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The advancement of MEMS technologies has made it possible to produce tiny wireless

sensor devices. These tiny sensors hold the promise of revolutionizing sensing in a wide

range of application domains because of their flexibility and low cost. One such application

is target localization and tracking using acoustic signal of the target. The capabilities of

these tiny devices are limited by their battery power, storage capacity, computational power

and communication bandwidth. These limited capabilities make the decisions made by each

sensor error prone. Hence most target detection and tracking algorithms require the sensors

to work in groups in order to improve the reliability of target tracking algorithms. This

makes it necessary for deployed sensors to discover and group together so that their coverage

can be maximized. In addition, with the advent of video sensor networks it has become

possible to record a video of the target once it is detected and later be relayed to an external

agent. In this paper, we propose a clustering algorithm that tries to produce the optimal

number of possible clusters for any sensor deployment scenario. The proposed clustering

algorithm is distributed in nature and has the ability to reconfigure in the event of node
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failure. The algorithm is localized in nature and hence does not need flooding across the

entire network. Since the algorithm allows for more than one cluster to track the same

region the system reliability is greatly improved. The algorithm achieves 97% coverage

for all the node deployment scenarios evaluated. In each case the average probability of

detection achieved is 92% of the theoritical best possible. The other metrics evaluated are

support weight and breach weight. The clustering algorithm achieves 89% and 91% of the

theoritical best possible. In each of these cases the algorithm is able to form clusters in

about 5 seconds of the simulation time.

On successful detection of a target, the video information needs to be relayed to an

external agent which could be several hops away from the point of detection. The lossy

nature of wireless links makes the end-to-end delivery ratio decrease exponentially. We

address the problem of end-to-end reliability by proposing reliable directed diffusion (RDD)

that uses a localized route repair algorithm that does not require a global re-flooding. A

route repair algorithm is important to directed diffusion (DD) as the path selected by the

protocol is not based on any historical data of link quality and hence prone to packet

losses. The node density and power constraints of sensor networks coupled with the ever

changing link quality makes it difficult for a node to keep track of its links and hence choose

the best possible path. We present the design and implementation of the reliable directed

diffusion. RDD repairs the established paths locally by using backup nodes, i.e. nodes that

can overhear the positive reinforcement and the corresponding data packets that go in the

reverse direction. RDD detects failures at the sender through the MAC layer. Reliable

Directed Diffusion provides 30% improvement in the delivery ratio. The end-to-end delay
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is only 3% more than that of Directed Diffusion. Finally, the average energy consumed is

only 5% more than that of Directed Diffusion.
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Chapter 1

Introduction

The increasing capabilities and declining cost of computing and communication devices,

has led to an increase in the number of applications of wireless sensor networks. Some of the

these applications are earthquake monitoring, environmental monitoring, home and office

controls, medicine and security, etc. In each of these applications the wireless nodes sense

physical characteristics of the world. The physical characteristics include temperature,

acoustics, light and pollution. Each sensor on sensing the physical characteristics needs to

deliver the information to base stations or external agents. These external agents could be

about 20-30 hops away depending on the size of the sensor field. The task of using sensors

in sense and response systems is complicated by their limited resources. The individual

sensors are constrained by their limited processing power, short range communication and

a small amount of storage. The other factors that affect the performance of Wireless Sensor

Networks (WSN) in real world are fault tolerance, scalability and topology change. Further

when compared to ad hoc networks, sensor networks are several magnitudes larger and

at times several thousand nodes could form one single large co-operative network. Over

years, several routing protocols and route repair mechanisms have been proposed for ad

hoc networks, but none of these are scalable to networks of the order of several thousand

nodes. This is largely because sensors have limited memory and limited power and hence

not possible to gather and store routing information for a large network.

In this work we look at another interesting application, battlefield surveillance. Surveil-

lance involves both detection and tracking of intruders. In general, target classification and

1



tracking algorithms rely on information provided by a cluster of sensors. In case of target

classification each sensor is equipped with different modalities, such as magnetic, radar,

thermal, acoustic, chemical, electric, seismic and optical. Hence the target classification

draws its results from observations made by a cluster of modalities. This emphasizes the

need for a clustering algorithm that can exploit the redundancy in the sensor deployment

and reduce the latency in the exchange of raw data and the amount of raw data that needs

to be exchanged. Tracking, based on the strength of acoustic signal received by a set of

sensors is another common technique. This also requires deployed sensors to work in groups.

Though each sensor is capable of detecting the presence of a target, its results are error

prone and could result in false alarms. Hence to increase the accuracy of the detection

algorithm it becomes necessary to fuse the measurements of a group of sensors. This makes

it necessary for the deployed sensors to work in small clusters, so that the overall reliability

of the surveillance system can be improved.

Wireless sensors can be used to detect various target features such as thermal sig-

natures, ferro-magnetic content or acoustic signal. The absence or presence of a target

phenomenon can be inferred by aggregating the measured values from a small group of

sensors deployed. In this work we assume that each sensor is equipped with a microphone

and hence can record the acoustic signal.

Detection requires that the system discriminate between a target’s absence and pres-

ence. Successful detection requires a node to correctly estimate a target’s presence while

avoiding false detections in which no target is present. This can be done by using trian-

gulation method based on acoustic measurements made by at least three sensors. On the

other hand target tracking is more complicated since it involves maintaining the target’s
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position as it moves over time in a region covered by the sensor network’s field of view.

Therefore the tracking algorithm should be able to identify the orientation of the target’s

path and its velocity in addition to geographical location of the target. One such algorithm

to track the target is the CPA (Closest Point of Approach) algorithm [1]. In this algorithm

a group of four sensors make’s CPA measurements, and then, based on the measurements,

the trajectory of the target can be deduced with reasonable accuracy using CPA algorithm.

The capability of the application can be further enhanced if we assume that each sensor is

equipped with a video camera. This is possible with the advent of low cost video cameras

that are capable of providing resolution in the order of mega pixel. The CPA measurements

made by each of the four sensors will be reported to a node (actually one of the four sensors)

where the target’s trajectory can be computed. Once the parameters of the target’s trajec-

tory are computed, the camera associated with the sensor can be programmed to pan in the

target’s direction. However, this requires real time data from each of the four individual

sensors, i.e. the CPA measurements generated by the sensors must be delivered to a node

in a timely fashion. Out-dated reports are of little use. These timing constraints call for a

robust clustering algorithm.

The overall system architecture consists of two self contained components: the acoustic

target tracking subsystem which deals with the detection and processing of acoustic signals

and the communication subsystem which is responsible for exchanging sensor data and high

quality tracking results. One way to address the limited computational and battery power

of wireless sensor devices is to organize the sensors into clusters. Sensors in each cluster

coordinate in sensing and communication to perform the sensing task. To deal with the

inaccuracy in measurement and unreliability typical of low end devices in remote or hostile
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environments, we suggest a clustering algorithm that organizes the sensors into redundant or

overlapping clusters so as to obtain more robust results. The proposed clustering algorithm

is distributed in nature and the number of clusters to be formed can be easily controlled.

Further, since the cluster head chooses its member nodes from its one hop neighbors, the

raw data has to travel only one hop. Finally, the target tracking results of each cluster head

can be progressively fused with those of it’s neighboring clusters.

Sensor networks are traditionally meant for applications where high loss rates are ac-

ceptable. For example, average temperature measurements from a sector of a forest which

will not to vary drastically. However, sensor networks are becoming more prevalent in com-

plex and sophisticated application domains, such as sense and response systems, critical

infrastructure, and industrial and manufacturing control systems where high packet losses

are unacceptable. Specific examples include real-time target tracking systems and tornado

and tsunami detection networks. Moreover, emerging sensor networks will support stream-

ing audio and video applications. For example, in the above mentioned target tracking

system, the recorded video needs to be delivered to the external agent that could be several

hops away. Because of the stringent requirements of these systems, end-to-end reliability is

of paramount importance. Providing end-to-end reliability is complicated because of the re-

source constraints and the nature of losses. The communication medium in sensor networks

is wireless which is more error-prone than wired networks. Packets in sensor networks are

lost due to link failure (caused by interference, radio noise, etc.), node failure or conges-

tion. The very nature of the wireless medium makes link failures temporary, though more

common. In unknown terrain, the behavior of wireless links may be highly unpredictable

and have higher error rates than expected. Additionally, the harsh environments in which
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sensor networks are deployed result in node failures which are less frequent than wireless

errors but permanent.

Data-centric routing protocols, such as directed diffusion [2], have been commonly

used for wireless sensor networks because of their energy efficiency and scalability. Directed

diffusion enables sensor data to be disseminated from data sources to sinks with low delay.

Our approach to providing reliability in directed diffusion is to efficiently and locally repair

the route when there are link or node failures. The first step in route repair is to identify

route failure. This is important because sensor networks are event-based and the events may

not occur periodically. Hence, in the case of low event rate, route failures cannot be identified

based only on the absence of the events in the network. Secondly, it is very important to

differentiate between temporary and permanent failures. If the route repair strategy is too

aggressive, the network might misinterpret more frequent temporary failures as permanent

failures and spend more time and resources in unnecessary route repair. On the other hand,

a less aggressive strategy would treat permanent node failures as temporary failures causing

packets from the source to the sink to be lost. Finally, route repair is difficult in directed

diffusion because of the data-centric nature of the protocol. In directed diffusion, routing is

always done based on attribute/value pairs so the absence of source/destination information

makes it hard to discover an alternate path. Therefore, the route repair mechanism has to

rely on attribute/value pairs rather than just ID.

In this work we present an improved version of directed diffusion, a protocol that can

repair both temporary and permanent path failures. Reliable Directed Diffusion (RDD)

makes use of the fact that nodes which are geographically closer to the sender experience

better link quality than the nodes which are farther away. The results show that reliable
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diffusion improves delivery ratio by about 20% in the case of a grid topology and about 35%

in a random topology. These improvements are achieved without any significant increase

in energy consumed or end-to-end delay. Furthermore, RDD has been shown to be a

highly scalable protocol given that its overhead increases as a linear function of the path

length. RDD significantly improves the reliability of directed diffusion for both permanent

node failures and temporary link failures without incurring costly overhead. RDD make

substantial contributions to directed diffusion and to data-centric routing.

Chapter 2 gives background information about directed diffusion and an overview of

research related to target tracking systems and in Chapter 3, we discuss the motivations

for our work by first briefly explaining the target tracking system and the need for further

improvements. We describe the architecture of the proposed system in Chapter 4 and some

preliminary results in Chapter 5. We conclude the proposal with a summary of the tasks

to be accomplished along with a schedule of activities.
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Chapter 2

Motivations, Objectives, and Applications

Individually tiny sensors may appear to be of little value but a wide range of appli-

cations arise when deployed in large scale co-operative networks. One such application is

target detection and tracking in a hostile environment such as a battlefield. In this ap-

plication we are not only concerned with target detection but also tracking of the target.

Though there are quite many algorithms in literature that deal with reliable detection of

targets, there is only one algorithm that best suits reliable tracking of the target and it is

Closest Point of Approach or CPA algorithm.

Real-time tracking of moving targets using wireless sensor networks has been a challeng-

ing problem because of the high velocity of the targets and limited resources of the sensors.

CPA (closest point of approach) algorithms are appropriate for tracking fast-moving targets

since the tracking error is roughly inversely proportional to the square root of the target

velocity.

In this chapter we first briefly explain the target tracking system we developed at

Auburn University and then explain the need for improvements.

2.1 Closest Point Approach Algorithm.

CPA algorithm is a data fusion algorithm that relies on the raw data gathered by

individual sensors to successfully estimate the target parameters like velocity, orientation

of the target’s path in addition to the location of the target. Each sensor monitors the

acoustic signal from the target with the help of a microphone, i.e. it monitors the signal
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energy for a given time window. The sensor confirms the presence of a target (called event)

once the signal strength exceeds a certain threshold. The threshold is dynamically updated

based on background noise statistics to reduce false alarm rate. Once a node detects an

event (i.e. the presence of a moving vehicle), it stores a time series segment corresponding

to the event. Figure 2.1 shows the time series segment corresponding to the interval in

which the energy first exceeds the threshold (start of event) and eventually drops below

the threshold (end of event) after reaching a peak value. The time at which the acoustic

signal peaks is called the closest point of approach (CPA). The CPA measurements made

by each of the four sensor are reported to a centralized location (which is just any of the

four sensors) where the individual measurements are fused together by the CPA algorithm

to determine the target motion parameters, such as precise location at a certain instant of

time, velocity and orientation. Once these parameters have been calculated, the camera

attached to the sensor can be programmed to record a video of the target and the recorded

video can be sent to an external actor by using a data centric routing protocol, such as

Directed Diffusion.

2.2 Features of Current Target Tracking System

We designed and developed an integrated system for target detection, tracking and

image/video capture of moving targets using collaborative mixed wireless sensor nodes. This

system integrates and interoperates the algorithm for accurately computing target location,

velocity and trajectory direction with the other communication and control software for

controlling camera sensor nodes for image/video capture of target at its predicted location.

The wireless ad-hoc sensor network uses a different network protocol, i.e. directed diffusion,
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Figure 2.1: Event detection by thresholding the energy of the acoustic signal detected
by the microphone. The horizontal line represents the threshold. The maximum reading
corresponds to CPA time.

whereas the camera sensor node uses TCP/IP network protocol. We describe the details of

the architecture, design and implementation of the target detection and tracking system for

detecting, locating and identifying of moving targets. Sensors detect and analyze acoustic

data to determine the closest point of approach (CPA) time of the target. Intuitively, CPA

is the time when the target signal is highest and therefore was closest to the sensor node.

Sensors send CPA time information the task group leader, the cluster head, for analysis.

The cluster head uses the CPA algorithm described in [1] to predict the position, velocity,

and direction of the target. This information is sent to a camera control application on an

IP network through a bridge node that interconnects the directed diffusion and IP networks.

The camera control node pans and zoom a camera to view the target’s current location.

Video and/or images of the target may then be captured by a video capture application

for further analysis. These systems were tested in several field experiments and the results

and performance evaluations are included in this report. In particular, we present some
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results of the target tracking experiments and show the clips from one of the videos of the

target captured by the camera at the predicted location. We also conducted several tests

to ensure that the system is robust with regards to the sensor networking, target detection

methods, CPA computation and the camera control algorithms. We will also develop more

advanced methods to ensure robustness in the sensor network, mixed network and sensor

detection system. As we have demonstrated the proof of concept, i.e. capability to detect

and predict location and velocity of target and capturing its image/video, we have begun to

focus on other more practical issues that will make this system more applicable to realistic

scenarios.

2.3 Motivations

2.3.1 Reliable Detection

In this section we present some of the shortcomings of the existing system and briefly

explain how the proposed clustering algorithm solves them.

The CPA algorithm used in the Current system has pitfalls. There are certain config-

urations in which the algorithm fails to estimate the motion parameters. Figure 2.2 shows

all the possible target trajectories with respect to the way sensors are deployed. The CPA

algorithm can estimate the target parameters only when there are uneven number of sen-

sors deployed on either side of the targets trajectory. At the minimum, to detect the target

motion parameters we need CPA measurements from four sensors with 3 on one side and

one on the other side of the target trajectory. Also the algorithm requires the three sensors

that are on one side of the trajectory to be non collinear. In all other cases the solution is

ambiguous [1].
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Figure 2.2: Classification of target trajectories according to the way of sensor field decom-
position.

The major disadvantages of the current system can be summarized as:

• The CPA algorithm in the current system requires CPA measurements from at least

four nodes and the four nodes need to be unevenly deployed with respect to target’s

trajectory. Since, in the Real world we do not control the target’s trajectory we cannot

assure uneven deployment of the four sensors.

• The video captured by the video camera needs to delivered to an external agent over

a multi hop wireless network. The current system uses directed diffusion and directed

diffusion is ill equipped for video sensor networks.

2.3.2 Improving Detection Reliability with Redundant Node Clusters

The clustering algorithm proposed in this work avoids the issue of even deployment of

sensors by grouping five sensors together into one cluster. One of the five sensors is chosen

as the cluster head. All the member nodes send their raw data to the cluster head, which

then makes use of the CPA algorithm to estimate the target motion parameters. Figure 2.3
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shows a cluster formed between five nodes and the dotted lines represent the possible paths a

Figure 2.3: Classification of target trajectories according to the way of sensor field decom-
position.

target can take. Each cluster will have a cluster head to which all the other sensors can send

in their results. The cluster head then runs the CPA algorithm to identify the trajectorys

parameters. The cluster head needs CPA measurements from only 4 sensors, but does not

know which 4 measurements will lead to a solution and hence tries out combinations. It

then ignores the invalid combinations and averages the valid solutions.

