Collaborative-Adversarial Pair (CAP) Programming

by

Rajendran Swamidurai

A dissertation submitted to the Graduate Faculty of
Auburn University
in partial fulfillment of the
requirements for the Degree of
Doctor of Philosophy

Auburn, Alabama
December 18, 2009

Keywords: Collaborative-adversarial pair programming, CAP, pair programming, PP,
collaborative programming, agile development, test driven development, empirical software
Engineering

Copyright 2009 by Rajendran Swamidurai

Approved by

David A. Umphress, Associate Professor of Computer Science and Software Engineering
James Cross, Professor of Computer Science and Software Engineering
Dean Hendrix, Associate Professor of Computer Science and Software Engineering

Abstract

The advocates of pair programming claim that it has a number of benefits over
traditional individual programming, including faster software development, higher quality code,
reduced overall software development cost, increased productivity, better knowledge transfer,
increased job satisfaction and increased confidence in the resulting product, at only the cost of
slightly increased personnel hours. While the concept of pair programming is attractive, it has
some detraction. First, it requires that the two developers be at the same place at the same
time. Second, it requires an enlightened management that believes that letting two people work
on the same task will result in better software than if they worked separately. Third, the
empirical evidence of the benefits of pair programming is mixed. Anecdotal and empirical
evidence shows that pair programming is better suited for job training than for real software
development. Pair programming is more effective than traditional single-person development if
both members of the pair are novices to the task at hand. Novice-expert and expert-expert pairs
have not been demonstrated to be effective.

This research proposes a new variant of pair programming called the Collaborative-
Adversarial Pair (CAP) programming. Its objective is to exploit the advantages of pair
programming while at the same time downplaying the disadvantages. Unlike traditional pairs,
where two people work together in all the phases of software development, CAPs start by
designing together; splitting into independent test construction and code implementation roles;

then joining again for testing.

Two empirical experiments were conducted during the Fall 2008 and Spring 2009
semesters to validate CAP against traditional pair programming and individual programming.
Forty two (42) volunteer students, undergraduate seniors and graduate students from Auburn
University’s Software Process class, participated in the studies. The subjects used Eclipse and
JUnit to perform three programming tasks with different degrees of complexity. The subjects
were randomly divided into three experimental groups: individual (Solo) programming group,
pair programming (PP) group and collaborative adversarial pair (CAP) programming group in
the ratio of 1:2:2. The results of this experiment point in favor of CAP development
methodology and do not support the claim that pair programming in general reduces the overall

software development time or increase the program quality or correctness.

To

My wife
Uma

and

My guru
Dr. David Ashley Umphress

Acknowledgments

I consider completing this dissertation to be the greatest accomplishment of my life thus
far. This is a result of sacrifices and encouragement by full many individuals. Although it would
not be possible for me to list them all, 1 would like to mention a handful without whom this
accomplishment would have remained a dream.

It is with deep sense of gratitude that | acknowledge my indebtedness to my Ph.D.
committee members; in particular, my advisor Dr. David A. Umphress. He has been a wise and
dependable mentor and an exemplary role model in helping me achieve my professional goals.
Dr. Umphress has always given me invaluable guidance, support and enthusiastic
encouragement. Heartfelt thanks are also extended to other committee members, Dr. James Cross
and Dr. Dean Hendrix for their suggestions and guidance which has greatly improved the quality
of my work.

Special thanks goes to all forty two students (fall 2008 and spring 2009 software process
class) who participated in the control experiments. I would also like to thank all the
professors/teachers who have taught me (right from kindergarden to this date) and under whom 1
have worked as a Teaching Assistant at Auburn. The inspiration I have drawn from my long list
of friends, right from my childhood to this date, deserves a special acknowledgement. From the
bottom of my heart, | want to thank my parents, my in laws and my extended family for their
love and support. Lastly, 1 would also like to thank my wife Mrs. Uma Rajendran, my son,

Soorya Gokulan and my daughter Sneha for their love, support and unstinting faith.

Table of Contents

AADSTIACT ...t E e Rt i
ACKNOWIBAGMENES.ottt e s te et e s e sba e teeseesseeteeneenreeeeanes v
LISt OF TADIES ... s viii
LISE OF FIQUIES ..ttt et st et e e e e re e teeneesseeaeenaenraeteansenneenrens IX
LiSt OF ADDIEVIALIONS ... Xiii
Chapter 1: INTFOUUCTION ...c.viiieciicct ettt e st et eere e te e e e sseenneeneenreas 1
Chapter 2: LItErature REVIEWcvcueiiiieeieiiesie e eesie e teeste e staeae e sbaeaesnaesseeneesneesneaneesnens 4
2.1, Pair ProgrammiNgcocooeoeeiieieseeseeeeseesieeaessee e essessaessaaneessaesseessesseesssssssssesssesnes 4
2.2. Pair Programming EXPEriMENTSc.ccooeiereriiininieseseeeeee et 9
2.3. The PAINING ACLIVITY ...ooviiiiiiieciieee et 23
2.4. The Effect of Pair Programming on Software Development Phases 35
Chapter 3: ReSearch DESCIIPLION coiiiiiiiieiieieierie e 41
3.1 THE CAP PIOCESS ...eeeueeuieieite sttt ettt bbbt 41
Chapter 4: Applied Results and Research Validation ... 51
4.1, SUDJECES ettt bbbt 51
4.2. EXPerimental TASKSccocoiiiiiiiiieee e 51
4.3, HYPOTNESES ...ttt bbbt 52
A4, COSE it 53

Vi

4.5. Program COITECINESSooiiiiiriiieiiiiieeiitie sttt sttt e e nib e nbb e e beeeenes 54

4.6. EXPEriment PrOCEAUIEcceiieiieeie e sie e s ste e see st ee et e e ae e sna s enes 54
A7 RESUIES .o 57
4.8. ODBSEIVALIONS ceiiiiiiieiie et 99
Chapter 5: Applied Results and Research Validationcccocveiinieiieie e 102
5.1, CONCIUSIONS ..ottt 102
5.2 FULUIE WOTK ..ot 104
RETEIENCES ..ottt b et r et 105
N 0] 0127 00 L PSS 111
N 0] 012 00 L = OSSR 113

vii

List of Tables

Table 2.1: Summary of Pair Programming EXPerimentsccoceoeieienenenenineseseeeeen, 19
Table 2.2: Summary of Pair Programming Experiments ResultsS..........cccocooeienininiiicicneen, 22
Table 2.3: When t0 Pair PrOGIaMc.ooiiiiiiiiiiieieeee et 25
Table 2.4: Effects of Software ProCesses 0N PP ..o 33
Table 2.5: Effects of Programming Languages 0N PP ..., 34
Table 2.6: Effects of Software Development Methods 0N PP ..., 34
Table 2.7: Summary of Pair Design EXPErimeNtSccocceieriiirinieieiesese e 37
Table 4.1: Total Software Development TIMEccoiiiiiiiiiiieeee e 62
Table 4.2: COUING TIME ..uiiiiiiiieieee bbbttt et b bbbt s e s e 64
Table 4.3: The number Of teSt CASES PASSEUeiuiiieiiierie it 67
Table 4.4: Total Software DevelopmEeNt TIMEcccooiiiiiiiiie e 72
Table 4.5: COAING TIMEeiieiiiiiie et ettt b e st et et e sbeesbeeneenreas 75
Table 4.6: Total Software DevelopmeENt TIMEcccooviiiiiiiie e 81
Table 4.7: COAING TIME ..ottt b e sbe e teeneesbeenbeeneenreas 84
Table 4.8: Total Software DevelopmeNnt TIMEcccooeiiieiiiie e 90
Table 4.9: COAING TIMEeiiiiiiiie ettt b et sbe e be st e sbeesbeeneenreas 93
Table 4.10: Summary of Control Experiments and their Results ..., 98

viii

List of Figures

Figure 2.1: Pair Programming TiME LINE........ccooiiiiiiiiieiesiesesiese e 7
Figure 2.2: The DaimlerChrysler C3 WOIK @reaccooeveiiriniiinieieiesie e 28
Figure 2.3: Pair Programming Workplace Layoutccocoviiiiiiiiiiieccse e 29
Figure 2.4: RoleModel Software Workstation LayOULccocuviriiiiienenenesescseseeeeeees 29
Figure 2.5: Conventional ENVIFONMENT..........occiiiiiiiie e 30
Figure 2.6: Rearranged Environment for Better Role SWItChingcccoooviiniiiiiiiniiicien, 30
Figure 2.7: “Circle table” for pair programmingcccccocerererinineieee e 31
Figure 3.1: CAP DeVelopment ACHIVILYcooiiiriiieeie e 42
Figure 3.2: CAP DeVvelopment CYCIEoc.ooiiiiieicee e 44
Figure 3.3: Collaborative-Adversarial Pairs (CAP)........cocoiiiiiiieiieie e e 44
Figure 3.4: Build Code / Unit Implementation in CAP ..ot 44
Figure 3.5: A Class-Responsibility-Collaborator (CRC) index cardccoocevvenieenviienneeniene 45
Figure 3.6: Unit Test ENVIFONMENTooviiiiiiiiiiie et 48
Figure 4.1: EXPerimental SEIUDoooiiiiiieiieie ettt 56
Figure 4.2: EXPerimental PrOCEAUIEccoiieiiiieiieie ettt 56
Figure 4.3: Q-Q Plot of Residuals (Dynamic Pairs Total Software Development Time) 58
Figure 4.4: Q-Q Plot of Residuals (Dynamic Pairs Coding TIMEe)cccovveererieenienneninneenieens 59
Figure 4.5: Test for Normality (Dynamic Pairs Total Software Development Time) 59
Figure 4.6: Test for Normality (Dynamic Pairs Coding TiMe)ccccccocvrieereninniennenin e 59

iX

Figure 4.7: Box plot (Dynamic Pairs Total Software Development Time)cccccccvvvvevvenenne. 60
Figure 4.8: Box plot (Dynamic Pairs Coding TiMe)cccciveieiiieiiere e 60
Figure 4.9: Average Total Software Development Time (Dynamic Pairs)ccccceevevvenenne. 62
Figure 4.10: Total Software Development Time (Dynamic Pairs)........cccccceveeveiieenesiieseennene, 63
Figure 4.11: t-Test Results (Dynamic Pairs Total Software Development Time) 63
Figure 4.12: Average Coding Time (DynamicC Pairs)ccccccceivieiieiiiiie e 65
Figure 4.13: Box plot (Dynamic Pairs Coding TiME)cccccveiiiiieiieie e 65
Figure 4.14: t-Test Results (Dynamic Pairs Coding TIME)c.cccccveveiiieiiieneeieese e 66
Figure 4.15: The number of test cases passed (Dynamic Pairs)ccccccoevevierveiieenesieesnesnenn, 67
Figure 4.16: Q-Q Plot of Residuals (Static Pairs Total Software Development Time) 68
Figure 4.17: Q-Q Plot of Residuals (Static Pairs Coding Time)ccccccevveveeiieiieesesee e 69
Figure 4.18: Test for Normality (Static Pairs Total Software Development Time) 70
Figure 4.19: Test for Normality (Static Pairs Coding Time)c.ccccevvvieiieieciie e 70
Figure 4.20: Box plot (Static Pairs Total Software Development TIiMe)ccccevvvevvriververnenne 70
Figure 4.21: Box plot (Static Pairs Coding TIME)ccceccievverieiieiierie e ese e 71
Figure 4.22: Average Total Software Development Time (Static Pairs)cccceevevveiververnenne 73
Figure 4.23: Total Software Development Time (Static Pairs)ccccoccvvievienienieesesie e 73
Figure 4.24: t-Test Results (Static Pairs Total Software Development Time)cc.cccocveenenne. 74
Figure 4.25: Average Coding Time (StatiC PaIrS)cccviieiveieeie e 75
Figure 4.26: Box plot (Static Pairs Coding TIME)cccvvieireieeie e sie e 76
Figure 4.27: Wilcoxon Mann-Whitney U test Results (Static Pairs Coding Time)c......... 76
Figure 4.28: Q-Q Plot of Residuals (Combined CAP Vs PP Total Software Development Time)

Figure 4.29

Figure 4.30:
Figure 4.31:
Figure 4.32:
Figure 4.33:
Figure 4.34:
Figure 4.35:
Figure 4.36:
Figure 4.37:
Figure 4.38:
Figure 4.39:
Figure 4.40:
Figure 4.41:
Figure 4.42:
Figure 4.43:
Figure 4.44:
Figure 4.45:
Figure 4.46:
Figure 4.47:
Figure 4.48:
Figure 4.49:
Figure 4.50:

Figure 4.51:

: Q-Q Plot of Residuals (Combined CAP Vs PP Coding Time)ccccevvevvevenen. 78
Test for Normality (Combined CAP Vs PP Total Software Development Time) 78
Test for Normality (Combined CAP Vs PP Coding Time)c.ccccevvvveieeieeieenn, 79
Box plot (Combined CAP Vs PP Total Software Development Time) 79
Box plot (Combined CAP Vs PP Coding TimMe).......ccccevvviieieerieiieseese e 80
Average Total Software Development Time (Combined CAP Vs PP) 81
Box Plot (Combined CAP Vs PP Total Software Development Time) 82
t-Test Results (Combined CAP Vs PP Total Software Development Time) 83
Average Coding Time (Combined CAP VS PP)ccooiiiieiicie e 84
Box plot (Combined CAP Vs PP Coding TimMe)ccccecvviieieerieiie e 85
Wilcoxon Mann-Whitney U test Result (Combined CAP Vs PP Coding Time) .. 85
Q-Q Plot of Residuals (CAP Vs IP Total Software Development Time) 86
Q-Q Plot of Residuals (CAP Vs IP Coding TiMe)ccccovevevieiieiecec e, 87
Test for Normality (CAP Vs IP Total Software Development Time) 87
Test for Normality (CAP Vs IP Coding TiMe)ccccceevveiveieeie e e 88
Box plot (CAP Vs IP Total Software Development TiMe)c.ccccevvvevvevevieennenne 88
Box plot (CAP VS IP Coding TIME) ..cccveceiieieeie e se e 89
Average Total Software Development Time (CAP VS IP)coovvevvcieiiecicienn 90
Total Software Development Time (CAP VS IP) ...ccviviieiicie e 91
t-Test Results (CAP Vs IP Total Software Development Time)ccccceevvevennenn 92
Average Coding Time (CAP VS IP) ..ot 93
Box plot (CAP VS IP Coding TIME) ..cccvecveiieieeiecie e se e 94
t-Test Results (CAP VS IP Coding TIME)ccvvveiieiiie e see e 94

Xi

Figure 4.52: Average Software Development Time for Static PP and Dynamic PP.................. 99

Figure 4.53: Average Software Development Time for Static CAP and Dynamic CAP 100

Xii

ANOVA

BF

C3

CAP

CRC

CSP

GLM

GUI

IDE

J2EE

JDK

LOC

00

PP

PSP

SAS

TDD

List of Abbreviations
Analysis of variance
Brown and Forsythe's variation of Levene's test
Chrysler Comprehensive Compensation
Collaborative-Adversarial Pair Programming
Class Responsibility Collaborator
Collaborative Software Process
General Linear Models
Graphical User Interface
Integrated Development Environment
Individual Programming
Java 2 Platform, Enterprise Edition
Java Development Kit
Lines of Code
Object Oriented
Pair Programming
Personal Software Process
Quintile-Quartile
Statistical Analysis Software

Test Driven Development

Xiii

UML Unified Modeling Language

XP Extreme Programming

Xiv

1. INTRODUCTION

One of the popular, emerging, and most controversial topics in the area of Software
Engineering in the recent years is pair programming. Pair programming (PP) is a way of
inspecting code as it is being written. Its premise — that of two people, one computer — is that
two people working together on the same task will likely produce better code than one person
working individually. In pair programming, one person acts as the “driver” and the other person
acts as the “navigator.” The driver is responsible for typing code; the navigator is responsible for
reviewing the code. In a sense, the driver addresses operational issues of implementation and the
observer keeps in mind the strategic direction the code must take.

Though the history of pair programming stretches to punched cards, it gained prominence
in the early 1990’s. It became popular after the publication in 1999 of Extreme Programming
Explained by Kent Beck, where it was noted as one of the 12 key practices promoted by Extreme
Programming (XP) [Beck 2000]. In recent years, industry and academia have turned their
attention and interest toward pair programming [Arisholm et al. 2007, Canfora et al. Dec06] and
it has been widely accepted as an alternative to traditional individual programming [Muller
2005].

The advocates of pair programming claim that it has many benefits over traditional
individual programming, including faster software development, higher quality code, reduced

overall software development cost, increased productivity, better knowledge transfer, increased

job satisfaction and increased confidence in their work, only at the cost of slightly increased
personnel hours [Arisholm et al. 2007].

While the concept of pair programming is attractive, it has some detraction. First, it
requires that the two developers be at the same place at the same time. This is frequently not
realistic in busy organizations where developers may be matrixed concurrently to a number of
projects. Second, it requires an enlightened management that believes that letting two people
work on the same task will result in better software than if they worked separately. This is a
significant obstacle since software products are measured more by tangible properties, such as
the number of features implemented, than by intangible properties, such as the quality of the
code. Third, the empirical evidence of the benefits of pair programming is mixed: the works of
Judith Wilson et al. [Wilson et al. 1993], John Nosek [Nosek 1998], Laurie Williams [Williams
et al. 2000], Charlie McDowell et al. [McDowell et al. 2002], and Xu and Rajlich [Xu et al.
2006] support the costs and benefits of pair programming; experiments by Nawrocki and
Wojciechowski [Nawrocki et al. 2001], Jari Vanhanen and Casper Lassenius [Vanhanen et al.
2005], Erik Arisholm et al. [Arisholm et al. 2007], Matevz Rostaher and Marjan Hericko
[Rostaher et al. 2002], and Hanna Hulkko and Pekka Abrahamson [Hulkko et al. 2005] show that
statistically there is no significant difference between the pair programming and solo
programming.

Don Wells and Trish Buckley [Wells et al. 2001], Kim Lui and Keith Chan [Lui et al.
2006] and Erik Arisholm et al. [Arisholm et al. 2007] show that pair programming is more
effective than traditional single-person development if both members of the pair are novices to
the task at hand. Novice-expert and expert-expert pairs have not been demonstrated to be

effective. According to Karl Boutin [Boutin 2000] many developers are forced to abandon pair

programming due to lack of resources (e.g. due to small team size). He also observed that
abandoning the pair programming in the middle of the project hindered the integration of new
modules to the existing project.

This research proposes a new variant of pair programming called the Collaborative-
Adversarial Pair (CAP) programming. Its objective is to exploit the advantages of pair
programming while at the same time downplaying the disadvantages. Unlike traditional pairs,
where two people work together in all the phases of software development, CAPs start by
designing together; splitting into independent test construction and code implementation roles;

then joining again for testing.

2. LITERATURE REVIEW

2.1. Pair Programming
Pair programming is a programming technique in which two people program all
production code in a single machine using one keyboard and one mouse. The members of each
pair are assigned two different roles. One partner with keyboard and mouse, known as driver?,
types and thinks about the best way to implement the current method in hand and the other
partner, known as navigator or observer, watches or reviews the code being typed, looking for
errors and thinks strategically about the feasibility of the overall approach, additional test cases
to be addressed and the way to simplify the whole system in order to overcome the current
problem [Beck 2000].
The following are some of the key points highlighted in the pair programming literature:
e Paring is dynamic and the people have to pair with different people in the morning and
evening sessions. A programmer can pair with anyone in the development team [Beck
2000].
e Along with writing the code for test cases, the pairs also evolve the system’s design. Pairs
add value to almost all the stages of the system development including analysis,

implementation, and testing [Beck 2000].

! There were no specific names given for the two partners by Kent Beck in his “Extreme Programming Explained”.
The names driver and navigator were originally used by Laurie Williams in her article called “Integrating pair
programming into a software development process” [Williams 2001].

e The driver and observer are full partners and they exchange their roles quite often [Martin
2003, Wake 2002].

e The pair programming activity provides a means for real-time problem solving and real-
time quality assurance [Pressman 2005].

e Pair programming is a social skill, not a technical skill. It has to be practiced with the
people who already know how to do it [Wells 2001].

e Pair programming is not an activity in which one person programs and other person
simply watches. Moreover, pair programming is not a tutoring activity in which the
experienced partner teaches to the inexperienced ones. It is a conversation between two
people understand together and trying to do simultaneous activity (analysis, design,
implement, or test) [Beck 2000].

Even though the terms collaborative programming (CP) and pair programming (PP) are
interchangeably used in literature, they are not the same. There are two fundamental differences
between them. First there is no working protocol exclusively specified for collaborative
programming; whereas, pair programming has a well defined working protocol which prescribes
to continuously overlapping reviews and the creation of artifacts. Second, pair programming
team is strictly restricted to two people and there is no such restriction for collaborative

programming team; it may contain two or more people [Canfora et al. 2007].

2.1.1. Pair Programming History

The history of pair programming dates back to punched cards in the early 1940s when
Von Neumann worked with IBM. But pair programming became popular only after Kent Beck
published “Extreme Programming Explained” in 1999. The timeline of pair programming is

discussed below:

Dave W. Smith, an Agile Software Project Leader and Coach, while discussing the
history of Extreme Programming (XP), wrote, ““Jerry Weinberg told me that John Von
Neumann's team at IBM used pair programming in much the same form that XP employs it now”
[Perl 2004].

In 1950°s Fred Brooks, author of The Mythical Man, tried pair programming with his
fellow graduate student Bill Wright when he was a graduate student [Williams et al. 2003].

E. W. Dijkstra recalled his pair programming experience in 1969 (What led to “Notes on
Structured Programming” - EWD249), in the article EWD1308-5.

Dick Gabriel reported his pair programming experience as ‘“Pair programming was a
common practice at the M.1.T. Artificial Intelligence Laboratory when | was there in 1972-73”
and in 1984, his team used pair programming in the Common Lisp Project [Williams et al.
2003].

In 1991 Flor observed and recorded exchanges between two collaborative programmers
[Flor 1991].

In 1993, Judith D. Wilson, Nathan Hoskin and John T. Nosek [Wilson et al. 1993] of
Temple University conducted a collaborative programming experiment with students.

Two books published in 1995 discussed pair programming. Larry Constantine, in his
book titled Constantine on Peopleware, discussed about pair programming conducted at
Whitesmith Ltd. Jim Coplien, in his book titled Pattern Languages of Programming Design
claimed that pair developers can produce more than the sum of the two individual developers
[McDowell et al. 2002].

In 1996, while working on the Chrysler Comprehensive Compensation System

(commonly referred to as 'C3") Kent Beck and Ron Jeffries team adopted a new way of working

% The article EWD1308-5 was written in 2001 and EWD249 was published in 1969.

6

which is currently known as the Extreme Programming (XP), which employed pair programming
as one of the core principles [Anderson et al. 1998].

Randall W. Jensen, Software Technology Support Center, Hill Air Force Base, reported
his pair programming experience in 1996 as ““The undergraduate experience led me to propose
an experiment in the application of what we called two-person programming teams. The term
pair programming had not been coined at that time™ [Jensen 2003]°.

In 1998, John T. Nosek, Temple University, Philadelphia, conducted collaborative
programming (similar to pair programming) experiment [Nosek 1998].

In 1999 Kent Beck published Extreme Programming Explained in 1999; pair
programming is the one of the 12 core practices introduced in Extreme Programming [Beck

2000], familiarly known as XP.

194015 *Von Newmann team at IBM used PP

1950'5 sFred Brooks tried PP with fellow grad. student
1969 sE.W. Dijkstra tried PP with J.A. Zonneveld

1970'5 *PP was a common practice at M.1.T's Al Lab

1984 *Dick Gabriel team used PP in the Common Lisp Project

199 1 sFlor cbserverd and recorded exchanges between two PP
programmers

1993 sJudith Wilson et al. PP experiment
Constanti Peopl

1995 :P::lse:nnLl:nEgz:g:sD::' :‘r:grream Design
*C3 Project

1996 -Ram;::lejensnn Experiment

1998 *John Nosek Experiment

1999 sKent Beck's "Extreme Programming Explained”

Figure 2.1: Pair Programming Time Line

® The paper was actually published only in 2003.

