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 As deregulation of the electric industry has come into effect in many parts of the 

world, the price of electricity is no longer determined by regulatory agencies. In contrast, 

price is determined by market demand, supply conditions, load elasticity, and strategic 

behavior. Firms, nowadays, face much greater risks and have become more responsible 

for their own economic decisions in deregulated power markets. Therefore, decision-

support models can help firms fulfill these new requirements.  
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This research is aimed at developing analytical models for long-term markets to 

assess the effect of uncertainties on electricity market prices. A multi-period Cournot 

model was developed for this purpose. Specifically, two significant uncertainty factors, 

the availability of the generating units and fuel price uncertainty, are considered in this 

model. An impact analysis of these two factors on firms’ expected profits is also carried 

out. Finally, a sensitivity analysis is performed to determine the parameters that have the 

most significant impact on the Nash-equilibrium solutions. 
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CHAPTER I 

INTRODUCTION 

 

Power supply systems have been changing their economic modes of operation to 

systems based on a market mechanism as deregulation of electric industries has become 

the norm in many parts of the world since the 1970s (Fujii, Okamura, Inagaki, and 

Yamaji, 2004). The deregulation of the electricity industry is essentially changing the 

way in which suppliers do business. A firm’s  decisions now depend, to a large extent, on 

market electricity prices. The price of electricity under deregulation is determined by 

market demand, supply conditions, load elasticity, and strategic behavior. It also depends 

on physical factors such as production cost, load, unit commitment, and transmission 

constraint (Valenzuela and Mazumda, 2005). Moreover, considerations of uncertainty 

factors such as generator reliability, demand uncertainty, and fuel price volatility are 

inevitable when making decisions. In general, most companies handle uncertainty in 

power markets by making hasty decisions about sensitivity, comparing scenarios, 

performing worst-case analyses, etc. This is, however, not an effective way to cope with 

uncertainties (Krukanont and Tezuka, 2006). Electricity is different from other products 

because it has yet to become efficiently storable. Therefore, its demand and supply must 

be matched every second, and failure to do so may result in a costly system collapse. 
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Firms face much more risk and become responsible for their own economic decisions in 

deregulated power markets. Those firms, hence, need decision-support models that fulfill 

these new requirements. In other words, decision-support models need to incorporate the 

uncertainties and other factors involved in deregulated power markets.  

Recent attempts to model the structure of deregulated electricity markets via 

utility system production simulation models have continued to rely on models used in the 

past for planning and regulatory purposes (Kahn, Bailey, and Pando, 1996), but many 

analysts believe that the Cournot model is better able to represent the electricity market as 

it has evolved (Borenstein and Bushnell, 1999). However, in the existing literature the 

Cournot model usually assumes perfect information about the salient factors such as 

generator outages and fuel cost uncertainty. This is difficult and poses risk for decision 

makers, especially in long-term analyses that involve large uncertainties in the decision-

making process (Krukanont and Tezuka, 2006). 

This dissertation develops models for the long-term markets to assess the effect of 

uncertainties (generator failure and fuel price uncertainty) on electricity market prices 

under Cournot competition. Specifically, the stochastic single-period model is extended 

to a multi-period model. Uncertainty factors, the availability of the generating units and 

fuel price uncertainty, are then added to the model as well as their sensitivity analysis, 

and the model shows their effects on market prices. Moreover, the effects of those factors 

on a firm’s expected profits are studied in this research. Transmission congestion and 

demand uncertainty are not considered in this dissertation.  
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1.1. Contributions 

 The main contribution of this dissertation is within the study of market prices in 

the long-term power markets when uncertainties take place. In particular, this research 

focuses on developing a stochastic Cournot model to evaluate the effects of vital 

uncertainty factors on electricity market prices. In reality, most companies cope with 

uncertainty by performing simple methods such as sensitivity and worst-case analysis. 

Those techniques, however, could lead to inaccurate results. As the electricity prices in 

deregulation have major effects on firms’ profits, companies are responsible for their own 

economic decisions. The development of an analytical model in this research which 

incorporates uncertainty and other crucial factors in deregulated power markets will help 

power companies make the precise decisions which they need to operate. 

 Another contribution of this dissertation is an approach used to cope with 

generator failures. In the existing literature, the approach used to consider generator 

outages into production cost models is to derate plant capacity. However, this method 

could lead to inaccurate results (Valenzuela and Mazumda, 2007). In this research, the 

expected production cost function, including generator outages, is modeled. This 

approach yields more accurate results when power producers consider the uncertainty of 

generator availability. When incorporating generator outages in the model, the expected 

cost function becomes a piecewise linear function. The piecewise linear function in some 

cases generates a large number of slopes which has a direct link to computational 

complexity. The algorithm to reduce a number of slopes of a piecewise linear function is 

implemented. The small number of slopes means less computational complexity, as the 
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number of slopes of an expected cost function grows exponentially with the number of 

generators. In general, the algorithm developed in this research can reduce the number of 

slopes efficiently and ease computational complexity which will help support other 

research.  

 This dissertation contributes to the optimization theory and applications. The 

tolerance approach to sensitivity analysis in a linear complementarity problem is here 

implemented and applied to the stochastic Cournot model. It can be broadly applied to 

numerous applications of the linear complementarity problem such as game theory and 

equilibrium problems. In addition, power companies can employ this approach to study 

the effect of input data on the output results. It might be useful for companies if they can 

detect which input data are sensitive and have a significant impact on firms’ optimal 

strategic planning and operations.  

Finally, this research also provides a valuable new tool for all participants in 

power markets. The tolerance approach to sensitivity analysis is applied to determine 

whether the new input data affects the optimal solutions. If the perturbed problems still 

have the same index set of solutions, the new optimal solutions can be calculated without 

directly solving a linear complementarity problem. Since solving a large scale linear 

complementarity problem may take long computational time and the input data such as 

the fuel price may change every minute, power producers can make a decision swiftly 

with this approach, as new input data are obtained.             
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1.2. Dissertation Organization 

The remainder of this dissertation is organized as follows: Chapter 2 provides a 

brief history of the development of the power market. The structure, volume, and market 

concentration of the capacity market are also discussed as is the basic Cournot model. 

Finally, a background and review of the significant literature concerning the Cournot 

model, mixed complementarity problems (MCP), and linear complementarity problems 

(LCP), which are a subset of mixed complementarity problems, are provided.  

Chapter 3 presents the multi-period deterministic Cournot model in the long term 

market which is extended from a single period model. The time value of money is also 

considered in the model while demand and fuel cost are assumed to be constant. 

Moreover, the availability of generating units is ignored in this chapter. The Nash-

equilibrium quantities are calculated by combining the KKT first order optimality 

conditions of the extended model. The KKT conditions of the deterministic Cournot 

model are considered as an LCP. Finally, the market prices and each firm’s expected 

profit are calculated. These results are used as standard results to show the effect of 

uncertainties in power markets when we consider those uncertainties in the model. 

Chapter 4 presents an approach to determining market prices when generator 

outages are taken into consideration. Specifically, the expected cost function including 

generator availability is developed. This expected cost function yields a large number of 

slopes. Each slope represents one marginal cost and maximum capacity including 

generator availability which is used to compute the Nash-equilibrium quantities. To 

consider all of them would take long computational time. Therefore, an algorithm to 
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reduce a number of slopes without losing precision is developed. Finally, the effect of 

generator outages on the market prices is analyzed.  

Chapter 5 provides an approach for determining the price of electricity when 

generator outages and fuel price uncertainty are in effect. Generally, each power 

company owns capacity resources in different fuel technologies. Four types of fuel 

technology including oil, coal, hydro, and nuclear are assumed in this dissertation. The 

most recent data on fuel prices obtained from reliable sources are used to generate the 

distribution for each generator’s marginal cost. The effects of generator availability and 

fuel price uncertainty are investigated. 

Chapter 6 describes the tolerance approach to sensitivity analysis in the stochastic 

Cournot model is proposed. Moreover, an algorithm to compute new optimal solutions 

when all parameters on the right-hand side vary simultaneously without directly solving 

the LCP is also presented in this chapter. The maximum allowable range which does not 

affect firms’ optimal strategy for each marginal cost and maximum capacity is computed 

in order to detect the sensitive parameters. 

Chapter 7 summarizes the study, discusses the conclusion of this research, and 

suggests directions for future research. 
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CHAPTER II 

LITERATURE REVIEW 

 

 This chapter presents the review of the current literature in four sections. The first 

section presents the history and current state of deregulation in the United States. The 

second section provides information about deregulation and the basic structure and 

operation of the capacity market as well as the current state of the capacity market. The 

third section presents a Cournot model, originally developed by Augustin Cournot along 

with a literature review of how the Cournot model is applied to the power markets. The 

fourth section focuses on the literature review of mixed complementarity problems. The 

general form of a model and the available software which can be used to solve mixed 

complementarity problems are discussed. Finally, a linear complementarity problem as 

well as its general form is highlighted. Some crucial algorithms, which are able to solve 

the linear complemetarity problem, are also presented.  

2.1. Deregulation in the United States 

The report prepared by the Energy Information Administration (1997) gives an 

interesting perspective on the history of the topic from the beginning of power markets in 

the United States until deregulation. In 1882, Thomas Edison’s Pearl Street Station began



8 
 

supply electricity to 85 customers for the first time in New York City. By 1916, 33 states 

had established regulatory agencies to organize the utilities in their jurisdictions, with the 

authority to franchise utilities, regulate their rates, financing, and service, and establish 

utility accounting systems. State regulation provided protection to consumers from the 

possibility of monopolistic practices by the utilities and ensured the reliability of 

electricity supplies. Moreover, they allowed utilities to receive a fair rate of return but 

there was debate at that period of time whether state regulation of electric power emerged 

to protect the consumers or to protect the profits of the electric utilities.   

 By the early 1930s, the price of electricity had fallen and service had been 

extended to two-thirds of the U.S. population which meant the demand for electricity 

increased. Consequently, ownership of operating companies was centralized under 

holding companies which facilitated access to the capital required for expansion and for 

exploiting economies of scale. As many states regulated local operating companies, there 

was no effective regulation of the increasingly expansive holding companies. As a result, 

when the worldwide economic downturn called Great Depression arrived in the early 

1930s, many holding companies failed because of high-leverage, unsecured financing, 

and investments in business unrelated to energy services. In return, Congress passed the 

Public Utility Holding Company Act of 1935 (PUCHA). The purpose of this legislation 

was to give control of electricity service to local operating companies. In other words, 

PUCHA restricted the electric power generating business to local utilities which built and 

operated power plants to serve service territories. This meant that there was no 

competition in supplying electricity under PUCHA. Title II of PUCHA granted the 

Federal Government explicit authority over most interstate wholesale electric power 
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sales. Therefore, by the end of 1935, nearly all electric power transactions in the U.S. 

were regulated under a scheme called “rate of return.” This scheme facilitated the 

production and sale of low-cost, reliable electricity in the U.S. for about 50 years.  

 Before deregulation, there was a belief that electricity is a national asset. 

Therefore, electric sectors in most regions of the country were subject to full regulation. 

The generation, transmission, distribution and retail segments were controlled by state 

governments playing a dual role as electricity service providers and as regulators. As 

economic growth became more and more dependent on sufficient electricity suppliers, 

the importance of electricity increased tremendously. Consequently, many governments 

have started to realize that this growth may be impeded by full regulation because of 

suppliers’ slow response to technological progress in electricity operations. Furthermore, 

the successful deregulation in oil and gas supports the belief that electricity is a service 

and it can be accomplished by deregulation (Yao, 2006). 

 Thus, the first step of restructuring the market began in 1978 when congress 

passed the Public Utility Regulatory Policies Act of 1978 (PURPA). PURPA not only 

opened the door to competition in the U.S. but also promoted greater use of renewable 

energy. This law created a market for non-utility electric power producers by forcing 

electric utilities to purchase power from these firms at the “avoided cost” rate, which is 

determined by bids from non-utility electric power producers. This is the first time in the 

United States that organizations other than public utilities were allowed to sell electric 

power.  
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 The Federal Energy Regulatory Commission (FERC) was given the responsibility 

by Congress of implementing open transmission access under the Energy Policy Act of 

1992 (EPACT) in order to spur competition in the wholesale electricity market. On April 

24, 1996, the Federal Energy Regulatory Commission issued order 888 establishing a 

guideline to provide open access to transmission lines. This policy removed restrictions 

on ownership of power generation facilities, which allowed non-utility electric power 

producers to access transmission lines. This was a major step toward electricity 

deregulation in the United States.  

The main purpose of deregulation is to reduce operational cost, to increase 

efficiency, and to encourage competition among electricity suppliers with the medium 

and long-term goal of combating high prices. Deregulation gives consumers more 

alternatives because consumers are not held to only one service provider. Availability of 

power from various suppliers guarantees supply reliability in case of a peak demand or 

unexpected outages. In other words, the more there is available, the greater the 

competition will be to produce and sell power in an efficient way, leading to lower prices 

and more energy efficiency. Moreover, deregulation is believed to provide better 

economic incentives and opportunities to both consumers and suppliers because the 

existence of a large number of consumers and suppliers reduces market power which 

prevents a firm from dominating a market. Consequently, it enables a company to enter 

or exit the markets which allows competitors to take advantage of any economic 

opportunity.  
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2.2. Capacity Market 

 Capacity markets have proven to be one of the most contentious elements of 

electricity restructuring. However, Cramton and Stoft (2005) argue that a capacity market 

is needed in most restructured electricity markets.  

In competitive markets, consumers can easily decrease their demand in response 

to prices and other market signals for most products. In this case, extra capacity is not 

necessary because prices give consumers the right signals when supplies are tight 

(NEPA, 2008). In power markets, however, there is little demand response to price, 

primarily because load neither sees nor pays the real-time price. Real-time meters and 

demand management control systems are not yet in place for most electricity consumers. 

This absence prevents consumers’ willingness to limit demand during times of supply 

scarcity. As a result, the price can reach extreme values. Price caps are set by market 

administrators in order to limit the peak prices, which occur at peak demand periods or 

with unexpected outages. As the price caps are in effect, the investors do not see the 

opportunity for them to make an investment in new resources. The imperfectly 

competitive market structure is the other issue in power markets. Consequently, there are 

instances when one or more suppliers have substantial market power, especially at peak 

times or during an outage of a large generator or transmission line. Addressing these two 

issues typically results in price peaks that are too infrequent and insufficient to motivate 

efficient investment in new capacity (Cramton and Stoft, 2005) which leads to the failure 

of electricity markets.  
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Moreover, the economic consequences of running out of electric generating 

capacity are severe. The best example is an event of the blackout that took place in the 

US East coast in August 2003 which shows that the value of the losses caused by a 

system imbalance may be substantially large (Creti and Fabra 2004). Fixed cost is also an 

important factor in electricity markets. Since power cannot be stored, there has to be 

significant extra capacity available to meet both peak demand periods, and because some 

generators will not be available due to outages and maintenance. To stay reliable, a power 

system has to have this built-in reserve margin. Some source of money is necessary to 

cover the cost of the extra plants required for this purpose, which is not very often. 

Normal revenues in the energy market will not cover the costs of this extra reserve 

margin, especially with prices subject to various regulatory controls (NEPA, 2008).       

For those reasons, the capacity markets must be introduced to the restructured 

electricity markets. In capacity markets, each retail supplier is required to produce its 

share of the responsibility for ensuring there is sufficient generating capacity in the 

region. Retail suppliers can purchase capacity either from generators that meet certain 

standards of availability or on the spot market to meet their requirements. The main 

purpose of introducing capacity markets into the restructured electricity markets is to 

ensure that sufficient generating capacity will be available to meet peak demands while 

providing investment incentives for power suppliers. In addition, capacity markets will 

cover the cost to keep adequate generation available. The capacity market payments 

reflect the costs of keeping sufficient capacity (plus the reserve) ready and available to 

the region. In other words, they represent the option to call on generators as and when 

needed (NEPA, 2008). 



13 
 

Creti and Fabra (2004) discussed in their paper that capacity markets can be 

classified as either price based or quantity based. In price based systems, the capacity 

availability is paid either via lump-sum payments or increase to energy payments 

depending on the probability of outages. The price based systems are not working as well 

as expected because producers are able to increase capacity payments by making fewer 

capacity resources available instead of increasing capacity resources. This increases the 

probability of shortages. Quantity based systems have been introduced in several power 

markets in the U.S. such as New England Power Generators Association Inc., New York 

ISO, and PJM. Nowadays, installed capacity markets, which are one of the quantity based 

systems, are the focus of the policy debate in the United States. The purpose of 

introducing the installed capacity markets is to ensure that adequate capacity is 

committed on a daily or seasonal basis to meet system loads and reserve requirements. 

The Load Serving Entities (LSEs) that sell electricity to end-user consumers must satisfy 

the expected peak loads plus a reserve margin. LSEs can buy through internal 

transactions, bilateral transactions, or capacity markets in the event of shortages. The 

equilibrium price in the capacity markets should be related to the overall capacity in the 

system.      

2.3. Cournot Model 

The Cournot model was named after Antoine Augustin Cournot, the nineteenth-

century French mathematician, who first examined its implications. Augustin Cournot 

was born in 1801. His book, Researches into the Mathematical Principles of the Theory 

of Wealth, was published in 1838. The basic Cournot Model is a one-period model in 
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which each firm has to forecast the other firm’s output decision. Given its forecast, each 

firm then chooses a profit-maximizing output for itself (Varian, 2006). Cournot 

competition, in other words, is a form of quantity competition which means firms must 

choose profit-maximizing output levels instead of prices in the belief that each competing 

firm maximizes its expected profits. It also assumes that the quantities supplied by other 

producers are fixed and do not react to price changes. The competition then seeks 

equilibrium. The Cournot equilibrium refers to a situation where each firm finds its 

beliefs about the other firms to be confirmed. The Nash equilibrium solution for the 

optimum quantities to be generated by each producer is provided by Cournot model. The 

market price is determined by the Nash equilibrium solution given the price elasticity of 

demand. 

