Embedded Soft-Cor e Processor-Based Built-In Self-Test of
Field Programmable Gate Arrays

by

Bradley Fletcher Dutton

A thesis submitted to the Graduate Faculty of
Auburn University
in partial fulfilment of the
requirements for the Degree of
Master of Science

Auburn, Alabama
May 14, 2010

Keywords: Built-In Self-Test, Field Programmablat& Array,
Fault Tolerance, Single-Event Upset Detection aodétion

Copyright 2010 by Bradley Fletcher Dutton

Approved by

Charles E. Stroud, Chair, Professor of Electrical @omputer Engineering
Vishwani D. Agrawal, Professor of Electrical andn@auter Engineering
Victor P. Nelson, Professor of Electrical and CotepliEngineering

Abstract

The exponential growth in the number of transistonsvery large scale integration
(VLSI) integrated circuits (ICs), coupled with irasing device interface bandwidth and new
surface mount and low profile packaging technolsgleave made testing of ICs increasingly
difficult and costly at all levels of the testingopess. Field programmable gate arrays (FPGAS)
pose a particularly difficult problem for test engérs due to their programmable nature, overall
size and complexity, limited number of inputs/ougp/O), and large number and variety of
embedded cores. In addition to manufacturing defesoft” errors due to single event upsets
(SEUs) have become a serious problem because ohtheasing size of the configuration
memory in FPGAs and shrinking design rules, evefautt-tolerant systems operating at ground
level. Building on previous work, this thesis useslt-in self-test (BIST) as a solution to the
testing problem for Xilinx Virtex-5 FPGAs. BIST wbgurations are presented for the
configurable logic blocks (CLBs), I/O Tiles, and \$Eletection/correction cores in Xilinx
Virtex-5 FPGAs. In addition, this thesis presemtsovel approach to BIST that uses a soft-core
processor configured in the fabric of the devicelamtest to perform reconfiguration of the
resources under test, control the BIST executiod, @erform fault diagnosis. This approach is
particularly useful for in-system testing of FPGisfault-tolerant or high-reliability systems
because it greatly reduces the amount and comyplekixternal hardware required for test. To
combat the problem of “soft” errors due to SEUst tb@n occur in the FPGA configuration

memory during normal operation, an approach fofir@-detection and correction of SEUs in

the configuration memory of Xilinx Virtex-4 and VW&x-5 FPGAs is also presented. While not
entirely immune to SEU effects, this approach dyeaiduces the probability of an SEU induced

failure in the user logic, and no single error framSEU can cause a complete system failure.

Acknowledgments

First, | would like to thank Dr. Stroud for threeegt years of guidance, encouragement,
employment, and education. You have taught me wfoshat | know about being an engineer,
and what | appreciate most in hindsight is that'y@walways challenged me to be the best. |
might not have even gone to graduate school iferoyou. | also would like to thank the many
students that I've had a chance to work with aadndrom while in the BIST lab. Lee, Daniel,
and Bobby: I learned a lot from you guys and, htipethe lab was never the same without you
(Bobby, you especially: | can’'t help laughing evan| write this). To the students that came
later — Jia, Mary, Brooks, and Joey — thanks fandpgood friends through thick and thin and for
making time spent at work more fun. To Josephl@&dfor being the best engineers my age that
I've ever met, and, therefore, inspiring me to alsvavork a little harder. | would also like
especially to thank my mom and dad for always beimgportive in everything that I've done.
Robbie: for being my best and oldest friend andirutbusiness partner (or future landlord, if
engineering doesn’'t work out). And Bo and Samantianks for dragging me out of my room
and keeping me up late, regardless of projectsxams, and for teaching me some things that

cannot be learned in a classroom.