2.1.2. Benefits of Pair Programming

The proponents of pair programming claim that the pair programming software
development provides the following benefits over the traditional individual software
development:

e Increases software quality

Increases productivity

e Increases design quality

e Increases program correctness

e Provides constant design and code review

e Reduces overall software development time and cost

e Helps in Team building, knowledge transfer and learning
e Enhances job satisfaction and confidence

e Helps in solving complex problems

¢ Reduces the effort need to develop a piece of code

e Reduces risk of project failures

e Reduces staffing risks

2.1.3. Drawbacks of Pair Programming
While the literature lists several benefits of pair programming, the detractors assert that
pair programming has the following drawbacks:
e Doubles the developers required and development cost
e Increases the software development time
e Quality improvement also in question

e Not suitable for very large projects

e Suitable only for novice-novice pairs

e Itisvery intense

e [tis good for job training, not for professional software development

e Bringing out personality conflicts and clashes between developers

e Coding styles, ego, or intimidation would only slow the developers down
e Programming is a solidarity activity

e Experienced programmers may refuse to share

2.2. Pair Programming Experiments

This section includes 12 out of 35 published collaborative and pair programming
experiments and case studies in which (1) a comparison was made between pair programming
and individual programming, and (2) evaluates one or more of the software metrics, namely
program development time/cost, productivity (LOC/hr), program correctness (program
readability and functionality), and job satisfaction. The remaining 23 experiments or case studies
which did not include pairs verses individual comparison, software metrics evaluation and/or
coding phase of the software development process were excluded in this section. For more
information please see Appendix A, which lists all the pair programming experiments and case
studies published so far and the reason why the experiment or case study was excluded from the

analysis.

2.2.1. Judith Wilson et al. Experiment [Wilson et al 1993]
In 1993, Judith D. Wilson, Nathan Hoskin and John T. Nosek of Temple University
conducted a collaborative programming experiment with 34 upper division undergraduate

students of a database course (two sections). 14 students from the first section acted as the

9

control groups (individuals) and 20 students in the second section were randomly grouped into
10 experimental (pairs) groups. The task was solving a “traffic light signal problem” in 60
minutes using Pascal, C, dBase 111, or pseudo code.

The purpose of the study was to investigate: (1) readability and functionality of the
solution, (2) confidence and enjoyment of the work, and (3) students in which group earn high
grades. The results of the experiment were: (1) pairs produced slightly better readable and
functional codes, (2) pairs expressed more confidence and enjoyment, and (3) ability had little
effect on pair performance, i.e. high grade is significantly associated with individuals, but not
with pairs.

The experiment indicates that collaboration helps novice programmers, collaboration
helps solve informal problems, and collaboration helps students master analytical skills required

to analyze and model problems.

2.2.2. The Nosek Experiment [Nosek 1998]

John T. Nosek, Temple University, Philadelphia, conducted a collaborative programming
experiment in 1998 using 15 full-time system programmers. The subjects were divided into 5
control groups (individuals) and 5 experimental groups (pairs) on a truly random basis. The task
was to write a database consistency-check script in the C programming language in 45 minutes
on an X-window system.

The aim of the experiment was to find: (1) readability and functionality of the solution,
(2) average problem solving time, (3) confidence and enjoyment of the work, and (4) how
experienced programmers perform as compared to less experienced programmers. The results of

the experiment were: (1) pairs programs were more readable and functional, (2) pairs took more

10

time on average, (3) pairs expressed more confidence and enjoyment of their job, and (4)
experienced programmers performed better than inexperienced ones.
The experiment indicates that collaboration improves problem solving process and

improves programmer’s performance.

2.2.3. Laurie Williams’s Experiment [Williams et al. 2000]

Laurie Williams from University of Utah conducted a Pair Programming experiment in
1999 with 41 advanced undergraduate students in a Software Engineering course. The subjects
were divided into 13 control groups (individuals) and 14 experimental groups (pairs). The
individuals used Humphrey's Personal Software Process (PSP) and the pairs used Williams’
Collaborative Software Process (CSP) to complete their tasks. The subjects were not selected
randomly; instead, they were picked from among the 35 that initially indicated a preference for
working collaboratively. The students were asked to code four class projects® over 6 weeks time,
which was part of their course curriculum. The first project was used as Pair-Jelling® (initial
adjustment) experiment.

The aim of the study was to find: (1) number of test cases passed, (2) average problem
solving time, (3) number of defects in the programs, and (4) job satisfaction. The results of the
experiment were: (1) pairs programs passed more test cases than individuals, (2) pairs spent 15%
more time on average to solve a problem, (3) pairs code had 15% fewer defects than individuals,

and (4) pairs expressed more job satisfaction.

* Programs size and programming language used were not mentioned in the paper.
® Tuckman’s model (see Appendix B for more detail about Tuckman’s model) is known as Pair Jelling in the pair
programming literature [Lui et al. 2006]

11

2.2.4. Nawrocki and Wojciechowski Experiment [Nawrocki et al. 2001]

Jerzy Nawrocki and Adam Wojciechowski from the Poznan University of Technology
conducted a pair programming experiment in the 1999/2000 winter semester using 21 students.
The 21 subjects were randomly divided into three groups of 6, 5 and 5 in such a way that the
average GPA of each group was the same. The first group used Watts Humphrey’s Personal
Software Process (PSP), the second and third groups used Extreme Programming (XP) as their
development process. The individual group which used XP was called XP1 and the pairs group
which used XP was called XP2. The students were asked to solve four C/C++ programs ranges
between 150 and 400 LOC.

The aim of the study was to compare Extreme Programming (XP) with the Watts
Humphrey’s Personal Software Process (PSP). The results of the experiment were: (1) there was
no difference in time between XP1 and XP2 groups, (2) pair programming was more predictable
than other two approaches, (3) XP1 was the most efficient programming technology, and (4)
there was no difference between PSP and XP2.

The experiment indicates that experimentation and test-oriented thinking reduces
development time, pair programming with Extreme Programming (XP) was not efficient, XP1
was more efficient than PSP, pair programming was more predictable than individual

programming, and rework for XP2 was slightly smaller compared with other two approaches.

2.2.5. Charlie McDowell et al. Experiment [McDowell et al. 2002]

In 2000/01, Charlie McDowell, Linda Werner, Heather Bullock and Julian Fernald from
the University of California, Santa Cruz studied the effects of Pair Programming in an
introductory programming course with approximately 600 students. A total of 172 students from

the fall 2000 section were divided into 86 pairs (experimental group) and 141 students from the

12

spring 2001 section were used as control group (individuals). The students were asked to
complete 5 programming assignments®.

The aim of the study was to find the effects of PP on performance in the course. The
results of the experiment were: (1) pair programming improves program quality in terms of
functionality and program readability, and (2) pair programming did not help the students learn

their course material and independently apply their knowledge to new programs.

2.2.6. Rostaher and Hericko Experiment [Rostaher et al. 2002]

In 2002, Matevz Rostaher and Marjan Hericko from Slovenia conducted a pair
programming experiment using 16 professional programmers. The 16 subjects were divided into
4 control groups (individuals) and 6 experimental groups (pairs) based upon their programming
experience. The programmers were asked to develop a simple insurance contract administration
system using six small stories in Smalltalk and its integrated development environment (IDE).

The purpose of the experiment was to get the time spent in percentage on each activity by
the programmers, based on their experience level. The results of the experiment were: (1) there
was no difference in average time spent by individuals and pairs, (2) experiment results did not
favor pair programming.

The experiment indicates that acceptance tests must be written before the development,

and refactoring caused more problems for programmers than did tests.

2.2.7. Muller Experiments [Muller 2005]
Matthias M. Muller, University of Karlsruhe, Germany conducted two experiments to
compare pair programming with peer review. The first experiment was conducted in 2002; in

2003 the same experiment was repeated with 38 computer science students. The 38 subjects were

® Assignment sizes and programming languages are not mentioned

13

divided into 23 control groups (individuals) called review groups and 19 experimental groups
(pairs). In the review group, an individual programmer developed the program, compiled it, had
it reviewed by an unknown reviewer, and then conducted the testing. In the pair programming
group, all the development activities were carried out by two programmers sitting in front of the
same computer. The students were asked to solve polynomial and shuffle-puzzle problems using
Java on both occasions.

The purpose of the study was to find the cost of pair programming and peer review
methods. The results of the experiment were: (1) there was no difference in program correctness,
and (2) for a similar level of correctness there was no difference in development cost.

The experiment indicates that pair and individual programmers can be interchanged in

terms of cost.

2.2.8. Vanhanen and Lassenius Experiment [Vanhanen et al. 2005]

In 2004, Jari Vanhanen and Casper Lassenius, Helsinki University of Technology,
Finland conducted a pair programming experiment using 10 computer science students. The 10
subjects were randomly divided into 2 control groups (individuals) and 3 experimental groups’
(pairs). For a given requirement specification each team was asked to develop a distributed,
multiplayer casino system within 400 hours using J2EE technologies.

The purpose of the experiment was to investigate pair programming effects, namely
productivity, defects, design quality, knowledge transfer, and enjoyment of work at the
development team level. The results of the experiment were: (1) the productivity of pairs was
29% less than individuals, (2) pairs code contained 8% fewer defects, but after delivery pairs had

more defects, (3) pairs programs were less functional than individual’s programs, (4) pairs

" In the middle of the project one pair abandoned pair programming without notice because they considered it
inefficient.

14

design quality was slightly better than individuals, (5) knowledge transfer among pairs was
better, and (6) pairs expressed less job satisfaction.

The experiment indicates that pair programming did not help in solving complex tasks;
pair programming helped programmers in finding and fixing errors; and fewer defects in
programs and better knowledge transfer among pairs indicates that pair programming may

decrease further development costs of the system.

2.2.9. Hulkko and Abrahamsson Experiments [Hulkko et al. 2005]

Hanna Hulkko and Pekka Abrahamsson from Finland conducted two case studies on pair
programming in 2004. In the first case study, master’s students were the subjects and in the
second case study, master’s students as well as research scientists were the subjects. There were
4 to 6 teams in each control group (individuals) and in each experimental group (pairs), and they
were asked to develop four different projects sizes ranging from 3700 to 7700 LOC using the
Mobile-D® development process. The first project was developing Internet application using Java
and JSP, and the remaining three were mobile application development using Mobile Java and
Symbian C++.

The purpose of the study was to find the impact of pair programming on product quality.
The results of the experiment were: (1) there was no difference in productivity between pairs and
individuals, (2) pair programming is more suitable for learning and complex tasks, (3) the code
produced by pair programming had lower adherence to coding standard, (4) readability of the
programs were better in pairs code, and (4) there was no difference in program correctness

between pairs and individuals.

& Mobile-D is an agile development approach developed by Pekka Abrahamsson et al [Abrahamsson et al. 2004]. In
this approach development practices are based on Extreme Programming, method scalability is based on Crystal
methodologies, and life-cycle coverage is based on Rational Unified Process.

15

The experiment indicates that pair programming did not provide the benefits claimed in
the pair programming literature, and that productivity of pair programming was not consistently

high.

2.2.10. Muller Experiment [Muller 2006]

Matthias M. Muller, University of Karlsruhe, Germany conducted a pair programming
experiment using 18 computer science students. The 18 subjects were randomly divided into 8
control groups (individuals) and 5 experimental groups (pairs). Due the difficult programming
task two individuals did not complete coding, so the modified control group was only 6
individuals. The students were asked to design, code and test an elevator control system using
the Java programming language. Both the control and the experimental groups were initially
paired for the design phase. Once the design was completed with a partner, the control group
students were asked to code and test independently.

The primary purpose of the study was to find the impact of the pair design phase on pair
programming and solo programming. The results of the experiment were: (1) there was no
difference in program correctness, and (2) for a similar level of correctness there was no
difference in development cost.

The experiment indicates: (1) there is no difference in development cost for both pair and
individual programming, if similar level of program correctness is needed and (2) since the
probability of building wrong solution is much lower for pairs, the pair programming process can

be replaced by a pair design phase followed by a solo implementation phase.

2.2.11. Xu and Rajlich Experiment [Xu et al. 2006]
Shaochun Xu from Algoma University College, Laurentine University and Vaclav

Rajlich from Wayne State University conducted a pair programming case study using 12

16

students. The control group was formed using 4 undergraduate computer science students from
Algoma University College and the experimental group was formed using 8 undergraduate
computer science students from Wayne State University. In Feb 2005, two pairs completed their
work and the other two pairs completed their work in Jun 2005. All four individuals completed
their work in Feb 2006.

The participants were asked to develop an application which computes bowling scores.
The pairs were asked to develop the program using the Eclipse Java IDE along with Junit. There
were no such restrictions for the individuals, so two of the four individuals used Eclipse and the
remaining two individuals used Text Pad with the JDK. The pairs were asked to use Extreme
Programming (XP) and Test Driven Development (TDD); whereas the individuals were asked to
use the traditional Waterfall process.

The primary purpose of the study was to investigate the effect of Extreme Programming
and Test Driven Development on game development. The results of the experiment were: (1) the
productivity for pairs was very high compared with individuals, (2) pairs program had better
design than individuals, (3) pairs wrote better quality code than individuals, and (4) pairs
programs passed more test cases than individuals.

The experiment indicates that game developers can benefit from a XP-like approach,

which includes pair programming.

2.2.12. Erick Arisholm et al. Experiment [Arisholm et al. 2007]

Erick Arisholm, Hans Gallis, Tore Dyba, and Dag I|.K. Sjoberg conducted a pair
programming experiment using 295 professional programmers from Norway, Sweden, and the
UK. This was a two-phase experiment: the first phase, the individual programming phase, was

conducted in 2001 using 99 programmers and the second phase, the pair programming phase,

17

was conducted in 2004 and 2005 using 196 (98 pairs) programmers. The programmers were
grouped into three categories, namely junior, intermediate, and senior based on an assessment of
their Java programming experience by their project managers. The programmers were asked to
add 4 new features to an existing coffee machine application using professional Java tools.

The primary purpose of the study was to evaluate pair programming with respect to
system complexity and programmer expertise. The results of the experiment were: (1) there was
no difference in development time between pairs and individuals, (2) there was no difference in
program correctness between pair and individual programs, and (3) pairs required more effort
than individuals to add new features.

The experiment indicates that the effect of pair programming on duration, effort and
correctness depends on system complexity and not on programmer’s expertise. The juniors were
the beneficiaries from the pair programming and there was no benefit for intermediates and
seniors from pair programming.

2.2.13. Summary of PP Experiments

Twelve pair programming experiments have been discussed in section 2.2.1 through
2.2.12. A synopsis of these experiments highlighting the name and year of the experiment,
number of participants in the experiment, software process used, number of problems solved,
programming language used, duration of experiment, lines of code, development methodology

used, phases paired, and the experimental problem solved is shown in table 2.1.

18

Software Bl 2 Phases
H o . O
Study Year (Iigb:es;sr) Process o Lair%% o | Duration | LOC | 85 | £ Problem
nd | Pair | * guag = | a c|T
Wilson et al Students Pascal, C,
(Wisonetal, | 1993 | (14*10) NA | Na |1 | 9BEelhenmin [Na [sD | sP X Traffic signal
Randomly Pseudo problem
1993]
selected Code
Professionals Database
JohnNosek | gqq (5+9) NA | ONA |1 c 4Smn | NA [SO |sP X consistency
[Nosek 1998] Randomly)
check script
selected
Williams et al. S(RUS(ET)S
[Williams et al. 1999 doml PSP CsP M NA 6 weeks NA SD SP X 4 home works
2000] Not randomly
selected
Nawrocki and Students
Wojciechowski | 1999/ (5+5) 150-
[Nawrocki etal. | 2000 Randomly xP XxP M ClC++ NA 400 DD SP X 4 programs
2001] selected
McDowell et al
McDowellet | 2000/ | Students NA | NA | M NA | Semester | NA | SD | sP X 5
2001 (141+86) assignments
al. 2002]
Rostaher et al. Professionals
[Rostaher etal. | 2002 (4+6) XP XP 1 Smalltalk | Oneday | NA TDD SP X | X | Six stories
2002]
Matthias Miller | 2002/ Students Polynomial &
[Muller 2005] 2003 (23+19) P XP M Java NA NA 0D SP X Shuffle Puzzle
Vanhanen and Students
Lassenius 2004 (2+2) NA NA |1 J2EE | 400hr NA | TDD | SP x | x | casino
[Vanhanen et Randomly system
al. 2005] Selected
Java &
Hulkko and Students & ISP, One Internet
Abrahamson 2004 Scientists Mobile | Mobile M Mobile NA 3700- 0D NA X appllcz?\tlon,
[Hulkko et al. D D Java, 7700 3 mobile
(4to6+ ’ o
2005] 4106 Symbian application
) C++
Matthias Miller | 2004 Students Elevator
Muller 2006] (6+5) XP XP 1 Java NA NA TDD SP X | X system
Xu and Rajlich 2005, Students Water Xp 1 ECJIIigEe‘ NA NA SD/ sp X Bowling qame
[Xu etal. 2006] | 2006 (4+4) fall DD 98
Arisholm et al. 2001, | Professionals Coffee
[Arisholm etal. | 2004/ (99+98) NA NA 1 | JavaTools | 8hr NA NA SP X machine
2007] 2005
NA — Not Available XP — Extreme Programming SP - Static Pairing TDD - Test Driven Development D - Design
M - Multiple PSP - Personal Software Process DP — Dynamic Paring SD - Standard Development C - Code
CSP - Collaborative Software Process T-Test

Table 2.1: Summary of Pair Programming Experiments

19

Programming efficiency or productivity is the measure of Line of Code (LOC) produced
per hour per programmer. Nawrocki and Wojciechowski [Nawrocki et al. 2001], Vanhanen and
Lassenius [Vanhanen et al. 2005] and Hulkko and Abrahamson [Hulkko et al. 2005] show that
the productivity of the pair programmers was not more than the individual programmers
productivity; the only exception to this is the Xu and Rajlich [Xu et al. 2006] experiment.

John Nosek [Nosek 1998], Williams et al. [Williams et al. 2000], Nawrocki and
Wojciechowski [Nawrocki et al. 2001], Rostaher et al. [Rostaher et al. 2002], Matthias Muller
[Muller 2005], Xu and Rajlich [Xu et al. 2006], and Arisholm et al. [Arisholm et al. 2007] show
that the time taken by the pair programmers to complete a task was more than the time taken by
the individual programmers. Moreover, Nawrocki and Wojciechowski [Nawrocki et al. 2001]
and Rostaher et al. [Rostaher et al. 2002] show that pairs took almost double the time than
individual programmers.

The defect density is measured in terms of number of test cases passed [Williams et al.
2000, Xu et al. 2006] and/or relative defect density (defects/KLOC) [Williams et al. 2000,
Hulkko et al. 2005]. Williams et al. [Williams et al. 2000] and Xu and Rajlich [Xu et al. 2006]
show that the number of test cases passed by pairs programs were higher than individual
programmers. Matthias Muller [Muller 2005] shows that programs written by pair groups and
review groups have similar level of correctness. Arisholm et al. [Arisholm et al. 2007] report that
the pairs did not produce more correct programs than individuals. Vanhanen and Lassenius
[Vanhanen et al. 2005] report that after coding and unit testing the programs written by pairs had
less defects; whereas, after the system testing and bug fixing the programs written by pairs had

more defects than individuals.

20

Williams et al. [Williams et al. 2000] report that pairs programs had less defect density,
but Hulkko and Abrahamson [Hulkko et al. 2005] show that pairs produced code with more
defect density.

Wilson et al. [Wilson et al. 1993] and John Nosek [Nosek 1998] measure the code quality
in terms of its functionality, the number of software components contained in the program, and
readability, the number of comments the program contains; whereas, Xu and Rajlich [Xu et al.
2006] measured the code quality in terms of its elegances and readability.

Xu and Rajlich [Xu et al. 2006] show that the programs written by pairs were more
readable and elegance, but Wilson et al. [Wilson et al. 1993] and John Nosek [Nosek 1998] show
that statistically there was no significant difference in readability between the individual and pair
programmers codes.

With respect to functionality the John Nosek [Nosek 1998] experiment shows that pair
programs were more functional, whereas, in the Wilson et al. [Wilson et al. 1993] experiment,
the individual programmers programs were more functional than pairs.

Based on the post experiment survey the experimenters calculate the programmer’s job
satisfaction and confidence on their work. John Nosek [Nosek 1998], Williams et al. [Williams
et al. 2000], Vanhanen and Lassenius [Vanhanen et al. 2005], Xu and Rajlich [Xu et al. 2006]
and Wilson et al. [Wilson et al. 1993] show that pairs expressed their satisfaction over pair
programming. Wilson et al. [Wilson et al. 1993], John Nosek [Nosek 1998], and Williams et al.
[Williams et al. 2000] show that pairs expressed their confidence on their work when using pair
programming. The results of the above mentioned experiments with respect to the efficacy of

pair programming are shown in table 2.2.

21

i - = " >
Study L2 S P I3 & 8 =

2 3 E = 3 2 =
g a = 3 8 &)
w

Wilson et al.

[Wilson et al. 1993] test No | No | Yes

John Nosek

[Nosek 1998] tHest No Yes | Yes | Yes

Williams et al. -

[Williams et al. 2000] No statistical testt No Yes Yes Yes

Nawrocki and

Wojciechowski No statistical test No No

[Nawrocki et al. 2001]

Rostaher et al.

[Rostaher et al. 2002] ttest No

Matthias Mallertt .

[Muller 2005] Mann-Whitney Test No No

Vanhanen and Lassenius -~

[Vanhanen et al. 2005] No statistical test No No Yes

Hulkko and Abrahamson -

[Hulkko et al. 2005] No statistical test No No

Xu and Rajlich* -

[Xu et al. 2006] No statistical test Yes No Yes Yes Yes

Arisholm et al.

[Arisholm et al. 2007] ANCOVA No | No

Yes — Supports PP claims (i.e., PP is beneficial than Individual programming)

No — Not Supports PP claims (i.e., PP is not beneficial than Individual programming)

T The authors claim that they used independent sample t-test, but the results were neither published nor used in the paper
11 Pair programming Vs Review (solo coding phase followed by two person inspection) experiment

* Experiment to validate Extreme Programming (XP) against Waterfall method in game development

Table 2.2: Summary of Pair Programming Experiments Results

22

2.3. The Pairing Activity
While much of the literature explains what pair programming is, it fails to answer some

key questions:

e When to pair program?

e How to form pairs?

e How frequently partners have to switch their roles?

e When to exchange the partners?

e What the working environment should look like?

e Who owns the task at hand — the pair or a person?

e Who owns the code?

e Whether Extreme Programming or pair programming denies specialists?

e What is the role of programming languages and tools in pair programming?

2.3.1. When to Pair Program?

John Nosek [Nosek 1998] suggests that pair programming might be preferred over
individual programming in situations like (1) speeding up development — if the organization
wants to bring its product earlier to market for it to gain an edge over its competitors and (2)
improving software quality — to produce a high quality product, which has very high profit
margin. Thus pair programming is preferred when the organization need to develop high quality
products in short time. Matthias Muller [Muller 2005] suggests that pair programming is a viable
option for developing software with fewer failures.

Judith Wilson et al. [Wilson et al. 1993], Don Wells and Trish Buckley [Wells et al.
2001], Kim Lui and Keith Chan [Lui et al. 2006], and Erik Arisholm et al. [Arisholm et al. 2007]

observe that novice programmers benefit from pair programming. Don Wells and Trish Buckley

23

[Wells et al. 2001] observe that novice-novice pairs work better than expert-novice pairs,
because the novices feel that they are not intimidated and demoralized. Moreover the novices
learned from each other while solving the problem. Don Wells and Trish Buckley [Wells et al.
2001] also suggest that people with equal experience should pair in order to achieve significant
productivity and morale.

Studies by Jari Vanhanen and Casper Lassenius [Vanhanen et al. 2005] and Hanna
Hulkko and Pekka Abrahamsson [Hulkko et al. 2005] show that pair programming helps in
transferring the knowledge about the system among the team members; meaning, it enhances
training.

Studies by Hanna Hulkko and Pekka Abrahamsson [Hulkko et al. 2005], Erik Arisholm
et al. [Arisholm et al. 2007], Benedicenti and Paranjape [Benedicenti et al. 2001], Becker-Pechau
et al. [Pechau et al.2003] and Gittins et al. [Gittins et al. 2001] show that pair programming is
useful with complex tasks. Moreover, Erik Arisholm et al. [Arisholm et al. 2007] suggest that
pair programming is effective when assigning complex maintenance tasks to junior
programmers. Jari Vanhanen and Casper Lassenius [Vanhanen et al. 2005], on the other hand,
show that pair programming does not help in solving complex tasks.

Xu and Rajlich quote Kent Beck [Beck 2000] as stating “that pair programming (or XP)
is not suitable for very large projects” [Xu et al. 2006].

Ambu and Gianneschi [Ambu et al. 2003] suggest that pair programming is not suitable
with tight deadlines.

