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THESIS ABSTRACT

USING GENETIC PROGRAMMING TO QUANTIFY THE EFFECTIVENESS OF SIMILAR

USER CLUSTER HISTORY AS A PERSONALIZED SEARCH METRIC

Brian David Eoff

Master of Science, December 16, 2005
(B.E., Auburn University, 2003)

100 Typed Pages

Directed by John A. Hamilton Jr.

Online search is the service that pushes the Internet. One must only look at the success

of a company such as Google, an idea from a 1998 graduate research paper that has in 2005

not only become a wildly successful company, but whose very name Google had become

synonymous with the verb search, to realize how important search is.

Many IR researchers have suggested that the next great step in search is to make the

process more personal. Search results should be tailored to the individual user. Early

attempts at personalization such as relevance feedback have never gained popularity with

users due to the need for further interaction. The end goal is personalization without the

user having to contribute more of their attention.

I propose that personalization can be accomplished by observing a user’s document

selections. That a page’s overall popularity is important, but more important is the pages

that users similar to the primary user find popular. I also propose that history should not be

based solely on a listing of prior documents a user has found relevant, but on the clusters

of documents a user has found relevant. Clusters allow for pockets of information to be

observed, and thus a fuller understanding of the user can be determined.
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How then do I determine if this new metric is usable short of implementing a search

engine using the metric, putting it online, and hoping users flock to it? Genetic program-

ming was created to solve such problems. Genetic programming can be used to determine

if a newly proposed information retrieval metric (collaborative filtering based on cluster

history) is effective. By giving a genetic programming framework a training set containing

documents, queries, and relevance judgments an optimal ranking function can be found.

The genetic programming framework could incorporate the new metrics proposed along

with traditional search metrics such as term frequency and document length. If these pro-

posed metrics survived the evolution process they can be determined to be effective in the

returning of relevant documents to a user’s query.
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CHAPTER 1

INTRODUCTION

Google, the most popular online search engine with a 15.3% share of visits receives

250 million search requests per day, and has indexed 8.1 billion web pages [7][8][9]. Yahoo

[10], Google’s closest competitor, receives a mere 10% of all search requests. In seven

years Google has gone from a graduate research paper to a billion dollar company, primarily

due to PageRank, a single search metric that uses incoming page links to determine a page’s

popularity [11]. PageRank was the most significant advantage it had over its competition.

Google was five years late to the start of online search engines, yet they were able to make

up the distance due to their search algorithm metric.

Information overload has been predicted since the 1940’s [12]. The number of new

documents created for the web is growing at a substantial rate. If the internet is going to

continue being a useful source of information, online search engines not only have to keep

pace with the new document bulk, but also improve their performance in returning relevant

documents to a user’s query. Without search engines the internet becomes an unnavigable

mess.

Current search engines give little or no consideration to a user’s past queries. Past user

histories should be used in determining the relevance of a document to a user’s query. If

a user searches for the term “Java” based on their past queries and page choices, a search

engine should be able to determine if they are interested in the programming language or

coffee. Google’s PageRank algorithm pushes popular documents higher in the order of

returned documents to a user’s query. Instead of using what the whole online community

considers to be a popular page, a search engine might perform better if it returned pages
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that are popular with other users that have similar histories to that of the user. Then small

pockets of interest could be developed.

Search algorithm designers are unsure of what metrics to use and the way in which

to combine and balance different metrics. There are a variety of metrics dealing with link

structure of web pages, term weighting and popularity. The goal of these designers is to

create an algorithm that will give them optimal performance, since error will always exist in

these algorithms. There is no perfect search algorithm. The human creation of the queries,

and the difference between the perceived and actual relevance will always be an issue.

Genetic programming can be used to create an optimal solution to the search algorithm

problem. For the genetic programming framework to function efficiently, large amounts of

data are necessary, which can be used as training sets to learn the correct documents for a

query. The data could be available to any large search engine, documents, user queries, and

depending on what documents the users selected after their query-relevancy judgements. A

small sample of this information could be fed into a genetic programming framework with

the hope of producing an algorithm that would return relevant results. A designer could

also remove metrics and determine which were the most useful. They could also test new

metrics quickly without having to inflict a possibly poor idea on real users.

The research conducted through this thesis attempts to establish that a genetic pro-

gramming framework can be used to determine the usability of various search metrics and

to also demonstrate that the user histories of similar users is a successful metric in deter-

mining relevancy of documents to a user’s search.

This thesis will examine the various techniques used in information retrieval. Chapter

One will give the reader background information on the field of information retrieval as it

applies to online search engines. The goal is to show the advancement through the history

and demonstrate how personalized search is the next step in information retrieval. Chapter
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Two will be a complete literature survey of the information retrieval and genetic program-

ming cannon. Chapter Three will discuss the implementation and reasoning behind the

genetic programming framework and the communal personalized search metric. Chapter

Four will describe the experiments conducted to prove that communal personalized search-

ing is able to return more relevant results to the user’s queries. Chapter Five will conclude

the thesis with an overview of how genetic programming and personalized search fit into

online information retrieval and a reflection on the findings.
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CHAPTER 2

BACKGROUND INFORMATION

“Although information retrieval has lately become quite a fad, I intend in this

paper to stand back and take an unhurried look at what is going on, and try to

predict where this field must go and what it must do in the future.” - Calvin N.

Mooers (1959) [13]

2.1 What is Information Retrieval?

Information retrieval (IR) was a term coined by Calvin Mooers in 1950. The goal

of an IR system is to organize data in such a way that a user can quickly gain access

to the knowledge they desire. Van Rijsbergen, a predominant IR researcher, stated that the

problem inherent in information retrieval is, “we have vast amounts of information to which

accurate and speedy access is becoming ever more difficult” [14]. A traditional library card

catalog is an example of an information retrieval system. It is an attempt to condense a

collection in such a way that a user can better access what they are interested in without

having to look through all documents.

2.2 History of Information Retrieval

The problem of searching raw data for information has been around for over one hun-

dred years. In 1897 a concordance, or index, of every meaningful word in the Bible was

published [15]. And while that might seem a trivial task today (simply input a copy, parse

it, and build a count of the words) it was a lifelong task in 1897. These concordances were

early examples of organizing information in such a way that a user could quickly access
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what they were interested in. The indexes created by these early concordance makers could

be viewed as the ancestors of the inverted index structure used in most search engines. An

inverted index is a hash data structure where the hash key is a word, and inside the hash

is a linked list with two fields. The two fields contain the number of occurrences and the

document location. After the computing revolution of the 1960’s concordances were no

longer created by hand, and the process was significantly quickened. The last handmade

concordance was a collection of Byron’s works; it took a mere twenty-five years [15]. With

computer assistance the task would take minutes.

Some of the earliest discussion of digital search came from Vannevar Bush, one time

director of the Office of Scientific Research and Development. Bush invented the concept

for what he would later call “Memex” in the 1930’s. He described Memex as “a device

in which an individual stores all his books, records and communications, and which is

mechanized so that it may be consulted with exceeding speed and flexibility” [12]. Also,

Bush described an idea of documents that were interconnected with each other through

“trails,” this concept is considered to be the inspiration for hypertext. Bush created the

Memex concept (though he never actually constructed it) to counteract what he viewed

as information overload. Researchers at Microsoft are currently attempting to construct a

Memex like system, MyLifeBits [16].

In the 1960’s Cornell professor Gerald Salton began focusing on IR research. Salton

led the group that developed SMART, jokingly known as Salton’s Magical Retriever of

Text, but commonly known as System for the Manipulation and Retrieval of Text. Salton

contributed to the discovery of a variety of IR techniques: vector space model, term weight-

ing, relevance feedback, clustering, extended Boolean retrieval, term discrimination value,
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dictionary construction, term dependency, text understanding and structuring, passage re-

trieval, and automatic text processing using SMART. The vector space model was partic-

ularly ground breaking. In a vector space system both the query and the document were

treated as vectors, and their relevancy to each other was determined by the distance apart.

The first internet search engine was Archie, created in 1990 by Alan Emtage [17].

This was before Tim Berners-Lee’s creation of HTTP. All documents on the internet were

stored on FTP servers. Archie’s crawler probed the various FTP servers for listings of their

files and indexed each of those files.

Wandex was the first WWW (World Wide Web) search engine, it was created by

Matthew Gray in 1993. Earlier in the year Gray created the “World Wide Web Crawler,” or

Wanderer, an early crawling robot. The Wanderer caused a small amount of controversy,

the release of the bot caused a notable loss in network performance. Wanderer mistakenly

accessed the same pages repeatedly, often a hundred times in a single hour [17].

In 1992 the Department of Defense, along with NIST co-sponsored the Text REtrieval

Conference (TREC) [18]. The aim was to promote research in the information retrieval

community by supplying the infrastructure that was needed for such a huge evaluation

of text retrieval methods. The TREC conference contained a variety of tracks focusing

on question-answering systems, multimedia search, search involving structured data and

many others are added on a yearly basis. At the 2003 TREC confernce ninety-three groups

from twenty-two countries participated [18]. Also of note is that in the first six years of the

TREC conference the effectiveness of retrieval systems presented doubled [18].

During the early nineties bots were only recording the title of web pages, the first

hundred or so words and their locations. In 1994 Brian Pinkerton created a crawler that

recorded all of the text of each document [17]. This was the first time full-text search was

available on the WWW. Pinkerton entitled his system WebCrawler. At this time it only
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contained the documents from six thousand servers. WebCrawler was eventually sold in

1997 to American Online (AOL).

Yahoo was the first online search engine to gain widespread popularity. Yahoo was not

exactly a search engine in the traditional sense. Yahoo was a hierarchal arranged catalog,

that was not fed by a crawler or bot, but was inputted by Yahoo’s editors.

In the past small innovations in the search community, if implemented well, have lead

to substantial returns in terms of popularity. Each of the discussed projects had their mo-

ments, and there abilities attracted users. There seems to be a natural progression. There

are no huge innovations, just bit by bit improvements. Users will not move on to a new

search engine unless that engine offers a significant improvement over what they are cur-

rently using. It is not enough for a company to get on even footing with their competitor,

they must surpass them. Conveniently, if a new company does surpass the competition then

users tend to flock to their product.

The history of information retrieval section of this thesis is not a complete history of

internet search, but the reader can quickly see the progression of the technology. The Uni-

versity of Nevada’s Veronica, Thinking Machine Corporation’s WAIS, UCSTRI, Netfind

and Lycos have been left out [3].

2.3 Charles Darwin, Programmer

“Computer programs that evolve in ways that resemble natural selection

can solve complex problems even their creators do not fully understand.” -

John Koza [1]
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Since the early nineties a sub-discipline of Artificial intelligence known as evolutionary

computing has gained popularity. The idea that evolution can be applied to creating solu-

tions was first proposed by John Holland. Evolutionary computing used the theories of evo-

lution, survival of the fittest, selective breeding and mutation to answer difficult questions.

Instead of simply attempting to brute-force a solution, evolutionary computing allowed an

intelligent selective search of the solution space of a problem [1][19]. Given sufficient

computational resources a genetic programming solution could yield results that compete

with those of the best domain experts [20].

Genetic Programming was developed principally by John Koza. The individual was

no longer a coded representation of the problem, the individual was a computer program.

The goal of a genetic programming system was to discover a program that produced some

desired output for a particular set of inputs [1]. These programs were represented as a

tree structure, as shown in Figure 2.1. This structure allowed for the various programs

to be easily manipulated from generation to generation. The trees consisted of functions

and terminals. The functions could be programming operations, arithmetic, mathematical,

logical or domain specific. The terminals could be numerical constants or variables.

The initial population was created pseudo-randomly. Koza described this step as a

“primordial ooze of thousands of randomly created programs” [20]. Then the population

was ranked according to the fitness of each individual using the fitness function. The goal

of the fitness function was to determine a score for each individual that reflected how well

their possible solution performs. The fitness function allowed the programs to be ranked,

thus determining who is the “fittest” and will survive. The designer of the system had a

choice he must make: what individuals get to breed, what individuals would simply enter

the next generation, and which individuals would be killed off. Randomness had a role
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Figure 2.1: A Genetic Programming Tree [1]
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to play in this. It was not wise to remove all the weakest individuals, due to the possi-

bility that those trees might move towards a local optimum. There were various selection

techniques; they include elitism, fitness-proportionate, roulette-wheel, scaling, tournament,

rank, generation, steady-state, and hierarchal selection. Once the individuals had been se-

lected they could either be mutated, where they were simply altered, or they could have

been crossovered with another individual. Crossover was metaphoric reproduction. And

like reproduction, two individuals could produce multiple children. An example would be

if the best two individuals were crossovered four different ways to produce four children.

Genetic programming was used to solve a variety of problems in fields ranging from

electrical circuit design to biochemistry and microbiology. Genetic programming has had

great success with solving problems that have large solution spaces, and require an optimal

solution.

2.4 Information Retrieval is Difficult

“The simple reason: even humans are poor at deciding what information

is relevant to a particular question. Trying to get a computer to figure it out is

nearly impossible.” [21]

Information retrieval (IR) is an unsolved problem in multiple disciplines of study, and

it is not unsolved because of lack of interest. The scientist who comes up with a correct

system, one that always return the document that the user needs and does it in a reasonable

amount of time, will surely enjoy great personal wealth and numerous accolades. Due to

the high profitability of this research, search engine algorithms are kept secret, and thusly

advances become less likely [22]. The vast majority of the techniques used by search

engines were discovered in the 1970’s by IR researchers such as Salton. The seventies
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were a time when researchers were not as concerned with the profitability of their ideas,

and openly published their findings.

Patterson best describes the inherent difficulty in building search engines: “At serve

time, you have to get the results out of the index, sort them as per their relevancy to the

query and stick them in a pretty Web page and return them. If it sounds easy, then you

haven’t written a search engine” [23]. The need for disk space and processing power is

staggering. Those needs are slightly outweighed by the need for large amounts of band-

width. There is often no way of knowing if what you are doing will fully work. There is

no testing suite for determining how well a search engine operates. Scalability becomes an

issue with large online search engines. The search engine is a real-time system; it needs to

respond quickly to a user’s request.

Another issue is that web site owners want their sites featured highly by search en-

gines, and they will often attempt to abuse the search engine ranking functions to achieve

higher status. For example, if word count highly affects the ranking of a page, a web site

creator might repeatedly insert a word they want to be associated with their site in hidden

text. A normal user will not be able to see the word, but a crawler will see it. A site owner

might pay a “link farm” service to boost its search placement in query results [22]. A link

farm has the ability to create thousands of pages with links directed towards a single web

site. This will give the illusion of popularity, and can cause metrics such as PageRank to

be inaccurate. These techniques are known as “spamming” search engines. An entire in-

dustry of search engine optimizers (SEO) has been created willing to sell their services of

boosting a web sites search ranking [24]. If a search engine does not protect itself from

these tricks their search results will become useless, and thusly they will lose users. Tech-

niques have come out to beat search engine spam, but often times those techniques are also

11



quickly beaten. It is a constant arms race, and often requires human involvement in the

page rankings.
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CHAPTER 3

LITERATURE REVIEW

Information retrieval is a popular research subject. The goal of most information re-

trieval research is simply about giving users the document most relevant to their queries. In

the search for a solution to that problem researchers have studied various ways of sorting

documents, indexing documents, compressing various parts of the document set, and ap-

plying reasoning to the query. The goal of this literature review was to find information on

how to best return the most relevant documents to a user’s query.

