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Abstract

In this thesis we will solve the following shortest path problem. Let P be an arrange-

ment of equilateral non-overlapping translated triangles in the plane and two points S and

T so that the segment ST is parallel to a side of each of the triangles. Assume one needs to

navigate from point S to point T by evading the triangular obstacles without any previous

knowledge of the location of the obstacles. The navigator becomes aware of a triangle once

it is contacted along the path. We will give an algorithm which enables the navigator to

reach the target point T by a path of length at most
√

3(d+ 2
d
), where d is the length of ST .

Section 4 contains the proof, which is preceded by three sections reviewing some of the

main results and methods of previously considered shortest path problems. In particular we

will outline three papers concerning shortest path problems. First we will address the idea of

permeability of a layer mentioned by J. Pach [2] in “On the Permeability Problem” using an

integration technique. Then, we will show an improvement of permeability by G. Fejes Tóth

[4] in his paper entitled ”Evading Convex Discs” via existence of a path using the sweeping of

a direction technique. Finally we will outline Chapter 3 of ”Shortest Paths without a Map”

by Papadimitriou and Yannakakis [3], where they show three simple heuristics of evading

rectangles.
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Chapter 1

Introduction

The idea of evading convex discs was first addressed in the late 1960’s by L. Fejes Tóth.

By the 1980’s, the topic of evading convex discs was being studied by mathematicians in

a new mathematical field called computational geometry. Numerous publications centered

around the idea of evading convex shapes in the plane.

The title “evading triangles without a map” refers to navigating through a plane to-

ward a target point while evading unknown triangular obstacles. To visualize this problem,

imagine walking through a thick forest with a compass and knowing in what direction and

how far to travel. To restrict this forest we will assume there are mountains that are each

translates of other, have bases of equilateral triangles, and are impassable. Finally we will

also assume that the given direction is parallel to one side of the mountains’ base. While

moving the traveler cannot see through the thick forest, therefore he must rely on making

decision once encountering a mountain.
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Chapter 2

Background Research

In the 1970’s several results were published about the notion of permeability of layers.

A layer is defined as a parallel strip of a plane with width w containing non-overlapping

open domains called obstacles. The permeability of a layer was defined by L. Fejes Tóth to

be w
inf`

, where ` is the length of a path from one edge of the layer to the other which evades

all open domains of the layer. J. Pach [2] in ”On the Permeability Problem” proved the

following:

Theorem 2.1. (J. Pach) The permeability of any layer of squares is at most 2
3
, and this

bound can be achieved.

Let R = x1x2x3x4 be a rectangle and ψR = Si|i ∈ I be a set of non-overlapping squares

inside R (Figure 2.1). For any point x ∈ x1x2 we will define a path Px to be a path from x

to y, where y is the only point on x3x4 such that the segment xy is perpendicular to x1x2,

which evades ψR. In order to evade ψR for every segment uivi ∈ xy which intersects a square

S ∈ ψR replace uivi by the portion of the boundary between ui and vi on Si which is the

shortest; we will denote this as li(x). Let L(x) be the length of the path Px

Lemma 2.1.
∫ x2

x1
L(x)dx ≤ 2

3
A(R), where A(R) is the area of the rectangle R.

Proof of Lemma 2.1 will first show∫ x2

x1
(li(x)− d(ui(x)vi(x)))dx ≤ A(Si)

2
.

If λi(x) denotes the length of the shortest path of the boundary of Si connecting ui(x) and

2



x1
x2

x3x4

X

Y

Px

Figure 2.1: Path Px in rectangle R

vi(x), we have

∫ x2

x1

li(x)− d(ui(x)vi(x))dx =

∫ x2

x1

λi(x)dx− A(Si)

∫
λi(x)dx is evaluated in the following way

If Si has two of its sides parallel to x1x2 the act of computing is trivially 2
3
A(R) , thus we

will assume there exist a positive angle αi between one of the sides of Si and x1x2 (Figure

2.1). We can also pick a side of Si so that 0 < αi <
π
4
. Now we will label the vertices s1,

s2, s3, and s4 moving left to right with respect to x1x2. We will define the side length of

Si to be di. We will now split Si into three regions R1, R2, and R3 by constructing lines

perpendicular to x1x2 through each of the vertices of Si (Figure 2.2). For each region we will

consider the leftmost vertical line to be it’s y-axis and define ri to be the interval spanned

horizontally by region Ri.
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α

s1

s2

s3

s4

R1

R2

R3

di

r1 r2
r3

Figure 2.2: Square Regions

We will compute
∫
λi(x)dx as

∫
r1
λi(x)dx +

∫
r2
λi(x)dx +

∫
r3
λi(x)dx.