Pair programming is not possible if the development team size is small [Boutin 2000].
Karl Boutin [Boutin 2000] reported that in his research and development lab the developers were

forced to abandon pair programming due to lack of resources (i.e. due to small team size). At the

24

same time Kent Beck [Beck 2000] suggests that XP is not possible when the development team

size is more than 10. Table 2.3 summarizes the points discussed in this section.

When to Pair Program When not to Pair Program
Need to speed up development Large projects
To improve software quality Tight deadlines

Require program with less failures | Very small team sizes and team size of >10
When the programmers are novice
To solve complex tasks

For job training

Programmers of equal experience

Table 2.3: When to Pair Program

2.3.2. Forming Pairs

According to Don Wells and Trish Buckley [Wells et al. 2001], people with equal
experience should pair in order to achieve significant productivity and morale. They also suggest
that an experienced-novice pair will not set up a proper pair relationship; instead it will set up
only a teacher-student relationship, possibly creating a novice programmer morale problem. If
experienced-novice pairs tied up for a longer session of pair programming then both will get
uninterested, exhausted, and demoralized. They also suggest that novice programmers should be
paired with other novice programmers so that both will learn from each other. Once novice

programmers begin to gain confidence then they can be paired with an experienced partner.

2.3.3. Role Switching

Role switching is the process of the driver and the navigator exchanging their roles. Kent
Beck [Beck 2000] does not directly say anything about switching roles in the pair programming
definition but implied such with ““Set up your desks so two people can sit side by side and shift
the keyboard back and forth without having to move their chairs” when he was describing the

development activity. Matevz Rostaher and Marjan Hericko [Rostaher et al. 2002] suggest that

25

role switching rhythm (the high frequency of role switching, more than 20 times per day, and
short phases of uninterrupted activity, 5 minutes in average) is essential for test-first pair
programming.

According to William Wake [Wake 2002], role switching can be done every couple of
minutes or a few times an hour. Robert Martin suggests that whenever the driver gets tired or
stuck, the navigator should take over the driver’s job. This is normally happens several times an
hour.

Matevz Rostaher and Marjan Hericko [Rostaher et al. 2002] observed that role switching
occurred 21 times per day on average for all programmers and 42 times per day on average for
experienced programmers. They also observed that uninterrupted activity lasted 5 minutes in
average for all programmers and 3 minutes for experienced programmers. Lippert et al. [Lippert
et al. 2001] observed that the physical working environment (seating arrangement) plays a
crucial part in role switching. Conventional seating arrangement hinders the frequent role
switching. Once the seating is rearranged, pairs switch their roles more frequently (the seating

arrangement is discussed more detail in section 2.3.5).

2.3.4. Partner Exchange

The main idea behind rotating developers among different pairs is to spread the system
knowledge to every member of the development team.

Kent Beck [Beck 2000] says “Paring is dynamic™, meaning, people have to pair with
different people in the morning and evening sessions, and a programmer can pair with anyone in
the development team. William Wake [Wake 2002] suggests that the developers have to
exchange their partners every day and some developers will exchange their partners more often

depending upon the situation. Robert Martin [Martin 2003] suggests that every member of the

26

development team should try all the activities of the current iteration and that he/she has to
partner with every member in the team. He also suggests that every programmer has to work in

at least in two different pairs.

2.3.5. Workplace Layout

To emphasize the importance of the workplace layout for pair programming’s success in
DaimlerChrysler C3 project, Kent Beck [Beck 2000] writes ““I was brought in because of my
knowledge of Smalltalk and objects, and the most valuable suggestion | had was that they should
rearrange the furniture™.

According to Kent Beck [Beck 2000], a reasonable work place is important for any
project’s success. Kent Beck [Beck 2000] and Lippert et al. [Lippert et al. 2001] suggest that the
physical environment (i.e., the desk and seating arrangement) plays a critical role in pair
programming. This was confirmed by the result of the survey conducted by Laurie Williams and
Robert Kessler [Williams et al. 2000b] in which 96% of the programmers agreed that proper
workplace layout was critical to their pair programming success. Lippert et al. [Lippert et al.
2001] also observed that the conventional seating arrangement hindered the frequent role
switching, and once the seating was rearranged, the pairs switched their roles more frequently.

For the success of pair programming, developers need to communicate with their partners
and with other members of the team as well [Beck 2000, Williams et al. 2003]. The pair
programming layout must be arranged in such a way that it allows inter-pair and intra-pair

communications.

27

Kent Beck [Beck 2000] defines the working environment for pair programming as
follows:

“Common office layouts don't work well for XP. Putting your computer in a
corner, for example, doesn't work, because it is impossible for two people to sit
side-by-side and program. Ordinary cubicle wall heights don't work well—walls
between cubicles should be half-height or eliminated entirely. At the same time,
the team should be separated from other teams™.

“One big room with little cubbies around the outside and powerful machines on
tables in the middle is about the best environment I know™.

The DaimlerChrysler C3 work area [Beck 2000] is shown in figure 2.2. Six computers

were placed on two large tables and pairs were allowed to sit at any available machine.

Figure 2.2: The DaimlerChrysler C3 work area [Beck 2000]

According to Laurie Williams and Robert Kessler [Williams et al. 2000b, Williams
2003], pair programmers should able to slide the keyboard and mouse back and forth without
moving their chairs. There are two programming layouts® shown in figure 2.3. Laurie Williams
and Robert Kessler [Williams et al. 2000b] preferred the layout in the right over the layout in the

left.

Figure 2.3: Pair Programming Workplace Layout [Wiki]

To facilitate the inter-pair and intra-pair communications, RoleModel Software, Holly
Springs, NC developed a workstation layout, in which 6 tables are arranged as shown in figure

2.4 [Williams et al. 2003].

e T— r y =

T,_u i ﬁl |@l 4/
/| - .)
g | =
) @)
— P £y .
L& O ()

Figure 2.4: RoleModel Software Workstation Layout [Williams et at. 2003]

° This layout[Wiki] was contributed by Beck and Cunningham [Williams et al. 2000b]
29

When Lippert et al. [Lippert et al. 2001] started developing their JWAM framework
using Extreme Programming (XP), they started programming using the conventional working
layout consisting of desks with fixed cabinets at their sides as shown in figure 2.5. Although this
layout permitted them to do pair programming, they found out that role switching was not easy.
Once they realized that due to this physical environment the role switching occurred only a few
times per day, they rearranged the furniture as shown in figure 2.6, which, in turn, enhanced their
roles switching activity. But from their experience they suggest that the “Circle table” layout
shown in figure 2.7 would be a better choice for pair programming. However, Lippert et al.
[Lippert et al. 2001] have not provided reasoning for their proposed pair programming layout

and the physical layout has not been tested.

Figure 2.5: Conventional Environment [Lippert et al. 2001]

Figure 2.6: Rearranged Environment for Better Role Switching [Lippert et al. 2001]

30

Figure 2.7: “Circle table” for pair programming [Lippert et al. 2001]

2.3.6. Task Responsibility

In pair programming, two programmers write code for a user story. Pairing is a dynamic
activity, in which a developer may need to pair with more than one developer to finish the task at
hand. This raises the question “who is responsible for the task at hand?” If a task needs some
special technologies like GUI or database then who is responsible to carry out that task?

According to William Wake [Wake 2002], a single developer owns the task at hand. The
developer responsible for the task may partner with one person for one aspect of the task and
someone else for another aspect of the task.

Robert Martin [Martin 2003] clearly indicates that no programmer is responsible or has

authority over any technology; everybody has to work in all technologies.

2.3.7. Code Ownership
Since the code for a task is written by many developers in the development team, no
individual developer has ownership rights. The entire team owns the code, i.e. collective code

ownership [Beck 2000, Wake 2002].

31

2.3.8. XP/PP Deny Specialists?
Robert Martin [Martin 2003] states
“This doesn’t mean that XP denies specialists. If your specialty is GUI, you are
most likely to work on GUI tasks, but you will also be asked to pair on
middleware and database tasks. If you decide to learn a second specialty, you can
sign up for tasks and work with specialists who will teach it to you. You are not

confined to your specialty”.

2.3.9. Role of Programming Languages and Tools in PP

Jerzy Nawrocki and Adam Wojciechowski [Nawrocki et al. 2001] suggest that pair
programming described by Extreme Programming is less efficient than reported by earlier
researchers. From Table 2.4 it is apparent that pair programming experiments conducted using
Extreme Programming (XP) do not support the claims of pair programming. This confirms Jerzy
Nawrocki’s and Adam Wojciechowski’s [Nawrocki et al. 2001] claim that XP tailored for single
person use produces better results than XP used with pair programming.

Looking closer at the results of pair programming experiments listed in Table 2.4, it is
clear that pairs do not outperform the individual programmers when the same working
environment or software process were provided to the programmers. Moreover, XP with modern
object-oriented programming languages such as Smalltalk and Java seems to be less effective for
pair programming. This may be due to the modern compilers and/or development environments
and tools available for the programmers; e.g., the navigator role was effectively replaced or even
enhanced by the modern compilers and IDE. Table 2.5 also suggests that the advantage or

benefits of having a navigator (an extra pair of eyes or an extra brain) for continuous code review

32

in pair programming has been diminished by the arrival of modern programming languages and
professional development tools.

From Table 2.6, we can observe that the pair programming implemented with Test
Driven Development (TDD) as prescribed by XP, does not outperform individual programming.
This may be due to the TDD used in XP, which allows developers to define the exact
functionality of the method before the actual code implementation. This means that every
developer knows in advance exactly what he/she is going to implement. In this way, every

developer is capable of implementing the module by himself without the help of the partner.

Study Software Process Programming Language Result
Ind. Pair

Williams et al. PSP Csp C++ Supports PP claims
[Williams et al. 2000]
Xu and Rajlich Water Fall | XP Eclipse, JDK Supports PP claims
[Xu et al. 2006]
Hulkko and Abrahamson Mobile D Mobile D | Java & JSP, Mobile Java, | Not supports PP claims
[Hulkko et al. 2005] Symbian C++
Nawrocki and Wojciechowski | XP XP CIC++ Not supports PP claims
[Nawrocki et al. 2001]
Rostaher et al. XP XP Smalltalk Not supports PP claims
[Rostaher et al. 2002]
Matthias Mller XP XP Java Not supports PP claims
[Muller 2005]

Table 2.4: Effects of Software Processes on PP

33

[Williams et al. 2000]

Programming Language Study Result
Wilson et al. Supports PP claims
[Wilson et al. 1993]
John Nosek Supports PP claims
Pascal, C/C++ [N.O .SEk 199] -
Williams et al. Supports PP claims

Nawrocki and Wojciechowski
[Nawrocki et al. 2001]

Not supports PP claims

Rostaher et al.

Not supports PP claims

[Xu et al. 2006]

Smallialk [Rostaher et al. 2002]
Matthias Miiller Not supports PP claims
[Muller 2005]
Xu and Rajlicht Supports PP claims
Java

Hulkko and Abrahamson
[Hulkko et al. 2005]

Not supports PP claims

Professional Java Tools

Vanhanen and Lassenius
[Vanhanen et al. 2005]

Not supports PP claims

Arisholm et al.
[Arisholm et al. 2007]

Not supports PP claims

t - The main aim of the experiment is to evaluate the Extreme Programming (XP) against Waterfall model in game
development; not pair programming versus individual programming experiment.

Table 2.5: Effects of Programming Languages on PP

Development Method Study Software Process Result
Ind. Pair

Wilson et al. NA NA Supports PP claims
[Wilson et al. 1993]

Standard Development John Nosek NA NA Supports PP claims
[Nosek 1998]
Williams et al. PSP Csp Supports PP claims
[Williams et al. 2000]
Vanhanen and Lassenius NA NA Not supports PP claims
[Vanhanen et al. 2005]
Rostaher et al. XP XP Not supports PP claims
[Rostaher et al. 2002]
Matthias Miller XP XP Not supports PP claims

Test Driven Development | [Muller 2005]
Hulkko and Abrahamson Mobile D | Mobile D | Not supports PP claims
[Hulkko et al. 2005]
Nawrocki and Wojciechowski XP XP Not supports PP claims
[Nawrocki et al. 2001]

Table 2.6: Effects of Software Development Methods on PP

34

2.4. The Effect of Pair Programming on Software Development Phases

One of the basic requirements of pair programming is that all production code must be
programmed by pairs, which, in turn, doubles the developers required to complete a project and
also almost doubles the development cost. Unquestionably this is a waste of resource; though the
proponents of pair programming claim that “pair programming increases initial development
time but saves time in the long run because there are fewer defects” [Cockburn et al. 2000]. Up
to now there is no empirical evidence for their claim. Because the amount of skill required to
carry out the various phases of software process are different, there is no guarantee that pair
programming will produce the same results in all the phases. The results of the Hanna Hulkko
and Pekka Abrahamson [Hulkko et al. 2005] case studies suggest that pair programming was
more useful in the beginning of the project and that the pair programming effort steadily
decreased in the subsequent iterations and again increased in the final iteration (defect correction
after system test).

The main aim of this section is to explore whether pairing up of developers is required in
all the phases of software development, or if there an alternate way to minimize the pair-up times
between these developers, in order to maximize the resource utilization and reduce the

development cost.

2.4.1. Pair Design

Due to the asymmetrical nature of the design and code phases, we cannot expect all the
benefits of pair-coding to apply to pair-design as well [Canfora et al. Sep 06]. Various studies
highlight the benefits of pair-design. According to Laurie Williams et al. [Williams et al. 2000],

pair-analysis and pair-design are more critical than pair-implementation, and pair-analysis and

35

pair-design are critical for pair success. They also state that “It is doubtless true that two brains
are better than one when performing analysis and design™.

Emilio Bellini et al. [Bellini et al. 2005] reveal that pair-design was more predictable than
individual design and helped the developers to understand the system while developing it. This
learned knowledge about the system can help developers in developing the project with less
rework.

The pair-design experiment conducted by Gerardo Canfora et al. [Canfora et al. Sep 06]
in September 2006, suggests that pair-design will also produce all anticipated benefits of pair-
coding. Their experimental results show that pairs produced better design in less time than
individuals. Moreover, with respect to effort and quality, the pair design was more predictable
than individual design (i.e. the standard deviation of pair metrics was smaller than the one of
solos). They also suggest that the industry can use pair design in critical situations and also in
situations with short deadlines, lack of resources, and lack of skilled personnel. The pair design
experiment conducted by Gerardo Canfora et al. [Canfora et al. Dec 06] in December 2006,
suggests that pair design slows down the task but improves quality. They also found that the
quality of pair design was more predictable (i.e. the standard deviation obtained by pairs was
smaller than the one of solos) than individual design quality.

Matthias M. Muller [Muller 2006] conducted a pair programming experiment using 18
computer science students. The 18 subjects were randomly divided into 8 control groups
(individuals) and 5 experimental groups (pairs). The students were asked to design, code and test
an elevator control system using Java. Both control and experimental groups were initially paired
for the design phase. Once the design was completed with the partner, the control group students

were asked to code and test independently. The results show that the costly pair programming

36

process (design, code and test) can be replaced by a less expensive process of pair-design phase
followed by individual code and test phases.

On the other hand, Hiyam Al-Kilidar et al. [Al-Kilidar et al. 2005] found the effects of
pair work on the quality of designs to be mixed. In the first module, pairs produced better quality
design than solos. In the second module, the pairs and solos interchanged their roles; solos
became pairs and pairs became solos. There was no significant difference in design quality
between pairs and solos.

Pairs produced slightly better design than individuals in Jari Vanhanen’s and Casper
Lassenius’s [Vanhanen et al. 2005] experiment. In Xu’s and Rajlich’s experiment [Xu et al.
2006], pairs developed better design than individuals.

The summary of the pair-design experiments is shown in Table 2.7.

Study Result
Emilio Bellini et alt. Pair design was more predictable than individual design
[Bellini et al., 2005] Knowledge transfer about the system was higher among pairs than solos
Hiyam Al-Kilidar et alt. Mixed results about the design quality

[Al-Kilidar et al., 2005]
Vanhanen and Lasseniust | Pairs produced slightly better design than individuals
[Vanhanen et al. 2005]

Gerardo Canfora et alt. Pair design was better than individual design
[Canfora et al., Sep 06] Pairs took less time than individuals

Pair design was more predictable than individual design
Gerardo Canfora et alt. Pair design was better than individual design
[Canfora et al., Dec 06] Pairs took more time than individuals

Pair design was more predictable than individual design
Matthias Muller Pair programming can be replaced by pair design followed by
[Muller, 2006] individual code and test
Xu and Rajlich$ Pair program had better design than individual program

[Xu et al. 2006]

tThese experiments had only design phase and there were no coding and testing phases
 These were pair programming experiments which includes design phase

Table 2.7: Summary of Pair Design Experiments

We can conclude the following, from the work to date:
e Pair design improves design quality
e Pair design is more predictable than individual design in terms of effort and quality

e The development time for the pair design and individual design has mixed results

37

e Pair programming can be replaced with pair design phase followed by individual code

and test phases in order to reduce cost.

2.4.2. Pair Coding

The pair-coding in Extreme Programming is almost nothing but pair programming itself.
Laurie Williams and Robert Kessler [Williams et al., 2000] claim that pair-analysis and pair-
design is more critical than pair-implementation. They also report that for simple and routine
work, pairs split the work and do it individually in a more effective manner than when they work
as pairs. In addition to this, the programmers report that for detail-oriented tasks, such as GUI
drawing, the partners in the pair do not help much.

Many researchers including Williams et al. [Williams et al. 2000], Muller and Tichy
[Muller et at. 2001], Lui and Chen [Lui et al. 2003], Hulkko and Abrahamsson [Hulkko et al.
2005], and Erik Arisholm et al. [Arisholm et al. 2007] report that pair programming is useful
only for complex tasks and not useful for simple and routine tasks.

With respect to program quality (in terms of functionality and readability), pair
programming experiments show mixed results. Wilson et al. [Wilson et al. 1993], John Nosek
[Nosek 1998], McDowell et al [McDowell et al. 2002], and Xu and Rajlich [Xu et al. 2006]
show that pairs produced better quality code than individuals; whereas VVanhanen and Lassenius
[Vanhanen et al. 2005] and Hulkko and Abrahamson [Hulkko et al. 2005] show that individuals
produced better quality code than pairs.

Regarding program correctness (i.e. number of test cases passed), again, pair
programming experiments registered mixed results. Williams et al. [Williams et al. 2000] and Xu
and Rajlich [Xu et al. 2006] show that pairs programs pass more test cases; whereas, Matthias

Miller [Muller 2005], Hulkko and Abrahamson [Hulkko et al. 2005], Matthias Muller [Muller

38

2006], and Arisholm et al. [Arisholm et al. 2007] show that there is no difference in program
correctness between pair and individual programs.
Almost all experiments show that pairs spend more time than individuals, which

indicating that pair-coding is a rather slow and expensive technology.

The conclusion of pair-coding is,

e Pair coding phase is not as important as pair design phase

e Pair coding is slow and expensive

e Pair coding is useful only for complex tasks not for simple and/or routine tasks

e Empirical evidence is mixed regarding program quality

e Empirical evidence is mixed regarding program correctness

2.4.3. Pair Testing

Laurie Williams et al. [Williams et al., 2000] claim that pair-testing is the least critical
phase in the pair programming process and that pairs can split up to run test cases on two
computers as long as defects are identified.

Hulkko and Abrahamson [Hulkko et al, 2005] show that the relative amount of effort
spent on the defect correction phase (performed after system test) of the project is very high.

Jari Vanhanen and Casper Lassenius [Vanhanen et al., 2005] observed that pairs write
code with fewer defects, but are less careful in system testing. They also suggest that unless the
pairs do careful system testing, the benefits (fewer defects) they obtain in coding phase of pair
programming will be lost. Pairs delivered system with more defects as compared with individual
programmers. This is due to the reason that individuals found and removed more defects before

delivery than pairs.

39

2.5. Alternatives to Traditional Pair Programming [Confer 2009]

Collaborative-Adversarial Pair (CAP) programming is a variant of the pair programming
concept advocated by many agile techniques. CAP was developed at Auburn University several
years ago as part of a commercial cell-phone software project. In 2003, Dr. David Umphress
were asked by Rocket Mobile, Inc., a west-coast firm that specializes in cell phone software
development, to reverse engineer one of their BREW products and rewrite it in JME. The effort
was directed by Dr. David Umphress and the team consisted of two doctoral students — Brad
Dennis and William "Amos" Confer — who each had six or seven years of industrial software
development experience. The team purposely adopted an XP-like process because they believed
that it gives them the greatest visibility into the project, and because it allowed them to deliver
the product to the customer in increments for reliability testing. The team quickly determined
that pair programming was not working. Both developers were highly independent and felt they
each knew best how to build the code. Too, they worked different parts of the day: one
developer was a morning person and the other was a night person. They overlapped two hours a
day, at best. The team evolved over the first month of the project the idea of the collaborative-
adversarial pair as the most realistic way we could produce reliable software. After the initial
development, Amos and Dr Chapman used it in the senior capstone design course that is part of
the Bachelor of Software Engineering and Bachelor of Wireless Engineering. The Collaborative-
Adversarial Pair (CAP) programming process employed a synchronize-and-stabilize approach to

development.

40

3. RESEARCH DESCRIPTION

The primary purpose of this research is to create and/or formally define a stable and
reliable agile software development methodology called Collaborative-Adversarial Pair (CAP)
programming. We see CAP as an alternative to traditional pair programming in situations where
pair programming is not beneficial or is not possible to practice.

The primary objectives of this research are:

e To identify the pair-programming process, as well as the effectiveness, advantages, and
disadvantages of pairs.

e To define the Collaborative-Adversarial Pair (CAP) process whose objective is to exploit
the advantages of pair programming while at the same time downplaying its
disadvantages.

e To evaluate Collaborative-Adversarial Pair (CAP) programming against pair
programming and traditional individual programming in terms of productivity,

correctness and job satisfaction.

3.1. The CAP Process [Umphress 2008]
The Collaborative-Adversarial Pair (CAP) programming process employs a synchronize-and-
stabilize approach to development. As shown in Figure 3.1, the features are grouped into

prioritized feature sets then build the sets in a series of software cycles, one set per cycle.

41

Features

Prioritized Feature Sets

Build One Set / Cycle

Figure 3.1: CAP Development Activity

The CAP development cycle is shown in Figure 3.2. Each cycle starts with the entire
project team reviewing the features to be built. It is here that the customer requirements are
translated into product requirements by converting user stories into ““developer stories,” which
are essentially manageable units of work that map to user stories. Progress is tracked by two
measures: the ratio of the number of users stories built to the total number of user stories, and the
ratio of the developer stories completed to the total number of developer stories to be built in the
cycle. The first measure expresses progress to the customer; the second measure tracks internal
progress.

After the feature review, the team moves into collaborative-adversarial mode (see Figure
3.3). The developers work together collaboratively to identify how to architect and design the
features. They use this time to clarify requirements and discuss strategy. They then walk through
their design with the overall project leader. After the design is approved, they move into
adversarial roles. One developer is assigned the responsibility of implementing the design and
the other developer is given the task of writing black-box test cases for the various
components. The goal of the implementer is to build unbreakable code; the goal of the tester is to
break the code. Note that the implementer is still responsible for writing unit-level white-box
tests as part of his development efforts (see Figure 3.4). Once both developers have completed

their tasks, they run the code against the tests. Upon discovering problems, the pair resumes their

42

adversarial positions: the tester verifies that the test cases are valid and the implementer repairs
the code and adds a corresponding regression unit test. In some cases, the test cases are not valid
and are, themselves, fixed by the tester.

At the conclusion of the test phase, the team moves to a post mortem step. Here, the
team (including the project manager) reviews the source code and the test cases. The purpose of
the review is to 1) ensure the test cases are comprehensive and 2) identify portions of the code
that are candidates for refactoring and not to find bugs; so the team does not walk through the
code at a statement-by-statement level. This has been found to be so tedious that the participants
quickly become numb to any problems. It is assumed that the majority of defects are caught in
the blackbox functional tests or in the whitebox unit tests. Any gaps in test cases are captured as
additional developer stories; refactoring tasks are done likewise. These developer stories receive
a high enough priority that they are among the first tasks completed in the subsequent software
development cycle.

A new development cycle begins again by following the post mortem step.