2.3.3 Reliable Communication

Wireless sensor networks are originally designed as distributed event-based systems

that differ from traditional communication networks in several ways. These networks typ-

ically have nodes with severe energy constraints, variable quality links, low data-rate and
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many-to-one event-to-sink flows. Recently, Wireless Multimedia Sensor Networks (WM-

SNs) have been developed due to the availability of lowcost cameras, microphones, and

other sensors producing multimedia data. The applications, accordingly, are extended to

video surveillance and notification, video and computer assistance in video-assisted living

and healthcare. The stringent requirements of real-time multimedia applications include

end-toend delay, bandwidth and loss during data transmission. Communication algorithms

for WMSN must therefore be specially designed to operate efficiently under these con-

straints. Directed diffusion is a datacentric protocol designed for wireless sensor networks.

However, it is not efficient in more challenging domains, such as video sensor networks,

because of its inability to satisfy the throughput and delay requirements of multimedia

data.

In the current target tracking application the video camera associated with individual

sensor starts to record the video of the target once it appears. The recorded video needs

to be transferred to an external agent that could be about 20-30 hops away, depending on

the size of the sensor field. Though directed diffusion is a preferred routing protocol for

wireless sensor networks, but is ill equipped for video sensor networks. We propose Reliable

Directed Diffusion that improves end to end reliability by recovering losses on a per hop

basis.

2.4 Objectives

2.4.1 Reliable Detection

The target detection algorithm is prone to errors. The primary source of errors is

detection of CPA time by the sensor. The ambient noise recorded by the microphone along
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with the target’s acoustic signal makes it difficult to configure the right threshold for the

acoustic signal strength. Setting the threshold to a low value leads to false alarms while a

value that is too high might lead to the sensor not being able to record the CPA event. The

second source of errors are node failures. Once a node fails the CPA measurements made

by other nodes in the cluster may become useless.

The proposed clustering algorithm improves the overall system reliability by forming

a series of overlapping clusters. This would mean that there would be more than one

cluster that would track the same area. Such redundancy would improve the overall system

reliability and make it less prone to errors.

Each sensor uses heuristics and forms only an optimum subset of all the possible poly-

gons. The proposed clustering algorithm has several advantages:

• is distributed in nature and the number of clusters to be formed can be easily con-

trolled.

• a series of overlapping clusters improves system reliability and allows for tracking of

curvilinear trajectories.

• since the cluster head chooses its member nodes from its one hop neighbors, the raw

data has to travel only one hop.

• finally, the target tracking results of each cluster head can be progressively fused with

those of its neighboring clusters.

• a series of overlapping clusters allows for tracking of curvilinear targets.
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2.4.2 Reliable Communication

The basic idea of Reliable Directed Diffusion is that the link quality degrades with

distance. This is a reasonable justification and this characteristic is clearly demonstrated

by Figure 2.4. It can be seen that the link changes erratically as the distance between sender

and receiver changes from 20m to 30m. Hence in the event of an unsuccessful transmission

it is better to deliver the packet to a node that is geographically closer and this node

would in turn relay the packet to the intended receiver. we use the relay nodes only when

the primary hop turns bad. This way we can optimize the number of transmissions and

receptions needed to deliver data and at the same time achieve higher reliability. The data

in Figure 2.4 is from [3].

Figure 2.4: Link Quality Vs. Distance Profile

Directed Diffusion chooses the best path based on end-to-end delay. Our goal is to

continue using this low delay path identified by directed diffusion as long as we can. In the

event of link failures the idea is to reroute the data packets through an intermediate node
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(also called the back up node) that is in between the sending and receiving node and hence

closer to both the nodes. Since the backup node is closer to both the sender and receiver

the link quality is better than the link between actual sender and receiver. Finally, we gain

the advantage of low end-to-end delay by using the path identified by Reliable Directed

Diffusion and also improve delivery ratio by rerouting the failed packets through shorter

and better links in the event of link failures.

2.5 Applications

Recent developments in sensor techniques make wireless sensor networks (WSNs) avail-

able to many application domains. Some of these applications are battlefield surveillance,

disaster and emergency response. The current research in Wireless Sensor Networks (WSN)

is widespread and pervasive in many disciplines because of the potential to embed tiny, in-

expensive, low-power sensors in many environments to provide a wide range of surveillance

and monitoring applications. A key advantage of WSN is that the network can be deployed

on the fly and can operate unattended, without the need for any pre-existing infrastruc-

ture and with little maintenance. Typically, sensor nodes are deployed randomly (e.g., via

aerial deployment), and are expected to self-organize to form a multi-hop network. A sensor

node is capable of sensing some physical phenomenon (e.g., detect tank vibrations or sniper

gun noise), processing the sensed data and communicating the observed measurements to

fusion nodes, also called micro-servers. The sensor nodes may also perform data aggrega-

tion/compression to reduce the communication overhead in the network. In this paper, we

investigate the design trade offs for using WSN for implementing a system, which is capable
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of detecting and tracking military targets such as tanks and vehicles. Such a system has

the potential to reduce the casualties incurred in surveillance of hostile environments.
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Chapter 3

Related Work

In this section we first evaluate different routing protocols proposed for MANETs and

bring out the disadvantages of using them for WSNs. We then explain how directed diffusion

overcomes those disadvantages.

3.1 Unicast Routing Protocols for MANETs

Existing routing protocols can be classified either as proactive or reactive. Proactive

protocols attempt to continuously evaluate all of the routes within a network so that

when a packet needs to be forwarded, a route is already known and can be used immedi-

ately. OSPF is an example of a Proactive Routing Protocol (PRP) for wired IP backbone

networks. MANET-specific examples include Optimized Link State Routing (OLSR) [4],

Topology Broadcast based on Reverse Path Forwarding (TBRPF) [5] and Hazy Sighted Link

State Routing [6]. In contrast, Reactive Routing Protocols (RRPs) invoke a route determi-

nation procedure on-demand only. Thus, if route is needed then some sort of global-search

procedure is employed. The classical flood-search algorithms are simple reactive protocols.

MANET-optimized examples include Ad hoc On-Demand Distance Vector (AODV) [7] and

Dynamic Source Routing (DSR) [8].

It is well-known that proactive protocols are not optimal for MANETs that have rapidly

changing topologies. However, purely reactive protocols are often inappropriate for several

common MANET topologies such as cluster-based networks and relatively static networks.
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In addition, reactive protocols introduce additional latency (and possibly overhead) for real-

time traffic. As such, hybrid or zone routing protocols that use a mix of both proactive

and reactive routing techniques at each network node have been proposed. One example

is Cornells Zone Routing Protocol (ZRP) [9]. The above protocols are unicast in nature

and hence do not serve the purpose of multiple sources and sinks communicating with each

other as is the case in sensor networks. Further as the size of network grows so does the

amount of routing information that needs to be stored by each node. The limited memory

of sensor motes makes this difficult.

3.2 Multicast Routing Protocols for MANETs

A number of ad hoc network multicast routing protocols have been proposed over the

past few years as well [10],[11],[12], [13], [14],[15],[16], [17],[18], [19], using a variety of basic

routing algorithms and techniques. Of these multicast routing protocols, a few attempt

to operate in an on-demand fashion [10],[13],[14], [15], [20], in which the operation of the

protocol is driven by the presence of data packets being sent rather than by continuous

or periodic background activity of the protocol. Most of the multicast routing protocols

mentioned above include both proactive and reactive mechanisms. Routing functionality

can roughly be divided into two parts: route discovery and route maintenance. Most

multicast routing protocols perform the route discovery part on-demand and most perform

the route maintenance part proactively, e.g. they use periodic neighbor detection packets,

or refresh the multicast state periodically.

For example, the On-Demand Multicast Routing Protocol (ODMRP) [10] builds mul-

ticast meshes through periodic network-wide control packet floods. The protocol relies on
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these floods to repair link breaks in the mesh that occur between the floods. The Multicast

Ad Hoc On-Demand DistanceVector protocol (MAODV) [21] requires continuous periodic

neighbor sensing for link break detection, and periodic group hello messages for multicast

forwarding state creation. The hello messages are sent regardless of whether or not there

are any senders for the multicast group in the network, as long as there is at least one

receiver. Similarly to MAODV, the Associativity-Based Multicast (ABAM) protocol [12]

requires continuous periodic neighbor sensing for link break detection and distribution of

link characteristics. In addition, these protocols rely on explicit prune messages for deletion

of forwarding state that is no longer needed. Loss of an explicit prune message because of

wireless interference or because the sender of the prune message has moved out of range

of the intended recipient of the prune, leads to significant unnecessary overhead as nodes

continue forwarding packets even though there are no receivers for the group that are in-

terested in receiving them downstream. The protocol overhead incurred to maintain the

multicast meshes is a bottleneck for their use in WSN as the sensor motes are heavily energy

constrained.

Though the above protocols provide for multicast communication, they involve con-

siderable protocol overhead to maintain multicast information and also need space to store

the multicast routing information.

3.3 Directed Diffusion

Directed Diffusion [2] is data centric in that all communication is for named data. It

further assumes that all the nodes in a WSN are application aware. Data generated by

sensor nodes is named by attribute-value pairs. Sinks are the nodes that are looking for
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specific information in the network. The interested nodes request by sending interests for

named data. Data matching the interest is then drawn toward the sink nodes. Intermediate

nodes can cache, or transform data, and may direct interests based on previously cached

data. The data centric approach of Directed Diffusion makes it significantly different from IP

based routing protocols. In an IP based routing protocols nodes are identified by their end

points and inter-node communication is layered on an end-to-end delivery service provided

within the network.

3.3.1 Protocol Overview of Directed Diffusion

The Protocol has four types of messages to establish paths in a network. Early work

on Directed Diffusion [2] described the basic concept of diffusion based on these messages

and this basic approach is now called two-phase pull diffusion. Though the basic approach

is ideal for some applications, it has been found to be a poor match for other classes of

applications. Hence, as experience with sensor applications grew, a family of algorithms

have been built from the basic primitives. Today, in addition to the basic approach directed

diffusion also operates in two additional modes: one phase push, and one phase pull. In

this work, we consider the conventional two phase pull communication model. The two

phase pull mechanism makes use of all the four types of messages to establish paths within

the network. A sink node subscribes to a data flow by flooding the network with interest

messages that name the type of data the sink wants to receive. Intermediate nodes store

the interest and record the neighbor from which it was sent. This saved path leading

to the sink is known as a gradient. The state of the gradient is set to false indicating

that it will not forward data packets until it is later enabled by a positive reinforcement
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message. Source nodes with data matching the interest publish exploratory data along the

gradients previously created. Upon receiving exploratory data, the sink sending a positive

reinforcement message to its single fastest neighbor (i.e., the neighbor that delivered the

first exploratory data message). Any node that receives a positive reinforcement message

will, in turn, reinforce its fastest upstream neighbor until a reinforced path all the way

back to the source is established. Slower paths may be negatively reinforced. Subsequent

data emanating from the source, known as reinforced data, will be unicast or multicast

over the reinforced path to the sink(s). This two-phase process results in the creation of a

multipoint-to-multipoint distribution tree.

3.3.2 Advantages of Directed Diffusion

Directed diffusion has generally been proven to be well-suited to sensor networks.

Its primary advantages are data-centricity, reactive nature, aggregation and multipoint-

to-multipoint links. Its data centric model is more appropriate for many sensor network

applications. It performs more efficiently and provides more useful services for many types

of sensor network applications (e.g. query processing). The use of named data provides an

energy efficient mechanism for routing data, which avoids the unnecessary complexity of

host information. Since data is the primary concern it makes sense to use it as the primary

routing criterion instead of host address, a property largely unimportant in sensor networks.

To deal with broken paths, diffusion periodically re-creates routes by performing the same

procedure used to initially find routes: global flooding. Since diffusion handles failure and

mobility with global repair mechanisms, the costs incurred for repair are significant. To

reduce the energy costs of global repair, the path maintenance mechanism is performed on
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a relatively infrequent schedule (e.g. every 60 seconds). In the worst case, data may be

delayed an entire refresh interval before a broken path is repaired.

3.3.3 Disadvantages of Directed Diffusion

The data centric approach of Directed Diffusion makes it scalable for routing packets

in large wireless networks and also provides for a multipoint to multipoint communication.

In spite of these advantages, it has inherent drawbacks.

Directed Diffusion makes use of end-to-end delay to determine the best path between

the source and the sink. Since the end-to-end delay is not based on historical information,

it does not necessarily represent a stable path. This makes the path more prone to wireless

losses. Further Directed Diffusion does not have a proactive way of determining and recov-

ering from losses. While this may be adequate for some applications, it may be completely

unacceptable for others, e.g. time-critical and real-time systems. Standard directed diffu-

sion includes two mechanisms for path repair. Diffusion was designed to handle path failure

primarily by the periodic re-creation of gradients using a global mechanism. The designers

of diffusion also mention a local repair procedure, but fail to adequately deal with the route

repair problem.

3.4 Existing Solutions for providing end-to-end reliability

One way to avoid wireless losses is by choosing a better technique for selecting the

path. Ad hoc network protocols use link quality as the metric for choosing the next hop.

Determining link quality is done either through the Protocol Model or the Physical Model.

The Physical Model determines link quality based on received signal strength. Although
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inexpensive, the Physical Model may not be accurate since the wireless link quality con-

tinually changes. On the other hand, the Protocol Model makes use of probe packets to

estimate the wireless link quality. In the context of sensor networks, the use of probe packets

is expensive and hence may not be appropriate for power-constrained sensor nodes. Link

quality estimation is further compounded by the high density of sensor networks. Because

of higher node density each node may have a large number of neighbors and proportionately

more links whose quality has to be estimated.

In sensor networks, packet losses result from wireless losses and network congestion.

Network congestion leads to unnecessary retransmissions that waste network bandwidth

and reduce the lifetime of the sensor nodes. In the literature, many techniques have been

suggested to improve end-to-end reliability in sensor networks. These techniques are mostly

transport layer protocols.

3.4.1 PSFQ

Pump Slowly Fetch Quickly (PSFQ) [22] is proposed for reliable retasking/reprogramming

in WSNs. PSFQ slowly injects packets into the network, while performing aggressive hop-

by-hop recovery in case of packet losses. The pump operation in PSFQ simply performs

controlled flooding and requires each intermediate node to create and maintain a data cache

to be used for local loss recovery for packet loss and in-sequence data delivery. Although

this is an important transport layer solution for WSNs, it is applicable only for strict sensor-

to-sensor reliability and for purposes of control and management in the direction from the

sink to the sensor nodes.
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3.4.2 ESRT

Event-to-Sink Reliable Transport (ESRT) [23] is based on an event-to-sink reliability

model and provides reliable event detection without any intermediate caching requirements.

Though it seeks to achieve minimum energy expenditure and has the congestion control

component, it fails to address the issue of packet losses due to link and node failures. In

low event rate applications, the primary causes for packet losses are link and node failures

rather than congestion.

3.4.3 RMST

In [24], the authors propose a Reliable Multi Segment Transport (RMST) layer for

directed diffusion. They evaluate the placement of reliability for data transport at different

levels of the protocol stack. The authors conclude that reliability is important not just

to provide hop-by-hop recovery for the transport layer, but also because it is needed for

route discovery and maintenance. In RMST, receivers are responsible for detecting whether

or not a fragment needs to be re-sent. The performance of the protocol depends on the

caching policy and further the receivers depend on NACK mechanism to inform the senders

about the packet failures. RMST is the closest protocol to the proposed Reliable Directed

Diffusion and we evaluate the performance of RMST and Reliable Directed Diffusion and

show that our idea performs significantly better than RMST.
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3.4.4 CBQ

A cluster based forwarding (CBF) protocol is proposed in [25]. In CBF, each node

forms a cluster such that any node in the next-hops cluster can take forwarding respon-

sibility. CBF is not a routing protocol, but rather is designed as an extension layer that

can augment existing routing protocols. Each node selects a subset of its neighbors as its

helpers using its helper admission algorithm. The helper admission algorithm requires each

node to gather link quality information from each neighbor by exchanging sequence-number-

stamped packets. The node then broadcasts the gathered information to its neighbors. The

forwarding scheme is based on allocating time slots to the helper nodes which may add

additional overhead to the sensor network.

