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Dissertation Abstract

Genuine Sequential Estimation Procedures

for Gamma Populations using Exact Evaluation Criteria

Kevin Tolliver

Doctor of Philosophy, December 18, 2009
(B.S., Morehouse College, 2005)

80 Typed Pages

Directed by Mark Carpenter

In this dissertation, we develop genuine two-stage sequential procedures for bounded-

risk and fixed-width confidence interval estimation for Gamma distributed populations,

based on exact evaluation criteria. The term “genuine” refers to the fact that, in contrast

to previous methods, the procedures proposed herein are based on the combined samples

from both the first and second stages, rather than ignoring the data from the first-stage

sample. Accordingly, the terminal sample size and the estimate are no longer independent,

which complicates the theory development significantly. The term “exact” refers to the fact

the procedures are not evaluated on asymptotic or large sample theory, as is common in the

literature predating this dissertation, and the derivations are based only on the properties

of the underlying distribution, i.e., Gamma. The practical application of each procedure

was also considered and examples are given for both problems, i.e., bounded-risk and fixed-

width.

v



Acknowledgments

I would like to thank my advisor, Dr. Carpenter, for his academic guidance. Under

his direction I became more than a mathematician but a mathematical statistician. I am

very appreciative of his encouragement and belief in my abilities when the material was not

always clear. Without his support, this thesis would not have been completed. It has been

a privilege working with him.

I also would like to extend my gratitude to the members of my committee: Dr. Peng

Zeng and Dr. Hyejin Shin for their time and suggestions that led to me improving this work.

Working with them in and out of the classroom has truly been a pleasure. In addition, I

would like to thank Dr. Robert Norton for taking time out of his schedule to assist with

the editing process.

I would also like to extend a special thanks to Kandace Noah for helping me understand

how my research is applied in her field, and to Mary Mechler and Alicia Smith who gave

important insight when writing my thesis.

I am extremely grateful to my family: my siblings, loving aunts, uncles, and grand-

mother. I give a special thats to my father, Kevin L. Tolliver, for being a positive role

model in my life and my mother, Cheryl G. Tolliver, who always pushed me to do better

myself.

vi



Style manual or journal used Journal of Approximation Theory (together with the style

known as “aums”). Bibliograpy follows van Leunen’s A Handbook for Scholars.

Computer software used The document preparation package TEX (specifically LATEX)

together with the departmental style-file aums.sty.

vii



Table of Contents

List of Figures x

List of Tables xi

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Research Question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Sequential Analysis and Multistage Designs . . . . . . . . . . . . . . . . . . 4
1.4 The Gamma Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4.1 Special Cases of Gamma Distribution . . . . . . . . . . . . . . . . . 9
1.4.2 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.5 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.5.1 Bounded Risk Estimation . . . . . . . . . . . . . . . . . . . . . . . . 12
1.5.2 Fixed Width Interval Estimation . . . . . . . . . . . . . . . . . . . . 14
1.5.3 Modeling Times with Gamma . . . . . . . . . . . . . . . . . . . . . . 16

1.6 Dissertation Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Bounded Risk Estimation 18
2.1 Shape Known and Scale Unknown . . . . . . . . . . . . . . . . . . . . . . . 18
2.2 Improving the Terminal Sample Size . . . . . . . . . . . . . . . . . . . . . . 22

2.2.1 Performance Properties of New Estimation Procedure . . . . . . . . 26
2.3 Computer Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.4 Shape Unknown and Scale Unknown . . . . . . . . . . . . . . . . . . . . . . 28

2.4.1 Robustness Considerations . . . . . . . . . . . . . . . . . . . . . . . 30
2.5 Determining Initial Sample Size . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.6 Example in Understanding Precipitation Rates in Regional Climate Models 32
2.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3 Fixed Width Confidence Interval Estimation 37
3.1 Confidence Intervals for Gamma Distribution . . . . . . . . . . . . . . . . . 37
3.2 Two-Stage Fixed-Width Confidence Interval for Scale . . . . . . . . . . . . 39
3.3 Computer Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.4 Asymptotic Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.5 Example in Air Force Aeronautical Maintenance . . . . . . . . . . . . . . . 45
3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4 Conclusion 50

viii



Bibliography 52

A Tables 56

B Figures 64

ix



List of Figures

1.1 Gamma CDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2 Gamma PDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

B.1 Scatterplot of Alpha vs. Empirical Ratios . . . . . . . . . . . . . . . . . . . 65

B.2 Average Risk of Two Methods Compared to Risk Bound with Initial Sample
of 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

B.3 Average Risk of Two Methods Compared to Risk Bound with Initial Sample
of 30 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

B.4 Average Improved Risk of Two Methods Compared to Risk Bound with Ini-
tial Sample of 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

B.5 Average Improved Risk of Two Methods Compared to Risk Bound with Ini-
tial Sample of 30 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

x



List of Tables

A.1 Shape Known, Scale Unknown . . . . . . . . . . . . . . . . . . . . . . . . . 56

A.2 Shape Known, Scale Unknown (Improved) . . . . . . . . . . . . . . . . . . . 57

A.3 Old Bound B as function of Shape and Initial Sample Size . . . . . . . . . . 58

A.4 New Bound B as function of Shape and Initial Sample Size . . . . . . . . . 58

A.5 Shape Unknown, Scale Unknown . . . . . . . . . . . . . . . . . . . . . . . . 59

A.6 Shape Unknown, Scale Unknown (Improved) . . . . . . . . . . . . . . . . . 60

A.7 Initial Sample Size Considerations Simulations . . . . . . . . . . . . . . . . 61

A.8 Confidence Interval Simulations of Terminal Sample Size . . . . . . . . . . . 62

A.9 Coverage Percents as Risk Bound Varies . . . . . . . . . . . . . . . . . . . . 63

A.10 Coverage Percents as Initial Sample Size Varies . . . . . . . . . . . . . . . . 63

xi



Chapter 1

Introduction

1.1 Motivation

Statistical modeling is a technique used in many different scientific fields. By summa-

rizing current results into one expression, statistical modeling aids researchers in explaining

their current results. More importantly, observed outcomes could be utilized to make future

predictions. In scientific experimentation there are many factors that can contribute to a

certain outcome in a research experiment. A model simply refers to the outcome that is

expressed as the mathematical function of these factors. In order to make these predictions,

the data in these models are assumed to be random and have some underlying distribution

where one or all parameters are unknown, and parameter estimation is used to fit these

models.

The Gamma distribution is often assumed to be the underlying distribution to model

right-skewed variables with positive support. Because of its flexibility this distribution has

a wealth of applications and is often used to model random times-to-events. Two scientific

fields of study where the Gamma distribution is most often used to model data are Survival

and Reliability Analysis. In Survival Analysis, variables such as lifespans of organisms as

well as time till a treatment takes effect can be modeled with the Gamma distribution.

In Reliability Analysis Studies, lifespans of a system or systems components as well as

chemical corrosion, e.g. can be modeled with the Gamma distribution. The information

gained by statistical models in these two fields is used in developing life insurance plans,

pertinent drug information, warranty information, quality control information, etc. A pa-

rameter often studied in these fields is Mean-Time-To-Failure (MTTF) that is very useful

for systems used on a regular basis. A general queue also models times with a Gamma
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distribution. This is seen in various computer systems, call centers, and traffic flow man-

agement systems. Articles that use the Gamma distribution in modeling times relating to

queues include: Choe and Shroff (1997), Amero and Bayarri (2007), Chu and Ke (1997),

Clarke (1957). Though modeling times is the most frequent use, the Gamma distribution as

a family of distributions can be assumed in any area where values have a positive support.

For example, it is used frequently in climatology modeling both precipitation rates and

precipitation intensity. This is seen in Maureil et. al (2007) and Gutowski et. al (2008). In

addition, it is seen in censor imaging as shown in Chatelian (2007) and Chatelian (2008).

These statistical models are reliant on the parameter estimation, therefore it is imperative

for model fit that estimates under some criterion are accurate, low bias with low variation.

To have an accurate parameter estimate, Sequential Analysis is needed to determine

how many observations are required An accuracy measure, such as standard error, is depen-

dent upon the parameters of the unknown underlying distribution. In sequential analysis,

all the observations are not sampled at once. In fact, having estimates with predetermined

accuracy cannot be determined with a sample size known prior to sampling. It is well

known that an unbiased estimator will become more accurate as the sample size increases.

However, knowing the sample size needed to ensure the accuracy falls within the criterion is

impossible to determine without any knowledge of the underlying distribution. Sequential

problems such as assigned-accuracy problems deal more with the sample size than with the

estimator itself. The final model estimates are dependent upon information gained in prior

sampling.

Historically researchers have calculated measures of accuracy for sample design based

on incorrect assumptions about the underlying distribution. For many years, the underlying

distribution for the data is assumed to be Normal, even for time estimates where there is

a positive support and the data is right skewed. Sampling that assumes that the data is

Normal when it is not introduces the risk of not actually meeting the criteria. It could also

lead to sampling more observations than is needed to meet the specified criterion. This is a

very prevalent problem in statistics since many experiments and surveys are restricted by

2



budgetary restraints.

1.2 Research Question

Our focus is on developing a sampling procedure that will ensure an accurate estimator,

which means that the estimator will have a low bias and low variation. The model assumes

that the estimator is unbiased so the concern is restricting the variation. This dissertation

looks at two different problems involving predetermined accuracy. The first problem is to

ensure that the risk falls within a bound and the second problem is to ensure the width of

the interval estimator is within a bound. In doing so, we will completely avoid using large

sampling theory. There will be no asymptotic approximation of the underlying distribution

and because this is done our procedure will hold for any number of initial observations.

We develop the mathematical theory that ensures that the risk is within a pre-specified

bound under a genuine two-stage sampling scheme that assumes that the data comes from a

Gamma population. The term “genuine” refers to the fact that the sequential procedure is

based on the combined sample from both stages. It may seem fairly obvious that a genuine

two-stage estimation procedure will yield better results than one that disregards one of the

two samples. This has not always been implemented. Arriving at a two-stage procedure

that ensures risk is within a bound may come with a cost and could result in sampling more

observations than previous sampling procedures. A more practical problem is considered

where the goal is to sample the fewest number of observations that achieve this goal to avoid

oversampling as described by Wald (1947). Using a relationship between risk and interval

estimation, a genuine two-stage fixed-width interval estimator sampling scheme is produced

that is unlike anything that has ever been done in this field before.
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1.3 Sequential Analysis and Multistage Designs

Sequential analysis is a statistical theory of data where the final sample size is not

known prior to the study. Sampling procedures where the final sample size is known prior

to sampling is known as a fixed-sample size procedure. Sequential sampling procedures are

used over fixed-sample size procedures for (1) ethical reasons, (2) conceivability reasons, and

(3) economical reasons. For example, in a drug trial for reducing hypertension, if there are

m initial observations where some of them develop side effects or there is significant evidence

that the true mean is low, then medical ethics forbid further sampling. With other instances,

arriving at an alternative solution is inconceivable. An example of conceivability reasons

considers an industrial process. There is no known way of determining when a process

will become out of control with a fixed-sample size. There are occasions when sequential

analysis is economical. An example of this is any sampling where there is an attached cost

to each observation. Sequential analysis can reduce the number of observations, which will

consequently reduce the cost of the experiment. Finding assigned accuracy estimators for

parameters of a Gamma process or population can be all three. As noted before, the Gamma

is often assumed in modeling times in clinical trials. There is no conceivable solution for

determining the final sample size needed to achieve predetermined accuracy with a fixed

sample size. Since one objective is to sample the fewest number of observations that achieve

a certain goal, it has economical applications. For all of those reasons, a sequential design

needs to be implemented to achieve pre-assigned accuracy.

Sequential analysis consists of two components: (1) the stopping rule and the decision

rule. The stopping rule indicates whether or not sampling should be stopped after m

observations or whether additional observations should be sampled. A stopping rule is

characterized as a mechanism for deciding whether to continue or stop a process on the

basis of the present position and past events, which will almost always lead to a decision

to stop at some time. The final resultant sample size N is called the terminal sample size.

The decision rule tells what actions need to be taken after sampling has been stopped.
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Definition 1.1 If m is a known predetermined sample size, a sample is said to be sequential

if the terminal sample size N is not fixed, i.e.

P (N = m) < 1 for m,N ∈ N.