43

Feature Set (Customer Requirements / User Stories)

Capture Additional
Developer Stories

]

User Stories
(High Priority)

)
Future Set Review | Entire Project Team
> Product Requirements (Developer Stories)
N

Collaborative-Adversarial Pair Develop_er — Tester
(CAP) Programming (o1)

Developer Pairs

Postmortem

Test Case Review

Code Review =— Team

Gapd

Cases

N

Refactoring |

v

Acceptance Test | } Customer

/‘FEIECT' Passed

Developer + Tester

Design

LN
Cal

N
To Next Development Cycle

Figure 3.2: CAP Development Cycle

Build Test
Cases

Integration
& Test

Developer + Tester

Developer

Figure 3.3: Collaborative-Adversarial Pairs (CAP)

Refactor

Self Inspect

Figure 3.4: Build Code / Unit Implementation in CAP

44

3.1.1. Design
CAP uses Class Responsibility Collaborator (CRC) cards to design the software. A

brainstorming tool used widely in the design of object-oriented software, the CRC cards were
invented by Ward Cunningham [Beck et al. 1989]. CRC cards are usually created from 4" x 6"
index cards and are used to determine which classes are needed and how they will interact. A
CRC card contains the following information:

1. The class name.

2. lIts super class.

3. The responsibilities of the class.

4. The names of other classes with which the class will collaborate to fulfill its

responsibilities.

Figure 3.5 illustrates a template CRC card.

Class Name:

Super Class Name:

Responsibilities Collaborators

Figure 3.5: A Class-Responsibility-Collaborator (CRC) index card

45

3.1.2. Black Box Test Cases

In functional testing (or behavioral testing), every program is considered to be a function
that maps values from its input domain to values in its output range. The functional testing is also
called black box testing, because testing does not depend on the content or implementation of the
function. Black box testing is completely based on the external specifications (i.e. inputs and
outputs) of the function and is usually data driven.

With functional testing, test cases are developed only from external descriptions of the
software, including specifications, requirements, and design. The functional test cases have the
following two distinct advantages:

1. They are independent from software implementation. Implementation changes do not
affect the test cases and vice-versa.

2. They can be developed in parallel with the implementation, which, in turn, reduces the
overall project development interval.

The functional test cases may suffer from the following two drawbacks:

1. There may be a redundancy in the developed test cases.

2. There can be a probability that portions of the software may be untested.

3.1.3. Unit Implementation

Implementation refers to programming and is intended to satisfy the requirements in the
manner specified by the detailed design. Unit (or software component or module) refers to the
smallest part of the implementation that will be separately maintained. Normally a unit or
software component is a set of collaborating classes. In some cases, a component may contain a
single class. The unit implementation procedure in CAP is given below, which follows the Test-

Driven Development (TDD) approach:

46

1. Write a test unit
2. Compile the test.
e |t should fail to compile because the code that the test calls has not been
implemented
3. Implement the methods/write code
e Refactor first if necessary
e Do not compile yet
e Follow the coding standard
e Code in a manner that is easiest to verify
4. Self-inspect the code.
e Do not compile/execute yet
e Be convinced that the code does the required job (the compiler will never do this
because it merely checks the syntax).
e Fill out the code inspection checklist
e Record the time and defect logs
5. Compile the code
e Repair syntax defects
e Record time and defect log
6. Run the test and see it pass.
7. Refactor for clarity and to remove duplication

8. Repeat from the top

47

3.1.3.1. Unit Test

Unit test is used to verify the software component or module of software design. Because
a component is not a stand-alone program, a driver and/or stub software must be developed for
each unit test. The unit test environment is shown in figure 3.6. A driver is a main program (in
many applications) that accepts test case data, passes such data to the component to be tested,
and prints relevant results. A stub is a dummy subprogram, serving to replace module that are
subordinate to (called by) the component to be tested. It uses the subordinate module’s interface,
may do minimal data manipulation, provides verification of entry, and returns control to the
module undergoing testing. To simplify unit testing, the designed component must be highly
cohesive. When only one function is addressed by a component, the number of test cases is

reduced and errors can be more easily predicted and uncovered.

TestCases » Driver Results

Module
to be
Tested

Stub Stub

Figure 3.6: Unit Test Environment

48

3.1.4. Testing in CAP Vs PP

The pair programming methodology uses the white box testing strategy, which has the
following drawbacks:

1. Since the white box test cases are developed from program source code, there is no way
to recognize whether all the specified behaviors are implemented or not.

2. It is very difficult to employ white-box testing on purchased or contracted software
because its internal structure is unknown.

On the other hand, the black box techniques alone are not sufficient enough to identify all
the test cases; indeed, both white box and black box approaches are needed. By combining the
black box and white box testing techniques, we will get the following benefits:

1. The redundancy and gaps problems of black box testing can be recognized and resolved.
2. White box testing aids in identifying behaviors that are not in the specification (such as a
virus). This will never be revealed by black box functional testing.

The CAP testing procedure judiciously combines the functional (black box) and
structural (white box) testing to provide the confidence of functional testing and the

measurement of structural testing.

3.1.5. Refactoring

Refactoring is the process of changing software’s internal structure, in order to improve
design and readability and reduce bugs, without changing its observable behavior. Martin Fowler
[Fowler 1999] suggests that refactoring has to be done in three situations: when adding new
function to the software, when fixing a bug, and when we review the code (i.e., whenever new

idea arises at the time for code review or when the code is identified as being too complex). The

49

first two cases will be covered by the refactoring session of the unit implementation. Since CAP
incorporates the code review session after integration and test, an additional refactoring phase is
necessary. Refactoring also helps developers to review someone else’s code and helps the code

review process to have more concrete results [Fowler 1999].

50

4. APPLIED RESULTS AND RESEARCH VALIDATION

Two empirical experiments were conducted during fall 2008 and spring 2009 to validate
CAP against traditional pair programming and individual programming. The subjects used

Eclipse and JUnit to perform three programming tasks with different degrees of complexity.

4.1. Subjects

Forty two (42) volunteer students from the Software Process class, a combined class of
undergraduate seniors and graduate students, participated in the study. All participants had
already taken software modeling and design (using UML) and computer programming courses
such as C, C++ and Java. Out of fourteen students, 11 students had 1 to 5 years of industrial
programming experience, two had no or less than one year programming experience, and one
student had more than 5 years programming experience. Four students had prior pair
programming experience.

4.2. Experimental Tasks

The subjects were asked to solve the following three programming problems in Java
(Test Driven Development using Eclipse):

Problem1: Write a program which reads a text file and displays the name of the file, the
total number of occurrences of a user-input string the total number of non-blank lines in the file,
and the count the number of lines of code according to the LOC Counting Standard used in PSP,
Personal Software Process [Humphrey 2005]. You may assume that the source code adheres to

the LOC Coding Standard. This assignment should not determine if the coding standard has been
followed. The program should be capable of sequentially processing multiple files by repeatedly

51

prompting the user for file names until the user enters a file name of "stop”. The program should
issue the message, "I/O error”, if the file is not found or if any other 1/O error occurs.

Problem2: Write a program to list information (name, number of methods, type, and
LOC) of each proxy in a source file. The program should also produce an LOC count of the
entire source file. Your program should accept as input the name of a file that contains source
code. You are to read the file and count the number of lines of code according to our LOC
Counting Standard. You may assume that the source code adheres to the LOC Coding Standard.
This assignment should not determine if the coding standard has been followed. The exact
format of the application-user interaction is up to you.

e A "proxy" is defined as a recognizable software component. Classes are typical proxies
in an object-oriented systems; subprograms are typical proxies in traditional functionally-
decomposed systems.

e If you are using a functionally-decomposed (meaning, non-OO) approach, the number of
methods for each proxy will be "1". If you are using an OO approach, the number of
methods will be a count of the methods associated with an object.

Probelm3: Write a program to calculate the planned number of lines of code given the
estimated lines of code (using PSP’s PROBE Estimation Script). Your program should accept as
input the name of a file. Each line of the file contains four pieces of information separated by a
space: the name of a project and its estimated LOC (LOCe), planned LOC (LOCp), and actual
LOC (LOCa). Read this file and echo the data to the output device. Accept as input from the
keyboard a number which represents the estimated size (E) of a new project. Output the
calculations of each decision and the responding planned size (P), as well as the PROBE decision
designation (A, B, or C) used to calculate P. For each decision, indicate why it is/isn't valid. The
exact format of the application-user interaction is up to you.

e Your software should gracefully handle error conditions, such as non-existent files and
invalid input values.
e Round P up to the nearest multiple of 10.

4.3. Hypotheses
HO; (Time/Costoveran): The overall software development cost of CAP is equal or higher
than PP in average.
Ha; (Time/Costoveran): The overall software development cost of CAP is less than PP in
average.

HO, (Time/Costoveran): The overall software development cost of CAP is equal or higher

than individual programming in average.

52

Ha, (Time/Costoveran): The overall software development cost of CAP is less than
individual programming in average.

HO3 (Time/Costcoging): The cost of CAP coding phase is equal or higher than the cost of
PP coding phase in average.

Haz (Time/Costcoding): The cost of CAP coding phase is less than cost of PP coding
phase in average.

HO, (Time/Costcoding): The cost of CAP coding phase is equal or higher than the cost of
individual programming coding phase in average.

Ha, (Time/Costcoding): The cost of CAP coding phase is less than cost of individual
programming coding phase in average.

HOs (Correctness): The number acceptance tests failed in CAP is equal or higher than
the number of acceptance tests failed in PP in average.

Has (Correctness): The number acceptance tests failed in CAP is less than the number of

acceptance tests failed in PP in average.

4.4. Cost

To study the cost of overall software development, we compared the total development

time, measured in minutes, of all the phases. Both pair programming (PP) and individual

programming (IP) consisted of design, coding and test phases; whereas, the CAP consisted of

test case development phase in addition to the PP phases. The IP, PP and CAP total software

development costs were calculated as per the following formulas:

COSté%tal: TimeDesign + TimeCodmg + TimeTest
COSt?Eml: 2* (TimeDegign + TimeCoding + TimeTest)

AP — - - - -
COStgotal— 2% (TlmeDesign + T|meTest) + TlmeCoding + TlmeTestCaseDevelopment

53

To study the cost of coding phase, we compared the coding time, measured in minutes, of
the coding phase. The IP, PP and CAP coding phase costs were calculated as per the following

formulas.

COStggde: 2* (TlmeCOdmg)

COStgglge: TimeCoding

4.5. Program Correctness
To study the program correctness, the number of post-development test cases, black-box
test cases developed from the specifications, passed by programs developed by IP group, PP

group and CAP group were compared.

4.6. Experiment Procedure
1. Consent Process: At the beginning of the course both in fall 2008 and in spring 2009 the
IRB (Auburn University Institutional Review Board) approved informed consent for the
project was handed out and students were given the chance to volunteer to participate.
The researcher provided information to students about the project, handed out consent
forms, answered any questions students raised by the students, and requested that the
forms be returned the following class; so students had at least one intervening day to
review all aspects of consent. The researcher returned the following class and answered

the questions, if any, and collected the consent forms.

54

Pre-Test: In the pre-test all the subjects were asked to solve two programming problems
individually in order to measure their programming skills.

Pre-Experiment Survey: Each subject was asked to complete a survey questionnaire
which collected demographic information such as age, class level (senior/graduate),
programming languages known, experience level, and pair programming experience.

. Assigning the Subjects to Experimental Groups: Based on the pre-test’s result and the
survey, the subjects were divided into groups of five. The subjects were randomly
selected from each group and assigned to the three experimental groups: individual
programming (IP) group, pair programming (PP) group, and collaborative adversarial
pair (CAP) programming group.

. Workshop: Before the actual control experiments started there was a workshop for all the
subjects. First, a lecture was arranged to explain the concepts of collaborative-adversarial
pair programming, pair programming, and unit testing, and acceptance testing. Then, a
pair programming practice session (known as pair-jelling exercise) was conducted, which
enabled the programmers to understand the pair programming practices.

Control Experiments:

a. Control Experiment-1 (Dynamic Pairs): Three programming exercises were given
to each experimental group. The subjects in both the PP group and the CAP group
were randomly paired-up with a partner in their own group to do the first
problem. After the first problem the pairs rotated within their own group (i.e., a
PP pair interchanged partners with another PP pair and a CAP pair interchanged
partners with another CAP pair). The new rotated pairs completed the second

problem. The group’s pairs rotated once again to do the third problem.

55

b. Control Experiment-2 (Static Pairs): Three programming exercises were given to
each experimental group. The subjects in both the PP group and the CAP group
were randomly paired-up with a fixed partner to do all three exercises. The
subjects in the IP group were asked to complete all the three exercises alone.

Figure 4.1 summarizes the experimental procedure.

Individual Participation

Group Assignment

Workshap

1

lndlvlduill'mmmmln;‘ ‘ Pait Programming H CAP Pragramming | 3 Controlled Experimenss

Figure 4.1: Experimental Procedure

The design of the experiments is shown figure 4.2.

X X x X X

Developer Developer Developer Developer Customer

P

% Driver-Mavigator Pair Driver-Navigator Pair Driver-Navigator Pair Customer

Mavigator

CAP Group Developer % % Developer % % %

5& Developer-Tester Pair 5& Developer-Tester Pair Customer

Tester Tester

Pre-Test Design TDD Integration & Test Acceptance Test

Figure 4.2: Experimental Setup

56

4.7. RESULTS

4.7.1. Statistical Test Selection

Statistical tests are of two types: parametric and non-parametric. Each parametric test
depends on several assumptions, such as the data must follow the normal distribution, the sample
size should be within a specified range, and there shouldn’t be any outliers in the data. When its
assumptions are met, a parametric test is more powerful than its corresponding non-parametric
test. Non-parametric methods do not depend on the normality assumption, work quite well for
small samples, and are robust to outliers.

Student’s t-Test is suitable for smaller sample sizes (e.g. <30). The “normal curve z test”
is more suitable for larger samples (e.g. >30). For polytomous independents (i.e. if the samples
are subdivided into many distinct subordinate parts) the analysis of variance, ANOVA, tests are
more suitable.

Therefore, it is clear that before we could finalize which statistical tests were most
suitable to validate the CAP, we needed to analyze the data whether it satisfies the normality and
no outlier properties or not.

We used a Q-Q plot of residuals'® and SAS’s GLM procedure to test for normality. The
Q-Q plot is a plot of residuals in sorted order (Y-axis) against the value those residuals should
have if the distribution of the residuals were normal; i.e., it shows the observations on the X-axis
plotted against the expected normal scores (Z-scores, known as quintiles) on the Y-axis. The line
shows the ideal normal distribution with mean and standard-deviation of the sample. If the points
roughly follow the line, then the sample has normal distribution. The SAS’s GLM procedure

uses the method of least squares to fit general linear models. The GLM procedure with BF

19 The residual of a sample is the difference between the sample and the observed sample mean.

57

(Brown and Forsythe’s variation of Levene’s test) option allows us to test the normality of the
sample.
We used a box plot to identify outliers, i.e., data points which are numerically distant

from the rest of the data. In a box plot the outliers are indicated using circles.

4.7.2. Empirical Experiment-1 (Dynamic Pairs-Fall 2008) Test Results
4.7.2.1. Test for Normality

Figures 4.3 and 4.4 show the Q-Q plot of residuals for the total software development
time and coding time, respectively. The points on the Q-Q plots of residuals lie nearly on the
straight line, which indicates that both the total software development time and the coding time

data follows normal distribution.

nwe o

MNormal uantil es

Figure 4.3: Q-Q Plot of Residuals (Dynamic Pairs Total Software Development Time)

58

Mornml Guartil es

Figure 4.4: Q-Q Plot of Residuals (Dynamic Pairs Coding Time)

Figures 4.5 and 4.6 show the results of the SAS’s “GLM procedure with BF option” for
total software development time and coding time, respectively. In both Figure 4.5 and 4.6 the P
value of all experiments are insignificant at 5% significant level (p>0.05), which indicates that
statistically there is no significant evidence to reject the normality; i.e., both the overall software

development time and the coding time data follows normal distribution.

Tests for Normality

Test --Statistic--- = ----- p Value------
Shapiro-Wilk W 0.935497 Pr < W 0.2423
Kolmogorov-Smirnov D 0.154598 Pr > D >0.1500
Cramer-von Mises W-Sq 0.08843 Pr > W-Sq 0.1507
Anderson-Darling A-Sq ©0.548835 Pr > A-Sq ©0.1396

Figure 4.5: Test for Normality (Dynamic Pairs Total Software Development Time)

Tests for Normality

Test --Statistic--- = ----- p Value------
Shapiro-Wilk W 0.919181 Pr< W 0.1250
Kolmogorov-Smirnov D 0.189357 Pr > D 0.0866
Cramer-von Mises W-Sq ©.088422 Pr > W-Sq 0.1507
Anderson-Darling A-Sq 0.545294 Pr > A-Sq ©.1423

Figure 4.6: Test for Normality (Dynamic Pairs Coding Time)

59

4.7.2.2. Qutliers

The box plots for the total software development time and coding time are given in
Figures 4.7 and 4.8 respectively. There are no circles in Figures 4.7 and 4.8, which indicates that
there are no outliers either in PP’s overall software development time and coding time or in

CAP’s overall software development time and coding time.

=D T

23D

I

T
(&= =4 = =d
irdczstao

Figure 4.7: Box plot (Dynamic Pairs Total Software Development Time)

+
| ;
(&= =4 [= g
irdczsta

Figure 4.8: Box plot (Dynamic Pairs Coding Time)

60

4.7.2.3. Statistical Test Determination for Experiment-1
The sample size was 18 (9 experiments completed by PP group plus 9 experiments
completed by CAP group). Since the sample size was small, we used Student’s t-Tests to
compare the CAP groups’ means with the PP groups’ means. The t-Test depends on several
assumptions:
e |f the sample size is less than 15, then the data for the t-Test should be strictly normal.
e If the sample size is between 15 and 40, then the data may be partially normal, but it
should not contain outliers.

e When sample size is more than 40, then the data may be markedly skewed.

Our sample size was 18, and both total development time and coding time followed
normal distribution, and there were no outliers. Consequently, Student’s t-Test was identified as
suitable for comparing both the CAP total software development time means with the PP total
software development time means, and the CAP coding time means with the PP coding time
means.
4.7.2.4. Total Software Development Time (Hypothesis 1)

The total software development time for the PP groups and the CAP groups are shown in
Table 4.1. The PP groups took 285 minutes in average for Problem1, 446 minutes in average for
Problem2, and 223 minutes in average for Problem3; whereas, the CAP groups took only 166
minutes (42% less than PP groups) in average for Problem1, 208 minutes (53% less than PP
groups) in average for Problem2, and 199 minutes (11% less than PP groups) in average for
Problem3. The average time taken to solve all the three problems is 954 minutes for the PP

groups and 573 minutes (40% less than PP groups) for the CAP groups.

61

Method | Problem1 | Problem?2 | Problem3
CAP-G1 180 275 120
CAP-G2 148 189 273
CAP-G3 171 160 204
Average 166 208 199
PP-G1 250 488 272
PP-G2 342 346 256
PP-G3 264 504 140
Average 285 446 223

Table 4.1: Total Software Development Time (Dynamic Pairs)

Figure 4.9 shows the average time taken by PP groups and CAP groups for the total

software development for the given three problems.

400 285

300 208
>00 | 166 CAP

100 +— mPP

P1 P2 P3

Figure 4.9: Average Total Software Development Time (Dynamic Pairs)

The box plot in Figure 4.10 shows the total time taken by all 18 pairs (3x3 programs
completed by PP groups and 3x3 programs completed by CAP groups). The boxes contain 50%
of the data points, the line between lower border and box contain 25% of data points, and the line
between the box and upper border contain another 25% data points. The plus mark in the plot
(box) indicates the mean value and the horizontal line in the middle of the box indicates the
median value. The plot indicates that all the nine CAP programs took less time than the mean

value of the PP programs.

62

variances test is significant at the 5% significant level (p<0.05), which indicates that the data has
unequal variance, so we have to take the unequal variance t-Test result, which is p=0.0129(2

sided t-value). Since p<0.05, there is insufficient support for the hypothesis HO; that the overall

D

;
¥

T
(@ =4

irdcasao

Figure 4.10: Total Software Development Time (Dynamic Pairs)

The Student’s t-Test results are shown in Figure 4.11. The p-value in the equality of

software development cost or time of CAP is equal or higher that PP in average.

Variable

ttime
ttime
ttime

indicator

CAP

PP

Diff (1-2)
Variable

ttime
ttime

Variable

ttime

Figure 4.11: t-Test Results (Dynamic Pairs Total Software Development Time)

The TTEST Procedure

Statistics
Lower CL Upper CL Lower CL Upper CL
N Mean Mean Mean Std Dev Std Dev Std Dev
9 150.51 191.11 231.72 35.682 52.826 101.2
9 227.85 318 408.15 79.219 117.28 224.68
-217.8 -126.9 -35.99 67.741 90.955 138.43
T-Tests
Method Variances DF t Value Pr > |t]
Pooled Equal 16 -2.96 0.0092
Satterthwaite Unequal 11.1 -2.96 0.0129
Equality of Variances
Method Num DF Den DF F Value Pr > F
Folded F 8 8 4.93 0.0368

63

Std Err

17.609
39.094
42.877

Decision: Reject HO; in favor of Ha; since p-value < a (0=0.05). Thus we have sufficient

statistical evidence to conclude that the overall software development cost or time of CAP is less

than PP in average.

4.7.2.5. Coding Time (Hypothesis 3)

The coding time for the PP groups and the CAP groups are shown in Table 4.2. The PP
groups took 192 minutes in average for Problem1, 371 minutes in average for Problem2, and 170
minutes in average for Problem3; whereas, the CAP groups took only 65 minutes (66% less than
PP groups) in average for Probleml, 52 minutes (86% less than PP groups) in average for
Problem2, and 79 minutes (54% less than PP groups) in average for Problem3. The average time
taken to solve all the three problems is 733 minutes for PP groups and 196 minutes (73% less

than PP groups) for CAP groups.

Method | Problem1 | Problem2 | Problem3
CAP-G1 38 55 51
CAP-G2 91 61 98
CAP-G3 65 40 89
Average 65 52 79
PP-G1 92 272 194
PP-G2 320 346 196
PP-G3 164 494 120
Average 192 371 170

Table 4.2: Coding Time (Dynamic Pairs)

Figure 4.12 shows the average time taken by PP groups and CAP groups for the coding

phase of the software development for the given three problems.

64

400 A1
300
200 > 170 CAP
100 65 52 & l: mPP
0 : :
P1 P2 P3

Figure 4.12: Average Coding Time (Dynamic Pairs)

The box plot in Figure 4.13 shows the coding time taken by all 18 pairs (3x3 programs
completed by PP groups and 3x3 programs completed by CAP groups). The plot indicates that

all the nine CAP programs took less time than 75% PP programs.

[S10n
A3
c IO
t
i +
m
€ D
_ @ l
O_ T T
(@~ 34 = =
irdcaao

Figure 4.13: Box plot (Dynamic Pairs Coding Time)

The Student’s t-Test results are shown in Figure 4.14. The p-value in the equality of
variances test is significant in the 5% significant level (p<0.05), which indicates that the data has

unequal variance, so we have to take the unequal variance t-Test result, which is P=0.0028 (2

65

sided t-value). Since P<0.05, there is insufficient support for the hypothesis HO3 that the cost of

the CAP coding phase is equal or higher that PP coding phase in average.

The TTEST Procedure

Statistics
Lower CL Upper CL Lower CL Upper CL
Variable indicator N Mean Mean Mean Std Dev Std Dev Std Dev Std Err
ctime CAP 9 48.133 65.333 82.534 15.115 22.377 42.87 7.4591
ctime PP 9 146.56 244.22 341.89 85.821 127.06 243.41 42.352
ctime Diff (1-2) -270.1 -178.9 -87.72 67.942 91.226 138.84 43.004
T-Tests

Variable Method Variances DF t Value Pr > |t]

ctime Pooled Equal 16 -4.16 0.0007

ctime Satterthwaite Unequal 8.5 -4.16 0.0028

Equality of Variances
Variable Method Num DF Den DF F Value Pr > F

ctime Folded F 8 8 32.24 <.0001

Figure 4.14: t-Test Results (Dynamic Pairs Coding Time)

Decision: Reject HO3 in favor of Has since p-value < o (¢=0.05). Thus we have sufficient

statistical evidence to conclude that the cost of CAP coding phase is less than the cost of PP

coding phase in average.

4.7.2.6. Program Correctness (Hypothesis 5)

The number of post-development test cases passed by the PP group programs and the
CAP group programs are shown in Table 4.3 and Figure 4.15. The acceptance tests were
conducted by a disinterested party. Specifically, a graduate teaching assistant for the introductory
Java course was recruited to do this. The tester was not involved in any other way with the

experiment. The total numbers of test cases passed by the PP groups was 13, 17, and 29 for

66

Probleml, Problem2, and Problem3 respectively. Whereas, the total numbers of test cases passed

by the CAP groups was 16, 20, and 30 for Problem1, Problem2, and Problem3 respectively.