Now by symmetry R1 = R3, thus we need only compute for R1 and R2.

λi = x
di sin(αi)

(di + di tan(αi)) inside R1.(Figure 2.3)

Since the horizontal distance of the region is di sin(αi) we calculate
∫
r1
λi(x)dx as

∫ di sin(αi)

0
x

di sin(αi)
(di+

di tan(αi))dx = x2(di+di tan(αi))
2(di sin(αi))

|di sin(αi)
0 = (di sin(αi))(di+di tan(αi))

2
.

α

S1

S2

S3

S4

di

di sin(αi)

di tan(αi)

R1

Figure 2.3: Region 1

Now for R2 we calculate the integral over half of the region since it is symmetric. Therefore

4



for the left half of the interval r2, (Figure 2.4)

λi = 2di − 2( x
cos(αi)

) with the width of r2 = di
√

2 cos(π
4

+ αi).

So
∫
r2
λi(x)dx = 2

∫ di
√

2 cos(π4 +αi)

2

0
2di − 2( x

cos(αi)
)dx = 2(2dix− x2

cos(αi)
|
di
√

2 cos(π4 +αi)

2
0 ) =

di
√

2 cos(π
4

+ αi)(di − di
√

2 cos(π
4

+αi)

4 cos(αi)
)

α

S1

S2

S3

S4

di
√

2 cos(π4 + αi)

x

Figure 2.4: Region 2

Now by adding the two previous results we get the left half of Si and by symmetry we mul-

tiply this sum by 2. Therefore
∫
λi(x)dx = di sin(αi)(di +di tan(αi) +di

√
2 cos(π

4
+αi)(2di−

di
√

2 cos(π
4

+αi)

2 cos(αi)
= 3

2
d2
i

1+2 cos2(αi)
3 cos(αi)

≤ 3
2
A(Si).

Therefore
∫ x2

x1
li(x)− d(ui(x)vi(x))dx =

∫
λi(x)dx− A(Si) ≤ 3

2
A(Si)− A(Si) = A(Si)

2

Thus
∫ x2

x1
li(x)dx =

∫ x2

x1
li(x)−d(ui(x)vi(x))+d(ui(x)vi(x))dx =

∫ x2

x1
li(x)−d(ui(x)vi(x))dx+∫ x2

x1
d(ui(x)vi(x))dx ≤ A(Si)

2
+ A(Si) = 3A(Si)

2
.

The bound is achieved when ψR fills the layer (a tiling), thus L(x) is just the sum of all li(x)

which produces the bound of 3
2
.

G. Fejes Tóth [4] improved this bound in his paper entitled ”Evading Convex Discs”.
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Theorem 2.2. (G. Fejes Tóth) Given a set of disjoint open squares with side-lengths not

exceeding 1, any two points of the plane lying outside the squares at distance q from one

another can be connected by a path evading the squares and having length at most 3q+1
2

.

We let ψ be the set of open squares of side-length at most 1, as in the previous theorem.

For labeling purposes we assume X is on the side X1X2. We define λ(XY ) to be the shortest

path on the boundary of S from X to a point Y on S. Also define δd(XY ) = δ(XY ) to be

the distance gained by the vector
−−→
XY in direction d. We define the path π(P, d) to be an

infinite path emanating from P in direction d. π(P, d) = π is constructed by first traveling

on a ray
−→
R in direction of d, then when contacting a square S ∈ ψ, evade S by traveling

along the boundary of S from X to Xi such that δ(XXi)
λ(XXi)

is maximum, and then continue in

the direction of d from point Xi. Notice that π(P, d) is not uniquely determined whenever

for some S ∈ ψ there exist more than one point Xi at which δ(XXi)
λ(XXi)

is maximum.