The emphasis in this context is on having an estimator that will fall below some predeter-

mined accuracy, the terminal sample size N will be the final sample size that ensures this is

the case. The terminal sample size depends on earlier observed information, X1, X2, ..., Xm

making it a random variable.

The optimal sample size (n∗) is the number of observations that best achieves a re-

searchers goal. This can mean a number of things for different problems. In our context,

the optimal sample size is the fewest number of observations that ensures that our estimator

is accurate under some predetermined criteria. The optimal sample size is fixed and is de-

pendent upon the unknown parameters of the underlying distribution. In an ideal situation

the terminal sample size will equal that of the optimal sample size. The terminal sample

size is assessed by looking at the ratio of the expectations,

E[N/n∗]. (1.3.1)

The performance of the terminal sample size can be evaluated asymptotically

lim
m→∞

E[N/n∗] = 1. (1.3.2)

and

lim
m→∞

V ar[N/n∗] = 0. (1.3.3)

In sequential analysis, there are two subfields: (1) purely sequential designs and (2)

multistage designs. Earlier it was mentioned that the final sample size is not known prior

to the start of sampling. However, this does not mean that each observation is observed one

at a time. With purely sequential designs, each observation is observed one at a time and

an analysis is performed after each observation is drawn. Whereas in multistage designs,
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multiple observations are drawn at a time,called a stage, and there is a cap on the total

number of stages. The terminal sample size does not necessarily consist of the prior m

observations. In some instances the m observations are used to determine the terminal

sample size and then disregarded for the analysis.

Definition 1.2 Let X1={X1, ..., Xm1} be an initial sample. For a decision rule δ sub-

sequent samples are Xi={Xmi−1+1, ..., Xmi} or Xi = ∅ for 1 ≤ i ≤ k. The sample

X = ∪ki=1Xi. is a genuine k-stage sample.

The advantages of purely sequential problems are that they yield better statistical results

and the procedure will have a reduced chance of over sampling as described by Wald. How-

ever depending on the design, multistage sampling can be more cost efficient and more

manageable.

For example, consider the problem of determining when an industrial process becomes

out of control; data is read after each observation. In such cases, it will be practical to

use a purely sequential design. As the data is read, the process can immediately determine

when it has become out of control and there is no need to continue sampling. However in

a clinical trial, it is not practical to treat one subject at a time. A multistage design is

needed.

Multistage problems are currently used in a wide range of areas. Some multistage

sampling schemes use a set of observations from the population as their initial sample. The

subsequent samples consist of analyzing a subset of that initial set. This is seen in the U.S.

Census’ Current Population Survey multistage method, given in Moore, McCabe, and Craig

(2007). This is also seen in crop management, Finney (1984), as well as multistage clus-

ter analysis Phillipi(2005). In the context of modeling times, multistage designs are often

used in adaptive designs. In a broad overview of adaptive designs, several examples were

given where statistical procedures were modified during the conduct of clinical trials. It is

not only efficient to identify clinical benefits of the test treatment under investigation, but

also to increase the probability of success of clinical development, Chow and Chang (2008).

Most adaptive designs in clinical trials can be referred to as adaptive randomization and
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group sequential designs. With the flexibility for stopping a trial early due to safety, futility

and/or efficacy and sample size re-estimation at interim for achieving the desired statisti-

cal power. In an article on unified theory of two-stage adaptive designs the mathematical

theory is proposed to adaptations in literature. To summarize, the adaptations alter the

sampling distribution, which means the assumed results may not be true, Lui, Proschan,

and Pledger (2002). For example, for two-stage adaptive tests in particular, changes in the

sampling distribution can occur. Only recently it has been thought of to alter the p-value.

In their article, they arrive at a number of useful theories on two-stage adaptive designs.

Using a large number of stages makes organization more complicated and both admin-

istrative expenses and interest charges on the large investment increase. This is also the

case with a number of other sequential sampling procedures. Because of this, in literature

there are many two and three-stage designs; Mukhopadhyay and Pepe (2006), Mukhopad-

hyay and Zacks (2006), Yao and Venkatraman (1998), Satagopan et al. (2002), Whittemore

(1997), Jinn et al. (1987), Lorden (1983), Mukhopadyay (1995), etc., and not as many four,

five, and six-stage designs.

Squared error loss is a measure of an estimate’s distance from its true parameter.

Definition 1.3 If A > 0 is constant specified by the experimenter that penalizes deviations

more or less as need be, squared error loss of an estimator with n observations is the squared

distance between a parameter θ and its estimator θ̂:

Ln(θ, θ̂) = A(θ − θ̂)2.

In practice, this measure is assessed by its expected value, called risk. The risk gives an

indication of the reliability of an estimate. High risk indicates the estimator is unreliable

while a low risk indicates the estimator is reliable. Increasing the sample size is an action

taken to lower risk. One method of accuracy measure in sequential analysis is the bounded

risk estimator.
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Definition 1.4 For a predetermined risk bound w, a bounded risk estimator with the ter-

minal sample size N number of observations is the expectation of the squared error loss

RN (θ, θ̂) = E(LN ) ≤ w.

It is well documented that the risk will be a multiple of the variance plus the bias of the

estimator squared. Consider the Normal distribution with known variance; in this instance,

bounding the risk is an easy calculation. However, if the mean and variance are unknown,

then this problem cannot be solved with a fixed sample size. With fitting statistical models

with parameter estimation, the goal is to have accurate mean parameter estimates.

Another accuracy measure in sequential analysis is the fixed-width interval estimator.

Definition 1.5 For a predetermined width d, a 1 − a fixed-width interval estimator of a

real-valued parameter θ is any pair of functions L(X) and U(X), with L(X) < U(X) for

with the inference L(X) < θ < U(X) is made. We say CX is the interval [L(X), U(X)],

The width of the confidence interval is simply U(X)− L(X) ≤ d, and P (θ ∈ CX) ≥ 1− a.

Fixed-width confidence intervals are a large part of sequential estimation. It is known that

interval estimation is more informative than point estimation due to the P (θ̂ = θ) = 0 for

any continuous distribution. Interval estimators consist of width of the interval and the

coverage probability. There are merits to both. A small coverage probability implies that

the researcher has a larger chance of making an error, whereas a large width is uninformative.

1.4 The Gamma Distribution

The model assumption for the proposed sampling scheme is that the underlying distri-

bution is Gamma. The focus is on estimating the mean parameter of the Gamma distribu-

tion. The Gamma distribution is a flexible right-skewed distribution that has a variety of

applications. It is often used in modeling times-to-event that is seen in biological science,
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engineering, ecological, and probability fields. The density is

f(x) =
1

Γ(α)λα
xα−1e−x/λ, for x > 0, (1.4.1)

where Γ(α) =
∫∞

0 tα−1e−tdt and α, λ > 0, with Γ
(

1
2

)
=
√
π and αΓ(α) = Γ(α+ 1). Note, α

and λ are referred to as the shape and scale parameters, respectively. A property with the

Gamma density is that it is closed under scalar product. That is if X ∼ Gamma(α, λ), then

Y = cX ∼ Gamma(α, cλ). (1.4.2)

The sum of k Gamma random variables with shape α and scale λ is

k∑
i=1

Xi ∼ Gamma(kα, λ). (1.4.3)

The moment generating function of this distribution is

MX(t) =
(

1
1− λt

)α
, t < 1/λ. (1.4.4)

Which makes the mean and variance

EX = αλ and V ar(X) = αλ2. (1.4.5)

1.4.1 Special Cases of Gamma Distribution

Some special cases of the Gamma distribution will be noted as they are referenced

throughout this dissertation. Suppose X is distributed with Gamma with shape α and

scale λ. If the shape parameter α is one, then X is exponentially distributed with scale

λ. It is well documented that adding k exponentially distributed variables will yield a

Gamma distribution with shape k and scale λ, as noted in equation (1.4.3). If the shape

parameter is an integer then the variable is Erlang with shape α and scale λ. If the scale

is two, then X becomes a Chi-Square distribution with parameter 2α. It follows by (1.4.2)
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Figure 1.1: Gamma CDF

that 2X/λ ∼ Chi− Square(2α). Finally if there are two independent Gamma distributed

variables, X ∼ Gamma(α, λ) and Y ∼ Gamma(β, λ), then X
X+Y ∼ Beta(α, β).

1.4.2 Estimation

As previously stated, the Gamma distribution is widely used in engineering, probabil-

ity, ecological and biological science fields. The problem of finding reliable estimators for the

mean dates back to the early 1950s. There are a number of different methods that can be

used in finding estimators for this distribution: method of moments, maximum likelihood,

and least squares. In particular, for this dissertation, the maximum likelihood method is

used to obtain the estimator for λ and the method of moments estimator is used to obtain

the estimator for α

The maximum likelihood method of estimation is the most popular technique for de-

riving estimators. This technique has many ideal properties including the fact that it yields

the best unbiased estimators. Using (1.4.1), the likelihood function for n identically and
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Figure 1.2: Gamma PDF

independently distributed variables. The likelihood function becomes:

L(α, λ) =
1

[λαΓ(α)]n

n∏
i=1

xα−1
i e−1/λ

Pn
i=1 xi xi > 0, for i = 1, ..., n

To ease computation, the natural logarithm of the likelihood is taken. This can be done

because the natural log function is a monotone function, so the likelihood will maintain its

optimum values. If shape is known, the maximum likelihood estimator for λ can be easily

obtained and is shown to be

λ̂ = X̄/α. (1.4.5)

If the shape is unknown, no close form maximum likelihood estimator or numerical solution

needs to be given to arrive at its maximum likelihood approximation. This is the reason

the maximum likelihood estimation approach is not used for the shape parameter.

11



The method of moments estimator is another common method for estimating a param-

eter. It works by setting the kth moment to the sum of xi to the kth power,

Ê(Xk) =
1
n

n∑
i=1

Xk
i i = 1, ..., n k ∈ N.

Shape parameter (α), which is widely considered a nuisance parameter. Because of the

unattainability of a best unbiased estimator, method of moments estimator is used,

α̂ = X̄2/S2. (1.4.6)

This is a slightly biased estimate that is asymptotically consistent.

1.5 Literature Review

Early elements of sequential analysis appear in the 17th and 18th century, when math-

ematicians Huyghens, Bernoulli, Montmort, DeMoiver, LaGrange and LaPlace worked on

the Gamblers Ruin problem, (Ghosh and Sen 1991). This famous probability problem tries

to determine at what point gamblers will completely deplete their funds. Dodge and Romig

in 1929 were the earliest to apply what is now known as sequential analysis to a statistical

problem. They developed a double sampling test, where two samples were taken and the

proportion of defective units was observed. Shewart in 1931 developed theory on what

instance does an industrial process become out of control. Wald in 1947 produced a well

known book on sequential analysis that sparked interest from several authors world wide.

1.5.1 Bounded Risk Estimation

A common sequential problem dealing with preassigned accuracy is bounded risk es-

timation. For populations with known variance, there is a fixed-sample size solution; no

sequential methods need to be implemented. The problem arises when nothing is known
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about the population. Stein (1945) proposed a two-stage bounded risk estimation procedure

for Normal populations. This procedure incorporated using the standard deviation from

the initial sample to yield the proper terminal sample size. Modeling times with a Normal

underlying distribution will not yield ideal results because times are often skewed to the

right. A better distribution to assume when modeling times is the Exponential distribution.

Birnbaun and Healy (1960) developed a two-stage bounded risk estimation procedure

for Exponential processes. This sampling scheme assumed that the underlying distribution

was Exponential and found ways to bound the scale parameter using Chi-Square transfor-

mations. Their result can be summarized as follows: if there are m ≥ 3 initial observations

and

BBH =
Am2

(m− 1)(m− 2)

then

NBH = dBBHX̄
2
m

w
e (1.5.1)

is the sample size required so that the risk of the estimator is within the bound w. However,

this procedure is not a genuine two-stage sampling procedure. The solution is only based

on the second sample. The initial sample is used to determine the sample size required

in achieving bounded risk and then it is not included in the final estimate. This is done

because taking observations from two different samples alters the sampling distribution.

It is true that bounding the risk cannot be done with a fixed sample size. However, dis-

regarding readily available information is wasteful. This concept was improved by adding

observations from the initial sample to the second sample, thus making the procedure a gen-

uine two-stage sampling procedure. Although, this proved to be an asymptotically great

bounded risk-estimator (Kubokawa 1989), no actual proof was provided for this result and

it is uncertain if it holds for any number initial observations (> 3).