The following is the standard Cournot model that will be used later as a 

fundamental model in this dissertation. Daughety (2005) discussed the basic one-stage 

Cournot model for an industry comprised of n firms. Each firm chooses its output level. 

Firm i’s output level is denoted as iq  where i  1, …, n and let the vector of firm outputs 

be denoted as 1 2 ( , ,..., )nq q qq . Let Q  refers to the aggregate industry output level (i.e., 

1

n

i
i

Q q


  ). We will refer the ( 1)n -vector of output levels chosen by other firms as -i q . 

Thus, ( ) -i, iqq also denotes to the vector of firm outputs, q . The inverse market demand is 

denoted as ( )p Q . Furthermore, firm i ’s cost function can be denoted as ( )i ic q . 

Therefore, firm i ’s profit function can be written as  ( ) ( ) ( )i i i ip Q q c q  q . The 

Cournot equilibrium consists of a vector of output levels, CEq , such that no firm wishes 
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to change its output level when other firms produce the output levels assigned to them in 

the equilibrium. A Cournot equilibrium can be alternatively called a Nash-Cournot 

equilibrium because it is a Nash equilibrium with quantities as strategies chosen from a 

compact space. Hence, CEq  is a Cournot equilibrium if ( ) ( , )CE
i i -i iq q CEq  for all 

values of iq , for i = 1, 2,…, n.  

An immense effort has been made to design several models and tools that 

specifically represent the electricity market behavior. The Cournot model has been one of 

the theoretical frameworks most widely used to model strategic behavior in electricity 

markets. In this research, our main goal is to model electricity markets under competition 

conditions and several uncertain factors. Our approach considers a market in which firms 

compete in quantity as in the Cournot model.  

Browning and Browning (1989) discussed the definition of the Cournot model, an 

excellent way to introduce the nature of oligopolistic interdependence. Each firm takes 

into account how price changes as the firm or its competitors change quantity and choose 

their quantity to maximize their profits given the quantity that their competitor is 

producing. The Cournot model shows how uncoordinated output decisions between rival 

firms could interact to produce an outcome that lies between the competitive and 

monopolistic equilibria. However, the final equilibrium reflects their interdependence 

although each firm explicitly ignores the other. In the last several years, the topic of 

strategic behavior in electricity markets has received a great deal of attention. Several 

oligopoly models have been proposed, notable among which is the Cournot model. Many 

analysts believe that the Cournot model is better able to represent the electricity bilateral 
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market than most other models. Borenstein and Bushnell (1999) give the arguments about 

various approaches and explain why the Cournot model is the best approach for market 

power in electricity markets. In addition, competing firms have long-term commitments 

to capacity although they may compete on price in the short term. The perfect 

competition model is based on the assumption that any firm can capture the entire market 

by pricing below other suppliers and supplying the entire demand but generating capacity 

constraints and increasing marginal costs make this assumption invalid. Thus, the 

centralized pricing mechanism and the capacity constraints support the case for adopting 

the Cournot model. The Cournot model also enables the analysis of situations in which 

producers unilaterally decide to withhold supply from the market by declaring some of 

their generators to be unavailable. Furthermore, The Cournot model leads to a simple 

analytical expression for the market price that renders itself easily to analytical 

manipulations. 

Restructured power markets take a wide variety of forms. A wide range of models 

have been proposed for simulating the interaction of competing power generation 

companies. Benjamin Hobbs (2001) presents two Cournot models of imperfect 

competition among electricity producers. The first model presents the producers’ and grid 

owner’s optimization problems. It includes a congestion pricing scheme for transmission. 

After combining their KKT conditions with the market clearing condition, they yield a 

mixed linear complementarity problem. The second model differs from the first model in 

that the first one has no arbitrage between nodes of the network, while in the other model, 

arbitragers erase any non-cost-based differences in price. In other words, power 

generators recognize that marketers will buy and resell power where price differences 
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exceed the cost of transmission. Finally, a simple example is presented to illustrate their 

application.  

Most previous Nash-Cournot models of competition among electricity suppliers 

have assumed smooth demand functions. However, nonsmooth demand functions are an 

important feature of real power markets due to many factors such as transmission 

constraints. Pang and Hobb (2005) developed the complementarity-based model of Nash-

Counot oligopolistic electric power markets to include concave demand functions that are 

piecewise linear. These models also include linear joint constraints within generator 

profit maximization problems. Furthermore, they begin with a multivalued 

complementarity formulation of the equilibrium problem, from which an equivalent 

single-valued linear complementarity problem formulation is derived. They mentioned in 

the paper that this new model is computationally challenging. For instance, they 

immediately invalidate the solution methods employed for the previous models. 

However, they successfully solved this problem by using a specific algorithm. As 

mentioned earlier, transmission constraints are another important factor in real power 

markets. Yuan, Liu, Jiang, and Hou (2005) proposed the Cournot model taking into 

account transmission constraints based on DC power flow. They analyzed the effects of 

simple two-bus network and three-bus network transmission constraints on the pure 

strategies of suppliers. The results show that there may exist different pure strategy 

equilibriums if transmission constraints are considered. Cunningham, Baldick, and 

Baughman (2002) also investigated perfect competition equilibrium and Cournot 

equilibrium in a simple example, triangular connection. Both cases are examined on 

transmission unconstrained and transmission constrained in order to compare the results. 
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Results show that a pure strategy equilibrium can break down even when a transmission 

constraint exceeds the value of the unconstrained Cournot equilibrium line flow.    

One of the major problems in the power markets is assuring that generators, 

which independently decide about their outputs, will not produce more than the available 

transmission capacity. Willems (2000) developed a model for the power markets of 

generators when transmission capacity is scarce. The purpose of this model is to apply 

the different models to a simple electricity market with one transmission line. They apply 

different Cournot concepts and explain the implicit assumptions about the behavior of the 

system operator. They also show that these implicit assumptions are not realistic. 

According to implicit assumptions, they formulate some alternative assumptions for the 

behavior of the System Operator and examine the results.  

2.4. Mixed Complementarity Problems 

Complementarity problems are a natural format for expressing a variety of 

economic models and arise frequently in the general equilibrium theory of economics 

(Ferris and Kanzow, 1998 and Rutherford, 2002). Optimization may be viewed as a 

special case of complementarity problems, since the standard optimality conditions for 

linear and smooth nonlinear optimization are complementarity problems (AMPL, 2008). 

Many computable general equilibrium models are used for various aspects of policy 

design and analysis, including carbon abatement, trade reform, and game theory (Ferris 

and Kanzow, 1998). One example of this area is the deregulation of electricity markets. 
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According to Rutherford (2002), the mixed complementarity problem is defined 

as 

Given:  : N NF R R ,       ,    Nl u R  

Find:  ,  ,    Nz w v R  

s.t.  ( ) 0F z w v    

 ,     0,    0l z u w v     

 ( ) 0,    ( ) 0T Tw z l v u z     

in which .l u      

Complementarity problems consist of complementarity conditions and each of 

them requires that the product of two or more decision variables be zero. Michael Ferris 

and Munson (1998) present how these problems are modeled within the GAMS modeling 

language and provide details about the PATH solver for finding a solution. Specifically, 

they develop the complementarity framework by looking at the transportation model. The 

transportation model is a simple linear program where demands for a single product must 

be satisfied by suppliers at minimal transportation cost. In other words, they show how to 

convert a linear program into a linear complementarity problem which can be recognized 

as the complementary slackness conditions of the linear program. One popular solver for 

this problem is called PATH which can be found in GAMS and AMPL. Like AMPL, 

GAMS is a high-level modeling system for mathematical programming and optimization. 
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Ferris and Munson show how to implement a linear complementarity problem in GAMS 

and discuss the available options and output of the PATH solver. Finally, some 

extensions of complementarity problems and additional uses of the solver are given.     

Another is Billups and Murty (1999). They provide an introduction to 

complementarity problems. Various forms of complementarity problems are described 

along with a few sample applications such as: piecewise linear equations; an application 

of a small size convex QP model; obstacle with free boundary problems; and traffic 

equilibrium. The important algorithms are presented with a discussion of when they can 

be used effectively. They also present other interesting algorithms for solving linear 

complementarity problem. The first one is Pivotal Method which tries to obtain a basic 

feasible complementary vector through a series of pivot steps. The next algorithm is the 

interior point method. This algorithm follows a path in an effort to reduce the constraints 

to zero. Furthermore, they provide a brief introduction to the study of matrix classes and 

their relation to linear complementarity problems.  

2.4.1. Linear Complementarity Problem 

A linear complemetarity problem (LCP) is a subset of mixed complementarity 

problems. Linear complementarity problems are problems where a given m m  matrix 

M  and a compatible vector q  are given. The task is to find the value of a vector z that 

satisfies a set of constraints. The general form of LCP can be written as  
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Given:  ,    m m m M R q R         

Find:    mz R  

s.t.     0 Mz q   

0z  

and ( ) 0.T  z Mz q  

LCP is truly nonlinear and tools of nonlinear analysis can be successfully applied 

to LCP (Stewart, 2008 and Thomas, 2002). They can be represented in various ways in 

terms of nonlinear systems of equations such as quadratic programs.     

 Many algorithms which can be used to solve linear complementarity problem 

have been proposed including one by He, Li, and Pan (2005). They developed a self-

adjusting interior point algorithm for linear complementarity problems. This algorithm is 

based on constructing a new proximity measure function instead of using the primal-dual 

interior point methods. As a result, they get a new centering equation with a set of 

parameters which play the important role of being self-adjusting in this algorithm. 

Numerical comparison is made between the proposed algorithm and the primal-dual 

interior point methods. Results show that the proposed algorithm has the efficiency as 

well as some other advantages. For example, the number of iterations increases very 

slowly as the number of variables increases. 

 Li and Dai (2007) introduced a generalized AOR method for solving a linear 

complementarity problem whose general case is reduced to a generalized SOR method. 
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These two methods are considered to be an iterative algorithm. Some computational 

results are presented in this paper. 

Liao and Wang (2003) proposed a self-adaptive projection and contraction 

method for linear complementarity problems. They claim their algorithm is better than 

He’s algorithm (1992) in the sense that their algorithm improves the practical 

performance of the modified projection method. The proof of global convergence of this 

new method is also included in the end of their paper. 

Sun and Huang (2006) developed a smoothing Newton algorithm for the LCP 

with a sufficient matrix. First, they applied a smoothing function to LCP which leads to a 

new formulation called a parameterized smooth equation. Then a Newton method with a 

projection type testing procedure is used to solve that equation. They also show that this 

algorithm will terminate in a finite number of steps as long as the LCP has a solution. 
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CHAPTER III 

COURNOT MODEL IGNORING UNCERTAINTY 
 

 
 
    Abstract ---  Since deregulation of the electric industry has become the norm in many 

parts of the world, the price of electricity under deregulation is no longer determined by 

regulatory agencies but by market demand, supply conditions, load elasticity, and 

strategic behavior. Firms now face much more risk and are responsible for their own 

economic decisions. The firms, therefore, need decision-support models that support 

these new requirements. In this research, we have developed the multi-period 

deterministic Cournot model for the long-term market which is extended from a single 

period model. However, demand uncertainty, generator outages, and fuel price 

uncertainty are ignored in this chapter. The Nash-equilibrium quantities are calculated by 

combining the KKT first order optimality conditions of the extended model. The KKT 

conditions of the deterministic Cournot model are considered as linear complementarity 

problems (LCP). The market prices and each firm’s profit are calculated. Results in this 

chapter are used as the standard results to show the effect of uncertainties in power 

markets when we consider them in the model. 
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3.1. NOMENCLATURE 

 

The notation used in this chapter is given below for reference.  

n  Number of firms 

N  Total number of generators 

fN  Number of generators of firm f  

max
fjP  The capacity of the thj  unit of firm f  (MW) 

fjc   The marginal cost of the thj  unit of firm f  ($/MWh) 

*
fs  The Nash-equilibrium quantities (MWh) 

*S  The Nash-equilibrium total bid (MWh) 

*p  The Cournot price ($/MWh) 

K  Nominal demand (MWh) 

h  Number of contracted hours 

0t  The beginning of a contract 

t  The present time 

i  Interest rate (%) 

  Compound-amount factor 

f  Profit of firm f  ($)  

  Slope parameter for demand 

 

 

 

 

 

 



25 

 

3.2. INTRODUCTION 

 Before deregulation, there was a belief that electricity is a national asset. 

Therefore, electric sectors in most countries were subject to full regulation. The 

generation, transmission, distribution and retail segments were controlled by state 

governments which played a dual role as electricity service providers and regulators. As 

economic growth became more and more dependent on sufficient electricity suppliers, 

the importance of electricity increased tremendously. Consequently, many governments 

started to realize that this growth may be impeded by being fully regulated because of the 

regulators’ slow response to technological progress in electricity operations. In addition, 

the successful deregulation in oil and gas established the belief that electricity is a service 

which can also be improved by deregulation (Yao, 2006). 

  Deregulation in the United States took place at both the federal and state levels in 

1996. The Federal Energy Regulatory Commission (FERC) encouraged deregulation of 

the electricity market by issuing order 888 and establishing guidelines to provide open 

access to transmission lines. This policy removed restrictions on ownership of power 

generation facilities which allowed non-utility electric power producers to access 

transmission lines.  

The main purpose of deregulation is to reduce operational cost, to increase 

efficiency, and to encourage competition among electricity suppliers with the medium 

and long-term goal of combating high prices. Deregulation gives consumers more choices 

because they are then not held to only one power provider. Availability of power from 

diverse suppliers ensures supply reliability throughout the operation in case of a peak 

demand or unexpected outages. It can be said that the greater the availability, the greater 
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the competition will be to produce and sell power in an efficient way, leading to lower 

prices and more energy efficiency. Moreover, deregulation is believed to provide better 

economic incentives and opportunities to both consumers and suppliers because the 

existence of a large number of consumers and suppliers reduces market power in which a 

firm is prevented from dominating a market. Consequently, it enables any company to 

enter or exit the market which in turn allows competitors to take advantage of any 

economic opportunity.  

The deregulation of the electricity industry is significantly changing the way in 

which suppliers do their business. Firms’ optimal decisions will now be dependent on 

market electricity prices. The price of electricity under deregulation is determined by 

market demand, supply conditions, load elasticity, and strategic behavior. It also depends 

on physical factors such as production cost, load, unit commitment, and transmission 

constraint (Valenzuela and Mazumda, 2005). Electricity is different from other products 

because it has yet to become efficiently storable. Therefore, its demand and supply must 

be matched every second. Otherwise, a costly system collapse may result. Firms, 

therefore, are faced with much more risk, and they become greatly responsible for their 

own economic decisions in deregulated power markets. Hence, these firms need decision-

support models that fulfill these new requirements. The decision-support models need to 

incorporate the uncertainties and other important factors involved in deregulated power 

markets.  

Recent attempts have been made to model the structure of deregulated electricity 

markets via utility system production simulation models that have been used in the past 

for planning and regulatory purposes (Kahn, Bailey, and Pando, 1996) but many analysts 
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believe that the Cournot model is better able to represent the electricity market as it has 

evolved (Borenstein and Bushnell, 1999). 

In this chapter, the multi-period deterministic model which is extended from a 

single period model is presented. Long-term power agreements and the Cournot 

competition is assumed for firms’ bidding structure in the market. The time value of 

money is also considered in the model. Demand and fuel cost are assumed to be constant. 

Moreover, the availability of generating units is ignored in this chapter.  

 The remainder of this chapter is organized as follows: Section 3 provides a 

methodology to develop the multi-period deterministic Cournot model in the long term 

markets. In section 4, a numerical example, Nash-equilibrium quantities, market prices 

and, each firm’s profits are presented. The conclusions are given in section 5. 

 

3.3. MODEL DESCRIPTION 

In this section, model assumptions and a methodology to develop the multi-period 

deterministic Cournot model in the long term markets are presented.  

3.3.1. Model Assumptions 

In the restructured wholesale market, power generators can trade power in both 

short-term and long-term markets. Short-term refers to a day or hours, while long-term 

refers to weeks or years. In the long-term market, generators and consumers agree in 

private at time 0 through a central exchange on the delivery of specified power quantities 

at some specific time in the future (at time 0t ) through a long term power purchase 

agreement. In this research, the main focus is to model the generators in long-term power 
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agreements and study their effects on market prices and firms’ profits. The price is set at 

the time of the agreement and remains unchanged for the period of the contract in the 

long-term market. The following additional assumptions apply to the model:   

3.3.1.1. Power Producer  

A total of n  competing asymmetric firms with firm f  having a set of 1fN   units 

available for production at time 0 are assumed. The total number of units available in the 

market at time 0 is denoted by N . In reality, there are other available power sources. 

Instead of producing its own electricity, a firm has the ability to purchase energy at a 

higher price from outside sources. Therefore, the last unit of production or a unit th
fN  

represents the available power sources which are considered to have infinite capacity and 

to be always available. The following are assumptions related to each unit: 

 The capacity of the thj  unit of firm f  is represented by max

fjP  (MW). 

 Each firm’s units are dispatched according to an ascending order of their 

marginal costs, which is denoted by fjc . 

 The unit commitment and transmission constraints are ignored. 

 Fuel cost is assumed to be a constant and generator outages are ignored. 

