travel comfortable and easy. Among these, roadways

are the most widely used means of transportation. The Transportation Statistics Annual

Report [2] published by Bureau of Transportation Statistics presents many statistics which

highlight the importance of roadways in a comman man’s life in the United States. If

laid end to end, roads in United States would circle the earth 160 times. In 2001, the

average number of vehicles per household was 1.90, higher than average licensed drivers per

household, 1.75. In 2005, 88.4 percent of the workforce used cars to drive to their work

everyday. According to the 2005 Urban Mobility Report [3], in 2003 congestion caused 3.7

billion hours of travel delay and 2.3 billion gallons of wasted fuel, an increase of 79 million

hours and 69 million gallons from 2002 to a total cost of more than 63 billion dollars. All

these indicate that there is a need for better design of vehicles and road infrastructure. In

order to achieve this, the concept of Intelligent Vehicles was envisioned by pioneers like

Bishop and Hahn.

Bishop and Hahn have described various problems in Intelligent Vehicles and the meth-

ods adopted to solve them. In [4], Hahn predicts the roadmap of Intelligent Vehicles as

shown in Figure 1.1. It can be seen that initially the focus is on developing mechanisms

to help the driver. Forward collision warning, lane departure warning, headway control,

automatic braking, obstacle warning, drowsiness warning system, and nighttime pedestrian

warning are some of the research which falls under this category. Many companies such as
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Figure 1.1: Intelligent Vehicles Roadmap [4]

Honda, Nissan, and Toyota are making efforts to construct reliable mechanical control sys-

tem to have a safe driving experience [5]. As these mature, vehicles can start co-operating

with their neighbors by exchanging mobility parameters and driver intentions. The ultimate

goal is to allow vehicles to function autonomously. The University of Korea, the Mechanical

Engineering Laboratory in Japan, the University of Pavia (Italy), Ohio State University and

the University of California are making attempts to develop fully automated cars [5].

It is envisioned that the vehicles would communicate with each other using wireless

technologies [6]. In order to exchange information with the neighbors, good protocol design

is needed. If every vehicle starts to broadcast, there would be packet collisions leading to loss

of information. Instead, vehicles could form clusters and establish a protocol to exchange

information in an orderly manner. The concept of clustering has existed for a long time.

Clustering helps in efficient management of nodes, be it with respect to addressing scheme,

routing or load balancing [7]. Clustering also leads to a hierarchical organization so that

the system becomes managable even when scaled to large numbers. In our present work, we

propose a Dynamic Clustering Protocol based on Relative Speed, RSDCP which is suitable
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for Intelligent Vehicles. We show that using this clustering algorithm, density information

at various places can be collected. RSDCP forms stable clusters thereby making it easy for

the application to retrieve the density information.

In Chapter 2, we discuss the motivations for our work and describe its relevant appli-

cations in Intelligent Vehicles. We give an overview of research related to our clustering

protocol in Chapter 3. In Chapter 4 we discuss the design principles that guided the devel-

opment of our protocol and describe it in detail in Chapter 5. Chapters 6 and 7 explain the

simulation and performance evaluation of the clustering protocol and a simple application

running on it. We conclude our research and discuss future work in Chapter 8.
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Chapter 2

Motivations and Applications

In this chapter we discuss the motivation for proposing this new scheme of clustering

as well as its potential applications.

2.1 Motivation

Many clustering protocols [1] [7] [8] [9] [10] [11] have been proposed in the past. Only

some of them [8] [9] [10] [11] accounted for mobility of the nodes. These clustering proto-

cols were proposed for MANETs where mobility is slow and non-continuous. In a traffic

scenarios, the vehicles are in constant motion and at times reach high speeds of 70 miles per

hour (or 31.11 meters per second). An algorithm catering to these needs should give high

importance to mobility and should have less overhead to achieve real time performance.

Two vehicles could be in the communication range of one another but could be travelling

in opposite directions. In order to give a candid picture of the traffic pattern, it is required

to distinguish vehicles moving in the same direction from vehicles moving in the opposite

direction. None of the protocols mentioned previously have this “sense of direction”. Once

nodes are clustered and a cluster head is elected, density information about the cluster can

be collected at regular intervals by cluster head. Querying the cluster head would give the

density information of the area it covers.
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2.2 Application

Forming clusters is the first step towards building a distributed service which would

give density information of vehicles at various places. The potential applications of this

distributed service are explained in the subsequent sections. The layer in the network stack

which incorporates this distributed service is called Distributed Service layer. Its position in

the network stack is as shown in Figure 2.1. It can be seen in the figure that the Distributed

Service layer can be used by network layer as well as application layer. In the architecture

Figure 2.1: Distributed Service Layer in the network stack

of the distributed service there are several distributed servers called Distributed Density

Servers (DDS) which hold information about density at various places. In order to realize

this architecture (see Figure 2.2), the following problems have to be addressed:

1. Forming Clusters: Clusters have to be formed with a cluster head which collects data

from all other vehicles and stores them temporarily.

5



2. Choosing DDS: Some of the cluster heads could become DDS which would store all

the information of a given area. An algorithm must be designed that distributively

decides certain cluster heads to take up the role of DDS.

3. Exchanging Information among DDS: Cluster heads would have partial data. These

have to be aggregated and stored in different DDS. A mechanism has to be designed

to achieve this.

4. Designing Query Protocol: When a vehicle needs density information of a particular

area, it has to send a query to the DDS. DDS would respond back with the desired

information. The challenge is that the querying vehicle would have moved after trans-

mitting the query. A protocol has to be designed such that the query and reponse

works efficiently as well as reliably.

The present work attempts to solve the first problem. The rest of the problems are typical

to a Location based services or Moving Object database. In the past there has been much

research [12] [13] [14] [15] which has proposed frameworks to build a moving database.

Using these as starting points, the above mentioned problems can be addressed. Venturing

into the domain of Mobile agents could provide solutions for third problem. Likewise, [16]

which attempts to address the problems associated with querying these databases, can be

used to solve the fourth problem.

2.2.1 Routing in Vehicular Ad hoc Networks

Vehicular Ad hoc Networks have many applications [17]. For example, it could be used

to query the nearest department stores which have specific products for sale. It could be used

to find the nearest parking lot with an empty parking space. To realize these applications,
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Figure 2.2: Distributed Density Servers

query packets would be sent by vehicles which has to routed to the destination and the reply

has to routed back to the vehicles. Routing in vehicular ad hoc network have some unique

problems compared to MANET. In a vehicular ad hoc network, vehicles travel through

definitive paths (i.e streets). While routing packets, there could be scenarios where the

shortest paths may be sparsely populated with vehicles as shown in Figure 2.3. In such

scenarios, it would be better to route through longer paths with higher density of vehicles

for increased reliability and decreased delay.

Routing protocols which address these problems have been proposed in [18] and [17]. In

[18], Trajectory Based Forwarding (TBF) was proposed for routing packets. TBF specifies
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Figure 2.3: Unique scenario seen in Vehicular Ad hoc Network [17]

the routing path in the form of parametric equations. By combining the proposed archi-

tecture with TBF, a better routing algorithm could be devised. The proposed architecture

would give the information about density of vehicles at various places and their average

speed. Using this information, a source can choose the denser path and encode the trajec-

tory in the packet. In [17], Vehicle-assisted Data Delivery (VADD) protocol was proposed.

In [17], VADD is shown to outperform conventional routing protocols such as DSR and

GPSR. The main assumption of VADD is that density information will be preloaded in the

vehicle. This has certain drawbacks. For example if there is an accident, then the density

and average speed of the vehicles in that road would be different from the preloaded one.

Instead, using on-the-fly density information got from the proposed architecture would lead

to more informed routing decision thereby achieving higher delivery ratio and lower delay.
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2.2.2 Collecting Real-time Traffic Information

The density of vehicles varies with time and day of the week. In case of an accident

or an emergency which blocks the roads, the traffic pattern would vary drastically from the

usual pattern observed. A real-time knowledge of density and average speed of vehicles in

various roads can help a driver to navigate through the shortest time route considering the

present traffic conditions. Currently, websites such as Google [19], Yahoo [20], Microsoft

[21] are offering services which attempts to give the real-time traffic information. Usually

data is collected from road sensors and taxi fleets and sent to a centralized server [22]. In

the server, data is analyzed and results are made available in a simple form through web

access. Google Maps [19] can only be run on certain mobiles [23]. In scenarios where the

driver has a mobile capable of running Google Maps, data could be received while driving

also. There are certain drawbacks of the current system. Firstly, these services are available

only in selected major cities of the United States. Secondly, these services are available on

the internet only. The driver has to look up on the internet before starting the trip and

by the time he or she starts to travel, the information could have changed. Instead, if

a mobile is used to access the internet and get the information, it increases the load on

cellular infrastructure. Then, cellular service providers have to constantly upgrade their

infrastructure. Thirdly, traffic data collected is first sent to a server where it is analyzed

and then made available on the internet. This information could be old as compared to

on-the-fly query and reply. In the proposed architecture all these problems could be solved.
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2.2.3 Adding other services

By using the proposed clustering protocol and the distributed service architecture,

other services could also be added. For example using this methodology, a location service

could be built. In [24] [25] [26], frameworks are proposed to build location servers. In

the proposed architecture, cluster heads could collect location information from its cluster

nodes and send it to distributed servers where it could be maintained. Whenever the source

wants location information of the sink, then it can query these servers.