Various works in sequential estimation of scale parameter of the Exponential distribu-

tion is done by Mukhopadhyay (1995), (2006), (2006a), (2006b), (2007), etc. Mukhopadhyay

and Pepe (2006) record an exact genuine two-stage sampling procedure. Their result which
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holds for any initial sample size greater than three, can be summarized as follows: if there

are m ≥ 3 initial observations and

BMP =
2Am(m+ 1)

(m− 1)(m− 2)

then

NMP = dBBHX̄
2
m

w
e (1.5.2)

is the sample size required so that the risk of the estimator is within the bound w. The

consequence of this is the expected value of the terminal sample size is more than twice that

of the initial sample size; meaning on average the researcher will sample more than twice

the observations needed. This is referred to as a penalty for exact bounded risk estimation.

Exploring the distribution of this terminal sample size, a reduction of this terminal sample

size could be found making this exact procedure more practical, Zacks and Mukhopadhyay

(2006).

1.5.2 Fixed Width Interval Estimation

The next sequential problem is restricting the interval estimators width. Interval es-

timation is one of the fundamental aspects of statistics. Presenting interval estimators are

often preferred over measures of variation, such as risk. This is probably due to the fact that

confidence intervals can yield better interpretations. This is particularly important when

the estimate does not have a Normal sampling distribution, Ramsey and Shafer (2002).

Both measures give flexibility to the estimator, but interval estimators give results in terms

of what is probable, i.e. the probability that the true parameter lies within a 1 − a confi-

dence region is 1− a.

Fixed-width confidence consists of relatively high probabilities and relatively narrow
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interval widths. Traditionally, they are of the form

CX = {θ|X̄N − d < θ < X̄N + d}, (1.5.3)

with the terminal sample size N . There is no fixed sample size solution to this when the

variance of a distribution is unknown. The width of the interval estimator is dependent

upon the variance of the distribution. Stein (1949) solves the Normal fixed width problem

by proposing a two-stage procedure to bound the confidence interval for mean µ when vari-

ance σ2 is not known. The terminal sample size of this procedure is given below,

N = max{m, d
b2m−1,1−a/2S

2
m

d2
e}, (1.5.4)

where bm−1,1−a/2 is the 1−a/2 point of a t with m−1 degrees of freedom. This uses the fact

that bm−1,1−a/2 will be larger than z1−a/2. This procedure was shown to be asymptotically

inconsistent. As the initial sample size gets large, the ratio between widths of this proce-

dure’s sample size and the optimal sample size will be (bm−1,1−a/2/z1−a/2). Ghurye (1958)

proposes a two-stage fixed-width confidence interval for a location parameter of a general

density, f(x), along the lines of Stein. This is not used for mean. Chow and Robbins (1965)

record a purely sequential interval estimator for the mean of a general density f(x). This

sequential result uses an initial sample of m observations, then chooses the first n for which

the following is achieved size is

N = min{n ≥ m|n ≥ d−2z2
a/2(S2

n + n−1)}, (1.5.5)

However, their procedure uses asymptotic theory. This is not a practical approach for model

estimates because it observes observations one at a time and we are avoiding Normal ap-

proximation. A general method for determining fixed width confidence intervals is given by

Khan (1969). This method like the previous methods use Normal theory; in it he discusses

almost sure convergence, asymptotic consistency, and asymptotic efficiency. Research is
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continuing to be developed in this area. For example, Mukhopadhyay, Silva, and Waikar

(2006) develop a two-stage sampling procedure to which they compare Steins fixed width

interval approach (1949) and Chapmans fixed width interval approach (1950).

As noted before when estimating mean time, it is better to model with the Exponen-

tial distribution. Govindarajulu (1995) developed a sequential estimator for the mean of an

Exponentially distributed population. This result is more applicable to modeling times, it

is summarized that as follows: if

zn = z[1 + n−1(1 + z2)/4 + o(n−1)]

NG = min{n ≥ m|n ≥ z2
nX̄

2
n/d

2} (1.5.6)

will bound the risk. This procedure again uses Normal approximation.

However because of the shape of this distribution, no research has been found on re-

stricting the width of the interval without using asymptotic approximation.

1.5.3 Modeling Times with Gamma

It should be noted that both of the prior subsections ended with sequential research in

statistical modeling for Exponential populations. This is because there is not much research

in this area for Gamma populations. However, in the same instances where the Exponential

model can be used, so can the Gamma. Specifically statistically modeling random times,

such as mean time-to-failures, are assumed to be Exponential. Where the longer one survives

the smaller the probability is for continual survival. This is not always the case. For

example, it is charted for life expectancy of an infant that there are many casualties during

the first few months of birth. So for a short period of time, the life expectancy increases

the longer the infant lives. It will be more appropriate to model infant life expectancy with

a Gamma or Weibull distribution. Both of these distributions are more general forms of

the Exponential distribution. There are several works that discuss modeling MTTF as a
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Gamma distributed variable: Coit and Jin (1999), Shapiro and Wardrop (1978), Barber

and Jennison (2002), etc. These articles provide examples of when the Gamma should be

used over the Exponential distribution. For example, when modeling failure times with a

known number of failures and missing values are present. The time between one failure and

the last record is Gamma with known shape. This happens often when data is recorded

periodically and not after each failure, Coit and Jin (1999).

1.6 Dissertation Layout

In the second chapter, two-stage bounded risk estimators are developed. The perfor-

mances of these sample sizes are evaluated through simulation. Use of numerical methods

is implemented to reduce the value for the sample size, making the estimator more asymp-

totically consistent. In the third chapter, a fixed-width interval estimator is created, and

another example is given to illustrate how it works and how it relates to queueing theory.

The final chapter summarizes the results of this dissertation and discusses future research

problems in this area.
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Chapter 2

Bounded Risk Estimation

The goal for the bounded risk problem is to sample the fewest number of observations so

that the risk is just within a predetermined bound. Birnbaum-Healy (1960) developed a two-

stage sampling procedure for the Exponential distribution; however their method does not

use the information obtained from their initial sample in their final estimate. Mukhopadhyay

and Pepe (2006) develop a two-stage sampling procedure for the Exponential distribution

that combines the initial sample with the second sample to derive the final estimate. In

this chapter, we generalize Mukhopadhyay and Pepe’s result to the Gamma distributed

populations. It should follow that when the shape is equal to one, our results will be

exactly that of Mukhopadhyay and Pepe.

Additionally, we introduce some notations and basic concepts of decision theory as it

applies to the Gamma distribution. First, the risk bounds are found when only the shape

parameter is known. Secondly, risk bounds are found when both parameters are unknown.

We also evaluate the performance of our bounds theoretically and through simulations and

make possible improvements.

2.1 Shape Known and Scale Unknown

There are a number of reasons the shape known case is studied: (1) There are partic-

ular instances where the shape parameter is either known or can be assumed as known, (2)

studying the alpha known case allows us to see how robust the Exponential assumption is,

(3) there are times when the shape parameter is not known but there is a mathematical

theory that allows us to assume the shape parameter is known, and (4) it lays the ground

work for when shape parameter is unknown.
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MTTF is often estimated as an Exponential random variable. This is merely a special

case of the Gamma distribution when the shape is known and equal to one. Mukhopadhyay

discusses this in a number of articles (1995), (2006), (2006a), (2006b), (2007), etc. However

in many cases, MTTF is modeled with a Gamma distribution when the shape is known

and not equal to one. Dopke (1992) and Coit and Jin (1999) discuss estimation of the

MTTF as a Gamma random variable. The example given by Coit and Jin is when the time

between each failure is not recorded. If there are k failures in a span t, then the MTTF is

Gamma distributed with known shape k and unknown scale. They elaborate on why each

failure time is not always recorded saying, “this is understandable because the elapsed time

meter records time for the entire assembled item and not the individual components.” This

is similar to the idea of sum of Poisson process random variables. Other examples when

the shape is known occur with modeling times and Normal distribution; there are modeling

times when the shape parameter is assumed known just as there are instances in the Normal

distribution when variance is assumed known. This can happen for a number of reasons;

either there is so much historical evidence that the shape is consistent, there exists some

mathematical theory for the shapes value, or the actual shape is of little concern as long as

it is within reason. For example, in Maurellies (1999) precipitation models, he discusses the

actual unimportance of knowing the exact shape. They state that since the data is right

skewed, it is important to model the data with a low shape value. In this dissertation, they

simply model precipitation intensity with α = 2. In each of these examples it is important

to have reliable estimates.

This is not the only reason for exploring the shape known, scale unknown case. Study-

ing the shape known case also gives an idea of how robust the assumption of an Exponential

distribution is. Mukhopadhyay and Pepe’s (2006) result is only for the Exponential distri-

bution. If there is some uncertainty that the shape is one, then there is no validity to their

procedure. These forementioned reasons provide justification for studying the shape known

case.

Our goal is to develop a reliable estimation sampling scheme for when only the scale is
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unknown. If the shape α is known and it is only desired to estimate the scale λ, our goal is

to find the fewest number of observations n that will make its associated risk function less

than or equal to a predetermined risk w > 0. Recall the mean of a Gamma distribution

with parameters α and λ is αλ. Hence the risk is Rn(αλ, α̂λ) ≤ w. If the shape is known

the problem reduces down to:

Rn =
Aλ2

αn
≤ w. (2.1.2)

This implies, n ≥ Aλ2

αw . Let the optimal sample size:

n∗ = dAλ
2

αw
e. (2.1.3)

This guarantees an integer value, which will ensure that the risk is within our bound. Sam-

pling more observations than n∗ is considered oversampling, sampling fewer observations

than n∗ will yield a high risk and thus an unreliable estimate.

Notice n∗ is dependent on the unknown parameter λ, so a sequential sampling proce-

dure must be implemented to ensure that knowledge can be gained on this parameter. A

pilot sample of m observations X1, ..., Xm i.i.d variables will be taken following a Gamma

distribution (α, λ), with mα > 3. From this sample the maximum likelihood estimator

of λ can be found using the maximum likelihood estimator Xm/α, see (1.4.5) to see how

this was derived. That estimate is used to determine the terminal sample size N . This

quantity will guarantee that we do not exceed the necessary number of observations for

the statistical procedure by too much, as it might be costly or impractical, yet not fall

short of an appropriate sample size either. After observing the first m observations, our

first stage, a decision is needed to determine if the procedure can continue with the m ob-

servations, or if more need to be added, our second stage. Yielding our two-stage procedure.
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Theorem 2.1 If X1, ..., Xm i.i.d. Gamma (α, λ) initial observations are drawn, (mα ≥

3)and B is chosen to be

B = Aα2

[
m

α
− 2m2Γ(mα− 1)

Γ(mα)
+

(m3α+m2)[Γ(mα− 2)]
Γ(mα)

]
. (2.1.5)

and the terminal sample size is chosen to be

N = max

(
m, dBX

2
m

α3w
e

)
. (2.1.4)

Then if N −m observations are drawn in the second stage the risk over all N observations

will be less than a predetermined risk bound w : RN ≤ w

Proof.

We can re-express the risk on all N observations as RN = AE(XN
α −λ)2 side of the inequality

as

AE

[
m2

N2

(
Xm

α
− λ

)2

+
λ2

α

(
N −m
N2

)]
.

Recall m ≤ N , so the ratio is m
N ≤ 1, and N ≥ BX

2
m

α3w
.

Now,

AE

[
m2

N2

(
Xm

α
− λ

)2
]
≤ AE

[
m

N

(
Xm

α
− λ

)2
]

≤ mα3w

B
AE

(
1
α2
− 2λ
αXm

+
λ2

X
2
m

)

Also,
λ2

α
AE(

N −m
N

) =
λ2

α
AE(

1
N

(1− m

N
)) ≤ λ2

α
AE(

1
N

) ≤ α2w

B
AEλ

λ2

X
2
m

Thus, using the two inequalities above with the reexpression fact we have

AE

(
Xm

α
− λ
)2

≤ mα2w

B
AE

(
m

α
− 2mλ
Xm

+
mαλ2

X
2
m

+
λ2

X
2
m

)
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Using the fact that
∑m

i=1Xi ∼ Gamma(mα, λ), it is easily seen that 2λ−1Xm will be

distributed χ2 with 2mα degrees of freedom. It can be verified that expectation will be
Γ(mα−k)
2kΓ(mα)

. We obtain the equation:

RN = AE

(
XN

α
− λ
)2

≤ Aα2w

B

[
m

α
− 2m2Γ(mα− 1)

Γ(mα)
+

(m3α+m2)[Γ(mα− 2)]
Γ(mα)

]
.