3.3.1.2. Demand (load) 

To represent the behavior of the load-serving entities, a linear inverse demand 

function is assumed. In Figure 1, the curve shows a general demand function for the long-

term market and indicates the price responsiveness of consumers. The quantity K  is the 

nominal demand and is assumed to be a constant in this model. The actual realized 
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demand function, which is denoted by L , is affected by the price elasticity of demand 

0  , which is also known by the producers. p  is the electricity price ($/MWh).  

Thus, the actual demand of the system is represented by the following linear relationship: 

L K p                                                                                                           (3.1) 

 
Figure 1. Consumer Demand Curve 

 

3.3.1.3. Market Operation 

  As mentioned earlier, generators and consumers sign a long-term contract at time 

0. Therefore, the production amounts are determined at time 0 and the actual generation 

will occur at time 0t . This scenario is depicted in Figure 2. 

p 
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Figure 2. Market operation in the deterministic model 

 
 

3.3.2. Mathematical Model 

To model the Cournot competition, each supplier simultaneously determines a 

quantity fs  that it is willing to supply at each period t . Suppliers choose their quantities 

in order to maximize their total profit at each period over the duration of the contract, 

assuming that the total of other firms’ bids fs  is known. Hence, the profit of firm f  at 

hour 0t t  can be written as  

0 0, ,( | ) ( , ) ( )s sf t t f f f f f f t t fs s s p K Cost s               (3.2) 

where 0t  is time at the beginning of the contract, 
0, ( )f t t fCost s  is the cost at hour 0t t  

for supplier f  to produce the quantity fs  and ( , )f fp K s s  refers to the non-negative 

price at this period when the nominal demand is K , and the total market supply is the 

Nash-equilibrium total bid ( *S ). Note that t  can be any number between 0 and the 

number of contracted hours ( 0,1,2,...,t h ). The cost function, 
0, ( )f t t fCost s , is not a 

random variable as fuel cost is assumed to be a constant and generator outages are 

ignored in this chapter. 
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 As we know, the value of money now is different from the value of money in the 

future, the profit at every hour t  must take the time value of money into consideration 

before calculating the total profit. Therefore, the net present value must be applied to the 

profit at every hour t in order to obtain the total profit at time 0t . The total profit function 

after applying the net present value is shown below: 

0, ( | )f t t f f tf
t Df

Max s s
s

   


 
  
 

           (3.3) 

where   
1

(1 )
t ti

 


, 

D  is the set of hours at which the supplier will deliver the contracted quantity fs  (MW) 

in the future,   is compound amount factor, and i  is the discount rate (%). 

Considering that after the production amounts are determined at time 0 and the 

actual generation will occur at time 0t . In a deterministic model, the hourly profit remains 

the same at every hour. Hence, the total profit function can be written as follows: 

( | )

( | )                                                                                

f f f tf
t Df

f f f

Max s s
s

s s

  

 






 
  
 

   

  

where t
t D

 


 .    

 Therefore, the total profit function (3.3) is shown below: 

( , ) ( )f f f f ff
f

Max s p K s s Cost s
s

  
      .                                                   (3.4) 
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When the Cournot decision maker assumes that generators are always available and fuel 

costs remain unchanged over a period, the function ( , )f fp K s s  in (3.4) based on (3.1) 

can be written as 
1

( )f fK s s
   . Note that K  is assumed to be a constant due to 

constant demand. The cost function in (3.4) is represented by ( )f fC s  when generator 

outages are ignored and fuel prices are assumed to remain unchanged. Thus, the total 

profit function for each firm becomes 

    ( ; ) ( )

where

1
( ; ) ( ) 

f
f f f f f f

s

f f f f f f

Max R s s C s

R s s s K s s

  





 

 

  

                     (3.5)  

where h  is the contracted number of hours, the cardinality of D , and 
1

h

t
t

 


 . The 

function ( )f fC s  is the production cost curve of supplier f  assuming all generators are 

available. The production cost curve of supplier f  can be calculated by 

 
1

( )
fN

f f fj fj
j

C s c g


   

where fjc  is the variable cost of the thj  unit of firm f  in $/MWh and fjg  is the power 

generated by the thj  generator of firm f  in MWh. 

Therefore, the optimization problem given by (3.5) can be written as the 

following programming model: 
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1

1

max

( ; )

subject to

- 0     ( )

          ( )     for 1,.....,

, 0

f

f

f

N

f f f f fj fj
s

j

N

fj f f
j

fj fj fj f

fj f

Max R s s c g

g s

g P j N

g s

  










 



 

 



                         (3.6) 

Where the values of   and f fj   are the dual variables of the corresponding constraints. 

The above model (3.6) is a quadratic programming model. 

The Nash-equilibrium quantities that solve the set of problems fs  ( f  1, … , n) 

can be computed by combining the KKT first order optimality conditions of system 

equation (3.6) of all suppliers. The KKT conditions of optimization problem (3.6) can be 

written as the following equations: 

1

max

for 1,...,

( 2 ) 0        0

0                           0

for  1,...,   and  1,...,

0                   0

0                          

f

f f f f

N

fj f f
j

f

fj fj f fj

fj fj f

f n

K s s s

g s

f n j N

c g

P g








  









     

   

 

    

  



0j 

         (3.7) 

 

  The result of these KKT optimality conditions is a linear complementary problem 

(LCP). By using available software to solve it as a complementarity problem, the Nash-

equilibrium quantity for each firm in MWh, *
fs , is obtained. The total demand can be 



34 

 

calculated as * *

1

n

f
f

S s


  . The demand relationship (3.1) is used to determine the Cournot 

price, *p , which becomes 

*
* K S

p



 .                                      (3.8) 

  

3.4. EXPERIMENTAL RESULTS 

 For a numerical illustration of results, we consider a market that consists of three 

firms. The composition of each firm is given in Table 1 which includes the capacity, 

marginal cost, and net plant heat rate. The characteristics of the unit types in Table 1 are 

taken from the IEEE reliability test system (Grigg, 1996). Firms 1, 2, and 3 have 11, 7, 

and 9 generators respectively.  

The last row of each firm in the table corresponds to the assumptions that the th
fN  

unit of generator for firm f  has infinite capacity and is perfectly reliable due to other 

available sources in the markets. Each firm is assumed to operate 12 hours per day (off- 

peak hour) and 30 days per month. The annual percentage rate (APR) is assumed to be 

7% for all firms. It is also assumed each firm and the consumers agree through a central 

exchange on the delivery of specified power quantities for 2 months and they receive the 

payment from the customers at the end of each month. Furthermore, the values of 

parameters  and K  are assumed to be 15 and 3000 respectively. Based on the given 

numerical data, the value of the discount coefficient ( ) in (3.5) is 713.75. 
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Table 1. Market composition and generating unit Data 

Firm Unit  Fuel Type 
Capacity 

(MW)  
Net Plant Heat Rate 

(Mbtu/MWh) 
Marginal Cost 

($/MWh) 

F
ir

m
 1

 
1 Coal 350 9.5 52.45 

2 Coal 350 9.5 52.45 

3 Coal 155 9.72 52.76 

4 Coal 155 9.72 52.76 

5 Coal 76 11.9 55.86 

6 Coal 76 11.9 55.86 

7 Gas 48 10.23 62.56 

8 Gas 48 10.23 62.56 

9 Gas 78 11.63 68.41 

10 Gas 78 11.63 68.41 

11 Gas 149 12.87 73.59 

12 -   - 999 

F
ir

m
 2

 

1 Hydro 50 - 0.07 

2 Hydro 50 - 0.07 

3 Coal 155 9.72 52.76 

4 Coal 76 11.9 55.86 

5 Gas 48 10.23 62.56 

6 Gas 48 10.23 62.56 

7 Gas 78 11.63 68.41 

8 -   - 999 

F
ir

m
 3

 

1 Uranium 400 - 0.017 

2 Hydro 50 - 0.07 

3 Hydro 50 - 0.07 

4 Coal 350 9.5 52.45 

5 Coal 76 11.9 55.86 

6 Gas 48 10.23 62.56 

7 Gas 78 11.63 68.41 

8 Gas 149 12.87 73.59 

9 Gas 149 12.87 73.59 

10 -   - 999 

 

The Nash-equilibrium quantities are obtained by solving the linear 

complementarity problem in (3.7) using PATH solver called by AMPL. The Cournot 

price is calculated according to (3.8). The results are shown in Table 2. 
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Table 2. The results of Nash-equilibrium ignoring uncertainty 

Firm 1 
(MWh) 

Firm 2 
(MWh) 

Firm 3 
(MWh) 

Total  
(MWh) 

  p*     
($) 

595.42 427 595.42 1,617.84 92.14 

 

 The total profit for each firm can be computed by substituting the Nash-

equilibrium quantities and the power generated by each generator into (3.5). The result is 

shown in Table 3. 

Table 3. The total profit when ignoring uncertainty 

Firm Total Profit ($) 

1 16,869,300 

2 14,924,400 

3 35,577,600 

 

 These results will be used to show the effect of uncertainties in power markets 

when we consider those uncertainties in chapters 4 and 5. 

 

3.5. CONCLUSIONS 

The multi-period deterministic Cournot model for the long-term market was 

developed in this research. The deterministic Cournot model in this chapter belongs to a 

class of a quadratic programming. The Nash-equilibrium quantities were calculated by 

combining the KKT first order optimality conditions of the extended model. The KKT 

conditions of the deterministic Cournot model are considered as linear complementarity 

problems (LCP). The linear complementarity problem can be solved by using the PATH 

solver in AMPL. The market prices and each firm’s profit were calculated by substituting 
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the Nash-equilibrium quantities and the power generated by each generator into the profit 

function. The deterministic model and results in this chapter will be used to show the 

effect of uncertainties in power markets when we consider these uncertainties in the next 

two chapters.  
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CHAPTER IV 

STOCHASTIC COURNOT MODEL INCLUDING GENERATOR OUTAGES 

 

    Abstract ---  The uncertainty in generator availability is a crucial factor which 

should be considered in a medium-term or long-term planning process. An approach to 

determining market prices considering generator outages is proposed in this chapter. The 

multi-period Cournot model in the previous chapter is modified by replacing its cost 

function with the expected cost function. Specifically, the expected cost function in terms 

of generator availability is developed. The expected cost curve is a piece-wise linear 

function with a large number of slopes. Each slope represents the marginal cost and 

capacity of a hypothetical generator. Since considering all slopes could take long 

computational time and make the problem difficult to solve, an algorithm for reducing the 

number of slopes without losing accuracy is developed. In addition, the effect of 

generator outages on the firms’ expected profits is analyzed.  
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4.1. NOMENCLATURE 

The notation used in this chapter is given below for reference.  

n  Number of firms 

N  Total number of generators 

fN  Number of generators of firm f  

max

fjP  The capacity of the thj  hypothetical unit of firm f  considering outages (MW) 

fjc   The marginal cost of the thj  hypothetical unit of firm f  including generator 

outages ($/MWh) 
 

*
fs  The Nash-equilibrium quantities (MWh) 

*S  The Nash-equilibrium total bid (MWh) 

*p  The Cournot price ($/MWh) 

K  Nominal demand 

h  Number of contracted hours 

i  Interest rate (%) 

  Compound-amount factor 

f  Profit of firm f  ($)  

  Slope parameter for demand 

t  The present time 

fj  The failure rate of the thj  unit of firm f  per hour 

fj  The repair rate of the thj  unit of firm f  per hour 
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4.2. INTRODUCTION 

Power outages play an important role in both developing and industrialized 

countries. When the outages take place, they can be momentary or last for several days 

affecting only a few small areas or entire cities. Although most of the power outages are 

man-made, there are some outages caused by nature such as hurricanes, flooding, and 

earthquakes.  

Unplanned power outages are the situation that power plants in both developing 

and industrialized countries try to avoid because the economic consequences of electric 

power outages are severe. Blackouts affect not only economics but also our daily life. 

The best example took place in the Northeastern United States in August 2003, which 

was the worst blackout in U.S. history.   

The blackout in August 2003 started shortly after 4 PM EDT and resulted in the 

loss of 61,800 MW of electric load that served more than 50 million people in the U.S. 

and Canada including large urban centers that are heavily industrialized and important 

financial centers (e.g., New York City and Toronto, Ontario). Nearly half the Canadian 

economy is located in Ontario and was affected by the blackout. Most areas were fully 

restored within two days but parts of Ontario took more than a week before power was 

restored (Electricity Consumers Resource Council (ELCON), 2004). In addition, the 

blackout also affected industry as well as infrastructure such as water supply, 

transportation, and communication. All manufacturers in the Northeastern United States 

reporting indicated that the blackout caused a complete shutdown in operation. The Ohio 

manufacturers’ Association estimated the direct cost of the blackout on Ohio 

manufacturers to be $1.08 billion (Electricity Consumers Resource Council (ELCON), 
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2004). The U.S. Department of Energy (2008) has also published a total economic cost 

estimate of about $6 billion due to the blackout.  Electricity is a very special product in 

the sense that it is not storable over extended periods of time. It is generally consumed in 

less than a second after being produced. The power generation and demand must be 

matched every second in the power supply networks. The mismatch between supply and 

demand, either overload of a power line or underload/overload of a generator, can cause 

severe damage to a network component which may lead to a cascading failure of a large 

section. The reality is that generators are not always available. They may fail any second 

and the next cheapest available generators will replace them in order to meet the demand. 

Generator failure is believed to be one of the common causes for long duration outages in 

power markets. In addition, analysis has shown that the outage of a generator is the 

initiating event of cascading faults which may rapidly lead to a catastrophic failure, i.e. a 

major blackout (Genesi, Granelli, Innorta, Marannino, Montagna, and Zanellini, 2007). 

Since only a few minutes of blackout can cost millions of dollars to the whole system, 

uncertainty of generator availability is one of the significant factors in power markets 

which must be considered in a decision-support model.   

The main purpose of this chapter is to develop a model to assess the effects of 

generator outages on electricity prices under Cournot competition. The extension of the 

deterministic version of the Cournot model in chapter 3 is developed by including the 

reliability of the generating units. Fuel price uncertainty is ignored in this chapter.  The 

method generally used in the literature to deal with the issue of generator failure is to 

derate plant capacities. This approach, however, may lead to inaccurate results 

(Valenzuela and Mazumda, 2007). Some literature simply ignores this factor. Unlike 
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other literature, the expected production cost function including generator failure is 

implicitly modeled in this chapter rather than the cost of the expected production 

quantities obtained after the generators are derated. When incorporating generator 

outages, the cost function is modified by introducing the operating state of each generator 

which will lead to a new expected cost function.  

This chapter is organized as follows: A stochastic Cournot model in the long term 

markets including generator outages is developed in section 3. In section 4, numerical 

results as well as the comparison of both firm’s expected profit considering generator 

failure and ignoring outages are presented. The conclusions are outlined in section 5. 

 

4.3. MODEL DESCRIPTION 

In this section, a procedure for computing the market prices taking generator 

failure in a deregulated long-term power market into consideration is described. Instead 

of derating plant capacities, the expected production cost function including generator 

outages is developed.  

4.3.1. Model Assumptions 

 The following assumptions apply to this model: 

4.3.1.1. Market Operation 

In a long-term market, the price is set at the time of the agreement (time 0) and 

remains unchanged for the period of the contract. In other words, the production amounts 

are determined at time 0 and the actual generation will occur long after this time (at time 
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0t ). The Markov process is assumed to reach its steady state when the contracted amount 

will be generated. This scenario is illustrated in Figure 3. 

 
Figure 3. Market operation in the stochastic model 

 

4.3.1.2. Power Producer 

A total of n competing asymmetric firms are considered in this chapter, in which 

all firms make their decisions according to the Cournot model.  That each firm f  

possesses a set of 1fN   units available for production at time 0 is assumed. In addition, 

the last unit of production or a unit th
fN  represents the available power sources. In this 

chapter, the power sources are considered to have infinite capacity and to be always 

available. The following are assumptions related to each unit: 

 The capacity of the thj  unit of firm f  is represented by max

fjP  (MW). 

 Each firm’s units are dispatched according to an ascending order of their 

marginal costs, which is denoted by fjc . 

 Generator outages are assumed in this chapter. 
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 The unit commitment and transmission constraints are ignored and fuel 

price is assumed to be a constant. 

 

4.3.2. Mathematical Model 

4.3.2.1. Demand (load) 

To represent the behavior of the load-serving entities, a linear inverse demand 

function is assumed. The actual realized demand function of the system, denoted by *S , 

is affected by the price elasticity of demand 0  , which is known by the power 

producers. The actual demand of the system is represented by the following linear 

relationship: 

L K p  .                                                                                                        (4.1) 

The quantity K  stands for the nominal demand and is assumed to be a constant in 

this section. The generation quantity for firm f  (MWh), fs , is the sum of generation 

quantities of all generators of firm f  ( 1,  2, ... ,  f n ) and is calculated as follows: 

1

=  
fN

f fj
j

s g

 .  

The actual demand of the system is equal to the total of all firms’ generation 

quantities and it can be written as follows: 

* *

1

n

f
f

S s


  . 
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4.3.2.2. Profit Function 

Power producers that are bidding in the market own a set of generators. When 

those generators are not always available, the cost function becomes a random variable. 

Therefore, the total profit function from the previous chapter becomes the expected total 

profit function in this chapter. After considering the time value of money and generator 

outages, the expected total profit function, based on (3.3), becomes 

0, ( | )f t t f f tf
t Df

Max E s s
s

   


 
  

 
      

where   
1

(1 )
t ti

 


. 