2.2.4 Building fully automated vehicles

As indicated in Figure 1.1, the ultimate goal of Intelligent Vehicles is to build fully

automated vehicles. This can be achieved when vehicles co-operate with each other. The

concept of cooperative driving was first presented by JSK (Japans Association of Electronic

Technology for Automobile Traffic and Driving) in the early 1990s [6]. Since then, research

has been carried out in feasibility studies such as California’s PATH project, the European

Unions Chauffeur project, and Japans Demo 2000 Cooperative Driving System [6]. In

order to achieve co-operation, vehicles should exchange their status information with other

vehicles. Using the framework of the distributed service architecture, status information of

the vehicles could be exchanged to build a fully autonomous vehicle. Autonomous vehicles

not only reduces burden of the driver but also increases the efficiency of fuel as there would

be lesser delays in the traffic.
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Chapter 3

Related Work

3.1 Lowest ID and Highest Connectivity based clustering

Gerla et.al [1] proposed one of the foremost work on clustering in ad hoc networks.

It aimed at clustering wireless stations deployed for emergency disaster relief or battlefield

communication. Two schemes were proposed by Gerla et.al. The first scheme was based on

lowest node id, and the second scheme was based on higest connectivity (degree). In both

the schemes, all the nodes periodically broadcast the list of nodes they can hear. In the

first scheme, the node with lowest id in its neighborhood becomes the cluster head. In the

second scheme, the node with highest number of neighbors becomes the cluster head and

in case of a tie, the node with lowest id becomes cluster head. The proposed schemes were

simple but not suitable for scenarios where nodes are mobile.

3.2 MOBIC

In [8], MOBIC, a clustering algorithm based on the mobility metric was proposed for

MANETs. In this work, it is assumed that power level detected at the receiving node is

indicative of the distance between transmitting and receiving node pairs. At the start of

the clustering process, each node sends two “hello” messages to its neighboring nodes to

determine whether they are moving towards or away from it. The relative mobility metric

for a node Y with respect to node X is defined as,

M rev
Y (X) = 10log10(

RxPrnew
X→Y

RxProld
X→Y

) (3.1)
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where,

RxPrnew
X→Y refers to the power level received in the second hello message

RxProld
X→Y refers to the power level received in the first hello message

If RxPrnew
X→Y is less than RxProld

X→Y , then M rel
Y (X) will be negative indicating that X is

moving away from Y. On the other hand, if RxPrnew
X→Y is greater than RxProld

X→Y , then

M rel
Y (X) will be positive indicating that X is moving towards Y. After calculating the

pairwise relative mobility metric for each neighboring node, the aggregate relative mobility

metric is calculated as a variance of the pairwise relative mobility metric as follows,

MY = var0(M rel
Y (X1),M rel

Y (X2),M rel
Y (X3), . . . ,M rel

Y (Xn)) (3.2)

A low aggregate mobility metric (M) is desired as it indicates that the node is relatively

stationary with respect to its neighboring nodes.

The clustering procedure starts by first sending two hello messages as stated above and

calculating the value of M. All the nodes then broadcast their M values to their one-hop

neighbors every “Broadcast Interval” period. If a node has the lowest value of M among

all its neighbors, then it changes the status to cluster head, otherwise it declares itself as

cluster member. In case more than one node is potential cluster head, then the node id

is used to resolve the conflict. Movement of cluster members to different clusters does not

trigger reclustering.

In MOBIC, difference in the power level received between successive hello messages is

used to determine if a node was moving towards or away from each other. In the paper, it

is also mentioned that power level could be affected by various external factors such as tree,

buildings and landscape. Hence, in traffic scenarios where external factors change rapidly

12



with place and time, using MOBIC may not be viable. In our proposed protocol we do not

make any decision based on power levels.

3.3 TMPO

In [9], the Topology Management by Priority Ordering (TMPO) algorithm is used to

form clusters in order to build a backbone infrastructure. Since TMPO is designed for

ad hoc networks, energy becomes an important criterion. In TMPO, nodes communicate

information about all their one-hop neighbors to their neighbors. This information is used

to calculate the priority of each node in the two-hop neighborhood. A node then makes a

decision to become cluster head either if it has the highest priority in its one-hop neigh-

borhood or if it has the highest priority in the one-hop neighborhood of one of its one-hop

neigbhors. The node priorities are calculated based on three components, node id, present

time, and a “Willingness” value. The Willingness value for a node i is defined as a function

of energy level and speed of the node as follows,

Wi = 2log2(Ei∗c1)log2(si+c2) (3.3)

where,

Wi is the Willingness value,

Ei is the remaining energy in the range [0, 1),

si is the speed in meters per second,

c1 and c2 are constants with values 0.9 and 2 respectively. These constants are used to

eliminate boundary conditions in the logarithmic operations.

13



The logarithmic operation on the speed and remaining energy ensures that the willing-

ness value is high for high energy and low speed while it is close to zero for low energy and

high speed.

In order to distribute the role of cluster head fairly among nodes, the priorities of

nodes change periodically, triggering re-election of cluster head. The priority of each node

is recomputed asynchronously so as to avoid sudden loss of the old network states. The

time to recompute priority for a node is determined as follows,

t = kT + bHash (i) .T c (3.4)

where,

t is the current time,

i is the node id,

k = 0, 1, 2 . . .,

T is the priority recomputation period,

Hash is a pseudo-random number generator that produces a uniformly distributed random

number over range [0, 1).

Since all the nodes would have all the information about its one and two hop neighbors,

each node determines locally the priority of its neighbors. The priority of a node is calculated

as follows,

i.prio = Hash (k ⊕ i) .Wi ⊕ i (3.5)

where,

i, k,Hash are the same as used in Equation 3.4,

14



Wi is the Willingness value calculated from Equation 3.3.

⊕ sign is designated to carry out the bit-concatenation operation on its operands and has

lower order than other operations.

After doing the above calculation if a node determines that it is the cluster head it can

take up the role because its neighbors also are running the same algorithm using the same

information.

TMPO is based on the assumption that all the nodes will be time synchronized which

is not possible in all scenarios. The Willingness metric in TMPO makes use of absolute

speed of the node. This is a sub-optimal metric as there could be scenarios where nodes

are travelling at high speeds in the same direction. Though they could form stable clusters,

using absolute speed would reflect that they are unstable. In RSDCP we do not require

time synchronization. RSDCP is based on relative speed which is a better metric.

3.4 (p, t, d)-clustering model

In [10], a (p, t, d)-clustering model is proposed for MANETs to support Quality of Ser-

vice (QoS). The model is based on intelligent mobility prediction that enables each node to

anticipate the availability of its neighbors. In order to implement the protocol, the concept

of virtual clusters is introduced. In virtual clusters, a geographical area under consider-

ation is divided into equal regions of circular shape such that given location information

each node can determine the virtual cluster it belongs to. Each virtual cluster has a unique

identifier which is based on its geographic location. Each node is supposed to have a com-

plete picture of the locations of virtual clusters. Once a node has the information regarding
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virtual clusters it can compute its residence time in each virtual cluster. This is achieved

by making use of a Mobility Prediction Model.

Every user tends to have favorite routes and habitual movement patterns. These factors

are exploited by the Mobility Prediction Model. This model, motivated by computational

learning theory, attempts to derive a probabilistic prediction of a particular node by utilizing

its accumulated movement history. In this model, each node is responsible for generating

and constructing a multiway tree or Mobility trie [27] in real time, depending on its move-

ment and time. This in turn will be used to predict the residence time in each virtual

cluster.

The clustering algorithm proposed in [10] is as follows. The cluster head broadcasts

every CH HELLO INTERVAL a “hello” message which has the virtual cluster id, virtual

cluster center, cluster radius, and neighbor-table (the set of cluster members). When a

node enters a virtual cluster and receives a hello message, then it returns a JOIN message

which includes its residence time within the current virtual cluster, its location information,

and its Mobility Trie corresponding to the next Tmt minutes. Tmt is a system parameter

which should be set to an optimal value. When a cluster head receives the JOIN message

relevant to its virtual cluster, it appends the node’s information into the neighbor-table.

The node should wait for two successive CH HELLO INTERVAL before retransmitting

JOIN message. The cluster head also exchange hello message among themselves. When

a cluster head realizes that it will become unavailable, it triggers “CH changeover event”

exactly tce seconds before it predicts to leave the virtual cluster. All the cluster members
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then calculate their Ω values as follows,

if dxk (t) 6= 0, Ωx = pxk

(
txk−tth
dxk(t)

)
otherwise Ωx = pxk

(
txk−tth
dmin

) (3.6)

where,

pxk is the state probability of node x stays in virtual cluster k,

txk is the residence time of node x in virtual cluster k,

tth is the threshold residence time,

dxk (t) is the distance between node x to the center of the virtual cluster,

dmin is the minimum value that dxk (t) can take.

Each node then sends its Ω values to the cluster head. Based on the information re-

ceived by the cluster head, a node with highest Ω value is chosen to be the next cluster

head. The cluster head also decides on two assistant cluster heads for reliability pur-

poses. The current cluster head then broadcasts this information using a SUCCESSOR

message. In case the cluster head does not send the hello message for two consecutive

CH HELLO INTERVALs, then the first assistant takes the role of cluster head. In case the

first assistant fails, the second assistant takes the role of cluster head. In case the second

assistant also fails, any node which first detects it sends a “CH changeover event” and acts

as the temporary cluster head.

(p, t, d)-clustering model is based on the assumption that the nodes will have a compre-

hensive knowledge of the area it operates in. This is a challenging task in scenarios where

there are multiple product vendors and users operating in different areas. In case of vehicles
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this gets complicated as they are mass produced and sold in different parts of the globe. In

RSDCP, no such pre-loaded knowledge is required.