3.4.5 CODA

In [26], the authors propose an energy efficient congestion control scheme for sensor

networks called CODA (Congestion Detection and Avoidance) which comprises three mech-

anisms. The first mechanism helps to identify network congestion. Secondly, CODA uses a

combination of the present and past channel load conditions and the current buffer occu-

pancy to infer accurate detection of congestion at each receiver with low cost. Finally, once

congestion has been detected, CODA uses either a hop-by-hop back pressure (open loop)

or multi source regulation (closed loop) to alleviate congestion. The above techniques help

to improve the end-to-end reliability by reducing packet losses due to congestion. They do

not address the issue of wireless losses however. In fact, they do not differentiate between

the wireless and congestion losses. In contrast, reliable directed diffusion helps to reroute

packets in the presence of wireless losses and also fix broken routes caused by node failures.

26



3.4.6 Other Protocols

Several routing protocols have been proposed for MANETs which have a provision for

route repair [27] [28] [29] [30] [31]. Similar protocols cannot be used for sensor networks,

however, because of their limited scalability. These protocols need cache to store routing

information which can grow in size as the network size increases. Sensor networks are built

with low-powered devices that have limited memory. Hence, a data-centric protocol, such as

directed diffusion, is preferable. Two techniques that come closest to our work are Witness

Aided Routing (WAR) [32] and ASCENT [33]. WAR makes use of witness nodes to reroute

failed packets. Once again, WAR is a solution for MANETs. In ASCENT, the authors

introduce a new layer between the network layer and the link layer which makes the protocol

independent of the network layer routing protocol. In the event of failure, the sender tries

to route the packet through a node in the vicinity of the intended receiver, called a passive

neighbor. The disadvantages are the high number of configurable parameters that must be

fine tuned and the high communication overhead in identifying passive neighbors. These

nodes are identified by introducing two new messages: neighbor announcement messages

and help messages. These two packets must be sent every time the passive nodes are to

be made active. This process could be very expensive in sensor networks since the packet

losses are more frequent. Thus the recovery mechanism proposed by ASCENT is both time

and energy consuming.

3.5 Target Tracking Systems

The system that we are presently referring to is an intrusion detection system which

is essentially a surveillance situation of practical importance and is well-suited to wireless
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sensor networks. The intrusion detection system is designed as a dense, distributed, wireless

network of multi-modal, resource poor sensors combined into loosely coherent sensors that

perform in situ detection and estimation. There are several issues of interest in designing

such distributed intrusion detection systems. First and foremost is the sensor deployment

algorithms. These algorithms aim at maximizing the field of coverage of a given set of

sensors. One metric to identify the effectiveness of a deployment strategy is by measur-

ing the worst and best case coverage paths. In [34] the authors optimize deployment of

heterogeneous sensors through Linear Programming. In [35] the authors propose three ap-

proximation algorithms for a variation of the SET K-COVER problem, where the objective

is to partition the sensors into covers such that the number of covers that include an area,

summed over all areas, is maximized. In [36] the authors analyze the minimum number of

nodes needed for random deployment so as to meet a desired value for least path of exposure

metric. They assume Gaussian distribution for the random deployment strategy. In [37]

the authors propose algorithms to provide k-coverage in a mostly sleeping network. The

aim of the algorithm is to save energy and at the same time provide certain desired degree

of coverage of the protected region at all times. However, all these algorithms analyze the

degree of coverage from the perspective of target detection but not target tracking. One

method of judging the effectiveness of a particular sensor deployment algorithm is by mea-

suring the worst and best case coverage. [38], [39] provide algorithms to measure the worst

and best case coverage based on Voronoi diagrams. In [40] the authors analyze worst case

coverage (also called the breach path) in case of directional field-of-view sensor networks.

Line in the sand [41] system is a prototype model that can detect and classify up to

three different target types. In [41], the authors discuss various issues in developing such
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systems, largely emphasizing data fusion algorithms. VigilNet [42] is a real time large-

scale sensor network system that can track, detect and classify the targets in a timely

and energy-efficient manner. In [42], the authors perform mathematical analysis of various

delays and accuracy of the system. Both the above systems rely on mutual co-operation of

group of clusters. They both assume the availability of a clustering algorithm. In [43], a

target detection algorithm localizes a sound source using triangulation based on the acoustic

measurements made by a group of three sensors.

Once again the existence of clustering algorithm is assumed. [44] evaluates three differ-

ent architectures for fusing data collected by the sensors. The three schemes analyzed are

a centralized scheme, a progressive scheme and a distributed scheme. A centralized source

number estimation scheme is a processing structure in which all sensors send their raw data

to a central processing unit where source number estimation is performed. A progressive

source number estimation scheme is a processing structure that a group of sensors update

the source number estimation result sequentially based on each sensors local observation

and the partial estimation result from its previous sensors in the sequence. So, the informa-

tion transmitted through the network is the estimation result or partial decision. Finally, a

distributed or cluster based source number estimation scheme is a structure including two

levels of processing: source number estimation within each cluster and decision fusion be-

tween different clusters. The authors conclude that the cluster-based distributed approach

using the progressive intra-cluster estimation has the best performance in the sense that

it can provide much higher detection probability than the centralized approaches, while at

the same time occupying the least amount of network bandwidth and consuming the least

amount of energy. [45] introduces Markov chain Monte Carlo data association algorithm to
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track an unknown number of targets. The algorithm once again relies on the existence of a

clustering algorithm.

The clustering algorithm presented in this work has the ideal features pointed out in

[44]. The algorithm is distributed in nature and allows for intra cluster data aggregation.

The intra cluster data aggregation is made possible by the overlapping nature of the clusters.

This also leads to redundancy and increases the success rate of target detection.
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Chapter 4

Problem Statement

In this chapter we identify and analyze various issues that make the current target

tracking system unreliable. The goal of the target tracking and detection system is to

accurately and quickly predict the location and trajectory of a target so that it can be

visualized by the camera. We also want the system to efficiently utilize the resources of the

power constrained sensor nodes. The Target tracking application has two modules. The

first module deals with successfully being able to detect the target and the second module

deals with being able to transmit the target video reliably to an external agent.

For the prototype system, we have made a few assumptions to facilitate development

and deployment. First, we assume a static network configuration of the nodes. The topol-

ogy and node roles are statically defined. Clusters are composed beforehand using the IP

addresses of the sensor nodes. Secondly, we assume time synchronization among the nodes

in the system. Time must be synchronized so that CPA time of sensor nodes can be ana-

lyzed correctly. Comparisons are made based on a unified time to determine absolute time

differences. Thirdly, we assume that general acoustic information about potential targets

is available so that appropriate detection settings can be found. Suitable acoustic thresh-

olds for the target and the environment need to be known in order to correctly trigger the

detection mechanism. Fourthly, we assume only a single target is detected. The current

system does not support multiple targets crossing the sensor field. The next two sections

discuss in details some of the issues that make the system unreliable.
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4.1 Basic Concepts of Target Detection Using CPA Algorithm

We estimate target location using closest point of approach (CPA) in distributed acous-

tic sensor networks. Sensor networks consist of a large number of inexpensive wireless sensor

nodes. These sensor nodes can be distributed densely over the region of interest. Each sen-

sor node in the sensor field generates a CPA data, which is a type of time-varying spatial

signature of the moving target. When a target moves by one sensor node, the sensor node

gets a series of time-varying signal using the average received energy. The signal reaches

the peak when the target arrives at the nearest point to the sensor node. The sensor node

then records the time t, which is relative to the peak. CPA data is composed of time t and

the location of the sensor node. The location of each node can be determined using GPS.

4.2 Reliable Target Detection

One of the basic requirements for target tracking is reliable detection of targets by

minimizing false positive and false negatives. Once this is achieved, then the CPA algorithm

can be used to more accurately determine the target velocity and location. The two main

causes of problems in target detection are the effect of background noise and wind sound

on the acoustic sensors. For the acoustic sensor network, to successfully detect a target, the

most important task is to distinguish the target sound from the background noise. One way

to distinguish the target sound from the background noise is by setting a threshold level

for each acoustic sensor. The CPA algorithm processes only those sound values that are

above the threshold. But arriving at a threshold value is extremely difficult because of the

ever changing nature of the back ground noise. The primary source of background noise is

wind and stray events in the immediate neighborhood. Winds are omnipresent in the outside
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field, and the audio amplitudes of wind are always very high. In our real world experiments,

we experimented with several mathematical models to arrive at a threshold value for the

acoustic sensor so as to filter out background noise. Though these techniques help to reduce

the effect of background noise, they do not completely eliminate errors generated by the

back ground noise. The accuracy of the CPA algorithm and the effect of different errors

on the accuracy of the overall system has been outlined in [46], [47] and [48]. These issues

act as bottleneck at the cluster level. Further, in the real world to be able to track a large

geographical area, we need to address issues related to organization of the sensors deployed

in an effective way so as to save energy.

Finally, though the target might be traveling in a straight line for the perspective of

any one cluster, it could be actually traveling in a curvilinear path. In [49] we evaluated the

performance of single cluster algorithm. In a single cluster algorithm each node is allowed

to form only one cluster. This limits the accuracy of the target detection system. Hence

the clustering of sensors should be able to track such nonlinear paths. Furthermore the

clustering algorithm should be able to reconfigure in the event of node failures.

We intend to improve the tracking capability of the over all system by making the best

use of the sensors deployed. This implies the need for a way to measure the performance of

the clustering algorithm. At first sight, it might appear that the total number of clusters

formed would be best parameter to compare. But this is not true because some of the

clusters may be redundant and may not provide any new information about the field to

be tracked. We choose the following metrics to evaluate the performance of the clustering

algorithm.
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• Average Probability of Detection: This parameter estimates the average probability

with which a target appearing at a randomly chosen point in the sensor field can be

detected. A higher value implies a better clustering algorithm.

• Degree of Coverage: This parameter represents the region of the sensor field that is

covered by at least one cluster. This parameter ensures that no region in the sensor

field is left untracked. A higher value implies a better clustering algorithm.

• Breach Weight: Represents the minimum distance from sensors that an agent traveling

on any path through the field A, from I to F, must encounter at least once. Lower

breach weight represents better coverage.

• Support Weight: Represents the maximum distance from sensors that an agent trav-

eling on any path through the field A, from I to F, must encounter at least once.

Lower support weight represents better coverage.

• Protocol Overhead: Since sensors are energy constrained, we would like to see the cost

of tracking a region. We would measure the amount of energy consumed to maintain

the clusters. Also the energy needed to reorganize the clusters in the event of node

failure is important.

Since each sensor has multiple neighbors, one important criteria to decide is coming up

with heuristics a cluster head should adapt in choosing its member nodes. A highly irregular

pentagon has the disadvantages that some regions enclosed by the pentagon are much better

tracked than others. By symmetry a regular pentagon offers a more uniform tracking

probability. we need a metric to measure the roughness or irregularity of a pentagon. One

way to measure the irregularity of a polygon’s perimeter is
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Irregularity = (MaxDim * BoundLen)/Area

Where,

MaxDim represents the length of the longest diagonal from and to all polygon angles.

BoundLen represents the perimeter of the pentagon.

Area represents the area of the pentagon.

The other way to measure irregularity is by using the classical isometric inequality for

an n-sided polygon Pn.

L2
n − 4dnAn ≥ 0 (4.1)

Where,

Ln is the perimeter of the perimeter of Pn

An is the area of the domain enclosed by Pn

dn = n tan π
n

Equality holds good for a regular polygon. In this work we choose Equation 4.1 to

determine the degree of irregularity of a polygon.

4.3 Increasing Delivery Ratio in Wireless Multi-Hop Sensor Networks

Once the above reliability problems are addressed, the other components of the target

detection and tracking system will be rendered more reliable. For instance, reliable target

detection and reliable delivery of these detection and CPA sensor data to the cluster head

will enable it to collaboratively compute the target location and velocity accurately. It will

then reliably notify the camera sensor to track the target more accuracy. In [50] and [51]

we evaluated the performance of directed diffusion and it can be concluded that directed

35



diffusion though a scalable solution for wireless sensor networks does not address the real

time and reliability issues of video sensor networks.

We conducted more field experiments to test the reliability of sensor data dissemination

in wireless multi-hop sensor networks. In our experiments, we found that wireless link

quality (using IEEE 802.11b Orinocco pc cards) may vary drastically based on a number of

environmental variables, such as time of the day, surface materials of ground and buildings,

distance of the device from the ground, power level of the device, distance between sender

and receiver, etc. Sometimes packet loss can be high even when the distance between

the sender and receiver is only 25 meters, whereas at other times, packet delivery ratio

can be very high even when the distance if about 100 meters. Because of such erratic

nature of reliability of wireless transmission and because collaborative target detection and

tracking algorithms critically depend on reliable dissemination of sensor information, it is

very important for wireless networking to be very reliable even when the reliability of each

wireless link is low.

Intuitively the best way to improve reliability is

• Deploy denser sensor networks, or

• increasing the number of sensor nodes in a cluster.

Increasing the density of the sensor networks will ensure shorter distances between

sensor nodes and higher packet deliver ratio. In the field experiment, instead of forming a

cluster of four nodes for target detection, we will use six nodes, where the two redundant

nodes are placed in the center to improve communication from the sensors to the cluster

head. This will ensure that when a sensor node has CPA data to send, that directed diffusion

will be able to forward packets more reliably through each link in the wireless network.
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An alternative method is to place the sensor nodes closer to each other and reduce

their communication distance to increase packet delivery ratio. This approach however has

the disadvantages in that placing sensor nodes closer to each other will reduce the accuracy

of the algorithm to compute target location and velocity.

The other method to increase communication reliability is to increase the number of

sensor nodes in a cluster so that four sensor nodes report the CPA time to the cluster head

instead of three. If all four report their CPA time, then the cluster head will drop the last

one. If one of the sensor fail to send the CPA time through directed diffusion, then there

are at least three more sensors that can report their CPA time. The cluster head will use

the first three reported CPA data to calculate the target location and velocity. But this

increases the cost of maintaining the cluster as we need to maintain a cluster of six sensors

instead of 4 sensors. This would reduce the life time of the network.

For reliable multi-hop wireless communication, we use an automatic technique for re-

covery from communication failure by redundant neighboring nodes that overhears com-

munication streams. By overhearing data stream flows along the main path, neighboring

nodes may provide alternate path whenever wireless links along the main path fail. This

method will enable reliable multi-hop wireless communication. Further, since this technique

tries to provide reliability by having a packet recovery mechanism at every link, it is highly

scalable.

37



Chapter 5

Architecture of Target Tracking System

We have developed a system for target detection and tracking using a collaborative

sensor network. The architecture is built on the directed diffusion protocol which runs over

the IEEE 802.11 MAC protocol. Sensors detect and analyze acoustic data to determine the

closest point of approach (CPA) time of the target. Intuitively, this is the time when the

target was loudest and therefore was closest to the sensor node. Sensors send CPA time

information to the task group leader, the cluster head, for analysis. The cluster head uses

the CPA algorithm described in [1] to predict the position, velocity, and direction of the

target. This information is sent to a camera control application on an IP network though a

node that bridges the diffusion and IP networks. The camera control node pans and zooms

a camera to view the target’s current location. Video and/or images of the target may then

be captured for further analysis by a video capture application.

5.1 Architecture

The target detection and tracking system is composed of six components that are

inter-networked together using IEEE 802.11, IEEE 802.3, IP, and directed diffusion. Each

of the six components represents a role or a function which is performed by one or multiple

computers. Figure 5.1 illustrates the architecture of the target detection and tracking

system. Nodes serving as sensors record acoustic data in order to detect an event of interest

and calculate the CPA time of that event. The cluster head is the leader of the target

detection group. The node acting as cluster head receives CPA data from the sensors,
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executes the CPA target tracking algorithm, and sends the result to the bridge node which

then forwards target location information from the diffusion network to the IP network.

Specifically, the bridge sends data to the camera control PC which directly issues movement

(pan and zoom) commands to the camera. Video or images are captured from the camera

by the video capture PC. The sensing system is remotely controlled and monitored by the

system control PC. This computer issues commands to nodes in the diffusion network.

Figure 5.1: Target Tracking System Architecture.