The papers that influenced and shaped the work conducted for this thesis are described

in the following literature survey. The first section will be an overview of literature deal-

ing with the concept of relevance. Relevance is a difficult thing to comprehend due to its

abstract nature. The second section deals with research into the clustering of similar doc-

uments, followed by relevance feedback. Research into term-weighting strategies, various

ranking functions, personalized search and the use of genetic programming to tune search

algorithms will also be discussed.

3.1 Relevance

Relevance is a central idea in IR research. Van Rijsbergen went so far as to claim

relevance is the notion at “the centre of information retrieval” [14]. Despite its significance,

relevancy is a hard concept to quantify. Relevance has been declared to be the “most

fundamental and much debated concern for information science.” Despite the importance

of relevancy there is little agreement about its exact nature. Moreover a proper way to

evaluate systems making relevancy judgements has yet to be determined. The debate over

relevance gets even more convoluted: a document can be perceived as being relevant to the
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system based on an entered query, but not relevant to the user. Prior research has show that

thirty-eight variables affect the relevancy that a human judges a document on, including

the style of the document, visual layout, and difficulty of language. These variables are

incredibly demanding relevancy judgements for a search engine to consider, which is what

makes relevancy difficult; it goes far beyond the mere content of the document.

The most recent work on the concept of relevancy as applied to IR has been done by

Stefano Mizzaro. Mizzaro discusses the confusion about relevance by researchers, stating

“a great deal of such problems are caused by the existence of many relevances, not just

one, and by an inconsistently used terminology: the terms ’relevance’, ’topicality’, ’utility’,

’usefulness’, ’system relevance’, ’user relevance’, and others are given different meanings

by different authors: sometimes they are used as synonyms (two or more terms for the same

concept) sometimes in an ambiguous manner (the same term for two or more concepts)”

[2].

In his paper [2] Mizzaro describes four dimensions of relevancy. The first dimension is

“information resources.” In this dimension exists a group of three entities: document, sur-

rogate, and information. Mizzaro defines document as “the physical entity that the user of

an IR system will obtain after his seeking of information”. Surrogate means “a representa-

tion of the document,” to which Mizzaro gives examples such as a keyword list, an abstract

or bibliographic information. The last member of the group is information, which Mizzaro

acknowledges is not a physical concept, but the “entity that the user receives/creates when

reading a document.” The second dimension is the representation of the user’s problem. In

this dimension Mizzaro makes a distinction between the Real Information Need (RIN) and

the Perceived Information Need (PIN) [2]. The distinction must be noted that what the user

wants, what they truly want, might not be the same as what they request. This user issue is

often referred to as Anomalous State of Knowledge (ASK). Another issue is the vocabulary
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Figure 3.1: Relevance And The User [2]

problem, which is a mismatch between the terms used in the document, and the terms used

in the request. The user mentally creates a request for the system, but the user must enter

this request in as a query, which might require a boolean like language. The RIN, PIN,

request and query are the parts of the second dimension. These four items can be viewed

as states. A user must go from as RIN to PIN to a request to a query, and at many times the

process can be flawed.

The third dimension is time, which isn’t discussed much in IR research. A document

might not be relevant to a user’s query at a certain time, but may be considered so in the

future. The change is often brought about by a user having a greater understanding of

the material after a period of time, and a document that wasn’t relevant to the user when

her of she was less knowledgeable could be later on once a base of knowledge has been

gained. The fourth dimension is “components” [2]. There are three components in the

fourth dimension: topic, task and context. Topic is the subject area that the user is interested
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in. Task is the activity that the user will use the information they receive for, ie. writing

a term paper or studying for an exam. The third component is context. Context includes

everything that affects the search and the decision of relevance that is not covered in topic

or task [2].

Mizzaro in essence has created a framework for the discussion of relevance. In his

articles he also proposes graphing relevance in a four-dimension space to fully understand

it. This seems to be an unnecessary attempt to further quantify relevance into a measurable

form, but Mizzaro’s contribution to the relevance discussion cannot be overlooked. Rele-

vance as a measurement must take into consideration numerous factors, and relevance is

not a permanent statistic between a document and a query. Relevance must be considered

in context with the user. Mizzaro also notes that relevance can change over time, some-

thing search designers rarely give consideration to. The importance of this is that a search

engine’s performance is judged on its ability to return a maximum number of relevant doc-

uments and a minimum number of non-relevant documents to a user’s query. To create

a well designed search ranking function one must fully understand the meaning of rele-

vance. Just as important as returning relevant documents and not returning non-relevant

documents is to also minimize the number of relevant documents that are not retrieved.

3.2 Document Clustering

Clustering is the grouping of similar objects. It is a research subject in a variety of

scientific disciplines, due to the need to make sense of large collections of data. Many

terms are synonymous with clustering such as unsupervised learning, numerical taxonomy,

vector quantization and learning by observation [4]. IR researcher van Rijsbergen proposed

a clustering hypothesis which stated, “closely associated documents tend to be relevant to

the same requests” [14]. Clustering was originally applied to IR research as a means for
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Figure 3.2: Relevance is critical in determining ranking function performance [3]

improving efficiency. Instead of determining the relevance of a query to each document in

the data set, the query was compared to the centroid of the cluster, and if it was deemed

relevant all documents in said cluster were also deemed relevant. This drastically reduced

the number of comparisons that need to be made. Unfortunately, in most studies it was de-

termined that retrieving the contents of the clusters whose centroids most closely matched

the query did not perform as well as retrieving the top rank documents from the entire col-

lection. Other researchers have studied the performance improvements by using clusters in

the search process, but their results only showed occasional gains [25].

In current IR research, clustering usually falls into two categories: document clus-

tering or search result clustering. Document clustering is done prior to a user ever being

involved in the system. All documents are clustered based on their similarity, and as new

documents are discovered they are added to a cluster. For a large document set the initial

clustering can be very computationally expensive. Search result clustering tries to coun-

teract that cost. Clustering only occurs once search results are returned, and the clustering
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only applies to those results. The clustering is based on the small snippets that search en-

gines return with their result listings. So the end results are grouped together to allow a

user to browse the categories made on the fly. No record of these clusters are kept.

To accomplish document clustering, numerous algorithms have been created. Clus-

tering algorithms fall into two categories, hierarchical or partitioning [4]. Hierarchical

algorithms begins with an initial clustering, and then merges or splits the clusters until a

measure of similarity has been met. The first step of a hierarchical clustering algorithm is

to place each document into its own cluster. Next, the closest clusters are combined. This

is done until the appropriate number of clusters has been found. That is the bottom-up

approach to hierarchical clustering. In the top-down approach all document are placed into

a single cluster. The two documents in the cluster that are farthest apart are the centroids

of the two new clusters. All the documents that were in the original cluster now become

a member of which ever of the two clusters they are closer to. Which ever cluster is the

largest gets split in the next cycle.

The most common example of a partitional cluster algorithm is k-means. In k-means

a number of clusters are chosen, and then each document is randomly assigned to a cluster.

Next, the centroid for each cluster is calculated, and each document is assigned to the

cluster that the centroid is nearest. This last step is repeated until clustering converges, and

documents no longer switch clusters. Due to its random nature, various runs of the k-means

algorithm will have varied results on the exact same document set. Figure 3.3 presents the

tree of clustering algorithms, all the algorithms are either partitional of hierarchical.

The question of which clustering algorithm is the best performer is often debated. The

speed in which the clustering algorithm performs and the quality of the clusters must be

considered. The partitional algorithm K-means is faster than hierarchical algorithms [26].

It can compute in O(K*N). The hierarchical algorithms produce a higher quality of clusters.
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Figure 3.3: Jain’s Taxonomy of Clustering Algorithms [4]

When a document set is extremely large it is wiser to use the K-means algorithm for the sake

of efficiency. If the data set is small, or if the cluster must be of a high quality hierarchical

algorithms make more sense [26]. In their article, “Evaluation of Clustering Algorithms

for Document Datasets,” Zhao and Karypis observed that partitional clustering algorithms

outperform agglomerative when dealing with document datasets [27]. Quality in terms

of clustering is a subjective measurement of if the clusters contain similar documents. It

should also be pointed out that research has shown that only the fifty to a hundred most

frequent terms in the document are needed to cluster documents [28] . The same research

pointed out that clustering based on all terms actually degraded the system performance.

Clustering could be used to return documents to a query that does not contain any of

the words in the query. If a document is deemed very relevant to a query, then all the doc-

uments in that document’s cluster would also be deemed to have a relevance to the query.

No longer will it be a simple keyword search. The beauty of this type of mechanism is that

it could potentially alleviate certain issues with the ambiguity of language. An example

would be if a user searched for “Search Engine Research,” and the system might find the
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cluster that contains documents on “Search Engine Research,” and would notice that the

cluster also contained “IR Research.” It then might return documents that do not contain

words from the original query, but returns documents that were similar to documents that

were relevant to the query. This technique could alleviate the problem of a user not fully

knowing the colloquial of a field.

A few online search engines are utilizing clustering in the search process. The online

search engines Visimo and the Clusty use clustering extensively. The notoriously close-

lipped Google labs commented in a recent article about the possible use of clustering in

future incarnations of their search engine. Urs Hoelzle, VP of Engineering at Google,

commented that academic implementations of clustering had little success due to lack of

data, and went on to further comment, ”If you have enough data, you get reasonably good

answers out of it” [29].

3.3 Relevance Feedback

Relevance feedback was a technique proposed by Gerald Salton. [30] defines rele-

vance feedback as “an interaction cycle in which a user selects a small set of documents

that appear to be relevant to the query, and the system then uses features derived from these

selected relevant documents to revise the original query.” In the paper, “Improving Re-

trieval Performance by Relevance Feedback,” Salton and Buckley list the main advantages

of relevance feedback as: “It shields the user from the details of the query formulation

process, and permits the construction of useful search statements without intimate knowl-

edge of collection make-up and search environment,” “It breaks down the search operation

into a sequence of small steps, designed to approach the wanted subject gradually,” and “It

provides a controlled query alteration process designed to emphasize some terms and to

de-emphasize others, as required in particular search environments” [31].
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The question of what is the best way to implement relevance feedback has been widely

researched. Relevance feedback can be implemented as term reweighing or query expan-

sion. Term reweighing is “modifying term weights based on term use in retrieved relevant

and non-relevant document” [32]. Query expansion is the taking of the most frequent terms

from a document that has been deemed relevant, adding them to the query, and then resub-

mitting the query. Query expansion cannot take into consideration negative feedback; a

term cannot be removed from the query that is not there. Term reweighing can take into

consideration negative relevance. The common words from a document with a negative rel-

evance receive a lower term weight. In the same way that common words in the document

set receive a lower weight, common terms in the document which the user has described

an nonrelevant get lower weight. Harman’s research shows that query expansion performs

better in average precision than term reweighing [32]. Query expansion results in a 27%

improvement over the base search. Also Harman observes that the greatest results are

achieved by adding twenty terms to the query. Both query expansion and term reweighing

see performance improvements in [32]. Term reweighing performs best when not taking

negative feedback into consideration according to the experiments performed in [32]. The

improvement though is a marginal 0.2% improvement.

Relevance feedback is an interesting technique due to its simplicity. With the help of

the user, the search engine can personalize the documents that are retrieved. Many users

already use a form of relevance feedback. Once a user receives a listing of documents, oc-

casionally they will notice a word in the descriptions that they hadn’t used in their original

query. They will then re-enter the query with this new information. The concept is not

unfamiliar to a user, and is not terribly invasive. That does not make it easy. The user must

quantify a document, often on the basis of little more that a brief description. Also this
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quantification might be on a scale or declaring the document relevant or non-relevant, and

both ways have flaws.

Pseudo relevance feedback or automatic query expansion works on the assumption

that the top few returned pages are often the most relevant, and that pages that are similar

to those are also important [33]. Pseudo relevance feedback in essence creates a new query

based on the most common terms in the first few returned documents. The technique has

been very successful at TREC, and the OKAPI search algorithm uses a form of it [34]. The

beauty of these feedback systems is that they do not require the user to actively participate.

The reason for the rise in research on pseudo-relevance feedback is due to the un-

willingness of everyday users to use relevance feedback features. The study conducted

by Jansen et. al. found that less than five percent of users utilize the relevance feedback

option in online search engines [35]. The authors go on to comment that “the question of

actual low use of this feature should be addressed in contrast to assumptions about high

usefulness of this in IR research” [35]. The authors question the direction of the research

of relevance feedback commenting, “This is one of the examples where users are voting

with their fingers, and research is going the other way” [35].

3.4 Term-Weighting and Ranking Functions

The ranking functions of commercial online search engines are closely guarded se-

crets. Little is known about the ranking function of the current leader Google beyond a

graduate student conference paper. However, papers presented at TREC conferences have

provided a wealth of information about the internals of many experimental ranking func-

tions. Also, most of the ranking functions are derived from the vector space model (VSM)

created by Gerald Salton.
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The vector space model views both the query and the documents as a vector. The

document is already in this form if indexing has occurred. The vectors will be the size of

the combined vocabulary of the query and the document. If a word is contained in the query

or the document, and not in the other a zero is placed in the query for that word location.

The similarity is computed by taking the inner product of the two vectors [15]. If the query

and the document have no words in common this product will be zero. The inner product

is not the only means of measuring similarity.

Term weighting goes beyond considering the count of the query terms in a document.

If a term occurs in many documents, then it gets a lower weight. This is the idea behind

term-frequency inverse document frequency (TFIDF). Figure 3.4 shows the ranking func-

tion Pivoted TFIDF, Okapi[34] and INQUERY [36]. All the ranking functions have similar

form, and often use the exact same variables.

Other ranking functions are web specific, and are primarily based on the linked struc-

ture of the web, such as Google’s PageRank and Hyper-Interlaced Topic Selection (HITS).