Considering that after the production amounts are determined at time 0 and the 

actual generation will occur long after time 0t , the Markov process of the unit availability 

is assumed to reach the steady state (see Figure 3). In the steady state ( 0t  ), hourly 

expected profits remain the same at every hour. The total expected profit function in the 

steady state can be simplified as follows:   

0
0

0

0

, ( | )

( | )

( | )

f t t f f tf
t t Df

f f f t
t t D

f f f
t

Max s sE
s

s sE

s sE

  

 

 

 
 


 




 
  

 

 
    

 

   

             

                                                                                        

  

where t
t D

 


  and 
0t
E


 represents the expected value considering that the stochastic 

process that reigns the unit availability is in the steady state.   
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Hence, the expected total profit function for supplier f , in the steady state, can 

be rewritten as   

0 0

( | ) ( )( ; )f f f f f f f f
t t

s s R s s Cost sE E    
 

        . 

In Cournot competition, firm f  assumes the total quantity, produced by other 

firms  fs , and each firm f  then determines the quantity fs
 
in order to maximize its 

total expected profit at each period over the duration of the contract. Thus, the total 

expected profit function for supplier f  in the steady state can be calculated as follows: 

 ( , ) ( )  f f f f f fs p K s s E Cost s  
      .                                                       (4.2) 

4.3.2.3. Reliability 

To introduce the operating state of a generator j  of firm f , we begin by defining 

a two-state continuous-time Markov process which is 1 if unit j  of firm f  is available at 

time t  and 0 for otherwise. The Markov process has a failure rate per hour ,f j  and a 

repair rate per hour ,f j . Since in our model the production amounts are determined at 

time 0 and the actual generation will occur long after this time (at time 0t ), the Markov 

process is assumed to reach its steady state when the contracted amount is generated. The 

steady state probability that the generator j of firm f  will be available is denoted by 

,

,

, ,

f j

f j

f j f j

r


 



                                                                                                 (4.3) 

 and, the steady state probability that generator j of firm f  will not be available is 

denoted by 
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 , ,1f j f jq r  .                                                                                                     (4.4) 

4.3.2.4. Cost function 

To compute the expected cost function, we first define , ( )f jC s  as the expected 

cost function of supplier f  producing s  units of energy when generators 1, 2, ... , 1j   

are not available.  The expected production cost function including generator outages is 

developed below. 

For unit 1,  2,...,  1fj N  , the following recursive relationship is used: 

 

, 1, , , ,

,

, 1 , 1, , , , , ,

                      ( )   for  0

( )

                      ( ) ( )   for  

Max
f jf j f j f j f j

f j

Max Max Max
f j f jf j f j f j f j f j f j

r c s q C s s P

C s

r c P C s P q C s s P



 

  



   

          

The last unit of generator ( fN ), which is always available, can be represented by 

the following relationship: 

, ,( )f f
f N f NC s s c  . 

Owing to the recursive relationship, the calculation starts from the first unit of 

generator to the last unit ( fN ) in order to obtain the total expected cost. Therefore, the 

expected production cost function considering generator outages can be written as 

follows: 

,1( ) ( )ff f fE Cost s C s     

where the expected cost of firm f , given by ,1 ( )f fC s , is a piecewise linear function with 

respect to fs . The slopes of this piecewise linear function are always increasing, as each 
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firm’s units are dispatched according to an ascending order of their marginal costs. Each 

slope represents a marginal cost and capacity of a generator including outages. The set of 

all combinations of unit capacities determines where the function changes its slope. For 

example, one firm has three units with a capacity of 12, 20, and 50 MW. There are 32 1  

combinations in total with these three generators which mean the expected cost function 

changes its slope at 12, 20, 32, 50, 62, 70, and 82 MW. In other words, this firm actually 

owns a set of seven hypothetical generators with the maximum capacity of 12, 20, 32, 50, 

62, 70, and 82 MW respectively when considering generator outages. In the aspect of 

complexity, this may not seem to be much different from assuming that generators are 

always available. However, if a firm owns a total of n  generators, it could have 2 1n   

different slopes in the worst case which means this firm has to consider a set of 2 1n   

different generators and maximum capacities. Since this is an exponential function, when 

n is a big number, it will make a huge difference in computational complexity. An 

example of the expected cost curve when a power company has 12 units of generators is 

depicted in Figure 4.  

In Figure 4, the graph seems to show only 3 or 4 different slopes but the expected 

cost curve actually contains roughly 122 1  different slopes.  The reason that the graph 

displays only 3 to 4 slopes is some slopes may differ from others by a small amount. 

Considering the fact that some slopes may differ from others by a small amount, it is 

better to combine them and represent the cost function with a lesser number of slopes 

without losing accuracy. Moreover, the complexity of calculations can be eased with a 

smaller number of slopes.  
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Figure 4. The expected cost curve of 12 generating units 

 

To reduce the number of slopes, we define  and s   to be the increasing amount 

of capacity and the difference between slopes, respectively. Both are constant values and 

must be set at the beginning. Let 0N  be the maximum range in which we want to 

combine slopes such that 0 max
,

1

fN

f j
j

N P


   for each firm f.  

The following pseudo-code describes the slope reduction algorithm for firm f : 

1: 0
to 2   FOR l N  

2: Set and  ,  lX l s  ,1( )fl lC C X  

3: END FOR  

4: 1 1Set and  1,  2,  0,  0r K C X     
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5: WHILE
0K N  

6: 0
1 1Min such and      ( 2 )i i ij i K i N C C C         

7: 1
,

2

1

j

l l
l K

f r j

l
l K

X C

m

X

 

 





 

8: ,  and Max
f r j jNewP X Temp X   

9: 0
to   FOR l j N  

10:  l lX X Temp   

11:  ,l l f rC C m Temp    

12: END FOR  

13: 1K j   

14: 1r r   

15: END  

 

The slope reduction algorithm produces an estimation of the expected cost 

function which is used to generate estimated expected cost curve. A slope in estimated 

expected cost curve is associated with each hypothetical generator (r) which has a 

maximum capacity ( ,
Max
f rNewP ) and marginal cost ,( )f rm . Let maxr  represent a value of r 

when the slope reduction algorithm terminates. The values of ,f rm and , Max
f rNewP  are 

similar in nature to those ,f jc and max
,f jP  described in chapter 3 but they take generator 

outages into account. In order to simplify the presentation, the values of marginal cost 

,( )f rm  and maximum capacity ( , Max
f rNewP ) will be represented as ,f jc and 

max

,f jP  where    

( max1, 2, ... , j r ).   

An estimation of the total expected cost for each firm f , ,1 ( )f fC s , can be 

calculated as follows: 
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,1 , ,
1

( )
fN

f f jf f j
j

C s c g


   

where ,f jc  is the marginal cost obtained from the slope reduction algorithm.  

4.3.2.5. Modeling Competition 

When the Cournot decision maker assumes demand remains unchanged over a 

period of time, the function ( , )f fp K s s  in (4.4) based on (4.1) can be written as  

1
( , ) ( )f f f fp K s s K s s

     . 

Thus, each supplier f  solves the following programming model: 

,1( ; ) ( )
f

ff f f f f
s

Max R s s C s     

1

max max

subject to

- 0     ( )

          ( )     for 1,.....,

 , 0

fN

fj f f
j

fjfj fj

fj f

g s

g P j r

g s









 

 



                   (4.5) 

1

where

1
( ; ) ( ) 

and    .

f f f f f f

h

t
t

R s s s K s s


 

 



  



      

The Nash-equilibrium quantities fs  ( f 1, 2, …, n) that solve the set of 

problems can be computed by combining the KKT first order optimality conditions of 
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system equation (4.5) of all firms. The KKT conditions of optimization problem (4.5) can 

be written as the following equations: 

1

max

max

for 1,...,

( 2 ) 0        0

0                           0 

for  1,...,   and  1,...,

0                   0

0                         

f

f f f f

N

fj f f
j

fj fj f fj

fj fj

f n

K s s s

g s

f n j r

c g

P g








  







     

   

 

    

  



 0fj 

                               (4.6) 

These KKT conditions are still considered as a linear complementary problem 

(LCP). The Nash-equilibrium quantity for each firm in MWh ( *
fs ) is obtained by using 

available software to solve those optimality conditions. As mentioned earlier, the actual 

demand of the system or total demand can be calculated as * *

1

n

f
f

S s


  . The linear 

relationship in demand (4.1) is used to determine the Cournot price, *p , which becomes 

              

*
* K S

p



 .                                                                                                    (4.7) 

 

4.4. EXPERIMENTAL RESULTS 

In this section, the methodology explained in section 3 is implemented for a 

market that consists of three firms. For a numerical illustration of results, the composition 

of each firm is given in Table 4 including the capacity, marginal cost, net plant heat rate, 

and availability of each generator. The characteristics of the unit types in Table 4 are 
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taken from the IEEE reliability test system (Grigg, 1996). Firms 1, 2, and 3 have 11, 7, 

and 9 generators respectively. The last row of each firm in the table corresponds to the 

assumption that the th
fN  generating unit of firm f  has infinite capacity and is assumed to 

be perfectly reliable due to other available sources in the markets. The available generator 

types are coal, oil, hydro, and nuclear. The marginal cost of one type of technology is 

calculated based on its heat rate. Although generators consume the same type of fuel, 

they do not always have the same marginal cost. Furthermore, the values of parameters 

 and K  are assumed to be 15 and 3000 respectively. Each firm is assumed to operate 12 

hours per day (off-peak hours) and 30 days per month. It is also assumed that all firms 

and consumers agree in private through a central exchange on the delivery of specified 

power quantities for 2 months and the firms receive the payment from customers at the 

end of each month. The annual percentage rate (APR) is assumed to be 7% for all firms. 

Next, the discount coefficient in (4.5),  , can be computed in order to consider time 

value of money in the model. Based on the given APR, the value of the discount 

coefficient is 713.75.   

Based on the numerical data in Table 4, the expected cost function of each firm 

contains a large number of slopes. The slope reduction algorithm plays a vital role in 

reducing the number of slopes (those marginal costs and maximum capacities). The value 

of s  is assumed to be 1 in this section. Moreover, a value of the difference between 

slopes   is chosen by determining the smallest number that yields the value of estimated 

cost as close as the original value of expected cost. The greater the value of  , the more 

inaccurate the results will be. The value of   can be simply judged by comparing the 
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expected cost curve and the estimated cost curve. If those two graphs are similar, the 

value of   can be used without making the final results imprecise. After applying the 

slope reduction algorithm to the numerical data in Table 4, the expected cost curve and 

the estimated cost curve for firms 1, 2, and 3 are shown in Figures 5, 6, and 7, 

respectively. 

The value of   for firms 1, 2, and 3 is chosen to be 6, 3, and 5, respectively. 

Comparing the expected cost curve and the estimated cost curve in each of Figures 5, 6, 

and 7, the two graphs are almost identical. Therefore, it can be said that this new set of 

hypothetical generators can be used to compute the equilibrium quantities without losing 

accuracy. The curve of the normal cost function is also included in Figures 5, 6, and 7. 

Note that for a given quantity, a value of the expected cost is higher than the normal cost 

described in chapter 3 because of generator outages.   

Marginal costs and maximum capacities of the hypothetical generators for firms 

1, 2, and 3 are shown in Tables 5, 6, and 7, respectively. 
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Table 4. Market composition and generating unit data including unit availability 

Firm Unit  
 

Fuel 
Type 

Capacity 
(MW)  

Net Plant 
Heat Rate 

(Mbtu/MWh) 

Marginal Cost 
($/MWh) 

Availability (hours) 

1/λ 1/µ 
F

ir
m

 1
 

1 Coal 350 9.5 52.45 1150 100 

2 Coal 350 9.5 52.45 1150 100 

3 Coal 155 9.72 52.76 960 40 

4 Coal 155 9.72 52.76 960 40 

5 Coal 76 11.9 55.86 1960 40 

6 Coal 76 11.9 55.86 1960 40 

7 Gas 48 10.23 62.56 1340 26 

8 Gas 48 10.23 62.56 1340 26 

9 Gas 78 11.63 68.41 1720 30 

10 Gas 78 11.63 68.41 1720 30 

11 Gas 149 12.87 73.59 1505 42 

12 -   - 999 - - 

F
ir

m
 2

 

1 Hydro 50 - 0.07 1980 20 

2 Hydro 50 - 0.07 1980 20 

3 Coal 155 9.72 52.76 960 40 

4 Coal 76 11.9 55.86 1960 40 

5 Gas 48 10.23 62.56 1340 26 

6 Gas 48 10.23 62.56 1340 26 

7 Gas 78 11.63 68.41 1720 30 

8 -   - 999 - - 

F
ir

m
 3

 

1 Uranium 400 - 0.017 1100 150 

2 Hydro 50 - 0.07 1980 20 

3 Hydro 50 - 0.07 1980 20 

4 Coal 350 9.5 52.45 1150 100 

5 Coal 76 11.9 55.86 1960 40 

6 Gas 48 10.23 62.56 1340 26 

7 Gas 78 11.63 68.41 1720 30 

8 Gas 149 12.87 73.59 1505 42 

9 Gas 149 12.87 73.59 1505 42 

10 -   - 999 - - 
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Figure 5. Cost curves of supplier 1 

 

 
Figure 6. Cost curves of supplier 2 
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Figure 7. Cost curves of supplier 3 

 
Table 5. The data list of hypothetical generating units for firm 1 

Unit  
Capacity    
 (MW)  

Marginal Cost 
($/MWh) 

1 1058 53.19 

2 155 99.85 

3 195 211.47 

4 71 294.29 

5 28 346.29 

6 48 372.44 

7 2 403.11 

8 6 415.63 

9 ∞ 999 
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Table 6. The data of hypothetical generating units for firm 2  

Unit  
Capacity    
 (MW)  

Marginal Cost 
($/MWh) 

1 100 0.41 

2 155 53.18 

3 76 57.91 

4 19 69.47 

5 77 101.18 

6 26 139.00 

7 2 152.01 

8 2 158.68 

9 48 187.40 

10 ∞ 999 

 

Table 7. The data of hypothetical generating units for firm 3 

Unit  
Capacity  
   (MW)  

Marginal Cost  
($/MWh) 

1 100 0.06 

2 400 6.50 

3 100 55.95 

4 201 64.93 

5 125 75.68 

6 24 107.94 

7 50 181.97 

8 201 249.86 

9 2 264.23 

10 71 294.10 

11 26 317.07 

12 2 325.95 

13 48 342.38 

14 ∞ 999 

  

 The Nash-equilibrium quantities or firms’ quantity bids are calculated according 

to the KKT first order optimality conditions in (4.6) using the PATH solver. The Cournot 

price is calculated according to (4.7) assuming a linear relationship. The results of Nash-

equilibrium quantities and market prices are shown in Table 8.  
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Table 8. The results of Nash-equilibrium including generator outages 

Firm 1 
(MWh) 

Firm 2 
(MWh) 

Firm 3 
(MWh) 

Total 
(MWh) 

p*          
($) 

631.16 350 589.78 1570.94 95.27 

 

4.4.1. Effect of generator availability 

For ease of explaning, the deterministic model described in chapter 3 is called 

Model A and the stochastic model concerning outages is called Model B. To evaluate 

whether the availability of generators has an effect on market prices, first the model profit 

and adjusted profit ignoring uncertainty (Model A) for each firm are compared. Next, the 

adjusted profits of Model A and the expected profits of Model B are compared.  

For model A, the model profit is the amount that firms believe they will make 

when ignoring outages, while the adjusted expected profit is the amount that firms would 

obtain in reality because generator outages do occur. 

The model profits of Model A are computed by substituting the Nash-equilibrium 

quantities and the power generated by each generator into the objective function of 

Model A (3.5). Let *A
fs  represent the Nash-equilibrium quantities of Model A. Model A’s 

profit can be written as follows: 

* * *( ; ) ( )A A A
f f f f f fR s s C s  

     

where * * * * *1
( ; ) ( )A A A A A

f f f f f fR s s s K s s
    . 

Unlike the model profit, the adjusted expected profit of Model A is calculated 

from the difference between the revenue function and the expected cost function 
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including outages, *
,1( )f fC s . For Model A, the adjusted profit can be calculated as 

follows: 

 * * *
,1[ ] ( ; ) ( )A A A

ff f f f fE R s s C s     

where *A
fs  stands for the Nash-equilibrium quantities obtained from Model A. 

The model expected profit and expected profit of Model B are the same because 

the model considers outages. The model expected profit and expected profit when 

considering generator failures can be computed as follows: 

 * * *
,1( ; ) ( )B B B

ff f f f fR s s C s     

where *B
fs  represents the Nash-equilibrium quantities obtained from Model B. 

Results of the model profits and expected profits for each firm in both cases are 

shown in Table 9. 

Table 9. Expected profits of firms when ignoring uncertainty and including outages 

 
Model A  

Ignoring Uncertainty ($/Hour) 
Model B 

Including Outages ($/Hour) 

Firm Model Profit 
Adjusted Expected 

Profit 
Model Expected 

Profit 
Expected Profit 

1 23,634.67 23,194.05 26,557.68 26,557.68 

2 20,909.78 17,549.88 19,340.47 19,340.47 

3 49,845.87 46,919.70 48,560.83 48,560.83 
 

According to Table 9, the adjusted profits and the model profits of firm 1 for 

model A are comparable. For firm 2 and 3, however, the adjusted profit is less than the 

model profit, which means, for example, firm 3 believes that it will make 

$49,845.87/hour, but in reality it would make only $46,919.70/hour on average.  
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When comparing the expected profits using Model B firms 1, 2, and 3 make more 

profit than Model A. These results indicate market participants, who make decisions 

without considering uncertainty in generator availability, could be led to false decision-

making and an inaccurate planning process.  