3.5 EMAC

In [11], Efficient Management Algorithm for Clustering (EMAC) was proposed for

building an architecture based on clusters. Each cluster is of fixed size. Each node is

identified by a state, Ni(idnode, idCH ,Weight, Counter,N) where idnode is node identifier,

idCH is cluster head identifier, Weight is a parameter used to indicate the suitability of a

node for playing cluster head role, Counter is the number of nodes presently in the cluster

and N is the maximum number of nodes a cluster can have. The Weight parameter is

defined as follows,

Wi = a ∗∆i + b ∗ Ei + c ∗ Pi + d ∗ Si (3.7)

where,

a, b, c and d are the weighing factors and a+ b+ c+ d = 1,

∆i = |di −N | with di being the number of neighbors,

Ei is the remaining battery power,

Pi is the actual transmission power,

Si is the average speed until current time.

Apart from this, each cluster head maintains a CH table where information of other

cluster heads are stored as (idCH ,Weight). The cluster head broadcasts a hello message

which contains all this information.

When a new node is activated in the network, the following protocol is followed to

join a cluster. Initially, the node after scanning the channel for any activity, broadcasts
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a Join Request message to all cluster head in the communication range and waits for a

Welcome ACK or a Welcome NACK. When the node does not receive any reply or gets only

Welcome NACK from all cluster heads, it increases its transmission power and broadcasts

another Join Request. After a certain number of such attempts, it declares itself to be an

isolated node and waits for certain time period before attempting the procedure again. If the

node receives a Welcome ACK, then it waits for all cluster head responses before making

a decision. The node chooses a cluster head with least weight and sends a Join Accept

message. The cluster head then adds it to its table and sends a CH ACK message to

confirm. A re-election procedure is initiated by the cluster head if it finds that the new

node has a lower weight. In the re-election procedure, the cluster head calculates the weights

of all the nodes. Based on the weights, the number of nodes in the cluster and the power

level of the nodes, the cluster head selects which node will be the next cluster head. The

cluster head then transmits all the information about the cluster to the new cluster head

and notifies its member about the change using CH Change message.

EMAC considers mobility in the range of 0.83m/s to 2.77m/s which is very low com-

pared to vehicle speed which is in the range of 20m/s to 35m/s. Similar to TMPO, EMAC

considers the average speed and not the relative speed which is a better metric. EMAC

has a three way message passing (Join Request-Welcome ACK-Join Accept) that consumes

more time compared to two-way message passing (GET STATS-NODE STATS) adopted

in RSDCP.
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Chapter 4

Clustering Protocol Design

In this chapter we give a brief overview of the clustering protocol design and the

rationale behind each design decision.

4.1 Design Overview

RSDCP is dynamic because vehicles in the cluster change frequently due to high mobil-

ity. According to RSDCP, a cluster is a collection of vehicles with a leader called “Cluster

head”. Clusters formed in RSDCP are non-overlapping implying that a vehicle can be part

of only one cluster. The cluster head is always one hop away from all the vehicles in the

cluster. But all one hop neighbors of cluster head need not be part of its cluster. That is,

there could be a vehicle which is one hop neighbor of a cluster head but belongs to another

cluster. A vehicle could be in any of the following states: Un-clustered, Orphan, Election,

Cluster node and Cluster head. When a vehicle starts it would be in Un-clustered state.

A vehicle changes to Orphan state if it does not have a cluster head in the communication

range. When a group of vehicles in orphan state come within the communication range of

each other they enter Election state to choose a cluster head. The vehicle with best stability

factor is chosen as cluster head. Once cluster is formed, the vehicle chosen as cluster head

enters the Cluster head state while all other vehicles enter Cluster node state. Movement

of vehicle from one cluster to another does not trigger election. If cluster nodes are in the

communication range of two or more cluster head, they chose the cluster head with highest

stability factor. Un-clustered and Election states are cluster setup states since they lead
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to the formation of clusters and often last for only a short time period. Orphan, Cluster

Node and Cluster Head states are cluster maintainence states. Section 5.4 explains in detail

various states and their respective algorithms.

4.2 Design Decisions

4.2.1 Deciding on clustering nodes

Conventionally, the cluster head chooses the nodes that are part of its cluster. In our

protocol, a node decides which of the clusters it wants to join. In some clustering protocols

[11], the cluster head makes the decision by a three-way message passing. Firstly, a node

sends a join request to the cluster head. Secondly, the cluster head replies back accepting

the join request. Thirdly, the node sends a confirmation to the cluster head to actually be

added to the cluster. In our protocol, the nodes make the decision by two way-message

passing. Firstly, cluster head sends hello packet indicating its presence. If a node wants

to join that cluster, it replies back with its statistics. In a highly mobile scenario such as

vehicular communication, the topology changes rapidly. If a three way message passing

is adopted, there could be scenarios where, by the time the node sends confirmation to

the cluster head, it could have gone out of communication range. This could also lead to

scenarios where the time spent on joining a cluster would be more than the time spent as

part of cluster. In our protocol, these problems are minimized. Also, the number of packets

exchanged is reduced leading to better performance in terms of time taken to form clusters

and fewer packet collisions.
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4.2.2 Stability factor

Stability factor is the metric used to choose the cluster head. It is crucial for stable

cluster formation. As the protocol is designed for vehicular communication where there is

high mobility, stability factor should be based on speed. Taking absolute speed may not be

a wise decision. For example, there could be a group of vehicle travelling at high speeds.

Considering their absolute speed may reflect that they are unstable but taking relative speed

would show that they are stable which is true. This approach also has certain drawbacks.

Consider a scenario where there are three lanes and a group of cars are travelling with

different speeds as shown in the Figure 4.1. If clustering is purely based on relative speed,

then they could form clusters as indicated by the dotted line. Instead, if the number of

cluster nodes is also accounted for, then it could form one large cluster as indicated by

the solid line. In case of large clusters, lesser packets are required to collect information

from individual vehicles as well as there would be lesser points from where the information

collected has to be aggregated. RSDCP makes use of this idea and accounts for number of

cluster nodes for a slight trade off with relative speed.

Figure 4.1: Stability factor based on relative speed and number of neighbors

The stability factor is used in two instances. The first instance is when a node decides

on the cluster head to report to. When a node, x receives GET STATS packet from cluster
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head ch, it calculates stability factor with respect to the cluster head as follows,

Stability = α ∗ chn + β ∗ (log(rel speedmax)− log(|xspeed − chspeed|+ δ)) (4.1)

where,

α and β are constants,

δ is a constant with very low value in order to eliminate boundary conditions in the loga-

rithmic operation,

rel speedmax is the maximum relative speed achievable,

chn is the number of cluster nodes reporting to the cluster head,

chspeed is the speed of cluster head,

xspeed is the speed of cluster node.

By varying constants α and β, the contribution of the number of cluster nodes and

relative speed can be changed. It is always desirable to join cluster head with more nodes

as this leads to larger clusters. From the relative speed standpoint, it is always better to

have low relative speed. The relative speed factor should be such that, initially with small

change in relative speed, the factor should decrease by a large extent. In this way, a cluster

head with lesser relative speed is chosen. If a cluster head with higher relative speed has

to be chosen, then it has to make up the difference by having significantly more number

of cluster nodes. Care has to be taken to ensure that a cluster head with high relative

speed is not completely ignored. In order to achieve this goal, the relative speed should be

a difference of log of maximum relative speed and the relative speed with the cluster head

as shown in the Equation 4.1. A plot of value of relative speed factor with varying relative

speed is shown in Figure 4.2.
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Figure 4.2: Plot of variation of Relative Speed factor with change in Relative Speed

A second instance of the stability factor usage is when vehicles distributively choose

the cluster head during the election process. The stability factor should be consistent with

the previous instance. One way of accomplishing this is by calculating the stability factor

of each vehicle in the potential cluster head list assuming one of them is cluster head.

This would lead to computation complexity of O(n2) where n is the number of vehicles in

potential cluster head list. Instead, average speed can be computed and the stability of each

vehicle with respect to average speed can be found. The vehicle with the highest stability

can be chosen as cluster head. In this way complexity is reduced to O(n). Thus a vehicle x

in election state calculates the stability factor of vehicle y in its potential cluster head list

as follows,

Stability = α ∗ yneigh + β ∗ (log(rel speedmax)− log(|xavg speed − yspeed|+ δ)) (4.2)

where,

α, β, δ and rel speedmax are same as in Equation 4.1,

xavg speed is the average of speed of x and speed of its neighbors,
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yneigh is the number of neighbors of y,

yspeed is speed of y.

4.2.3 Election process

Cluster formation and cluster head election can be described mathematically by the

Minimum Dominating Set problem [9]. It is known that the Minimum Dominating Set

problem is NP-hard [9] [11] even when the complete network topology is available. As

a result we had to adopt three phases during election process. During the first phase,

each vehicle discovers its neighbors. In the second phase, vehicles exchange each others

information to build the potential cluster head list. Only in the third phase, vehicles decide

their cluster head. Once a vehicle knows that the cluster head it has chosen has become

cluster head, it is important to announce that it is not going to be cluster head to its

neighbors. Failing to do so leads to a cascading effect. Consider for example the scenario

in which a certain number of cars are involved in election as shown in Figure 4.3. It could

Figure 4.3: Cascading Effect example scenario

happen that C chooses E as potential cluster head and M and N chooses K as potential
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cluster head. But E and K could have chosen H as potential cluster head. C, M and N are

not aware of H as they are outside the communication range of H as shown in the figure.