Now for some point X on π we define l(x) to be the length of the arc of π between P and

X. To prove Theorem 2.2, first show

l(x) ≤ 3

2
(δ(PX) + 1)

To do so we need the following:

Lemma 2.2. Let X be a boundary point on the square S = X1X2X3X4 with side length 1,

such that the ray emanating from X in the direction d intersects S, then we have:

max
1≤i≤4

δ(XXi)

λ(XXi)
≥ 2

3

Proof of Lemma 2.2

For orientation purposes we assume that d is vertical and oriented downward. Also we

can assume that π contacts S between X1 and X2. Since the case where the side X1X2 is

perpendicular to d is trivial, we can also by symmetry assume that X1 is the vertex which

6



is vertically the highest. Now define a = δ(X1X2) and b = δ(X1X4) (Figure 2.5). Obviously

a2 + b2 = 1.

X1

X2

X3

X4

d

X
a

b

Figure 2.5: Labeling Square

Now we consider two cases

Case 1: a ≥ b

In this case a ≥
√

2
2

, therefore δ(XX2)
λ(XX2)

= a ≥
√

2
2
> 2

3

Case 2: 0 < a <
√

2
2
< b < 1

In this case we show that either traveling to X3 or X4 produces δ
λ
≥ 2

3
.

Notice that δ(X1X4)
λ(X1X4)

= b > 2
3

and δ(X2X4)
λ(X2X4)

= b−a
2
< 1

2
< 2

3
.

Also notice that as X moves from X1 to X2 the ratio δ(XX4)
λ(XX4)

decreases, therefore there exists

some point X0 between X1 and X2 where δ(X0X4)
λ(X0X4)

= 2
3
. Obviously if X ∈ X0X1, then

δ(XX4)
λ(XX4)

≥ 2
3
.

Now we assume X ∈ X0X2 and show that δ(XX3)
λ(XX3)

> 2
3
.

First notice that δ(XX3)
λ(XX3)

increases as X approaches X2, therefore it suffices to show that

δ(X0X3)
λ(X0X3)

≥ 2
3
.

We denote the distance from X0 to X1 by x therefore producing:

δ(X0X3) = a+ b− ax with λ(X0X3) = 2− x,

7



δ(X0X4) = b− ax with λ(X0X4) = 1 + x.

Since δ(X0X4)
λ(X0X4)

= 2
3

= b−ax
1+x

, we have 2(1 + x) = 3(b - ax)

We want to show that 2(2−x) < 3(a+b−ax). Since b > 0 this is equivalent to 3a2−4a+1 < 0,

which is indeed true for
√

2
2
< a < 1. Therefore we have shown Lemma 2.2 to be true.

Now returning to Theorem 2.2, if we begin π at a point P and end at a point X of π which

does not lie on a boundary of some S ∈ ψ, then it is obvious that:

(1)

l(X) ≤ 3

2
δ(PX)

Thus we will look at the case where X lies on a boundary of a square which π evades. We

will denote this square by Si and let the first point where π contacts it be Vi and the last

point where π contacts Si be Wi. Since l(Vi) ≤ 3
2
δ(PVi), It is sufficient to prove the bound

for l(X)− l(Vi)

We have two cases to consider.

Case 1: X and Wi lie on the same side of Si

Notice XWi ≤ 1, therefore:

(2)

l(X)− l(Vi) = l(Wi)− l(Vi)−XWi ≤
3

2
δ(ViWi)− δ(XWi) =

3

2
(δ(ViWi)− δ(XWi)) +

1

2
δ(XWi) ≤

3

2
δ(ViX) +

1

2

Case 2: X and Vi lie on the same side of Si

In this case notice that 3
2
δ(ViX) + 1

2
+ l(Vi) − l(X) is a linear function of x. Thus it is

8



enough to show that the endpoints satisfy the bound. If X is in fact a vertex of S, then this

expression is positive, and if X = Vi, then as seen above this expression is 1
2
. Thus we know

that for any point X on the path π, l(X) ≤ 3
2
(δ(PX) + 1).