 

4.5. CONCLUSIONS 

An approach to determining market prices that considers generator outages was 

developed in this chapter. The multi-period Cournot model in the previous chapter was 

modified by replacing its cost function with the expected cost function. Specifically, the 

expected cost function in regard to generator availability was developed by defining a 

two-state continuous-time Markov process. The expected cost function generated a large 

number of slopes. Each slope represents one value of marginal cost and maximum 

capacity which includes the uncertainty in generator availability. To ease computational 

complexity, the slope reduction algorithm was developed. 

Results showed that the slope reduction algorithm can efficiently reduce a number 

of slopes and aid computational complexity. In addition, the model and expected profits 

were computed to evaluate whether generator outages have an effect on firms’ profit. 

Results indicated that generator availability is a crucial factor, as it has effects on both 

market prices and firms’ profit.  
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CHAPTER V 

STOCHASTIC COURNOT MODEL INCLUDING GENERATOR OUTAGES 

AND FUEL PRICE UNCERTAINTY 

 

    Abstract --- Nowadays, the volatility associated with generation and fuel prices 

places a new emphasis on modeling uncertainties in power markets. It is essential for all 

companies to account for uncertainty. Each firm operates a set of generators which use 

different types of fuels to produce electricity. The fluctuation in fuel costs significantly 

impacts the firm’s long-term operation. In this chapter, the stochastic Cournot model is 

extended to consider not only the availability of generators but also fuel price uncertainty. 

Since each generator consumes a fuel type whose price is not known in advance, the 

marginal cost of each generator becomes a random variable. A convenient way to 

calculate the Nash-equilibrium quantities when considering the randomness in fuel price 

is the use of a Monte Carlo simulation. A numerical example is given, where the market 

prices and firms’ expected profits are computed. In addition, the effects of generator 

outages and fuel price uncertainty on power markets are analyzed.         
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5.1. NOMENCLATURE 

The notation used in this chapter is given below for reference.  

 

n  Number of firms 

N  Total number of generators 

fN  Number of generators of firm f  

max

fjP  The capacity of the thj  hypothetical unit of firm f  considering outages and fuel 

price uncertainty (MW) 

fjc   The marginal cost of the thj  hypothetical unit of firm f  including generator 

outages and fuel price uncertainty ($/MWh) 

*
fs  The Nash-equilibrium quantities (MWh) 

*S  The Nash-equilibrium total bid (MWh) 

*p  The Cournot price ($/MWh) 

K  Nominal demand 

h  Number of contracted hours 

i  Interest rate (%) 

  Compound-amount factor 

f  Profit of firm f  ($)  

  Slope parameter for demand 

fj  The failure rate of the thj  unit of firm f  per hour 

fj  The repair rate of the thj  unit of firm f  per hour 

 

 

 

 

 



64 

 

 

5.2. INTRODUCTION 

It is widely accepted that an increase in fuel price volatility has a great impact on 

the whole of economic activity and creates an uncertain situation for power producers, 

consumers, investors, and legislators. It may slow down economic growth. It may delay 

producers’ decisions on making new investments which may result in lost market 

opportunities and inefficient long-run resource allocations. Daily or hourly fluctuations in 

wholesale prices may be almost irrelevant to the consumers, but it is vital to power 

trading companies since increase or decrease in prices can change the way companies do 

their business. Moreover, fuel price uncertainty may create pressures for regulatory 

intervention which can bias the power markets and penalize market participants by 

generating wide and unpredictable revenue swings (Henning, Sloan, and Leon, 2003). 

Hence, volatility in fuel costs has become a new issue that power companies must be able 

to handle in order to guarantee appropriate power system planning and operation. 

The price of gasoline is the best example to show why fuel price is so difficult to 

forecast. In October 2006, the average retail price for a gallon of gasoline in the U.S. was 

around $2.20 per gallon. Since then, the price of gasoline has risen dramatically. The 

maximum average price per gallon was over $4. This trend continued until late 2008. 

This situation is depicted in Figure 8 (EIA, 2008). In August 2008, the average price of 

gasoline decreased sharply. The average price decreased from $4.10 to $1.60 in only 4 

months. Demand is not the only factor that affects the price of gasoline; other factors 

include worldwide economics and politics. Thus, the price of gasoline is considered 

highly volatile similar to those of natural gas and electricity.     
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Figure 8. U.S. retail gasoline prices, Regular grade (Source: EIA 2009) 

 
 

Most electricity in U.S. is generated by rotating turbines which are most 

commonly driven by steam. Steam is typically produced from water that is boiled by 

burning coal, natural gas, or petroleum. In 2008, coal-fired plants contributed 48.3% of 

the U.S electric power. Nuclear plants contributed 19.3%, while 21.5% was generated at 

natural gas-fired plants. Hydroelectric provided 6.7% of the total while petroleum and 

renewable energy generated the remaining electric power (EIA, 2008). Owing to lower 

fuel costs, nuclear plants are operating at a much higher utilization and they supply the 

base load in general.  

The Energy Information Administration (EIA) forecasts in the Energy Outlook 

2009 early release that the price of petroleum, natural gas, and coal in U.S. will increase 
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about 80.55%, 33.8%, and 14.4% respectively in the next 20 years. Moreover, EIA also 

predicts in the annual energy outlook that the price of electricity will only increase about 

13%. Power producers have to sell electricity cheaper due to severe competition, and they 

have to generate electricity cheaper than other firms despite the increase in the price of 

fuel. For a thermal generation-based electric utility, fuel costs comprise approximately 

80% of the system operating cost. Consequently, a small percentage savings in fuel costs 

represents significant monetary value. In the era of intense competition in power markets, 

a small savings may be crucial (Lee, Liao, and Breipohl, 1992). As it appears fuel costs 

will be volatile in the future and fuel savings will be vital to stay in the business; power 

producers in the U.S. are facing a new set of challenges. In the last decades, uncertainty 

in fuel costs and generator availability have become a structural element in this new 

environment that all power companies must be able to cope with in order to guarantee 

appropriate power system planning and operation as well as their economical liquidity 

(Gomes, Saraiva, and Neves, 2008). In addition, company profits are also influenced by 

the fluctuation of market prices of electricity that varies concomitantly depending on fuel 

market prices (Bannai and Tomita, 2005).  

In this research, the primary aim is to develop a model to evaluate the effects of 

the uncertainty of fuel costs and generator availability on firms’ profits. The 

determination of market price is achieved by the Cournot competition of firms in the 

market. Each firm operates a set of generators which use different types of fuels whose 

marginal costs are subject to uncertainty. Thus, the marginal costs become random 

variables which affect the expected cost function. When considering both generator 

outages and fuel price uncertainty, a convenient way to calculate the Nash-equilibrium 
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quantities is to use a Monte Carlo simulation (MCS) based technique. The major 

advantage in an MCS-based approach is that it can capture the spatial distribution of the 

uncertainties of generation, which is very important where marginal cost differentials 

play a leading role (Wijayatunga and Cory, 2003).   

The remainder of this chapter is organized as follows: Section 3 provides a 

methodology to develop the stochastic Cournot model considering generator outages and 

fuel cost uncertainty. In section 4, numerical example, Nash-equilibrium quantities, 

market prices and each firm’s expected profit are presented. The conclusions are given in 

section 5. 

 

5.3. MODEL DESCRIPTION 

In this section, model assumptions and a methodology to develop the stochastic 

Cournot model including generator availability and fuel price uncertainty are presented.  

5.3.1. Model Assumptions 

The main focus of this chapter is to model the generators in long-term power 

agreements and to study the effects of uncertainty on market price and firms’ profits. 

Hence, the price of electricity is set at the time of the agreement and remains unchanged 

for the period of the contract in the long-term market. A total of n  competing firms with 

firm f  having a set of 1fN   units available for production at time 0 is assumed, and the 

last unit of production or a unit th
fN  represents the available power sources and is 

considered to have infinite capacity and to be always available. The total number of units 

available in the market at time 0 is denoted by N . The capacity of the thj  unit of firm f  
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is represented by max

fjP  (MW). Each firm’s units are dispatched according to an ascending 

order of their marginal costs, which is denoted by 
fjc . Unit commitment and transmission 

constraints are ignored. Fluctuation of fuel costs and generator outages are assumed in 

this chapter. 

5.3.2. Mathematical Model 

5.3.2.1. Reliability 

To introduce the operating state of a generator j  of firm f , we begin by defining 

a two-state continuous-time Markov process, which is 1, if unit j  of firm f  is available 

at time t  and 0 for otherwise. The Markov process is assumed to reach its steady state 

when the contracted amount is generated. The Markov process has a failure rate per hour

,f j  and repair rate per hour 
,f j . The steady state probability that generator j of firm f  

will be available is denoted by 

,

,

, ,

,
f j

f j

f j f j

r


 



 

and the steady state probability that the generator j of firm f  will not be available 

is denoted by 

, ,1 .f j f jq r   

5.3.2.2. System load 

To represent the behavior of the load-serving entities, a linear inverse demand 

function is assumed. The actual demand of the system is represented by the following 

linear relationship: 
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 L K p                                                                                                          (5.1) 

The actual realized demand function of the system, which is denoted by L , is 

affected by the price elasticity of demand 0  , which is also known by the power 

producers. The quantity K  stands for the nominal demand (MWh), and it is assumed to 

be a constant in this section. The generation quantity for firm f  is fs , which is the sum 

of generation quantities of all generators of firm f  ( 1,2,  ... ,  f n ) in MWh and it is 

calculated as follows: 

1

=  
fN

f fj
j

s g

 .  

The actual demand of the system is equal to the total of all firms’ generation 

quantities and it can be written as follows: 

*

1

n

f
f

S s


  . 

5.3.2.3. Profit function 

Power companies that are bidding in the market operate a set of generators. When 

those generators are not always available and their marginal costs are subject to 

uncertainty because of fuel price fluctuation, the cost function is a random variable. The 

revenue function, however, is not affected by those uncertainties. Owing to generator 

outages and fuel price uncertainty, the expected total profit function for supplier f  in the 

steady state can be written as follows: 

 ( , ) ( )  f f f f f fs p K s s E Cost s  
                                              (5.2) 
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where ( , )f f fs p K s s  is the revenue function and is not affected by generator 

availability and fuel cost uncertainty. When the Cournot decision maker assumes demand 

remains unchanged over a period of time, the function ( , )f fp K s s  based on 

relationship in (5.1) can be written as 
1

( , ) ( )f f f fp K s s K s s
     . 

5.3.2.4. Cost function 

The expected production cost function including only generator outages of 

supplier f  producing s  units of energy (MWh), when generating units 1, 2, ... , 1j   are 

not available, can be written as follows: 

For unit 1,  2, ...,  1fj N  , the following recursive relationship is used: 

 

, 1, , , ,

,

, 1 , 1, , , , , ,

                      ( )   for  0

( )

                      ( ) ( )   for  

Max
f jf j f j f j f j

f j

Max Max Max
f j f jf j f j f j f j f j f j

r c s q C s s P

C s

r c P C s P q C s s P



 

  



   

     (5.3)       

The last unit of generator (
fN ), which is always available, can be represented by 

the following relationship: 

         
, ,( )f f

f N f NC s s c  .                                                (5.4) 

When the price of fuel becomes volatile, the marginal costs of generators are 

subject to uncertainty. In other words, marginal costs of all generators (
,f jc ) are random 

variables except for the last unit (
fN ) whose marginal cost is assumed to be a constant. It 

is assumed that each marginal cost is a continuous random variable which has an 

associated probability density function. Since the marginal costs in (5.3) are random 

variables, it becomes difficult to analytically compute the expected production cost.     
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A convenient way to calculate Nash-equilibrium quantities, when considering fuel 

price uncertainty in the expected cost function, is to use a Monte Carlo simulation based 

technique.  

The following procedure describes the algorithm to compute a Monte-Carlo 

estimate of the expected cost function for firm f (see Fig. 9): 

 

Step 1) Sample the costs of fuel and calculate the marginal cost of each unit. 

It is assumed that the fuel costs are continuous random variables with associated 

probability density functions. The Monte Carlo simulation algorithm is employed to 

sample the cost of each fuel type. When the values of all fuel types are generated, one 

sample is obtained. Each generator is assumed to use only a specific fuel type. The 

marginal cost for each generator is obtained by the multiplication of a sample value of the 

fuel cost ($/MBTU) and its net plant heat rate (MBTU/MWh). Note that the net plant heat 

rate is a given constant value. The maximum number of samples is denoted by R. The 

parameter z is used to count the number of samples ( 1,2,  ...,z R ). 

 

Step 2) Sort the values of marginal costs in an ascending order. 

After randomly generating the values of marginal costs, the generators are 

dispatched according to an ascending order of their marginal costs.   
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Step 3) Calculate the expected cost. 

Since the values of marginal costs are known after step 1 and sorted in step 2, the 

expected cost can be calculated by using (5.3) and (5.4) with s in increments of ∆ MWh. 

A single expected cost curve is obtained after completing step 3.  

Step 4) Set z = z + 1. Repeat step 1, 2, and 3 until z > R. 

 

Step 5) Calculate the mean value of all expected costs. 

 R sampled expected cost curves were obtained in step 4. Next, the average cost of 

production s (in increments of ∆ MWh) is computed. The result is an estimate of the 

expected cost curve. Note that the values of costs after computing the average include 

both the generator outages and the fuel price uncertainty. However, the problem of a 

large number of slopes of the estimated expected cost curve as experienced in the 

previous chapter arises. 

 

Step 6) Apply the slope reduction algorithm.  

The pseudo-code below describes the slope reduction algorithm used to reduce 

the number of slopes of the expected cost curve for firm f: 

1: 0
to 2   FOR l N  

2: Set and  ,  lX l s  ,1( )fl lC C X  

3: END FOR  

4: 1 1Set and  1,  2,  0,  0r K C X     

5: WHILE
0K N  

6: 0
1 1Min such and      ( 2 )i i ij i K i N C C C         
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7: 1
,

2

1

j

l l
l K

f r j

l
l K

X C

m

X

 

 





 

8: ,  and Max
f r j jNewP X Temp X   

9: 0
to   FOR l j N  

10:  l lX X Temp   

11:  ,l l f rC C m Temp    

12: END FOR  

13: 1K j   

14: 1r r   

15: END  

 

where  and s   are the increasing amount of capacity and the difference between slopes, 

respectively. Both are constant values and must be set at the beginning. Let 0N  be the 

maximum range in which we want to combine slopes such that 0 max
,

1

fN

f j
j

N P


   for each 

firm f. 

 

Step 7) Obtain an estimation of the expected cost function.

 The slope reduction algorithm produces an estimation of the expected cost 

function which is used to generate the estimated expected cost curve. A slope in the 

estimated expected cost curve is associated with each hypothetical generator (r) which 

has a maximum capacity ( ,
Max
f rNewP ) and marginal cost ,( )f rm . Let maxr  represent a value 

of r when the slope reduction algorithm terminates. The values of 
,f rm and , Max

f rNewP  are 

similar in nature to those ,f jc and 
max

,f jP  described in chapter 4, but they take the generator 
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outages and the fuel price fluctuation into account. In order to clarify the presentation, the 

values of marginal cost (
,f rm ) and maximum capacity ( , Max

f rNewP ) will be represented as 

,f jc and 
max

,f jP  where max( 1, 2, ... , )j r .   

Thus, the approximation of a total expected cost considering generator availability 

and fuel price uncertainty for each firm f , which is denoted by ( )f fC s , can be 

calculated as follows: 

, ,
1

ˆ ( ) ( )
fN

f jf f f f f j
j

E Cost s C s c g


       

where ,f jc  is the marginal cost obtained from the slope reduction algorithm in step 6.  

5.3.2.5. Cournot Model 

 Each firm f  solves the following programming model: 

( ; ) ( )
f

f f f f f f
s

Max R s s C s     

1

max
max

subject to

- 0     ( )

          ( )     for 1,.....,

, 0

fN

fj f f
j

fjfj fj

fj f

g s

g P j r

g s









 

 



                    (5.5)    

1

where

1
( ; ) ( ) 

and    .

f f f f f f

h

t
t

R s s s K s s


 

 



  


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Figure 9. Flowchart of the algorithm used to calculate an approximation of  the expected 
cost function  
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The Nash-equilibrium quantities 
fs  ( f  1, 2, … , n) that solve the set of 

problems can be computed by combining the KKT first order optimality conditions of 

system equation (5.5) of all firms. The KKT conditions of the optimization problem 

above can be written as the following equations: 

1

max

,

max

for 1,...,

( 2 ) 0        0

0                           0

for  1,...,   and  1,...,

0                   0

0                         

f

f f f f

N

fj f f
j

f j fj f fj

fj fj

f n

K s s s

g s

f n j r

c g

P g








  







     

   

 

    

  



   0fj 

                               (5.6) 

These KKT conditions are considered as a linear complementary problem (LCP). 

The Nash-equilibrium quantity for each firm in MWh ( *
fs ) is obtained by using available 

software to solve those optimality conditions. As mentioned earlier, the actual demand of 

the system or total demand can be calculated as * *

1

n

f
f

S s


  . The linear relationship in 

demand (3.1) is used to determine the Cournot price, *p , which becomes 

              

*
* K S

p



 .                                                                                                    (5.7) 
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5.4. EXPERIMENTAL RESULTS 

A market that consists of three firms is considered in this section. For a numerical 

explanation of results, the composition of each firm is given in Table 11 including the 

capacity, net plant heat rate, and availability of each generator. The characteristics of the 

unit types in table 11 are taken from the IEEE reliability test system (Grigg, 1996). Firms 

1, 2 and 3 have 11, 7, and 9 generators, respectively. The last row of each firm in the 

table corresponds to the assumption that the th
fN   generator for firm f  has infinite 

capacity and is perfectly reliable due to other available sources in the markets. 