So, if E and K does not indicate they have a cluster head, C, M and N would choose them

as cluster head and later realize that E and K are part of another cluster. They would have

to enter election state again to choose a new cluster head.

4.2.4 Mobility

As the proposed protocol is for vehicular communication it should be able to adapt to

high mobility. In this section we discuss various mobility scenarios and the methodology

adopted to handle them. While a vehicle is part of cluster, it could be in cluster head state

or cluster node state. In case any cluster node slows down or speeds up, the cluster head

would leave the decision to the cluster node to join another cluster or continue reporting to

it. In case the cluster head itself slows down or speeds up, ending up alone on the road, it

would change to orphan state. In case a cluster node slows down or speeds up such that it

is left alone on the road, it would switch to orphan state.

Many of the clustering algorithms consider mobility, but assume that nodes are sta-

tionary during the election process. It would be inappropriate to assume this if the nodes

are vehicles. RSDCP handles this problem in an efficient way. After the first phase of

election where the vehicles have exchanged hello packets, some of them may go out of

communication range of each other. During second phase, the actual statistics used for

election are exchanged. If a vehicle goes out of communication range during the second

phase, then it would not be able to send its statistics. Besides, the first phase messages

are used to find the number of neighbors which has lesser impact on the stability than the
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relative speed. Vehicles could also move out of communication range of each other after

phase two. This could have severe repercussions. A vehicle may choose another vehicle as

cluster head which is about to move out of its communication range. In order to solve this

problem, neighbors outside the tolerance range are discarded. Tolerance range is calculated

as a fraction of communication range. The fraction should be such that it ensures that the

vehicle stays in the communication range at least till the election ends. It can be statically

set or dynamically set based on the speed of vehicles.

4.3 Alternate Design

While designing the clustering protocol, some of the alternative methods were consid-

ered. In this section we explain one of them. Given a map, the area could be divided into

blocks. Vehicles from the same block forms a cluster. This is similar to the virtual cluster

concept proposed in [10]. A cluster head will be elected among them and will collect density

information. When the cluster head moves out of the block, it hands over the information

to a newly elected vehicle. As the vehicles are highly mobile, the hand off could be more

frequent. For example, if vehicles are travelling at 20 meters per second (45mph) and each

block is 250 meters (i.e. communication range), then a vehicle would be part of a cluster

for 13 seconds in the best case which is not desirable. If the block size is more than com-

munication range, then communicating with cluster head could be delayed as they have to

go through more than one hop. In case of discontinuity in the flow of vehicles, there could

be problems passing the density information from old cluster head to the new cluster head

of the block. For these reasons, the proposed protocol was chosen.
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Chapter 5

Dynamic Clustering Protocol Based On Relative Speed

In this chapter we describe in detail our proposed Dynamic Clustering Protocol based

on Relative Speed (RSDCP). Assumptions, the concept of “sensing direction”, and packet

types of RSDCP are discussed below following which the protocol is explained in detail.

5.1 Assumptions

The following assumptions were made while developing the proposed protocol,

1. Every vehicle has a unique id. This id could be generated from the electronic license

plate.

2. Every vehicle is equipped with GPS or has means to find its position and speed.

3. The wireless communication is symmetrical. This means if vehicle X transmits and

vehicle Y receives it, then if vehicle Y transmits, vehicle X would receive it.

5.2 Sensing Direction

The uniqueness of the proposed protocol is its ability to distinguish vehicles moving in

the same direction from vehicles moving in opposite direction. In order to achieve this, each

direction is given a different value as shown in Figure 5.1. The direction of vehicle is found

from the change in x and y co-ordinates as shown in Table 5.1. There are certain problems

which have been addressed using this scheme. Firstly, at a traffic signal, there could be

more than two roads meeting. Vehicles at the traffic signal should be able to distinguish
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Figure 5.1: Direction Assignment

vehicles moving in the same direction from vehicles moving in other directions. Secondly, in

two or more lane roads, vehicles would change lanes. The direction of vehicle would change

for few seconds during lane change. At that instance, other vehicles should not interpret it

as a vehicle in a different direction. There is a tolerance of 22.5 degrees on either side to

cater for this behavior (see Figure 5.1). In real world, there could be scenarios where the

angle between the roads could be smaller than 45 degrees. In this case, a balance has to be

struck between tolerance given for lane change and the number of directions detected.

5.3 Packet Types

Table 5.2 summarises the packet types used in the proposed clustering protocol. Direc-

tion is a field which appears in all the packets so that vehicles moving in a different direction

can be distinguished from vehicles moving in the same direction. GET STATS packet is
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∆x > 0 ∆y ≥ 0 0o ≤ arctan
(

∆y
∆x

)
≤ 22.5o direction = 0

∆x > 0 ∆y > 0 22.5o < arctan
(

∆y
∆x

)
≤ 67.5o direction = 1

∆x ≥ 0 ∆y > 0 67.5o < arctan
(

∆y
∆x

)
≤ 90o direction = 2

∆x < 0 ∆y > 0 90o < arctan
(

∆y
∆x

)
≤ 112.5o direction = 2

∆x < 0 ∆y > 0 112.5o < arctan
(

∆y
∆x

)
≤ 157.5o direction = 3

∆x < 0 ∆y ≥ 0 157.5o < arctan
(

∆y
∆x

)
≤ 180o direction = 4

∆x < 0 ∆y < 0 180o < arctan
(

∆y
∆x

)
≤ 202.5o direction = 4

∆x < 0 ∆y < 0 202.5o < arctan
(

∆y
∆x

)
≤ 247.5o direction = 5

∆x ≤ 0 ∆y < 0 247.5o < arctan
(

∆y
∆x

)
≤ 270o direction = 6

∆x > 0 ∆y < 0 270o < arctan
(

∆y
∆x

)
≤ 292.5o direction = 6

∆x > 0 ∆y < 0 292.5o < arctan
(

∆y
∆x

)
≤ 337.5o direction = 7

∆x > 0 ∆y < 0 337.5o < arctan
(

∆y
∆x

)
< 360o direction = 0

Table 5.1: Direction sensing

the hello packet broadcasted by cluster head at regular intervals. It contains the id and

speed of the cluster head and the number of cluster nodes currently reporting to the cluster

head. A GET STATS packet with number of cluster nodes field set to zero is broadcasted

by vehicles in the orphan state. In case the vehicles are beaconing at regular intervals as

part of network routing protocol (e.g. GPSR), GET STATS packet could be incorporated

into it, to lessen protocol overhead. The NODE STATS packet is the cluster node’s reply

for a GET STATS packet. Currently it contains the cluster node’s id and speed. If any

further services have to be added, then the corresponding information has to be added to

this packet and transmitted by the cluster node. MY STATS is similar to GET STATS

packet except that it contains more fields, the x, and y coordinates. MY STATS packet

is broadcasted during the election state to exchange information in order to determine the

cluster head in a distributed manner. MY STATS packet can be part of beaconing packets

30



as well. NOT CH packet contains only the id of the vehicle transmitting the packet. It

is used to announce to the neighbors that the vehicle has chosen some other vehicle as

cluster head and to remove its entry from the potential cluster head list. This prevents the

cascading effect explained in Section 4.2.3.

Packet Type State of Sender Contents
GET STATS (gpkt) Cluster Head /

Orphan
Node ID, Direction, Speed, Number of Clus-
ter nodes.

NODE STATS (npkt) Cluster Node Node ID, Direction, Speed.
MY STATS (mpkt) Election Node ID, Direction, X, Y, Speed, Number of

Neighbors.
NOT CH (nchpkt) Election Node ID, Direction.

Table 5.2: Packet Types

5.4 States

In [28], clustering protocol is explained by using state interaction which is intutive

and easy to implement using object oriented languages. Inspired from this work, we have

adopted a similar strategy. The state interaction diagram for our proposed clustering pro-

tocol is shown in Figure 5.2. The following sections explain in detail the algorithm for each

state.

5.4.1 Un-clustered State

When a vehicle starts from parking, it would first change to the un-clustered state. It

would remain in this state for un-clustered time period, tuc. During this time it would listen

to the wireless medium for GET STATS packet. On receiving a GET STATS packet from
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Figure 5.2: State Transition Diagram

a cluster head, it would switch to cluster node state, otherwise at the end of tuc it would

switch to orphan state. The algorithm for un-clustered state is shown in Algorithm 1.

Algorithm 1: Un-clustered State
Wait for time tuc

if gpkt is received AND gpktdir = idir AND gpktn > 0 then
icid = gpktcid
Enter Cluster Node state

else
Enter Orphan state

5.4.2 Orphan State

As the name suggests, a vehicle is in orphan state if there is no vehicle within its

communication range in the same direction. There are exceptions to this rule, for example, if
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the last vehicle in a road starts to lag behind the cluster head and goes out of communication

range of cluster head, then it would change its state to orphan. Though in this case there

would be vehicle(s) in its vicinity, they would be in cluster node state. In orphan state,

the vehicle transmits GET STATS packet at regular intervals of hello time period, th. The

number of cluster nodes field in this GET STATS packet will be 0. This field is used to

detect whether a GET STATS packet is sent by a cluster head or an orphan. If an orphan

receives a GET STATS packet from another orphan, then it triggers both of them to enter

election state. At any point, if an orphan receives a GET STATS packet from a cluster

head, then it switches to cluster node state.