PageRank uses the number of pages that link to a document as a reflection of relevance, and

those documents are higher ranked. Google recently filed for a patent that discussed the

using of time metrics such as how often a web site’s content changes, and when the domain

name for the site was registered [37]. This metric takes into consideration how long ago

a domain name was registered. Most malicious web sites do not hold their domain names

for more than a year. Google uses this metric to reduce the number of junk sites that are

returned in their search results. Also Google takes into consideration the location of the

query terms in the page and the size of the text containing the query terms [38].
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Figure 3.4: Ranking Functions [5]

3.5 Genetic Programming And Ranking Functions

“In the struggle for survival, the fittest win out at the expense of their rivals

because they succeed in adapting themselves best to their environment.” -

Charles Darwin [39]

The authors of [40] propose using genetic programming to build search engine ranking

functions. The IR ranking function can easily be represented as a tree, which is the data

structure used in genetic programming. Their trees consist of eleven terminals, four oper-

ators, and a constant value between 0 and 1. The size of the trees are limited to a depth of

no more than ten for their experiment. For the fitness function the authors use average pre-

cision. A set number of the top trees in the current generation become members of the next

generation, and tournament selection is used to determine which trees would crossover and

have their offspring continue into the next generation. To determine the success of their

solution they compare each individual’s performance against Okapi BM25, a ranking func-

tion that has consistently performed well in TREC evaluations. The corpus is the Associate

Press collection spanning three years. The document set is split into three sets; one for
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training, one for evaluation and one for testing. The split is done to prevent the GP from

over-fitting itself to one document set, thus not producing accurate results. The result of

their experiment is that they were able to discover a ranking function that outperformed

Okapi by a significant percentage. One of the intriguing results of the study is that the GP

framework discovers some commonly known ranking functions such as TFIDF.

The research in [40] further expands on the experiment from [6]. It is no longer a

nameless GP framework; Fan names the system ARRANGER (Automatic Rendering of

Ranking Functions by Genetic Programming) [6]. Fan et. al. goes on to propose using the

ARRANGER system and pseudo relevance feedback (Fan refers to the technique as “blind

feedback”) to gain further performance improvements.

The researchers from [40] present results from another experiment based on the ge-

netic framework they propose. Part of the results, though, consist of creating individual

ranking functions for each query, and then comparing them to Okapi and TFIDF. In this

portion of the experiment when using short queries they were able to gain a increase in av-

erage precision by 16.19% and 10.71% against PTFIDF and Okapi respectively[5]. When

using longer queries they were able to perform 32.97% and 17.01% greater. This portion of

the experiment seems frivolous. It is unfair to create a function for each query, and it seems

to be unreasonable in a normal IR environment. Also, TREC does provide long queries,

which can range between seventeen and ninety words. Rarely do search engines encounter

queries of this size. Also the researchers removed fifteen queries out of the set of fifty, due

to the queries not having a significant number of relevant documents (they all had less than

four relevant documents). The more important portion of the experiment though is using

the genetic programming framework to create a consensus ranking function, one that will

work well over all fifty queries. The results of this experiment are when dealing with short

queries the ranking function discovered was able to out perform Okapi and PTFIDF 3.13%
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Figure 3.5: Best Ranking Function Discovered by Fan et. al. ARRANGER [6]

and 10.75% in average precision [5]. On long queries the gain in average precision grew

to 18.4% and 3.13% against PTFIDF and Okapi respectively. Figure 3.5 below shows the

best ranking function that was discovered by the genetic programming framework.

Fan et. al. also studied the affects of a variety of fitness functions when using ge-

netic programming to discover ranking functions [41]. In early experiments Fan and his

colleagues limited the ranking function to average precision, and only considered the top

twenty documents in evaluation fitness. In this article the fitness functions take into con-

sideration the order of the documents. Relevant documents should be higher in the order

than the non-relevant documents. Unfortunately relevancy judgments provided by TREC

do not provide a rank of relevance order for queries, only whether a document is relevant or

not. The idea of this research [41] is, for example, if only fifteen relevant documents exist

for a query, the first fifteen of the documents retrieved should be relevant and the last five

of the twenty should not be. Relevant and non-relevant documents should not be mixed

throughout the returned set; relevant documents first, non-relevant documents last. This is

referred to as precision. The authors state why they view this fitness evaluation to be of

importance due to the notion that “the utility of a relevant document decrease with ranking

order” [41]. The authors of [41] propose four new fitness functions based on this concept.

Their experiment also contains three other fitness functions: average precision, the CHK

fitness function developed by Chang and Kwok and the LGM fitness function created by

Lopez-Puljate [41]. The corpus used for the experiment was the TREC 10GB collection

from 2000. The corpus was randomly split into training, validation and test sections. The
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results were measured by the average-precision and the precision of the top ten hits. The

results of the experiment show that three of the four fitness functions created by the authors

were able to create ranking functions that outperformed Okapi BM24. These three ranking

functions also outperform PAVG and CHK as fitness functions. The LGM fitness function

was unable to be used in creating a ranking function that outperforms Okapi BM25, as was

one of the fitness functions the authors propose [41].

3.6 Personalized Search

Personalized search is user specific unlike traditional search. The promise of person-

alized search has always been results that are tailored to the individual. This would be

accomplished by developing a model or a knowledge of a user. Over time the software

would be able to recognize preferences, and incorporate that into the ranking. Currently a

semi-personalized search is available, but often it requires the user to fill out a survey, and

often the results are more tailored to the person’s sex, location, income, and age. These

qualities do not encompass who a person is. Personal search is a difficult concept to imple-

ment, the system must learn about a person, and then apply that information to the ranking

of documents.

In the paper, “Context in Web Search,” Steve Lawrence makes a distinction between

a document being valuable as opposed to simply being relevant. Lawrence states that a

documents value “depends on the context of the query - for example, the education, inter-

ests and previous experience of a user along with information about the current request”

[42]. This idea is similar to Mizzaro’s take on relevance which must consider the user’s

background and needs, even if the user is not fully knowledgeable of those needs. Other

researchers have referred to the traditional results returned by search engines as “consensus

relevant,” and the results of a personalized system as “personal relevancy” [43]. Lawrence
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goes on to describe Inquirius2, a search engine which requests the user to select a context

for their query. The example given in [42] is that of a user searching for a document on

“machine learning” might want to limit the context of the search to research articles. Inquir-

ius2 requires explicit information from the user, but Lawrence also mentions the Watson

project that does not require such information. The Watson project is able to observe the

documents currently opened and being edited, and uses information gained from those doc-

uments. The query is modified to include this new information prior to being submitted to

a search engine. Lawrence goes on to define a personalized search engine as “a search

engine that knows all your previous requests and interests, and uses that information to

tailor results” [42]. Also noted is that a personalized search engine will not return the same

results to a query for different users, and also over time the results a user received to a past

query may differ from the results they receive to the same query in the future.

The Haystack project [44] is an attempt to create a personalized search engine that

does not require the user to explicitly state context. The Haystack search engine does not

focus on the web, but is concerned with the user’s desktop system. Haystack is capable

of observing the user’s interaction with the system through a variety of proxies (web and

email). By using a proxy, Haystack can take into consideration temporal effects with rela-

tion to the user’s interaction with web documents. The longer a user spends at a particular

site, the more likely the content of that site interests the user. This information can be used

to more accurately return results to a user’s query for information stored on their system.

The primary concern of a personalized search engine must be the way in which they

model a user’s interest. Tandujaja and Mui take issue with the schemes most personalized

search engines use to store user info, and refer to it in jest as “a bag of words” [45]. The

authors point out that the “bag of word” approach does not provide a proper context for the

words, and could be confused due to synonyms. The authors give the example of the word
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“rose”, which could easily be applied to flowers, or possible wine [45]. The “bag of words”

approach provides no means of determining which. They also comment that this approach

focuses on the user’s likes, and does not take into consideration dislikes. Tandujaja and

Mui propose Persona, a personalized search system combining filtering and user profiling

[45]. Persona uses a tree-coloring technique to create a user profile. The tree is the Open

Directory Project (ODP) taxonomy. The Open Directory Project is very similar to Yahoo

in its structure. Persona incorporates the HITS algorithm discussed earlier. The Persona

system does require explicit relevance feedback from the user. Users are suppose to rate the

context, not the individual documents, negatively or positively. This feedback is reflected

on the user’s tree by a color-coding of the node. This coding reflects the “number of times it

has been visited, rated positive, negative and associated URL’s” [45]. Once the user enters a

quer,y Persona (if the context is found in the user’s profile) gives the associated documents

more or less weight, depending on the color. If the context is not in the user’s profile,

Persona tries the ODP taxonomy. It then checks if the context has the same parent as any

node in the user’s profile, or if it is a child. If so, their weights are adjusted accordingly

[45]. This tree based user profile is what makes Persona interesting. The use of a tree,

which can easily be compared to a maintained taxonomy makes the user profiling system

powerful in the face of synonyms and other ambiguities. Liu et. al. notes that a user profile

combined with a general profile or a categorical hierarchy similar to the ODP can be used

to better map a user’s query to a set of categories, and thus return more relevant results

[46]. In their experiment they found the combine system outperforms a simple user profile.

There findings show that a user history needs to be put into a context.

Collaborative filtering has primarily been used in recommendation systems in online

commerce sites. Often collaborative filtering is referred to as a “word of mouth” systems

[47] . An example is Amazon’s book recommender service, which uses feedback on books
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a user has ordered in the past to find similar users, and recommend books that a similar user

has enjoyed that the primary user has yet to purchase [48]. Collaborative filtering has not

been fully implemented into ranking functions. The goal of collaborative filtering is to use

other people’s preferences, determine how similarly they are to the user, and then decide

whether a user would be interested in the item.

3.7 Conclusion

The work of Weiguo Fan, Gerald Salton, van Rijsbersen and Mizzaro are pivotal to

this thesis on a variety of levels. Salton and van Rijsbergen are the early innovators. They

understood the idea that if information can be measured, then similarity can be discovered.

Mizzaro took on the difficult task of actually defining relevance, a word that is thrown

around far too often in IR literature, with little consideration of what it means. Relevance

incorporates more than just a measurement between a document and a query, the user

should also be considered when computing relevance. The work of Weiguo Fan and his

colleagues showed that GP ideas can be applied to IR. All of these articles, and the work

of these scientist specifically, lead me to my idea of using GP to determine the usefulness

of history and social preference as a search metric.
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CHAPTER 4

RESEARCH DESCRIPTION

”If it doesn’t work right, we can always try something else.” - John McCarthy

[49]

It is my belief that the next logical step for search engines is towards personalization. If

a search engine uses information gained about a user it would be more capable to return

relevant results to a query. This personalization should mature over time. The more a user

uses the search engine the better the results should be. Also, a search engine should be

able to gain this information by observation. A user should not have to answer a survey or

explicitly give over information.

The question arises on how best to use the history of a user to return relevant doc-

uments. Simply giving documents that a user has visited in the past a higher rank is not

enough. Ranking highly documents similar to those that a user has visited in the past could

provide a benefit in the usefulness of the returned documents. This technique could be used

to determine the topics of interest in the past, and thusly would be beneficial in alleviating

ambiguities of language. All documents in the collection could be grouped together based

on their similarities. The clusters would form ad-hoc topic categories. Thus, a more useful

image of the user could be developed based on the content type of documents they have

visited and not simply the document. Based on the clustering hypothesis, if a document in

a cluster is relevant to a query, it is probable that other documents in that cluster would be

relevant.

I propose that keeping a history of the clusters a user has visited is more advantageous

than simply maintaining a document history. Clusters are in essence a grouping of similar
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Figure 4.1: Cluster History

documents. Often this type of information is provided by search engines to give the user

documents similar to a chosen document if the user so desires. Instead of an added feature,

this information should be a direct part of the ranking function. In effect the cluster a

user has selected documents from in the past should be used in determining a document’s

relevance. Figure 4.1 visualizes the way in which the history of the user is recorded as a

listing of their cluster history, and the clusters that contain documents that the user has and

has not visited. In Figure 4.1, the documents the user visited are in a bold square.
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Many current search engines use the popularity of a document to determine its rank-

ing. While this metric has had success, it seems that a better metric would be to reward

the document that users similar to the principal user have viewed in the past to be relevant.

This would allow community knowledge to participate in the ranking function. It would

provide it a social element. Once a user begins to use the search engine, it will discover

other users that have searched and found similar pages, and use this information as another

metric. Figure 4.2 shows how by utilizing a user’s cluster history similar preferences be-

tween users could be discovered. In a brief example the users Amy and Barry are similar

due to the number of shared clusters between them. Instead of the ranking function limiting

its knowledge to just the user’s past, it could also use the past of other like-minded users.

As IR researcher Keith Stirling wrote, “relevance estimates from past users can be used to

rank documents for future users who may submit similar information requests” [50].

This technique is known as “collaborative filtering.” It is often utilized in recommen-

dation systems. Amazon uses this technique to recommend books that similar customers

have bought in the past or have a favorable feedback of. In a collaborative filtering system,

similarity between users is determined in the same manner that similarity between a doc-

ument and a query are in the vector space model [51]. This collaborative filtering score is

calculated by adding up the similarity scores of all the users who have accessed the particu-

lar document or object. This function can be normalized to take into consideration the size

of the document, and differences in the number of documents visited. This is done so as

not to corrupt the results if a user has a particularly vast history, or the document contains

many more words than others. The score is an attempt to quantify how similar the users

that have visited this document are to the user. Most collaborative filtering functions are

not based simply on visiting the document but on the user giving explicit feedback of the

usefulness of the document. This can be an impediment to the user. I believe that instead

33



of the collaborative filtering being based on explicit score, or document history it would

be better served to be based on cluster history. This is a natural conclusion based on what

can be gained by recording a cluster history versus a document history. The goal of this

research is to determine if collaborative filtering based on cluster history is a usable search

metric.

The issue is how this personalization fits into the search engine algorithm. Throughout

this thesis a variety of search metrics have been discussed: word count, term weights, and

link structure. Personal preference should be a metric integrated into the ranking function.

I have proposed three new metrics, personal history, personal cluster history, and cluster

history of similar users. These metrics need to be integrated into the ranking function, and

balanced to return the most relevant results. To balance this ranking function it must be

determined which metrics are the most important, and the ranking function must reflect

that. Word count will always be an important metric, and it is unthinkable that another

metric such as personal history would affect the ranking function more. If that was the case

no matter what the user’s query, the pages they have already visited would be returned.

The question arises, though, how best to integrate this new metric into a ranking func-

tion. The designers of ranking functions must carefully balance the importance of each

metric, and fine tune the function. Traditionally it appears this is caused by trial-and-error

and gradual refinement. It also seems to involve a large amount of intuitive creation. If

a creator proposed a new metric, how could they tell if that metric was successful if the

ranking function they have created was created in such a matter? Perhaps the metric was

superior, but the integration of the metric into the ranking function was flawed. Genetic

programming is a way to determine such things. Researchers have proposed using GP to

create better ranking functions, but this research involves taking the current metrics and
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Figure 4.2: Sharing of Clusters Among Users
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rearranging them and the operators to produce better functions. As of yet, no one has

proposed using this technique to determine whether or not a new metric is valid.