Furthermore, the values of parameters  and K  are assumed to be 15 and 3000 

respectively. Each firm is assumed to work 12 hours per day (off-peak hours) and 30 days 

per month. The annual percentage rate (APR) is assumed to be 7% for all firms. It is also 

assumed  that all firms and consumers agree in private through a central exchange on the 

delivery of specified power quantities for 2 months and that the firms receive the 

payment from customers at the end of each month. The discount coefficient,  , in (5.5) is 

computed in order to assess the time value of money in the model. Based on a given 

APR, it can be shown that the value of the discount coefficient is 713.75.   

The fuel sources of these generators are coal, oil, hydro, and nuclear. Since fuel 

price uncertainty is assumed in this chapter, the fuel costs are continuous random 

variables which have an associated probability density function. The probability density 

function for each fuel type is determined by collecting the daily price ($/MBTU) of each 

fuel for 3 months. All daily marginal costs in 3 months for each fuel type are then fit into 

a distribution. The distribution is selected by choosing the minimum value of the Chi-
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square goodness of fit test. As a result, a lognormal distribution is selected for coal-type 

generators, and a uniform distribution is selected for oil-type generators. The means and 

standard deviations of each fuel type are displayed in Table 10. Generators which use the 

same fuel type do not always have the same marginal cost, as each may have a different 

heat rate. If generators, however, use the same fuel type and have the same net plant heat 

rate, they are assumed to have the same marginal costs. The capture costs of CO2, which 

will be added to the marginal costs, are assumed to be $19.77/MWh and $38.96/MWh for 

gas and coal, respectively. Since the marginal cost of uranium and hydro are not notably 

volatile within 3 months, they are assumed to be constant. The marginal costs of uranium 

and hydro are assumed to be 0.0168 and 0.07 $/MWh respectively. 

 

Table 10. The distribution of oil and coal price ($/MBTU) 

Type Distribution 

Gas Lognormal (µ = 1.30, σ = 0.51) 

Coal Lognormal (µ = 0.34, σ = 0.15) 

 

 

After the distribution of marginal costs for all generators are defined, the Monte-

Carlo-simulation algorithm flowcharted in Figure 9 is performed to sample the values of 

fuel costs. A value of the expected cost function can then be computed in increments of 

∆. The value of R is set to 5,000 in this experiment, which means we perform the 

simulation algorithm defined in the previous section with 5,000 sample sets. As a result, 

the total of 5,000 cost curves is obtained after completing step 4 for each firm as shown 

in Figures 10, 11, and 12.  
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Table 11. Market composition and generating unit data including unit availability 

Firm Unit  
 

Fuel Type Capacity 
(MW)  

Marginal Cost 
($/MWh) 

Net Plant 
Heat Rate 

(Mbtu/MWh) 

Availability (hours) 

1/λ 1/µ 

F
ir

m
 1

 
1 Coal 350 9.5 - 1150 100 

2 Coal 350 9.5 - 1150 100 

3 Coal 155 9.72 - 960 40 

4 Coal 155 9.72 - 960 40 

5 Coal 76 11.9 - 1960 40 

6 Coal 76 11.9 - 1960 40 

7 Gas 48 10.23 - 1340 26 

8 Gas 48 10.23 - 1340 26 

9 Gas 78 11.63 - 1720 30 

10 Gas 78 11.63 - 1720 30 

11 Gas 149 12.87 - 1505 42 

12 -   - 999 - - 

F
ir

m
 2

 

1 Hydro 50 - 0.07 1980 20 

2 Hydro 50 - 0.07 1980 20 

3 Coal 155 9.72 - 960 40 

4 Coal 76 11.9 - 1960 40 

5 Gas 48 10.23 - 1340 26 

6 Gas 48 10.23 - 1340 26 

7 Gas 78 11.63 - 1720 30 

8 -   - 999 - - 

F
ir

m
 3

 

1 Uranium 400 - 0.017 1100 150 

2 Hydro 50 - 0.07 1980 20 

3 Hydro 50 - 0.07 1980 20 

4 Coal 350 9.5 - 1150 100 

5 Coal 76 11.9 - 1960 40 

6 Gas 48 10.23 - 1340 26 

7 Gas 78 11.63 - 1720 30 

8 Gas 149 12.87 - 1505 42 

9 Gas 149 12.87 - 1505 42 

10 -   - 999 - - 

 

Because of generator outages and the fluctuation of fuel prices, the estimated cost 

curve has a large number of slopes upon completion of step 5. To reduce the number of 

slopes, the slope reduction algorithm in step 6 is applied. The value of s  is assumed to 
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be 1 in this section. The value of   for firms 1, 2, and 3 is selected to be 6, 3, and 5 

respectively. The estimated cost curves before and after applying the slope reduction 

algorithm for firms 1, 2, and 3 are illustrated in Figures 13, 14, and 15, respectively. 

By analyzing Figures 13, 14, and 15, a new set of hypothetical generators can be 

used to calculate the Nash-equilibrium quantities without losing accuracy. Specifically, 

the estimated cost curves before and after applying the slope reduction algorithm are 

nearly indistinguishable. Based on the estimated production cost curves, the lists of the 

new set of hypothetical generators which have a smaller number of marginal costs and 

maximum capacities for firms 1, 2, and 3 are shown in Tables 12, 13, and 14, 

respectively.  

 

 
Figure 10. Expected cost curves of supplier 1 for given marginal costs 
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Figure 11. Expected cost curves of supplier 2 for given marginal costs 

 

 
Figure 12. Expected cost curves of supplier 3 for given marginal costs 
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Figure 13. Estimate of expected cost curves before and after applying the slope reduction 

algorithm for firm 1 
 

 
Figure 14. Estimate of expected cost curves before and after applying the slope reduction 

algorithm for firm 2 
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Figure 15. Estimate of expected cost curves before and after applying the slope reduction 

algorithm for firm 3 
 

 
 

Table 12. Data for the hypothetical generating units of firm 1 

Unit  
Capacity    
 (MW)  

Marginal Cost 
($/MWh) 

1 1058 51.84 

2 51 75.75 

3 104 110.94 

4 195 220.26 

5 71 299.98 

6 6 329.62 

7 28 349.45 

8 2 361.91 

9 48 374.52 

10 ∞ 999 
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Table 13. Data for the hypothetical generating units of firm 2  

Unit  
Capacity    
 (MW)  

Marginal Cost 
($/MWh) 

1 100 0.38 

2 174 49.89 

3 57 59.91 

4 19 68.98 

5 77 105.96 

6 26 143.03 

7 2 146.76 

8 2 161.70 

9 48 191.08 

10 ∞ 999 

 

Table 14. Data for the hypothetical generating unit of firm 3 

Unit  
Capacity  
   (MW)  

Marginal Cost 
($/MWh) 

1 100 0.06 

2 400 6.23 

3 100 53.32 

4 201 63.93 

5 125 74.03 

6 24 111.71 

7 50 185.42 

8 201 252.04 

9 2 269.02 

10 71 295.83 

11 26 319.52 

12 2 328.68 

13 48 344.79 

14 ∞ 999 

 

Note that each firm still owns the original set of generators listed in Table 11, but each 

firm in reality pays the amount of money given in Tables 12, 13, and 14, when generator 

outages and fuel price uncertainty are considered. 
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The Nash-equilibrium quantities or firms’ quantity bids are calculated according 

to the KKT first order optimality conditions in (5.6) using the PATH solver. The market 

price is calculated according to (5.7) assuming a linear relationship. The results of the 

Nash-equilibrium quantities and market prices are displayed in Table 15.  

 

Table 15. Results of Nash-equilibrium including generator outages  
and fuel price uncertainty 

Firm 1 
(MWh) 

Firm 2 
(MWh) 

Firm 3 
(MWh) 

Total 
(MWh) 

  p* 
($) 

636.20 350 600 1586.2 94.25 

 

5.4.1. Effect of uncertainty of generator availability and fuel price 

In order to simplify the presentation, the model in each case is named as follows: 

Model A: the deterministic model described in chapter 3 

Model B: the stochastic model considering outages described in chapter 4 

Model C: the stochastic model including outages and fuel price uncertainty described in                                      

this chapter 

For model A, the model profit is the amount firms believe they will make when 

ignoring outages, while the adjusted expected profit is the amount that firms will make 

because generator outages and fuel price uncertainty do occur. 

The model profits of Model A are computed by substituting the Nash-equilibrium 

quantities and the power generated by each generator into the objective function of 

Model A (3.5). Let *A
fs  represent the Nash-equilibrium quantities of Model A. The Model 

A’s profit can be written as follows: 
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* * *( ; ) ( )A A A
f f f f f fR s s C s  

     

where * * * * *1
( ; ) ( )A A A A A

f f f f f fR s s s K s s
    . 

Unlike the model profit, the adjusted expected profit of Model A is calculated 

from the difference between the revenue function and the estimation of a total expected 

cost function including outages and fuel price uncertainty, *( )f fC s . For Model A, the 

expected profit can be calculated as follows: 

 * * *[ ] ( ; ) ( )A A A
ff f f f fE R s s C s     

where *A
fs  stands for the Nash-equilibrium quantities obtained from Model A. 

For model B, the model expected profits are calculated by substituting the Nash-

equilibrium quantities and the power generated by each generator into the objective 

function of Model B (4.5). Let *B
fs  represent the Nash-equilibrium quantities of Model B. 

Then Model B’s profit can be written as follows: 

* * *
,1[ ] ( ; ) ( )B B B

ff f f f fE R s s C s  
     

where * * * * *1
( ; ) ( )B B B B B

f f f f f fR s s s K s s
    . 

The adjusted expected profit of Model B is computed from the difference between 

the revenue function and an estimation of a total expected cost function including outages 

and fuel price uncertainty, *( )f fC s . For Model B, the adjusted expected profit can be 

calculated as follows: 
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 * * *[ ] ( ; ) ( )B B B
ff f f f fE R s s C s     

where *B
fs  stands for the Nash-equilibrium quantities obtained from Model A. 

The model expected profit and expected profit of Model C are the same because 

the model considers uncertainty in generator availability and fuel prices. The model profit 

and expected profit when considering generator failures can be computed as follows: 

 * * *[ ] ( ; ) ( )C C C
ff f f f fE R s s C s     

where *C
fs  represents the Nash-equilibrium quantities obtained from Model C. 

Results of the model profit and expected profit in all three cases for each firm are 

shown in Table 16. 

 

Table 16. A comparison of firm expected profits when ignoring the uncertainty of fuel 
prices and outages and when including the uncertainty of generator and fuel costs 

 

Model A  
Ignoring Uncertainty 

($/Hour) 

Model B 
Including Outages 

($/Hour) 

Model C  
Including Outages & 
Fuel Cost Uncertainty 

($/Hour) 

Firm 
Model 
Profit 

Adjusted 
Expected 

Profit 

Model 
Expected 

Profit 

Adjusted 
Expected 

Profit 

Model 
Expected 

Profit 

Expected 
Profit 

1 23,634.67 23,997.59 26,557.54 27,411.56 26,983.03 26,983.03 

2 20,909.78 17,742.00 19,340.41 19,899.82 19,543.76 19,543.76 

3 49,845.87 47,279.01 48,560.82 48,903.96 48,722.51 48,722.51 
 

According to Table 16, the adjusted expected profits and the model profits of firm 

1 for Model A are similar. For firms 2 and 3, however, the adjusted expected profit is 

significantly less than the model profit, which means, for example, firm 3 anticipates 

making $49,845.87/hour, but in reality it would make only $47,279.01/hour on average. 



88 

 

For Model B, the model expected profits of all firms are slightly less than the adjusted 

expected profits.  

When comparing the adjusted expected profit of Model A with Model C firms 1, 

2, and 3 make more profits when using Model C than when using Model A. However, all 

firms make fewer profits when the adjusted expected profit of Model B is compared with 

Model C.    

These results indicate that making decisions without considering the uncertainties 

in generator availability and fuel prices could lead to bad decision-making and an 

inaccurate planning process.  

 

5.5. CONCLUSIONS 

In this chapter, the stochastic Cournot model was extended to consider not only 

the availability of generators but also fuel price uncertainty. Some generators used a type 

of fuel whose price was unpredictable thereby affecting the cost function. The Monte 

Carlo simulation based technique was used to calculate an estimate of the expected cost 

function. Then the Nash-equilibrium quantities, market prices, and firms’ expected 

profits were computed.             

The model expected profits and expected profits were computed for models A, B, 

and C to evaluate whether the availability of generators and the volatility of fuel prices 

have an effect on the expected total profit for all firms. Results indicate that both 

generator outages and fuel price uncertainty are vital factors in power markets and they 

must be considered in both the power system planning and operation. 
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CHAPTER VI 

TOLERANCE APPROACH TO SENSITIVITY ANALYSIS IN  

THE STOCHASTIC COURNOT MODEL 

 

    Abstract --- The Cournot model is used to describe the behavior of generating 

companies in power markets. Two major uncertainty factors, generator outages and fuel 

price uncertainty, are considered in the model. One way to compute the Nash-equilibrium 

quantities when considering both factors is the use of a Monte Carlo simulation based 

technique. Due to its random processes, this simulation technique yields slightly different 

results each time it is run. Accordingly, it is doubtful that companies should make a 

decision based on those results. In addition, running the simulation several times in order 

to certify the results may take considerable computational time. Therefore, a sensitivity 

analysis is performed to determine which parameter is having a significant impact on the 

Nash-equilibrium quantities. Since the KKT conditions of the Cournot model represent a 

linear complementarity problem (LCP), the theory of tolerance approach to sensitivity 

analysis in LCP is applied. The maximum tolerance gives the maximum allowable 

fluctuation of marginal costs and capacities without affecting the firms’ strategic 

planning and operation. 
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6.1. NOMENCLATURE 

The notation used in this chapter is given below for reference.  

n  Number of firms 

N  Total number of generators 

fN  Number of generators of firm f  

max

fjP  The capacity of the thj  hypothetical unit of firm f  considering outages and fuel 

price uncertainty (MW) 

fjc   The marginal cost of the thj  hypothetical unit of firm f  including generator 

outages and fuel price uncertainty ($/MWh) 

*
fs  The Nash-equilibrium quantities (MWh) 

*S  The Nash-equilibrium total bid (MWh) 

*p  The Cournot price ($/MWh) 

K  Nominal demand 

h  Number of contracted hours 

i  Interest rate (%) 

  Compound-amount factor 

f  Profit of firm f  ($)  

  Slope parameter for demand 

 

 

 

 

 

 

 



91 

 

6.2. INTRODUCTION 

The stochastic Cournot model described in chapter 5 considers uncertainty in 

generator availability and fuel price. The Monte Carlo simulation based technique was 

used to estimate the expected cost function. A set of marginal costs ( ,f jc ) and the 

maximum capacity (
max

,f jP ) for each generator j were obtained after performing the 

simulation method. These results were used to compute the Nash-equilibrium quantities. 

However, the simulation technique yielded slightly different results each time it was run. 

Due to the fluctuation in simulation output, it is doubtful that firms should make a 

decision based on those results. Moreover, it is also difficult for a company to run the 

simulation several times in order to certify those results due to the long computational 

time. 

Therefore, a sensitivity analysis is performed to determine which parameters have 

the most significant impact on the optimal solutions. The company can then concentrate 

on acquiring accurate data for those sensitive parameters. Sensitivity analysis will help a 

company determine whether the optimal solution is sensitive to small changes in some of 

the input data used in the simulation so that the company can use the results with 

confidence.       

The main goal of this chapter is to find the maximum tolerance on the crucial 

parameters of the stochastic Cournot model. Since the stochastic Cournot model 

considering generator outages and fuel price uncertainty in chapter 5 is a linear 

complementarity problem, the theory of tolerance approach to sensitivity analysis in 

linear complementarity problem is used. The tolerance approach is mainly applied to the 
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marginal costs and maximum capacities as they are believed to have significant impacts 

on the Nash-equilibrium quantities. The maximum tolerance gives the maximum 

allowable fluctuation of marginal costs and capacities without affecting the firms’ 

strategic planning and operation. Moreover, it also specifies which generators have 

significant impact on the Nash-equilibrium quantities.  

This chapter is organized as follows: The tolerance approach to sensitivity 

analysis in LCP is developed in section 3. In section 4, numerical results and the analysis 

of the maximum tolerance on each parameter are presented. The conclusions are outlined 

in section 5. 

 

6.3. MODEL DESCRIPTION 

This section begins with an introduction to the concept of the linear 

complementarity problem (LCP). The theory of tolerance approach to sensitivity analysis 

in LCP is then developed to find the maximum tolerance such that the perturbed 

problems have the same index set of nonzero elements as the original problems. 

6.3.1. Linear Complementarity Problem (LCP) 

The linear complementarity problem is to find the value of a vector z that satisfies 

a set of constraints for a given m m  matrix M  and compatible vector q . The general 

form of an LCP can be written as (Stewart, 2008 and Thomas, 2002): 
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Given:  ,    m m m M R q R         

Find:    mz R  

Subject to    0 Mz q   

0z  

and ( ) 0.T  z Mz q  

Throughout this chapter, we shall refer to this problem as LCP(M, q).  

6.3.2. Cournot Model    

Since matrices M and q play an important role in developing the tolerance 

approach to sensitivity analysis in LCP, the KKT conditions of the stochastic Cournot 

model described in chapter 5 must be transformed into the matrix form. For the sake of 

completeness, the stochastic Cournot model described in chapter 5 is shown below. 