Algorithm 2: Orphan State
Every th time send gpkt with gpktn = 0
if gpkt is received AND gpktdir = idir then

if gpktn = 0 then
Enter Election state

else
icid = gpktcid
Enter Cluster Node state

5.4.3 Election State

A vehicle enters this transient state to choose a cluster head and form clusters. When

two or more vehicles in orphan state come within the communication range of other(s), and

receive GET STATS packet from one of them, they enter election state. At any point in

election state, if a GET STATS packet is received from a cluster head, then the vehicle

withdraws from election process and changes its state to cluster node. There are three
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phases in the election state. The time period of each phase is election time period, te,

which could be same as hello time period th or different.

During the first phase, all the vehicles involved in election exchange GET STATS

packet. The GET STATS packet is used to calculate the number of neighbors. Each vehicle

broadcast MY STATS packets in the beginning of second phase. On receiving MY STATS

packet from neighbors each vehicle starts building the list of neighbors (nlist). While build-

ing the list of neighbors, MY STATS packet received from vehicles outside the toleration

range (see Section 4.2.4) are discarded. This is done to prevent a vehicle from choosing a

neighbor with high probability of moving out of the communication range anytime, as clus-

ter head. At the end of the second phase, a potential cluster head list (pcidlist) is formed

by sorting the neighbor list by descending stability factor value. If there are two or more

neighbors with same stability value, the vehicle with lowest id wins. The stability factor

is calculated using Equation 4.2. Section 4.2.2 explains in detail about stability factor and

the rationale behind it.

At the start of the third phase, if a vehicle finds that it has the highest stability factor

among its neighbors, then it would switch to cluster head state. Otherwise it would wait

for time period te. If it received any NOT CH packet (nchpkt) during this period, then it

would delete that neighbor from the potential cluster head list. After deleting the neighbor,

if a vehicle discovers that it is the most stable among its neighbors, then it switches to

cluster head state. At the end of third phase, the most stable neighbor would have been

chosen as cluster head and the rest would switch to cluster node state. The algorithm for

a vehicle in election state is shown in Algorithm 3.
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Algorithm 3: Election State
Start a timer
At any time, if gpktn > 0 AND gpktdir = idir then

icid = gpktcid
broadcast nchpkt
Enter Cluster Node state

for timer < te do
if gpktn = 0 AND gpktdir = idir then

ncounter = ncounter + 1

end
broadcast mpkt with mpktneigh = ncounter
for timer < 2 ∗ te do

if mpktdir = idir AND distance(i,mpktid) < TOL RANGE then
Add them to nlist

end
Add i to nlist
speedavg = average(gpktspeed, ispeed)
for 1 to n in nlist do

nlist[i]stability =
α ∗ nlist[i]neigh + β ∗ (log(rel speedmax)− log(|speedavg − nlist[i]speed|+ δ))
Add to pcidlist in descending order of stability

end
if pcidlist[1]id = iid then

delete pcidlist
Enter Cluster Head state

for timer < 3 ∗ te do
if nchpkt is received with nchpktdir = idir then

if nchpktid = pcidlist[j]id then
delete pcidlist[j]

if iid = pcidlist[1]id then
delete pcidlist
Enter Cluster Head state

end
icid = pcidlist[1]id
delete pcidlist
Enter Cluster Node state
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5.4.4 Cluster Node State

Vehicles in cluster node state report their mobility statistics to the cluster head at

regular intervals of hello time period, th. Unlike most other clustering protocol, in RSDCP

the cluster node decides which of the cluster heads it wants to report to based on the

stability factor. The stability factor of a cluster head with respect to a cluster node is

given by Equation 4.1. Whenever a cluster node receives GET STATS packet, it calculates

stability with respect to the cluster head transmitting GET STATS packet and stores it.

It replies back with a NODE STATS packet. A NODE STATS packet is transmitted after

a random small delay time (2 seconds) in order to prevent simultaneous transmission of

NODE STATS packets by other cluster nodes of the cluster, leading to packet collisions.

If a cluster node receives GET STATS packet from two cluster heads, it chooses the new

cluster head if the stability is found to be better than that of existing cluster head by a

factor of ω. The factor of ω is used to prevent frequent hand-off. To prevent replication of

data, cluster node also keeps track of the time it last sent NODE STATS packet. Suppose

a stabler cluster head is found, then it would transmit a NODE STATS packet only if it

has not transmitted the packet for the last th time period.

Not receiving GET STATS packet for time period th could imply that it has moved

out of communication range of cluster head. So it readily accepts any cluster head found

after that, regardless of the stability. If a cluster node does not receive GET STATS packet

for deadline time period, td, it assumes that there is no cluster head in its communication

range and switches to orphan state. The deadline time period could be n ∗ th where n > 2.

Consider a scenarios where distance between the cluster heads is slightly more than twice

the communication range. If a cluster node moves from one cluster to the other, it may
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miss GET STATS packet from both the cluster heads by fraction of a second. In that case

it would not receive GET STATS packet for 2 ∗ th time period. Consequently, it is safe to

have the value of n as greater than 2. Algorithm 4 shows the algorithm for cluster node

state.

Algorithm 4: Cluster Node State
Start a timer
if gpktdir = idir then

stability = α ∗ gpktn + β ∗ (log(rel speedmax)− log(|gpktspeed − ispeed|+ δ))
if timer < th then

if gpktcid = icid then
istability = stability
send npkt

else
if stability/istability > ω then

icid = gpktcid
istability = stability
if npkt not sent for th then

send npkt

reset timer
else if th < timer < td then

icid = gpktcid
istability = stability
send npkt
reset timer

if timer > td then
Enter Orphan state

5.4.5 Cluster Head State

The cluster head is responsible for collecting mobility statistics from its cluster nodes.

In order to achieve this, it sends a GET STATS packet at regular interval of hello timer

period, th. Cluster nodes which finds it to be stable, reply with mobility statistics. The
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cluster head collects and stores the statistics at the end of th. In case none of cluster nodes

reply, the cluster head assumes that it has lost all of them and changes its state to orphan.

The algorithm for cluster head state is shown in Algorithm 5.

Algorithm 5: Cluster Head State
for every time period th do

Store previously collected statistics
send gpkt

end
if npktdir = idir then

recalculate current statistics
if npkt is not received for th then

Enter Orphan state
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Chapter 6

Protocol Simulation

The proposed protocol was simulated on Network Simulator (ns-2). The following sec-

tions explain the details of the simulator environment and the method adopted to transform

the proposed design into a simulation.

6.1 Network Simulator (ns-2)

Network Simulator (ns-2) [29] branched out from the REAL network simulator in 1989.

ns-2 is an object oriented simulator, written in C++, with an OTcl interpreter as a fron-

tend. ns-2 uses two languages as it has two different kinds of tasks to achieve. Firstly, it

requires a system programming language to efficiently manipulate bytes, packet headers,

and implement algorithms that run over large data sets. Secondly, it has to vary parameters

or configurations, or quickly explore a number of scenarios. In these cases, iteration time

would be important. ns-2 meets both of the requirements by using two languages, C++

and OTcl. C++ is fast to run, rendering it suitable for detailed protocol implementation.

OTcl runs slower but can be altered quickly, making it ideal for simulation configuration

[30].

Simulation of vehicular communication is possible in ns-2 by creating mobile nodes with

wireless properties. While creating a node in the Tcl file, the physical layer and channel

type can be specified as wireless. The error models can also be chosen such that they are

as close to the real scenario as possible.
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6.2 Application

An application was designed to verify the protocol and have an estimate of the cost to

gather the density information. In the application, a QUERY packet can be sent by any

vehicle which needs the density information at various places in the network. It contains the

id of the querying vehicle and a timestamp. Vehicles in cluster head state which have the

aggregated information of all the cluster nodes would reply. Also, vehicles in orphan state,

election state, and un-clustered state reply back giving all the details to capture the exact

density of the area. The response to the query is sent by transmitting CLUSTER STATS

packet. It contains the id, x and y coordinates, speed (average speed in case its cluster

head), density, timestamp and timeout. The timeout option is added so that the data can

be discarded after certain period of time and a new query initiated. The application packet

types are shown in Table 6.1. The query and its response is implemented by using a simple

controlled flooding protocol with caching.

Packet Type State of Sender Contents
QUERY All Node ID, Time Stamp.

CLUSTER STATS Cluster Head /
Orphan /
Election /
Un-clustered

Node ID, Direction, X, Y, Average Speed,
Density, Timestamp, Timeout.

Table 6.1: Application Packet Types

6.3 Data Structures

The Tcl file used to run simulation specifies the communication type as wireless and

chooses the appropriate error model and communication range. The following is an extract

from the Tcl file depicting the configuration used:

40



set opt(chan) Channel/WirelessChannel
set opt(prop) Propagation/TwoRayGround
set opt(netif) Phy/WirelessPhy
set opt(mac) Mac/802_11
set opt(ifq) Queue/DropTail/PriQueue
set opt(ifqlen) 50
set opt(ll) LL
set opt(ant) Antenna/OmniAntenna

$ns_ node-config -adhocRouting gpsr \
-llType $opt(ll) \
-macType $opt(mac) \
-ifqType $opt(ifq) \
-ifqLen $opt(ifqlen) \
-antType $opt(ant) \
-propType $opt(prop) \
-phyType $opt(netif) \
-channelType $opt(chan) \
-topoInstance $topo \
-agentTrace ON \
-routerTrace ON \
-macTrace ON \
-movementTrace OFF

To simulate a vehicle, we created a new class IVAgent which was inherited from Agent

class and also contained a MobileNode object. IVAgent inherited virtual functions send

and receive from Agent class, used to send and receive packets from the MAC layer. The

MobileNode object is used to retrieve the mobility information of the vehicle. The vehicle

id is automatically set by the Tcl file. A set of timer objects are used for checking elapsed

time and taking suitable actions. Since a vehicle could be in any of the five states, IVAgent

encapsulates status information of all states. For example, IVAgent contains variables cid

and cid stability used in cluster node state only as well as variables density and

mean speed used in cluster head state only. A snapshot of IVAgent is shown below,
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class IVAgent : public Agent {
private:
......