5.1.1 Sensors

A sensor node monitors for targets, computes the CPA time, and reports the results

to the cluster head. Initially, sensors are in the target monitoring mode where they contin-

uously monitor for acoustic events. Once strength of the received acoustic signal exceeds a

threshold, the sensor node switches to target detection mode. The node records sound for

39



some short period of time (e.g. 3 seconds) and then analyze the sample to determine the

CPA time of the target. The CPA time is the time when the maximum volume sound was

recorded. After the CPA time has been calculated, the node sends its location, the CPA

time, and the maximum acoustic signal strength of the event to the cluster head.

5.1.2 Cluster Head

The cluster head analyzes CPA time data from the sensors in order to determine the

position, trajectory, and velocity of the target. Upon receiving the CPA time and location

information from four sensors, the cluster head executes the CPA target tracking algorithm

[1] to compute the location, speed, and direction of the target. This data, along with the

CPA time of the cluster head, is transmitted to the bridge node.

5.1.3 Bridge

The bridge interconnects the diffusion network to the IP network. It forwards target

location information from the cluster head to the camera control PC. The bridge repre-

sents the camera controller to the diffusion network. Its primary task is to receive packets

destined for the camera and convert them from diffusion packets to IP packets. This in-

volves subscribing to CAMERA data on the diffusion network and sending IP packets to the

camera control node on the IP network. The bridge must extract the data from attribute

vectors and repack it into an IP packet.

5.1.4 Camera Control

The camera control PC receives packets from the bridge and then pans and zooms

the camera to point it at the location as contained in the packet. The camera controller
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resides on a wired Ethernet network. It listens for packets from the bridge on port 8899

and issues movement commands to the camera over the serial port based on the location

and trajectory of the target. The camera pans and zooms according to the target data

computed by the cluster head.

5.1.5 Video Capture

The video capture computer is responsible for interfacing with the video output of

the camera. The output may be captured as a video or individual frames may be saved

as images. Image analysis software could subsequently be used for more advanced target

identification.

5.1.6 System Control

The system control PC manages the execution of the remote nodes. This includes

starting, monitoring, and stopping processes. The system control computer uses SSH to

remotely login and issue commands on the sensor, cluster, and bridge nodes. We have

developed scripts to handle common tasks of the sensor system (e.g. starting and stopping

diffusion). Since any command may be given over SSH, the system control PC has complete

control of all the nodes in the diffusion network. The system control node may also be used

to manage the camera control PC.

5.2 Implementation

The implementation of the sensor, cluster head and bridge applications is based on

the implementation of directed diffusion by the Information Sciences Institute (ISI) [52].

The diffusion API developed by ISI provides convenient methods for developing diffusion
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based applications. The core functionality involves publishing and subscribing to named

data. Data is structured as attribute-value pairs where an attribute is defined by a numeric

key and the value is the data itself. Table 5.1 lists the key values of attributes used by

the diffusion applications. These values must be unique, so they must be known for future

development of the system. The last column contains the actual C++ data type that the

diffusion attributes contain. To avoid loss of precision, data of type double and long were

transmitted as BLOB TYPE since they were too long to be stored in a predefined diffusion

data type.

Table 5.1: Diffusion Attribute Names and Keys
Attribute Key Diffusion Data Type C++ Data Type

CPA Time 6000 BLOB TYPE struct timeval
Time Stamp 6001 BLOB TYPE struct timeval
Task Name 6006 BLOB TYPE char []

Signal Strength 6007 BLOB TYPE int
Target Lat 6008 BLOB TYPE long

Target Long 6009 BLOB TYPE long
Target Speed 6010 BLOB TYPE double
Target Slope 60011 BLOB TYPE double

The API requires a configuration file, config.txt, to define the neighbors of the node.

The config.txt file is in the following form:

[ip address] [port] [receptionRate]

[ip address] [port] [receptionRate]

where [ip address] is the IP address of a neighbor, [port] is the port on which diffusion

is running on that neighbor and [receptionRate] is the probability that a packet is received.

A value of 100 means that no loss is caused by diffusion. Each line of the file specifies a

different neighbor. The default location of this file is the home directory.
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5.2.1 Sensors

The sensor program monitors for a target, computes the CPA time, and sends it to the

cluster head for analysis. Sensors parse a configuration file on startup which specifies the

detection threshold and the monitoring duration. By default, this file is named sensor.txt

and resides in the same directory as config.txt. The sensor file is in the following format

where [threshold] is a value between 1 and 32000 and [time] is in seconds.

Threshold: [threshold]

RecordingTime: [time]

SSR: [ssr]

The value threshold value is the sound intensity at which the sensor changes from

monitoring mode to detection mode. It should be chosen based on the acoustic properties

of the target and environment. The recording time represents the time period over which

the sensor records the target and computes a CPA time. The CPA time is the time when

maximum sound value was recorded. SSR is a signal strength ratio which normalizes the

sound intensity of each sensor to the clusterhead. This is necessary so that the clusterhead

can make calculations using consistent sound intensities from each sensor. The SSR is

calculated offline using a recorded sound.

The sensor must also know its own location. This is specified in the position.txt file

which is located in the same directory as the other configuration files. The position file is

written in the following format.

Latitude: [latitude]

Longitude: [longitude]
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Once the CPA time has been determined, the sensor reports the information, along with

its position, to the clusterhead. The sensor program sends data to the clusterhead according

to the following publication definition (as specified in the directed diffusion protocol):

TaskNameAttr IS ”CPA”

CPATimeAttr IS [cpaTime]

SignalStrengthAttr IS [maxSignalStrength]

TimestampAttr IS [now]

The task name attribute identifies the type of data flow as CPA. The CPA time and

maximum signal strength are used by the clusterhead for target localization and tracking.

A timestamp is also transmitted in order to measure the latency of the network.

5.2.2 Clusterhead

The clusterhead receives data from the sensors, processes it, and sends the results to

the bridge. The clusterhead program subscribes to data with the following subscription:

TaskNameAttr IS ”CPA”

Upon receiving CPA data from four nodes, the cluster head executes the CPA target

tracking algorithm. The node working as the cluster head also serves as a sensor. Interpro-

cess communication is handled by the diffusion routing core. Local messages are forwarded

from the sensor process to the cluster head process on the cluster head node.

Messages are sent to the bridge using the publication definition shown below.

TaskNameAttr IS ”CAMERA”

TargetLatAttr IS [latitude]

TargerLongAttr IS [longitude]
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TargetSpeedAttr IS [speed]

TargetSlopeAttr IS [slope]

CPATimeAttr IS [cpaTime]

TimeStampAttr IS [now]

The task name attribute identifies the type of data flow as CAMERA. The target

latitude and longitude attributes are the predicted position of the target. The target’s

speed is measured in distance units per second. The distance unit is determined by what

unit the sensor positions are measured. The slope of the target represents its direction of

movement. Note that [cpaTime] corresponds to the CPA time of the sensor process running

on the cluster head. It represents the time at which the target was located at the predicted

position. As in the sensor, the timestamp attribute is used to measure the network delay.

5.2.3 Bridge

The bridge receives packets from the cluster head, converts them to IP packets, and

forwards them to the camera control PC. The bridge subscribes to camera packets with the

following subscription:

TaskNameAttr IS ”CAMERA”

When camera packets are received, the bridge sends UDP packets to the IP address and

port number specified in the bridge config.txt file. The configuration file is in the following

format:

[IP Address] [Port]
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The first line specifies the IP address of the camera control PC, and the port number

identifies the port on which the camera control process is listening. The back end of the

bridge is essentially just a UDP client application.

5.2.4 Camera Control

The camera control PC runs a simple UDP server listening for camera control packets.

When packets are received from the bridge on the camera control port (8899 by default), the

camera controller extracts the target location, velocity, and trajectory and moves the camera

appropriately. The camera control application also receives the CPA time of the target. By

calculating the delay between this time and the current time, the current position of the

target can be projected. In order to move the camera correctly, the camera controller must

know the position of the camera. This is specified in the cameraPosition.txt configuration

file in the format shown below.

Latitude: [latitude]

Longitude: [longitude]

[Orientation Direction]

Orientation direction represents the direction in which the camera is pointing when in

the home position. It must be one of the four cardinal directions (N,S,E, or W).

Camera movement is implemented using an open source library called EVILib which is

written for Sony EVI video cameras. It is available at http:sourceforge.net/projects/evilib/.

It offers a convenient API for accessing the camera over the serial port.
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Camera movement occurs in two stages. First, the camera moves to view the current

position of the target. We call this target acquisition. Secondly, the camera rotates to keep

the target in view. We label this stage target tracking.

5.2.5 System Configuration

The target detection and tracking system uses two network protocols diffusion and IP.

The network stacks are shown in Figure 5.2.

Figure 5.2: Protocol Stack.

IEEE 802.11 and 802.3 (Ethernet) underlie the communication links of the system.

The sensors, clusterhead, and bridge communicate over 802.11. Wired Ethernet is used

by the bridge, camera control, and system control machines. IP comprises the low level

routing layer of the system and diffusion serves as a higher level network protocol. Dif-

fusion and its applications run over UDP/IP. The non-diffusion applications use standard
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Table 5.2: Parameter Settings

parameter Value

Mode Ad-Hoc

SSID diffusion

Channel 11

Bandwidth 11Mbps

TCP/UDP as the transport layer. These include the system control (SSH) and camera

control applications.

The diffusion nodes are configured to use the Ad-Hoc mode of 802.11. We used Lucent

Technologies Orinoco 802.11b PCMCIA cards on the nodes. The bridge node had a built in

802.11 card which was used instead of an external card. The configuration of the wireless

nodes is shown in Table 5.2.

Notice in Figure 5.2 that the diffusion runs on top of UDP and IP. This is because ISI

diffusion is implemented with UDP as the link layer. As a result, diffusion executes over

IP. While this may seem inefficient, it provides several benefits. First, by using diffusion

over IP, wired Ethernet (802.3) can transparently be replaced by 802.11. The exact same

version of diffusion can run over either MAC layer. This significantly eases configuration.

Secondly, by running IP among the sensor nodes, time synchronization can be performed

using standard NTP. Furthermore, standard SSH (over IP) can be used to remotely login

and manage the nodes on the diffusion network. The use of IP as an underlying routing

protocol significantly eases configuration and management of the system.

Although the network runs IP, the addition of diffusion, allows multi hop routes to be

established dynamically. Diffusion establishes multi point to multi point data rows over
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multiple hops. This functionality would be even more advantageous in larger networks, i.e.,

networks with more nodes where a multiple hop route may be the only path between two

nodes. Diffusion will deliver packets from the cluster head to the bridge even if the bridge

is not directly connected to the cluster.

49



Chapter 6

Algorithm Design for Reliable Detection and Communication

In this chapter we describe in detail the two major contributions that bring the target

tracking system much closer to reality. The first is a distributed clustering algorithm that

organizes the deployed sensors into clusters of five sensor nodes. The algorithm is robust

to node failures and in the event of a node failure it re-organizes the remaining nodes into

clusters of five nodes by restricting the changes to a minimum.

The second contribution deals with improving the end-to-end reliability of Directed

Diffusion so that the video recorded by the sensor can be delivered to an external agent

with minimum effort in terms of energy. This is essential since sensors are low powered

devices and the lifetime of the network is an important parameter for the applicability of

the overall system.

6.1 Clustering Algorithm

In this section we introduce a clustering algorithm that groups deployed nodes into

groups of five. The clustering algorithm can be made to operate in two modes: overlapping

and nonoverlapping mode. The percentage of tracking region that two clusters share can be

controlled by allowing adjacent clusters to have some nodes in common. Figure 6.1 shows

the scenario where we have nonoverlapping clusters. In this case we see that we have only

one cluster tracking a region. This implies in the event of failure we do not have a backup

cluster to track the target. Further in the nonoverlapping mode of operation we can form

only 4 clusters from the 15 sensors deployed. Whereas in Figure 6.2 it can be seen that
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we are able to identify 7 clusters for the same set of 15 sensors. The overlapping nature

of clusters provides for redundancy and hence better reliability. Further, it enhances the

ability of the system to track curvilinear trajectories.
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Figure 6.1: Non-Overlapping Clusters for Analyzing Non-Linear Trajectory of Moving Tar-
gets
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Figure 6.2: Overlapping Clusters for Analyzing Non-Linear Trajectory of Moving Targets
showing more accurate and finer-grain non-linear trajectory of the target
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6.2 Need for Redundant Clusters

In Section 2.3.1 we have seen that a single cluster tracking a region is reliable only

to a certain extent. This is because the individual sensors that make up the cluster are

prone to detection errors and we represent this probability of failure by p. Now we derive

an expression for the probability of failure for a cluster to track an event can be obtained

by evaluating the following two cases.

Case 1: Assume that the target takes path P1, i.e. 1 sensor on one side of the target

trajectory and all the other sensors on the other side. Let P1 represent the probability of

failure.

P1 = 1− probability of success = 1− (4C3 ∗ (1− p)4 ∗ p + (1− p)5) (6.1)

Case 2: Assume that the target takes path P2, i.e. 2 sensors on one side of the trajectory

and the rest on the other side. Let P2 represent the probability of failure.

P2 = 1− probability of success = 1− (2C1 ∗ (1− p)4 ∗ p + (1− p)5) (6.2)

Since there are only 5 possible scenarios in which Case 1 can happen and 5 possible scenarios

in Case 2 can happen, the probability with which a cluster can fail to detect an event is

0.5*P1 + 0.5*P2.

Figure 6.3 represents the individual failure rates of each case and the overall failure rate

with changing failure rates of individual sensors. A sensor fails to detect because of various

factors, such as ambient noise and issues associated with the fine tuning of thresholds for the

acoustic detector. The total success rate can be improved by having more than one cluster
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Figure 6.3: Failure probability of a cluster in detecting the target given individual sensor
failure probability.

monitor a certain region. This makes it necessary to have overlapping clusters. If we have

six sensors, then we can have six clusters such that any two clusters differ by at least one

sensor. Incorporating new nodes and forming new clusters with different set of sensors can

give a different perspective to evaluate the tracking parameters. Figure 6.4 shows how the

total failure to track a target decreases as more clusters track the target. N represents the

number of clusters that track a region. It can be seen that the failure probability can be

reduced greatly by increasing the number of clusters tracking a target from 1 to 5.

In the algorithm presented in the next section, the amount of redundancy can be

controlled by controlling the number of sensors two clusters can have in common.

6.3 Design Details of Clustering Algorithm

The clustering algorithm forms as many polygons as possible and prevents polygons

with exactly the same set of sensors from forming. Ties are broken by giving preference to
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Figure 6.4: Improvement in the target detection as more number of clusters monitors a
region.

the sensor with lower ID. Once formed, a cluster head remains in cluster head state until

it detects that one of its member nodes is not responding. The cluster head node and the

member nodes poll one other with HELLO messages to detect node failure. In the event of

node failure, the cluster head disbands the cluster and moves to the initial state and starts

all over again. Each sensor (cluster head) manages only one cluster at a time, but can be

a member node to any number of clusters. The overlapping nature of the clusters improves

the reliability of the system as the same portion of the field is monitored by more than one

cluster. An overview of the protocol is shown in Figure 6.5.

The protocol has eight states and makes use of seven messages. The states are START,

CHEAD, HELLO, POLY REQ SENT, POLY INFORM SENT, and CHEAD LOST. A brief

description of each state is given below.

• START: This is the initial state of the node soon after it has been deployed out on

the field.
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Figure 6.5: State transition diagram of the clustering algorithm.

• CHEAD: A node moves to this state on successfully forming a polygon. It receives

CPA information from the member nodes and runs the CPA algorithm to determine

the target parameters. It periodically sends out HELLO messages to verify that its

member nodes are alive. A node in CHEAD state remains so until one of its member

nodes dies.

• POLY REQ SENT: A node interested in forming a cluster broadcasts a FORM POLY REQ

message and move to this state while it waits for replies from nodes that interested

in forming a cluster.

• POLY INFORM SENT: Once a node decides on its member nodes, it broadcasts a

FORM POLY INFORM message. This message carries the ID of all the member

nodes.
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• CHEAD LOST: when a node that intends to form a polygon realizes that a similar

polygon is being formed by another node (with a smaller ID), it gives up its attempt

to form a polygon and moves to CHEAD LOST state.