Now for two points A and B we need to show that there exists a path π emanating from

point A, travels through point B, and has a length of at most 3q+1
2

.

If there exist some direction d such that πA,d passes through B, then the above lemma shows

existence. Therefore we shall assume there is no such direction.

d

B

A

M1

M2 l

Figure 2.6: Multiple π paths

For every direction d we define a line l perpendicular to d passing through point B. As

previously mentioned πP,d is not uniquely determined, thus we will label the intersection of

πA,d and l by mi, for i ∈ I and order I from left to right on l. Consider d to be nearly

perpendicular to AB pointing to the right and slightly downward; for such a d it is obvious

9



that mi is to the left of B. Similarly if d is to the left and slightly downward, mi to the right

of B. Now we sweep the direction d. Notice as we sweep d, if between two such directions π

is uniquely determined, then mi is continuous along l. Now if for d, there exist two vertices

which satisfy Lemma 2.2, then we have two points which intersect l ; one is the right most

point of a continuous interval of l and the other is the left most point of a continuous interval

of l. Since there is no d such that B ∈ πA,d, then there must be some direction which has

points mi and mj separated by B (Figure 2.6). We will consider this direction.

Now we will look at direction −d and πB,−d noticing that this path must intersect one of the

paths πA,d. Let the first point where πB,−d intersect πA,dbe Z. Now Z will be on a boundary

point of some Si ∈ ψ. Thus by inequality (1) we know either πA,d or πB,−d is at most 3
2
δ

and the other by (2) is at most 3
2
δ + 1

2
. Now obviously δ−d(BZ) = δd(ZB) thus it follows

that when connecting the appropriate π from A and B respectively there exists a path PA,d

containing point B such that l(B) ≤ 3
2
AB + 1

2
.

Also G. Fejes Tóth uses a similar argument to show:

Theorem 2.3. Given a set of disjoint open unit circles, any two points of the plane lying

outside the circles at distance d from one another can be connected by a path evading the

circles and having length at most 2π√
27

(d− 2) + π

Papadimitiou and Yannakakis [3] published ”Shortest Paths without a Map” in Novem-

ber 1988, which is considered the first paper on this subject written by those working in the

new field called ”computational geometry”. They introduce the concept of moving through

the plane toward a target point while evading unknown obstacles in the section entitled ”Ob-

stacle Scenes”. It seems natural to compare the algorithmic path to the shortest existing

path, and show a bound for the ratio of their lengths. Surprisingly, in the case when the

obstacles are rectangles with one side parallel to the segment having endpoints of the start

(S) and target (T) such bound does not exist.

10



Theorem 2.4. (Papadimitiou and Yannakakis) In the case of parallel rectangles there is no

upper bound for the ratio of the algorithmic path to the shortest path.

We prove Theorem 2.4 by constructing a configuration of rectangles which forces the

ratio to be at least Ω(n2)

Ω(n
3
2 )

. We say that the path has order n, denoted by Ω(n), if the ratio

is determined by some constant multiplied with n. In the construction, the start and target

points are distance n apart. The configuration will consist of n rectangles each of which have

a horizontal side length of ε and a vertical side length of n. The position of the rectangles

will be revealed as we challenge the given algorithm. First we place a rectangle such that

n
2

of the length of the rectangle is above the current position of the traveler and n
2

is below

(Figure 2.7). Now continue this with n rectangles at each point where the traveler crosses

the last vertical line shared which has a common point with the previously evaded obstacle.

Thus the vertical distance traveled is at least n
2

for each of the rectangles and obviously a

horizontal distance of n covered by the entire path, thus the path for the given algorithm is

at least n2

2
+ n, thus being Ω(n2), and therefore the ratio of this path to the shortest path

as n goes to infinity exceeds any constant bound.