So to ensure the expected loss is less than our risk bound w, we set the righthand of the

inequality to equal w then solve for B accordingly and obtain equation (2.1.5).

2.2 Improving the Terminal Sample Size

In the prior section, we found results that certainly achieved the goal of having the risk

within the risk bound. An alternative to the asymptotic sampling that ensured the risk is

within a bound was found. Remember that is only part of the goal; the goal is to sample

the fewest number of observations that achieves the bounded risk goal. It is important

to investigate the relationship between the terminal sample size and the optimal sample

size. Exploring the relationship of the N and n∗ is the first step in seeing if N needs to be

reduced. If m < n∗, then

E[N/n∗] =
[
m

α
− 2m2Γ(mα− 1)

Γ(mα)
+

(m3α+m2)[Γ(mα− 2)]
Γ(mα)

] [
1 + (mα)−1

]
.

This means on average, the terminal sample size will be larger than the optimal for any value

of mα ≥ 3. This is what is meant by the procedure being exact. Clearly, the terminal sample

size N is a biased estimator of n∗. Thus the asymptotic performance will be examined in

similar fashion to equation 1.3.2 and 1.3.3. Notice also that in these equations the terminal

sample size is a function of m, but does not necessarily consist of the m observations.

Our procedure is a genuine two-stage sampling procedure so it will consist of m initial

observations along with additional observations. Since that is the case, we cannot evaluate

the asymptotic performance by simply looking at m → ∞, because N/n∗ → ∞ as well.
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However, it can be evaluated in the following manner w → 0 as m→∞ and E[N/n∗] <∞

lim E[N/n∗] = limE[
BX̄2

m

α3w

αw

Aλ2
]

= (Aα2λ2)−1 limE[BX̄2
m]

= (Aα2λ2)−1 lim
(
Aα2

[
m

α
− 2m2

mα− 1
+

m3α+m2

(mα− 1)(mα− 2)

])
E[X̄2

m]

= λ−2 lim
(
m

α
− 2m2

mα− 1
+

m3α+m2

(mα− 1)(mα− 2)

)
E[X̄2

m]

= λ−2 limm

(
(mα− 1)(mα− 2)− 2mα(mα− 2) +m2α2 +mα

α(mα− 1)(mα− 2)

)
E[X̄2

m]

= λ−2 limm

(
m2α2 − 3mα+ 2− 2m2α2 + 4mα+m2α2 +mα

α(mα− 1)(mα− 2)

)
E[X̄2

m]

= λ−2 limm

(
2mα+ 2

α(mα− 1)(mα− 2)

)
E[X̄2

m]

Now E[X̄2
m] = αλ2/m+ (αλ)2, which implies E[X̄2

mλ
−2] = α/m+ α2.

limE[N/n∗] = α lim
(

2mα+ 2
α(mα− 1)(mα− 2)

)
+ α2 lim

(
m(2mα+ 2)

α(mα− 1)(mα− 2)

)
.

Thus,

limE[N/n∗] = 2. (2.3.1)

In addition to studying the mean between the ratios of the terminal sample size to

optimal sample size, the same should be done with the variance. It is important to consider

the amount of variation that will occur for the best possible scenario.

limV ar[N/n∗] = limV ar[
BX̄2

m

α3w

αw

Aλ2
]

= lim(A−2λ−4α−4)V ar[B2X̄2
m]

Now V ar[X̄2
m] = E(X̄4

m) − (EX̄2
m)2. Recall X̄2

m ∼ Gamma(mα, λ/m). Using the moment

generating function (1.4.4), one can easily find that

limV ar(X̄2
m) = α2λ4/m2 − 2α3λ4/m.

which means,

α2 lim
(

4m2α2 + 8mα+ 4
α2(mα− 1)2(mα− 2)2

)
− 2α3 lim

(
m(4m2α2 + 8mα+ 4)
α2(mα− 1)2(mα− 2)2

)
.
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Thus,

limV ar[N/n∗] = 0. (2.3.2)

The limiting mean of the ratio between terminal sample size and optimal sample size is

two. Also, the limiting variance of the ratio between the terminal sample size and optimal

sample size is zero. Therefore, it can be concluded that the terminal sample size becomes

twice that of the optimal sample size. Practically this means in the best possible scenario

the terminal sample size will still be nearly twice the optimal on average. This might be

the price of having a “genuine” two-stage sampling procedure that uses exact methodology.

However, it is desired to reduce N so that its corresponding risk is just within the bound. It

is important to recall the bound coefficient B is proportional to our terminal sample size N .

With this in mind, it would be an improvement if an alternative bound coefficient B could

be found. In order to truly see improved results, we must find a way to reduce the bound

coefficient significantly. Instead the next section considers a more practical application. It

will continue to use the B in result (2.1.5) and discuss reducing the sample size empirically

to find a better bound coefficient through simulations.

This section studies RN as a function of λ in order to determine where the maximal

risk occurs. This is done because the risk function can be altered by some constant and

yielding a new bound coefficient Bnew that should reduce sample size and continue to bound

the risk of the mean. Table A.3 gives values of the bound coefficient when A = 1. We see

as both α and m increase B nears two. This gives some information about an appropriate

sample size, but a better value for bound coefficient can be found that will give smaller

values for the terminal sample size that will be closer to optimal sample size. Remember

this is a generalization of the Exponential case. Zacks and Muhkopadhyay (2006) were faced

with the exact same problem. In their article, the authors decide they can reduce B by

investigating the distribution of the risk under their sampling procedure. This is done by

identifying what value for λ gives the maximal risk, and afterwards empirically increasing

B so that the maximal risk is just within the bound. Once that was done the new empirical
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B was formed as a ratio of their prior B. The following are their results of these simulations:

Bnew = 0.565B. (2.3.3)

Since as α increases B decreases, simply choosing 0.565B will be significant improvement

for the Gamma case for any α > 1. No further work needs to be done. However, the fact

that as α increases B decreases we choose to further our research and develop a new bound

coefficient as a function of the old B and α.

The risk function of our two-stage sampling procedure was investigated as a function

of the scale, in order to approximate the λ where the maximal risk occur. Clearly, larger

λ values result in larger risks if N were to remain constant. However, larger λ values tend

to result in larger values for N , which reduce the risk. So the maximal risk under this two-

stage sampling procedure is not necessarily an infinite entity. In fact, through simulations

the maximal risks most commonly occurred between five and six. Once this was done, B

was identified for each α, then empirically reduced so that the risk is just within the bound

w. The new B is the ratio of the empirical B found to the B as a result of mathematical

theory given in (2.1.5). In Figure B.1, we can see a scatter plot of these ratios and α.

For each value of α there was a corresponding ratio. For example, α = 1 would corre-

spond to 0.560. Looking at the scatter plot, there appears to be a negatively exponential

relationship between α and what the appropriate ratio should be, leveling off around α = 20.

A regression is performed to exploit this relationship. This is done only to find coeffi-

cient of log (α). For this problem, we are not trying to fit the curve, but have a curve that

gently sits above each of the points. In order to do this, the same regression is used but the

slope needs to be altered. As stated earlier, 0.565 suffices for all α > 1, this will be used to

find the intercept. With this we find that:

Bnew = [−0.031 log(α) + 0.597]B , α < 20

Bnew = 0.505B , α ≥ 20 (2.3.4)
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This will give smaller values for B see Table A.4.

2.2.1 Performance Properties of New Estimation Procedure

A genuine two-stage procedure for sampling data to an assigned accuracy only assuming

the Gamma distribution was found in Theorem 2.1. This section showed that ultimately this

procedure would continue to sample nearly twice as many observations than needed. A more

practical solution of how to select a smaller number of observations was also considered in

this section. Unlike section 2.1, a mathematically rigorous proof was not provided. However,

sufficient analysis was performed to substantiate the belief that the risk will always be within

the risk bound w and that a resulting reduction in terminal sample size of nearly half the

observations will be selected. In fact if α = 1, w → 0 as m→∞ and E[N/n∗] <∞ then

limE[Nnew/n
∗] = 1.13,

and if α ≥ 20, then

limE[Nnew/n
∗] = 1.01.

This means that instead of sampling nearly twice as many observations, the improved two-

stage sampling procedure will sample between approximately 1.01 and 1.13 depending on

the value of α and the initial sample size. This is seen in Table A.4. Not only does this

improved result give reliable estimators for λ but the terminal sample size nears the optimal

sample size.

2.3 Computer Simulations

In the previous section, the mathematical theory was provided to ensure the risk stays

with the predetermined bound. To verify the results in the previous section a simulation

study was conducted using R software. In the simulation, differing values for optimal sample

size n∗ were chosen: 25, 50, 100, 500. We fix λ = 5 since this result is not dependent upon
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λ and vary α = {0.5, 1, 2, 5, 10}. A is a constant expression, we choose it to be 2; 10,000

replications were used for each case. The quantity N is an estimate for the expected value

of N and r is an estimate of the risk with the original terminal sample size. This simulation

was repeated with the improved terminal sample size Nnew. Our desired result is to see r

fall beneath w and to see rnew be just below w and Nnew to be above n∗. Also, since this

is a generalization of Mukhopadhyay’s research we would like to see the same results with

α = 1. As such, our results for α = 1 and λ = 5 should resemble Mukhopadhyay and Pepe’s

(2006) results. Figure B.2, B.3, B.4, and B.5 give visual representation of the estimated

risks compared to their risk bounds as shape varies 0.5, 1.0, 2.0, 5.0, 10.0 and n∗ is fixed

to 25. Figure B.4 and B.5 display the same for the improved results. Notice, the estimated

risks fall within the risk bound. With the improved results the estimated risks are closer to

the risk bound. Further detail is given in Table A.1 and Table A.2.

See Table A.1 and Table A.2, we note the following:

1) In Table A.1, for the case α = 1 and λ = 5, our mean value for N and mean value for r

are nearly identical as those given by Mukhapadyay and Pepe. The B given in this article is

exactly that of their B. This is to be expected because this is a generalization of their result.

2) In Table A.1, the mean value for N nears twice that of n∗. Note N is a function of α and

m, so as both variables get larger N gets closer to 2n∗. We can see this if we look across

rows and down columns.

3) In Table A.1, the mean value for r is always nearly half of our predetermined risk w. This

follows since the expected risk is inversely proportional to the number of observations drawn.

4) Naturally as the initial sample size m increased, we obtained more information about

the sample with which to make our decision and consequently we obtained better values for
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r and N .

5) From Table A.1 and A.2, we observe that at no point in this simulation do the estimates

for the risk nor the improved risk ever exceed the risk bound w.

6) In Table A.2, we observe that the newer results risks are much closer to the bound, and

the newer sample sizes have been reduced on average by 43%.

7) In Table A.2, we observe that the average terminal sample size Nnew is still larger than

n∗. It is my conjecture, that it will be unable to improve Nnew any further. Our average

risks are just within the bounds, which is our goal. Reducing the sample size any further

might result in having the average risk eclipse the risk bound.

2.4 Shape Unknown and Scale Unknown

In this section, we provide a solution to the question of how many samples should be

selected if both parameters are unknown. If variables are both unknown, finding bounds

become more difficult. The goal remains the same, to find an appropriate sample size N

that will make the associated risk function less than or equal to a predetermined risk w > 0.

Recall if X ∼ Gamma(α, λ) then the mean is αλ and the estimator for the mean is X. The

goal is to find N such that:

AE(X − αλ)2 < w,

This problem cannot be solved mathematically as it was done in section 2.1. The

proof in said section requires the chi-square transformation that enables us to find the

expectation without knowing the scale parameter. Without knowing the shape parameter

that transformation cannot be used. As stated earlier, studying the shape parameter known

case lays the ground work for times that the shape parameter is unknown.
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Like many other statistical procedures, in place of the parameter an estimate will be

used which will yield an estimate for bound coefficient and an estimate for the terminal

sample size. The first stage is to collect m initial observations and to find an estimate of

both α and the mean. The second stage collects N̂ , where N̂ is as follows

N̂ = max(m, dBX
2
m

α̂3w
e). (2.4.1)

The law of large numbers guarantees that as the sample size approaches infinity the esti-

mate will approach its true parameter value. This means that with a relatively large initial

sample size, the result should work nearly as well as in section 2.1. In section 2.5, we address

how the initial sample size should be selected.