The seven messages are FORM POLY REQ, FORM POLY REPLY, FORM POLY INFORM,

FORM POLY COMPLETE, STATUS ACCEPTED, ACK STATUS ACCEPTED, HELLO

and POLY DISBAND.

• FORM POLY REQ: this is a request message broadcast by a node that intends to

form a cluster soliciting replies from nodes that are interested in joining a cluster.

• FORM POLY REPLY: Upon receiving a FORM POLY REQ message, a node inter-

ested in joining a cluster replies with a FORM POLY REPLY message.

• FORM POLY INFORM: A node that has decided on the member nodes of its cluster

broadcasts a FORM POLY INFORM. This message contains the IDs of the member

nodes. The purpose of this message is to avoid duplicate clusters. Duplicate clusters

are those clusters that have identical nodes.

• FORM POLY COMPLETE: This is a broadcast message sent by a node to inform

its member nodes about the successful formation of the cluster. The sender of the

message becomes the cluster head. The member nodes send raw data about any target

they detect to the cluster head.

• HELLO: The cluster head and the member nodes make sure that the cluster is intact

by periodically exchanging HELLO messages between them.

58



• POLY DISBAND: Once a cluster head concludes that one of its member nodes is not

responding, it disbands its cluster by broadcasting a POLY DISBAND message. It

then moves to START state and starts all over again.

Figure 6.6: A special case of the clustering algorithm.

In the rest of the section, we explain the purpose of STATUS ACCEPTED and

ACK STATUS ACCEPTED message. The main purpose of the message is to reconfigure

the clusters in the event of node failures and at the same time ensure that neither too many

redundant clusters are formed nor too few clusters are formed. Too few clusters might lead

to void region. Void region is the region that is not monitored by any cluster.

• STATUS ACCEPTED: In Figure 6.6, assume that nodes 9, 10 and 11 all try to form

clusters at the same time. Also assume that the set of member nodes of 9 and 10

differ by a single node and the set of members of 10 and 11 also differ by a single node.

However, assume that the set of member nodes of clusters being formed by nodes 9

and 11 differ by 2 nodes. By virtue of lower ID, node 9 gets to form a cluster while

10 moves to CHEAD LOST state. Assume that each of the nodes have exchanged

the FORM POLY INFORM messages. By the nature of the node positions, node 9

is aware of the cluster being formed by 10; 10 is aware of the clusters being formed

by both 10 and 11; and 11 is aware of the cluster being formed by 10. Now there is
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a tie between nodes 9, 10 and 11. Since the algorithm allows for nodes with lower

ID to form clusters, only node 9 would be able to form a polygon. This because 10

would loose the race to 9 and 11 would loose the race to 10. We could better monitor

the field if 9 and 11 can form clusters as their respective set of member nodes differ

by 2 nodes. Hence, in such situations, 10 allows 11 to form a cluster by sending a

STATUS ACCEPTED message.

Before the STATUS ACCEPTED message reaches node 11, assume that node 11

looses to node 8 (since 8 has lower ID, it has precedence over 11 in case of, tie.). In

this case, we would end up with just two clusters formed by nodes 9 and 8. This might

lead to a region between nodes 9 and 8 not being monitored. In order to avoid such sit-

uations, node 11 sends out a STATUS ACCEPTED message to node 10, and node 10

goes ahead to form a cluster. Node 11 will then move to STATUS ACCEPTED SENT

state.

• ACK STATUS ACCEPTED: While in STATUS ACCEPTED SENT state, if a node

receives a STATUS ACCEPTED message from a node with a lower ID, it replies with

a STATUS ACCEPTED message and waits for (ack timer period) the lower ID to

acknowledge the message with ACK STATUS ACCEPTED message. On the other

hand, if it receives an STATUS ACCEPTED message from a higher node ID, it moves

to CHEAD state and the lower ID acknowledges with a ACK STATUS ACCEPTED

message. This final step of the algorithm assures that nodes with a lower ID gets to

form a polygon even in the presence of wireless losses, and, at the same time, assures

that no void regions (regions that are not monitored by any cluster) are formed.
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6.3.1 Metrics for Identifying the Member Nodes of a Cluster

From Figure 6.5 it can been that a node that intends to become a cluster head needs

to have a policy to identify the best four nodes as its member nodes. The policy to identify

the member nodes depends on the aim of the application. There are several parameters

that can be optimized. Some of them are high probability of detection, low energy and cost,

etc. The current implementation is flexible and allows for optimizing any of the parameters.

In this work we aim to achieve 100% coverage with minimum number of clusters and the

best possible detection probability. In order to achieve these goals we choose member nodes

such that the resulting pentagon is highly regular. We measure the degree of regularity of

a pentagon by using Equation 4.1.

6.4 Reliable Directed Diffusion Protocol

Directed diffusion uses delay as the metric to identify the best route between source

and sink nodes. RDD proposes a data centric approach for route repair which makes use

of backup nodes at each hop in order to reroute data packets in the event of link failure.

Hence the end-to-end delay is not greatly affected.

On receiving either a positive reinforcement or data packet, a node identifies itself to

be a main node for the corresponding message attributes. A main node is the node that

forwards data packets for a certain attributes. We refer to the nodes that backup the main

nodes as backup nodes. Since the role played by a node is based on the message attributes,

a node can be a main node for one set of attributes and at the same time be a backup node

for a different set of attributes. Every node maintains a list of all the attributes for which

61



it is the main node and for those it is a backup node. These attribute value pair help in

rerouting in the event of node and link failures.

We have defined two different modes of RDD: hierarchical and non-hierarchical. In

hierarchical mode, each hop of the data path (identified by the diffusion protocol) is backed

up by a set of backup nodes which, in turn, are backed up by another set of nodes. The level

of hierarchy is chosen at the time of configuration. The default mode, non-hierarchical, is

similar to hierarchical mode of level 1. In this mode, the backup nodes do not have any

backup nodes. If the backup nodes fail to deliver a reroute data packet they simply broadcast

it. Since sensor networks are dense there is good chance for a downstream backup node

to receive the data packet. The downstream backup node will then make an attempt to

deliver the data packet to a node along the original data path based on its attribute value

pair.

6.4.1 Identifying Backup Nodes

The first step in the protocol is identifying backup nodes. This is done by modifying the

basic diffusion protocol. The sources in the network reply to the interest packets sent by the

sink nodes with exploratory packets. The sink nodes then reinforce the node from which it

first receives the exploratory data. After a node transmits a positive reinforcement message

it broadcasts a backup positive reinforcement request message to its 1-hop neighbors. All

the nodes which receive the backup request message create a link in their routing table.

This is illustrated in Figure 6.7 where node 10 is the source and node 19 is the sink while

nodes 12 and 13 are the intermediate nodes. Node 13 forwards the positive reinforcement

message that it receives from node 19 to node 12. Immediately after forwarding the positive
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reinforcement message it broadcasts a backup positive reinforcement request message asking

nodes to backup the link 13→ 12. When Nodes 22 and 2 receive this message, they create

a link entry in their routing tables as shown in Table 6.1.

Figure 6.7: Routing in the event of Link failure

Table 6.1: Link entries at nodes 2 and 22
Link Type Link (S → D) Attribute/Value Pair

POS REINFOR 13→ 12 AttrValue

This happens at each hop along the positive reinforced path. But since Directed Diffu-

sion sends out a positive reinforcement packet only once every 60 seconds this message does

not lead to a significant overhead. When the source node receives the positive reinforcement

message, it sends out data packets which retrace the reinforced path back to the sink. At

each hop, the node that forwards the data packet, broadcasts a backup data request message.

We reduce the overhead of the backup data packet by broadcasting it only once every K

data messages. K is a configuration parameter and is used to control the message overhead.

The nodes that receive the backup data request message create a link entry in their routing

table. In Figure 6.7, node 12 broadcasts a backup data request message asking the nodes

to backup link 12→ 13. Nodes 2 and 22 will then have two link entries as shown in Table

6.2, one corresponding to positive reinforcement from 13→ 12 and the other corresponding

to data from 12→ 13. Nodes 2 and 22 conclude that they can backup node 13 for node 12
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and send out a backup data reply message to node 12. Node 12 adds the address of all the

nodes that willing to serve as backup nodes for node 13.

Table 6.2: Link entries at nodes 22 and 2
Link Type Link (S → D) Attribute/Value Pair

DATA 12→ 13 AttrValue
POS REINFOR 13→ 12 AttrValue

This implies that if node 12 fails to transmit a data packet to node 13 it can either

transmit the data packet to nodes 2 or 22 who in turn would try to deliver the packet to

node 13. In this way, every hop from the source to the sink will have identified some backup

nodes by the time the first data packet is delivered.

6.4.2 Alternative Technique to Identify Back up nodes.

One way to reduce the message overhead due to back up positive reinforcement mes-

sages and backup data messages is by operating each sensor node in promiscuous mode.

Operating every sensor node in promiscuous mode would mean every node is identical to

broadcasting every message through out the network. This is because the MAC on re-

ceiving a RTS/CTS message, compares the destination address with its own address and

determines whether the subsequent communication is intended for it or not. Hence when

operating in promiscuous mode it would turn off this filtering mechanism and send every

packet it receives to higher layers. This is similar to broadcasting every data and positive

reinforcement message. Though a positive reinforcement may not cause significant proto-

col overhead (since it is transmitted once every 60 seconds), data message would lead to

protocol overhead and reduce the available bandwidth of the sensor network. The cost of

operating a node in promiscuous mode has been evaluated in detail in [53].
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6.4.3 Failure Detection

For most network analysis, the packet loss rate is assumed to be constant and equal

for every link. Based on this assumption, we can conclude that the path quality degrades

exponentially as the path length (expressed as number of hops) increases.

However, in reality, the constant loss rate assumption is not true. From Figure 2.4 it can

be seen that the link quality changes dynamically and degrades significantly with distance.

Each link has a different packet loss rate that changes with respect to time. This implies

that under certain conditions adding an extra hop between nodes 12 and 13 might actually

improve the packet delivery ratio. The MAC attempts to retransmit an unacknowledged

data packet until the number of retries reaches the maximum retry limit(defined by the

specification). On reaching the maximum retry limit it informs the higher layer that the

send operation failed and discards the packet. To handle failures in RDD, the MAC layer

informs the network layer whether or not a packet was successfully delivered. The cross

layer communication is in the form of MAC layer returning the sequence number of the

packet that it failed to deliver. This mechanism is explained in detail in [54], [55] and

[56]. Once the sequence number is returned, the network layer can retrieve the data packet

from its cache. Since the Interframe spacing(IFS) is of the order of a few microseconds,

the turnaround time involved in identifying a packet loss is extremely small and the size of

the cache required is also extremely small. Hence, in our simulations, we do not consider

the effects of the cache. This design makes it unnecessary for the receiver to have a NACK

mechanism at the MAC layer and eliminates the need for the sender to maintain a data

cache at the network level for longer intervals.
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6.4.4 Link Failures

Assume that node 12 fails to transmit a data packet to node 13. The MAC layer

informs the network layer about the failure. The network layer then looks for the possible

backup nodes for node 13 and selects one of the possibilities (e.g. node 2). Node 12 sends

out a reroute data packet to node 2. If the new link fails the next backup node will be

used (e.g. node 22). This process is repeated until node 12 has exhausted all its backup

options. Otherwise, node 22 then forwards the data packet to node 13. As soon as a main

node receives the rerouted data packet, it converts it to a regular data packet and applies

the usual forwarding rules. In Figure 6.7, when the link 12→ 13 fails, data packets would

be rerouted either through 2 or 22.

6.4.5 Node Failures and Recovery (Non-Hierarchical)

RDD handles node failures in two ways: hierarchical and non hierarchical mode. Each

main node keeps track of the number of consecutive attempts it has failed to deliver a packet

to the next hop. If this count reaches a threshold (we set it to be three) the sender then

assumes that the next hop is dead and permanently reroutes data packets to a backup node.

In the example configuration, if node 12 fails to deliver three consecutive data packets to

node 13, node 12 concludes that node 13 is dead. Node 12 then transmits a reroute data

packet to node 22 which simply broadcasts the failed reroute data packet. If the density

of the sensor network is high, backup nodes of the next link could receive the broadcast

packet. In Figure 6.7, nodes 23 and 3 are the backup nodes for the next hop 13 → 19.

On receiving the broadcast data packet, assume node 23 realizes that the sender failed to

deliver it to node 13. Since, it is a backup node for the link 13→ 19, it transmits to node
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19. The procedure continues until the packet is delivered to a main node or else no more

backup nodes can be found. Node 12 requests the main node that would receive the next

(fourth) reroute data packet to send out a positive reinforcement so that the route can be

fixed locally. This is done by setting a flag in the reroute data packet. Once the route is

fixed, the positive reinforcement packet and the subsequent data packets along the repaired

path will identify the backup nodes for each hop as explained previously. In Figure 6.8,

the dashed circle represents the transmission range of a node of identical color. Further in

certain scenarios like the scenario shown in the lower half of Figure 6.8. In this case Nodes

2 and 3 are not in hearing range of one another. The only way to reroute the data packet

is through 4.

6.4.6 Node Failures and Recovery (Hierarchical)

Broadcasting data packets is expensive since all the nodes in the communication range

have to process it. In hierarchical backup mode, the backup nodes recursively establish

backup nodes. There are situations where a multi-tier backup is necessary to route packets

around a node failure. For example in the lower half of Figure 6.8, 10 → 12 → 13 → 19 is

the path established by diffusion between the source node 10 and the sink node 19. Nodes

2 and 3 are backup nodes for the links 12 → 13 and 13 → 19 respectively, i.e., if node

12 fails to transmit a data packet to 13 it sends out a reroute data packet to 2. Assume

that node 13 is dead. In this case, node 2 would not be able to transmit it to node 13.

Hence, when node 2 fails to transmit the reroute data packet, in the absence of hierarchical

backup, node 2 simply broadcasts the reroute data packet hoping that some downstream

backup node receives it. In the above scenario, there is no downstream backup node within
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the transmission range of node 2, and thus, the route repair algorithm fails. Hierarchical

backup mode overcomes this limitation.

Figure 6.8: Rerouting in the event of node failures

In hierarchical backup mode, on accepting to be a backup node for link 12 → 13,

node 2 broadcasts a backup data requesting for backup of link 12 → 13. Similarly node 3

broadcasts a backup data requesting for backup of link 13 → 19. Node 4, which is within

the transmission range of node 2 and node 3, adds the backup data request into its link

cache. It further concludes that it can act as backup for the link 2 → 3 and sends out a

backup data reply to node 2 to confirm that it can be used as a backup for node 13. On

receiving the reply, node 2 adds node 4 as a backup node for node 13. If node 2 fails to

transmit reroute data packet to node 13, it forwards the reroute data packet to node 4 which

in turn forwards it to node 3 which can now forward it to node 19. Although hierarchical

mode requires more setup overhead, it provides much more robust recovery capabilities.
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An alternative technique is to use localized flooding. However, for efficient flooding

it is necessary to determine the correct hop count for any given random topology. This is

because in sensor networks a node does not have any topological information of the network.

6.5 Design Details of Reliable Directed Diffusion

Reliable directed diffusion adds four new messages to the existing directed diffusion

protocol, and each of these message types adds four fields to the existing message structure.

The new fields are Source, Destination, FailedNode, and NodeType. The Source and Desti-

nation fields contain the source and destination link layer addresses of the two nodes on the

current data flow. The FailedNode field refers to the address of a downstream node that a

main node has identified to have failed. The NodeType field holds the status of the message

source, either MAIN NODE or BACKUP NODE. Every node besides the main nodes also

maintains two link caches. One cache stores the list of links for which it has received a

backup request while the second cache stores the list of links for which it is a backup node.

The new messages are:

• BACKUP POPSREINF: This message is broadcast by a node soon after it sends out

a POSITIVE REINF message. The Source and Destination fields refer to the source

and destination of the preceding POSITIVE REINF message. In this case, NodeType

is set to MAIN NODE.

• BACKUP DATA: This message is broadcast by a node soon after it sends out a

DATA packet. The Source and Destination fields refer to the source and destina-

tion of the preceding DATA message. The NodeType field is set to MAIN NODE or

BACKUP NODE depending on the status of the requesting node.
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• BACKUP DATA REPLY: This is a unicast message sent from a backup node to a

main node informing the main node that it can be used to reroute DATA packets.