Given the GP all the search metrics, and the new proposed metric, over time the GP

would create a ranking function that included the most usable metrics. Poor metrics would

be lost in the evolution process that takes place between generations. To be successful all

that would be needed would be a document set, queries, relevancy judgements, and user

histories. This would be automated testing of the ranking function. The fitness function

associated with the GP would give the creator insight into the performance of the function.
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CHAPTER 5

EXPERIMENT AND RESULTS

The goal of this experiment was to demonstrate that clustered history of similar users

can be integrated into a ranking function and return relevant documents to a query. To ac-

complish this, a set of documents, a set of queries, and a set of relevancy judgements were

needed. Relevancy judgements are the determined relevance between a document and a

query, usually of a binary nature; either the document is relevant or it is not. The TREC

conference (previously mentioned in Chapter 2) provided all this necessary material for

their participants. This resource allowed for the comparison of ranking functions to deter-

mine which performs better. I choose to use the TREC dataset because it is the preeminent

conference in information retrieval research, and also because most of the past literature in

IR that I have studied during this research has exclusively used TREC datasets to test the

ability of their retrieval techniques.

The list below provides an overview of the steps that were taken to accomplish the

experiment.

1 The dataset was parsed, portered, and stopwords were removed. The dataset was then

indexed and stored in a MySQL database. The queries and relevance judgements

were also stored in a database.

2 User histories were created based on a portion of the available queries and a portion

of the available relevance judgements.

3 The dataset was clustered using a K-means hierarchical clustering algorithm. The

number of clusters was chosen to insure that each cluster contained on average ten

documents.
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4 A GP framework was constructed. The goal of this framework was to create a rank-

ing function that had optimal performance. The GP had terminals available to it

consisting of search metrics from the Okapi, INQUERY and Pivoted TFIDF ranking

functions. Also included in the possible terminals were the personal history of the

user, the clustering history, and a collaborative filtering metric based on the cluster

history.

5 Once the optimal ranking function was discovered by the GP framework all the

queries were run through using the Okapi, INQUERY and Pivoted TFIDF ranking

function. This allowed the performance of the GP created framework to be com-

pared to other common search engine ranking functions.

6 The ranking function that was created using the GP framework was then tested on two

other datasets to insure over training did not occur. Okapi, INQUERY and Pivoted

TFIDF were also tested to allow for more comparisons.

The TREC HARD data set is referred to as CR99. The data set is part of the Con-

gressional Record (CR). The CR99 data set is 146.6 MB in size. The CR data set is further

divided into three data sets CRE, CRS and CRH. These sets are divided so one is for the

Senate, one is for the House, and the third is for extension. The CRE, CRS and CRH

sets contain 4126, 6339, and 6146 documents respectively. The data sets are not perfect

though; all contain duplicate copies of documents. The data set also contains a listing of

forty queries, and relevance judgements for each document to each query.

The first step of the experiment was to get the data set into the form of an inverted

index. This was accomplished using a Perl script, and the inverted index was stored in a

MySQL database. The index is essential to the performance of the ranking function. It

is simply a large two key hash table; the first key is the documents ID, the second key
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is a term from the document and the value is the word count of said term. Before each

term was entered in the database it was portered, and all capitalization and whitespace

was removed. Also common stopwords such as “the” were not indexed. TREC contains

two different types of queries, long and short. The short query is a three to five word

description of the information similar to what users normally enter into a search engine.

The long query is a paragraph or more detailed description of what the user is interested

in. For the purposes of this experiment only the short queries were used, because that

is most similar to what a common online search engine would face. Studies have shown

that the average query contains only 2.21 terms, and that less than four percent of queries

contain more than six terms [35]. The queries and the relevancy judgements were also

stored in a MySQL database for quick access. The queries received the same portering and

removing of common words that the index received. These practices are consistent with

normal search engine operation.

At this point the documents were clustered using a K-means partitional algorithm. The

clustering program was a Perl script that accessed the inverted index stored in MySQL. The

source code for the clustering program is available in the appendix. The number of clusters

were chosen so that each cluster would average ten documents. Research has shown that

having many clusters with a small number of documents is ideal in document retrieving

systems [52]. The goal of the clustering was to group similar documents, to in effect create

pockets of information. The data sets were clustered individually. The way the K-means

partitional algorithm worked was that all documents were placed into a single cluster. Next

the largest cluster, which in this case was the initial cluster was split. A sample of all the

documents in the cluster were taken and the two documents furthest apart based on vector

space similarity were chosen to be the initial members of the two new clusters created by
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splitting the largest cluster. Then all the documents in the largest cluster were compared to

each of the two to determine which was closer, and thusly joined that cluster.

Unfortunately user histories were not available from TREC. For the purposes of this

experiment user histories were pseudo-randomly created. Each user was given between

five and twenty of the forty available queries. They then had between two and ten of the

relevant documents for each query added to their personal history. Ten users were created.

It was briefly considered to have the users also select some non-relevant documents, but

it did not seem logical for a user to go out of their way to visit documents not relevant to

their query. In a traditional search engine the user is given a small preview of the page,

and normally they can determine if the document is relevant to their interest. It should be

kept in mind that TREC does not provide a degree of relevance between a document and a

query. It is a simple binary distinction; either the document is relevant or it is not. Also for

each query there can be up to one hundred relevant documents. The hypothetical user only

choose a small number of those documents.

A variety of known ranking functions were tested using the TREC data set. This

was done to get a base for performance, with the intent of performing at a higher level.

Given a query the ten documents with the highest scores were returned. Then using the

relevancy judgements it was determined how many of these documents were relevant, this

gave us a percentage. The percentage was then averaged over the entire set of queries. The

ranking functions tested were TFIDF, INQUERY, and Okapi BM25. None of these ranking

functions consider user history as a component of their ranking criteria.

It is impossible to prove a ranking function is correct. The goal is to simply create

an optimal solution. In this experiment the trial and error of creating a ranking function

was simply replaced with genetic programming. All the variables in the previous ranking

functions were given to the GP framework to create a ranking function. The proposed

40



personal history functions were available. By using this setup a ranking function could be

found that outperformed the commonly accepted functions. Instead of creating a ranking

function by hand, and tweaking it until it performs well, I simply chose to let evolution

accomplish it.

A genetic programming framework was created to develop the most optimal ranking

function. The framework was written in the Perl programming language. The choice of

using Perl instead of Common Lisp in which Koza developed his GP framework was due

to complications in getting Lisp to communicate to a MySQL database. Also Perl contains

an eval function, which allows a string to be evaluated as source code. The subroutine to

calculate the rank of each document could be created on the fly. This was necessary to de-

termine the fitness of the newly created ranking functions. In the GPIR framework the trees,

or functions had a limited number of terminals and operators. The operators consisted of

log, addition, subtraction, multiplication, and division. The available operators were term

frequency, the number of documents in the collection in which the term is present, average

term frequency of the collection, the maximum term frequency, the average term frequency

in the collection, the maximum of the number of documents in the collection in which a

term is present, number of document in the collection, word count of the document, per-

sonal history, cluster history, and the collaborative filtering cluster score describe in the

prior section. These metrics were also used by Fan et. al. in their various experiments [5].

The framework could compose the tree consisting of any of these terminals or operators.

The max depth of each tree was limited to seven, and the minimum depth was limited to

two. This was done to insure the ranking functions didn’t become unruly, and possibly

unusable, but on the lower side, to insure that the ranking function was an equation and

not simply a variable. Certain rules were also defined in the creation of the trees to in-

sure that correct equations were created, to avoid division by zero for example. The GP
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framework pseudo-randomly created an initial population of trees, consisting of pseudo-

randomly chosen terminals and operators. Once created, the fitness of each of these trees

was evaluated. The evaluation uses the tree to return the top ten documents for each of the

forty queries provided by TREC. Limiting it to the top ten documents was done because

studies have shown that 58% of users do not look past the first ten results [35]. Using the

relevance judgements, it was determined howmany of these ten documents were relevant to

the query. A percentage of relevant documents was recorded for each query, and the fitness

was the average of these percentages over all forty queries. On my test machine (G4 1Ghz,

1GB RAM) it took approximately one minute to test each tree, a reasonable time consid-

ering that processing each tree was basically submitting forty queries to a search engine.

Once an initial population of trees was tested they were ordered according to their fitness.

At this point the population evolved into the next generation. The size of the population

remained consistent from generation to generation. The top
√

populationsize − 1 functions

in the current generation automatically advanced into the next generation without change.

Each of these select few were crossovered with each other. Crossover consisted of taking

a random portion of one tree, and combining it with a random portion of another tree to

produce a new tree. The figure below is an example of two trees being crossovered.

To fill out the remaining members of the population trees were chosen at random and

crossovered. This insured that weaker performing members of the population could exist in

further generations. The population was evolved for a number of generations. At the end of

each generation the best tree was printed out. Also, the average fitness of each population

was recorded. This was used to determine if the population became stronger through the

steps of evaluation.

For the purpose of this experiment the population size was fifty trees, and with twenty

generations. Preliminary runs of the genetic programming framework showed that an initial
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population size of fifty was sufficient enough to produce a good variety of ranking func-

tions. Having a larger initial population did not produce better results, and the run-time

of the experiment was significantly increased. The choice of twenty populations was due

to initial observations that showed the optimal ranking function being discovered prior to

the tenth generation. The use of twenty was to provide a buffer. The fitness of the trees

was only determined against one of the datasets, CRE. Once the GP run was completed the

best trees were taken and tested against the other two datasets to insure that over training

did not occur. Not all terminals were used in each tree, and just as in biological evolution

where unwanted traits are lost, weaker metrics were evolved out of the population. By

shared cluster history surviving the process of evolution, it was viewed as a useful metric.

Also, comparing the GP created ranking function containing shared cluster history versus

common ranking functions performance gains were further observed.

When the experiment began problems with the dataset began to surface. It was known

that the dataset had duplicate copies of documents, each with a different document identi-

fication code. The issue was that when the ranking function would deem both these docu-

ments relevant to a query (after all they were identical) the relevance judgements provided

by TREC would only list one of the documents as relevant. This led to the percentage score

being low, but since this was a problem the GP ranking function, Okapi, INQUERY, and

inverted TFIDF all experienced evenly it allowed the experiment to progress, knowing that

it could be shown which ranking function performed the best. Unfortunately these scores,

while they allowed rank to be assigned, were not an accurate representation of the rank-

ing function’s true performance. In generation four of the run the tree that would be the

best performer was discovered. The tree is shown in Figure 5.1. The tree used the cluster

collaborative filter score metric, the term frequency of the query terms in the document,

the number of documents in the collection and the document length. The metrics personal
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Figure 5.1: Best Tree

history and cluster history, which were simply lists of the documents and the clusters the

user had visited in the past, were available, but they did not survive the evolution process.

The complete run of the experiment is available in the appendix, including a record of all

the trees in the final population and their scores.

Figure 5.2 is a graph containing the best fitness of each generation, and how it pro-

gressed over the entire run. Also in the graph is the average fitness of the population which

peeked at generation nine, and proceeded to plateau at that point with little change.

The ranking function in Figure 5.1 was developed using the CRE dataset, but to insure

no over-training was committed, the function was tested against the other two datasets.

Also the INQUERY, Pivoted TFIDF, and Okapi ranking functions were tested against the

three data sets to allow a comparison to the GP created function. These ranking functions

were simply the equations used to rank the documents and did not take into consideration

the use of thesaurus or pseudo-relevance feedback. These are techniques outside of the

ranking function that can be further used to improve the quality of results.

As the graph in Figure 5.3 shows the GP created ranking function using the collabora-

tive filtering based on clusters was able to out perform the three other ranking functions on

two out of three of the data sets. The function showed the greatest performance gain on the

CRE data set in which it was trained, but also performed well on the CRS dataset, which
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Figure 5.2: Fitness of Trees over GPIR Run
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Figure 5.3: Graph of CR99 Performance
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CRE CRS CRH
Pivoted TFIDF 10 16.5625 15.16129
INQUERY 10 15.625 14.19
Okapi 10.625 15 15.16129
GPIR 14.0625 17.5 14.8387

Figure 5.4: Chart of Performance

the GP framework had no contact with. The complete source code of the GP framework is

provided in the appendix.

Figure 12 is a table containing the scores of each of the ranking functions. The scores

were calculated in the same manner as the fitness is in the GP framework.

On two of the three datasets the ranking function created by the GP incorporating

the new metric outperformed the more seasoned ranking functions. On the CRH dataset

where it placed third it was still close to the top, with Okapi and INQUERY tying in score,

and only being roughly .33 above. On average the GP created ranking function outper-

formed its closest rival Pivoted TFIDF by 1.5. The only significant advantages this ranking

function had were the new personalized metric, and being constructed using the genetic

programming framework.
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CHAPTER 6

CONCLUSION

Information retrieval experts claim that the next great advance will be personalized

search, that the search engine will actually know the user. That is not enough. The search

engine should also know people like the user. This information helps put a user’s interests

in a better light.

A metaphor for this new personal search would be if a person went to the bookstore

and picked out a book. They knew the basic subject that they were interested in, and they’ve

had past experience buying books, they know authors they’ve enjoyed, and publishers who

create handsome books. Using this information they could make a better purchase than if

they simply walked in only knowing the subject matter they were interested in. Consider

though if this shopper also had recommendations from their friends, family and colleagues,

people of similar intelligence, interest and location. Given this information a customer

would be far more likely to be satisfied with the purchase they made.

Search is a product. It is a service. The system that gives the user what they want, with

as little hassle as possible will win. For an engine to not use all the information available

is foolish. The only question is how to balance all these metrics into an equation that will

produce optimal results, without torturing the user through a period of test and fix. The

creators of genetic programming envisioned such problems when they created the concept.

Once a creator has proposed a new metric, how can they determine whether or not it

actually works? Even if the metric has merit, how do they implement it into the ranking

function? GP provides a way for a designer to discover how to integrate this new metric

into a ranking function. Collaborative filtering can be helpful in the process or returning

useful documents to a user’s query.
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With a much larger data set, access to user’s queries and their subsequent document

selections to said queries, a better ranking function could be designed with the help of

genetic programming, and also new metrics could be tested. If with a new metric, the

fitness of the final ranking function increases then it can be deemed that metric is useful in

the ranking the documents.

Once a new metric has been proposed the question of how to best integrate it into the

ranking function, and also if the proposed metric is useful will arise. The solution to both

questions is the use of genetic programming. Considering the impossibility of proving a

search metric works, the best alternative is to determine a function that incorporates the

metric that outperforms the best performing ranking function not containing the metric.

The user is the ultimate determiner of relevancy. Two users enter in the exact same

query and the document that the first user believes is relevant the second user might dis-

agree. The inexact nature of this field forces researchers to search for the most optimal

solution, since a totally correct solution seems to be unlikely.

Given more information, the performance of the ranking function can only improve.

With larger data sets, more queries, more relevancy judgements, and more user histories

the genetic programming frameworks’ ability to create a successful ranking function will

be helped significantly.