MobileNode *node_; /* the attached mobile node */
nsaddr_t my_id_; /* node id (address) */
double my_x_; /* node location info */
double my_y_; /* obtained from the attached node */

/* Timer objects */
IVUnclusteredTimer unclustered_timer_;
IVHelloTimer hello_timer_;
IVElectionTimer election_timer_;

/* Timer periods */
double hello_period_;
double unclustered_period_;
double election_period_;

ClusterState node_state_; /* State of the vehicle */

/* Used in Election state only */
/* Used to store the neighbor list during first phase of election process */
IVNeighbors *nlist_;
/* Used to store the list of potential cluster heads during
* second phase of election process. */

IVNeighbors *pcidlist_;

/* Used in Cluster Node only */
nsaddr_t cid_; /* Cluster head id */
double cid_stability_; /* Cluster head stability */

/* Used in Cluster Head only */
/* Used to incrementally collect current statistics */
IVLocalStats local_stats_;
/* contains previously collected density information */
double density_;
/* contains previously consolidated average speed of cluster nodes */
double mean_speed_;

void turnon(); /* set to be alive */
void turnoff(); /* set to be dead */
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/* Timer handlers */
void electiontout(); /* election state time-out */
void unclusteredtout(); /* unclustered state time out */
void hellotout(); /* hello packet time out used in cluster

head, cluster node and orphan states */

/* Packet handlers */
void recvHello(Packet*); /* GET_STATS packet handler */
void recvStats(Packet*); /* NODE_STATS packet handler */
void recvElecStats(Packet *p); /* MY_STATS packet handler */
void recvNotCH(Packet *p); /* NOT_CH packet handler */

/* Function to send packets */
void hellomsg(); /* sends GET_STATS packet*/
void sendNodeStats(); /* sends NODE_STATS packet */
void sendNotCH(); /* sends NOT_CH packet */

.....

public:
IVAgent();

......

};

To aid easy manipulation of neighbor data during the election process, a separate class

called IVNeighbors was created. It has a doubly linked list containing data of each neighbor

in each item of the list. It also has id, x, and y coordniates of the vehicle it is part of. This

class provides member functions to add/delete neighbors and to perform operations on

neighbor’s information. The following is a snapshot of IVNeighbors,

class IVNeighbors {
private:
struct gpsr_neighbor *head_; /* Start of neighbor list */
struct gpsr_neighbor *tail_; /* End of neighbor list */
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int nbSize_; /* Number of neighbors */

nsaddr_t my_id_; /* my id */
double my_x_; /* my geographic information */
double my_y_;

/* find the entry in neighbor list according to the provided id */
struct iv_neighbor *getnb(nsaddr_t id);

/* delete the entry in neighbors list according to the provided id */
void delnb(nsaddr_t id);

.....

public:
IVNeighbors();
~IVNeighbors();

.....

/* return the number of neighbors */
int nbsize();

/* used to delete all neighbors */
void delall();
/* used to prepare pcidlist from nlist */
nsaddr_t calculateCH();
/* Add a neighbor during election process, first phase */
void newNB(struct hdr_dclus_getstats *ghh);
/* Add a neighbor during election process, second phase */
void newNB(struct hdr_dclus_mystats *ghh);
/* Delete a neighbor during election process, third phase */
nsaddr_t delnb(struct hdr_dclus_notch *gnh);

};

As mentioned before, timers are required to keep track of time elapsed since an event

occured and take suitable action when the time period exceeds certain limit. Currently, we

use three timer classes, IVUnclusteredTimer used for un-clustered state, IVHelloTimer

used for orphan, cluster node, and cluster head state, and IVElectionTimer for election
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state. These classes are inherited from TimerHandler class and thus have member functions

sched, resched and cancel to schedule and cancel the timers. Apart from these member

functions, these classes have the expire member function which is called on expiration of

the timer value. Given below is a snapshot of IVElectionTimer used in election state.

Note that it has variable round which is used to keep track of the phase in the election

state.

class IVElectionTimer : public TimerHandler {
public:
.....
IVElectionTimer(IVAgent *a) : TimerHandler() {a_=a; round = 1;}

protected:
virtual void expire(Event *e); /* Called when timer expires */
IVAgent *a_; /* linked to the vehicle object */
uint8_t round; /* used to keep track of the phase */

};

As explained in Section 5.3 and Section 6.2, there are four protocol packet types and two

application packet types respectively. Data structures are constructed such that they are

part of the payload of the packet transmitted. The following GET STATS packet structure

is an example of the packet structure used in the implementation.

struct hdr_dclus_getstats {
u_int8_t type_; /* packet type */
u_int8_t no_of_neighbors_; /* number of neighbors in orhpan state

or number of cluster nodes in
cluster head state */

u_int8_t dir_; /* direction */
nsaddr_t cid_; /* id of the vehicle */
double speed_; /* speed of the vehicle */
.....

};
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The primary goal of the clustering protocol is to collect density information by forming

clusters. The cluster head gets the information incrementally from each cluster node. We

developed a class IVLocalStats to collect the density information incrementally. Whenever

a cluster node reports, it recalculates density and average speed values using the member

function recalculate. At the end of hello time period th, the density and average speed

information is stored in density and mean speed member variable of IVAgent in the

cluster head. The IVLocalStats member variable values are re-initialized using reset

member function. The following gives a snapshot of IVLocalStats class,

class IVLocalStats {
public:
.....

IVLocalStats() { density = 0, mean_speed = 0.0;} /* Constructor */

/* Used to recalculate density and average speed */
void recalculate(double speed) ;

/* Used to retrieve current information */
double getLocalDensity() { return density; }
double getLocalSpeed() { return mean_speed; }

/* Used to re-initialize values */
void reset() { density = 0, mean_speed = 0.0; }

protected:
double density; /* Density value */
double mean_speed; /* Average speed value */

};
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6.4 Implementation

This section describes briefly the way data structures explained in Section 6.3 were

used to implement algorithms in Section 5.4. Since ns-2 is a discrete event-driven network

simulator [31], our protocol was implemented in it by using two main types of events. The

first event is the “timer expire event” triggered when a timer expires. The second event is

the “packet receive event” triggered when a packet is received.

When a vehicle starts, turnon function is called where any pre-requisite settings can

be made and suitable timers initiated. Once the timer expires, corresponding timer handler

functions are called where relevant actions can be performed. For example, once a vehicle

changes to election state, the election timer is started with timeout value te. Until it expires,

GET STATS packets are received. Once the timer expires, the corresponding timer handler

function, electiontout is called, signalling the end of the first phase. The MY STATS

packet is formed and broadcasted as explained in Algorithm 3. Similarly whenever vehicle

enters a state, corresponding timers are set, and on their expiration, suitable actions are

performed.

When a vehicle receives a packet, it first appears in the recv function of IVAgent

class. Based on the packet type, different packet handlers are called such as recvHello,

recvStats, recvElecStats and recvNotCH. In the packet handler, decisions are made based

on the state of the vehicle. For example, when a vehicle receives GET STATS packet, it is

first seen in recv function. In recv function, having detected it to be GET STATS packet,

recvHello packet handler is called. If the state of the vehicle is cluster head, it drops the

packet. If the state of vehicle is cluster node, then it makes a decision whether to send a

NODE STATS packet as explained in Algorithm 4. If the state is orphan, then it could
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either switch to election state or cluster node state as explained in Algorithm 2. If the state

is election, then it must add the information in the packet to neighbor list or change the state

to cluster node as explained in Algorithm 3. Each packet handler is developed in a similar

manner. There are also functions to create packets such as hellomsg, sendNodeStats and

sendNotCH. These in turn call send function to send it to lower layers.
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Chapter 7

Performance Evaluations and Results

In this chapter we explain the methodology of performance evaluation and discuss the

results.

7.1 Protocol Parameters

In Section 5.4 we explained the algorithm containing a number of protocol parame-

ters. Table 7.1 summarises the protocol parameters and their repsective values used in the

simulation. In real world deployment, these parameters could be changed to increase the

performance.

Parameter Description Value
α Weightage for number of cluster nodes 0.1
β Weightage for relative speed 1
δ Constant to eliminate boundary conditions in

the logarithmic operation
0.000001

ω Factor to prevent frequent hand-off 1.03
rel speedmax Maximum relative speed 20 meters/second

th hello time period 10 seconds
tuc un-clustered time period 5 seconds
te election time period 5 seconds
td deadline time period 4 ∗ th / 40 seconds

TOL RANGE tolerance range 0.9 * communication
range / 225 meters

Table 7.1: Protocol parameter values

α, β and ω values were determined empirically. The maximum difference in the speed

between two vehicles moving in different lanes is usually below 45 mph. So a value of
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20 meters/second was chosen for rel speedmax. There are separate values for th, tuc and

te to optimize the performance of the protocol. Having high th values would reduce the

number of packets but cluster head would have stale information. Having low tuc value

would lead to high network packets as the vehicle would quickly switch to orphan state and

start broadcasting GET STATS packet. te should be such that it is large enough to collect

all the neighbor statistics and quickly form a cluster. If it is too large then all the vehicles

would be in election state for a longer period of time with most of the time being idle. td

should be carefully chosen. It should be always greater that twice the hello time period as

explained in Section 5.4.4. Sometimes it may happen that a cluster node switches from one

cluster head to another and also misses GET STATS packet from the new cluster head due

to packet collision. To optimize the performance, we have chosen td to be four times th. This

can be changed based on the packet collision rate and wireless connectivity. TOL RANGE

should be chosen such that the vehicles are in the communication range at least untill the

election process ends. Assuming a relative speed of 10mph, .i.e, 4.44 meters/second, the

distance gained by the faster vehicle will be less than 25 meters in 5 seconds (same as te).