• REROUTE DATA: This is a unicast message that a main node sends to one of its

backup nodes if its transmission to a downstream node fails. The Source and Desti-

nation fields at all times carry the source and destination addresses of the link along

which DATA packets are expected to travel.

6.6 Protocol Overhead of Reliable Directed Diffusion

Reliable directed diffusion introduces four new messages. Three of them BACKUP POS REINF,

BACKUP DATA and BACKUP DATA REPLY are necessary to maintain alternate routes

at each hop and add to the protocol overhead. In this section we evaluate the protocol over-

head with increase in the path length.

Let n be the path length measured as number of hops. The protocol tries to identify

backup nodes at every hop. Hence, backup positive reinforcement and backup data messages

are generated at every hop. A node broadcasts a backup positive reinforcement message

every time it needs to send a positive reinforcement message. Assume that the application

lasts for T seconds, and diffusion send out a positive reinforcement every TExploreDataDelay

seconds. The total number of backup positive reinforcement messages broadcast is n ·

(T/TExploreDataDelay).

Similarly, a node broadcasts a backup data message every time it has a data packet to

send. However, to save energy, nodes generate backup data messages only for k percent of

the actual data messages. If R is the data send rate of the application and the application

lasts for T seconds, then the total number of backup data messages is k ·R · T · n.

70



Let N be the average number of nodes that volunteer to backup at each hop. On

receiving a backup data request, nodes that volunteer to serve as backup nodes reply with

a backup data reply message. If N nodes volunteer to backup, the total number of backup

data reply messages generated is N · (k · R · T · n) since k · R · T · n is the total number

of backup data messages. Thus, the total number of additional messages generated by the

Reliable Directed Diffusion is given by Equation 6.3

n dT/TExploreDataDelaye+ kRTn+N(kRTn) =

n (dT/TExploreDataDelaye+ kRT +NkRT ) =

n (dT/TExploreDataDelaye+ kRT (N + 1)) (6.3)

The parameters T and R are application dependent and k is a configurable parameter. N

depends on the node density and is defined by sensor deployment. Thus T , R, k and N

remain fixed for a given experimental setup. From Equation 6.3 it can be seen that protocol

overhead increases linearly with respect to the path length (n).

In Figure 6.9 we compare the protocol overhead of Reliable Directed Diffusion and

Directed Diffusion for N = 3. We evaluate the two protocols for different path lengths n.

71



Figure 6.9: Protocol Overhead of RDD and DD.
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Chapter 7

Implementation

7.1 Robust Clustering Algorithm

We implemented the clustering algorithm in Ns2 [57]. This required the creation of a

new agent called Clustering Agent. In this section we explain in detail the implementation

of the Clustering Agent. The Clustering Agent implements Clustering Algorithm by making

use of five timers and nine helper functions.

7.1.1 Timers

In this section we explain the significance of various timers used to implement the Clus-

tering Algorithm. We also explain the data structures used in the process of implementing

the Clustering Algorithm.

Polygon Request Timer

A sensor that tries to become a cluster head broadcasts a FORM POLY REQ message

to its neighbors to solicit for members to form new clusters. Soon after sending out the

FORM POLY REQ message its starts the Polygon Request Timer. The nodes that are

interested in joining a new cluster reply with a FORM POLY REPLY message. The node

that intends to form a new cluster records the replies in its neighbor table. The neighbor

table is a linked list. Each element of the list is defined as:
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class Vertex {
int nodeID;
double nodeLocX;
double nodeLocY;

};

• nodeID - The ID of the node that sent the reply message

• nodeLocX - The X co-ordinate of the node that sent the reply message

• nodeLocY - The Y co-ordinate of the node that sent the reply message

Polygon Inform Timer

A node that had received replies to the FORM POLY REQ message, evaluates different

possibilities of forming a cluster and using heuristics it picks four member nodes. The node

then broadcasts a POLY INFORM MESSAGE. Soon after broadcasting the message it

starts the Polygon Inform Timer. On receiving the message nodes reply giving information

about the clusters that they have heard of. So during this period the sending node gets to

know if a similar cluster is being formed in its vicinity. The information gathered about the

clusters in a node’s vicinity is stored in a linked list. Each element of the list is defined as

class Polygon {
int CH;
int members[POLYGON];
double ts_;

};

• CH - The ID of the Cluster Head

• members[POLYGON] - This is an array storing the node id of the member nodes of a

cluster
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• ts - Time stamp indicating when the message was received

Ack Timer

In case two nodes attempt to form the same cluster, the node with lower id is given

preference. But in some situations the node with lower id might loose its claim to be cluster

head to a node with even lower id. In such cases the node with lower id sends out a unicast

message POLY STATUS ACCEPTED message to the higher node id authorizing the higher

node id to form cluster. Soon after sending the message the lower node id starts the Ack

timer and waits for acknowledgment message from the higher node id. If at the end of the

Ack period the lower node id does not receive the acknowledgment message it declares itself

as Cluster Head.

Hello Timer

On becoming cluster head a node needs to be aware of the status of its member nodes.

This is necessary since sensor nodes die from time to time or new nodes might be deployed.

In order to be aware of such topological changes a cluster head exchanges HELLO messages

with its member nodes. A HELLO message is sent out every time the Hello Timer expires.

Neighbor Timer

Sensors die from time to time due to loss of power or due to other hardware problems.

So the cluster head uses HELLO messages to know the status of the member nodes. The

cluster head prunes away all the nodes that it did not hear from since the last time the

Neighbor timer expired.
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7.1.2 Functions

In this section we explain the implementation of various helper functions associated

with the Clustering Agent.

FormPolyReqTimerexpired

Algorithm 1: Form Poly Inform message processing
Input: None
Output: None
if received replies to FORM POLY REQ from at least 4 nodes then

Try to form a valid polygon out of all the nodes in my neighbor list
if can form a valid polygon then

calculate how much new area is being covered by the currently selected
polygon
if new area > COVERAGE FRACTION then

compute the heuristic weight of the current polygon
if heuristic weight > old heuristic weight then

old heuristic weight = heuristic weight
store the node ids of the current cluster
broad cast a FORM POLY INFORM message;

else
pick another set of four nodes
if can find a new set then

goto line 3
else

State = ORD NODE;

else
Evaluate on every possible set of four nodes

As mentioned earlier the Polygon Request timer is used to solicit replies from the

nodes that are interested in joining a new cluster. Algorithm 1 summarizes the processing

done by a node to choose the best possible cluster out of its neighboring nodes. We keep

76



evaluating every possible set of four nodes. The first step in the evaluation is to make sure

that the cluster is a valid cluster. A cluster is considered to be valid if the length of the

longest diagonal is smaller than the sensing range of the microphone. This ensures that

every region enclosed by the convex hull of the resulting polygon is tracked. Once such a

polygon is determined then we make sure that it incorporates a predefined amount of new

area. New area is defined as the area that has not been covered by any polygon that has

been created so far. Of all the polygons that meet these two requirements we select the

one that is best in terms of heuristic weight. We experimented with two metrics. In the

first case we simple choose the one that has the largest area without significance to the

shape of the resulting polygon. In the next case we measure the degree of Irregularity of

the resulting polygon and choose the one that is least irregular.

sendFormPolyReq

This helper function sends out a FORM POLY REQ message. This is a broadcast

message. The sender then starts a timer. On receiving the message all the nodes that are

interested in joining a cluster, it replies with a FORM POLY REPLY message.

PolyInformTimerexpired

This helper function deals with resolving conflict between nodes that intend to form

identical clusters. A node that has moved to CHEAD LOST state before the timer expires

starts the process of forming a new polygon again. If it is in the state of POLY INFORM SENT,

it then moves to CHEAD state. Algorithm 2 shows the pseudo code.
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Algorithm 2: Form Polygon Inform Timer processing
Input: None
Output: None
if State = CHEAD LOST then

sendFormPolyReq
return

if State = POLY INFORM SENT then
if proportion ≥ COVERAGE FRACTION then

State = CHEAD
broad cast a FORM POLY COMPLETE message
store the newly formed cluster in local data base

else
State = CHEAD LOST
send out a fresh request to form new polygons

if State = CHEAD then
Start a Hello timer for each of the member nodes

recvFormPolyInform

Every time a cluster head receives a FORM POLYGON INFORM message, it replies

with a FORM POLYGON COMPLETE message. This message includes details of the

member nodes of the cluster. A node that intends to form a cluster on receiving the

FORM POLYGON INFORM message evaluates to determine if the cluster it intends to

form is significantly different from the clusters that have already been formed. Two clusters

are considered significantly different if they differ in area covered by a fraction of COVER-

AGE FRACTION.
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Algorithm 3: Form Poly Inform message processing
Input: packet
Output: None
if State = POLY INFORM SENT then

evaluate how different my cluster is from the cluster information just received
store the information in proportion
if proportion < COVERAGE FRACTION then

if iphrecv → saddr() < my id then
State = CHEAD LOST
nblist→ setState(State)
sendFormPolyReq

if iphrecv → saddr > my id then
if State = CHEAD LOST then

send out a STATUS ACCEPTED message to iphrecv → saddr
State = STATUS ACCEPTED

Algorithm 3 summarizes the processing of an incoming FORM POLY INFORM mes-

sage. If the current node is also in POLY INFORM SENT state then we need to evaluate

if there is a tie. The condition (proportion < COVERAGE FRACTION) indicates that

there is a tie. This means that the cluster under consideration by the current node is not

significantly different from the new cluster information that it has received. In such cases

we need to ensure that the node with lower node id wins. So in case the current node’s id

is lower than that of the node id from which it received the message then the current node

changes its state to CHEAD LOST. On the hand if the current node’s state is already in

CHEAD LOST then it replies with a STATUS ACCEPTED message and changes its state

to STATUS ACCEPTED.
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AckTimerexpired

Algorithm 4: Expiry of Ack Timer
Input: None
Output: None
if (State = ACK WAIT) and ( ! AckRecvd) then

Broad cast a FORM POLY COMPLETE message
Store the new cluster formed in the local data base
State = CHEAD;

Algorithm 4 summarizes the processing to be done on the expiry on Ack Timer. A

node with lower id sends out a STATUS ACCEPTED when it wants to let a node with

higher node id become a cluster head. But in the event the higher node id does not confirm

this message with ACK STATUS ACCEPTED message before the Ack Timer expires, then

the current node sends out a FORM POLY COMPLETE message announcing its decision

to become cluster head.

sendPolyDisband

A node is considered dead if it does not reply to three HELLO messages. In such situa-

tions the cluster head disbands the cluster. This is done by sending out a FORM POLY DISBAND

message to the member nodes. Algorithm 5 gives the outline of the database update oper-

ation.
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Algorithm 5: Form Poly Disband message
Input: failed
Output: None
if Cluster in the data base then

Verify if the failed node is a member of this cluster
if found then

send out a FORM POLY DISBAND message to every member node
delete every cluster that has failed node as its member node

recvPolyDisband

A member node on receiving FORM POLY DISBAND updates its membership infor-

mation. Since a node could be part of more than one clusters formed by the same cluster

head, it deletes its association with the cluster head only after the last cluster is disbanded.

For this to be made possible, each member node keeps a counter that indicates the number of

clusters it belongs to. Algorithm 6 summarizes the processing of FORM POLY DISBAND

message. The message includes a full list of member nodes. This way the receiver can

update its knowledge about the clusters in its vicinity. Finally, if the state of the node

is either CHEAD or CHEAD LOST or ORD NODE then a fresh FORM POLY REQ is

broadcast to form new cluster.
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Algorithm 6: Form Poly Inform message processing
Input: Packet
Output: None
if member of the cluster disbanded then

decrement the counter that tracks the number of clusters managed by the sender
if counter = 0 then

Cancel the Hello Timer

if Cluster info in local table then
Remove the cluster information from the local table

if (State = CHEAD) or (State = CHEAD LOST) or (State = ORD NODE) then
send out a fresh FORM POLY REQ message;

recvFormPolyComplete

A member node on receiving FORM POLY COMPLETE updates its membership in-

formation. A node could be part of more than one clusters formed by the same cluster

head. To keep track of multiple associations with the same cluster head each member node

keeps a counter that indicates the number of clusters it belongs to. Algorithm 7 summarizes

the processing of FORM POLY COMPLETE message. The message includes a full list of

member nodes. This way the receiver can update its knowledge about the clusters in its

vicinity.

Algorithm 7: Form Poly Inform message processing
Input: Packet
Output: None
if member of newly created cluster then

increment the counter that tracks the number of clusters managed by the sender
Add the cluster information from the local table
Start the Hello Timer
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recvStatusAccepted

The issue of resolving ties is further complicated when more than two nodes are in a

tie and at the same not every one in the group can hear every other member in the group.

Algorithm 8 explains the resolution of ties in such complicated scenarios. On receiving

a FORM POLY STATUS ACCEPTED message a node changes it state to CHEAD and

sends out FORM POLY COMPLETE message. On the other hand if the node is in STA-

TUS ACCEPTED SENT state then it compares its own node id with that of the node that

sent the message. If the id of the receiver is smaller than that of the sender then the receiver

changes its state to CHEAD and sends out an ACK STATUS ACCEPTED message to the

sender. It then broadcasts a FORM POLY COMPLETE message informing its member

nodes about the creation of a new cluster.

Algorithm 8: Form Poly Inform message processing
Input: Packet
Output: None
if State = CHEAD LOST then

State = CHEAD

if State = STATUS ACCEPTED SENT then
if iphrecv → saddr() > my id then

State = CHEAD
send out an ACK STATUS ACCEPTED message

else
State = ACK WAIT
send out an ACK STATUS ACCEPTED message
start the Ack timer

if State = CHEAD then
Broacast a FORM POLY COMPLETE message
Store the new cluster information in the local table
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7.2 Reliable Directed Diffusion

Implementation of Reliable Directed Diffusion protocol needed several modifications to

Gradient Filter. Rather than merely storing the downstream node matching a gradient, the

modified gradient filter stores more information that is gathered by the new messages that

we added to the Diffusion protocol. Four new messages were added to diffusion protocol so

as to enable the gathering of extra routing information necessary in the event link or node

failure.

In the next section we will describe the implementation of Gradient filter in the Diffu-

sion protocol and Section 7.2.1 we will explain the modifications necessary for the proposed

Reliable Directed Diffusion.

7.2.1 Gradient Filter In Directed Diffusion

Gradient Filter stores routing information as a linked list and each entry. Every set

of attributes has an associated routing entry in the routing table. The routing entry holds

a gradient entry for every node from which it receives the same set of attributes. The

gradient entry hold the address of the downstream node and port id in case the application

is running locally. This allows for data aggregation based on attribute information. The

gradient entry holds a flag that indicates if the gradient is reinforced or not. Data flows

down only reinforced gradients.

Fig 7.1 shows the processing of an incoming packet by directed diffusion. Diffusion

core determines the sequence of filter execution based on their respective priorities.
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Figure 7.1: Message flow in directed diffusion

Routing In Directed Diffusion

Each message in Diffusion holds a packet number and a random id that is generated

by the node that first creates the packet for communication. Directed diffusion core shown

in Fig 7.1 is the first to receive an incoming packet. It creates a hash entry based on the

the packet number and random id and stores the entry in a hash table. Duplicate packets

are identified based on the information stored in the hash table and marked appropriately.

The diffusion core eventually delivers the packet to Gradient filter. The gradient filter

first extracts the attribute information and then maps this information to the appropriate

routing entry. It then determines the next hop address based on the information stored in

the routing entry. Gradient filter takes appropriate action based on the type of diffusion

packet. If it is an INTEREST packet a new routing entry is created and the node address

and port information stored as the case may be and the reinforcement flag is set to false.

In case of POSITIVE REINFORCEMENT the corresponding gradient entry flag is turned

on. Similarly the flag is turned off on receiving NEGATIVE REINFORCEMENT. If it is a

DATA packet it is forwarded along every gradient that has been reinforced.
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Modifications to Gradient Filter

In this section we explain the algorithm to process various messages introduced by

Reliable Directed Diffusion. Algorithm 9 explains the processing of a Backup Positive

Reinforcement message. Backup Positive Reinforcement message is a broadcast message.

The message holds the source and destination nodes address of the link for which back

up is needed. In this case, the source and destination node address would be the source

and destination of the positive reinforcement message for which the back up message was

generated. For every backup Positive Reinforcement message that a node receives, it records

the message attributes in a vector form. This implies that the node intends to play the

role of back up node for the set attributes. In addition to the attributes it also records the

source and destination address of the link for which it intends to play the role of back up

node.