Consider the possibility of a search engine that constantly changes. Slowly over time

the ranking function is adapted to give better results. The ranking function used two years

prior, will not be the same as the current because of the knowledge gained. A genetic

programming application would run concurrently beside the search engine, constantly at-

tempting to discover a better ranking function. The genetic program is always there to

allow a designer to easily add a new metric into the fold, and then discover if the metric

improves the ranking process.
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When given the choice of which metrics to use the genetic programming framework

chose, term frequency, the collaborative score proposed, number of documents and the

length of the document. All of the other metrics were deemed to be unneeded to produce

the results, or possibly harmful. The ranking function created by the GP framework had

the best performance increase over the other ranking functions on the dataset that it was

tested. This was to be expected. On the CRH dataset the GP created ranking function was

bested by Okapi and PivotedTFIDF, yet the distance was very minimal. The GP created

function well outperformed all the functions on the CRS dataset. The GP function had only

one real advantage over the other functions, and that was the ability to use the collaborative

filtering metric I earlier proposed. If the GP had been allowed to train on all three datasets

it would have been able to improve the score on the CRH dataset. The point of training

it on only one of the data sets was to support the notion that it would perform well on

other datasets. The genetic programming framework was a tool. The single day run of the

genetic programming framework was able to outperform a variety of ranking function that

were created over months using heuristic techniques. The run was able to determine which

metrics were usable by their appearance in the final ranking function. If these metrics were

without merit they would have been quickly removed during the evolution process.

The best ranking function was discovered after the fourth generation. Longer runs, and

a larger initial population would not have improved the final performance of the ranking

function. The best way to improve the results would have been to have had more queries

and more relevancy judgements. That would have allowed the GP framework to perfect the

ranking function that much more.

On average the ranking function created by the GP framework, which included the

collaborative filtering based on clustering metric, performed at 15.467. This is compared

to PivotedTFIDF, OKAPI, and INQUERY which performed at 13.9, 13.587 and 13.271
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respectively. The addition of this metric caused a significant improvement in the perfor-

mance of the ranking function. The performance gain was not due to over training, as

demonstrated by good performance on the other two datasets which the GP had no contact

with.

The research conducted in this thesis has shown that genetic programming can be used

to determine if a newly proposed information retrieval metric (collaborative filtering based

on cluster history) is effective. The framework also integrates this new metric into the

ranking function in an optimal way, and fully automates the heuristic process of building

a ranking function. A technique such as this can allow researchers to gain insight into the

performance of their metrics, and also significantly shorten the time it takes to create these

search engine ranking functions.
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CHAPTER 7

FUTURE WORK

In the future I hope to apply the techniques proposed into a true online search engine.

A search engine that could adjust the ranking function over time would be a significant

improvement over current implementations. With larger datasets, more users, and thusly

more queries and relevance judgements, an even more significant improvement could be

had over the modest gains demonstrated in this text. With nothing more than twenty users,

and a dataset that did not exceed five thousand documents I was able to create a system that

could find the optimal ranking function.

Some might contend that adding larger numbers of documents and larger number of

user’s would not help the process, that the computation needed to test each function on

each query would become too much. It should be viewed as a benefit, not a challenge.

The dataset could be randomly divided, also the users. Each time a function was created

it would test it against a portion of the queries, a portion of the users and a portion of the

documents.

I imagine the genetic programming framework running in the background able to inte-

grate a better ranking function into the search engine if it is found. Also new metrics could

be quickly added to the search, without prior testing to decide if they are actually useful.

The framework will determine their usefulness.

In the future I also hope to look into new metrics that further use community infor-

mation to improve search engine results. Hopefully this research will lead me to a greater

understanding of what can be inferred from observation of a user’s search history, and how

these observations can best be integrated into the search process while maintaining the

user’s privacy.
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APPENDIX A

GENETIC PROGRAMMING FRAMEWORK EXPERIMENT RUN

Connec ted t o DB
I n v e r t e d Index Loaded from DB
Que r i e s Loaded from DB
Relevance Judgements Loaded from DB
User P r o f i l e s Loaded from DB
Bu i l d i n g S i m i l a r i t y Ma t r i x
Loaded C l u t e r I n f o rma t i o n
Number o f Documents 4125

Gene r a t i o n 1
12 .5
$ c o l l a b s c o r e ∗ $ t f
Average F i t n e s s o f Gen e r a t i o n 8 . 4 9375

Gene r a t i o n 2
12 .8125
$ c o l l a b s c o r e ∗ $dfmaxcol
Average F i t n e s s o f Gen e r a t i o n 9 .95710784313725

Gene r a t i o n 3
12 .8125
log $ t f a v g c o l + $ c o l l a b s c o r e − $ t f a v g / $ t f a v g c o l −

l og $doc l e ng t h avg + $dfmaxcol ∗ $ t f + $ c l h i s t o r y /
$numberodocs / $ do c l e ng t h / $ do c l e ng t h / $dfmaxcol

Average F i t n e s s o f Gen e r a t i o n 11 .1397058823529

Gene r a t i o n 4
13 .75
$ c o l l a b s c o r e ∗ $ t f ∗ $ c o l l a b s c o r e ∗ $dfmaxcol ∗

$numberodocs / $ do c l e ng t h
Average F i t n e s s o f Gen e r a t i o n 11 .9362745098039

Gene r a t i o n 5
14 .0625
$ c o l l a b s c o r e ∗ $ t f ∗ $numberodocs / $ do c l e ng t h
Average F i t n e s s o f Gen e r a t i o n 11 .9607843137255

Gene r a t i o n 6
14 .0625
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$ c o l l a b s c o r e ∗ $ t f ∗ $ c o l l a b s c o r e / $ c o l l a b s c o r e /
$ do c l e ng t h

Average F i t n e s s o f Gen e r a t i o n 12 .4203431372549

Gene r a t i o n 7
14 .0625
$numberodocs ∗ $ c o l l a b s c o r e ∗ $ t f ∗ $numberodocs /

$ do c l e ng t h
Average F i t n e s s o f Gen e r a t i o n 12 .5122549019608

Gene r a t i o n 8
14 .0625
$ c o l l a b s c o r e / $ c o l l a b s c o r e ∗ $ t f ∗ $numberodocs /

$ do c l e ng t h ∗ $ c o l l a b s c o r e
Average F i t n e s s o f Gen e r a t i o n 12 .4877450980392

Gene r a t i o n 9
14 .0625
$ c o l l a b s c o r e ∗ $ t f ∗ $ c o l l a b s c o r e / $ c o l l a b s c o r e /

$ do c l e ng t h
Average F i t n e s s o f Gen e r a t i o n 12 .6899509803922

Gene r a t i o n 10
14 .0625
$ c o l l a b s c o r e ∗ $ t f ∗ $ c o l l a b s c o r e / $ c o l l a b s c o r e /

$ do c l e ng t h
Average F i t n e s s o f Gen e r a t i o n 12 .156862745098

Gene r a t i o n 11
14 .0625
$ c o l l a b s c o r e ∗ $ t f ∗ $ c o l l a b s c o r e / $ c o l l a b s c o r e /

$ do c l e ng t h
Average F i t n e s s o f Gen e r a t i o n 12 .2732843137255

Gene r a t i o n 12
14 .0625
$ c o l l a b s c o r e ∗ $ t f ∗ $numberodocs / $ do c l e ng t h ∗

$numberodocs ∗ $numberodocs
Average F i t n e s s o f Gen e r a t i o n 12 .2549019607843

Gene r a t i o n 13
14 .0625
$ c o l l a b s c o r e ∗ $ t f ∗ $ c o l l a b s c o r e / $ c o l l a b s c o r e /

$ do c l e ng t h
Average F i t n e s s o f Gen e r a t i o n 12 .156862745098

Gene r a t i o n 14
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14 .0625
$numberodocs ∗ $ c o l l a b s c o r e ∗ $ t f ∗ $numberodocs /

$ do c l e ng t h ∗ $numberodocs ∗ $numberodocs
Average F i t n e s s o f Gen e r a t i o n 11 .9791666666667

Gene r a t i o n 15
14 .0625
$ c o l l a b s c o r e ∗ $ t f ∗ $ c o l l a b s c o r e / $ c o l l a b s c o r e /

$ do c l e ng t h ∗ $numberodocs
Average F i t n e s s o f Gen e r a t i o n 11 .6421568627451

Gene r a t i o n 16
14 .0625
$ c o l l a b s c o r e ∗ $ t f ∗ $numberodocs / $ do c l e ng t h ∗

$numberodocs ∗ $numberodocs
Average F i t n e s s o f Gen e r a t i o n 11 .9669117647059

Gene r a t i o n 17
14 .0625
$numberodocs ∗ $numberodocs ∗ $numberodocs ∗

$ c o l l a b s c o r e ∗ $ t f ∗ $numberodocs / $ do c l e ng t h ∗
$numberodocs

Average F i t n e s s o f Gen e r a t i o n 12 .1629901960784

Gene r a t i o n 18
14 .0625
$numberodocs ∗ $numberodocs ∗ $ c o l l a b s c o r e ∗ $ t f ∗

$numberodocs / $ do c l e ng t h ∗ $numberodocs
Average F i t n e s s o f Gen e r a t i o n 11 .7708333333333

Gene r a t i o n 19
14 .0625
$numberodocs ∗ $numberodocs ∗ $numberodocs ∗

$ c o l l a b s c o r e ∗ $ t f ∗ $numberodocs / $ do c l e ng t h ∗
$numberodocs ∗ $numberodocs

Average F i t n e s s o f Gen e r a t i o n 11 .6666666666667

F i n a l Gen e r a t i o n
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
$numberodocs ∗ $numberodocs ∗ $ c o l l a b s c o r e ∗ $ t f ∗

$numberodocs / $ do c l e ng t h ∗ $numberodocs ∗
$numberodocs ∗ $numberodocs

F i t n e s s 1 4 . 0 625
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
$numberodocs ∗ $numberodocs
F i t n e s s 9 . 3 7 5
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−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
$numberodocs ∗ $numberodocs ∗ $numberodocs ∗

$ c o l l a b s c o r e ∗ $ t f ∗ $numberodocs / $ do c l e ng t h ∗
$numberodocs ∗ $numberodocs

F i t n e s s 1 4 . 0 625
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
$numberodocs ∗ $numberodocs ∗ $ c o l l a b s c o r e ∗ $ t f ∗

$numberodocs / $ do c l e ng t h ∗ $numberodocs
F i t n e s s 1 4 . 0 625
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
$numberodocs ∗ $numberodocs ∗ $ c o l l a b s c o r e ∗ $ t f ∗

$numberodocs / $ do c l e ng t h ∗ $numberodocs ∗
$numberodocs

F i t n e s s 1 4 . 0 625
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
$numberodocs ∗ $numberodocs ∗ $ c o l l a b s c o r e ∗ $ t f ∗

$numberodocs / $ do c l e ng t h ∗ $numberodocs ∗
$numberodocs

F i t n e s s 1 4 . 0 625
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
$ c o l l a b s c o r e ∗ $ t f ∗ $numberodocs / $ do c l e ng t h ∗

$numberodocs ∗ $numberodocs
F i t n e s s 1 4 . 0 625
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
$ t f ∗ $numberodocs
F i t n e s s 9 . 3 7 5
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
$numberodocs ∗ $numberodocs
F i t n e s s 9 . 3 7 5
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
$numberodocs ∗ $ c o l l a b s c o r e ∗ $ t f ∗ $numberodocs /

$ do c l e ng t h ∗ $numberodocs ∗ $numberodocs ∗
$numberodocs

F i t n e s s 1 4 . 0 625
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
$numberodocs ∗ $numberodocs
F i t n e s s 9 . 3 7 5
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
$ c o l l a b s c o r e ∗ $ t f ∗ $numberodocs
F i t n e s s 1 2 . 5
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
$numberodocs ∗ $ c o l l a b s c o r e ∗ $ t f ∗ $numberodocs /

$ do c l e ng t h ∗ $numberodocs ∗ $numberodocs ∗
$numberodocs

F i t n e s s 1 4 . 0 625
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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$numberodocs ∗ $numberodocs ∗ $ c o l l a b s c o r e ∗ $ t f ∗
$numberodocs / $ do c l e ng t h ∗ $numberodocs ∗
$numberodocs ∗ $numberodocs

F i t n e s s 1 4 . 0 625
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
$numberodocs ∗ $numberodocs
F i t n e s s 9 . 3 7 5
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
$numberodocs ∗ $numberodocs ∗ $ c o l l a b s c o r e ∗ $ t f ∗

$numberodocs / $ do c l e ng t h ∗ $numberodocs ∗
$numberodocs ∗ $numberodocs

F i t n e s s 1 4 . 0 625
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
$numberodocs ∗ $numberodocs
F i t n e s s 9 . 3 7 5
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
$numberodocs ∗ $numberodocs ∗ $ c o l l a b s c o r e ∗ $ t f ∗

$numberodocs / $ do c l e ng t h ∗ $numberodocs
F i t n e s s 1 4 . 0 625
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
$numberodocs ∗ $numberodocs
F i t n e s s 9 . 3 7 5
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
$numberodocs ∗ $numberodocs ∗ $ c o l l a b s c o r e ∗ $ t f ∗

$numberodocs / $ do c l e ng t h ∗ $numberodocs ∗
$numberodocs

F i t n e s s 1 4 . 0 625
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
$numberodocs ∗ $numberodocs
F i t n e s s 9 . 3 7 5
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
$numberodocs ∗ $ c o l l a b s c o r e ∗ $ t f
F i t n e s s 1 2 . 5
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
$numberodocs ∗ $numberodocs
F i t n e s s 9 . 3 7 5
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
$numberodocs ∗ $numberodocs
F i t n e s s 9 . 3 7 5
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
$numberodocs ∗ $numberodocs ∗ $ c o l l a b s c o r e ∗ $ t f ∗

$numberodocs / $ do c l e ng t h ∗ $numberodocs ∗
$numberodocs

F i t n e s s 1 4 . 0 625
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
$numberodocs ∗ $numberodocs
F i t n e s s 9 . 3 7 5
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−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
$ c o l l a b s c o r e ∗ $ t f ∗ $numberodocs / $ do c l e ng t h ∗

$numberodocs ∗ $numberodocs
F i t n e s s 1 4 . 0 625
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
$numberodocs / $ do c l e ng t h ∗ $numberodocs ∗

$numberodocs ∗ $ c o l l a b s c o r e ∗ $ t f ∗ $numberodocs /
$ do c l e ng t h ∗ $numberodocs ∗ $numberodocs

F i t n e s s 1 3 . 1 2 5
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
$numberodocs ∗ $numberodocs ∗ $ c o l l a b s c o r e ∗ $ t f ∗

$numberodocs / $ do c l e ng t h ∗ $numberodocs ∗
$numberodocs

F i t n e s s 1 4 . 0 625
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
$numberodocs ∗ $numberodocs
F i t n e s s 9 . 3 7 5
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
$numberodocs ∗ $numberodocs ∗ $ c o l l a b s c o r e ∗ $ t f ∗

$numberodocs / $ do c l e ng t h ∗ $numberodocs
F i t n e s s 1 4 . 0 625
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
$numberodocs ∗ $numberodocs
F i t n e s s 9 . 3 7 5
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
$numberodocs ∗ $numberodocs ∗ $ c o l l a b s c o r e ∗ $ t f ∗