Now the shortest path is found noticing that there exist a horizontal line at a distance ≤

n
√
n from the segment ST which contacts less than

√
n rectangles. For contradiction assume

this line does not exist, thus assuming every line from n
√
n above or below the segment ST

contacts at least n rectangles. Conversely, if all lines within n
√
n contact at least

√
n rectan-

gles, then sweeping a line from bottom to top of our range and integrating the total length

of the common points of the horizontal line with the rectangles we conclude that the area

covered by the intersection of all the lines and the rectangles is 2n2ε. Since there are exactly

n rectangles of length n and width ε, then there is exactly n2ε area covered by the rectangles.

Therefore there exists a horizontal line that contacts less than
√
n rectangles, so we will use

this line to traverse the layer by using the simple evade and return technique. Therefore

traversing the layer on this line, with the evade and return heuristic, will have no more

11



S T

Figure 2.7: Rectangle configuration

than n
√
n vertical distance and the distance of this line from ST is no more than n

√
n. So

there exists a path from S to T that has a length of less than 3n
√
n, thus being ≤ Ω(n

3
2 ).

The paper also addresses the issue of the obstacles being squares.

Definition 2.1. The ratio of a given algorithm is defined ratio of the longest path created by

the algorithm evading any configuration of obstacles in the plane to the length of the segment

ST where s is the starting point and T is the target point of the path.

Theorem 2.5. No algorithm for evading square obstacles in a plane can produce a ratio

better than 3
2
.

To prove Theorem 2.5, following the exact same construction as before, an algorithm

can produce a path length no shorter than Ω(3
2
n). On the other hand, the same integration

method shows a path of length Ω(n), thus algorithms cannot produces a ratio better than

12



3
2
.

Finally Papadimitiou and Yannakakis give a heuristic that produces a ratio arbitrarily

close to 3
2

as n grows. The heuristic involves a bias which determines the direction the trav-

eler evades a square. The heuristic allows for the path to evade a square by always choosing

the corner of the square closest to segment ST provided it is no farther than 1
2

+ β, where

β is the bias, otherwise evade the square by going to the other corner. To determine the

bias we will first define ε = 1√
n

for n the length of ST , then begin with β = ε. Now while

moving through the plane, if the path requires you to move farther from ST then increase

β by adding ε, but if you move closer to the segment ST , then decrease β by subtracting ε.

In the heuristic it is obvious that β is never larger than 1
2

therefore we never travel a

vertical distance farther than
1
2

ε
= Ω(

√
n) from the segment ST . Thus the only concern is

when the path requires a vertical travel of more than 1
2

to evade a square. In this case we

notice that we never travel farther than 1
2

+ β. Figure 2.8 is a possible graph of β.

ε

+ε -ε

Bias β

number of squares contacted

Figure 2.8: β graph

Notice that whenever the heuristic requires a travel of length greater than 1
2

the value of

β decreases. Now whenever this occurs there exists some evasion earlier, where β had been

13



increased to the current value, therefore the vertical travel is equalized up to ε throughout

the path. Since n · ε =
√
n therefore as n grows, the heuristic produces a ratio arbitrarily

close to 3
2
. .

14



Chapter 3

Problem and Heuristic

Many different shortest path problems can be formulated by simply changing the ob-

stacles in the plane. The problem solved in this section was motivated by the results of A.

Bezdek [1]. Our solution itself does not use the method of this paper, and we believe the

result to be new. In this section we will solve the following:

Problem: We will assume we wish to traverse a plane toward a target point T from a

starting point S while avoiding equilateral triangles of unit side length. The obstacles will

be assumed to be non-overlapping translates with one side parallel to the segment ST and

will be unknown until we come in contact with the triangle. Our goal is to create a heuristic

which enables us to reach our target point along a path P that is shorter than the trivial

path that is twice the length of the segment ST .

The trivial Heuristic of evading each triangle returning to ST by following the boundary

of the triangle obviously produces an upper bound of 2 (Figure 3.1).

S T

Figure 3.1: Path from S to T

A lower bound can be seen by the permeability of a layer discussed in Section 5 to be

1+
√

3
2

.
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Triangle Heuristic: When navigating through the plane toward the target point T,

follow the steps below. (For a better visual understanding we included Figure 3.2 of a con-

crete path created by this heuristic.