Algorithm 9: Backup Positive Reinforcement message processing
Input: Packet
Output: None
Extract the reinforcement attributes
if ! reinforcementAttr then

Ërror: Received an invalid Back up Positive Reinforcement message!̈; return
Remove the reinforcement attributes
Look for the back up Routing Entry that matches the attributes in the Back up
Positive Reinforcement message
if ! routingEntry then

Create a new routing entry for this data type
Create a new Link entry for this data type
update the routing entry with the new link entry
update the back up routing table

A new routing table name ”Backup routing table‘ ”’ is created in order to store the

information provided by back up messages.
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class TppRoutingEntry {
AgentList agents;
GradientList gradients;
AttributeList attrList;
DataNeighborList dataNeighbors;
LinkList llist;

Helper Functions;
}

• agents - agents represents is a linked list of all the agents that are interested in the

DATA matching the attributes provided in the attrList.

• gradients - Stores the Gradient information for which the current back up request

message has been received.

• attrList - Holds the list of all the attributes for which Backup has been requested.

• dataNeighbors - Holds the information about the neighboring node Ids.

• llist - Hold the more details about the link for which the current node needs to back

up.

Every time a node receives a back up message, it needs to record the certain link

properties for which it intends to back up. This information is stored in a linked list. Each

element of the list is defined as class LinkEntry.

class LinkEntry{
public:
int32_t Sid;
int32_t Did;
int32_t failAttempts;
int32_t type;
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int32_t srcNode;
int32_t srcNodeType;
struct timeval tmv;

};

• Sid - Represents the Source ID of the link for which a back up node needs to be

identified.

• Did - Represents the Destination ID of the link for which a back up node needs to be

identified.

• failAttempts - The number of times a DATA packet could not be transmitted along

the link. The counter is incremented for every failure and decremented for every

success.

• type - Indicates the type of message, could be either Backup Positive Reinforcement

or Backup Data message.

• srcNode - The source node that generated the backup message.

• srcNodeType - The nature of the source node. The source node that generated the

backup message could be either a backup node or main node.

• tmv - record the time at which the message was received.

The basic directed diffusion stores the gradient information. However to implement

the reliable diffusion protocol we had to make a few changes. The modified Gradient Entry

class is defined below.
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class GradientEntry {
public:

BkpList bkplist;
int32_t node_addr_;
int32_t fail_attempts_;
struct timeval tmv;
bool reinforced_;

};

• bkplist - Linked list of all nodes that have agreed to back up this gradient.

• node addr - Address of the downstream node.

• fail attempts - Number of consecutive attempts that the link has failed.

• tmv - record the time at which the message was received.

• reinforced - Is a boolean variable that indicates whether the gradient is reinforced

or not.

Algorithm 10 explains the processing of a Backup data message. Backup data message

is a broadcast message. The message holds the source and destination nodes address of the

link for which back up is needed. In this case, the source and destination node address would

be the source and destination of the DATA message for which the back up message was

generated. For every backup DATA message that a node receives, it records the message

attributes in a vector form. This implies that the node intends to play the role of back

up node for the set attributes. In addition to the attributes it also records the source

and destination address of the link for which it intends to play the role of back up node.

If the back up node had earlier recorded a back up positive reinforcement message for

the same link, it concludes that it can back up the said link and declares itself to be

89



a BACK UP node. It then sends out a REPLY message to the node that had earlier

broadcasted the BACKUP DATA message. Algorithm 12 explains the processing necessary

for BACKUP DATA reply message.
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Algorithm 10: Backup Data message processing
Input: Packet
Output: None
if If Received the message from a BACKUP NODE then

Look for the back up Routing Entry that matches the attributes in the Back up
Positive Reinforcement message
if ! routingEntry then

Create a new routing entry for this data type
Create a new Link entry for this data type
update the routing entry with the new link entry
update the back up routing table

while link itr1 6= bkproutingEntry → Reqllist.end do
if (linkEntry → srcNodeType = BKPUP NODE) and
(linkEntry → type = 2) and (linkEntry → Sid = msg → bkpup ) then

bkpupnode = linkEntry1→ srcNode
bkpupfor = msg → lastHop
replyto = msg → lastHop
bkpup1 = msg → bkpup1
bkpup2 = msg → bkpup2

end
create a link entry with bkpupnode, bkpupfor, replyto, bkpup1 and bkpup2
Store the link information as one of the links that is being backed up
Add the id of bkpup node to the list of nodes that are being backed
Send BACKUP DATA REPLY message to lastHop

end
else

while routingEntry do
while linkEntry do

if (linkEntry → Did = msg → bkpup2) and (linkEntry → Sid =
msg → bkpup1) and (linkEntry → type = 1) then

flag = true
break

end
end

end
if flag then

Add msg → msgAttrV ec to the list of attributes that are being backed
create a link entry with msg → lastHop, bkpupfor, replyto, msg → bkpup1
and msg → bkpup2
Store the link information as one of the links that is being backed up
Send BACKUP DATA REPLY message to lastHop
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Algorithm 11: Backup Data message processing...Contd
Input: Packet
Output: None
msg → hops−−
if msg → hops > 0 then

Re broad cast the BACKUP DATA message

Algorithm 12: Backup Data Reply message processing
Input: Packet
Output: None
if (Am a back up node) and (Received message from BACK UP node) then

while routingEntry do
while gradEntry do

Add msg → lastHop to backup node list
Sort the back up node list by geographical distance

end
end

else
Iam a Main node

while routingEntry do
while gradEntry do

Add msg → lastHop to backup node list
Sort the back up node list by geographical distance

end
end

Algorithm 13 explains the process for a MAIN node to reroute DATA packets around

a link and node failure. If DATA packets are rerouted through BACKUP nodes for

GF RETRIES then the MAIN node that receives the REROUTE DATA packet concludes

that the failure is permanent and hence sends out POSITIVE REINFORCEMENT mes-

sage back to the node that originated the REROUTE DATA packet. As the POSITIVE

REINFORCEMENT message passes through a series of Back up nodes they reconfigure

themselves as main nodes and remain until they receive a NEGATIVE REINFORCEMENT

message.
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Algorithm 13: Reroute Data message processing
Input: Packet
Output: None
if (msg → failedNode 6= -1) and (msg → failAttempts ≥ GF RETRIES) then

processRerouteData(msg);
end
if msg → nodeType = MAIN NODE then

if msg → failAttempts < GF RETRIES then
msg → nextHop = msg → bkpup1

else
msg → nextHop = nexthop

msg → nodeType = BKP NODE
msg → msgType = REROUTE DATA
msg → bkpup1 = msg → nextHop
msg → bkpup2 = msg → lastHop
msg → xmitFailure = GradXmitFailedCallback
msg → xmitFailureData = (void*) this
Send message

else
while routingEntry do

while linkEntry do
if (linkEntry → type = 2) and (linkEntry → srcNodeType =
MAIN NODE) then

msg → nextHop = linkEntry → Did
msg → nodeType = BKP NODE
msg → msgType = REROUTE DATA
msg → bkpup1 = msg → nextHop
msg → bkpup2 = linkEntry → Sid
msg → xmitFailure = GradXmitFailedCallback
msg → xmitFailureData = (void*) this
Send message

end
end

end

Algorithm 14 explains the processing of packet that could not be successfully trans-

mitted. We rely on the MAC layer ACK mechanism to determine the success or failure

of a transmitted packet. On failure, the MAC layer hands over the packet to the Network
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layer through a callback mechanism. The network layer then looks through the list of back

up nodes and determines the next unused back up node. If all the back up nodes have

been attempted then we simply broadcast the DATA message and hope that one of the

downstream back up nodes receives the message.
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Algorithm 14: Failed packet processing
Input: Packet
Output: None
if (msg → msgType = DATA) or (msg → msgType = REROUTE DATA) then

if at a BACKUP NODE then
while routingEntry do

while linkEntry do
if (linkEntry → Did = msg → nextHop) and (linkEntry → type
= 2) then

if Message in Error then
linkEntry → failAttempts+ +

end
else

linkEntry → failAttempts−−
end
if linkEntry → failAttempts ≥ GF RETRIES then

linkEntry → failAttempts = GF RETRIES
end
else

linkEntry → failAttempts ≤ 0
end
linkEntry → failAttempts = 0
break;

end
end
if attempts 6= -1 then

break
end

end
bkpup = findbkpnodeforbkp(msg, msg → nextHop)
if msg → nextHop = bkpup then

msg → nextHop = BROADCAST ADDR
end
else

msg → nextHop = bkpup
end
msg → msgType = REROUTE DATA
msg → nodeType = BKP NODE
msg → xmitFailure = GradXmitFailedCallback
msg → xmitFailureData = (void*) this
if Message in error then

send message
end

end
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Algorithm 15: Failed packet processing...Contd
Input: Packet
Output: None
else

attempts = -1; while routingEntry do
while gradientEntry do

if gradientEntry → nodeAddr = msg → nextHop then
if Message in error then

gradientEntry → failAttempts+ +;
end
else

gradientEntry → failAttempts−−;
end
attempts = gradientEntry → failAttempts
if gradientEntry → failAttempts ≥ GF RETRIES then

gradientEntry → failAttempts = GF RETRIES
end
else if gradientEntry → failAttempts ≤ 0 then

gradientEntry → failAttempts = 0
end
break;

end
end
if attempts 6= -1 then

break;
end

end
bkpup = findbkpnodeforMain(msg);
msg → failedNode = msg → nextHop
msg → msgType = REROUTE DATA
msg → nodeType = MAIN NODE; msg → failAttempts = attempts;
msg → xmitFailure = GradXmitFailedCallback
msg → xmitFailureData = (void*) this
msg → nextHop = bkpup; if (Message in Error) and (msg → nextHop 6= -1)
then

Send the message
end

end
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Chapter 8

Performance Evaluation

8.1 Performance of Clustering Algorithm

8.1.1 Experimental Setup

The clustering algorithm was implemented in ns-2.27 [57]. In all, five different de-

ployment topologies were evaluated, i.e. different pentagonal tessellation algorithms, grid

deployment and random deployment.

Figure 8.1: Pentagonal tessellations.

Pentagonal tilings were analyzed since it is possible to have non-overlapping clusters

of five sensors and hence assure that each part of the field can be monitored by at least one

cluster. In an ideal case where each cluster can monitor the region that it encloses with a

probability of 1. By having one of the five nodes of each pentagon to be a cluster head and

the other nodes as its member nodes, the entire field can be monitored with a minimum
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Figure 8.2: Pentagonal tessellations.

number of clusters. In all, 14 different types of convex pentagons [58] can tile a plane but

we evaluated only two of them. Figures 8.1, 8.2 and 8.3 shows the geometrical properties

of the three of the possible 14 tilings.

In tessellation of Type I, 248 sensors were deployed in a rectangular field of 500 *

1000m. In case of Type II, a total of 245 nodes were deployed in a rectangular field of

1000*1000m. Finally in case of type III tessellation, a total of 264 nodes were deployed in

a rectangular field of 1000*1000m. In case of grid deployment in which 300 nodes were laid

in 20 * 15 matrix and separated by 40m. Finally, in case of random deployment 300 sensors

uniformly deployed over a 760*560 m field. The communication range of the sensor was set

to twice the range of the acoustic signal.

Figures 8.4, 8.5 and 8.6 show a snapshot of the node deployment using Type 1, Type

2 and Type 3 pentagonal tiling.
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Figure 8.3: Pentagonal tessellations.

The parameters of interest are the total number of polygons created, Degree of Cov-

erage, Average Probability of Detection, Protocol Overhead, Breach Weight and Support

Weight. We compare two different techniques of forming polygons. In the first technique

each node tries to form a pentagon that is most regular. The degree of irregularity is

measured by Equation 4.1. We call this technique mathematical approach. In the other

technique each sensor forms a pentagon out of nodes that are closest to it. We call this

non-mathematical approach.

Figures 8.7, 8.8, 8.9 and 8.10 compare the performance of mathematical and non math-

ematical techniques while using the single cluster technique. In single cluster technique each

sensor is allowed to form and manage only one cluster.

Figure 8.7 compares the number of polygons the mathematical and non-mathematical

technique would form for the five different node deployment scenarios. In case of pentagonal
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Figure 8.4: Node deployment using Type 1 pentagonal tiling.

tessellation the number of polygons required to completely track the entire field is equal to

the number of pentagons in the tessellation.

The number of polygons identified by both the mathematical and non mathematical

technique is close to the number of polygons identified in theory to entirely cover the field.

But from Figures 8.8, 8.9 and 8.10 we can notice that when a node forms a polygon using

the mathematical model it achieves greater degree of coverage and average probability of

detection when compared to nonmathematical model. The performance of the mathematical

model is very much closer to the theory.
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Figure 8.5: Node deployment using Type 2 pentagonal tiling.

Since both mathematical and non-mathematical model form identical number of poly-

gons and hence the energy consumed by both the techniques is identical. This can observed

in Figure 8.10.

Figure 8.11 compares the breach path, which is a path from initial location I to final

location F with its smallest weighted edge being as large as possible. Lower breach weight

represents better coverage of the sensor field. It can be seen that by using mathematical

approach we can achieve lower breach weight. Similarly, Figure 8.12 compares the support

weight achieved by using mathematical approach and non-mathematical approach. Unlike

breach weight which evaluates the worst case coverage, support weight represents the best
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Figure 8.6: Node deployment using Type 3 pentagonal tiling.

case coverage. A lower value represents better coverage. Once again it can be seen that

mathematical approach achieves better support weight when compared to non-mathematical

approach.

From Figures 8.8 and 8.9 we can conclude that forming more regular pentagons im-

proves the degree of coverage and average probability of detection.

But because of the inaccuracy of the CPA algorithm in identifying the CPA time

accurately, with each node forming only one cluster the probability of detection is below

the theoretical best of 1.0. We can achieve this theoretical best by allowing each node to

form more than one cluster.
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Figure 8.7: Number of clusters formed by Mathematical and non Mathematical techniques
while using single cluster technique in comparison to theoretical technique.

To analyze the improvement in probability of detection achieved by having multiple

clusters, we need to have an error model for CPA algorithm. Figure 8.13 represents a

hypothetical error model for the CPA algorithm.

Figures 8.14, 8.15, 8.16 and 8.17 compare the performance of single cluster and multi-

cluster algorithms while using the mathematical approach in forming a cluster.

From Figure 8.14 it can been seen that the number of polygons formed by the multi-

cluster approach is close to twice the number of polygons formed by single cluster approach.

This is more evident when the nodes are deployed using Type I, Type II and Type III

pentagonal tessellations.

From Figure 8.15 it can be seen that the degree of coverage achieved by single cluster

and multi-cluster approaches is close to 100 percent, but the average probability of detection

is greatly improved by allowing each cluster to form more than one cluster. This improve-

ment in average probability of detection is evident in Figure 8.16. Multi-cluster approach

103



Figure 8.8: Maximum Degree of Coverage achieved by Mathematical and non Mathematical
techniques while using single cluster technique in comparison to theoretical technique.

achieves a higher probability of detection because of the overlapping nature of the clusters.

This means that we have more than one cluster track the same region.

The improvement in average probability of detection when using multi-cluster approach

comes with a cost. More number of clusters means more protocol packets to manage and the

clusters and hence more energy is consumed. Figure 8.17 compares the average node energy

consumed by both single cluster and multi-cluster approach. Energy being a scare resource

in sensor networks, it is important to strike a balance between the average probability of

detection and the average energy consumed by each node in the network.

Figures 8.18 and 8.19 compare the improvement in breach and support weight achieved

by forming multiple clusters instead of single cluster respectively. In both cases the clusters

are formed using mathematical approach.