$numberodocs / $ do c l e ng t h ∗ $numberodocs ∗
$numberodocs

F i t n e s s 1 4 . 0 625
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
$numberodocs ∗ $numberodocs
F i t n e s s 9 . 3 7 5
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
$numberodocs ∗ $numberodocs ∗ $ c o l l a b s c o r e ∗ $ t f ∗

$numberodocs / $ do c l e ng t h ∗ $numberodocs
F i t n e s s 1 4 . 0 625
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
$numberodocs ∗ $numberodocs ∗ $ c o l l a b s c o r e ∗ $ t f ∗

$numberodocs / $ do c l e ng t h ∗ $numberodocs ∗
$numberodocs

F i t n e s s 1 4 . 0 625
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
$numberodocs ∗ $numberodocs ∗ $numberodocs ∗

$ c o l l a b s c o r e ∗ $ t f ∗ $numberodocs / $ do c l e ng t h ∗
$numberodocs ∗ $numberodocs

F i t n e s s 1 4 . 0 625
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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$numberodocs ∗ $numberodocs ∗ $numberodocs
F i t n e s s 9 . 3 7 5
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
$numberodocs ∗ $numberodocs ∗ $ c o l l a b s c o r e ∗ $ t f ∗

$numberodocs / $ do c l e ng t h ∗ $numberodocs ∗
$numberodocs ∗ $ c o l l a b s c o r e ∗ $ t f ∗ $numberodocs /
$ do c l e ng t h

F i t n e s s 1 3 . 7 5
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
$numberodocs ∗ $numberodocs ∗ $numberodocs ∗

$ c o l l a b s c o r e ∗ $ t f ∗ $numberodocs / $ do c l e ng t h ∗
$numberodocs ∗ $numberodocs

F i t n e s s 1 4 . 0 625
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
$numberodocs ∗ $numberodocs ∗ $numberodocs ∗

$ c o l l a b s c o r e ∗ $ t f ∗ $numberodocs / $ do c l e ng t h ∗
$numberodocs ∗ $numberodocs

F i t n e s s 1 4 . 0 625
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
$numberodocs ∗ $numberodocs ∗ $numberodocs ∗

$ c o l l a b s c o r e ∗ $ t f ∗ $numberodocs / $ do c l e ng t h ∗
$numberodocs ∗ $numberodocs

F i t n e s s 1 4 . 0 625
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
$numberodocs ∗ $ c o l l a b s c o r e ∗ $ t f ∗ $numberodocs /

$ do c l e ng t h ∗ $numberodocs ∗ $numberodocs ∗
$numberodocs

F i t n e s s 1 4 . 0 625
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
$numberodocs ∗ $numberodocs ∗ $ c o l l a b s c o r e ∗ $ t f ∗

$numberodocs / $ do c l e ng t h ∗ $numberodocs ∗
$numberodocs

F i t n e s s 1 4 . 0 625
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
$numberodocs ∗ $ c o l l a b s c o r e ∗ $ t f ∗ $numberodocs /

$ do c l e ng t h ∗ $numberodocs
F i t n e s s 1 4 . 0 625
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
$numberodocs ∗ $numberodocs ∗ $ c o l l a b s c o r e ∗ $ t f ∗

$numberodocs / $ do c l e ng t h ∗ $numberodocs ∗
$numberodocs

F i t n e s s 1 4 . 0 625
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
$numberodocs ∗ $numberodocs
F i t n e s s 9 . 3 7 5
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
$numberodocs ∗ $numberodocs
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F i t n e s s 9 . 3 7 5
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
$numberodocs ∗ $numberodocs ∗ $ c o l l a b s c o r e ∗ $ t f ∗

$numberodocs / $ do c l e ng t h ∗ $numberodocs ∗
$numberodocs

F i t n e s s 1 4 . 0 625
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
$numberodocs ∗ $numberodocs
F i t n e s s 9 . 3 7 5
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
$numberodocs ∗ $numberodocs ∗ $ c o l l a b s c o r e ∗ $ t f ∗

$numberodocs / $ do c l e ng t h ∗ $numberodocs ∗
$numberodocs

F i t n e s s 1 4 . 0 625

Bes t FINAL Tree
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
$ c o l l a b s c o r e ∗ $ t f ∗ $numberodocs / $ do c l e ng t h
Bes t F i t n e s s : 1 4 . 0 6 2 5
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APPENDIX B

GENETIC PROGRAMMING FRAMEWORK SOURCE CODE

# ! / op t / l o c a l / b i n / p e r l −w

#GPIR Framework
#Able t o c r e a t e r ank i ng f u n c t i o n s , t e s t them f o r t h e i r

a b i l i t y
#and e v o l v e t h e rank i ng f u n c t i o n s over g e n e r a t i o n s

use DBI ;
use p o r t e r ;
use s t r i c t ;
use warn ings ;
use Tree : : B ina ry ;
use Tree : : B ina ry : : Sea r ch ;
use Tree : : V i s u a l i z e ;
use Tree : : B ina ry : : V i s i t o r : : I nO r d e r T r a v e r s a l ;
use Tree : : B ina ry : : V i s i t o r : :

I nO r d e r T r a v e r s a l E x p r e s s i o nT r e e ;
use Tie : : Hash : : S t r u c tKeyed ;
use Carp ;
use S t o r a b l e ;
$SIG{ WARN } = \& ca rp ;
$SIG{ DIE } = \& con f e s s ;

use v a r s qw(% c o l l a b s c o r e t a b l e @stopwords % c l u s t e r i n f o
%sim % c l u s t e r h i s t o r y % po p u l a t i o n $ t f a v g c o l
$doc l eng t h avg %nkhash $pop s i z e @te rmina l s
@ope ra to r s @u s e r p r o f i l e $dbh % q u e r i e s %
r e l e v a n c e j u d g emen t % do c s c o r e s $query % i n v e r t e d i n d e x
$numberodocs % t fmaxhash %dfmaxco lhash %
doc l e n g t h h a s h % t f a v g h a s h ) ;

@ope ra to r s = ( ”+” , ”−” , ”∗” , ” / ” , ” l og ” , ” n u l l ” ) ;
@te rmina l s = ( ’ $ t f ’ , ’$Nk ’ , ’ $ t f a v g c o l ’ , ’ $ t fmax ’ , ’

$ t f a v g ’ , ’ $dfmaxcol ’ , ’ $numberodocs ’ , ’ $ do c l e ng t h ’
, ’ $doc l e ng t h avg ’ , ’ $ p h i s t o r y ’ , ’ $ c o l l a b s c o r e ’ , ’
$ c l h i s t o r y ’ , ’ n u l l ’ ) ;

my $dsn = ’DBI : mysql : t h e s i s : l o c a l h o s t ’ ;
my $db use r name = ’ r o o t ’ ;
my $db password = ’ dragon ’ ;
my ( $id , $password ) ;
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$dbh = DBI−>connect ( $dsn , $db use r name , $db password )
;

pr in t ” Connec ted t o DB\n” ;

l o a d I n v e r t e d I n d e x ( ) ;
pr in t ” I n v e r t e d Index Loaded from DB\n” ;
l o a dQue r i e s ( ) ;
pr in t ” Que r i e s Loaded from DB\n” ;
l o adRe l evance Judgemen t s ( ) ;
pr in t ” Re levance Judgements Loaded from DB\n” ;
l o a dU s e r P r o f i l e s ( ) ;
pr in t ” User P r o f i l e s Loaded from DB\n” ;
bu i l dS imMa t r i x ( 1 ) ;
pr in t ” Bu i l d i n g S i m i l a r i t y Ma t r i x \n” ;
l o a d C l u s t e r I n f o ( ) ;
pr in t ” Loaded C l u t e r I n f o rma t i o n \n” ;

my @docids = keys (% i n v e r t e d i n d e x ) ;
$numberodocs = $ # doc i d s ;
pr in t ”Number o f Documents ” . $numberodocs . ”\n” ;
@docids = ( ) ;
$ t f a v g c o l = t f a v g c o l ( ) ;
$ doc l eng t h avg = doc l e ng t h avg ( ) ;
$ pop s i z e = $ARGV[ 0 ] ;
my $numgene ra t i on = $ARGV[ 1 ] ;

t i e %popu l a t i o n , ’ T ie : : Hash : : S t r u c tKeyed ’ ;
c r e a t e I n i t i a l P o p u l a t i o n ( ) ;

my $ b e s t f i t n e s s = 0 ;
my $ b e s t t r e e = ( ) ;

f o r (my $x = 1 ; $x < $numgene ra t i on ; $x++) {
pr in t ”\ nGene r a t i o n ” . $x . ”\n” ;
# L e t s P r i n t The Popu l a t i o n Here
my $ho l d e r = g e tBe s t F r omPopu l a t i o n ( ) ; #

P r i n t B e s t Member o f Cur r en t Popu l a t i o n
pr in t ” Bes t F i t n e s s ” . $ p o p u l a t i o n { $ho l d e r } . ”\n

” ;
p r i n t T r e e ( $ ho l d e r ) ;
i f ( $ p o p u l a t i o n { $ho l d e r } > $ b e s t f i t n e s s ) {

$ b e s t t r e e = $ho l d e r ;
$ b e s t f i t n e s s = $ p o p u l a t i o n { $ho l d e r } ;

}
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pr in t ” Average F i t n e s s o f Gen e r a t i o n ” .
a v g F i t n e s s P o p u l a t i o n ( ) . ”\n\n” ;

e v o l v e P o p u l a t i o n ( ) ;
}

pr in t ” F i n a l Gen e r a t i o n \n” ;
p r i n t P o p u l a t i o n ( ) ;
pr in t ” Bes t FINAL Tree \n−−−−−−−−−−−−−−−−−−\n” ;
p r i n t T r e e ( $ b e s t t r e e ) ;
pr in t ” Bes t F i t n e s s : ” . $ b e s t f i t n e s s . ”\n” ;

#Outpu t The Graphs Here

e x i t ;

sub c r e a t e I n i t i a l P o p u l a t i o n {

f o r (my $x = 0 ; $x < $pop s i z e ; $x++) {
my $ t r e e s i z e = i n t rand ( 5 ) + 2 ;
my $ p a r e n t = $ o p e r a t o r s [ i n t rand ($#

o p e r a t o r s ) ] ;
my $ t r e e = Tree : : Binary−>new ( $ p a r e n t ) ;
$ t r e e = b u i l dT r e e ( $ t r e e , $ t r e e s i z e ,

$ p a r e n t ) ;
$ p o p u l a t i o n { $ t r e e } = g e t F i t n e s sO fT r e e (

$ t r e e ) ;
}

}

sub e v o l v e P o p u l a t i o n {

t i e my %newpopu la t i on , ’ T ie : : Hash : :
S t r u c tKeyed ’ ;

f o r (my $x = 0 ; $x < ( ( i n t ( sqr t ( $ pop s i z e ) ) ) − 1 )
; $x++) {

my $ b e s t t r e e = g e tBe s t F r omPopu l a t i o n ( )
;

$newpopu l a t i on { $ b e s t t r e e } = ( ) ;
d e l e t e $ p o p u l a t i o n { $ b e s t t r e e } ; # remove

b e s t t r e e from popu l a t i o n
}

my @poparr = ( keys %newpopu l a t i on ) ;
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foreach my $doca ( @poparr ) {
foreach my $docb ( @poparr ) {

my $ t emp t r e e =
c r o s s o v e r T r e e ( $doca
, $docb ) ;

$newpopu l a t i on {
$ t emp t r e e } = ( ) ;

}
}

my @tempary = keys (% newpopu l a t i on ) ;
my $ t emps i z e = $ # tempary ;
f o r (my $y = 0 ; $y < ( $ pop s i z e − $ t emps i z e ) ; $y

++) {
my $ t emp t r e e = c r o s s o v e r T r e e (

ge tRandomFromPopula t ion ( ) ,
ge tRandomFromPopula t ion ( ) ) ;

$newpopu l a t i on { $ t emp t r e e } = ( ) ;
}

%pop u l a t i o n = ( ) ;

f o r my $ t r e e ( keys %newpopu l a t i on ) {
$ p o p u l a t i o n { $ t r e e } = g e t F i t n e s sO fT r e e (

$ t r e e ) ;
}

}

sub ge tBe s t F r omPopu l a t i o n {
my $ b e s t f i t n e s s = 0 ;
my $ b e s t t r e e = ( ) ;
f o r my $ t r e e ( keys %popu l a t i o n ) {

i f ( $ p o p u l a t i o n { $ t r e e } > $ b e s t f i t n e s s )
{

$ b e s t f i t n e s s = $ p o p u l a t i o n {
$ t r e e } ;

$ b e s t t r e e = $ t r e e ;
}

}

re turn $ b e s t t r e e ;
}

sub getRandomFromPopula t ion {
my @pop u l a t i o n l i s t = ( keys %popu l a t i o n ) ;
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my $ r a n d t r e e = $ p o p u l a t i o n l i s t [ i n t ( rand ($#
p o p u l a t i o n l i s t ) ) ] ;

re turn $ r a n d t r e e ;
}

sub p r i n t P o p u l a t i o n {

f o r my $ t r e e ( keys %popu l a t i o n ) {
pr in t ”−−−−−−−−−−−−−−−\n” ;
p r i n t T r e e ( $ t r e e ) ;
pr in t ” F i t n e s s ” . $ p o p u l a t i o n { $ t r e e } . ”\

n” ;
}

}

sub p r i n t T r e e {
my ( $ t r e e ) = @ ;
pr in t Tree : : V i s u a l i z e−>new ( $ t r e e , ’ASCII ’ , ’

D iagona l ’ )−>draw ( ) . ”\n” ;
pr in t ”\n” x 2 ;
pr in t Tree : : V i s u a l i z e−>new ( $ t r e e , ’ASCII ’ , ’

TopDown ’ )−>draw ( ) . ”\n” ;
pr in t ”\n” x 2 ;
my $ v i s i t o r = Tree : : B ina ry : : V i s i t o r : :

I nO r d e rT r a v e r s a l E x p r e s s i o nT r e e−>new ( ) ;
$ t r e e−>accep t ( $ v i s i t o r ) ;
my $ equ a t i o n = ( j o i n ” ” , $ v i s i t o r −>g e t R e s u l t s

( ) ) ;
pr in t $ equ a t i o n . ”\n\n” ;

}

sub g e t F i t n e s sO fT r e e {
my ( $ t r e e ) = @ ;
my %doc s c o r e s = ( ) ;
my $ v i s i t o r = Tree : : B ina ry : : V i s i t o r : :