Group | Problem1 | Problem2 | Problem3
PP1 5/6 6/8 10/10
PP2 416 8/8 9/10
PP3 416 3/8 10/10

Total 13/18 17/24 29/30
CAP1 5/6 8/8 10/10
CAP2 5/6 8/8 10/10
CAP3 6/6 4/8 10/10
Total 16/18 20/24 30/30

Table 4.3: The number of test cases passed (Dynamic Pairs)

35
30
25
20

20

a 17

e CAP
i 13
10 +—— H PP
5 4
O T T

P1 P2 P3

Figure 4.15: The number of test cases passed (Dynamic Pairs)

30 o9

Table 4.3 indicates that the number of acceptance tests failed in CAP is less than the
number of acceptance tests failed in PP. Therefore, there is insufficient support for the

hypothesis HOs.

Decision: Reject HOs_in favor of Has. We have sufficient evidence to conclude that the

number of acceptance tests failed in CAP is less than the number of acceptance tests failed in PP.

67

4.7.3. Empirical Experiment-2 (Static Pairs-Spring 2009) Test Results

4.7.3.1. Test for Normality

Figures 4.16 and 4.17 show the Q-Q plot of residuals for the total software development
time and coding time, respectively. The points on Figure 4.16 lie nearly on the straight line;
whereas, the points on Figure 4.17 do not follow the straight line, which indicates that the total

software development time data follows normal distribution whereas the coding time data is not.

QQ— Plot of Residuals

np =
@.

Nrreal Qatiles

Figure 4.16: Q-Q Plot of Residuals (Static Pairs Total Software Development Time)

68

500 |
400 |
300
200

S 100

-100

-200 ! T T T T T

Normal Quantiles

Figure 4.17: Q-Q Plot of Residuals (Static Pairs Coding Time)

Figures 4.18 and 4.19 show the results of the SAS’s “GLM procedure with BF option”
for total software development time and coding time, respectively. In Figure 4.18 the p value of
all tests (expect Shapiro-Wilk test) are insignificant at 5% significant level (p>0.05), which
indicates that statistically there is no significant evidence to reject the normality; i.e., the overall
software development time data follows normal distribution. In Figure 4.19 the p value of all
tests are not insignificant at 5% significant level (p<0.05), which indicates that statistically there
is significant evidence to reject the normality; i.e., the coding time data does not follow normal

distribution.

69

Tests for Normality

Test --Statistic--- ----- p Value------
Shapiro-Wilk W 0.881142 Pr < W 0.0273
Kolmogorov-Smirnov D 0.161488 Pr > D >0.1500
Cramer-von Mises W-Sq ©.084384 Pr > W-Sq 0.1751
Anderson-Darling A-Sq ©0.618083 Pr > A-Sq ©.0929

Figure 4.18: Test for Normality (Static Pairs Total Software Development Time)

Tests for Normality

Test --Statistic--- = ----- p Value------
Shapiro-Wilk W 0.749179 Pr < W 0.0003
Kolmogorov-Smirnov D 0.248771 Pr > D <0.0100
Cramer-von Mises W-Sq ©0.196178 Pr > W-Sq <0.0050
Anderson-Darling A-Sq 1.297565 Pr > A-Sq <0.0050

Figure 4.19: Test for Normality (Static Pairs Coding Time)

4.7.3.2. Outliers

The box plots for the total software development time and coding time are given in
Figures 4.20 and 4.21 respectively. There are no circles in Figures 4.20 and 4.21, which indicates
that there are no outliers either in PP’s overall software development time and coding time or in

CAP’s overall software development time and coding time.

a7

42

o

wgmﬂﬂ

irdcsta

Figure 4.20: Box plot (Static Pairs Total Software Development Time)

70

100
g0 T

c &

t

i

m

e 4D L
D] % L

O T T
- =) (= =]

irdacaao

Figure 4.21: Box plot (Static Pairs Coding Time)

4.7.3.3. Statistical Test Determination for Experiment-2

The sample size was 18 (9 experiments completed by PP groups plus 9 experiments
completed by CAP groups). Since the sample size was small, we used t-Tests to compare the
CAP groups’ means with the PP groups’ means.

Our sample size wasl18, the total development time followed normal distribution, and
there were no outliers. Consequently Student’s t-Test was used to compare the CAP total
software development time means with the PP total software development time means. Since the
coding time data was not normally distributed. The Wilcoxon Mann-Whitney U test was used to

compare the CAP coding time means with the PP coding time means.

71

4.7.3.4. Total Software Development Time (Hypothesis 1)

The total software development time for the PP groups and the CAP groups are shown in
Table 4.4. The PP groups took 603 minutes in average for Problem1, 484 minutes in average for
Problem2, and 377 minutes in average for Problem3; whereas, the CAP groups took only 197
minutes (67% less than PP groups) in average for Probleml, 192 minutes (60% less than PP
groups) in average for Problem2, and 236 minutes (37% less than PP groups) in average for

Problem3. The average time taken to solve all the three problems was 1464 minutes for PP

groups and 625 minutes (57% less than PP groups) for CAP groups.

Method | Problem1 | Problem?2 | Problem3
CAP-G1 159 200 311
CAP-G2 210 122 156
CAP-G3 222 254 240
Average 197 192 236
PP-G1 592 544 312
PP-G2 350 480 510
PP-G3 866 428 310
Average 603 484 377

Table 4.4: Total Software Development Time (Static Pairs)

Figure 4.22 shows the average time taken by PP groups and CAP groups for the total

software development for the given three problems.

72

700

600

500

400

300

200

100

603

484

197

P1

P2

P3

CAP
mPP

Figure 4.22: Average Total Software Development Time (Static Pairs)

The box plot in Figure 4.23 shows the total time taken by all 18 pairs (3x3 programs
completed by PP group and 3x3 programs completed by CAP group). The plot indicates that all

the nine CAP programs took less time than the least value of the PP program groups.

mg-nn

37

=

irdacao

Figure 4.23: Total Software Development Time (Static Pairs)

73

The Student’s t-Test results are shown in Figure 4.24. The p-value in the equality of
variances test is significant in the 5% significant level (p<0.05), which indicates that the data has
unequal variance, so we have to take the unequal variance t-Test result, which is P=0.0011(2
sided t-value). Since P<0.05, there is insufficient support for the hypothesis HO; that the overall

software development cost or time of CAP is equal or higher that PP in average.

The TTEST Procedure

Statistics
Lower CL Upper CL Lower CL Upper CL
Variable indicator N Mean Mean Mean Std Dev Std Dev Std Dev Std Err
ttime CAP 9 163.97 208.22 252.47 38.885 57.569 110.29 19.19
ttime PP 9 354.12 488 621.88 117.65 174.17 333.67 58.057
ttime Diff (1-2) -409.4 -279.8 -150.2 96.605 129.71 197.41 61.147
T-Tests

Variable Method Variances DF t Value Pr > |t]

ttime Pooled Equal 16 -4.58 0.0003

ttime Satterthwaite Unequal 9.73 -4.58 0.0011

Equality of Variances
Variable Method Num DF Den DF F Value Pr > F

ttime Folded F 8 8 9.15 0.0052

Figure 4.24: t-Test Results (Static Pairs Total Software Development Time)

Decision: Reject HO, in favor of Ha; since p-value < o (¢=0.05). Thus we have sufficient

statistical evidence to conclude that the overall software development cost or time of CAP is less

than PP in average.

4.7.3.5. Coding Time (Hypothesis 3)
The coding time for PP group and CAP group are shown in Table 4.5. The PP groups
took 437 minutes in average for Probleml, 319 minutes in average for Problem2, and 306

minutes in average for Problem3; whereas, the CAP groups took only 81 minutes (81% less than

74

PP groups) in average for Probleml, 117 minutes (63% less than PP groups) in average for

Problem2, and 142 minutes (54% less than PP groups) in average for Problem3. The average

time taken to solve all the three problems was 1062 minutes for PP groups and 340 minutes

(68% less than PP groups) for CAP groups.

Method | Problem1 | Problem2 | Problem3
CAP-G1 18 113 124
CAP-G2 132 77 121
CAP-G3 94 161 180
Average 81 117 142
PP-G1 308 242 218
PP-G2 200 380 420
PP-G3 804 336 280
Average 437 319 306

Table 4.5: Coding Time (Static Pairs)

Figure 4.25 shows the average time taken by PP groups and CAP groups for the coding

phase of the software development for the given three problems.

500
450
400
350
300
250
200
150
100

50

437

SUb

CAP

142 m PP

81

P1 P2 P3

Figure 4.25: Average Coding Time (Static Pairs)

75

The box plot in Figure 4.26 shows the coding time taken by all 18 pairs (3x3 programs
completed by PP group and 3x3 programs completed by CAP group). The plot indicates that all

the nine CAP programs took less time than the least value of the PP program group.

03="0

3D

=230

T
(@~ =4
irdczsao

Figure 4.26: Box plot (Static Pairs Coding Time)

The Wilcoxon Mann-Whitney U test results are shown in Figure 4.27. The P value is
0.0026 (2 sided t-value). Since P<0.05, there is insufficient support for the hypothesis HO5; that

the cost of the CAP coding phase is equal or higher that PP coding phase in average.

Wilcoxon Two-Sample Test
Statistic (S) 45.0000

Normal Approximation

VA -3.5321
One-Sided Pr < Z 0.0002
Two-Sided Pr > |Z| 0.0004

t Approximation

One-Sided Pr < Z 0.0013
Two-Sided Pr > |Z| 0.0026
Exact Test

One-Sided Pr <= S 2.057E-05

Two-Sided Pr >= |S - Mean| 4.114E-05

Z includes a continuity correction of 0.5.

Figure 4.27: Wilcoxon Mann-Whitney U test Results (Static Pairs Coding Time)

76

Decision: Reject HO3 in favor of Has since p-value < a (0=0.05). Thus we have sufficient

statistical evidence to conclude that the cost of CAP coding phase is less than the cost of PP

coding phase in average.

4.7.4. Combined Test Results (CAP Vs PP)

4.7.4.1. Test for Normality

Figures 4.28 and 4.29 show the Q-Q plot of residuals for the total software development
time and coding time respectively. The points on Figure 4.28 lie nearly on the straight line;
whereas, the points on Figure 4.29 do not follow the straight line, which indicates that the total

software development time data follows normal distribution whereas the coding time data is not.

QQ— Plot of Residuals

437

r
e T
s Tt

++

T T T T
-3 -2 -4 (@) 2 3

Nrrel Goatiles

Figure 4.28: Q-Q Plot of Residuals (Combined CAP Vs PP Total Software Development Time)

77

QQ— Plot of Residuals

Nrrel Qoatiles

Figure 4.29: Q-Q Plot of Residuals (Combined CAP Vs PP Coding Time)

Figures 4.30 and 4.31 show the results of the SAS’s “GLM procedure with BF option”
for total software development time and coding time respectively. In Figure 4.30 the p value of
all tests (expect Shapiro-Wilk test) are insignificant at 5% significant level (p>0.05), which
indicates that statistically there is no significant evidence to reject the normality; i.e., the overall
software development time data follows normal distribution. In Figure 4.31 the p value of all
tests are not insignificant at 5% significant level (p<0.05), which indicates that statistically there
is significant evidence to reject the normality; i.e., the coding time data does not follow normal

distribution.

Tests for Normality

Test --Statistic--- = ----- p Value------
Shapiro-Wilk W 0.910577 Pr < W 0.0067
Kolmogorov-Smirnov D 0.100131 Pr > D >0.1500
Cramer-von Mises W-Sq ©.085478 Pr > W-Sq 0.1755
Anderson-Darling A-Sq ©0.657534 Pr > A-Sq ©0.0829

Figure 4.30: Test for Normality (Combined CAP Vs PP Total Software Development Time)

78

Tests for Normality

Test --Statistic---
Shapiro-Wilk 0.821607
Kolmogorov-Smirnov 0.179058

0.230129

W

D
Cramer-von Mises W-Sq

A-Sq 1.443171

Anderson-Darling

Figure 4.31: Test for Normality (Combined CAP Vs PP Coding Time)

4.7.4.2. Outliers

The box plots for the total software development time and coding time are given in
Figures 4.32 and 4.33 respectively. There are no circles in Figures 4.32 and 4.33, which indicates

that there are no outliers either in PP’s overall software development time and coding time or in

Pr
Pr
Pr
Pr

CAP’s overall software development time and coding time.

<0.0001
<0.0100
<0.0050
<0.0050

00D
D
t &
t
i
m
e 4 +
] J»
O™ T T
o= = (= =]

irdczaao

Figure 4.32: Box plot (Combined CAP Vs PP Total Software Development Time)

79

0370

irdcstao

Figure 4.33: Box plot (Combined CAP Vs PP Coding Time)

4.7.4.3. Statistical Test Determination for the Combined CAP Vs PP Data

The sample size was 36 (18 experiments completed by PP groups plus 18 experiments
completed by CAP groups). Since the sample size was small, we used t-Tests to compare the
CAP groups’ means with the PP groups’ means.

Our sample size was 36, the total development time followed normal distribution, and
there were no outliers. Consequently Student’s t-Test was used to compare the CAP total
software development time means with the PP total software development time means. Since the
coding time data was not normally distributed. The Wilcoxon Mann-Whitney U test was used to
compare the CAP coding time means with the PP coding time means.
4.7.4.4. Total Software Development Time (Hypothesis 1)

The total software development time for PP group and CAP group are shown in Table
4.6. The PP groups took 444 minutes in average for Probleml, 465 minutes in average for
Problem2, and 300 minutes in average for Problem3; whereas, the CAP groups took only 182

minutes (59% less than PP groups) in average for Problem1, 200 minutes (57% less than PP

80

groups) in average for Problem2, and 218 minutes (27% less than PP groups) in average for
Problem3. The average time taken to solve all the three problems is 1209 minutes for PP groups

and 600 minutes (50% less than PP groups) for CAP groups.

Method | Problem1 | Problem2 | Problem3
CAP-G1 180 275 120
CAP-G2 148 189 273
CAP-G3 171 160 204
CAP-G4 159 200 311
CAP-G5 210 122 156
CAP-G6 222 254 240
Average 182 200 218
PP-G1 250 488 272
PP-G2 342 346 256
PP-G3 264 504 140
PP-G4 592 544 312
PP-G5 350 480 510
PP-G6 866 428 310
Average 444 465 300

Table 4.6: Total Software Development Time (Combined CAP Vs PP)

Figure 4.34 shows the average time taken by PP groups and CAP groups for the total

software development for the given three problems.

500 444 465

400

300
300

182 200 218 CAP

200
m PP

100 +—

0 T T
P1 P2 P3

Figure 4.34: Average Total Software Development Time (Combined CAP Vs PP)

81

The box plot in Figure 4.35 shows the total time taken by all 36 pairs (6x3 programs
completed by PP groups and 6x3 programs completed by CAP groups). The plot indicates that

all the nine CAP programs took less time than the least value of the PP program groups.

D
D
t aan|
Tt
i
m
e 4o +
o T T
(@234 = =4
irdacaoa

Figure 4.35: Box Plot (Combined CAP Vs PP Total Software Development Time)

The Student’s t-Test results are shown in Figure 4.36. The p-value in the equality
of variances test is significant in the 5% significant level (p<0.05), which indicates that the data
has unequal variance, so we have to take the unequal variance t-Test result, which is P<0.0001(2
sided t-value). Since P<0.05, there is insufficient support for the hypothesis HO; that the overall

software development cost or time of CAP is equal or higher that PP in average.

82

Lower CL
Variable indicator N Mean
ttime CAP 18 172.66
ttime PP 18 319.2
ttime Diff (1-2) -288.1

Variable Method

ttime Pooled

ttime Satterthwaite

Variable Method

ttime Folded F

Figure 4.36: t-Test Results (Combined CAP Vs PP Total Software Development Time)

Decision: Reject HO, in favor of Ha; since p-value < a (¢=0.05). Thus we have sufficient

The TTEST Procedure

Statistics

Mean

199.67
403
-203.3

Upper CL
Mean

226.68
486.8
-118.5

T-Tests

Variances

Equal

Unequal

Num DF

Den DF

statistical evidence to conclude that the overall software development cost or time of CAP is less

than PP in average.

4.7.4.5. Coding Time (Hypothesis 3)

The coding time for PP groups and CAP groups are shown in Table 4.7. The PP groups
took 315 minutes in average for Probleml, 340 minutes in average for Problem2, and 238
minutes in average for Problem3; whereas, the CAP groups took only 73 minutes (77% less than
PP groups) in average for Probleml, 85 minutes (75% less than PP groups) in average for
Problem2, and 111 minutes (53% less than PP groups) in average for Problem3. The average

time taken to solve all the three problems was 893 minutes for PP groups and 269 minutes (70%

less than PP groups) for CAP groups.

83

Lo
S

DF

34

20.5

Equality of Variances

wer CL Upper CL
td Dev Std Dev Std Dev

40.759 54.317 81.429

126.45 168.52 252.63
101.27 125.2 164.03

t Value Pr > |t]

-4.87 <.0001
-4.87 <.0001

F Value Pr > F

9.63 <.0001

Std Err

12.803
39.72
41.733

Method | Problem1 | Problem?2 | Problem3
CAP-G1 38 55 51
CAP-G2 91 61 98
CAP-G3 65 40 89
CAP-G4 18 113 124
CAP-G5 132 77 121
CAP-G6 94 161 180
Average 73 85 111
PP-G1 92 272 194
PP-G2 320 346 196
PP-G3 164 494 120
PP-G4 308 242 218
PP-G5 200 380 420
PP-G6 804 336 280
Average 315 340 238

Table 4.7: Coding Time (Combined CAP Vs PP)

Figure 4.37 shows the average time taken by PP groups and CAP groups for the coding

phase of the software development for the given three problems.

400
350 315
300
250

340

238

200 CAP

150 111 H PP
100 73

P1 P2 P3

Figure 4.37: Average Coding Time (Combined CAP Vs PP)

84

The box plot in Figure 4.38 shows the coding time taken by all 36 pairs (6x3 programs
completed by PP group and 6x3 programs completed by CAP group). The plot indicates that all

the nine CAP programs took less time than 75% PP programs.

0D
gD T
c &3
t
i
m
e 41D
+
| E%EH _L
o7 T T
(@ =4 |3 =

irdcaao

Figure 4.38: Box plot (Combined CAP Vs PP Coding Time)

The Wilcoxon Mann-Whitney U test results are shown in Figure 4.39. The p value is
<0.0001 (2 sided t-value). Since p<0.05, there is insufficient support for the hypothesis HO3 that

the cost of the CAP coding phase is equal or higher that PP coding phase in average.

Wilcoxon Two-Sample Test
Statistic (S) 185.0000

Normal Approximation

z -4.6667
One-Sided Pr < Z <.0001
Two-Sided Pr > |Z| <.0001

t Approximation

One-Sided Pr < Z <.0001
Two-Sided Pr > |Z| <.0001
Exact Test

One-Sided Pr <= S 5.598E-08

Two-Sided Pr >= |S - Mean| 1.120E-07

Z includes a continuity correction of 0.5.

Figure 4.39: Wilcoxon Mann-Whitney U test Result (Combined CAP Vs PP Coding Time)

85

Decision: Reject HO3 in favor of Has since p-value < a (0=0.05). Thus we have sufficient

statistical evidence to conclude that the cost of CAP coding phase is less than the cost of PP

coding phase in average.

4.75. CAP Vs IP Test Results

4.7.5.1. Test for Normality

Figures 4.40 and 4.41 show the Q-Q plot of residuals for the total software development
time and coding time, respectively. The points on the Q-Q plots of residuals lie nearly on the
straight line, which indicates that both the total software development time and the coding time

data follows normal distribution.

QQ—Plot of Residuals

A0

-14D

Nrrel Coactil es

Figure 4.40: Q-Q Plot of Residuals (CAP Vs IP Total Software Development Time)

86

QQ— Plot of Residuals

ne-=
0
f

brel Qatiles

Figure 4.41: Q-Q Plot of Residuals (CAP Vs IP Coding Time)

Figures 4.42 and 4.43 show the results of the SAS’s “GLM procedure with BF option”
for total software development time and coding time, respectively. In both Figure 4.42 and 4.43
the p value of all experiments are insignificant at 5% significant level (p>0.05), which indicates
that statistically there is no significant evidence to reject the normality; i.e., both the overall

software development time and the coding time data follows normal distribution.

Tests for Normality

Test --Statistic--- = ----- p Value------
Shapiro-Wilk W 0.98787 Pr < W 0.9667
Kolmogorov-Smirnov D 0.068654 Pr > D >0.1500
Cramer-von Mises W-Sq ©.021278 Pr > W-Sq >0.2500
Anderson-Darling A-Sq 0.176827 Pr > A-Sq >0.2500

Figure 4.42: Test for Normality (CAP Vs IP Total Software Development Time)

87

Tests for Normality

Test --Statistic---
Shapiro-Wilk W 0.980243
Kolmogorov-Smirnov D 0.075714
Cramer-von Mises W-Sq ©0.036181
Anderson-Darling A-Sq ©0.24686

Pr
Pr
Pr
Pr

0.7936
>0.1500
-Sq >0.2500
Sq >0.2500

Figure 4.43: Test for Normality (CAP Vs IP Coding Time)

4.7.5.2. Outliers

The box plots for the total software development time and coding time are given in

Figure 4.44 and 4.45 respectively. There are no circles in Figures 4.44 and 4.45, which indicates

that there are no outliers either in PP’s overall software development time and coding time or in

CAP’s overall software development time and coding time.

=D
| —‘7
t X307
t
i .
m
e D -+
| J
O T T
e (=

irdczsta

Figure 4.44: Box plot (CAP Vs IP Total Software Development Time)

88

irdcaao

Figure 4.45: Box plot (CAP Vs IP Coding Time)

4.7.5.3. Statistical Test Determination for the CAP VS IP Data

The sample size was 33 (15 experiments completed by IP groups plus 18 experiments
completed by CAP groups). Since the sample size was small, we used Student’s t-Tests to
compare the CAP groups’ means with the IP groups’ means.

Our sample size was 33, and both total development time and coding time followed
normal distribution, and there were no outliers. Consequently, Student’s t-Test was identified as
suitable for comparing both the CAP total software development time means with the IP total
software development time means, and the CAP coding time means with the IP coding time
means.
4.7.5.4. Total Software Development Time (Hypothesis 2)

The total software development time for the IP groups and the CAP groups are shown in
Table 4.8. The IP groups took 233 minutes in average for Problem1, 280 minutes in average for
Problem2, and 207 minutes in average for Problem3; whereas, the CAP groups took only 182

minutes (22% less than IP groups) in average for Probleml, 200 minutes (29% less than IP

89

groups) in average for Problem2, and 218 minutes (5% more than IP groups) in average for
Problem3. The average time taken to solve all the three problems is 720 minutes for the IP

groups and 600 minutes (17% less than IP groups) for CAP groups.

Method | Problem1 | Problem?2 | Problem3
CAP-G1 180 275 120
CAP-G2 148 189 273
CAP-G3 171 160 204
CAP-G4 159 200 311
CAP-G5 210 122 156
CAP-G6 222 254 240
Average 182 200 218
IP-G1 318 227 150
IP-G2 184 417 345
IP-G3 152 290 59
IP-G4 270 145 195
IP-G5 242 320 285
Average 233 280 207

Table 4.8: Total Software Development Time (CAP Vs IP)

Figure 4.46 shows the average time taken by PP groups and CAP groups for the total

software development for the given three problems.

300 280

233 p
250 200 2185057

200 {182

150 +— CAP
100 +— mPP
50 +—

P1 P2 P3

Figure 4.46: Average Total Software Development Time (CAP Vs IP)

90

The box plot in Figure 4.47 shows the total time taken by all 33 programs (5x3 programs

completed by IP groups and 6x3 programs completed by CAP groups).

t+ X33O
t
i +
m
e 3] +
| J
O T T
(&= =4 T =J
irdcasao

Figure 4.47: Total Software Development Time (CAP Vs IP)

The Student’s t-Test results are shown in Figure 4.48. The p-value in the equality of
variances test is not significant in the 5% significant level (p>0.05), which indicates that the data
has equal variance, so we have to take the equal variance t-Test result, which is p=0.1532 (2
sided t-value). Since p>0.05, there is sufficient support for the hypothesis HO, that the overall

software development cost or time of CAP is equal or higher that IP in average.

Decision: Do Reject HO, in favor of Ha, since p-value > a (¢=0.05). Thus we do not have
sufficient statistical evidence to conclude that the overall software development cost or time of

CAP is less than IP in average.