0. Start at S.

1. Travel along segment ST toward T.

If T is reached, then go to 6.

Else, next.

2. Travel along an edge of the contacted triangle toward the vertex not on the side

parallel to the segment ST .

If you cross a line E forming a 30o angle with ST passing through T, then go to 5.

Else, next.

3. Take a 90o turn toward T and travel on line L toward the segment ST .

4. Travel along line L.

a. If you reach ST , repeat 1.

b. Else, If you contact a triangle which overlaps the segment ST , repeat 2.

c. Else, If the contacted triangle does not overlap the segment ST , then travel

on the shortest path along the edges of the triangle back to line E

and repeat 4.

5. Travel on line E toward T.

If a triangle is contacted, avoid the triangular obstacle in the shortest path

returning to line E and repeat 5.

Else, T is reached, then go to 6.

6. Stop.
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Theorem 3.1. If the Triangle Heuristic is followed throughout the plane, then the ratio of the

length of the path P to the length of the segment ST is smaller than
√

3(1+ 2
n2 ) ≈ 1.732(1+ 2

n2 ),

where n is the length of the segment ST .

S T

Step 1

Step 2

Step 3
Step 4c

Step 4b

Step 5

line E

Step 6Step 4a

Figure 3.2: Path from S to T
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Chapter 4

Proof of Theorem 3.1

For orientation purposes we assume that the segment ST is horizontal and all triangles

point upward, meaning the side parallel to ST in each triangle is below the third vertex.We

also use the same notation as introduced in section 3.

P
⋂
ST is a collection of disjoint segments aibi, i = 1, ..., k. Let S = a1 and assume the

segments are labeled according to their order on ST . We consider the subarcs φi ∈ P ST ,

where φi is the portion of P from bi to ai+1. Through the proof of Theorem 3.1 we refer to φ

as one of these subarcs. Let Lφ be the length of φ and let Dφ be the length of the segment

biai+1. We will show that
Lφ
Dφ

<
√

3 for each φ of P.

A detailed analysis of the Triangle Heuristic reveals that there are only four different types

of subarcs, φ, to consider:

Case 1: Subarc produced by three consecutive steps: 2 else, 3, 4a.

Case 2: Subarc produced by three consecutive steps: 2 else, 3, 4b.

Case 3: Subarc produced by three consecutive steps: 2 else, 3, 4c.

Case 4: Subarc produced by two consecutive steps: 2 if, 5.

Notice that each subarc begins by traveling to the vertex not on the side parallel to ST . We

will assign the variable t to the length between bi and the before mentioned vertex. Then

each time the heuristic requires a 90o turn toward T (Figure 4.1).

S T

b1

t

φ1

Figure 4.1: φ1

18



Now we examine each of the four types of subarcs by its direction through the triangle

heuristic starting at step 2.

Case 1: Subarc produced by three consecutive steps: 2 else, 3, 4a.

We return to the segment ST without contacting another triangle(Figure 4.2).

Thus φ forms the legs of a right triangle with biai+1 the hypotenuse of this triangle.

S T

φ

Right Triangle

bi ai+1

Figure 4.2: Case 1

Since the obstacles are equilateral triangle translates, this right triangle has two angles being

60 and 30 degrees respectively. Thus it is obvious that the ratio of
Lφ
Dφ

is 2+
√

3
4
≈ 1.366.

Case 2: Subarc produced by three consecutive steps: 2 else, 3, 4b.

We contact a second triangle which overlaps the segment ST .

In this case we let φ have an end point where the path reaches this second triangle; the

next φ will begin there. Note that starting a φ on the edge of the triangle only reduces the

ratio since the edge of the triangle is in a ratio of 2:1 with respect to
Lφ
Dφ

. We distinguish

two subcases depending on the position of the second triangle. Thus the next φ can be

considered as one of our 3 types of subarcs.