At this point, the next step is to evaluate the performance of terminal sample size. The

method of moments estimator is used for the shape (α̂ = (X̄m/Sm)2). As we mentioned

in section 1.4, there is no closed form maximum likelihood estimator for α. The sample

mean will be used as an estimate for the true mean. The simulations are set up the same

as before. In the simulation both parameters are known and differing values for optimal

sample size n∗ were chosen: 25, 50, 100, 500; 10,000 replications was ran for each simu-

lation. The quantity N is an estimate for the expected value of N̂ and r is an estimate

of the risk. We would like see r be just below w and N to be above n∗. For the first

result, we fix λ = 5 and vary α = {1, 2, 5, 10}. Also, since A is a constant expression we

choose it to be 2. This way, our results for α = 1 and λ = 5 should resemble Mukhopad-

hyay and Pepe’s (2006) results. The simulations are given in Table A.5 and Table A.6.

Figures B.2 and B.3 show a visual representation of how the estimated risks compared to

the risk bounds, as α varies 1, 2, 5, 10. Notice how it consistently falls below the risk bound.

1) As we might imagine when m is small the numbers differ greatly, because determining

N is heavily dependent on α. The m = 10 observations were inconsequential and not even
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worth recording. The larger the initial sample size, the better estimate of α we will obtain.

2) With a non-constant α present, there is more variance in the estimates for N . Note:

N is larger than the α known counterpart, yet the risk is higher. This is due to skewed

unknown distribution of N . Even though there is more variability among the statistic, one

should not expect to see the bound exceeded as long as cautionary measures are taken.

3) The estimates for the still risk fall below the risk bounds most of the time. There are

cautionary factors when the initial sample size is too small, as well as cautionary factors

when the risk bound w is very small.

2.4.1 Robustness Considerations

No additional simulations are necessary to conclude that this method is not robust to

the α known assumption. As initial sample size gets large the bound coefficient nears A.

However, since terminal sample size has a cubic α term in its denominator, being off by the

smallest margin adversely impacts its value greatly. This is shown in an example in section

2.6. This was seen in the m = 10 case where the differences were so severe they were not

worth reporting. When both parameters are unknown, one should take a moderate size

initial sample.

2.5 Determining Initial Sample Size

One might note that bound coefficient Bnew is a function of the initial sample m as

well as the shape parameter α. Determining the initial sample size is very important in

achieving the goal of sampling the optimal amount. The procedure as proposed in Theorem

2.1 does not specify m. This section gives a method of selecting the initial sample as long

as the user has a vague idea of the parameters. The problem with blindly selecting m initial

observations is as follows: if m is chosen too small then the terminal sample size N will be
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large and if m is chosen too large then the terminal sample size N will then equal m and

consequently be too large. It is desired to select m initial observations that minimize the

terminal sample size N . Before details are laid out, it is important to note that this is a

practical application and is best if discretionary measures are used.

The sampling procedure given in section 2.1, is a genuine two-stage sampling procedure.

This means no additional statistical information is given prior to the first stage and no data

can be used to determine the initial sample m. This does not mean that there is no general

knowledge about the population being sampled. It is possible that there is mathematical

theory or historical evidence to determine what the parameters might be. Those values

should yield a decent value for m that will not inflate the terminal sample size. Notice that

the optimal sample size given in (2.1.3) is a function of the parameters α and λ.

STAGE 1:

m = dAλ
2
0

αw
e

STAGE 2:

N = max
(
m, dBnewX̄

2
m

α3w
e
)

In all the previous simulations the initial sample size was preset m = {10, 20, 30}. As such

we saw how the terminal sample size improved as the initial sample size increased. However,

this section points out there is a risk associated with a large initial sample size.

We will see if this leads to a reduction in the terminal sample size. In the simulations,

shape and scale is equal to two and five respectively, A is chosen as two like before, w is

chosen to be 0.500, 0.250, and 0.125. To compare this idea to the one prior, the values for

m are 5, 10, 50, 100, and 500, and then that is compared to m values if the hypothesized

value is within 25% of the true scale parameter, which is 3.75 and 6.25 respectively.

Table A.7 shows that if the hypothesized value is within 25% of the true scale, then

the resultant terminal size in each example is smaller than when m is chosen too small, i.e.

m = 5 and m = 10 and when it is chosen too large m = 500. We caution the user to use

discretionary measures. If the researcher is not confident that their hypothesized value is
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even close to the unknown parameter then it will be better to sample a decent size initial

sample size as they see fit.

2.6 Example in Understanding Precipitation Rates in Regional Climate Mod-

els

Maureil et al (2007), Gutowski et al (2008), and Groisman et al (1999) all state that

precipitation rate intensities can be modeled under a Gamma distribution. In this example

we will model the precipitation rate intensity with the Gamma distribution. Furthermore,

we will estimate rainfall in the West Point, GA, United States using the sequential estima-

tion proposed earlier sections. Their are two purposes of this example, the first illustrate the

bounded risk sampling procedure according to their theory regarding the shape, the second

is to see how robust their shape assumption is by modeling the data with the with varying

shape parameters. This is purely an example of how to use this bounded risk estimation

procedure; there is no effort to solve any of their climatology problems.

Gutowski et al. (2008) notes that total precipitation in a bin (referring to histograms)

may increase under the warming scenario, but its relative contribution to total precipitation

may decrease. A positive change in bins of normalized distribution, not only have greater

precipitation in the scenario climate, but they contribute relatively larger amounts to the

total. Groisman et al (1999) analysis reveals increases in extreme precipitation provide

evidence for statistically significant increases in precipitation in the United States. These

climate models have projected increase in global precipitation, which is believed to be due

to global warming stemming from increases in greenhouse gases.

Gutowski explains the theoretical model of intensity of daily precipitation.

p(x) = pox
α−1exp(−x/λ), (2.6.1)
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where, po and λ are parameters of the distribution and a restriction α ≥ 1. The total

precipitation during a period described by

P =
∫ ∞

0
pox

α−1exp(−x/λ)dx. (2.6.2)

and the total number rain days is

N = lim
ε→0

[∫ ∞
0

po
xα−1

x
exp(−x/λ)dx

]
. (2.6.3)

Normalizing equation (2.6.1) by dividing the total precipitation yields the Gamma distri-

bution, see (1.4.1)

p(x) =
xα−1exp(−x/λ)

λαΓ(α)
. (2.6.4)

Gutowski further believes that the shape parameter should be two in the regions they study.

They state it is not a requirement for α = 2, however the case α = 1 poses problems for

computing the number of rain days (2.6.2) and is not physically realizable in the present

context. This is an example of when shape is known and scale is unknown.

The data used in this example was collected from the United States Historical Clima-

tology Network. Here, we will look at one city in the southeastern United States; West

Point, GA during the warm season, which is defined by Gutowski as (April - September).

Forty initial observations were collected from the years 2001-2005. Based on our value for

N we will make the decision to collect more observations if necessary. Assume that each of

the five cities have equivalent distributions since we are modeling the region.

Let A = 2.5 and w = 0.0025.
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Below, we can see the table of the data that was collected.

Precipitation of West Point, GA. A=2.5 w=0.0025 and α=2
Pilot Data

m=40 B = 5.258 B = 2.655
0.09, 0.55, 0.73, 0.05, 0.05, 0.01, 0.97, 0.23
0.54, 1.75, 0.51, 0.20, 1.15, 0.60 1.39, 0.32
0.66, 0.01, 0.35, 0.19, 0.61, 0.29 0.20, 3.30
0.49, 0.10, 0.47, 0.57, 2.00, 0.23, 0.61, 0.18
0.19, 1.00, 0.30, 0.07, 0.35, 0.62, 1.20, 0.86

Xm=0.558 BX
2
m

α3w
= 41.338 ⇒ N = 42

New Data
N −m = 2
0.12, 0.02

λ̂ = 0.287

This process is repeated assuming the shape is 1.75 and again when the shape is 2.25.

This is done to see how varying the shape will affect the total sample size and the mean of

the entire sample. Below, we can see the table of the data that was collected.

Precipitation of West Point, GA. A=2.5 w=0.0025 and α=1.75
Pilot Data

m=40 B = 5.296 B = 2.674
0.09, 0.55, 0.73, 0.05, 0.05, 0.01, 0.97, 0.23
0.54, 1.75, 0.51, 0.20, 1.15, 0.60 1.39, 0.32
0.66, 0.01, 0.35, 0.19, 0.61, 0.29 0.20, 3.30
0.49, 0.10, 0.47, 0.57, 2.00, 0.23, 0.61, 0.18
0.19, 1.00, 0.30, 0.07, 0.35, 0.62, 1.20, 0.86

Xm=0.558 BX
2
m

α3w
= 62.154 ⇒ N = 63

New Data
N −m = 64
0.12, 0.02, 0.25, 0.08, 1.43, 0.12, 0.04, 0.03
0.04, 0.26, 0.23, 0.76, 0.04, 0.22, 0.70, 1.30
1.30, 0.62, 0.55, 0.02, 1.10, 0.60, 0.07

λ̂ = 0.307

This is done again, when α = 2.25
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Precipitation of West Point, GA. A=2.5 w=0.0025 and α=2.25
Pilot Data

m=40 B = 5.228 B = 2.640
0.09, 0.55, 0.73, 0.05, 0.05, 0.01, 0.97, 0.23
0.54, 1.75, 0.51, 0.20, 1.15, 0.60 1.39, 0.32
0.66, 0.01, 0.35, 0.19, 0.61, 0.29 0.20, 3.30
0.49, 0.10, 0.47, 0.57, 2.00, 0.23, 0.61, 0.18
0.19, 1.00, 0.30, 0.07, 0.35, 0.62, 1.20, 0.86

Xm=0.558 BX
2
m

α3w
= 28.870 ⇒ N = 40

λ̂ = 0.266

This procedure was done varying α = {1.75, 2.00, 2.25}. Notice, that the values for B

remained close at 2.674, 2.655, and 2.640 respectively. Even though that is the case, the

values for dBX2
mα
−3w−1e varied much more with 29, 42, and 63 respectively. So varying α

only 25 tenths can lead to a large difference in the final sample size. There was a total of

246 raindays recorded at this station. The mean over all 246 observations were 0.540 and

the means for the sample 0.599, 0.570, and 0.537. This is just an example to show that the

two-stage sampling procedure will lead to a reliable estimate and to see how adjusting the

shape parameter affects the final sample size. We sampled a total of 64 observations and is

indeed within the risk bound specified earlier. It should be noted that we only looked at one

city from the years 2001-2005. In fact, the United States Historical Climatology Network

has 1,062 stations across the nation with some dating back before 1900. There is a wealth of

information to develop a wide variety of climate models. There is a plethora of information

and all of the data need not be used to develop a reliable estimate for precipitation intensity.

2.7 Discussion

It is well known that bounding the risk with a fixed-sample size is impossible. This is the

reason a two-stage sequential estimation procedure was implemented. There is prior research

involving genuine two-stage exact methods for a Normal and Exponential population, but

no research in this area for a Gamma population.

We mathematically determined a sample size that will always ensure the risk is within
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a predetermined risk bound when the shape parameter is known, and an estimate for that

sample size when the shape parameter is unknown. The consequence of a two-stage exact

method was the end result of sampling more than twice as many observations as need be.

The function of RN through simulations is to aid us in arriving at a more practical solution.

Finally, this procedure was illustrated on precipitation of West Point, GA in the summer

months of 2001-2005.
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Chapter 3

Fixed Width Confidence Interval Estimation

The focus of the dissertation is developing reliable estimators using exact evaluation

criteria. The criterion used in this chapter is having the interval estimator less than or equal

to some predetermined width. Whereas, bounding the risk certainly gives some indication

of the reliability of the estimator, an interval estimator will give more interpretable results.