91

The TTEST Procedure

Statistics
Lower CL Upper CL Lower CL Upper CL
Variable indicator N Mean Mean Mean Std Dev Std Dev Std Dev Std Err
ttime CAP 17 170.63 199.41 228.19 41.691 55.978 85.194 13.577
ttime IP 16 189.15 237.69 286.22 67.282 91.081 140.97 22.77
ttime Diff (1-2) -91.59 -38.28 15.034 60.162 75.043 99.768 26.139
T-Tests

Variable Method Variances DF t Value Pr > |t]

ttime Pooled Equal 31 -1.46 0.1532

ttime Satterthwaite Unequal 24.6 -1.44 0.1614

Equality of Variances
Variable Method Num DF Den DF F Value Pr > F

ttime Folded F 15 16 2.65 0.0622

Figure 4.48: t-Test Results (CAP Vs IP Total Software Development Time)

4.7.5.5. Coding Time (Hypothesis 4)

The coding time for IP group and CAP group are shown in Table 4.9. The IP groups took
124 minutes in average for Problem1, 183 minutes in average for Problem2, and 137 minutes in
average for Problem3; whereas, the CAP groups took only 73 minutes (41% less than IP groups)
in average for Problem1, 85 minutes (54% less than IP groups) in average for Problem2, and 111
minutes (19% less than IP groups) in average for Problem3. The average time taken to solve all
the three problems was 444 minutes for IP groups and 269 minutes (39% less than IP groups) for

CAP groups.

92

Figure 4.49 shows the average time taken by IP groups and CAP groups for the coding

Method | Problem1 | Problem?2 | Problem3
CAP-G1 38 55 51
CAP-G2 91 61 98
CAP-G3 65 40 89
CAP-G4 18 113 124
CAP-G5 132 77 121
CAP-G6 94 161 180
Average 73 85 111
IP-G1 112 116 85
IP-G2 26 165 235
IP-G3 147 262 45
IP-G4 135 110 140
IP-G5 202 260 180
Average 124 183 137

Table 4.9: Coding Time (CAP Vs IP)

phase of the software development for the given three problems.

200

150

100

50

=
0o
w

137

124

85

111

73

CAP
mPP

P1

P2

P3

The box plot in Figure 4.50 shows the coding time taken by all 33 programs (5x3
programs completed by IP groups and 6x3 programs completed by CAP groups). The plot

indicates that all the nine CAP programs took less time than the 25% IP programs.

Figure 4.49: Average Coding Time (CAP Vs IP)

93

variances test is not significant in the 5% significant level (p>0.05), which indicates that the data
has equal variance, so we have to take the equal variance t-Test result, which is p=0.0113 (2

sided t-value). Since p<0.05, there is insufficient support for the hypothesis HO,4 that the cost of

3D

G0
-
| l
O T T
(& S =

irdczsao

Figure 4.50: Box plot (CAP Vs IP Coding Time)

the CAP coding phase is equal or higher that IP coding phase in average.

Variable

ctime
ctime
ctime

ind

CAP
IP
Dif

The TTEST Procedure

Statistics
Lower CL Upper CL Lower CL Upper CL
icator N Mean Mean Mean Std Dev Std Dev Std Dev
17 66.218 89.353 112.49 33.511 44.996 68.48
16 106.87 144.31 181.76 51.906 70.267 108.75
f (1-2) -96.59 -54.96 -13.33 46.98 58.601 77 .908
T-Tests
Variable Method Variances DF t Value Pr > |t]
ctime Pooled Equal 31 -2.69 0.0113
ctime Satterthwaite Unequal 25.3 -2.66 0.0135

Equality of Variances
Variable Method Num DF Den DF F Value Pr > F

ctime Folded F 15 16 2.44 0.0868

Figure 4.51: t-Test Results (CAP Vs IP Coding Time)

%4

The Student’s t-Test results are shown in Figure 4.51. The p-value in the equality of

Std Err

10.913
17.567
20.412

Decision: Reject HO,_in favor of Ha, since p-value < a (0=0.05). Thus we have sufficient

statistical evidence to conclude that the cost of CAP coding phase is less than the cost of IP

coding phase in average.

4.7.6. Results Summary

To test the first four hypotheses, i.e., for comparing both the average CAP total software
development time with the PP total software development time, and the average CAP coding
time with the PP coding time, Student’s t-test or Mann-Whitney U test was used. If the data
follows a normal distribution and there were no outliers, then we used Student’s t-test; otherwise
we used Mann-Whitney U test. To test the fifth hypothesis, i.e., comparing the CAP groups
program correctness with the PP groups program correctness, we simply compared the number

of post-developed test cases passed by programs developed by each group.

4.7.6.1. Total Software Development Time

HO; (The overall software development cost of CAP is equal or higher than PP in
average): For the dynamic pairs (i.e., the control experiment conducted in Fall 2008), the static
pairs (i.e., the control experiment conducted in Spring 2009), and combined data the hypothesis 1
was not supported with p=0.0129, p=0.0011, and p<0.0001 respectively. Thus we have sufficient
statistical evidence to accept the alternative hypothesis that the overall software development
cost or time of CAP is less than PP in average.

The average time taken to solve all the three problems is 954 minutes for the Dynamic
Pairs PP groups and 573 minutes (40% less than PP) for the Dynamic Pairs CAP groups. The

average number of acceptance test passed by Dynamic Pairs PP groups’ programs is 59/72

95

(82%); whereas, the average number of acceptance test passed by Dynamic Pairs CAP groups’
programs is 66/72 (92%). Moreover, all the nine Dynamic Pairs CAP programs took less time
than the mean value of the Dynamic Pairs PP programs.

The average time taken to solve all the three problems is 1464 minutes for the Static Pairs
PP groups and 625 minutes (57% less than PP) for the Static Pairs CAP groups. Moreover, all
the nine Static Pairs CAP programs took less time than the least value of the Static Pairs PP

program groups.

HO, (The overall software development cost of CAP is equal or higher than individual
programming in average): The hypothesis is supported with p=0.1532. Thus we have sufficient
support for the null hypothesis to conclude that the overall software development cost or time of
CAP is equal or greater than IP in average.

The average coding time taken to solve all the three problems is 720 minutes for IP

groups and 600 minutes (17% less than IP) for CAP groups.

4.7.6.2. Coding Time

HO3 (The cost of CAP coding phase is equal or higher than the cost of PP coding phase in
average): For the dynamic pairs (i.e., the control experiment conducted in Fall 2008), the static
pairs (i.e., the control experiment conducted in Spring 2009), and combined data the hypothesis 1
was not supported with p=0.0028, p=0.0026, and p<0.0001 respectively. Thus we have sufficient
statistical evidence to accept the alternative hypothesis that the coding phase cost or time of CAP

is less than PP in average.

96

The average coding time taken to solve all the three problems is 733 minutes for
Dynamic Pairs PP groups and 196 minutes (73% less than PP) for Dynamic Pairs CAP groups.
Moreover, all the nine Dynamic Pairs CAP programs coding time took less than 75% Dynamic
Pairs PP programs coding time.

The average coding time taken to solve all the three problems is 1062 minutes for Static
Pairs PP groups and 340 minutes (68% less than PP) for Static Pairs CAP groups. Moreover, all
the nine Static Pairs CAP programs coding time took less than the least value of the Static Pairs

PP programs coding time.

HO, (The cost of CAP coding phase is equal or higher than the cost of individual
programming coding phase in average): The hypothesis is not supported with p=0.0113. Thus
we have sufficient statistical evidence to accept the alternative hypothesis that the coding phase
cost or time of CAP is less than IP in average.

The average time taken to solve all the three problems was 444 minutes for IP groups and

269 minutes (39% less than IP) for CAP groups.

4.7.6.3. Program Correctness

HOs (The number acceptance tests failed in CAP is equal or higher than the number of
acceptance tests failed in PP in average): The number of acceptance tests failed in CAP is less
than the number of acceptance tests failed in PP. Therefore, there is insufficient support for the
hypothesis. Hence we accept the alternative hypothesis that the number acceptance tests failed in

CARP is less than the number of acceptance tests failed in PP in average.

97

A summary of the four control experiments and their results are given in Table 4.10.

Control .| Sample . Statistical o
Experiments Null Hypothesis Size Data Properties Test Result Reject?
Normal
(Time /lég;t) Unequal Variance Stt_lflfjeir,:t p=0.0129 Yes
Overall No Outliers
Control Normal
Experiment-1 (Time /légzt) Unequal Variance Stt_L_jlfjeZ':t p=0.0028 Yes
(CAP Vs PP, Coding 18 No Outliers
Dynamic Pairs, Number of
Fall 2008) Acceptance Test
HOs (Correctness) Not Applicable None cases failed in Yes
CAP is less than
PP
Normal
COF‘""' . HO, Unequal Variance Student p=0.0011 Yes
Experiment-2 (Time/Costoveran) . t-Test
No Outliers
(CAP Vs PP, 18
Static Pairs HO Not Normal Mann-
Sprin 2009’) (Time /C033t) Unequal Variance | Whitney p=0.0026 Yes
pring Coding No Outliers U Test
Normal
HO, . Student
Combined (Time/Costoyeran) Unequal Va_lrlance t-Test p<0.0001 Yes
No Outliers
CAP Vs PP 36
HO Not Normal Mann-
(Time /Cozt - Unequal Variance | Whitney p<0.0001 Yes
Coding No Outliers U Test
Normal
(Time /ggét) Equal Variance Stt_lflfjeirt]t p=0.1532 No
CAP Vs IP Overall 33 No Outliers
Normal
(Time Eg‘; teadine) Equal Variance Stt_L.jlfjei?t p=0.0113 Yes
Coding No Outliers

Table 4.10: Summary of Control Experiments and their Results

98

4.8. Observations

We have implemented two different strategies of pairing during the control experiment.
In Fall 2008, we adopted the dynamic pairing technique and in Spring 2009, we adopted the
static pairing technique (see section 4.6 for more detail about dynamic and static pairing). During
this one year period, the subjects completed 105 problems. Here are some interesting
observations we have made during this period:

1) Existing empirical evidence [Williams et al. 2000], shows that the overall software
development time or cost of pair programmers is at the highest in the beginning of the
project due to pair-jelling, and decreases considerably as the project progresses. The
dynamic pairs’ pair programming experiment’s empirical evidence shows that no
regularity in the development of the productivity rates or decrease in development time
could be detected between projects; whereas, we observed an improvement in
productivity or decrease in development time (see Figure 4.52), for Static Pairs due to the

pair-jelling effect as the project progressed.

700

600 603

500 446

400

429 e 367 — PP

285 \El 5 DPP
200 223

100

0 T T 1
P1 P2 P3

Figure 4.52: Average Software Development Time for Static PP and Dynamic PP

99

2)

3)

The static PP helps the programmers to solve routine or similar kinds of problems
(Problem1 and Problem2 in our case) faster than dynamic PP programmers as shown in
Figure 4.52. But, the dynamic pairing (both the dynamic PP and the dynamic CAP) helps
the programmers to solve a new kind of problem (problem 3 in our case) faster than its

static counterpart. This we can observe from Figure 4.52 and Figure 4.53.

300
550 A 260
208
=199
200 léf/
150 r— 178 ——SCAP
140 ~=DCAP
100
50
0 T T 1
P1) P3

Figure 4.53: Average Software Development Time for Static CAP and Dynamic CAP

The productivity of the dynamic PP groups is better than static PP groups. The average
time taken to solve all three problems for dynamic PP groups is 954 minutes; whereas, it
took 1399 minutes (32% more than dynamic PP groups) for static PP groups. At the same
time, we did not observe any difference in productivity between static CAP groups and
dynamic CAP groups; the average time taken to solve all three problems for dynamic

CAP groups and static CAP groups is 573 minutes and 578 minutes respectively.

100

4)

5)

One of the major benefits of collaborative programming is pair-pressure [Williams et al.
2000]. During the entire control experiment period we observed the existence of pair-
pressure among both the CAP programmers and the pair programmers. When they met
both partners worked intensively and were motivated to complete their assigned task
within the specified time period. This motivation was lagging with individual
programmers; some individual programmers even withdrew in the middle of the
experiment. At the same time, we did not observed any gain in productivity and/or
quality improvements by the pair programmers due to pair-pressure as indicated by

[Williams et al. 2000].

We have observed that the pairs in CAP discuss more in design time and create concrete
designs in contrast to their PP counterparts. The pairs in CAP also know that after the
design phase they will play on adversarial role in the implementation stage (the goal of
the implementer is to build working software, whereas the goal of the tester is to break
the software in CAP). We believe this forces them to discuss more in the design stage
before moving to the implementation stage. Since the PP developers know that they are
going to have a partner throughout the entire development phases, we feel that the
confidence of having a partner in the development stage turns into overconfidence and
they do not discuss much in the design stage. Furthermore, this overconfidence leads to a
design that is not concrete which in turn, causes them to change their design more often

in the coding phase and spend 50% more time than their CAP counter parts.

101

5. CONCLUSIONS AND FUTURE WORK

5.1. Conclusions

In this research we have proposed a new stable and reliable agile software development
methodology called Collaborative-Adversarial Pair (CAP) programming. We see CAP as an
alternative to traditional pair programming in situations where pair programming is not
beneficial or is not possible to practice. The CAP was evaluated against traditional pair
programming and individual programming in terms of productivity and program correctness. The
empirical evidence shows that traditional pair programming is an expensive technology and does
not necessarily produce programs with better quality as claimed by the pair programming
advocates.

The empirical evidence shows that better quality programs can be produced in 40% less
time using the dynamic pairs CAP programming technique than the dynamic pair programming
technique, better or equal quality programs can be produced in 57% less time using the static
pairs CAP programming technique than the static pair programming technique, and overall,
better or equal quality programs can be produced with a much cheaper cost (50% less overall
software development time than traditional PP) using the CAP programming technique. The
empirical evidence also shows that CAP is a cheaper technology than individual programming;
using CAP we can produce programs of equal or better quality with 17% reduction in overall

software development cost on average.

102

The empirical evidence shows that better or equal quality code can be produced in 73%
less time using the dynamic pairs CAP programming technique than the dynamic pair
programming technique, better or equal quality code can be produced in 68% less time using the
static pairs CAP programming technique than the static pair programming technique, and overall,
better or equal quality code can be produced with a much cheaper cost (70% less than traditional
PP) using CAP programming technique. The empirical evidence also shows that CAP is a
cheaper technology than individual programming; using CAP we can produce code of equal or
better quality with 39% reduction in coding cost on average.

It is expected that CAP will retain the advantages of pair programming while at the same
time downplaying the disadvantages. In CAP, units are implemented by single developers
(whereas two developers are developing a unit in pair programming) and functional test cases
can be developed in parallel with unit implementation. This, in turn, reduces the overall project
development interval. The CAP testing procedure judiciously combines the functional (black
box) and structural (white box) testing, which provides the software with the confidence of
functional testing and the measurement of structural testing. The CAP allows us to confidently
test and add the purchased or contracted software modules to the existing software. Finally, the
functional test cases in the CAP allow us to change the implementation without changing the test

cases and vice-versa.

103

5.2. Future Work

The external validity, the ability of the experimental results to apply to the world outside
the research environment — over variations in persons, settings, treatments, and outcomes,
of the empirical research design is very important for any research study. We have
carefully planned our CAP validation to meet these external validity requirements.
Though the software development environment provided by us closely matches the
industrial software development environment, clearly the experimental system and tasks
in this experiment were small compared with industrial software systems and tasks.
Therefore, we cannot rule out the possibility that the observed results would have been
different if the system and tasks had been larger. Hence, validation of the results with
professional programmers in an industrial setting would be beneficial.

We aim to design, build, and test a stable and reliable new agile software development
methodology called Team Collaborative-Adversarial Pair (TCAP) Programming, which
IS suitable for the software development teams. To achieve our goal, we employ the CAP
process as a basic building block to design and build the TCAP.

Currently we have integrated and validated the CAP methodology into the Extreme
Programming process. In the future, we are planning to integrate the CAP into the other
agile development methodologies as well.

We are also planning to develop tool set to support CAP methodology.

104

[Abrahamsson et

al. 2004]

[Al-Kilidar et al.

2005]

[Anderson et al.
1998]
[Arisholm et al.

2007]

[Astels 2003]

[Bagley et al.

REFERENCES
Pekka Abrahamsson, Antti Hanhineva, Hanna Hulkko, Tuomas Ihme,
Juho Jéaélinoja, Mikko Korkala, Juha Koskela, Pekka Kyllénen, and
Outi Salo. Mobile-D: An Agile Approach for Mobile Application
Development, OOPSLA’04, Oct. 24-28, 2004, Vancouver, British
Columbia, Canada.
ACM 1-58113-833-4/04/0010.
Al-Kilidar, H., Parkin, P., Aurum, A., Jeffery, R. Evaluation of effects
of pair work on quality of designs. In: Proceedings of the 2005
Australian Software Engineering Conference (ASWEC 2005)
Brisbane Australia. IEEE CS Press, pp. 78-87.
A. Anderson, R. Beattie, et al.,, Chrysler Goes to “Extreme”,
http://www.xprogramming.com/publications/dc9810cs.pdf
Erik Arisholm, Hans Gallis, Tore Dyba, and Dag I.K. Sjgberg,
Evaluating Pair Programming with Respect to System Complexity and
Programmer Expertise, IEEE Transactions on Software Engineering,
Vol. 33, No. 2, Feb 2007
David Astels, Test-Driven Development: A Practical Guide, Prentice
Hall, 2003.

Carole A. Bagley and C. Candace Chou, Collaboration and the

105

2007]

[Beck et al. 1989]

[Beck 2000]

[Beck 2003]

[Boutin 2000]

[Canfora et al.

2006]

[Canfora et al.

2007]

[Cockburn et al.

2000]

Importance for Novices in Learning Java Computer Programming,
ITICSE’07, June 23-27, 2007, Dundee, Scotland, United Kingdom.
Kent Beck and Ward Cunningham, A Laboratory For Teaching
Object-Oriented Thinking, OOPSLA'89 Conference Proceedings
October 1-6, 1989, New Orleans, Louisiana.

Kent Beck, Extreme Programming Explained: An Embrace Change,
Addison-Wesley, 2000, ISBN 0201616416.

Kent Beck, Test-Driven Development: By Example, Addison-Wesley,
2003.S

Karl Boutin. Introducing Extreme Programming in a Research and
Development Laboratory. Extreme Programming Examined, Addison-
Wesley, Chapter 25, pages 433-448.

Canfora, G., Cimitile, A., Visaggio, C.A., Garcia, F., Piattini, M.,
Performances of pair designing on software evolution: a controlled
experiment. In: Proceedings of the 10th European Conference on
Software Maintenance and Reengineering, CSMR 2006, 22-24
March, Bari, Italy, pp. 197-205.

Gerardo Canfora, Aniello Cimitile, Felix Garcia, Mario Piattini, and
Corrado Aaron Visaggio, Evaluating performances of pair designing
in industry, The Journal of Systems and Software 80 (2007) 1317-
1327

Cockburn, Alistair & Williams, Laurie (2000), “The Costs and

Benefits of Pair Programming”, Proceedings of the First International

106

[Confer 2009]

[Flor 1991]

[Hulkko et al.

2005]

[Jensen 2003]

[Lippert et al.

2001]

[Lui et al. 2003]

[Lui et al. 2006]

[Martin 2003]

Conference on Extreme Programming and Flexible Processes in
Software Engineering (XP2000).

Personal e-mail communication

Flor, N., & Hutchins, E. Analyzing distributed cognition in software
teams: A case study of team programming during perfective software
maintenance. Proceedings of the fourth annual workshop on empirical
studies of programmers (pp. 36-59), 1991, Norwood, NJ: Ablex
Publishing.

Hanna Hulkko and Pekka Abrahamsson, A Multiple Case Study on
the Impact of Pair Programming on Product Quality, ICSE’05, May
15-21, 2005, St. Louis, Missouri, USA.

http://www.stsc.hill.af.mil/crosstalk/2003/03/jensen.html

Martin Lippert, Stefan Rooks, Henning Wolf, and Heinz Zullighoven.
JWAM and XP: Using XP for Framework Development. Extreme
Programming Examined, Addison-Wesley, Chapter 7, pages 103-117.
Lui, K., Chan, K., 2003. When does a pair outperform two
individuals? In: Proceedings of XP 2003LNCS. Springer-Verlag, pp.
225-233.

Kim Man Lui and Keith C.C. Chan, Pair programming productivity:
Novice-novice vs. expert-expert, Int. J. Human-Computer Studies 64
(2006) 915-925.

Robert C. Martin, Agile Software Development: Principles, Patterns,

and Practices, Prentice Hall, 2003.

107

http://www.stsc.hill.af.mil/crosstalk/2003/03/jensen.html�

[McDowell et al.

2002]

[Mendes et al.

2005]

[Muller 2004]

[Muller 2005]

[Nawrocki et al.

2001]

[Nosek 1998]

[perl 2004]

[Pressman 2005]

[Umphress 2008]

McDowell, C., Werner, L., Bullock, H., Fernald, J., 2002. The effects
of pair-programming on performance in an introductory programming
course. In: Proceedings of the 33rd SIGCSE Technical Symposium on
Computer Science Education. ACM, Cincinnati, KY, USA, pp. 38-42.
Emilia Mendes, Lubna Basil Al-Fakhri, and Andrew Luxton-Reilly,
Investigating Pair-Programming in a 2nd-year Software Development
and Design Computer Science Course, ITICSE’05, June 27-29, 2005,
Monte de Caparica, Portugal.

MATTHIAS M. MULLER, Are Reviews an Alternative to Pair
Programming? Empirical Software Engineering, 9, 335-351, 2004.
Matthias M. Muller, Two controlled experiments concerning the
comparison of pair programming to peer review, The Journal of
Systems and Software 78 (2005) 166-179

Nawrocki, J. and Wojciechowski, A., 2001. Experimental Evaluation
of pair programming. In: Proceedings of the European Software
Control and Metrics Conference (ESCOM 2001). ESCOM Press,
2001, pp. 269— 276.

John T. Nosek, The Case for Collaborative Programming,

Communications of the ACM March 1998/Vol. 41, No. 3

http://use.perl.org/~inkdroid/journal/17066

Roger S. Pressman. Software Engineering: A Practitioner’s Approach,
sixth edition, McGraw Hill, 2005.

Umphress, David. Personal Communication.

108

http://use.perl.org/~inkdroid/journal/17066�

[Vanhanen et al.
2005]

[Wake 2002]

[Wells et al. 2001]

[Wiki]

[Williams 2001]

[Williams et al.

2000]

[Williams et al.

20000]

[Williams et al.
2003]
[Wilson et al.

1993]

Jari Vanhanen and Casper Lassenius, Effects of Pair Programming at
the Development Team Level: An Experiment, 2005 IEEE

William C. Wake, Extreme Programming Explored, Addison -
Wesley, 2002.

Don Wells and Trish Buckley. The VCAPS Project: An Example of
Transitioning to XP. Extreme Programming Examined, Addison-
Wesley, Chapter 23, pages 399-421.

http://c2.com/cqgi/wiki?PairProgrammingFacilities

Laurie Williams, Integrating pair programming into a software
development process, Software Engineering Education and Training,
2001. Proceedings. 14th Conference on Volume, Issue, 2001
Page(s):27 — 36

Laurie Williams, Robert R. Kessler, Ward Cunningham, Ron Jeffries,
Strengthening the Case for Pair Programming, July/August 2000 IEEE
SOFTWARE

Laurie A. Williams and Robert R. Kessler, All | really need to know
about pair programming | learned in kindergarten, Communications of
the ACM, Volume 43, Issue 5 (May 2000), Pages: 108 - 114

Laurie Williams and Robert Kessler, Pair Programming Illuminated.

Addison-Wesley, 2003, ISBN 0-201-74576-3.

Wilson, J., Hoskin, N., Nosek, J., 1993. The benefits of collaboration
for student programmers. In: Proceedings 24th SIGCSE Technical

Symposium on Computer Science Education, pp. 160-164.