Part A: The first triangle contacted by φ is above the second triangle contacted (Fig-

ure 4.3).
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S T

φ

bi ai+1

Triangle which is below the first triangle contacted

End of consideration of φ

Figure 4.3: Case 2-A

The greatest ratio is found when the two triangles are touching (Figure 4.4). Here we

find that the ratio of
Lφ
Dφ

is equal to
t+
√

3
2

( t
2

+ 3
4

)
which is maximized as t approaches 1, producing

a ratio approximately equal to 1.4928, being smaller than the needed bound.

S T

end of consideration of φ

t

t
2

+ 3
4

√
3

2

bi

Edge of triangle obstacle

Figure 4.4: Maximizing Case 2-A

Part B: The first triangle contacted by φ is below the second triangle contacted (Figure

4.5).

Again it is obvious that the maximum ratio occurs when the two triangles are touching.

It is also easy to see that the ratio increases as the second triangle slides along the first

one so that its base gets closer to ST . Indeed, when the second triangle moves toward the
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S T

φ

bi ai+1

Triangle which is above the first triangle contacted

End of consideration of φ

Figure 4.5: Case 2-B

segment ST along the edge of the first triangle the part of φ which is not following the side

of the first triangle decreases. This is significant since the portion of φ which is following the

side of the first triangles travels with a ratio of 2:1 with respect to
Lφ
Dφ

whereas the second

part of φ travels with a ratio of
√

3:1 with respect to
Lφ
Dφ

. Therefore as the second part of φ

decreases, the ratio of
Lφ
Dφ

increases. Thus the position of the triangles which maximizes the

ratio of φ
Dφ

is as in Figure 4.6.

S T

End of con-
sideration of
φ

t
t
√

3
2

t

t
4

bi ai+1

Figure 4.6: Maximizing Case 2-B

Now
Lφ
Dφ

=
t+
√

3t
2

t+ t
4

= 4+2
√

3
5
≈ 1.493 <

√
3.

Case 3: Subarc produced by three consecutive steps: 2 else, 3, 4c.

We contact a triangle which does not overlap the segment ST (Figure 4.7).

Part A: We either repeat step 4 as 4a or 4c. As in the heuristic, we will avoid the
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S T

φ

ai

bi+1

Figure 4.7: Case 3 - A

triangle by following its perimeter in the shortest direction back to ST . By the assumptions

of the triangles the configuration that maximizes
Lφ
Dφ

is when the second triangle’s perimeter

and φ have the longest part, i.e. when the second triangle is contacting the first triangle

on the segment ST . Therefore the configuration which maximizes
Lφ
Dφ

approaches the same

configuration as in Case 2 - Part B. Since the triangle is strictly above ST , then φ ends once

it has completely evaded the second triangle (Figure 4.8).

We will also make the observation that only two triangles that do not overlap the seg-

ment ST can be in contact with any particular φ. In this case the detours caused by two

triangles are shorter than the one which can be generated by one triangle.

The ratio associated with the extreme case depicted on Figure 4.8 is
Lφ
Dφ

= 3+2
√

3
2+
√

3
=
√

3.

S T

φ

bi

ai+ 1

Figure 4.8: Maximizing Case 3 - A

Part B: We repeat step 4 as 4b.

We then contact a triangle which does overlap the segment ST (Figure 4.9).

Notice that the triangle which overlaps the segment ST must be below the first trian-

gle contacted as in Case 2 - Part A. Otherwise the middle triangle cannot be involved in φ.

Therefore this case is similar to the one shown on Figure 4.9.
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S T

φ

bi ai+1

Figure 4.9: Case 3 - B

Now we find the configuration which maximizes
Lφ
Dφ

. Just as in Case 3 we can assume

that the triangle which does not overlap segment ST is touching the first triangle of φ. Also

without loss of generality, we can assume the triangle overlapping segment ST is touching

the before mentioned triangle or as in Case 3 it could be moved downward to be in contact.

For now we calculate
Lφ
Dφ

as if φ ends when it contacts the triangle which overlaps ST as

in Case 3. Finally, notice that as we lower both of these triangles while keeping them in

contact, Dφ stays the same and obviously as in Case 3 the length of φ increases thus the

maximum configuration is as in Figure 4.10.