Fixed-width confidence intervals are prevalent in sequential estimation. There are a

number of articles that restrict the width of the mean for different distributions. There is,

however, not a lot of research in this area on the Gamma distribution. Chow and Robbins

(1965) develop a two-stage sampling for a general distribution f(x), but their procedure

uses Normal approximation. Govindarajulu (1995) developed a sequential estimator for the

mean of an Exponentially distributed population. This result, though more specific to the

exponential distribution still uses Normal approximation. This chapter uses pre-assigned

risk to answer the question of how to restrict the interval estimator. In many ways these

two topics are related, as discussed by Stein for the Normal distribution. Before our interval

estimator is proposed, we review confidence intervals for the Gamma distribution.

3.1 Confidence Intervals for Gamma Distribution

Confidence intervals are one of the fundamental aspects of statistical inference. In this

section, we will review former interval estimators for the Gamma distribution. We should

mention significant research in the Gamma distribution is performed with shape known.

We have already discussed why the shape known case is studied.

The following example comes from Casella and Berger (2002). The example these

37



authors give pivot the statistic 2
∑n

i=1Xi/λ. Denote g∗q as the qth quantile of a Gamma

distribution with shape nα and scale λ/n. This example involves inverting a statistic

P (g∗a/2 < X̄n < g∗1−a/2) = 1 − a, and a is its significance level. The estimator of λ used is

Xn/α. If X1, .., Xn are Gamma i.i.d. variables with shape α and scale λ, then we know X̄n

will be Gamma Distributed with shape nα and scale λ/n. We can multiply X̄n by 2/λ, and

obtain a new variable Y ∼ χ2
2nα. Denote cq as the qth quantile of a Chi-Square distribution

with parameter 2nα. So,

P (g∗a/2 < X̄n < g∗1−a/2)

= P (g∗a/2/α < X̄n/α < g∗1−a/2/α)

= P (
2g∗
a/2

αλ < 2X̄n/αλ <
2g∗

1−a/2
αλ ) = 1− a

= P (2ga/2
λ < 2X̄n/λ <

2g1−a/2
λ ) = 1− a

= P (ca/2 < 2X̄n/λ < c1−a/2) = 1− a

Rearranging the equations, the 1− a interval estimator can be obtained

CX = {λ| 2X̄n

c1−a/2
< λ <

2X̄n

ca/2
}. (3.1.1)

Neither of the aforementioned exact confidence intervals can be restricted. The interval

estimator presented in (3.1.1) is a multiple of X̄n, so it is dependent upon knowing all n

observations.

Fixing interval estimators widths is prevalent in sequential estimation. A brief synopsis

of fixed width confidence intervals, and formal definitions of confidence intervals were given

in the first chapter. In this section, we explicitly define our goal in terms of the Gamma

distribution. There are two components of a confidence interval: (1) the interval width and

(2) the coverage probability. The interval width is the range from the lower bound L(X)

to the upper bound U(X). The coverage probability refers to the probability that the true

parameter is covered in that interval. For a fixed sample size, the two are inversely propor-

tional to one another. There are merits to both components. A low coverage probability
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corresponds to high chances of the experimenter making an error; however, a large interval

width makes the interval estimator uninformative. The goal is to find the sample size that

will ensure a high coverage probability and a narrow interval width.

Notice how results (1.5.4), (1.5.5), and (1.5.6) all developed terminal sample sizes for

fixed-width confidence intervals either by assuming the population is Normal or asymp-

totically will become Normal. This is due to the fact that these confidence intervals are

traditionally of the form given in (1.5.3). Since our procedure is only assuming Gamma pop-

ulations and it is known that it will be asymmetric; we emphasize our interval estimator

will not be of that same form.

3.2 Two-Stage Fixed-Width Confidence Interval for Scale

In this section, we propose a two-stage sampling procedure that assumes that the

observations come from a Gamma population. As mentioned earlier there is little research

in this area and there is no research that uses bounded risk to arrive at an interval estimator

for observations that are assumed to be Gamma. This procedure uses risk bounds developed

in chapter 2 to develop an upper bound for λ.

For observations X1, X2... i.i.d. Gamma distributed variables with shape α and scale

λ. For a predetermined confidence interval width d, the goal is to estimate the mean with

1− a coverage probability, less than or equal to the width d. That is, P (αλ ∈ CX) ≥ 1− a.

As in earlier sections, we have been assuming shape is known. If shape is known then our

goal becomes:

(1) P (λ ∈ CX) ≥ 1− a

(2) CX ≤ d

Note that in the introduction it was listed as CX ≤ 2d. The reason for this is due to

the fact that in most of the prior work in this area the observations were assumed to come

from symmetric distributions. When that is the case, the mean is no longer a factor. For

a symmetric distribution CX = {µ|X̄n − d < µ < X̄n + d}, the width is 2d and completely

independent of the sample mean. As long as there is knowledge of the variance, knowledge
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of mean is not required. This is a luxury that asymmetric distributions such as the Gamma

do not have. Notice that the interval estimator (3.1.1) is a multiple of the sample mean.

The distance from the sample mean to the respective upper and lower bounds will not be

the same for the interval estimator given in this section.

The optimal sample size is the first n for which both criteria is achieved.

n∗ = min{n ∈ N|P (λ ∈ CX) ≥ 1− a,CX ≤ d}. (3.1.5)

According to Ghosh (1991), ideally the terminal sample size for a fixed-width confidence

interval should have the following properties:

(1) N is non decreasing in d > 0.

(2) N is finite with probability 1 for every d > 0.

(3) N/n∗ → 1 as d→ 0 in probability or a.s.

(4) E(N)/n∗ → 1 as d→ 0.

(5) limd→0 P (λ ∈ CX) = 1− a

In the following section, we will show that under certain conditions these properties hold.

Theorem 3.1 For significance level a and predetermined width d, if X1, ..., Xm i.i.d. Gamma

(α, λ) initial observations are drawn (mα ≥ 3). If N is defined in 2.1.4 and gq be the qth

quantile of the Gamma(nα, 1/n) distribution

M = min{n ≥ N ∈ N|
√
Nwα

A
[
g1−a/2 − ga/2

α
]} (3.1.6)

Then if CX = {λ|X̄M/α−
√

Nwα
A [g1−a/2/α− 1] < λ < X̄M/α−

√
Nwα
A [ga/2/α− 1] = d}

Then

(1) P (λ ∈ CX) ≥ 1− a

(2) CX ≤ d
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Proof.

Theorem 2.1 ensures that
Aλ2

αN
< w. This means,

λ <

√
Nwα

A
.

Denote g∗q be the qth quantile of the Gamma(nα, λ/n). The sampling distribution of

X̄n ∼ Gamma(nα, λ/n),

P (g∗a/2 < X̄ < g∗1−a/2) = 1− a.

Let gq be the qth quantile of the Gamma(nα, 1/n) distribution. Due to the scale property

(1.4.2),

P (λga/2 < X̄n < λg1−a/2) = 1− a

P (λga/2/α < X̄n/α < λg1−a/2/α) = 1− a

P (λga/2/α− λ < X̄n/α− λ < λg1−a/2/α− λ) = 1− a

P (−X̄n/α+ λ[ga/2/α− 1] < −λ < −X̄n/α+ λ[g1−a/2/α− 1]) = 1− a

P (X̄n/α− λ[g1−a/2/α− 1] < λ < X̄n/α− λ[ga/2/α− 1]) = 1− a

P (X̄n/α−
√

Nwα
A [g1−a/2/α− 1] < λ < X̄n/α−

√
Nwα
A [ga/2/α− 1]) ≥ 1− a

The width of the confidence of this confidence interval is
√

Nwα
A [g1−a/2−ga/2α ]. This is

set to width d, and M is found accordingly.√
Nwα
A [g1−a/2−ga/2α ] = d

No close form solution exists, but the numeric solution yields the interval estimator

given in (3.1.6).

3.3 Computer Simulations

To verify this sampling procedure gives accurate results, a number of simulations were

performed. First to verify that the terminal sample size does increase as the predetermined

bound d decreases and secondly to see how w affects the terminal sample size.

For the first simulation, the shape parameter was varied α = {1, 2, 5, 10}, w = {5, 4, 3},

and d = {10, 5.0, 2.5, 1.0}. A was fixed at one. The value chosen for A should not be a

41



large contributing factor to the final sample size M since the expectation of
√
Nwα/A is no

longer a factor of A. However, one should use discretion since M ≥ N and N is dependent

A, a large value for A might result in an inflated number for M . This simulation used

10,000 replications from a Gamma population with scale equal to five.

For the second simulation, the goal is to see if the percentage of times the scale pa-

rameter is within our interval and is greater than the 1−a coverage probability. The shape

parameter was varied α = {1, 2, 5, 10}, w = {5, 4, 3, 2, 1}, and λ fixed to be five. With 1,000

replications, we observe the percentage of times the parameter lies within the confidence

interval. This was done for 80%, 85 %, 90%, and 95% coverage probabilities.

For the third simulation, it is desired to just see how the initial sample size m af-

fects the percentage of times the scale parameter is covered. The risk bound was var-

ied w = {5, 2, 1, 0.5, 0.2, 0.1} and the initial sample size was varied m = {4, 6, 8, 10, 12}.

Notice the following:

1) Table A.8 shows that as the width bounds became smaller the sample size does increase.

2) Table A.9 shows that smaller risk bounds yield better initial estimates for the scale pa-

rameter. However, choosing w to be too small will inflate N which will consequently inflate

M . Similarly, if m is chosen too large it will inflate N .

3) Table A.9 shows that the percentage that the parameter is within the confidence interval

is always greater than the 1− a confidence level.

4) As always, initial sample size plays a factor in the estimate. Since the E(N) ≥ Bα−3w−1[α2λ2+

αλ2/m] = Bλ2(αw)−1+Bλ2(mα2w)−1, it was suspected that large m values will yield closer

to the exact distribution. However, the risk bound w plays more of a factor than m does.

5) This is a numeric solution, so the researcher needs a maximum number of observations

they are willing to sample in order to yield a solution. For these simulations our threshold
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maximum was 50,000. This threshold maximum will affect the average M value. Simulated

values for M might be biased above because of this reason.

6) Table A.10 shows that the initial sample size contributes to the estimated coverage

probability. However, the risk bounds seem to contribute more than the initial sample size.

3.4 Asymptotic Performance

Much like sequential risk estimators, it is pivotal that the terminal sample size of this

procedure be assessed. It will be shown that: (1) the ratio of expectations between the

terminal sample size and the optimal sample size is greater than one, (2) how well this

procedure will perform under certain conditions to see if the properties given in (3.1) will

hold. Unfortunately there is no close form solution of the terminal sample size nor the

optimal sample size. It is recorded that M will be the first sample size greater than N such

that the equality (3.1.6) holds. Likewise, the optimal sample size is the integer n such that

the probability is equal to 1−a and distance is equal to d. Recall that gq is the qth quantile

of a Gamma distribution with mean one and variance (nα)−1. By inverting the distribution

of mean estimator, it can be found that the optimal sample size for the interval estimator

is

n∗ = min{n > 0|λα−1(g1−a/2(m)− ga/2(m)) = d}.

The ratio of expectations E[M/n∗] becomes

E

min{n > N |
√

Nwα
A α−1(g1−a/2(M)− ga/2(M)) = d}

min{n > 0|λα−1(g1−a/2(m)− ga/2(m)) = d}

 .
Clearly if n∗ > N , this reduces to

E

[
λ−1

√
Nwα

A

]
.
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Thus,

E[M/n∗] ≤
√

1 + (mα)−1.

It is obvious that as d → 0, M → ∞. If the terminal sample size increases the random

variable (G/α− 1) should be examined asymptotically. It was mentioned earlier that G ∼

Gamma(Mα, 1/M). This means that the mean and variance ofG/α will be one and (Mα)−1

respectively. According to the Central Limit Theorem

√
Mα(G/α− 1) = Z ∼ N(0, 1).

Also, the random variable X̄M/α ∼ Gamma(Mα,λ/Mα) with the standard deviation (σ)

equaling λ/
√
Mα. Let n∗0 be the optimal sample size of the risk estimator. If m→∞ and

w → 0 such that E[N/n∗0] <∞ and d→ 0.

1.01λ < limE

[√
Nwα

A

]
< 1.13λ

Under those conditions, the upper bound of the proposed interval estimator

X̄m/α−
√
Nwα

A
(ga/2/α− 1).

approximately becomes

X̄m/α−
σ

M
(za/2).