The communication range was chosen as 250 meters. Therefore, TOL RANGE was fixed

as 225 meters.

7.2 Clustering protocols compared

In order to understand the performance improvement of our protocol, we designed

two more protocols for comparison. The first protocol was a simple id-based protocol

(IDS), similar to the one proposed in [1]. In [1], nodes periodically broadcast list of their

neighboring nodes. Using this information, node with lowest id was chosen as cluster head.
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In order to simulate this, clusters were formed in the same way as our protocol but dissolved

after regular intervals. This would trigger election thereby leading to exchange of updated

information among vehicles and choosing a new cluster head based on id. The advantage

of dissolving the cluster at regular intervals is that cluster head which can cover larger

number of vehicles could be chosen. The second protocol had state transitions same as the

one shown in Figure 5.2. The only difference it had from RSDCP was that it used lowest

id as stability factor instead of Equation 4.1 and Equation 4.2 which is based on relative

speed. Henceforth we would refer it as Dynamic Clustering Protocol based on ID (IDDCP).

7.3 Experimental setup

As explained in Section 6.1, ns-2 has two languages. So the protocol was developed

using C++ and the scenarios were chosen in Tcl file, used to run the simulations. The

mobility traces of a node is defined as part of Tcl file. The Tcl file used to run the simulation

can make use of mobility traces from a different Tcl file. VanetMobiSim [32] was used to

generate the Tcl file with mobility traces. VanetMobiSim is an extension of CanuMobiSim,

a flexible framework for user mobility modeling. VanetMobiSim mobility traces have been

validated against TSIS-CORSIM, a well known traffic generator [32]. In VanetMobiSim,

Intelligent Driver Model with Lane Change (IDM-LC) micro-mobility was chosen in the

simulator since it accounts for nearby vehicles and takes advantage of multiple lanes by

switching lanes and overtaking others [33].

Two scenarios, Highway and City, were chosen to evaluate the performance of the

protocols. In highways, vehicles move in predictable patterns but have high speeds. In

city traffic, vehicles move in unpredictable way but at low speeds. By choosing both the
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scenarios, we wanted RSDCP to be evaluated for both, unpredictable movement as well

as high speeds. VanetMobiSim had different parameters which can be configured. We

chose three parameters, Initial stay, Safe time headway, and Traffic light time. When the

simulation starts, a vehicle can start immediately or it can wait for random period before

starting. This can be configured by using Initial stay parameter. In case of random initial

stay, there is a scope to specify maximum period a vehicle can stay before starting. In

our configurations, we specified maximum stay period as 5 seconds. The distance between

vehicles can be maintained such that there is a specific time lag before which the trailing

vehicle reaches the same point. This parameter is called “Safe time headway”. The time

period for which traffic lights will show green for a road can also be set using the Traffic

light time parameter. The following sections explain in detail about each scenario and their

respective VanetMobiSim parameters.

7.3.1 Highway scenario

Highway scenario consists of a 20 km (12.5 miles) long bidirectional straight road

with four lanes. The minimum speed specified was 26.67 meters/second (60mph) and the

maximum was 35.55 meters/second (80mph). Vehicles were randomly deployed at the ends

of each road and the traffic would start to flow at the start of simulation. If a vehicle reaches

the other end of the road, it would make a U-turn to continue in the opposite direction.

Initial stay and Safe time mobility parameters were varied to achieve five configurations.

Table 7.2 contains the details about the configurations used.
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Configuration Initial stay Safe time headway
1 none 2s
2 random, less than 5s 2s
3 random, less than 5s 2s
4 random, less than 5s 2s
5 random, less than 5s 1.5s

Table 7.2: Highway Scenario Configurations

7.3.2 City scenario

In City scenario a customized city downtown was chosen as shown in Figure 7.1. It

was a square area of 2 km (1.25 miles) with 32 bidirectional two lane roads. Each road

had different speed limits, with minimum speed being 4.89 meters/second (11mph) and

maximum speed being 20 meters/second (45mph). There were 14 traffic lights. Vehicles

would be randomly deployed on five boundary points. Random trips were generated for

each vehicle. All the three parameters of VanetMobiSim explained earlier were varied as

shown in Table 7.3 to achieve five different configurations.

Figure 7.1: City Scenario
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Configuration Initial stay Safe time headway Traffic light time
1 none 2s 45s
2 random, less than 5s 2s 45s
3 random, less than 5s 2s 30s
4 random, less than 5s 2s 60s
5 random, less than 5s 2.5s 45s

Table 7.3: City Scenario Configurations

7.4 Results and Analysis

The following section explains the results comparing our proposed protocol, RSDCP

with IDDCP and IDS. The number of vehicles was varied for each scenario to understand

the impact of density. In the City scenario, the number of vehicles was chosen to be 50, 75,

100 and 125 while in Highway scenario, it was set to 25, 50, 75 and 100. The analysis of

the results was done from three perspectives. Firstly, analysis with respect to time spent in

each state. Secondly, analysis of variation of number of clusters and number of vehicles per

cluster. Thirdly, analysis from the network perspective in which number of packets used in

each protocol and their respective application were examined.

7.4.1 Time Distribution

The simulation time was 1000 seconds. For easy analysis, we divided the simulation

time into three parts namely, Orphan time, Election time and Clustered time. Time spent

by a vehicle in un-clustered state or orphan state is considered as Orphan time. We added

time spent in un-clustered state to Orphan time as it is a short (5 seconds) and also during

this time the vehicle is not associated with any cluster. The time period during which a

vehicle is in election state is considered as Election time. Time spent by a vehicle in cluster
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node state or cluster head state represents Clustered time. In each scenario, ideal Orphan

time was found by measuring the time period during which the vehicle was disconnected

from others. The ideal Clustered time is found by subtracting ideal Orphan time from the

total simulation time.

Highway Scenario

Figure 7.2 shows the time distribution for all the three protocols and the ideal time

distribution for Highway scenario. It can be seen that as the number of vehicles increases,

Clustered time increases in all the three protocols. Looking closely at the figure, we can

notice that the difference in Clustered time between RSDCP and other protocols increases

with increase in number of vehicles. This is because at lower densities, vehicles are connected

to fewer vehicles thereby having lesser choice of cluster head and so it does not make much

difference if the cluster head is chosen based on id or relative speed. At higher densities,

there are more choice for cluster head. Since RSDCP is based on relative speed, cluster

heads are chosen such that they remain connected with cluster nodes for longer period of

time. This also leads to lower Election time as the clusters are more stable. In IDS, as

election is triggered every 60 seconds, the election time nearly doubles compared to IDDCP

and RSDCP. The Orphan time in RSDCP is lesser than other protocols because RSDCP

is able to choose a cluster head whose speed is close to average speed. This leads to even

distribution of cluster heads thereby covering larger areas. If the protocol is id based as in

IDS and IDDCP, the cluster heads could be distributed unevenly thereby leaving vehicles

in orphan state in between the clusters. RSDCP has nearly 5% longer Clustered time than
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IDDCP for all vehicle densities. RSDCP has nearly 30% increase in the Clustered time

compared to IDS for all vehicle densities.

Figure 7.2: Time Distribution in Highway Scenario

City Scenario

In Figure 7.3, time distribution for the City scenario is shown. Similar to the Highway

scenario, with increase in number of vehicles, clustered time increases. The difference in

Clustered time between RSDCP and other protocols is steady and higher than in Highway

scenario. Likewise comparing the ideal Clustered time with that of RSDCP, the difference

is higher in case of City scenario. The reason is that in City scenario the traffic is more

dynamic. RSDCP strives to choose a cluster head which is stable and succeeds better

than IDS and IDDCP. Election time in IDS is nearly double that of IDDCP and RSDCP

owing to the frequent re-election of cluster head. The Orphan time for all the protocols are
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lower than that of Highway scenario with respective vehicle density because in City scenario

vehicles are better connected. The Clustered time in RSDCP is nearly 4% longer than that

of IDDCP. Compared to IDS, RSDCP has nearly 22% increase in Clustered time for all

variations in number of vehicles.

Figure 7.3: Time Distribution in City Scenario

7.4.2 Cluster statistics

Highway Scenario

Figure 7.4 shows the variation of number of clusters with respect to number of vehicles

for each protocol. For fewer vehicles, all the three protocol perform almost identically, but

with large number of vehicles, RSDCP starts to perform better. The reason for this is that

with the increase in density of vehicles, each vehicle has more choices and has to chose the
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right cluster head. RSDCP is able to achieve this by chosing a vehicle which has low relative

speed with respect to its neighbors.