S T

φ

bi ai+1

End of consideration of φ

Figure 4.10: Maximizing Case 3 - B

Now for such a φ,
Lφ
Dφ

depends on t. As seen above φ
Dφ

is 4t+3+
√

3
2t+3

= 2 + −3+
√

3
2t+3

which is

obviously maximized when t = 1, thus ≤ 7+
√

3
5
≈ 1.7564.

Currently this case can produce a ratio larger than the claim of
√

3 but if we have such

a φ we will have limitation on the remaining portion of φ. Therefore, we will now show that
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these two consecutive portions produce a
Lφ
Dφ

that is smaller than
√

3. So for this situation

we will have the first φ maximum value as 4t + 3 +
√

3, then we will look at the second φ.

As the first φ increases it approaches the restriction that the second φ has a length t which

approaches 0. Thus whichever configuration the second portion of φ must navigate, it no

longer includes a large portion that follows the edge of a triangle having a ratio of 2:1 with

respect to
Lφ
Dφ

. Without calculation we can see that all other portions of any possible φ are

significantly smaller than the ratio of the theorem because all cases include the edge having

a ratio of 2:1, but when all parts of φ are calculated the total of
Lφ
Dφ

is smaller than the ratio

of the theorem.

Case 4: Subarc produced by two consecutive steps: 2 if, 5.

We reach the line E which forms a 30o angle with ST passing through T. This is the only

place where the triangle heuristic does not guarantee to produce
Lφ
Dφ

smaller than the claim.

This occurs when a triangle is placed closely in front of the target point requiring the path

P to evade this triangle by a φ which follows two edges of the triangle, thus
Lφ
Dφ

approaches

2. Thus as ST gets larger this φ will have less of an impact on the overall ratio of Lφ to Dφ

contributes the additional 2
n

term to the bound.
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Chapter 5

Lower Bound for any Heuristic and Open Problems

A lower bound for the problem given in Section 3 is easily seen to be 4
3

by computing the

path through the densest packing of equilateral triangular translates. If ST passes through

the side of a triangle then it is easy to see that the shortest path is 4
3
d, where d is the length

of ST (Figure 5.1), yet we will use the technique from Section 2 to improve this lower bound.

S T

1
2

1
2

1
2

1
21

2

Figure 5.1: Path through densest packing

Theorem 5.1. 1+
√

3
2

is a lower bound for traversing a plane while evading triangular obsta-

cles.

We will challenge a heuristic by placing triangles once the navigator has reached a line

extending 60o from ST , in a way similar to the technique used by Papadimitriou and Yan-

nakakis [3]. First let S = S1,then extend a line Li, forming 60o with ST through point Si.

Now place an equilateral triangle which shares a side with Li such that Si is the midpoint
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of this side. Now the triangle that has been placed will determine a layer between Li and

Li+1. The vertex which is not on line Li will now define a line Li+1 which goes through this

vertex and forms a 60o angle with ST . Now the path created by any heuristic must intersect

this line, thus consider the intersection point of the path and Li+1 to be Si+1 and repeat this

process of placing triangles. Since the size of the triangles can be determined as necessary,

we can form a series of layers, in this fashion, which connect S to T (Figure 5.2). For each

S
T

L1 L2
L3

L4
L5 L6

Figure 5.2: Layers between S and T

layer we will show that, with the triangle placed in this manor, the navigator will travel in

a ratio of 1+
√

3
2

to the distance traveled with respect to the ST . We can assume the triangle

has side length 1 thus forcing the navigator to travel a length of at least 1
2

+
√

3
2

to traverse

the layer, and the length of ST
⋂

the layer is 1 (Figure 5.3).

1
2

√
3

2

S T

Figure 5.3: Navigating a Layer
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Open Problems:

From the results of Theorem 3.1 it seems natural to investigate the possibility of changing

the restraints of the obstacles. Such changes involve allowing one or more of the following:

1. The triangular obstacles need not be of the same side length.

2. The triangular obstacles can be of any orientation in the plane.

3. The triangular obstacles need not be equilateral.

From the conclusion of these variations it might be possible to generalize the results in

order to traverse 3-space with obstacles being regular tetrahedra.
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