( ; ) ( )
f

ff f f f f
s

Max R s s C s     

1

max

subject to

- 0          ( )

               ( )     for 1,.....,

, 0

fN

fj f f
j

fjfj fj f

fj f

g s

g P j N

g s









 

 



 

1

where

1
( ; ) ( ) and    .

h

f f f f f f t
t

R s s s K s s  
 



   
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The KKT first optimality conditions of this optimization problem are: 

1

for  1,...,

( 2 ) 0        0                                                        (6.1)

0                           0                                                
f

f f f f

N

fj f f
j

f n

K s s s

g s














     

   

,

max

       (6.2)

for  1,...,   and  1,...,

0                   0                                                       (6.3)

0                            0.           

f

f j fj f fj

fj fj fj

f n j N

c g

P g

  



 

    

                                               (6.4)
 

These KKT conditions (6.1-.6.4) are represented in the matrix form as follows:  

1 1 11 11...  ...   ...   ...T
f f fj fjs s g g      z

 

 

 

max max

1111...   0 ... 0   ...   ...T
fjfj

K K
c c P P

 
 

 

 
   
 

q  

Due to the hefty size of matrix M , this matrix is separated into five parts for ease 

of presentation. Each part is associated with a constraint in the KKT conditions. All of 

the components of the matrix M  are summarized below.  

(Equation 5.1)  

(5.1)

2
1 0 0 0 0

2
0 1 0

2
0 0 1 0 0

  

  

 

 

  

  

 
 
 
 
 
 
 
 
 
  

    

   

        

    

M  

n   n   n N   n N   
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(Equation 5.2)  

(5.2)

1 0 0 0 0 1 1 0 0 0 0 0 0

0 1 0 0 0 1 1 0 0
         

0 0 1 0 0 0 0 0 0 1 1 0 0

 
  
 
 

 

       

        

               

       

M  

(Equation 5.3)  

(5.3)

0 0 1 0 0 0 0 1 0

1 0 0

0 1 0 0

          
0 1 0 0

0 0 1

0 0 0 0 1 0 0 0 1

 
 
 
 
 

 
 

  
 

 
 

 
 
 
  

   

         

      

     

            

     

         

      

         

   

M  

(Equation 5.4)  

(5.4)

0 0 0 0 1 0 0 0

         

0 0 0 0 0 1 0 0

 
   
  

   

           

   

M  

Hence, the matrix M is equivalent to  

(5.1)

(5.2)

(5.3)

(5.4)

 
 
 
 
 
  

M

M
M

M

M

. 
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6.3.3. Tolerance Approach to Sensitivity Analysis in the Stochastic Cournot model 

The results obtained from the simulation will be used as an input to the LCP 

model (6.1-6.4) in order to calculate the Nash-equilibrium quantities. One of the 

drawbacks of the simulation technique is that it yields slightly different results each time 

it is run. Since those results will be used as an input to the LCP, it would be best to know 

the effects of input data perturbation on the optimal solutions. Because M does not affect 

firms’ strategic planning and operation, the main focus of this section is to discover 

whether marginal costs ( ,f jc ) and capacities (
max

,f jP ) in vector q have a major impact on 

the Nash-equilibrium quantities. The algorithm developed in (Ha and Narula, 1992) is 

modified in order to calculate the range within which an entry value of vector q can vary 

independently such that the perturbed problem has the same index set of nonzero 

elements as the original problem.   

Let *z  be a solution of the linear complementarity problem, LCP(M, q). Assume 

that *z  is locally unique and a nondegenerate solution. Note that the size of matrix M is 

m m . According to the definition of a nodegenerate LCP,  

either  * * *0      or   0i i i
z x Mz q    . 

Define the sets B and N as follows: 

  *: 0ii z B   and   *: 0ii x N   

where the cardinality of sets B and N are assumed to be u and v, respectively. Define 

vector Bz  as the vector whose components are the components iz of vector z, for iB . In 
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addition, define matrix BNM  as the submatrix of M whose entries are ijm , for 

 and i j B N . Other vectors and matrices are defined in the same way.  

The problem LCP(M, q), using the index sets B and N, can be written as 

 ,    0B BB B BN N Bx M z M z q  

 ,    0N NB B NN N Nx M z M z q  

 ,     ,     .  0 0 0T
B Nz z z x  

By the definition of sets B and N, at the solution *z  we know 

 * * and . 0 0B Nz z                                                                                               (6.5) 

Thus, from (6.5) 

* * ,   0B BB B Bx M z q                                                                                         (6.6) 

* * .   0N NB B Nx M z q                                                                                        (6.7) 

The equation (6.6) and (6.7) can be rewritten as 

* 1 , B BB Bz M q                                                                                                     (6.8) 

* 1 .  N NB BB B Nx M M q q                       (6.9) 

Note that (6.8) and (6.9) are used later in this section when the tolerance approach is 

implemented. 

We introduce the perturbed linear complementarity problem in order to develop 

the tolerance approach in LCP(M, q). As mentioned earlier, only vector q is disturbed. 

Therefore, the perturbed linear complementarity problem can be written as follows: 

   0Mz q  ,           

 0z ,                                                                                                               (6.10) 
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( )T  z Mz q  ,                                                                                                  

where   is the parameter vector in mR . 

6.3.3.1. A single parameter ( ) kq k  B is perturbed. 

This section begins by developing the tolerance approach to sensitivity analysis in 

the LCP in which a single parameter in vector q is perturbed. As marginal costs and 

maximum capacities have significant impacts on the firms’ operations, it would be 

beneficial for a company to know which parameters are more sensitive. To perform the 

sensitivity analysis of a single parameter in vector q by the tolerance approach, we first 

define k  (size 1u ) to be the parameter vector which has a value k  in the thk  position 

( 0k  ) and the value of 0 in all other positions. For example, the parameter vector k , 

when 3k  , can be written as 

3
3

1

0

0

0

0
u





 
 
 
 

  
 
 
 
 



 . 

Using the index sets B and N, the perturbed problem (6.10) can be rewritten as 

 ,k     0B BB B BN N Bx M z M z q           

 ,    0N NB B NN N Nx M z M z q         (6.11) 

 ,     ,     ,     .   0 0 0 0T T
B N B B N Nz z z x z x                                                           
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The parameter vector k  is allowable if problem (6.11) has a solution z  such 

that 

   ,     ,     ,and       0 0 0 0B N B Nz z x x . 

Thus, if k  is allowable, then (6.11) becomes 

  ,k    0B BB B Bx M z q                                 (6.12)   

   ,   0N NB B Nx M z q                     (6.13) 

 . 0Bz                                              

We can solve for Bz  in (6.12) as we did in (6.8). It can be written as 

 1 ( )k
    0B BB Bz M q  ,                                                                          

or 

1 1  BB k BB BM M q .                                                                                          (6.14) 

Substituting this value of Bz  in (6.13), equation (6.13) becomes   

1 ( ) ,k
    0NB BB B NM M q q  

or 

 1 1 .k
   NB BB NB BB B NM M M M q q         (6.15) 

 

Using the expression in (6.8) and (6.9), equation (6.14) and (6.15) can be 

rewritten in terms of * * and B Nz x  as follows: 

1 *
k

 BB BM z ,                                                                                                    (6.16) 
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1 * .k
 NB BB NM M x           (6.17) 

Equation (6.16) and (6.17) can be combined and written as linear inequality 

system, 

k A b ,                      (6.18) 

where A and b are given by 

 
1

1





 
  
 

BB

NB BB

M
A

M M
,     

*

*

 
  
 

B

N

z
b

x
. 

Note that b is the vector in 
mR  whose components are ib , for  1,2,  ...,i m . Matrix A 

and vector b are outlined as follows: 

11 12 1

21 22 2

1 2

u

u

v v vu

a a a

a a a

a a a

 
 
 
 
 
 



  



A ,           

1

2

u v

b

b

b 

 
 
 
 
 
 


b . 

Define kUB  as an upper bound of the maximum allowable range in k  and kLB  

as a lower bound of the maximum allowable range in k . In other words, 

k k kLB UB   

where k B . 

The values of kUB  and kLB  are obtained by solving a linear inequality system 

(6.18) for each value of k ( 1,  2,  ...,  )k u  and they can be determined by the following 

equations: 

1
: 0 ,i

k ik
i m

ik

b
UB minimum a

a 

 
  

 
        (6.19) 
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1
: 0 .i

k ik
i m

ik

b
LB maximum a

a 

 
  

 
        (6.20) 

 

6.3.3.2. A single parameter ( ) kq k  N is perturbed. 

In this section, the main focus is to perform sensitivity analysis on a single 

parameter kq in set N. Thus, we define k  to be the parameter vector which has a value 

k  in the thk  position ( 0k  ) and the value of 0 in all other positions. The size of the 

vector k  is 1v . Note that the cardinality of set N is v. 

Using the index sets B and N, the perturbed problem (6.10) is equivalent to the 

following systems: 

 ,    0B BB B BN N Bx M z M z q         

 ,     0N NB B NN N N kx M z M z q         (6.21) 

 ,     ,     ,     .   0 0 0 0T T
B N B B N Nz z z x z x                                                           

if k  is said to be allowable, then (6.21) becomes 

  ,   0B BB B Bx M z q                                (6.22)   

   ,    0N NB B N kx M z q                      (6.23) 

 . 0Bz                                              

We can solve for Bz  in (6.12) as we did in (6.8). It can be written as 

 1 B BB Bz M q .                                                                                                  (6.24) 
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By substituting this value of Bz  in (6.23), equation (6.23) becomes   

1 ,    0NB BB B N kM M q q   

or 

 1 . k NB BB B NM M q q                     (6.25) 

 

Using the expression in (6.9), equation (6.25) can be rewritten as follows: 

* . k Nx                       (6.26) 

 Since the values of all components in *
Nx  are always positive, a lower bound of 

the maximum allowable range in k (or k ) can be instantly determined by the value of 

*
kx  in equation (6.26), for .k  N  According to (6.26), the upper bound of the maximum 

allowable range in k will be  . In other words, the maximum allowable range for each 

index k can be written as 

 *
k kx                                                                                                         (6.27) 

where k N . 

6.3.3.3. Numerical Example 

The main purpose of this section is to perturb one parameter at a time in either set 

B or N. If the parameter is in set B, equations (6.19) and (6.20) are used to determine the 

maximum allowable range of that parameter. Equation (6.27) is used, if the parameter is 

in set N. As mentioned earlier, only marginal costs ( ,f jc ) and capacities (
max

,f jP ) in vector 

q are perturbed.  
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 The optimal solutions, obtained from solving the stochastic Cournot model using 

data in Table 17, are used to perform the sensitivity analysis to the LCP and shown in 

Table 18. 

Table 17. Market composition and generating unit data 

Firm Unit  
Capacity 

(MW)  
Marginal Cost 

($/MWh) 

F
ir

m
 1

 

1 812 17.06 

2 195 52.99 

3 79 60.97 

4 76 77.61 

5 44 215.80 

6 24 227.08 

7 20 232.94 

8 133 242.57 

9 173 264.04 

10 24 328.35 

11 20 345.67 

12 ∞ 400 

F
ir

m
 2

 

1 100 0.23 

2 26 25.31 

3 50 28.66 

4 24 222.45 

5 76 229.10 

6 24 277.24 

7 20 338.82 

8 ∞ 400 

F
ir

m
 3

 

1 176 0.80 

2 324 25.87 

3 76 48.52 

4 194 214.90 

5 400 242.69 

6 ∞ 400 
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The table includes values of the dual variables in the variable vector z. Due to a 

large number of variables, only the optimal solutions in set B are shown. All other 

variables, based on the definition of the LCP, have a value of 0. The values of the 

parameters  and K  are assumed to be 38.5 and 1972, respectively. The APR is assumed 

to be 7%. The value of   is calculated to be 713.75. It is assumed that the first six values 

in the parameter vector q do not change. 

The maximum allowable ranges of all parameters in vector q are shown in Tables 

19 and 20. 

Table 18. The solutions associated with set B *( )Bz  

Variable Value Variable Value 

*
1s  506.54 2,1g  100 

*
2s  126 2,2g  26 

*
3s  176 3,1g  176 

1  12178.81 2,1  19070.62 

2  19233.57 2,2  1170.82 

3  18306.62 3,1  17734.89 

1,1g  506.54 - - 
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Table 19. The maximum allowable range of each marginal cost ( ,f jc ) 

Parameter Set B Current Value ∆- ∆+ %∆- %∆+ LBk UBk 

c1,1 Yes 17.06 -3.28 0.44 -19.23 2.61 13.78 17.51 

c1,2   52.99 -35.93 ∞ -67.80 ∞ 17.06 ∞ 

c1,3   60.97 -43.91 ∞ -72.01 ∞ 17.06 ∞ 

c1,4   77.61 -60.54 ∞ -78.01 ∞ 17.06 ∞ 

c1,5   215.80 -198.74 ∞ -92.09 ∞ 17.06 ∞ 

c1,6   227.08 -210.01 ∞ -92.49 ∞ 17.06 ∞ 

c1,7   232.94 -215.88 ∞ -92.68 ∞ 17.06 ∞ 

c1,8   242.57 -225.51 ∞ -92.97 ∞ 17.06 ∞ 

c1,9   264.04 -246.97 ∞ -93.54 ∞ 17.06 ∞ 

c1,10   328.35 -311.28 ∞ -94.80 ∞ 17.06 ∞ 

c1,11   345.67 -328.61 ∞ -95.06 ∞ 17.06 ∞ 

c1,12   400.00 -382.94 ∞ -95.73 ∞ 17.06 ∞ 

c2,1 Yes 0.23 "-∞" 26.72 "-∞" 11703.77 0.00 26.95 

c2,2 Yes 25.31 "-∞" 1.64 "-∞" 6.48 0.00 26.95 

c2,3   28.66 -1.72 ∞ -5.99 ∞ 26.95 ∞ 

c2,4   222.45 -195.50 ∞ -87.89 ∞ 26.95 ∞ 

c2,5   229.10 -202.15 ∞ -88.24 ∞ 26.95 ∞ 

c2,6   277.24 -250.29 ∞ -90.28 ∞ 26.95 ∞ 

c2,7   338.82 -311.87 ∞ -92.05 ∞ 26.95 ∞ 

c2,8   400.00 -373.05 ∞ -93.26 ∞ 26.95 ∞ 

c3,1 Yes 0.80 "-∞" 24.85 "-∞" 3102.00 0.00 25.65 

c3,2   25.87 -0.22 ∞ -0.86 ∞ 25.65 ∞ 

c3,3   48.52 -22.88 ∞ -47.14 ∞ 25.65 ∞ 

c3,4   214.90 -189.25 ∞ -88.06 ∞ 25.65 ∞ 

c3,5   242.69 -217.04 ∞ -89.43 ∞ 25.65 ∞ 

c3,6   400.00 -374.35 ∞ -93.59 ∞ 25.65 ∞ 
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Table 20. The maximum allowable range of each capacity (
max

,f jP ) 

Parameter set B Current Value ∆- ∆+ %∆- %∆+ LBk UBk 

��,�
���   812.00 -305.46 ∞ -37.62 ∞ 506.54 ∞ 

��,�
���   195.00 -195.00 ∞ -100.00 ∞ 0.00 ∞ 

��,�
���   79.00 -79.00 ∞ -100.00 ∞ 0.00 ∞ 

��,�
���   76.00 -76.00 ∞ -100.00 ∞ 0.00 ∞ 

��,�
���   44.00 -44.00 ∞ -100.00 ∞ 0.00 ∞ 

��,�
���   24.00 -24.00 ∞ -100.00 ∞ 0.00 ∞ 

��,�
���   20.00 -20.00 ∞ -100.00 ∞ 0.00 ∞ 

��,�
���   133.00 -133.00 ∞ -100.00 ∞ 0.00 ∞ 

��,�
���   173.00 -173.00 ∞ -100.00 ∞ 0.00 ∞ 

��,��
���   24.00 -24.00 ∞ -100.00 ∞ 0.00 ∞ 

��,��
���   20.00 -20.00 ∞ -100.00 ∞ 0.00 ∞ 

��,��
���   30000.00 -30000.00 ∞ -100.00 ∞ 0.00 ∞ 

��,�
��� Yes 100.00 -17.12 42.10 -17.12 42.10 82.88 142.10 

��,�
��� Yes 26.00 -17.12 42.10 -65.86 161.94 8.88 68.10 

��,�
���   50.00 -50.00 ∞ -100.00 ∞ 0.00 ∞ 

��,�
���   24.00 -24.00 ∞ -100.00 ∞ 0.00 ∞ 

��,�
���   76.00 -76.00 ∞ -100.00 ∞ 0.00 ∞ 

��,�
���   24.00 -24.00 ∞ -100.00 ∞ 0.00 ∞ 

��,�
���   20.00 -20.00 ∞ -100.00 ∞ 0.00 ∞ 

��,�
���   30000.00 -30000.00 ∞ -100.00 ∞ 0.00 ∞ 

��,�
��� Yes 176.00 -5.71 126.31 -3.24 139.34 170.29 302.31 

��,�
���   324.00 -324.00 ∞ -100.00 ∞ 0.00 ∞ 

��,�
���   76.00 -76.00 ∞ -100.00 ∞ 0.00 ∞ 

��,�
���   194.00 -194.00 ∞ -100.00 ∞ 0.00 ∞ 

��,�
���   400.00 -400.00 ∞ -100.00 ∞ 0.00 ∞ 

��,�
���   30000.00 -30000.00 ∞ -100.00 ∞ 0.00 ∞ 
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6.3.4. Tolerance approach to sensitivity analysis when all values of q vary      

simultaneously 

The major drawback in running a simulation is the computational time. One of the 

most important factors that affect the simulation time is the sample size. In this research, 

we sample the prices of fuel and compute the expected cost curve based on those prices. 