109

http://c2.com/cgi/wiki?PairProgrammingFacilities�
http://en.wikipedia.org/wiki/Special:BookSources/0201745763�

[XP 1999]

[Xu et al. 2006]

http://www.extremeprogramming.org/rules/pair.html

Shaochun Xu, Vaclav Rajlich, Empirical Validation of Test-Driven
Pair Programming in Game Development, Proceedings of the 5th
IEEE/ACIS International Conference on Computer and Information
Science and 1st IEEE/ACIS International Workshop on Component-
Based Software Engineering, Software Architecture and Reuse (ICIS-

COMSAR’06)

110

http://www.extremeprogramming.org/rules/pair.html�

Appendix-A

Pair Programming Experiments Analyzed

111

S. Study Year | Selected? Comments
No
1 | Wilson et al. [Wilson et al., 1993] 1993 Y
2 | Nosek [Nosek, 1998] 1998 Y
3 | Williams et al. [Williams et al., 2000] | 1999 Y
4 | Nawrocki and Wojciechowski 1999/ Y
[Nawrocki et al., 2001] 2000
5 | McDowell et al [McDowell et al., 2000/ Y
2002] 2001
6 | Baheti etal. 2002 N Distributed PP experiment
7 | Rostaher et al. 2002 Y
8 . 2003 N Not PP Vs Solo experiment, it isa PP VS 2
Heiberg et al. .
person team experiment
9 | Canforaetal. 2007 N Design phase only
10 . 2002/ Y
Mdiller [Muller, 2005] 2003
11 | Vanhanen and Lassenius 2004 Y
[Vanhanen et al., 2005]
12 | Madeyski 2006 N Design phase only
13 | Miiller [Muller 2006] 2005 Y
14 Monvorath et al 2004, N Compares the PP Vs Inspection techniques
' 2005 practiced only in Thailand.
5 Xu and Rajlich [Xu et al., 2006] %%%‘Z Y
16 C 2005 N Each subjects performed both PP and solo
anfora et al. . .
programming alternatively
17 2001, Y
Arisholm et al. [Arisholm et al., 2007] | 2004/
2005
18 | Hulkko and Abrahamson 2004 Y
[Hulkko et al, 2005]
19 . . 2005 N Repeat experiment compares Novice-
Lui'and Chan [Lui et al. 2006] NoF\)/ice paFi)rs against Exgert-Expert pairs.
20 1996 N Not PP Vs Solo experiment, only pairs
Jensen .
experiment
21 | Mendes et al. 2005 N PP used as a teaching tool
22 | Carver et al. 2007 N PP used as a teaching tool
23 | Carole and Chou 2007 N PP used as a teaching tool
24 | Cliburn 2003 N PP used as a teaching tool
25 . 2006 N Comparison of pair development and
Phongpaibul and Boehm software inspection in Thailand
26 | McDowell et al. 2003 N PP used as a teaching tool
27 | McDowell et al. 2003 N PP used as a teaching tool
28 . 2005 N Pairs of first year CS students used to
Cubranic and Storey
evaluate a prototype
29 | Hanks etal. 2004 N PP used as a teaching tool
30 | Gehringer 2003 N PP used as a teaching tool
31 | Nagappan et al. 2003 N PP used as a teaching tool
32 | Succietal. 2001 N Only job satisfaction analysis
33 | Bellinietal., 2005 N Design phase only
34 | Al-Kilidar et al. 2005 N Design phase only
35 | Canforaetal. 2006 N Design phase only

112

APPENDIX-B

IRB Documents

113

AUBURN UNIVERSITY INSTITUTIONAL REVIEW BOARD for RESEARCH INVOLVING HUMAN SUBJECTS

RESEARCH PROTOCOL REVIEW FORM

Far infarmation or help completing this form, contact: THE OFFICE OF HUMAN SUBJECTS RESEARCH, 207 Samford Hall,
Phone: 334-044-5068 e-mail: hauhjeqauhurn,edu Web Address: htlpoSsowvauburn, edures earchivanohsfindex, him

Compilete this form using Adobae Acrobaf Writer {versions 5.0 and greater).

1. PROPOSED DATES OF STUDY: FROM: 061812008 T 1113002008
REVIEW TYPE {Chack ong): [FuLL BOARD EXPEDITED] Exemet
2 PROJECT TIMLE: _Collaborative-Adversaral Pair (CAP] programming
1 Ralendran Swamidurai Grad Student CEEE A4 BIZEBE04 swamiraiaubum.edu
PRIRCIPAL NVESTIGATOR TALE DEFT FHOME EMAIL
3101, Shelby Centar, AL, Aubwm)
AUDRESE FORCORRESPONDENCE i
4. SOURCE OF FUNDING SUPPORT: Moldppicatle [imtend [0 Exteral External Agancy;
& STATUS OF FURD®NG SUPPORT: [[] wotappicable [Appeowed [0 Pending [Received

E. GEMERAL REGEARCH PROJECT CHARACTERISTICS

AvRespacch Content Area

B, BEesearch Nethodology

Pleasa check all descriptors that bes? apply 1o this proposed research projuct,

Please chetk 6T degcsipbors thel bast apply te B ressarch metogolagy.

C. Participant Infermation

Flaase chack all deacrigtors Bat apply 1 the participsed population.

O aneropoogy I QP — Dala colection wil b Pospecive [] Retoepedtve] 8oth

[Sickgieal Seiarces [J ectavicrsl Scianzas E::ﬂmﬂ&:ﬁ:mnmmm Yes O hes

O eduaton [Ergiss Dals colction will Ewalva lhe use of :

O oy L doematism Educatnsl Tests [cogrilive, diagnostic, spiuds, achievmmani) .

O wedca L1 Physiclogy W] Surveys] Quesfomares E

] Oinar (Plsass st Softwers Enginsaring [Privals Recoeds Flas |
Plaass lis13 or 4 kaywords fo iantify this resoarch projoct: [interview/ Ctesrvasion |
CAP, Aglle devaloprment, pair programming [Audiliping and or Videoleging

[[] Physical | Physnigic Measwements or Spesimens

0. Rlaks to Participants

Plassa idantiy all rlwis that may reasonably be sepactad as a resuit of participating

iat this sesaasch.
¥ maiss V] Femains
\nimarable Fopelstione O omacholConngenity] Coarcion
(W] Pregnart Women L] ot L] Dacapton [Fhysce
[Prisocers [Addescents | OO Pochgha O e
O] Ees [Foysicaly Chatenged B wone O other {piease st
[EconomicslyChallenged [| Mentshy Chalangad
Do yom plan to recrufl Aubarn Usiversity Stodents? [Yes [Mo
o you plan to compansate yeur participants ¥ Yes D Mo
For OHSR Office Use Only
DATE RECEIVED I GHSR: - ey PROTOCOL
I]ATEEF.ﬂlS'R't:ﬂllH'I'EITRE.\EI': : '. <t by DA'!'ERESIGIED IRB REVIEW: by
| DIATE OF B REVIEW: © - - by DATE IRE APPRONAL: by
! INTERVAL FOR CORTININNG REVIEW: -t

114

T.

PROJECT ASSURANCES

PROJECT TITLE: Colaborative-Adversarial Pair (CAF) programming

C

PRINCIPAL INVESTIGATOR'S ASSSURANCE

| certify that all information provised in this applcatan is camplels and corrast.

| understand ihat, a5 Principal Imesfigator, | have ulimate responsibity for the conduwct of this study, the ethical peformancs this project, the

protaciion of the rights and wallere of humen subjects, and strict achersnce to any sfipulafions imposed by the Aubum Univarsily IRE.

| cerfify that all individuals invalved wilh he conduct of his project are qualified to arry out thair spacified roles and responshilifies end arein

compliance with Auburn University poficies regarding the cobeclion end analysis of the research cala.

| agree to comply with all Aubum policies and procadures, as well as with all applicable federal, stele, and local laws regarding the protection of

fuman subjects, including, but not limied 1o the following:

a. Conducting the project by qualified personnel acconding to the approved profoeol

b. Implementing no changes in the aperoved profecol ar consend form without prior approval from the Office of Human Subjects Research
(excapl in an emargency, if necessary to safeguand the well-being of human subjects)

¢. Obtaining the legely effective micrmed consent from each participant or feir legally responsible: reprasentative prior to their
participafion in this projact using only the cumenlly appeoved, stamped consent fom

d. Prompfly reponting significant adverse evants andior efiects to e Offics of Human Subjects Research in wiifing wifhin 5 working days of
tha accurrence,

IF 1 will be unavailable to direct fis ressarch parsonally, | will arrange for & co-mvesbigator fo aasume direct responsibllity in my absence. This

person hes bean named as co-nvistigator in his application, or | will adwise OHSR, by latter, in advance of such arangementa,

| agren bo conduct fis study onfy during the period approved by the Aubum Unbversity IRE.

1 will pregare and submit a renewsl request and supply &l supparting documents & the Office of Human Subjects Researzh befare the apgroval

period has expirad I 1t 18 nacassary 10 continue the resaarch projact bayand the fime perod approved by e Aubum University IRS,

1 will prepare and submit a inal report upon compiedion of ihis research projact.

Rajendran Swamidurai
Princlpal Investigator (Pleassa Print) Principal Investigator's Signatura Date

FACULTY SPONGSOR'S ASSEURANCE

By my signature as spansar oa this research application, | cartsfy that the student or guest investigator is knowlsdpeable about fhe reguiations
and policies gowerning research with human subjects and has sufficient taining and experence o conduct this paricular study in accard with
the approved proocol.

| certify that the projct will be performed by qualified persanred sccording 1o the appraved profocal using canventional or expsrimental
mathodology.

| agree to r?mm with the investigator on a regular basis ko monitor study progress.

Should profems arise during the courss of the shudy, | sgres to be avalabde, parsonally, io supenise the investigator in zolving them.

| assure that the investigator will prompéy repod significant adverse events andior effects ta the OHSR in writing within 5 warking days of the
OCOUMTENGE,

[F 1 will b unavallable, 1 will arrange for an alternate faculty sponsor fo assume responsiBility during my absenca, and | wil advise fie OHSR by
lotier of such amangements.

| hiave read the profocsl submitizd for this prepact for content, slarty, and methcodalogy,

D, Davld & Urnphress
Faculty Sponsor (Please Print) Faculty Sponsor's Slgnature Date

DEFARTMENT HEAD'S

By my signatura as department haad, | cerlify thal every member of my depariment invalved with the condust of this research project will abide by all
Auburn University poficies and procadures, as well as with all applicable federal, state, end |ocal kaws regarding the profection and efhical veaiment
of hurnan participants.

Dir, Kai Ghang
Department Head (Please Print) Department Head's Signature Date

115

8 PROJECT ABSTRACT: Prepare an abstract (400-word maximum) that Includes: |.) A summary of relevant research findings

leading to this research proposal; 1) A concise purpese statement; lIl) A brief description of the methodabogy; IV.) Expected
andlor pessible cutcomas, and .} A statement regarding the potentiad significance of this research project. Please cife relevant
sources and inclids a “Refarance List™ as Appendix A.

Fair programming, advocated by many aglle aoftware development technigues, such as Extreme Programming, was promoted in
the garly 1890%s as a way of nspecting code ag it 5 baing written, its premise - that of two peaple, cne compubsr — & thal twe
peophe working tegather on the same task will lkely produce befter code than one person working individually, While the concept
of palr programiming is aliractive, il has some detraction. First, it requires thal the o developers be at e same place al the
same ime, Second, It requires an enlightened managamment that balieves that letiing two people work on the sams tzak will result
in beter software than if they worked on # separalely, Third, the emgirical evidence of the benedfils of pair programming s mixed,
though John T, Mosek [Mosak, 1808], Laurds Willams [Willams et al., 2000, Xu and Rajlich [Xu ot al., 2006] experiments support
lrvix costs and benefits of pair programming, experiments like Mawrocki and Wojoiechowski [Mawrocki et al., 2001], Jari Vanhanzn
and Casper Lassersus [Vanhanen ef al., 2005], Erik Asishoim et al. [Arsholm et al., 2007] show that statistically there ls no
significant difference between fhe pair programming and solo pragramming,

Collabarative-Adveraaral Pair (CAP) programming is a wariant of tha pair programming developad at AL whils working on & call-
phane software construciion project, Its objestive is 1o exploil the advantages of pair prograrmming while af the same time
downplaying the disadvantages. Unlike traditional paire, where two peogle work together in all the phases of software
devedaprant, CAPs start by designing together; splitiing into indepandent lest construction and code implamentation rolas; than
Joining egain for esting.

Tha purposs of this study is o svaluate the Collaborative - Adversarial Paie (CAP) pragramming in terms of the software melrics
namaly productivity, correctness and job satisfection against pair programming and treditional individualisolo) programming.

This study will use & series of thres controlled experiments and a survey 1o to colect the required data. The students from COMP
ST00MET00 class offered i 108 by the co-investigator of CESE dept, AU wil particlpate In this study. The overall goal s io
improve the aglle software devalopment methodoiogy which is widely used in sanior design projects in various universities
Including ALl as wall as in software development industies. The potenlial significance of this study is o create a valid and rediable
medel for agile software development. This mode! Is especially usefd for universities and companies In sliuatizns whare pair
programming ks not beneficial andior not pessible to practice.

PURPOSE & SIGNIFICANCE.
g Clearly state all of the objectives, goals, or aims of this project

The purpose of this study is to evaluate the Gollaborative — Adversarial Pair [GAP) programiming in Werms of the sovars melrcs
namiely productivity, correctnass and job satisfaction against pair programming and tradiional individusl(solo) programming.

The autcome of this stedy will prodisce o stable and reliatie ngs agile software development mathodoogy called AP, The CAP

can be @ substiule for the most talked and controversial aglle practice, known a3 pak programiming, in universitiss and softwars
Industries where pair programming is not beneficant andfor not possible to praciica.

b. How will the results of this project be usad? (g, Presentation? Publication? Thesis? Disseration’)

Thee study reselt will be used in the principal investigator's PHD dizsertation. Additionally, the result of this study will be
disseminated through conference presentations, and publications in scholarly journals.

Y

116

10. KEY PERSONMEL INVOLVED WITH DATA COLLECTION. ldentify each individual involved with the conduct of this project and
describe his or her rotes and responsibilities related to this project. Be as speclfic as possible,

Wreclividual: Rajendran Swarmdurai Titlez: ‘Grad Stucent Dept! Affllation: CSsE

Roles | Responsibilities:

The roles and respansibity of the principal investigator are the facBitation of warkahop and expedments in the software
proceas lab, dapt, of CESE, AU and conducding a leciure to brief the shudy procedure and concepts, conducting the survey,
coliect and analyze the data and disseminate findngs bassd on this research projact.

Individual: Dir. David A, Umphress Title: Assodate Prof. Dept! Affillation: CSSE

Roles | Rasponsibilities:

The roles and responsibiliies of this investigalor afe providing suppart, mentoring and supervizing all the activities of the
principal investigator.

Individual: Titlez Daptl Affiliation:
Robes | Responsibilities:
Individual: Tithe: Dapt! Affiliation:
Robes | Responsibilities:
Individual: Title: Dapt! Affiliation:
Roles | Responsibilities:

11, LOCATION OF RESEARCH. List all locations where data coflection will take place. Be as specific as possible.

The candred experiments will be condwected in the Software Procese Lab, Deparimend of CSSE, 3134, Shaloy Center, AL

117

12, PARTICIPANTS.
g, Describe the participant population you have chosan for this project.

All parficipants in the study will be al least 19 years of age, The pardicipants will be the students from the COMP STO0ETO0
Saftware Process class of DS5E dept, AU it iz 8 combined class of undergreduate seniors(COMP ST00) and graduate sludenls
(COMP 8700

What is the minimum number of participants you need to vadate the study? il
What is the maximum number of participants you will include in the study? 50

b Describe the criteria established for participant selection. (If the participants can be classified as a “vulnerable” population,

please describe additional safeguards that you will use to assure the ethical frestment of these individuals.)

Potentlal participants will be mals and famale undergrsduste asniors and graduste students who have already faken software
modeling & design and complber programming courses such as C, C++ and Java, Since the COMP 570006700 has the pre-
roquisite of software modeling and computer programning courses, we have chosen the studends from this cowrse.

Mo participants In the study are dassified as “wulnerabla®,

¢. Describe all procedures you will use to recruit particlpants. Please inclide a copy of aif fiyers, edveriisements, and scripts and
label as Appendix B.

At the baginning of the coursa in Fall 2008 the [RB - approved informed consant for the project will be handed oul and students
will be given the chancs to volunbesr o particgsate,

LY

Thea principal investigatar wil provide mformation to students about the project, hand out consent forme, answer any questions

students may have, and reguest that the forms be returned the fallowing class. 5o studenis will have at least one intervening day
to renview all aapecte of consent. He will retum the following ciaze to answer any questions and 1o callect the consant farms,

What is the masdmum number of potential participants you plan to recruit? 50
d. Describe how you will determine group assignments (e.g., random assignment, indepandent characteristics, eic.).

First & pra-test and a survey will be conducted to measure the programming skills of the subjects and their pair programeming
experience; based an the culcome the subjects will be divided into two groups, namely an experienced group and a novice growg.
From these two growps the subjects will be randomly selected and assigred to the thres experimental groups: Individuas) (Solo)
programming group, pair programming (PP) group and collaboretive sdversasial pair (CAF) programming group In the ratlo of
122,

e Describe the type and amount and methed of compensation for participants.

Each parficipants will be rewarded with extre credit points equivalant to cne malor hﬂn\:@‘-‘u‘.‘ﬂ'ﬂ asalgnment. .

118

13. PROJECT DESIGN & METHODS. Describe the procedures you will pkan to use in order to address the aims of this study, (NOTE: Use
language that would be understandable to a layperson. Without a completa description of all procedures, the Auburmn University IRB
will not be able to review protocol. If additional space is nesded for#13, part b, save the Information as a .pdf file and insert after page
& of this form.)

i Project overview. (Briefly describe the scientific design.)

Wa plan to evaluate the Collaborative - Adversarial Pair (CAP) programming by conducfing three controled experiments and a
survay, Data antered on lime record log and error resord log wil be anslyzed using slalistical methods to compare the CAP
=painst fhe palr programming and traditionsl individual programming. Participants feedback through survey will be wsed 1o
evaluate the job salisfaction,

b. Describe all proceduras and methods used to address the purpose.

1, Pre-Tast: In the pre-iest all the subjects will be asked to solve 8 programming problem Indbddually in order bo measene e
prograrmming skils. ’

2, Pre-Experiment Survey: Each subject will b= azked o complete & survay guestionsr which collects the Information such as
{heir age, ctass level (senforgraduata), programming languages known & experience, pair programming exparienca.

3. Assigning the Subjects to Exparimantal Groups: Basad on the pra-test's result and survey the subjects will be divided into two
groups namaly, an experienced group and a novice group, From these two groups the subjescts will be randomly selected and
assignad to the three expermendal groupa: Individual {Solo) programming grouwp, pair programming {PP) group and collaborative
adversaral pair (CAP) programming groug in the ratio of 1:2:2.

4 Warkshop: Befors the sctual control sxperiments starts thera will be a workshop for all the subjects. Firat, B laciura will ba
arranged to explain the concepts of colabarative-advarsarial pair programming, pair programming, unil lest and acceplance lest,
Then, & pair programming practice session (known as pairelling exercize), which enables the prograrmmers 1o understand the
pair programming praciices.)

5. Control Experimants: Thres programming exercizes will be given o each expariment groups {solo group, FF group, and CAR
group), The solo group will do the experimants individually one al a time. The PP group and CAFP group will pair-up to do the fisst
axpariment. Afler the fist experiment the palrs will be rotated within their own group (Le., & PP pairwil interchange hisher pair
with anather PP pair and 8 CAP pair will interchange hisfher pair with another CAP pair). The new rofated pairs will complete the
second axpermant. Onoe again the group's pairs will ba rotated o do the third expesimant.

6, Job Satisfaction Survey: Aftar the controllad experdments each subjects will be asked to fill & post job-salisfaction survey
questioner.

119

14,

¢, Listall instruments used in data collection. (e.g., surveys, questionnaires, educational tests, data collection sheets, outline of
interviews, scripts, audio andior video methods efc.) Please include a copy of alf dats coflection instruments that will be wsed in

this profact and label as Appendix C.
1. Pre-axpariment Surey
2. Job-satisfaction survey

3, Time record log
4, Ermor racord log

d. Data Analysis: Explain how the data will be analyzed.

Data from survey will be analyzed wilh quantitative measures, Data from time record log and emror record logs will be analyzed
wsing statistical methods.

RISKS & DESCOMFORTS: List and describe all of the reasonable rishs that participants might encounter if they decide to participate
in this research. if yow are using deception in fis study, please justify the use of decoption and be sure to affach a copy of the
debriefing form you plan fo wse and label as Appendix D,

Thers i no assaciated risk or discomfort with this study.

120

16, PRECAUTIONE. Describe all precautions you have taken to eliminate or reduce risks that were listed in #14.
Mot Applicable

16. BEMNEFITS,
a. Listall realistic benefits participants can expect by paricipating in this study.

The parlicipants will leann pair programming concepts which ane extensively used in many softwarne developmant companies.

Moreover they will lsarn very usefl practical softwars devalopment ekills such as test-driven development, how to condust unit
and acceplance testing, leam work, leam communication et

b. Listall realistic benefits for the general population that may be generated from this study.

Owerall expacied cutcomes Include bul ame not limited 1o &) a Improved agle software development readel,) a new valid and
raliable modal alternate for traditional palr programming known B3 collaborafive adversarial pairs (CAP), which can be usad in

universilies and software development companies whare pair programming is not benefizial andlar nor possible 1o practica.

121

17, PROTECTION OF DATA.
a Will data be collected as anonymous? L[] Yes No I "YES", go to part "g",

b. Wit data be collected as confidentia? [Yes Mo

¢ |fdata is collected as confidential, how will the parlicipants’ data be coded or linked to identifying information?

d. Justify your need to code participants' data or link the data with idantifying informaion,

e. Where will code lists be stored?

£ Wil data collected as "confidential™ be recorded and anakyzed s "anomymous™? [0 Yes O He

g Describa how Il'il dlata will be stoved (e.g., hard copy, audlo cassatte, elecironic data, ete.), where the data will be stored, and how
the lecation where data is stored will be secured in your absence.

The data will be stored electronically, on the computer hard drive of the principal inwestigator, wiich is localted in 3134, Shelby
center, AL The computer is password profeclesd,

h. Who will have access to participants” data?

Rajendran Swamidural, Principal imastigator
Dr. David A, Urnphress, Go-invesligator

L. Whenis the latest date that the data will be retained?

Drata will be confidential and relained one year after the approval date of this proposal,

J- How will the data be destroyed? (NOTE: Data recorded and analyzed as "anonymous™ may be reteined indefinitely.)

Data printouts will be shredded and electronic devices coniaining the data will be erased,

122

PROTOCOL REVIEW CHECKLIST

All protocals must include the following ltems:

Kl 1

1%)

i 3

O 4

Kl &

O s

0O

O =

Rassarch Protocol Resdew Form (41 signafures included and all sechions completed)

Consent Form or Information Lefter (examples are found on the OHSR website)

Appendix A "Refersnce List"

Appendi B if fiyers, advertisaments, paneralized announcemants or scripts ana wsed o recruit parficipants.

Appendix C if data collection sheets, sureys, tests, or ather recording instrumants will be used for data
collection. Be sure to mark each of the deta collection instruments as they are idendified in section # 13, part &,

Appendix D if a debrigfing form will be used,

If resmarch is baing conductad at sites other than Aubum University or in cooperafion with other entities, a letter
from the =ie / program director must be incleded indicating their cooperation or involvement in the project. NOTE:
If the proposad research is & mulfi-site project, imvoiving nvestigators or participants at ofher academic instiutions,
hospitals or private research organizations, a letter of IRE approval from each entity is required priar i inifafing
the progsct.

Wirittan evidence of acceptance by the host country if research is conducted cutside the United States.

123

IRB Appendix- A

Raferences

124

[Arisholm et al.,
2007]

[Nawrocki et al.,
2001]

[Nosek, 1998]
[Vanhanen et al.,
2005]

[Williams et al.,

20007

[Xu et al., 2006]

Appendix — A: References
Erik Arisholm, Hans Gallis, Tore Dyba, and Dag LK. Sjeberg,
Evaluating Pair Programming with Respect to System Complexity
and Programmer Expertise, IEEE Transactions on Software
Enginesning, Vol. 33, No. 2, February 2007
MWawrocki, I and Wojciechowski, A., 2001, Experimental
Evaluation of pair programming. In: Proceedings of the European
Aoftware Control and Mefrics Conference (ESCOR 2001, ESCOM
Press, 2001, pp. 269- 276. :
John T. Nosek, The Case for Collaborative Programming,
Communications of the ACM March 1998/Vaol, 41, No. 3
Jari Vanhanen and Casper Lassenius, Effects of Pair Programming
at the Development Team Level: An Experiment, 2005 IEEE
Laurie Williams, Robert R, Kessler, Ward Cunningham, Ron
Jeffries, Strengthening the Case for Pair Programming, July/August
2000 IEEE SOFTWARE
Shaochun Xu, Vaclay Rajlich, Empirical Validation of Test-Driven
Pair Programming in Game Development, Proceedings of the 5th
[EEE/ACIS International Conference on Computer and Information
Science and 1st IEEE/ACIS I.t'lt&matiﬁngl Worksshop on Component-
Based Software Enginesring, Software Architscturs and Reuse
(ICIS-COMSAR 06)

125

IRB Appendix- B

(Mot Applicable)

126

Appendix - C

Data Collection Instruments

C1: Pre-Experiment Survey & Job Satisfaction Survey

127

Pre — Experiment Survey
(All information collected will be kept strictly confidential, per informed consent agreement)

1. Name:

2. Gender: _ Male __ Fermale

3, Age: IR 1820 _m22 234 254+
4, What is vour Academic Major? Minor?