Because the Normal distribution is symmetric it is the same as

X̄m/α+
σ

M
(z1−a/2).

Similarly, the lower bound will be the same lower bound as the Normal lower bound. The

Normal distribution will have all the optimal properties. Thus, under those conditions
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asymptotically the proposed procedure will have all of the optimal properties. To summa-

rize, the procedure was developed using exact methodology and will hold for any number

of initial observations (mα > 3). A small initial sample size may come with a price of

sampling more observations than needed. For large m such that m < n∗0 and N < n∗, the

proposed confidence interval becomes approximately Normal and preserves many optimal

properties. Both n∗0 and n∗ are unknown quantities, so future research might entail finding

a procedure that does not have to succumb to all of these exceptions

3.5 Example in Air Force Aeronautical Maintenance

In this section, we will show that these statistical estimation procedures can be used in

real life situations. For multiple purposes, the United States Air Force needs to assess the

readiness of the Air Force fleets. When a large number of planes are not operational the

fleet has a low readiness, which might consequently put the United States nation at high

risk, described by Rodrigues et al. (2000) and Morales et al. (2007).

Unspecified component time-to-failures are modeled with an Exponential distribution,

Morales et al. (2007). In order to do this, researchers must conduct an experiment to

collect data to see average lifespan of the component. There are three reasons a sequential

framework is suited here: (1) the experiment might involve destruction of the component,

(2) the time measured to failure as well as the time measured to repair is measured in days,

and (3) to find the average service time. The compensation of each worker is an expense

that must also be considered. This problem becomes two reliability estimation problems.

The multistage layout allows them to reduce the price of conducting the experiment.

Though they mention modeling times as an Exponential distribution, they explicitly

mention relaxing distributional assumptions from exponential to Gamma or Erlang.

It is desired to estimate operational availability of an air force plane that is defined by

Kang (1998) as the ratio of estimated time operational over the estimated time operational

and time not operational,

Ao =
E(To)

E(To) + E(Tno)
.
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This problem consists of four aspects: arrivals, service, finite population, and disci-

pline. The planes single components fail over time and each component is believed to be

Exponentially distributed. For simplicity, consider a single type of component for inventory.

This corresponds to the time operational To. Service time for this example refers to the time

that is required to repair a component. This corresponds to the time not operational Tno.

The servers are the c repair crews. If one of the repair crews is idle, a broken part is repaired

immediately; otherwise, it needs to wait in a queue until a crew gets idle. The repair times

are assumed to be Exponentially distributed. This also contains the additional assumption

that there is a finite population, which we can imagine in the context of planes there will

not be an unlimited supply. In this example, the assumption is that the plane becomes

operational immediately meaning the removal and installation times of broken/spare parts

are negligible. The last assumption is that the queue is first in first out (FIFO) queue.

Dealing with government military real data is not readily available. Morales et al.

(2007) constructed a sample of convenience with 250 repair and 250 life times by simulating

from exponential distributions with rates 180 days/failure and 30 days/repair. No, r, and

β are subjects specified in their article. Unlike, Morales’ article our emphasis is not on the

following goals:

Goal 1: Guarantee an average number of operative components at least equal to the

required ready-to-fly r, E(No) ≥ r, assuring that the mean number of operative planes,

averaging over time, will be adequate for the required working fleet.

Goal 2: Assure a high probability of having at least r operative components available,

P (No ≥ r) ≥ β, for a sufficiently large β ∈ [0, 1]. This establishes guarantees about the

number of planes available at any time point.

Our goal is to use the information gained in this dissertation to estimate the repair and

life times. A real life scenario will be created based off of this information to determine if

fewer observations can be obtained to get a reliable estimate. Instead of simulating from

rates of 180 days/failure and 30 days/repair our simulations will be from 200 days/failure

and 25 days/repair. This information will be used to determine the initial sample size.
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Also, so that this is more applicable to the Gamma environment we will assume that there

is a spare present, making the shape parameter two.

The estimate for our operational availability is,

Âo =
T̂o

T̂o + T̂no
.

Using 180 as hypothesized λ and 30 as hypothesized µ, we will determine if fewer samples

can be used to make our estimates within 50 and 10 respectively. We allow A = 1 and

w = 150. Remember these values are important for determining the sample size of the

second stage N but should not affect the terminal sample size M .

m = dAλ
2
0

αw e = d 1802

2(150)e = 108.

This means our initial sample will consist of 80 observations and will be used to find the

second sample.

N = max{m, dBX̄
2
m

α3w
e} = max{80, d1.17(385.5)2

23150
e} = 146.

This means λ <
√
Nwα = 209.28, this value is used in constructing the confidence interval.

Md = 134.4 which implies M = 146. The estimate of λ over all 146 observations is

205.51. Finally the confidence interval is

CX = {λ|X̄M/α−
√

Nwα
A [g1−a/2/α− 1] < λ < X̄M/α−

√
Nwα
A [ga/2/α− 1]}

= {λ|205.51− 209.28[2.235/2− 1] < λ < 205.51− 219.28[1.777/2− 1]}

= {λ|180.9 < λ < 228.8}.

Similarly, this is done with the service times. We allow A = 1 and w = 10. Remember

these values are important for determining the sample size of the second stage N but should

not affect the terminal sample size M .

m = dAλ
2
0

αw e = d 302

2(10)e = 45

This means our initial sample will consist of 45 observations and will be used to find the

second sample.

N = max{m, dBX̄
2
m

α3w
e} = max{45, d1.17(45.39)2

23(10)
e} = 45.

The value for N = 45, the rate µ has is bounded below µ <
√

45(20) = 30, this value is
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used in constructing the confidence interval.

Md = 69.05 which implies M = 70. Twenty-five additional observations need to be

drawn.

CX = {λ|X̄M/α−
√

Nwα
A [g1−a/2/α− 1] < µ < X̄M/α−

√
Nwα
A [ga/2/α− 1]}

= {λ|22.37− 30.0[2.344/2− 1] < λ < 22.37− 30.0[1.682/2− 1]}

= {λ|17.21 < λ < 27.14}.

The length of the first confidence interval is 47.9, which is lower than our predetermined

width of 50. The confidence interval length for the estimate is 9.93. For both component

failure times and service times, the intervals contain the actual parameter. Finally, our

estimate of the operational availability is:

Âo =
410.20

410.20 + 44.74
= 0.902.

This actual statistic is distributed with a Beta distribution, and actual restrictions can be

left for future research. We can also find the long run fraction of time that the queue is

empty. In this particular example, an empty queue would mean that there are no repairmen

working on any planes,

1− 22.69/399.17 = 0.891.

3.6 Discussion

A two-stage exact fixed-width confidence interval method was constructed. It was

shown that this procedure would have all of the optimal properties asymptotically as the

purely sequential asymptotic fixed-width confidence approach. Not only that, but an ex-

ample was used to show that it does work. The widths of the confidence intervals were just

within the bound constraints and both confidence intervals contained the specified parame-

ter. It is well documented that the ratio of two Gamma distributed variables are Beta. This
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answers the question of operational availability in terms of a 1-a confidence interval; simi-

lar research should be performed on a Beta distribution. Mukhopadyay and Zacks (2007),

developed a two-stage bounded risk procedure for the Exponential distribution where the

parameter of interest was a linear combination of location and scale. Also combining lo-

cation with scale for a three-parameter Gamma distribution is of interest. This is another

area where future research can be performed.
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Chapter 4

Conclusion

The goal in this problem was to develop a sampling method that obtained reliable

estimators without over-sampling in the Gamma environment. We have found two two-

stage sequential methods of finding an appropriate sample size to achieve specified goals:

(1) bounding the risk and (2) bounding width of the confidence interval. These methods

are both genuine two-stage sampling procedures, meaning it uses information from all ob-

servations (initial and additional), and exact, meaning only the Gamma distribution was

assumed and at no point were there any approximations.

There is mathematical theory supporting the results for when shape is known; the

proposed procedures will always yield a reliable estimator. When shape is unknown, it is

shown through simulations that inserting an estimator for the shape works nearly as well.

It is also important to realize that the goal is to not simply sample so that the risk and

confidence interval widths are within our bounds, but it was desired to sample the fewest

number of observations that do so. Result bounded risk results yielded a terminal sample

size that was between two and three times the ideal sample size. After investigating the

distribution of the risk of the sampling procedure it was found that the bound could be

improved. These improved results were giving nearly ideal estimated risks. This gives a

more practical usage of the sampling procedure. The interval estimator given yielded nearly

ideal results. There was not much room for improvement. The width is always just below

d.

Once these methods were constructed they were implemented on two examples: One

with real data and the other with simulated data that could be used in a real scenario. The

first, observing precipitation intensity of West Point, GA. Forty initial observations were

drawn. The assumption was that α = 2. We showed how it would affect the sample size
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and affect the estimate that if α = 2± 0.25.

Secondly, we used an aeronautical maintenance example. The operational availability

was defined as the ratio of available time over maintenance time plus the available time.

The data was simulated according to Morales et al. (2007) and Rodrigues’ (1999) paper,

which provided a better description of this problem. These procedures are best used when

data collection is difficult, expensive, or time-consuming.

Future problems of interest entail: making a more robust estimate with respect to the

shape parameter α. As noticed in section 2.4 and section 2.6, if the shape that is assumed

known is off by even the smallest margin the result will end in a drastic change in the total

number of observations. As mentioned earlier, the Gamma distribution is a flexible right

skewed distribution with a positive support. In nature, the support may not necessarily be

greater than zero. There exists such a thing as a shift parameter or a truncation parameter

that modifies the distribution. So another problem worth looking at is a three-parameter

Gamma population. As the example in 3.5 indicated it might be appropriate to extend this

research to the Beta population.
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Appendix A

Tables

Table A.1: Shape Known, Scale Unknown
n* w N r N r N r

m=10 m=20 m=30
α=1

25 2.000 82.966 0.904 64.237 1.011 60.261 0.900
50 1.000 167.069 0.451 129.41 0.565 120.889 0.536
100 0.500 336.415 0.218 255.562 0.248 236.448 0.271
200 0.250 672.591 0.111 509.246 0.128 466.485 0.137
500 0.100 1636.623 0.051 1293.478 0.044 1203.041 0.050

α=2
25 1.000 65.287 0.070 57.665 0.614 54.894 0.517
50 0.500 125.489 0.299 114.078 0.252 109.864 0.255
100 0.250 260.783 0.136 224.726 0.126 219.322 0.120
200 0.125 517.502 0.067 430.193 0.062 434.756 0.059
500 0.050 1266.029 0.026 1125.721 0.028 1083.78 0.021

α=5
25 0.400 54.445 0.209 53.099 0.193 51.952 0.222
50 0.200 109.525 0.103 105.41 0.103 103.346 0.095
100 0.100 225.068 0.073 209.056 0.052 206.281 0.051
200 0.050 438.813 0.028 423.745 0.027 412.791 0.023
500 0.020 1112.342 0.010 1042.804 0.010 1030.23 0.009

α=10
25 0.200 53.273 0.098 51.986 0.106 51.495 0.102
50 0.100 105.208 0.047 103.298 0.046 101.625 0.052
100 0.050 212.180 0.053 206.826 0.024 203.465 0.026
200 0.025 423.050 0.019 408.146 0.012 408.378 0.012
500 0.010 1057.023 0.006 1022.838 0.005 1014.633 0.005

56



Table A.2: Shape Known, Scale Unknown (Improved)

n* w N Nnew r rnew N Nnew r rnew

m=20 m=30
α = 0.5

25 4.000 83.889 52.759 2.161 2.831 71.844 46.502 1.931 2.126
50 2.000 169.721 103.2 1.136 1.772 142.947 88.233 1.145 1.649
100 1.000 336.094 208.133 0.516 0.944 284.756 174.186 0.549 0.932
200 0.500 667.025 415.743 0.261 0.415 561.352 351.080 0.255 0.408
500 0.200 1677.224 1033.184 0.092 0.153 1407.865 862.738 0.095 0.164

α = 1
25 2.000 64.237 39.387 1.011 1.557 60.261 30.323 0.900 1.638
50 1.000 129.41 77.521 0.565 0.954 120.889 70.861 0.536 0.938
100 0.500 255.562 154.337 0.248 0.443 236.448 140.914 0.271 0.444
200 0.250 509.246 308.944 0.128 0.207 466.485 283.931 0.137 0.221
500 0.100 1293.478 771.913 0.044 0.081 1203.041 704 0.05 0.084