Since the results from the simulation will be used as input data to the LCP to compute the 

Nash-equilibrium quantities, the simulation results obtained from a large sample size are 

preferred. However, a large sample size may a take long computational time because of 

the process of calculating the expected cost curves. Furthermore, a linear complemetarity 

problem (LCP) is equivalent to quadratic programming. The linear complementarity 

problem belongs to a class of NP-complete problems (Murty, 2008). There are several 

methods for solving an LCP, such as iterative methods and pivoting methods, but solving 

the LCP in polynomial time is not expected in these algorithms.  

The tolerance approach to sensitivity analysis in the LCP is applied to determine 

whether the perturbed problem has the same index set of nonzero elements as the original 

problem. If both problems still have the same index set of nonzero elements, then the new 

solutions can be calculated without directly solving the LCP. 

6.3.4.1. Algorithm 

Since the main interest of this section is to determine whether the perturbed vector 

q has effects on an index set of the optimal solutions, we define newq  to be the perturbed 

vector and q to be the original vector.  
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Based on (6.10), W  is defined as the perturbed amount vector where  

newW = q q .                                                                                                    (6.28) 

The elements of vector W  are 

1 1 1

2 2 2

1

new

new

new
m m m m

q q

q q

q q








  
 

  
 
 

   


W . 

Note that the size of vector W  is 1m . Thus, the perturbed problem (6.10) using the 

index sets B and N can be written in the following equivalent forms: 

 ,0    B BB B BN N B Bx M z M z q W          

 ,0    N NB B NN N N Nx M z M z q W        (6.29) 

 ,     ,     ,     .   0 0 0 0T T
B N B B N Nz z z x z x                                                           

The vector W  is said to be allowable if problem (6.11) has a solution z  such that 

   ,     ,     , and       0 0 0 0B N B Nz z x x . 

Thus, if   is allowable, then (6.29) becomes 

  ,0   B BB B B Bx M z q W                                (6.30)   

   ,0   N NB B N Nx M z q W                     (6.31) 

 . 0Bz                                              

We can solve for Bz  in (6.30) which is 

 1 ( ) 0   B BB B Bz M q W ,                                                                          

or 
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1 1  BB B BB BM M q .                                                                                          (6.32) 

Substituting this value of Bz  in (6.31), equation (6.31) can be written as   

1 ( ) ,0    NB BB B B N NM M q W q W  

or 

 1 1 .    NB BB B N NB BB B NM M W W M M q q        (6.33) 

Using the expressions in (6.8) and (6.9), equations (6.32) and (6.33) can be rewritten in 

terms of * * and B Nz x  as follows: 

1 * BB B BM W z ,                                                                                                   (6.34) 

1 * .  NB BB B N NM M W W x          (6.35) 

Equations (6.34) and (6.35) can be written as the following linear inequality system, 

CW b ,                      (6.36) 

where C and b are given by 

 
1

1
 

0



 
  

 

BB

NB BB

M
C

IM M
,     

*

*

 
  
 

B

N

z
b

x
,  

where I is the identity matrix of size v v . 

To determine effects of newq  on the optimal solutions, the following procedure is 

applied: 
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START 

 Given M, q,  and z*.  

 Sets B and N are defined as  *: 0ii z B and  *: 0ii x N  where 

 * * x Mz q . 

 * 1   and B BB Bz M q * 1 .  N NB BB B Nx M M q q   

 
1

1
 

0



 
  

 

BB

NB BB

M
C

IM M
 and 

*

*

 
  
 

B

N

z
b

x
.  

 IF  CW b  THEN  

  The new optimal solutions can be calculated as  

  
  1 new new

B BB Bz M q ,                                                                           (6.37a)    

    0new
Nz .                                                                                             (6.37b) 

 ELSE 

 The index set of nonzero elements has changed and the LCP needs to be  

 resolved with the value newq . 

 END 

END   

 

6.3.4.2. Numerical Example 

This numerical example shows how the algorithm described in this section is 

applied. The main objective is to determine whether a small sample size can be used to 

compute the Nash-equilibrium quantities. For the numerical example, data in Table 17 
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are used. The values given in those tables correspond to an estimation of the expected 

cost curve and are associated with the vector q. These values were obtained by using a 

sample size equal to 10,000. It took roughly 2 weeks, 15 hours, and 3 days to obtain the 

results in those three tables, respectively. Running a simulation this long is not practical 

since in real operation the decisions must be made on a daily basis. However, sampling 

with a small sample size yields volatile results each time the simulation is run. When 

using a small sample size, the tolerance approach to sensitivity analysis developed in this 

section is employed to determine if a smaller sample is practical.   

The results obtained from simulation using a sample size equal to 10,000 are 

compared with the results using a sample size equal to 100. Results obtained from the 

simulation with sample size equal to 100 are displayed in Tables 21, 22, and 23. The 

procedure to determine effects of newq  on the optimal solutions described in section 3.4.1 

is then employed. The Nash-equilibrium quantities using newq  associated with set B are 

shown in Table 24. The process of running the simulation and determining the effect of 

newq  is repeated 10 times. 

The results in Table 24 indicate that the results obtained from the simulation with 

sample size equal to 100 break the optimal condition 3 times out of 10. 
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Table 21. The list of hypothetical generating unit data associated with estimated expected 
cost function for firm 1 

Firm 1 

Run Parameter Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6 Unit 7 Unit 8 Unit 9 Unit 10 Unit 11 Unit 12 

1 
c1j 17.06 52.99 60.97 77.60 215.80 227.08 232.94 242.57 264.03 328.34 345.67 400.00 

���
���

 812 195 79 76 44 24 20 133 173 24 20 ∞ 

2 
c1j 17.02 52.45 60.39 76.89 213.01 224.16 230.01 240.12 261.82 326.51 342.61 400.00 

���
���

 812 195 79 76 44 24 20 133 173 24 20 ∞ 

3 
c1j 17.05 53.24 61.24 77.95 217.29 228.62 234.50 243.87 265.21 329.32 347.30 400.00 

���
���

 812 195 79 76 44 24 20 133 173 24 20 ∞ 

4 
c1j 17.09 53.09 61.08 77.73 216.23 227.53 233.40 242.95 264.38 328.63 346.14 400.00 

���
���

 812 195 79 76 44 24 20 133 173 24 20 ∞ 

5 
c1j 17.01 52.80 60.77 77.37 215.01 226.25 232.11 241.87 263.41 327.83 344.80 400.00 

���
���

 812 195 79 76 44 24 20 133 173 24 20 ∞ 

6 
c1j 17.06 52.99 60.98 77.61 215.86 227.14 233.01 242.62 264.08 328.39 345.74 400.00 

���
���

 812 195 79 76 44 24 20 133 173 24 20 ∞ 

7 
c1j 17.11 52.65 60.60 77.14 213.64 224.82 230.67 240.68 262.32 326.93 343.30 400.00 

���
���

 812 195 79 76 44 24 20 133 173 24 20 ∞ 

8 
c1j 17.07 53.25 61.25 77.96 217.26 228.60 234.48 243.85 265.19 329.30 347.27 400.00 

���
���

 812 195 79 76 44 24 20 133 173 24 20 ∞ 

9 
c1j 17.14 52.69 60.64 77.18 213.74 224.93 230.78 240.76 262.40 326.99 343.41 400.00 

���
���

 812 195 79 76 44 24 20 133 173 24 20 ∞ 

10 
c1j 17.01 52.77 60.73 77.32 214.83 226.06 231.92 241.71 263.26 327.71 344.60 400.00 

���
���

 812 195 79 76 44 24 20 133 173 24 20 ∞ 
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Table 22. The list of hypothetical generating unit data associated with estimated expected 
cost function for firm 2 

Firm 2 

Run Parameter Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6 Unit 7 Unit 8 

1 
c2j 0.23 25.17 28.49 220.00 226.71 274.71 335.79 400.00 

���
���

 100 26 50 24 76 24 20 ∞ 

2 
c2j 0.23 25.29 28.69 224.65 231.24 279.51 341.54 400.00 

���
���

 100 26 50 24 76 24 20 ∞ 

3 
c2j 0.23 25.33 28.70 223.50 230.12 278.32 340.11 400.00 

���
���

 100 26 50 24 76 24 20 ∞ 

4 
c2j 0.23 25.19 28.55 222.01 228.67 276.79 338.27 400.00 

���
���

 100 26 50 24 76 24 20 ∞ 

5 
c2j 0.23 25.31 28.69 223.77 230.39 278.60 340.45 400.00 

���
���

 100 26 50 24 76 24 20 ∞ 

6 
c2j 0.23 25.29 28.61 220.42 227.13 275.15 336.31 400.00 

���
���

 100 26 50 24 76 24 20 ∞ 

7 
c2j 0.23 25.32 28.71 224.46 231.06 279.31 341.30 400.00 

���
���

 100 26 50 24 76 24 20 ∞ 

8 
c2j 0.23 25.33 28.65 220.69 227.38 275.42 336.63 400.00 

���
���

 100 26 50 24 76 24 20 ∞ 

9 
c2j 0.23 25.20 28.56 222.09 228.76 276.87 338.38 400.00 

���
���

 100 26 50 24 76 24 20 ∞ 

10 
c2j 0.23 25.18 28.49 219.90 226.61 274.61 335.66 400.00 

���
���

 100 26 50 24 76 24 20 ∞ 
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Table 23. The list of hypothetical generating unit data associated with estimated expected 
cost function for firm 3 

Firm 3 

Run Parameter Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6 

1 
c3j 0.80 26.13 48.79 217.03 244.57 400.00 

���
���

 176 324 76 194 400 ∞ 

2 
c3j 0.80 25.59 48.12 212.58 240.65 400.00 

���
���

 176 324 76 194 400 ∞ 

3 
c3j 0.80 25.66 48.28 213.18 241.18 400.00 

���
���

 176 324 76 194 400 ∞ 

4 
c3j 0.80 26.00 48.67 215.94 243.61 400.00 

���
���

 176 324 76 194 400 ∞ 

5 
c3j 0.80 25.84 48.41 214.66 242.48 400.00 

���
���

 176 324 76 194 400 ∞ 

6 
c3j 0.80 25.95 48.58 215.55 243.27 400.00 

���
���

 176 324 76 194 400 ∞ 

7 
c3j 0.80 25.67 48.31 213.24 241.23 400.00 

���
���

 176 324 76 194 400 ∞ 

8 
c3j 0.80 26.13 48.80 217.01 244.54 400.00 

���
���

 176 324 76 194 400 ∞ 

9 
c3j 0.80 25.68 48.35 213.35 241.33 400.00 

���
���

 176 324 76 194 400 ∞ 

10 
c3j 0.80 25.72 48.35 213.64 241.58 400.00 

���
���

 176 324 76 194 400 ∞ 
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Table 24. The new optimal solutions using newq  associated with set B 

 Parameter  

Run 
*
1s  

*
2s  

*
3s  1  2  3  1,1g  2,1g  2,2g  3,1g  

2,1  2,2  3,1  CW ≤ b 

1 505.49 126.00 176.00 12217.59 19252.96 18326.01 505.49 100.00 26.00 176.00 19090.62 1286.14 17754.04 Yes 

2 - - - - - - - - - - - - - No 

3 506.71 126.00 176.00 12172.26 19230.29 18303.34 506.71 100.00 26.00 176.00 19067.25 1153.53 17732.54 Yes 

4 506.07 126.00 176.00 12196.06 19242.20 18315.24 506.07 100.00 26.00 176.00 19079.76 1261.23 17743.02 Yes 

5 507.51 126.00 176.00 12142.76 19215.54 18288.59 507.51 100.00 26.00 176.00 19052.59 1153.59 17719.00 Yes 

6 506.67 126.00 176.00 12173.83 19231.08 18304.13 506.67 100.00 26.00 176.00 19068.22 1181.11 17732.93 Yes 

7 - - - - - - - - - - - - - No 

8 506.46 126.00 176.00 12181.57 19234.95 18308.00 506.46 100.00 26.00 176.00 19071.91 1155.96 17735.71 Yes 

9 - - - - - - - - - - - - - No 

10 507.55 126.00 176.00 12141.31 19214.82 18287.87 507.55 100.00 26.00 176.00 19052.44 1241.15 17716.65 Yes 
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6.4. CONCLUSIONS 

In this chapter, the theory of tolerance approach to sensitivity analysis in LCP was 

applied. The maximum tolerance within which the right-hand side (vector q) of the 

problem can vary independently and simultaneously such that the perturbed problems 

have the same index set of nonzero elements as the original problems was established.  

An algorithm was developed to find the maximum tolerance, in which the right-

hand side of the problem is perturbed independently. As the major parameters within the 

right-hand side are marginal costs and maximum capacities, the maximum tolerance on 

those two factors was evaluated. The maximum tolerance indicates the maximum range 

of marginal costs and maximum capacities that can be perturbed without affecting the 

firms’ strategic planning and operation. 

In addition, the algorithm to find the maximum allowable range when the right-

hand sides of the problems vary simultaneously was developed. This algorithm also can 

be used to determine whether the new input data within vector q affect the index set of 

nonzero elements. If the perturbed problems still have the same index set of nonzero 

elements, the new optimal solutions can be calculated without directly solving LCP.  
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CHAPTER VII 

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH 
 

7.1. Conclusions 

This research proposed a model and solution for evaluating the effects of uncertainty 

in deregulated electricity markets. Two essential factors in power markets, generator 

outages and fuel price uncertainty, were considered in this research. First, a multi-period 

deterministic Cournot model was developed to resemble the structure of long-term 

deregulated electricity markets. The Cournot model then incorporated generator outages 

by replacing the cost functions with the expected cost functions. The Cournot model then 

becomes a stochastic model that considers the availability of generators. Next, both 

generator outages and fuel price uncertainties were included in the Cournot model. 

Finally, the tolerance approach to sensitivity analysis was implemented to determine the 

sensitive parameters of the stochastic Cournot model when considering both uncertainty 

factors.  

In the deterministic model, uncertainty is disregarded, but the model takes the time 

value of money into account. The model belongs to a class of quadratic programming 

models. The KKT first order optimality conditions of the model were considered as a 

linear complementarity problem (LCP). The Nash-equilibrium quantities were computed 

by combining the KKT first order optimality conditions.  
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To incorporate generator outages into the model, the expected production cost 

function that includes the availability of generators was developed. The resulting 

expected production cost function was a piecewise linear function. It was shown that the 

set of all combinations of unit capacities determines where the expected production cost 

function changes its slope. The number of slopes grows exponentially as the number of 

generating units increases. This issue has a direct link to the computational complexity of 

the problem. Hence, an algorithm to reduce the number of slopes without losing 

computational accuracy was devised. The results showed that the proposed algorithm is 

able to reduce the number of slopes effectively and thus simplifies the computations. The 

algorithm produced a set of hypothetical generators with a smaller number of units when 

taking generator outages into account. The results also showed that generator outages 

have an important effect on firms’ expected profits and that they should be considered in 

any medium-term or long-term planning process.  

The consideration of stochastic fuel costs in the stochastic Cournot model 

provided more accurate decisions to power producers as the fluctuation of fuel costs 

significantly impacts a firm’s long-term operation. Each firm was assumed to operate a 

set of generators which used different types of fuels whose marginal costs are subject to 

uncertainty. Therefore, the marginal costs were considered random variables. The Monte 

Carlo simulation based technique was employed to sample the cost of each fuel type. The 

slope reduction algorithm was applied in order to aid the computational complexity as the 

estimated production cost curve contains a large number of slopes. The Nash-equilibrium 

quantities were then calculated. The model expected profits and expected profits of all 

three cases (models A, B, and C) were computed to show the effects of both factors. The 
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results showed that the availability of generators and the volatility of fuel prices have a 

significant impact on firms’ expected profits and that they should be considered in the 

planning and operation of a power system. 

The theory of tolerance approach to sensitivity analysis in LCP was applied to the 

stochastic Cournot model. Specifically, a method was devised to find the maximum 

tolerance within the right-hand side of the problem that can vary independently or 

simultaneously such that the perturbed problems have the same index set of nonzero 

elements as the original problems. The maximum tolerance indicates the maximum range 

of each parameter in the right-hand side that can be perturbed without affecting firms’ 

strategic planning and operation.  

The algorithm to find the maximum range when the right-hand sides of the 

problems vary simultaneously can be used to determine whether the new input data 

affects the index set of nonzero elements. If the perturbed problems still have the same 

index set of nonzero elements, the new optimal solutions can be calculated without 

directly solving a linear complementarity problem. This approach is intended to lessen 

computational complexity in a large-scale linear complementarity problem. It is also 

useful for market participants when they have a new set of input data or the input data in 

the right-hand side are perturbed. 

7.2. Directions for future research 

This research proposed a Cournot model to evaluate two major uncertainty factors 

in power markets. However, there are many other factors which affect the price of 

electricity and market participants, and among them are transmission constraints. The 
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capacity of transmission lines is restricted by technical constraints. As a result, power 

market trading can be limited and controlled by transmission constraints.  An extension 

of this dissertation could be to investigate the effect of network configuration on market 

prices and firms’ profits as the constraints could limit the competition because of 

congestion.  

Another research opportunity is the study of the effects of demand uncertainty on 

electricity prices. In general, the demand of electricity follows daily or seasonal cycles. 

Demand also depends on the lifestyle of the consumers and weather conditions. The price 

of electricity, however, does not follow the same pattern as demand. Thus, the effect of 

demand uncertainty on market prices and the behavior of market participants are two 

interesting topics worth investigating. 

This research is one of the very first attempts to apply the tolerance approach to 

sensitivity analysis to the stochastic Cournot model. Future research in developing the 

theory of tolerance approach is still wide open. Since all significant parameters in the 

proposed model are in the right-hand side of the problem formation, the algorithm 

developed in this research considered only the perturbation of the right hand side of the 

equation. One major improvement opportunity to the algorithm is the perturbation of the 

other parameters of the problem as models may have some vital parameters in the left-

hand side. 
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