Whenever a node dies the cluster heads of all the clusters that the dead node belongs to

are dissolved and a race for forming new clusters begins. Also since a node, can be a cluster

head and at the same time be a member node of another cluster, the dissolution of one
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Figure 8.9: Average Probability of Detection attained by Mathematical and non Mathemat-
ical techniques while using single cluster technique in comparison to theoretical technique.

cluster could lead to a ripple effect. A larger ripple means a larger number of clusters have

to be reorganized and hence more protocol overhead. The extent of the ripple is dependent

on the geographical location of the node and its relationship to other nodes. In an ideal case

the clustering algorithm should be able to re organize the clusters with minimum energy

and at the same time achieve the best possible degree of coverage and average probability of

detection. Figures 8.20, 8.21, 8.22 and 8.23 analyze the ability of the clustering algorithm

to reconfigure the clusters in the event of node failures. In each simulation set up about 5%

of the nodes were turned off. To simulate the failures necessary to test the reconfigurability

of the clustering algorithm, we generated failure scenarios consisting of a series of node

failures over the course of the simulation. The node failures were drawn from an exponential

distribution to model failures during the normal useful-life phase of the system [59]. The

mean time between failures for the exponential distribution was β where β ∈ {2.5, 5, 10,

15, 25 }.
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Figure 8.10: Total energy consumed by Mathematical and non Mathematical techniques
while using single cluster technique.

From Figure 8.20 it can be seen that there is only a small loss in the total number

of clusters. This implies that a vast number of new clusters were successfully formed to

replace the clusters in which one of the nodes failed.

Figures 8.22 and 8.21 compare the the average probability of detection and degree of

coverage before and after reconfiguration. After reconfiguring the clusters there is only a

small decrease in the degree of coverage and average probability of detection. Hence, it can

be concluded that the clustering algorithm can successfully reconfigure without great loss

in the average probability of detection and degree of coverage.

To make reconfiguration possible the nodes need to exchange information and this

consumes energy. Figure 8.23 compares the protocol overhead incurred to re-organize the

clusters. It can be seen that the amount of energy consumed in re-organizing the clusters

is minimal.

Just as the reconfiguring clusters in the event of node failure affects parameters like

coverage, probability of detection and energy, it also affects the breach weight and support
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Figure 8.11: Breach weight of Mathematical and non Mathematical techniques while using
single cluster technique.

weight achieved by the clustering algorithm. Figures 8.24 and 8.25 show how cluster recon-

figuration affects the breach and support weight. It can be concluded that the algorithm

is able to reconfigure the clusters without significantly affecting the breach and support

weights.
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Figure 8.12: Support Weight of Mathematical and non Mathematical techniques while using
single cluster technique.

Figure 8.13: Error Model representing the probability of target detection by the CPA
algorithm with distance.
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Figure 8.14: Number of clusters formed by Single cluster and Multi-Cluster algorithms
while using Mathematical approach in forming a cluster.

Figure 8.15: Maximum Degree of Coverage achieved by Single cluster and Multi-Cluster
algorithms while using Mathematical approach in forming a cluster.
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Figure 8.16: Average Probability of Detection achieved by Single cluster and Multi-Cluster
algorithms while using Mathematical approach in forming a cluster.

Figure 8.17: Total energy consumed by Single cluster and Multi-Cluster algorithms while
using Mathematical approach in forming a cluster.
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Figure 8.18: Breach Weight of Single cluster and Multi-Cluster algorithms while using
Mathematical approach in forming a cluster.

Figure 8.19: Support Weight of Single cluster and Multi-Cluster algorithms while using
Mathematical approach in forming a cluster.
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Figure 8.20: Number of clusters formed by Multi-Cluster algorithm while using Mathemat-
ical approach before and after some of the nodes die.

Figure 8.21: Maximum Degree of Coverage achieved by Multi-Cluster algorithm while using
Mathematical approach before and after some of the nodes die.
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Figure 8.22: Average Probability of Detection achieved by Multi-Cluster algorithm while
using Mathematical approach before and after some of the nodes die.

Figure 8.23: Total energy consumed by Multi-Cluster algorithm while using Mathematical
approach before and after some of the nodes die.
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Figure 8.24: Breach Weight of Multi-Cluster algorithm while using Mathematical approach
before and after some of the nodes die.

Figure 8.25: Support Weight of Multi-Cluster algorithm while using Mathematical approach
before and after some of the nodes die.
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8.2 Reliable Directed Diffusion

We compare the performance of Reliable Directed Diffusion, RMST and basic directed

diffusion, in terms of delivery ratio, end-to-end delay and energy consumed (measured in

mJ/pkt).

8.2.1 Experimental Setup

Ns-2.29 [57] was used for simulations. Two topologies were tested: grid and random.

In the grid topology, 100 nodes were positioned in 10 rows and 10 columns. While in the

random topology 150 nodes were uniformly distributed in a 670 * 670 meter region. In both

topologies, the source and sink were chosen such that the average path length was 10-15

hops. The reported results are based on the average of 22 runs.

In the simulations we measured the energy consumed to deliver a packet (mJ/pkt),

hence the energy model is significant. We used the IEEE 802.11 implementation of ns-2.

For such a CSMA MAC, each node must listen to the channel continuously. Hence, the idle

power is comparable to that of receive power. We set the Tx power to 0.660W, Rx power

to 0.395W and idle power to 0.390W.

The wireless losses are simulated using the model based on the implementation provided

in [60]. The error model evaluates the received signal strength of a packet by considering

both noise and interference of neighboring nodes. The bit error rate is calculated from the

received signal strength by Formula 8.1 [61]

Pb = 0.5 · erfc
(√

Pr ·W
N · f

)
(8.1)
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where Pr is the received power, W is the channel bandwidth, N is the noise power, f is

the transmission bit rate, and erfc() is the complementary error function. The frame error

rate is then calculated based on the length of the packet received.

A constant bit rate (CBR) application was used for application layer traffic. The data

rates used were 10, 15, 25, 50, 70, 80, and 100 packets per second. The size of each data

packet is 200 bytes. The simulation was run for 100 seconds.

8.2.2 Results and Discussions

Figure 8.32 compares the delivery ratio of reliable directed diffusion, RMST and Di-

rected Diffusion for the grid scenario. The delivery ratio was evaluated for different data

rates. The minimum data rate was 10 packets per second (PPS) and the maximum data rate

was 100 PPS. Figure 8.35 compares the delivery ratio of reliable directed diffusion, RMST

and Directed Diffusion for the random scenario. In both cases, the network is saturated

when the data rate is between 20 PPS and 100 PPS. In the saturated network (congested),

the losses are mostly due to collisions rather than wireless errors. Under saturated condi-

tions, reliable diffusion shows a small improvement. This is because the additional protocol

packets introduced by reliable diffusion worsen the congestion and, hence, reduce the gain in

delivery ratio. When the data rate is less than 20 PPS the network experiences no conges-

tion and hence the delivery ratio increases for both reliable diffusion and directed diffusion.

The delivery ratio saturates at slight below 80% in the case of diffusion while it saturates at

about 96% for reliable diffusion. Under low data rate conditions, most of the packet losses

are wireless in nature thus RDD can successfully recover them. RDD improves the delivery

ratio by about 20%. In the random scenario, directed diffusion achieves a maximum delivery
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ratio of about 72% whereas reliable directed diffusion achieves a maximum delivery ratio of

96%. Thus, in the random scenario, RDD gives a relative improvement of 35%.

Figures 8.33 and 8.36 compare the average energy (measured as mJ/pkt) consumed

to deliver a data packet for grid and random topologies respectively. We see that RDD

consumes only about 2% more energy more than DD. As the data rate increases, the

average energy consumed to delivery a packet decreases. This is because the protocol

overhead involved to setup a path between source and sink does not depend on the data

rate. Thus, at low data rates the network is under-utilized. The energy consumption reaches

a minimum at about 40 PPS. Beyond this, the energy consumption marginally increases

because of network congestion past this threshold. Network congestion leads to packet

collisions at the MAC layer and, as a result, more data transmissions are needed to deliver

a packet. The network congestion is made even worse by the extra packets generated by

RDD to build backup nodes. The confirmation messages from backup nodes generated in

response to backup requests from main nodes may be lost because of collisions and this

reduces overall delivery ratio while the energy consumed remains the same. Thus, under

congestion, reliable diffusion consumes 6% more energy than basic diffusion.

In the grid topology, RDD achieves higher delivery ratio but consumes about 6% more

energy. This is because delivering packets to the next hop via backup nodes does not

necessarily mean shorter hops, but may be the very nature of grid layout delivering packets

to the backup nodes may travel along the diagonal of a grid rather than the edge of the

grid. This leads to more energy consumption when compared to random deployment. In

the random topology, the nodes are uniformly deployed so RDD is more often able to find

a backup node (in the event of failure) which offers a shorter hop distance. In the random
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topology Figure 8.28, the energy consumed to build backup nodes is 11% more productive

in delivering data packets than in the grid layout. As a result, the protocol overhead in

terms of energy consumed per packet delivered is reduced.

Figures 8.34 and 8.37 compare the end-to-end delay for both techniques for both grid

and random topologies. There is no significant difference in the end-to-end delay of standard

directed diffusion and RDD for low data rates. This is because reliable diffusion packets

only take an extra hop in case of routing failures. Under low data rate conditions (below

20 PPS), most of the losses are wireless in nature and, on average, the packets take only

couple of extra hops to reach the destination in RDD. Under heavy load, the extra protocol

packets inserted into the network by reliable diffusion worsen the congestion and thus lead

to an increase in end-to-end delay.

We now compare the performance of RMST [24] to RDD and DD using the same

three metrics (delivery ratio, energy/packet, and end-to-end delay). RMST provides a

reliable transport layer. The designers of RMST conclude that the best implementation

for reliability in distributed sensor network architectures involves both the transport and

MAC layers[24]. In our simulations we ran RMST by operating each node in caching mode.

The transport layer based NACK mechanism of RMST adds significant overhead to sensor

networks. In Figure 8.26 it can be seen that the best delivery ratio can be achieved only

when the data rate is about 1 PPS (about 90%). However, the energy consumed is about

10 times the energy consumed by either reliable diffusion or directed diffusion. The delivery

ratio drops steadily as the data rate increases to 7 PPS (about 30%). It should be observed

that these low data rates do not support video applications.
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Figures 8.27, 8.29, and 8.31 show the performance of RMST for the random topology.

Similar observations can be drawn for random scenario. From Figures 8.28 and 8.29 it can

be seen that RMST consumes about 10 times more energy when the data rate is 7 PPS

when compared to either standard diffusion or reliable diffusion. Even when the data rate

is 1 PPS RMST still consumes about twice as much energy as RDD or directed diffusion.

Figure 8.31 and 8.30 show that RMST has large end-to-end delays when the data rate is

increased to 4 PPS. Under 4 PPS its end-to-end delay is comparable to that of both RDD

and directed diffusion. Hence, it can be concluded that RMST is not feasible for high data

rate sensor network applications such as video sensor networks.

Finally, Figure 8.39 demonstrates the scalability of reliable diffusion. Protocol overhead

is measured as path length is increased from 10 hops to 80 hops. The grid topology was used

and the layout was so chosen that there are a maximum of 3 backup nodes and a minimum of

1 backup node. The y-axis represents the protocol overhead generated by reliable diffusion

(measured in packets) to identify the backup nodes at each link. The graph compares the

theoretical protocol overhead estimated using Equation 6.3 to the simulated overhead. The

protocol overhead deviates from the estimated values because the number of backup nodes

identified at each link varies. To compute the theoretical value, we set the value of N

(number of backup nodes at each link) in Equation 6.3 to 2 to match the value observed in

the simulations. These results clearly verify that protocol overhead for RDD is linear with

respect to path length.

Figure 8.38 shows the time taken by reliable diffusion to repair permanent route fail-

ures (caused by node failures). These failures are recovered in approximately 1-3 seconds

depending on the data rate. We do not make similar measurements for directed diffusion
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because, in directed diffusion, routes are not recovered until the next time the source sends

out exploratory data packets. Assuming that a permanent route failure happens t seconds

after the simulation starts and the source sends out exploratory data packets at every T

seconds (T = 60 seconds in our implementation), directed diffusion takes T − (t mod T )

seconds to repair failed routes. In RDD, the route repair algorithm is initiated as soon as 3

data packets are rerouted through a backup node. In Figure 8.38, reliable directed diffusion

is operating in 2-level hierarchical mode. By doing so, the RDD can repair routes without

broadcasting data packets.
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Figure 8.26: Delivery Ratio of RDD, RMST and DD for Grid topology.

Figure 8.27: Delivery Ratio of RDD, RMST and DD for Random topology.

121



Figure 8.28: Average energy per packet consumed by RDD, RMST and DD Grid topology.

Figure 8.29: Average energy per packet consumed by RDD, RMST and DD Random topol-
ogy.
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Figure 8.30: End-to-End Delay of RDD, RMST and DD for Grid topology.

Figure 8.31: End-to-End Delay of RDD, RMST and DD for Random topology.
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Figure 8.32: Delivery Ratio of RDD and DD for Grid topology

Figure 8.33: Average energy per packet consumed by RDD and DD for Grid topology
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Figure 8.34: End-to-End Delay of RDD and DD for Grid topology

Figure 8.35: Delivery Ratio of RDD and DD for Random topology
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Figure 8.36: Average energy per packet consumed by RDD and DD for Random topology

Figure 8.37: End-to-End Delay of RDD and DD for Random topology
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Figure 8.38: Time to repair routes due to node failures versus data send rate (grid topology)

Figure 8.39: Protocol Overhead of RDD in case of Grid topology
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Chapter 9

Conclusions and Future Work

In this work we have proposed a Robust Clustering Mechanism and Reliable Directed

Diffusion mechanism to overcome the problems of the target tracking prototype that we

have developed and make it a scalable application.

The proposed Robust Clustering Algorithm is a distributed clustering algorithm to

track intruders. The localized nature of the algorithm ensures that reconfiguration does not

significantly increase the protocol overhead. The algorithm builds a series of overlapping

clusters which allow for more than one cluster to track a region. This redundancy improves

the overall system reliability. The overlapping clusters also allow for tracking of curvilinear

targets. We analyzed the factors that affect the protocol overhead. The protocol overhead

depends on the sensor deployment strategy, number of clusters and the approach adopted by

the cluster head in choosing its member nodes. Maximum coverage approach forms larger

numbers of clusters than the minimum coverage approach and also leads to proportionate

increase in the protocol overhead. Node failures lead to re-organization of clusters and hence

increase protocol overhead. In the worst case there is a 11% increase in protocol overhead

to reconfigure the clusters. This happens when the sensors are deployed in a grid.

The advantages of the proposed Robust Clustering Algorithm can be summarized as

• It is distributed in nature and the number of clusters to be formed can be easily

controlled.

• A series of overlapping clusters improves system reliability and allows for tracking of

curvilinear trajectories.
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• Since the cluster head chooses its member nodes from its one hop neighbors, the raw

data has to travel only one hop.

• Finally, the target tracking results of each cluster head can be progressively fused with

those of its neighboring clusters.

We also proposed a Reliable Directed Diffusion, a protocol that can repair both tem-

porary and permanent path failures. RDD makes use of the fact that nodes which are

geographically closer to the sender experience better link quality than the nodes which are

farther away. The results show that reliable diffusion improves delivery ratio by about 20%

in the case of a grid topology and about 35% in a random topology. These improvements are

achieved with just 6% increase in energy consumed or end-to-end delay. Furthermore, RDD

has been shown to be a highly scalable protocol given that its overhead increases as a linear

function of the path length. RDD significantly improves the reliability of directed diffu-

sion for both permanent node failures and temporary link failures without incurring costly

overhead. RDD make substantial contributions to directed diffusion and to data-centric

routing.

The primary advantages of Reliable Directed Diffusion are:

• RDD provides high reliability and delivery ratio.

• RDD handles both link and node failures.

• RDD requires minimal configuration.

• Message overhead is linear with respect to path length and hence scalable to large

networks.
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So far we have been able to successfully simulate Target Tracking experiments in NS2.

This has helped us to analyze various errors in the CPA algorithm and propose and test

improvements to the algorithm quickly. While the reliable directed diffusion has been pro-

posed to recover packets from link and node failures, its interaction with Robust Clustering

Algorithm remains to be evaluated.

Th major difficulty in conducting Target Tracking experiments is deploying and config-

uring the network. Further it is prohibitively expensive to deploy 100’s of sensors. Hence it

is important to integrate both the proposed techniques into a single simulation environment

that could be used to evaluate and answer questions like:

• Given a node deployment scenario what is the best possible cluster configuration?

• What is the optimum number of clusters to achieve a desired level of target detection?

• What is the number of additional sensors needed to further improve the target detec-

tion?

• How to understand the impact of node deployment on target detection accuracy and

reliability in delivery of video packets from the clusterhead to external agents.
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