α = 2
25 1.000 57.665 33.176 0.614 0.858 54.894 34.117 0.517 0.637
50 0.500 109.078 65.551 0.252 0.474 109.864 63.177 0.255 0.455
100 0.250 219.726 130.956 0.126 0.220 219.322 125.347 0.12 0.227
200 0.125 430.193 259.412 0.062 0.110 434.756 250.698 0.059 0.111
500 0.050 1125.721 653.746 0.028 0.042 1083.78 625.733 0.021 0.043

α = 5
25 0.400 53.099 29.181 0.193 0.359 51.952 31.283 0.222 0.302
50 0.200 105.41 57.886 0.103 0.187 103.346 56.869 0.095 0.189
100 0.100 211.056 115.405 0.052 0.095 206.281 113.396 0.051 0.093
200 0.050 404.745 229.763 0.027 0.046 412.791 226.197 0.023 0.045
500 0.020 1025.804 573.207 0.010 0.018 1030.23 565.884 0.009 0.018

α = 10
25 0.200 31.986 27.359 0.106 0.191 51.495 30.306 0.102 0.158
50 0.100 82.165 54.219 0.046 0.094 101.625 53.797 0.052 0.099
100 0.050 185.08 107.75 0.024 0.047 203.465 107.384 0.026 0.047
200 0.025 391.815 215.353 0.012 0.024 408.378 213.713 0.012 0.023
500 0.010 997.817 536.765 0.005 0.009 1014.633 533.394 0.005 0.095
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Table A.3: Old Bound B as function of Shape and Initial Sample Size

α m=5 10 15 20 25 30 35 40
1 5.0000 3.0556 2.6374 2.4561 2.3551 2.2906 2.2460 2.2132
2 3.0556 2.4561 2.2906 2.2132 2.1684 2.1391 2.1185 2.1032
3 2.6374 2.2906 2.1882 2.1391 2.1103 2.0914 2.0780 2.0681
4 2.4561 2.2132 2.1391 2.1032 2.0820 2.0681 2.0582 2.0508
5 2.3551 2.1684 2.1103 2.0820 2.0653 2.0542 2.0464 2.0405
6 2.2906 2.1391 2.0914 2.0681 2.0542 2.0451 2.0386 2.0337
7 2.2460 2.1185 2.0780 2.0582 2.0464 2.0386 2.0330 2.0288
8 2.2132 2.1032 2.0681 2.0508 2.0405 2.0337 2.0288 2.0252
9 2.1882 2.0914 2.0604 2.0451 2.0360 2.0299 2.0256 2.0224
10 2.1684 2.0820 2.0542 2.0405 2.0323 2.0269 2.0230 2.0201
20 2.0820 2.0405 2.0269 2.0201 2.0161 2.0134 2.0115 2.0100
30 2.0542 2.0269 2.0179 2.0134 2.0107 2.0089 2.0076 2.0067
40 2.0405 2.0201 2.0134 2.0100 2.0080 2.0067 2.0057 2.0050
50 2.0323 2.0161 2.0107 2.0080 2.0064 2.0053 2.0046 2.0040

Table A.4: New Bound B as function of Shape and Initial Sample Size

α m=5 10 15 20 25 30 35 40
1 2.8250 1.7264 1.4901 1.3877 1.3306 1.2942 1.2690 1.2505
2 1.7585 1.4233 1.3424 1.3011 1.2768 1.2608 1.2495 1.2411
3 1.4847 1.3394 1.2865 1.2603 1.2447 1.2344 1.2270 1.2215
4 1.3607 1.3001 1.2596 1.2406 1.2290 1.2214 1.2160 1.2119
5 1.2885 1.2775 1.2438 1.2289 1.2198 1.2137 1.2094 1.2062
6 1.2403 1.2628 1.2334 1.2212 1.2136 1.2086 1.2051 1.2024
7 1.2054 1.2525 1.2261 1.2157 1.2093 1.2050 1.2019 1.1996
8 1.1786 1.2449 1.2206 1.2117 1.2060 1.2023 1.1996 1.1976
9 1.1573 1.2391 1.2164 1.2085 1.2035 1.2002 1.1978 1.1961
10 1.1398 1.2345 1.2129 1.2060 1.2015 1.1985 1.1964 1.1948
20 1.0514 1.0305 1.0236 1.0202 1.0181 1.0168 1.0158 1.0151
30 1.0374 1.0236 1.0190 1.0168 1.0154 1.0145 1.0138 1.0134
40 1.0305 1.0202 1.0168 1.0151 1.0140 1.0134 1.0129 1.0125
50 1.0260 1.0181 1.0154 1.0140 1.0132 1.0127 1.0123 1.0120
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Table A.5: Shape Unknown, Scale Unknown
n* w N r N r

m=20 m=30
α=1

25 2.000 103.242 1.342 79.399 0.946
50 1.000 179.782 0.917 174.554 0.764
100 0.500 402.195 0.548 317.901 0.404
200 0.250 783.764 0.295 641.393 0.275
500 0.100 2107.969 0.118 1605.782 0.094

α=2
25 1.000 84.273 0.663 72.422 0.495
50 0.500 182.960 0.440 132.700 0.341
100 0.250 300.200 0.251 289.190 0.214
200 0.125 666.948 0.166 605.137 0.110
500 0.050 1656.452 0.077 1367.942 0.041

α=5
25 0.400 67.646 0.258 66.675 0.201
50 0.200 133.945 0.175 135.896 0.137
100 0.100 293.482 0.101 265.121 0.079
200 0.050 581.209 0.053 506.883 0.040
500 0.020 1401.071 0.022 1288.534 0.019

α=10
25 0.200 67.735 0.141 64.976 0.103
50 0.100 143.471 0.093 140.865 0.072
100 0.050 272.815 0.045 249.548 0.036
200 0.025 528.532 0.023 469.934 0.017
500 0.010 1375.398 0.009 1262.119 0.007
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Table A.6: Shape Unknown, Scale Unknown (Improved)

N Nnew r rnew N Nnew r rnew
m=20 m=30

α = 1
25 2.000 103.242 65.677 1.342 1.684 79.399 54.918 0.946 1.294
50 1.000 179.782 123.159 0.917 1.311 174.554 96.834 0.764 1.003
100 0.500 402.195 224.467 0.548 0.896 317.901 182.988 0.404 0.724
200 0.250 783.764 461.122 0.295 0.541 641.393 367.541 0.275 0.426
500 0.100 2107.969 1198.197 0.118 0.259 1605.782 915.492 0.094 0.192

α = 2
25 1.000 84.273 50.422 0.663 0.845 72.422 47.812 0.495 0.662
50 0.500 182.96 94.277 0.440 0.624 132.7 81.602 0.341 0.497
100 0.250 300.2 191.886 0.251 0.401 289.19 157.667 0.214 0.336
200 0.125 666.946 369.306 0.166 0.241 605.137 320.843 0.110 0.202
500 0.050 1656.452 920.473 0.077 0.107 1367.942 780.697 0.041 0.080

α = 5
25 0.400 67.646 44.417 0.258 0.349 66.675 44.293 0.270 0.284
50 0.200 133.945 82.793 0.175 0.242 135.896 76.545 0.204 0.189
100 0.100 293.482 162.109 0.101 0.156 265.121 146.963 0.133 0.093
200 0.050 581.209 325.339 0.055 0.090 596.883 290.237 0.073 0.045
500 0.020 1401.071 826.946 0.022 0.037 1288.534 727.976 0.028 0.018

α = 10
25 0.200 67.735 43.665 0.141 0.171 64.976 43.471 0.103 0.138
50 0.100 143.471 80.38 0.093 0.125 140.865 74.078 0.072 0.102
100 0.050 272.815 158.329 0.045 0.073 249.548 142.139 0.036 0.062
200 0.025 528.532 316.642 0.023 0.042 469.934 287.158 0.017 0.034
500 0.010 1375.634 792.345 0.009 0.019 1262.119 715.269 0.007 0.013
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Table A.7: Initial Sample Size Considerations Simulations

shape=2 scale=5
m r N n∗ Pct of Additional Obs

w=0.500
5 0.430 98.170 50 96.3%
10 0.454 72.565 50 45.1%
50 0.398 61.815 50 23.6 %
100 0.248 100.000 50 100.0%
500 0.050 500.000 50 900.0%
15 0.453 68.800 50 37.6 %
40 0.457 61.989 50 24.0 %

w=0.250
5 0.218 195.386 100 95.4 %
10 0.217 149.118 100 49.1 %
50 0.225 122.467 100 22.5 %
100 0.211 118.243 100 18.2 %
500 0.050 500.000 100 400.0%
29 0.216 127.335 100 27.3 %
78 0.222 119.003 100 19.0 %

w=0.125
5 0.104 383.234 200 91.6 %
10 0.108 294.230 200 47.1 %
50 0.107 240.540 200 20.3 %
100 0.111 237.984 200 19.0 %
500 0.049 500.000 200 150.0 %
57 0.112 240.774 200 20.4 %
157 0.111 233.967 200 17.0 %
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Table A.8: Confidence Interval Simulations of Terminal Sample Size
w = 5 d M w = 4 d M w = 3 d M
α = 1 10.0 21.3 α = 1 10.0 25.6 α = 1 10.0 34.9

5.0 45.3 5.0 47.2 5.0 44.4
2.5 179 2.5 177.6 2.5 178.4
1.0 1115.5 1.0 1120.1 1.0 1083.3

α = 2 10.0 10.7 α = 2 10.0 11.6 α = 2 10.0 13.7
5.0 23.4 5.0 20.6 5.0 17.8
2.5 91.7 2.5 79.8 2.5 72.6
1.0 578.2 1.0 505.3 1.0 451.2

α = 5 10.0 10 α = 5 10.0 10 α = 5 10.0 10
5.0 22 5.0 18 5.0 13
2.5 87 2.5 70 2.5 52
1.0 542 1.0 433 1.0 325

α = 10 10.0 10 α = 10 10.0 10 α = 10 10.0 10
5.0 22 5.0 18 5.0 13
2.5 87 2.5 70 2.5 52
1.0 542 1.0 433 1.0 325
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Table A.9: Coverage Percents as Risk Bound Varies
α = 0.5 α = 1 α = 2 α = 5

80%
w=5 0.922 0.956 0.983 1.000
w=4 0.894 0.921 0.977 1.000
w=3 0.920 0.894 0.954 0.999
w=2 0.886 0.882 0.943 0.992
w=1 0.888 0.866 0.850 0.927

85%
w=5 0.943 0.968 0.997 1.000
w=4 0.950 0.972 0.991 1.000
w=3 0.940 0.944 0.982 0.999
w=2 0.927 0.906 0.956 0.995
w=1 0.921 0.916 0.875 0.968

90%
w=5 0.966 0.987 1.000 1.000
w=4 0.966 0.982 0.998 1.000
w=3 0.958 0.973 0.991 1.000
w=2 0.946 0.955 0.974 0.999
w=1 0.941 0.922 0.921 0.987

95%
w=5 0.983 1.000 1.000 1.000
w=4 0.986 0.993 1.000 1.000
w=3 0.970 0.988 0.999 1.000
w=2 0.975 0.970 0.994 0.999
w=1 0.964 0.952 0.962 0.987

Table A.10: Coverage Percents as Initial Sample Size Varies
m=4 m=6 m=8 m=10 m=12

w=5 0.979 0.994 0.995 0.998 0.999
w=2 0.936 0.954 0.954 0.973 0.984
w=1 0.928 0.934 0.926 0.933 0.938

w=0.5 0.923 0.901 0.901 0.900 0.918
w=0.2 0.921 0.925 0.928 0.924 0.916
w=0.1 0.936 0.914 0.930 0.918 0.927
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Appendix B
Figures
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Figure B.1: Scatterplot of Alpha vs. Empirical Ratios
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Figure B.2: Average Risk of Two Methods Compared to Risk Bound with Initial Sample
of 20
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Figure B.3: Average Risk of Two Methods Compared to Risk Bound with Initial Sample
of 30
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Figure B.4: Average Improved Risk of Two Methods Compared to Risk Bound with Initial
Sample of 20
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Figure B.5: Average Improved Risk of Two Methods Compared to Risk Bound with Initial
Sample of 30
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