I nO r d e rT r a v e r s a l E x p r e s s i o nT r e e−>new ( ) ;
$ t r e e−>accep t ( $ v i s i t o r ) ;

my $ s t a t emen t = ( j o i n ” ” , $ v i s i t o r −>
g e t R e s u l t s ( ) ) ;

eva l ( ’ sub r a n k i n g f u n c t i o n { my ( $ t f , $dfmaxcol
, $Nk , $ c l h i s t o r y , $ p h i s t o r y , $ t f avg ,
$doc l eng th , $tfmax , $ c o l l a b s c o r e ) = @ ; my
$ s co r e = 0 ; e v a l { $ s co r e = ’ . $ s t a t emen t . ’
; } ; r e t u r n $ s c o r e ; } ’ ) ;

foreach my $query ( keys % qu e r i e s ) {
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my @queryterms = s p l i t ( ” ” , $query ) ;

f o r my $document ( keys % i n v e r t e d i n d e x )
{

my $ s co r e = 0 ;
my $check = 1 ;
my $t fmax = t fmax ( $document ) ;
my $doc l e ng t h = do c l e n g t h (

$document ) ;
my $ t f a v g = t f a v g ( $document ) ;
my $ p h i s t o r y = p e r s o n a lH i s t o r y

( $document ) ;
my $ c l h i s t o r y = c l u s t e r H i s t o r y

( $ c l u s t e r i n f o {$document } ) ;
my $ c o l l a b s c o r e =

c o l l a b C l u s t e r S c o r e (
$ c l u s t e r i n f o {$document } , 1 )
;

foreach my $term ( @queryterms )
{ #Because t h e query
c o n t a i n s m u l t i p l e t e rms

my $Nk = Nk( $term ) ;
my $dfmaxcol =

dfmaxcol ( $ te rm ) ;

i f ( e x i s t s (
$ i n v e r t e d i n d e x {
$document }{ $term } ) )
{

my $ t f = $ i n v e r t e d i n d e x
{$document }{
$term } ;

eva l {
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$ s co r e =
$ s co r e
+ r a n k i n g f u n c t i o n
( $ t f
, $dfmaxcol
, $Nk
, $ c l h i s t o r y
, $ p h i s t o r y
, $ t f avg
, $doc l eng th
, $tfmax
, $ c o l l a b s c o r e
) ∗
$ t f ;

} ;
}
e l s e {

$check = 0 ;
}

}

i f ( $check ! = 0 ) {
$do c s c o r e s { $ q u e r i e s {

$query }}{ $document
} = $ s co r e ;

}
}

}

my $coun t = 0 ;
my $ o v e r a l l p e r c e n t = 0 ;

f o r my $query ( keys %doc s c o r e s ) {
$coun t ++;
my @topdocs = ( ) ;
my $ p e r c e n t = 0 ;
foreach my $d id ( s o r t { $do c s c o r e s { $query }{$b

} <=> $do c s c o r e s { $query }{ $a } } ( keys %{
$do c s c o r e s { $query }} ) ) {

i f ( @topdocs <= 9) {
push ( @topdocs , $d id ) ;
i f ( e x i s t s ( $ r e l e v a n c e j u dg emen t {

$query }{ $d id } ) )
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{
$ p e r c e n t = $ p e r c e n t

+ 1 0 ;
}

}
}
$ o v e r a l l p e r c e n t = $ o v e r a l l p e r c e n t + $ p e r c e n t ;

}

re turn ( $ o v e r a l l p e r c e n t / $coun t ) ;

}

sub b u i l dT r e e {
my ( $ t r e e , $n , $p ) = @ ;

re turn $ t r e e un l e s s $n > 0 ;
$n−−;
i f ( $n > 1&& $p ne ” l og ” ) {
$p = $ o p e r a t o r s [ i n t rand ($# o p e r a t o r s ) ] ;

$ t r e e−>s e t L e f t ( b u i l dT r e e ( Tree : : Binary−>new ( $p )
, $n , $p ) ) ;

$p = $ o p e r a t o r s [ i n t rand ($# o p e r a t o r s ) ] ;
$ t r e e−>s e t R i g h t ( b u i l dT r e e ( Tree : : Binary−>new ( $p

) , $n , $p ) ) ;
}
e l s i f ( $n == 1 && $p ne ” l og ” ) {

$p = $ t e rm i n a l s [ i n t rand ($# t e rm i n a l s )
] ;

$ t r e e−>s e t L e f t ( b u i l dT r e e ( Tree : : Binary
−>new ( $p ) , $n , $p ) ) ;

$p = $ t e rm i n a l s [ i n t rand ($# t e rm i n a l s )
] ;

$ t r e e−>s e t R i g h t ( b u i l dT r e e ( Tree : : Binary
−>new ( $p ) , $n , $p ) ) ;

}
e l s i f ( $n == 1 && $p eq ” log ” ) {

$p = $ t e rm i n a l s [ i n t rand ($# t e rm i n a l s )
] ;

$ t r e e−>s e t R i g h t ( b u i l dT r e e ( Tree : : Binary
−>new ( $p ) , $n , $p ) ) ;

}
e l s i f ( $n > 1 && $p eq ” log ” ) {

$p = $ o p e r a t o r s [ i n t rand ($# o p e r a t o r s )
] ;

$ t r e e−>s e t R i g h t ( b u i l dT r e e ( Tree : : Binary
−>new ( $p ) , $n , $p ) ) ;

}
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re turn $ t r e e ;
}

sub c r o s s o v e r T r e e {
my( $ t r e e a , $ t r e e b ) = @ ;
my $ p a r e n t = ( ) ;
my $ p a r e n t t e s t = i n t ( rand ( 2 ) ) ;
i f ( $ p a r e n t t e s t = = 1 ) {

$ p a r e n t = $ t r e e a−>getNodeValue ( ) ;
}
e l s e {

$ p a r e n t = $ t r e eb−>getNodeValue ( ) ;
}
my $ t r e e = Tree : : Binary−>new ( $ p a r e n t ) ;
#Make p r e c a u t i o n i f r o o t i s l og
i f ( $ p a r e n t ne ” l og ” ) {

$ t r e e−>s e t L e f t ( treeGoDown ( $ t r e e a , i n t (
rand ( $ t r e e a−>h e i g h t ( ) ) ) ) ) ;

$ t r e e−>s e t R i g h t ( treeGoDown ( $ t r e eb , i n t
( rand ( $ t r e eb−>h e i g h t ( ) ) ) ) ) ;

}
e l s e {

$ t r e e−>s e t R i g h t ( treeGoDown ( $ t r e eb , i n t
( rand ( $ t r e eb−>h e i g h t ( ) ) ) ) ) ;

}

re turn $ t r e e ;

}

sub treeGoDown {
my( $ t r e e , $ s t e p s ) = @ ;
f o r (my $x = 0 ; $x < $ s t e p s ; $x++) {

i f ( $ t r e e−>h a sL e f t ( ) == 1 && $ t r e e−>
ha sR i gh t ( ) = = 1 ) {

i f ( i n t ( rand ( 2 ) ) = = 0 ) {
$ t r e e = $ t r e e−>

g e tR i g h t ( ) ;
}
e l s e {

$ t r e e = $ t r e e−>g e t L e f t
( ) ;

}
}
e l s i f ( $ t r e e−>ha sR i gh t ( ) = = 1 ) {
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$ t r e e = $ t r e e−>g e tR i g h t ;
}

}

re turn $ t r e e ;
}

sub l o a d I n v e r t e d I n d e x {

my $ s t hdoc = $dbh−>p r e p a r e ( ” s e l e c t ∗ from
CREOccurance ” ) ;

$ s thdoc−>e x e c u t e o r d i e ” Unable t o e x e c u t e
que ry : $dbh−>e r r s t r \n” ;

%i n v e r t e d i n d e x = ( ) ;

whi le (my $row = $s thdoc−>f e t c h r ow h a s h r e f )
{

$ i n v e r t e d i n d e x {$row−>{”DID” }}{$row−>{”
Term” } } = $row−>{” Count ” } ;

}

$s thdoc−>f i n i s h ( ) ;

}

sub l o a dQue r i e s {
my $ s t h q u e r y = $dbh−>p r e p a r e ( ” s e l e c t ∗ from

Que r i e s ” ) ;
$ s t hque ry−>e x e c u t e o r d i e ” Unable t o e x e c u t e

que ry \n” ;
%q u e r i e s = ( ) ;

whi le (my $row = $s t hque ry−>f e t c h r ow h a s h r e f )
{

$ q u e r i e s {$row−>{”Query ” } } = $row−>{” ID
”}

}

$s t hque ry−>f i n i s h ( ) ;
}

sub l o adRe l evance Judgemen t s
{

my $ s t h r e l j u d = $dbh−>p r e p a r e ( ” s e l e c t ∗ from
Re levanceJudgemen t s ” ) ;
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$ s t h r e l j u d −>e x e c u t e o r d i e ” Unable t o e x e c u t e
que ry : $dbh−>e r r s t r \n” ;

%r e l e v a n c e j u dg emen t = ( ) ;

whi le (my $row = $ s t h r e l j u d −>f e t c h r ow h a s h r e f )
{

$ r e l e v a n c e j u dg emen t {$row−>{”Query ” }}{
$row−>{”DID” } } = $row−>{” Count ” } ;

}

$ s t h r e l j u d −>f i n i s h ( ) ;

}

sub l o a dU s e r P r o f i l e s
{

@use r p r o f i l e = ( ) ;

my $ s t h u p r o f i l e = $dbh−>p r e p a r e ( ” s e l e c t DID
from CREUse rP ro f i l e s where UserID = ’1 ’ ” ) ;

$ s t h u p r o f i l e −>e x e c u t e o r d i e ” Unable t o
e x e c u t e que ry : $dbh−>e r r s t r \n” ;

whi le (my $a ry = $ s t h u p r o f i l e −>f e t c h r ow )
{
push ( @us e r p r o f i l e , $a ry ) ;
}

$ s t h u p r o f i l e −>f i n i s h ( ) ;

}

sub f i xQ u e r i e s {
my ( $query ) = @ ;
my @queryterms = ( ) ;
$query = ˜ t r / [ A−Z ] / [ a−z ] / ;
my @tempqueryterms = s p l i t ( ” ” , $query ) ;

foreach my $word ( @tempqueryterms ) {
my $ho l d e r = 0 ;
foreach my $ t ( @stopwords ) {

i f ( $word eq $ t ) {
$ho l d e r = 1 ;

}
}
i f ( $ ho l d e r = = 0 ) {
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push ( @queryterms , p o r t e r ( $word
) )

}
}

re turn @queryterms ;
}

sub Nk {
my $word = $ [ 0 ] ;
my $nkcoun t = 0 ;

i f ( ! e x i s t s ( $nkhash {$word } ) )
{

f o r my $document ( keys % i n v e r t e d i n d e x )
{

i f ( e x i s t s ( $ i n v e r t e d i n d e x {
$document }{$word } ) ) {

$nkcoun t ++;
}

}
$nkhash {$word } = $nkcoun t ;

}
e l s e
{
$nkcoun t = $nkhash {$word } ;

}
re turn $nkcoun t ;

}

sub t fmax { # The Maximum Term Frequecny i n a Document
my $d id = $ [ 0 ] ;
my $ l a r g e s t = 0 ;

i f ( ! e x i s t s ( $ t fmaxhash { $d id } ) ) {
f o r my $word ( keys %{ $ i n v e r t e d i n d e x {

$d id }} ) {
i f ( $ l a r g e s t < $ i n v e r t e d i n d e x {

$d id }{$word } ) {
$ l a r g e s t =

$ i n v e r t e d i n d e x { $d id
}{$word } ;

}
}
$ t fmaxhash { $d id } = $ l a r g e s t ;

}
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e l s e
{

$ l a r g e s t = $ t fmaxhash { $d id } ;
}
re turn $ l a r g e s t ;

}

sub do c l e n g t h {
my $d id = $ [ 0 ] ;
my $ t o t a l = 0 ;
i f ( ! e x i s t s ( $ do c l e ng t h h a s h { $d id } ) ) {

f o r my $word ( keys %{ $ i n v e r t e d i n d e x {
$d id }} ) {

$ t o t a l = $ t o t a l +
$ i n v e r t e d i n d e x { $d id }{$word
} ;

}
$do c l e ng t h h a s h { $d id } = $ t o t a l ;

}
e l s e {

$ t o t a l = $do c l e ng t h h a s h { $d id } ;
}
re turn $ t o t a l ;

}

sub doc l e ng t h avg {
my $ t o t a l = 0 ;
f o r my $d id ( keys % i n v e r t e d i n d e x ) {

f o r my $word ( keys %{ $ i n v e r t e d i n d e x {
$d id }} ) {

$ t o t a l = $ t o t a l +
$ i n v e r t e d i n d e x { $d id }{$word
} ;

}
}
re turn $ t o t a l / $numberodocs ;

}

sub doccoun t {
my @docids = ( keys % i n v e r t e d i n d e x ) ;
re turn $# doc i d s ;

}

sub t f a v g { #Average Term Frequency i n t h e c u r r e n t
document
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my $d id = $ [ 0 ] ;
my $coun t = 0 ;
my $ t o t a l = 0 ;
i f ( ! e x i s t s ( $ t f a v g h a s h { $d id } ) ) {

f o r my $word ( keys %{ $ i n v e r t e d i n d e x {
$d id }} ) {

$coun t ++;
$ t o t a l = $ t o t a l +

$ i n v e r t e d i n d e x { $d id }{$word
} ;

}
$ t f a v gh a s h { $d id } = $ t o t a l / $coun t ;

}

# r e t u r n $ t o t a l / $coun t ;
re turn $ t f a v gh a s h { $d id } ;
#Average Term Frequency i n t h e c u r r e n t

document
}

sub t f a v g c o l {
my $ t o t a l = 0 ;
f o r my $d id ( keys % i n v e r t e d i n d e x ) {

$ t o t a l = $ t o t a l + t f a v g ( $d id ) ;
}

re turn $ t o t a l / doccoun t ( ) ;
}

sub dfmaxcol {
my $word = $ [ 0 ] ;
my $ l a r g e s t = 0 ;
i f ( ! e x i s t s ( $d fmaxco lhash {$word } ) ) {

f o r my $d id ( keys % i n v e r t e d i n d e x ) {
i f ( e x i s t s ( $ i n v e r t e d i n d e x { $d id

}{$word } ) ) {
i f ( $ i n v e r t e d i n d e x { $d id

}{$word } ) {
$ l a r g e s t = $ i n v e r t e d i n d e x

{ $d id }{$word
} ;

}
}

}
$dfmaxco lhash {$word } = $ l a r g e s t ;
}
e l s e {
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$ l a r g e s t = $dfmaxco lhash {$word } ;
}
re turn $ l a r g e s t ;

}

sub df { #Number o f Documents i n A C o l l e c t i o n That
Con ta in A Word ( SAME AS NK)

my $word = $ [ 0 ] ;
my $ t o t a l = 0 ;
f o r my $d id ( keys % i n v e r t e d i n d e x )
{

i f ( e x i s t s ( $ i n v e r t e d i n d e x { $d id }{$word } )
) {

$ t o t a l ++;
}

}

re turn $ t o t a l ;
}

sub hashVa lueDescend ing {
$do c s c o r e s { $query }{$b} <=> $do c s c o r e s { $query }{ $a } ;