5. Class level

__Freshman __Sophomore __Jumior __Henior __Graduate
6, Do you know Java programming lanpuapes?

Tag __ Mo If “Mo™ go to question §

7. How well yon know Java?
__Excellent Verygood _ Good _ Average __Below Average

8. If your answer is “NO" for guestion number 6, then what programming language are you
muost proficient in?

C CH C#

5. How long have you been a programmer in industry/research?
__Less then 1 year 1 -5 years __More than 5 years
6. How long have you been practicing pair programmingy
_ Motatall _ Lessthan 1 year _1-2Zvyears _ More than 2 years
7. Did you ever practice test-driven development for your past projects?
_Yes __ Mo
B Did you ever practice unit-testing tools such as JUnit for your past projects?
__Yes __No

9, Did you ever practice Black box testing for your past projects?

Yes HNo

128

Appendix - C

Data Collection Instruments

C2: Time and Defect Recording Logs

129

Programmer Name(s):

Experiment:

Time Recording Log

Expernmental Group: Solo / PP/ CAP

Date:

Phasze

Start
Time

Stop

Time

Comments

Design/CodelTest

-

Design/Code/Tes!

Design/Coda'Test

Design/Codel Test

Design/CodeTest

Design/CodaTeast

"Design/CodelTeast

Design/CodeTes!

Design/CodeTast

Design/CodelTest

Dresign/CodeTest

Design/CodeTast

Design/CodeTast

Design/CodeTest

Design/CodelTest

Design/CodeTest

Design/CodeTest

Design/CodeTest

Design/Code/Test

 Design/CodelTest

Dm'gn!ﬁ_cd.eﬂest

130

Programmoer Mame(s):

Expeniment:

Defect Recording Log

Experimental Group: Sola / PP / CAP

Humber | Dafect
Type

Inject
Phase

Remowve
Phase

Fix Time

Description

131

Appendix - C

Data Collection Instruments

C3: Sample Control Experiment Prohlems

132

Problem: Write a program which reads a text file and displays the name of the file, the total
number of occurrences of & user-input string the total number of non-blank lines in
the file, and count the number of lines of code acoording to our LOC Counting
Standard. You may assume that the source code adheres to the LOC Coding Standard.
This assignment should not determine if the coding standard has been followed. The
program should be capable of sequentially processing multiple files by repeatedly
prompting the user for file names until the user enters a file name of "stop”. The
program should issue the message, "I0 error”, if the file is not found or if any other

LY error pocurs,

Moteson Below is & hypothetical test scenario for your program:

Requirements:

A poliation:
Lisar
Apolcation:
Lser
Application;

Aol tion:

Ervier & fle mame [of "shop')
asmgnmenti Test el
Erver saarch am.

Do

The fie “assignment Tesit bl has 150 ines,
aasignmenti Tesll el has B8 LOC
The wiring "deg” occure 20 fimes

Enter a fla name far “stop*):
Agsignmantz java

Enter ssaneh Bim.

IF

The fle "Azsignmantzjava” has 220 linas.
hgsignment? jeva has 168 LOC
Tha siring *f' cocus & timas.

Erviera e name [or “stop’}
InualidFleiams.

File name: ¥O emor
Ervtera fla rame for “stop’l
Shop

Frogram siopped

133

Problem:

Motes on
Reguirements:

Write a program to list information (name, number of methods, tvpe, and LOC) on
each proxy in a source file, The program should also produee an LOC count of the
entire source file,

Your program should accept as input the name of a file that contains sourcs code,
You are to read the file and count the number of lines of code according to our LOC
Counting Standard. You may assume that the source code adheres to the LOC
Coding Standerd. This assignment should not determme if the coding standard has
been followed.
Below is the hiypothetical scenario for yvour program:

Applicaliorr Enler souce code fie name {or "stop®)c

User. Assgnmant s jaa
Applcations Proey Information for feaignment e jave ke

hpplesfiore Py pame Trpe Medod mount Lo
Appicafioc Man Loglo 1 10
Applicafon: Readfle i i 17
Applicsfon: Tolal LOC: 1}

Appicaficr: Enber sounce code Bl name (or "slop'):
Usar Assigrmanchds, ava
Applcation: ooy Information for Assigraventixs e i

Application: Pty name: Type Biinshnd counk LOG
Appication: Main Logn 1 1
Appicsion: Flle 0 3 2
Appicason: Token Datn 3 1
Appiicafion: LocCountr Caia 2 5
ApplicsBon: Display s} 1 bl
AppicaBen; Tow LOG! B

Application: Ender soume code fle name: (or s’
User - Assigrmentids java

Applcaions Ender sourcs oode: fle names (or “stop'):
User Sip
hppicafion: Progrars sinpped
The exact format of the application-user interaction is up to you.

= A "proxy™ is defined as a recognizable software component. Classes are
typical proxies in an object-oriented systems; subprograms are Lypical
proxies in raditional finctionally-decomposed systems.

& Ifyou are using a finctionally-decomposad (meaning, non-00) approach,
the number of methods for each proxy will be "1". If vou are using an 00
approach, the mumber of methods will be a count of the methods associated
with an ohject.

134

Problem:

MNotes on
Requirements:

Write & program to caloulate the planned number of lines of code piven the estimated
lines of code.
Your program should accept as input the name of & file. Each line of the file
conteins four pisces of information scparated by & space: the name of 2 project and
its LOCe, LOCp, and LOCa. Read this file and echo the data to the output devics.
Accept as input from the keyboard a nurmbear which represents the estimated size (E)
of @ new project. Owiput the caleulations of each decizion (see below) and the
responding planned size (P, a8 well s the FROBE decision designation (A, B, or C)
used to celoulate P, For each decision, indicate why it iasn®t valid.
Below iz & hypothetical test soemano that you should model in your program;

Application: Enimr a fils rama:

Iser pssigrmenidTest b

Apglicalion; Hame LOCe LOCE LCCa
Apdication: H{m.‘ i 455 -]
Apglication: puc o 1683 209 6
Apslieaticn:
Apslicalion: Frojecii 123 254 138
Agglication: gy 155 535 48
Application: Enler he new esimated ines of cods (oretop):

Usam 183
Agglicafion: Decision &
Agplicafion: r=071

Agelication: BD=-100

Apglication: Bi=1.4

Application: Unsulsble ED i invalid
Apdlication:

Apdlicalion: DeciionB

Apslicalion: r=089

Application: BO=37

Application: B =137

Application: Suiizble

Application;

Apglication; Dieclsion &

Application: B1=1.1

Aplication: Unsutiable: & previous dectsion has been chosen
Application;

Apgiication: Tha planned inas of oode i 270 {Decsion B),
Appiication: Ener the new estimaled fnes of code for stop
Applicalion: Erer the new esfimated ines of coce jor shopk
Usr Simp
Apphcatior: Program smpsed
The exact format of the application-user interaction is up to yow

Your software should gracefully handle emror conditions, such as non-existent files
&nd mvahd mput values.

Found P up to the nearest multipls of 10

135

Dear Rajendran,

Your protocol entltled "Collaborative-Adversarial Pair (CAP) Programming” was reviewed by the IRB.
There was not enough information provided for the IRE to complete the review. Additional information
and revisions must be received and approved.

The IRR's comments are as follows:

- CITI must be completed before final approval can be given. (Please clip the attached form to vour
completion report and forward to the office.)

- #120 - Students are considered a vulnerable population,

- #12c - It ts assumed that the Pl is not their teacher - is the faculty advisor the Instructor? This may still
be a coercive environment. Will this experiment involve the entire class as 2 teaching method
regardless of whether they consent? If so, have somecne else consent them and keep the forms until
after grades are submitted. Then researchers can then know whose data they can use.

- #12e - What if they do not want to participate? Unless the experiment is required as part of the
course syliabus, vou will need to provide an alternate activity for those who do not want to participate
to earn the extra credit.

- #13b - Include the consent process, Will these activities coocur during class time or cutside of class?
- 14 - There are coercion and confidentiality risks. (Also check these in #6D on the cover page.)

- #15 - Indicate how recruitmant will be conducted 50 as to not coerce students to participate,” How will
data be coded to protect the identity of participants?

- 16 - These benefits may be expected if the activities are not part of the normal dass instruction. I
the activities would cccur normally, the research is only asking that their data be used by the researcher,
and there would be no personal benefit by participating in the exercise since they would be doing it for
the class anyway.

- #17b - Check "yes"
- #17c through e - Please respond.

- #17g - Include the location of the signed consent documents on campus during and for 3 years after
the study ends.

- Consent - revisions may be required after considering the above comments. Please change
"participate” to "participating” in the fourth paragraph. In the "If you have guestions...” paragraph,
pleaze add phone numbers,

L] i
- Survey - it's suggested that you use a code list and number, and na names,

136

- Please call the [RB reviewsr, Dr. Kathy Jo Ellison, to discuss these requests (4-6761).

Please submit a revised protocol to the Office of Human sﬂhjeds Research, with a memo that outlines
the changes you make. If you make any changes to the documents other than those already approved
by the IRB, please bring them to the reviewer's attention in the memao.

Please note: You are not authorized to initiate any part of your submitted research protooo! that
involves humans as subjects until the IRB provides final written approval for you to proczed, including
the return to you of your informed consent. You will need to use the stamped version when you
consent participants and provide a copy for them to keep.

If wou have any questions or concerns, please let us know.
PLEASE MOTE THAT FOR ANY RESEARCH COMNDUCTED AFTER AUGUST 1, 2008, THE IRE REQUIRES THAT

ALL MEMBERS OF A RESEARCH TEAM, INCLUDING THE FACULTY ADVISOR, MUST HAVE COMPLETED THE
CITHOM-LIME TRAIMNING IN HURMAN PARTICIPANT RESEARCH PROTECTIONS. FOR MORE INFORMATION,

GO TO htipy/fwww.auburn.edu/research/vor/ohs/resources.htm
Bast wishes,
susan

137

13 (b)

1. Consent Process: At the beginning of the course in Fall 2008 the IRB - approved informed consent for
the project will be handed out and students will be given the chance to volunteer to participate. The
principal investigator will provide infermation to students about the project, hand out consent forms,
answer any questions students may have, and reguest that the forms be returnad the following class. 5o
students will have at least one intervening day to review all aspects of consent. He will return the
following class to answer any fuestions and to collect the cansent forms,

15.

Confidentiality risk will be eliminated /minimized through the use of a designated person to handle all
identifiable data and to create anonymous data files for analysis, Al Identiflable data will be kept in a
secure location and destroyed after one year. This person [...) will be responsible for creating a code list
and data file with no identification information. The code list will be kept by (..) in & secure Iu-l;atmn and
destroved at project’s end. Data analysis will be completed anonymously,

The instructor of record for the course will not introduce the study or ask for volunteers. The Principal
Investigator or [...) will provide information to students about the project, hand out consent forms,
answer any questions students may have, and request that the forms to be returned the following class,
So stedents will have at lsast on2 intervening day to review all aspects of consent. The Principal
Investigatar or {..) will return the following class to answer any quastions and to collect the consent
forms; so that the coercion risk also will be eliminated / minimized,

138

AUBURN

UNIVERSITY

jg*.::g {JfHumn Sa'-l'.y:ch‘ Research Telephone: 334-2dd-5068
Fax: 334-844.439]

Aubum n.wgr-m}l AL 36849 heubjec @auburn. edu

September 12, 2008
MEMORANDUM TOx Rajendran Swamidural
Cnmpu!.ur Science & Software Enginesring

PROTOCOL TITLE: “Collaborative- Adversarial Fair {CAF) Programming™

[BE AUTHORIZATION MCO: 08-205 EP 0809

APPROVAL DATE: September 2, 2008

EXPIRATION DATE: Septamber &, 2004

The above referenced protocol was approved by IRE Expedited procedure under 45 CFR 46,110 (Category #7);
“Research on individeal or group characteristics or behaviar (including, but not limited to, research on
perceplion, cognition, motivation, identity, languege, communication, cultural beliefs or practices, and
socidl behavior) or ressarch employing survey, intervisw, oral history, focus group, program svaluation,
himsan factors evaluation, or quality assurance methodologies.

You should rgjl:mt to the IRB any proposed chmgss in the protocal or procedures and any unanticipated
'

problems involving rigk to subjects or others. Please reference the above muthorization number in any future

comrespondence regarding this project.

If you will be unable to file a Final R on your project before September 8, 2009, you must submit a request

fl:':ll?lﬁ.ﬂ extension of approval to the no later tha.uFrEugum 25, ZDEE If your IRB authorization mmrear:!ridfm
o have not received written notice Lh:J:. a reguest for an extension has been approved prior to September B,

, wom st suspend the project immedistely and contact the Office of Human Subjects Research for
aszistance.

. 2. You are reminded that you must use the
d-approv ned consent wien you consent your pamcll:lﬂnts Please remember that si
:uusnnt forms must I:u: retamed at least three years after completion of your study.

&4 hew w.n: .am:.r questions concerning this Board action, pleass contact the Office of Human Subjects Research
at

Sincerely,

ﬂam Qlfeo

Kﬂhy Io Eliison, RN, DSN, CIF
Chair of the Institutional Rﬂw.nw Board

for the Use of Human Subjects in Research

ce: D, Kai Chang
Drr. Dravid Umphress

L

139

APPROVED

AUBURN UNIVERSITY INSTITUTIONAL REVIEW BOARD for RESEARCH INVOLVING HUMAN SUBJECTS

REQUEST for PROTOCOL REVISION
Far Infermation or help completing this form, contact THE OFFICE OF HUMAN SUBJECTS RESEARCH, 307 Samford Hall
Fhone: 334-844-5865 e-mail: hsubjec@auburn.edy Wab Addresa: htrp:-"n"-'mw.auhum.edufrmaarnhl‘vprﬂuhs.'indn_x.h1m

Complete this form using Adabe Acrobat Writer (varsions 5.0 and graater).

1, PROTOCOL NUMEER; 0B-205 EPF 0809 2. DATES OF STUDY: FROM: __ DBME2008 10 T1/30V2006

REQUESTED DATE FOR PROTOCOL CHANGE TO TAKE EFFECT: __01/07/2009
4. PROJECTTIMLE: Caollaborative-Adversarial Palr (CAP) Programming

5 Rajandmn_ﬁtuamidural' Grad. Studant CS3E 334-B44-3648 swamirafavbum.edu
PRINCIPAL IRVESTIGATOR TITLE DEPT PHOME E-MAIL
3101, Shalby Centar, ALl Aubum F HEP, Y,
ADDREES FOR CORRESPONDENCE ! | PISIGNATURE

6. Describe all research activities that have ocourred up to this point.

Excapl data analysis, all the ressarch activitles (Consent Process, Pre-Tesl, Pre-Experimant Survay, Assigning the
Subjects to Experimental Groups, Workshop, Control Experimants, and Job Satisfaction Survey) are completad,

7. Use the space below to describe the requested changes to your research profocol. Please Includs an explanation andler rationale for
each of the changes you have requested.

Since we are unable to recrult tha minimum number (26 students) of subjects from the fall 2008 COME 570008700
students, we are planning to repaat the axperiment in spring 2009 {between 1/7/200% and 5/9/:2000),

140

3

10.

11.

12

Identify any changes in the anticipated risks and | or benefits to the particlpants.

A

Identify any changes in the safeguards or precautions that you will use to address the changes in the anticipated risks,
MA

Attach any additional supporting documentation you feel may assist the IRE in evaluating your request for protocel revisions.

If research |s being conducted af sites other than Auburn University or in cooperation with other entities, 2 latier from the site |
program director must be included acknowledging their acceptance of the proposed changes,

Attach a copy of the “stamped" IRB approved consant form you are currently using,

N bl

- Attach a revises] copy of the consent document that includes updated information regarding the requested changes, (Be sure to

review the OHSR website for current consent document guidelines and updated contact information.)

141

AUBURN
- Telephone: 334-844-5%06

%A_‘E af Humae Subjecis Research
Samford Hall UNIVERSITY Faz: 334-824-4387
Auburn University, AL 36849 Fsubjec @ auburn.edu

January 13, 2008

MEMORANDURM TO: Eajendran Swamidurai

Computer Science & Software Engineering
FROTOCOL TITLE: “Coliaborative-Adversarial Pair (CAF) Programming™
IRE FILE NUMEER: (08-205 EP 0809
ORIGINAL APFROVAL: Septernber &, 2008
MODIFICATION APPROVAL: Januwary 8, 2009
EXPIRATION: September 8, 2009

The modification request for the above referenced pratocol was a%gnkved by IEB Procedure on January 8, 2004,
The protocol will continue the designation “Expedited” under 435 46.110 {Categary #7):

“Research on individual or group characteristics or behavior (including, but not limited

to, research on perception, cegnition, motivation, identity, lan, . Communication,
cultural beliefs or practices, and social behavior) or ressarch employing survey, Interview,
oral t::ﬁtdmj',.fnqys group, program eveluation, human factors evaluation, or quality assurance
methodologies.

You should repart to the IRE any propoced changes in the protocol or procedures and any unanticipated
problems involving risk to subjects or others. Pleass refersnce the above anthorization number in any futore
correspondence regarding this project.

If oz will be unable to file a Final Report on your project before September 8, 2009, vou must submil & regquest
for an extension of approval to the mﬁﬂ Later than, Augus:: 22, Z{KJPS‘I If vour [RB authorization &xpci:&erg:lw-:cr

% have not received written notice that & request for an extension has beén approved prior to Seplemnber 8,
1%, you must suspend the project immediately and contact the Office of Homan Subjects Research for
assistance,

al | i 7 k. i e. Flease note the approved, stamped version of
yoaEr adu ormed consent shoukd be provided to participants during the consent process. Please remember
you must keep signed consent forms for three years after your stdy 15 complated.

H%ﬂ Igagﬁ%an}' questions conceming this Board action, please contact the Office of Human Suhjects Ressarch
at - : :

Sincerely,

g
i
Kathy J Elgﬂ | Chair

Institutional Review Board for the Use of Human
Subjects in Research

co: Dr. Kal Chang
Dr, David Umphress

142

AUBURN UNIVERSITY

SAMUEL GINN CDLLEGE OF ENGINEERING

DEPARTMENT OF COMPUTER SCIEMCE AMD SOFTWARE ENGINEERING

(NOTE: DO NOT SIGN THIS DOCUMENT UNLESS AN IRB APPROVAL STAMP
WITH CURRENT DATES HAS BEEN APPLIED TO THIS DOCUMENT.)

INFORMED CONSENT for a Research Study entitled
“Collaborative — Adversarial Pair Programming*

You are invited to participate in a research study fo evaluate Collaborative Adversanal Pair
programming against pair programming and traditional individual programming. The study is being
conducted by Mr. Rajendran Swamidurai, Graduate Stodent, under the direction of Dr. David A.
Umphress, in the Auburn University Department of Computer Science & Software Engineering. You
were selected as a possible participant because you are enrolled in COMP 5700/6700 and are age 19 or
older.

What will be invelved if you participate? If you decide to participate in this research study, you will
be asked o complete a pre-experiment survey, a post experiment job satisfaction survey, and thres
programming exercises (between 15772009 and 5/9/72009), Your total time commitment will be
spproximately 7 hours,

Are there any risks or discomforts? Thers are coercion and confidentiality risks associated in
participating in this study. These risks are minimized by ensuring that all data is kept confidential and
that no information concerning the study is revealed to the course instructor until after the study has
ended and course grades have been submitted.

Are there any benefits to yourself or others? By participating in this study, you can expect to leam
pair programming concepts which are extensively used in many software development companies.
Moreover you will lesrn very useful practical sofiware development skills such as test-driven
development, how to conduct unit and acceptance testing, team work, team communication etc. We
cannot promise you that you will receive any or all the benefits deseribed.

Will you receive compensation for participating? To thank you for your time you will be rewarded
with extra credit points equivalent to one major homework assignment.

Are there any costs? No

If you change your mind about participating? You can withdraw at anytime during the study. Your
participation is completely voluntary. If you choose to withdraw, your data can be withdrawn as long as
it is identifiable. Your decision about whether or not to participate or to stop participating will not
jeopardize vour future relations with Auburn University, the Department of Computer Science and
Software Engineering or with the instructor of the course.

* b The Aubum University
Institutional Review Board

Participant’s initials - has SPR{g.E thie .-j|;||; mtfa‘;_-:l‘uae
firam
| Protoool #
Page 1 of 2

107 Dunatan Hall = Auburn Univarsity, AL 35848-8347 = 354 844 4330 = Fax 334,844 63289 = woaw.ang.aubum edusicssal

143

Your privacy will be proteeted. Any mformation oblained in connection with this study will remain
confidential. Information obtained through your participation may be used in the principal investigator's
PhD dissertation. Additionally, the result of this study will be disseminated through conference
presentations, and publications in scholarly journals.

If von have questions about this study, please ask them now or contact Mr. Rajendran Swamidurai at
Tel: 334-844-3 648 and email: swamiraf@anburnedo. A copy this document will be given to you to keep.

If you have gquestions aboul your rights as a research participant, you may contact the Aubum
University Office of Human Subjects Research or the Institutional Review Board by phone (334) — 844

— 5966 or e-mail at hsubjec@auburn.edy or IREChain@auburm.edu.

HAVING READ THE INFORMATION PROVIDED YOU MUST DECIDE WHETHER OR
NOT YOU WISH TO PARTICIFATE IN THIS RESEARCH STUDY. YOUR SIGNATURE
INDICATES YOUR WILLINGNESS TO PARTICIPATE.

Participant’s Signature Date

Printad Name

r
Investigator obtaining consent Digte

PR TENTI AR Sweiprs g B el
Printed MName

I OAUS. 1 Dermg

P'ritm:kpa! Investigatof Drate
II T c.s_ -

Printed MName

Co-Investigator Date

Printed Mame

| fram

has app this docu o use
to Y .
Protocol # - . .

The Aubure Unhoersiky
Tnstlbutional Review Board

Page 2 of 2

144

	1. Introduction
	2. Literature Review
	2.1. Pair Programming
	2.1.1. Pair Programming History
	2.1.2. Benefits of Pair Programming
	2.1.3. Drawbacks of Pair Programming

	2.2. Pair Programming Experiments
	2.2.1. Judith Wilson et al. Experiment [Wilson et al 1993]
	2.2.2. The Nosek Experiment [Nosek 1998]
	2.2.3. Laurie Williams’s Experiment [Williams et al. 2000]
	2.2.4. Nawrocki and Wojciechowski Experiment [Nawrocki et al. 2001]
	2.2.5. Charlie McDowell et al. Experiment [McDowell et al. 2002]
	2.2.6. Rostaher and Hericko Experiment [Rostaher et al. 2002]
	2.2.7. Muller Experiments [Muller 2005]
	2.2.8. Vanhanen and Lassenius Experiment [Vanhanen et al. 2005]
	2.2.9. Hulkko and Abrahamsson Experiments [Hulkko et al. 2005]
	2.2.10. Muller Experiment [Muller 2006]
	2.2.11. Xu and Rajlich Experiment [Xu et al. 2006]
	2.2.12. Erick Arisholm et al. Experiment [Arisholm et al. 2007]

	2.3. The Pairing Activity
	2.3.1. When to Pair Program?
	2.3.2. Forming Pairs
	2.3.3. Role Switching
	2.3.4. Partner Exchange
	2.3.5. Workplace Layout
	2.3.6. Task Responsibility
	2.3.7. Code Ownership
	2.3.8. XP/PP Deny Specialists?
	2.3.9. Role of Programming Languages and Tools in PP

	2.4. The Effect of Pair Programming on Software Development Phases
	2.4.1. Pair Design
	2.4.2. Pair Coding
	2.4.3. Pair Testing

	2.5. Alternatives to Traditional Pair Programming [Confer 2009]
	3.1. The CAP Process [Umphress 2008]
	3.1.1. Design
	3.1.2. Black Box Test Cases
	3.1.3. Unit Implementation
	3.1.3.1. Unit Test

	3.1.4. Testing in CAP Vs PP

	References