Figure 7.4: Average number of clusters in Highway Scenario

It is also important to consider the standard deviation of the number of clusters to

analyze the stability of the clusters. From Figure 7.5, we can see that the standard deviation

is consistently low for RSDCP compared to other protocols indicating that it forms stable

clusters. There is an increase in the standard deviation of number of clusters with increase

in number of vehicles as the numerical range of number of clusters becomes higher.

In Figure 7.6 the variation of average number of vehicles per cluster for Highway sce-

nario is shown. The average number of vehicles per cluster in RSDCP is always steadily

higher than IDDCP as well as IDS. Comparing Figure 7.4 and Figure 7.6 we can notice

that the number of clusters as well as number of vehicles per cluster is higher in RSDCP.

The reason is that the product of number of clusters and number of vehicles per cluster
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Figure 7.5: Standard Deviation of number of clusters in Highway Scenario

does not always add up to the total number of vehicles as there could be vehicles in orphan

state or election state. The following illustration would give a better understanding.

Consider a scenario as shown in Figure 7.7. In Figure 7.7(a), we can see that 4 clusters

are formed with average number of vehicles per cluster to be (3 + 3 + 2 + 2)/4 = 2.5. The

problem in this case is that vehicles A, F, G and N are not part of any cluster as they are in

orphan state. Consider Figure 7.7(b) in which 5 clusters are formed with average number

of vehicles per cluster to be (3 + 3 + 3 + 3 + 2)/5 = 2.8. RSDCP is able to achieve scenario

as shown in Figure 7.7(b), making it possible to get better number of clusters as well as

better number of vehicles per cluster.

Figure 7.8 shows the number of times a vehicle has switched from un-clustered or

orphan or election state to cluster node or cluster head state for each protocol. RSDCP

performs comparable with IDDCP initially but for more number of vehicles, RSDCP starts

performing significantly better by having fewer changes to clustered state. The reason
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Figure 7.6: Average number of vehicles per cluster in Highway Scenario

(a) (b)

Figure 7.7: Clustering example
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being that RSDCP forms stable clusters as indicated by higher average and lower standard

deviation of the number of clusters. Since the election is triggered frequently in IDS, it

has nearly double the number of switches as compared to RSDCP and IDDCP. Another

interesting observation that can be made in the figure is that with an increase in the number

of vehicles, IDS starts performing worse by switching states more number of times. This

could be due to frequent election of a cluster head having high relative speed but lowest id

in the neighborhood. In IDDCP, this problem does not impact too much as there are fewer

elections and cluster nodes makes decisions between already elected cluster heads.

Figure 7.8: Number of times a vehicle switches to clustered state in Highway Scenario

City Scenario

In Figure 7.9, the average number of clusters is plotted against number of vehicles for

different protocols for City Scenario. RSDCP and IDS have similar performance. In City

scenario, more number of vehicles can be found in the communication range. Since IDS
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re-organizes frequently by triggering re-election, it forms more number of clusters with less

number of cluster nodes. This can be seen by the high standard deviation of the number of

clusters and low vehicles per cluster in case of IDS depicted in Figure 7.10 and Figure 7.11.

IDS and RSDCP have higher average number of clusters than IDDCP especially with an

increase in number of vehicles.

Figure 7.9: Average number of clusters in City Scenario

Figure 7.10 depicts the standard deviation of the number of clusters. It shows that

RSDCP is marginally lower than IDDCP. The standard deviation randomly increases in

case of IDS indicating it could lead to less stable clusters. In a city scenario, it would be

difficult to keep up with the dynamics. This is evident by noticing that standard deviation

in City scenario is nearly double that of Highway scenario. RSDCP though comparable in

terms of standard deviation with IDDCP has higher average number of clusters. RSDCP

has average number of clusters comparable to IDS but has lower standard deviation. So it

suggests that RSDCP forms stable clusters as compared to IDS as well as IDDCP.
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Figure 7.10: Standard Deviation of the number of clusters in City Scenario

The number of vehicles per cluster increases with an increase in number of vehicles as

shown in Figure 7.11 for all the three protocols. We can notice that the number of vehicles

per cluster in City scenario is higher than that of Highway scenario as the vehicles are

more connected. RSDCP has consistently higher values than IDS while with IDDCP it is

significantly higher except when the number of vehicles is 125.

In Figure 7.12, the number of times a vehicle switches to clustered state from un-

clustered or orphan or election state for all the three protocols is shown. The pattern of

variation follows similar to the one in Highway scenario except for that, the difference in

number of switches between IDDCP and RSDCP is much higher in case of City scenario.

This is because in City scenario, the movement is not predictable for which the id based

protocols are not able to adapt.
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Figure 7.11: Average number of vehicles per cluster in City Scenario

Figure 7.12: Number of times a vehicle switches to clustered state in City Scenario

64



7.4.3 Packet Statistics

The following section explains the statistics from the networking perspective, in terms of

packets transmitted. The GET STATS packet, NODE STATS packet, MY STATS packet

and NOT CH packet formed the protocol packets. The QUERY and CLUSTER STATS

packet formed the application packets. For all the configurations, ten vehicles sent query

every 100 seconds making the total number of queries sent during simulation as 100. To

measure the efficiency of RSDCP, percentage overhead of other protocols in terms of number

of packets was computed as follows,

Overhead in % =
pktIDDCP/IDS − pktRSDCP

pktRSDCP
∗ 100 (7.1)

where,

pktIDDCP/IDS is the number of protocol packets or application packets of IDDCP or IDS.

pktRSDCP is the number of protocol packets or application packets of RSDCP.

Highway Scenario

Figure 7.13 shows the percentage overhead in Highway scenarios comparing RSDCP

with IDDCP and IDS for both, protocol packets and application packets. When the number

of vehicles is 75 and 100, RSDCP has more overhead than IDDCP indicated by the negative

values in the figure. In RSDCP more clusters are formed as shown in Figure 7.4. The packets

used to maintain additional clusters becomes an overhead. But, if we see the overhead in the

application packets, it is evident that the application running on RSDCP needs much fewer

packets to collect the information. Comparing RSDCP with IDDCP, the overall overhead
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of IDDCP is in the range 5% to 10%. Compared to RSDCP, IDS has overall overhead is in

the range 30% to 50%.

Figure 7.13: Percentage overhead of IDDCP and IDS compared to RSDCP in Highway
Scenario

The application has to use more packets in case of IDS and IDDCP as there are

more number of sources to collect the information. This is supported by finding the total

number of sources of CLUSTER STATS packets. Figure 7.14 shows the total number of

CLUSTER STATS sent for each protocol. As RSDCP has fewer sources, the application

has to use fewer packets to collect the same information.

City Scenario

As explained in Equation 7.1, percentage overhead in the number of packets is calcu-

lated for City scenario. Figure 7.15 shows the percentage overhead in number of packets for

IDDCP and IDS as compared to RSDCP. It can be seen that RSDCP has higher protocol
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Figure 7.14: Number of CLUSTER STATS packets sent in Highway Scenario

overhead as it has more cluster heads collecting the density information. However, applica-

tion packets in case of IDDCP and IDS have more overhead, about 10% in case of IDDCP

and 40%-70% in case of IDS, making the overall efficiency of RSDCP much higher.

Similar to the Highway scenario, in the City scenario the number of sources from

which the application has to collect information is low in case of RSDCP. This is indicated

by the number of sources of CLUSTER STATS packet shown in Figure 7.16. The main

advantage with fewer packets, especially in wireless protocols, is that there will be fewer

packet collisions.

Comparing the overall results of RSDCP and IDS we notice that RSDCP performs

better in all the perspectives. Comparing the overall results of RSDCP and IDDCP we

notice that RSDCP performs better than IDDCP but not drastically. It may appear that

IDDCP makes use of id, a simpler information to collect. Once the clustering protocol

forms part of a network routing protocol or application, the vehicles have to exchange their
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Figure 7.15: Percentage overhead of IDDCP and IDS compared to RSDCP in City Scenario

Figure 7.16: Number of CLUSTER STATS packets sent in City Scenario
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speed and number of neighbors information. In this way collection of speed and number of

neighbors required for RSDCP will be easily available. Besides in wireless communication

among vehicles even a slight decrease in the number of packets transmited implies lesser

packet collisions resulting in more reliablity in communication.
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Chapter 8

Conclustion and Future Work

In this thesis, we have proposed, simulated and evaluated a novel clustering protocol,

RSDCP for Intelligent Vehicles. Summarizing the results, we notice that,

• RSDCP forms stable cluster indicated by higher average number of clusters and lower

standard deviation.

• RSDCP has lower number of switches to clustered state corroborating that it forms

stable cluster.

• The number of vehicles per cluster is high in RSDCP showing that it forms large

clusters.

• RSDCP has higher Clustered time which is a resultant of stable and large clusters.

• In order to achieve all these RSDCP has a slightly higher protocol overhead which is

insignificant as the load on the application is lessened to a large extent.

To improve the proposed clustering protocol, traffic modeling techniques could be in-

vestigated for developing better stability factor. If it is possible to get real world mobility

traces, the clustering protocol could be validated against them to get more confidence in

the protocol. As discussed in Section 6.2, to completely realize the distributed server ar-

chitecture, the next step would be to design an algorithm which optimally chooses certain

cluster heads to perform the role of distributed servers.
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The main contribution of this thesis is envisioning distributed servers to collect density

information explained in Section 6.2 and designing a clustering protocol well suited for Intel-

ligent Vehicles. The architecture, once implemented, would be useful to everyday travelers

as it would minimize the traffic delay time. It would also be useful in building vehicular

routing protocols which can be used by many future Intelligent Vehicle applications.
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