}

sub p e r s o n a lH i s t o r y {

my $document = $ [ 0 ] ;
my $check = 0 ;
foreach my $doc ( @u s e r p r o f i l e ) {

i f ( $document eq $doc ) {
$check = 1 ;

}
}

re turn $check ;
}

sub c l u s t e r H i s t o r y {
my $ c l u s t e r = $ [ 0 ] ;

i f ( e x i s t s ( $ c l u s t e r h i s t o r y { $ c l u s t e r } ) ) {
re turn 1 ;

}
e l s e {

re turn 0 ;
}

81



}

sub c o l l a b C l u s t e r S c o r e {
my( $c lu s t e rnum , $ u s e r i d ) = @ ;

i f ( e x i s t s ( $ c o l l a b s c o r e t a b l e { $c l u s t e r num } ) ) {
re turn $ c o l l a b s c o r e t a b l e { $c l u s t e r num } ;

}
e l s e {
my $ s co r e = 0 ;

foreach my $ id ( keys % c l u s t e r h i s t o r y ) {
i f ( e x i s t s $ c l u s t e r h i s t o r y { $ id }{

$c l u s t e r num } ) {
i f ( $ i d ! = $ u s e r i d ) {

$ s co r e = $ s co r e + $sim
{ $ id }{ $ u s e r i d } ;

}
}

}

$ c o l l a b s c o r e t a b l e { $c l u s t e r num } = $ s co r e ;

re turn $ s co r e ;
}

}

sub bu i l dS imMa t r i x {

my $ u s e r i d = $ [ 0 ] ;

my $ s t h c l u h i s t o r y = $dbh−>p r e p a r e ( ” s e l e c t
CREUse rP ro f i l e s . UserID , CRECluster . C l u s t e r from
CREUserPro f i l e s , CRECluster where CRECluster . DID =
CREUse rP ro f i l e s . DID” ) ;

$ s t h c l u h i s t o r y −>e x e c u t e o r d i e ” Unable t o e x e c u t e
que ry \n” ;

%c l u s t e r h i s t o r y = ( ) ;

whi le (my $row = $ s t h c l u h i s t o r y −>f e t c h r ow h a s h r e f ) {
$ c l u s t e r h i s t o r y {$row−>{”UserID ” }}{$row−>{”

C l u s t e r ” } } = 1 ;
}

$ s t h c l u h i s t o r y −>f i n i s h ( ) ;
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foreach my $u s e r ( keys % c l u s t e r h i s t o r y ) {
i f ( $ u s e r i d ! = $u s e r ) {
$sim{ $u s e r }{ $ u s e r i d } = 0 ;

foreach my $ c l u s t e r ( keys %{
$ c l u s t e r h i s t o r y { $ u s e r i d }} ) {

i f ( e x i s t s $ c l u s t e r h i s t o r y {
$u s e r }{ $ c l u s t e r } ) {

$sim{ $u s e r }{ $ u s e r i d
} = $sim{ $u s e r }{
$ u s e r i d } + 1 ;

}
}

}
}

}

sub a v g F i t n e s s P o p u l a t i o n {
my $coun t = 0 ;
my $ t o t a l = 0 ;

f o r my $ t r e e ( keys %popu l a t i o n ) {
$coun t ++;
$ t o t a l = $ t o t a l + $ p o p u l a t i o n { $ t r e e } ;

}

re turn $ t o t a l / $coun t ;
}

sub l o a d C l u s t e r I n f o {
%c l u s t e r i n f o = ( ) ;

my $ s t h c l u i n f o = $dbh−>p r e p a r e ( ” s e l e c t ∗ from
CRECluster ” ) ;

$ s t h c l u i n f o −>e x e c u t e o r d i e ” Unable t o e x e c u t e
que ry : $dbh−>e r r s t r \n” ;

whi le (my $row = $ s t h c l u i n f o −>f e t c h r ow h a s h r e f )
{

$ c l u s t e r i n f o {$row−>{”DID” } } = $row−>{”
C l u s t e r ” } ;

}

$ s t h c l u i n f o −>f i n i s h ( ) ;

}
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sub l o a dC l u s t e r H i s t o r y {
%c l u s t e r h i s t o r y = ( ) ;

my $ s t h c l u h i s t o r y = $dbh−>p r e p a r e ( ” s e l e c t
CRECluster . C l u s t e r from CREUserPro f i l e s ,
CRECluster where CRECluster . DID =
CREUse rP ro f i l e s . DID and CREUse rP ro f i l e s .
UserID = 1 ” ) ;

$ s t h c l u h i s t o r y −>e x e c u t e o r d i e ” Unable t o
e x e c u t e que ry : $dbh−>e r r s t r \n” ;

whi le (my $row = $ s t h c l u h i s t o r y −>
f e t c h r ow h a s h r e f )

{
$ c l u s t e r h i s t o r y {$row−>{” C l u s t e r ”

} } = 1 ;
}

$ s t h c l u h i s t o r y −>f i n i s h ( ) ;

}
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APPENDIX C

CLUSTERING SOURCE CODE

# ! / op t / l o c a l / b i n / p e r l −w

# K−Means Document C l u s t e r i n g Program
# S i z e o f t h e C l u s t e r Taken From t h e Command L ine

use DBI ;

( $sec , $min , $hour , $mday , $mon , $year , $wday ,
$yday , $ i s d s t ) = l o c a l t ime ( t ime ) ;
p r i n t f ”%4d−%02d−%02d %02d:%02d:%02d\n” ,
$yea r +1900 ,$mon+1 , $mday , $hour , $min , $ sec ;

#Hash o f { documentID }{ t e rm } = Count
%occu r anc e = ( ) ;
#Hash o f { documentID }{ documentID } = Di s t an c e
%d i s t a n c e s = ( ) ;
#Hash o f { documentID } = C l u s t e r
%c l u s t e r = ( ) ;
$ c l u s t e r s i z e = $ARGV[ 0 ] ;

pr in t ” F i n a l C l u s t e r S i z e : ” . $ c l u s t e r s i z e . ”\n” ;

my $dsn = ’DBI : mysql : t h e s i s : l o c a l h o s t ’ ;
my $db use r name = ’ r o o t ’ ;
my $db password = ’ ’ ;
my ( $id , $password ) ;
my $dbh = DBI−>connect ( $dsn , $db use r name ,

$db password ) ;

@frdocs = ( ) ;
@b i g g e s t c l u s t e r = ( ) ;

$ s t h = $dbh−>p r e p a r e ( ” s e l e c t ∗ from CRSOccurance ” ) ;
$ s th−>e x e c u t e o r d i e ” Unable t o e x e c u t e que ry : $dbh−>

e r r s t r \n” ;

whi le ( $row = $s th−>f e t c h r ow h a s h r e f )
{

$occu r ance {$row−>{”DID” }}{$row−>{”Term” } } =
$row−>{” Count ” } ;

}
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$s th−>f i n i s h ( ) ;

f o r $document ( keys %occu r ance ) {
push ( @frdocs , $document ) ;

}

%documentwordcount = ( ) ;

f o r $document ( keys %occu r ance ) {
f o r $term ( keys %{ $occu r ance {$document }} ) {

i f ( e x i s t s ( $documentwordcount {$document
} ) ) {

$documentwordcount {$document
} = $documentwordcount {
$document } + $occu r ance {
$document }{ $term } ;

}
e l s e {

$documentwordcount {$document
} = $occu r ance {$document }{
$term } ;

}
}

}

pr in t ” StepOne F i n i s h e d \n” ;

# Th i s Hash Keeps Track o f How Large Each C l u s t e r I s
%c l u s t e r s i z e s = ( ) ;

foreach $document ( @frdocs ) {
$ c l u s t e r {$document } = 1 ;

i f ( e x i s t s ( $ c l u s t e r s i z e s {1} ) ) {
$ c l u s t e r s i z e s {1} = $ c l u s t e r s i z e s

{ 1 } + 1 ;
}
e l s e {

$ c l u s t e r s i z e s { 1 } = 1 ;
}

}

$ n umb e r o f s p l i t s = 1 ;

whi le ( $ n umb e r o f s p l i t s < $ c l u s t e r s i z e ) {
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$ l a r g e s t = 0 ;
$ n umb e r o f s p l i t s ++;

foreach $key ( keys % c l u s t e r s i z e s ) {
i f ( $ c l u s t e r s i z e s {$key } > $ l a r g e s t ) {

$ l a r g e s t = $ c l u s t e r s i z e s {$key
} ;

$ l a r g e s t C l u s t e r = $key ;
}

}

pr in t ” S p l i t t i n g L a r g e s t C l u s t e r ” .
$ l a r g e s t C l u s t e r . ”\n” ;

pr in t ” C l u s t e r S i z e ” . $ c l u s t e r s i z e s {
$ l a r g e s t C l u s t e r } . ”\n” ;

@b i g g e s t c l u s t e r = ( ) ;
foreach $ id ( keys % c l u s t e r ) {

i f ( $ c l u s t e r { $ id } == $ l a r g e s t C l u s t e r ) {
push ( @b i g g e s t c l u s t e r , $ i d )

}
}

@twodocs = g r e a t e s t d i s t a n c e ( @b i g g e s t c l u s t e r ) ;
$po in tA = $twodocs [ 0 ] ;
$po in tB = $twodocs [ 1 ] ;
#

foreach $ id ( keys % c l u s t e r ) {
i f ( $ c l u s t e r { $ id } ==

$ l a r g e s t C l u s t e r ) {
$ d i s t a =

d i s t a n c e (
$id , $po in tA
) ;

$ d i s t b =
d i s t a n c e (
$id , $po in tB
) ;

i f ( $ d i s t a <
$ d i s t b ) {

87



$ c l u s t e r
{ $ id
} =
$ l a r g e s t C l u s t e r
;

}
e l s e {

$ c l u s t e r
{ $ id
} =
$ n umb e r o f s p l i t s
;

}
}

}
pr in t $ c l u s t e r { $poin tA } . ”\ t ” . $ c l u s t e r { $po in tB

} . ”\n” ;

%c l u s t e r s i z e s = ( ) ;
foreach $ id ( keys % c l u s t e r ) {

$c lLoc = $ c l u s t e r { $ id } ;
i f ( e x i s t s ( $ c l u s t e r s i z e s { $c lLoc } ) ) {

$ c l u s t e r s i z e s { $c lLoc } =
$ c l u s t e r s i z e s { $c lLoc } + 1 ;

}
e l s e {

$ c l u s t e r s i z e s { $c lLoc
} = 1 ;

}
}

}

$ s t hb = $dbh−>p r e p a r e ( ”CREATE TABLE CRSClus te r (DID
VARCHAR(30 ) , C l u s t e r INT , PRIMARY KEY( ‘DID ‘ , ‘
C l u s t e r ‘ ) ) ” ) ;

$s thb−>e x e c u t e ;
$s thb−>f i n i s h ( ) ;

foreach $ id ( keys % c l u s t e r ) {
$ s t h c = $dbh−>p r e p a r e ( ” i n s e r t i n t o CRSClus te r

v a l u e s ( ’ ” . $ i d . ” ’ , ’ ” . $ c l u s t e r { $ id } . ” ’ ) ” ) ;
$ s t hc−>e x e c u t e ;
$ s t hc−>f i n i s h ( ) ;

}

foreach $ t h i n g ( keys % c l u s t e r s i z e s ) {
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pr in t $ t h i n g . ”\ t ” .
$ c l u s t e r s i z e s { $ t h i n g } . ”\n” ;

}

( $sec , $min , $hour , $mday , $mon , $year , $wday ,
$yday , $ i s d s t ) = l o c a l t ime ( t ime ) ;
p r i n t f ”%4d−%02d−%02d %02d:%02d:%02d\n” ,
$yea r +1900 ,$mon+1 , $mday , $hour , $min , $ sec ;
e x i t ;

sub d i s t a n c e {
$ d i s t a n c e = 0 ;
$ d i f f e r e n c e = 0 ;
$d idx = $ [ 0 ] ;
$d idy = $ [ 1 ] ;

i f ( ! e x i s t s ( $ d i s t a n c e s { $d idx }{ $d idy } ) ) {

i f ( $d idx ne $d idy ) {

f o r $term ( keys %{ $occu r ance { $d idx }} )
{

i f ( e x i s t s ( $occu r ance {
$d idy }{ $term } ) ) {

$ d i f f e r e n c e
= (
$occu r ance {
$d idx }{
$term } −
$occu r ance {
$d idy }{
$term } ) ∗∗2 ;

}
e l s i f ( ! e x i s t s (

$occu r ance { $d idy }{
$term } ) ) {

$ d i f f e r e n c e
= (
$occu r ance {
$d idx }{
$term } − 0)
∗∗2 ;

}
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i f ( e x i s t s ( $ d i s t a n c e {
$d idx }{ $d idy } ) ) {

$ d i s t a n c e =
$ d i s t a n c e
+
$ d i f f e r e n c e
;

}
e l s e {

$ d i s t a n c e =
$ d i f f e r e n c e
;

}
}

f o r $term ( keys %{ $occu r ance {
$d idy }} ) {

i f ( ! e x i s t s ( $occu r ance {
$d idx }{ $term } ) )

{
$ d i f f e r e n c e

= (
$occu r ance {
$d idy }{
$term } − 0)
∗∗2 ;

$ d i s t a n c e =
$ d i s t a n c e
+
$ d i f f e r e n c e
;

}

}
}

e l s e {
$ d i s t a n c e = 0 ;

}

$ d i s t a n c e s { $d idx }{ $d idy } = $ d i s t a n c e ;
$ d i s t a n c e s { $d idy }{ $d idx } = $ d i s t a n c e ;

}
e l s e {

$ d i s t a n c e = $ d i s t a n c e s { $d idx }{ $d idy } ;
}
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re turn $ d i s t a n c e ;
}

sub g r e a t e s t d i s t a n c e {
@ho l d e r l i s t = @ ;
i f ($# h o l d e r l i s t > 200) {

$ s t a r t p o i n t = i n t ( ( $ # h o l d e r l i s t ) / 1 0 0 )
;

@documen t l i s t = @ho l d e r l i s t [ 0 . .
$ s t a r t p o i n t ] ;

}
e l s e {

@documen t l i s t = @ho l d e r l i s t ;
}

$ g r e a t e s t d i s t a n c e = 0 ;
@fu r t h e s t two = ( ) ;

foreach $documentone ( @documen t l i s t ) {
foreach $documenttwo ( @documen t l i s t ) {

$ d i s t a n c e = d i s t a n c e (
$documentone , $documenttwo )
;

i f ( $ d i s t a n c e >
$ g r e a t e s t d i s t a n c e )
{

$ g r e a t e s t d i s t a n c e =
$ d i s t a n c e ;

$ p o i n t a = $documentone
;

$ po i n t b = $documenttwo
;

}
}

}
pr in t $ p o i n t a . ”\ t ” . $ p o i n t b . ”\n” ;

push ( @fur thes t two , $ p o i n t a ) ;
push ( @fur thes t two , $ po i n t b ) ;
re turn @fur t h e s t two ;

}
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