Table of Contents

Y 01511 =T PP P PP PPPPPPPPPPPPPRRPP ii
ACKNOWIBAGMENTS. ...ttt ere e e e oo et e et et ettt s e e s s s e e e e e e e e e aeeeeeeesernnnnes v
LISt Of TADIES ... e IX
LIST OF FIQUIES ...ttt eeee e e s e e e e e e e e e e e e e e e e e e eseabbnn s Xi
LiSt Of ADDIEVIALIONSccoiiiiiiiiiei e ettt e e e e e s e e e e e s e e e e e e ennnnes XV
Chapter One. INFOAUCTIONcoiiiiiiiiiit et e e e e e et e et eeaaar e e b e e e e e e e e e aeeeeeees 1
1.1 Overview Of BUilt-In SeIf-TeSt........ooimmeeeeeeiiiie e 2
1.2 Introduction to Field Programmable Gate ArfliBGAS)uuvvvrriiiiiieeeeeeeeeeeeeeees e 4
1.3 OVerview Of VIrteX-5 FPGASouiiiiieiiiiiiie ettt e e e 7
1.4 BIST fOF FPGAS ..ottt et e e e e ettt e ettt bbbttt n e e e e e eeeaaas 10
1.5 Single EVent UPSEtS IN FPGASiiii et e e e e e e enneeseennnnn s 11
1.6 Verification by Fault INJECHION ... 13
1.7 ThESIS STAEMENT ..ottt e e e e e e e e e 14
1.8 TRESIS FOMMAL ...ttt e e e e e e e e e e e e e e e eeeeeeas 15
1.9 RETEIENCES ...t m ettt e e e e e e e e e 15
Chapter Two. Built-In Self-Test of Configurable Lio@locks in Virtex-5 FPGAs................... 18
2.1 Introduction And BacKgroUNdceeeeeuiiiiiiiieeeeeeeceeeeeeeesi e e e e e e e 18
2.2 OVverview Of VIMEX-5 CLBScoiiuitme ettt e e 20
2.3 BIST Approach ANd ArChItECTUIE ...ttt e e 22
2.4 EXPEerimental RESUILSuuuuetmmmmmms e eee e e e e e e e eeeeeeeeeeeeeeeataaa s s e e e e e e e eaeaaeeeeees 26

2.5 Summary And CONCIUSIONScoiiiiiii e 32

2.6 ACKNOWIEAGEMENTSuuiiiii e et e e e e e e e e e e e e et a b nn e e e e e e e eaaeeees 33
2.7 RETEIBINCES ... e e e e e 34
Chapter Three. Built-In Self-Test of Programmalpleut/Output Tiles in Virtex-5 FPGAs 35
I 0 I [o1 (oo 18 o3 1 o] o F PP PPPPPPPON 35
.2 PIIOTN WOTK ittt e s n e e e e e e e e s s 37
3.3 0verview Of VIrteX-5 1/O TIlES ... 38
3.4 Overview Of BIST ArCNItECTUIE.........ooiiiiie i 39
3.5 Configurations for I/O LOGIC MOUESccoeeeiiiiiiiiiiiiiieeeiir e 43
3.6 Configurations for [/O SErDES MOUEScummmmessrrriiieeeeeeeeeeerrieeeeeiesennnnn s 43
3.7 EXPerimental RESUILSuuuiuuut s e e e e e e e e e et e ettt e e e e e e e eeees 45
3.8 BIST for Programmable 1/O BUfers ... e, 48
3.9 CONCIUSIONS ...ttt ettt e e e e e e e e en bbb e e e e et e e e e e e eeeeeeas 49
3.10 ACKNOWIEAQEIMENTSuuuiiii e e e e o ettt s e e e e e e e e e e aeaaeaeaeeeeeeeeeeeesssnnnnnnnnn 50
.11 RETEIEINCES ...ttt e e e e e e e et e et e e e e e e e e e e 50
Chapter Four. Built-In Self-Test of SEU Detectioor€s in Virtex-4 and Virtex-5 FPGAs 52
ot R L1 (0 To [8 o (o o TR PP PP PP PTPPPPPON 52
4.2 Frame ECC and ICAP LOQICccvvvvviiiiemmmmmie s s e e e e eeeeeeeeeeeeesaasannsss s s s e e eeenaaseaaeaaaaaeeeees 54
G B =S A (o o] 1 o o PSR 57
=] R Y o] o 0T T o [59
4.4.1 TeSt PAttern GENEIALON cmmmmmms e e e e e e e e et ee ettt eesas bbb e e e e 60
4.4.2 Output RESPONSE ANAIYZETuuueeiiccceeeeeeeiiisss e s e e e e e e e e e e e eeeeeeeesennnnessessnnnaae s 62
v SC I Yo [1110 o F= 1IN 1o Yo | oSSR 64
4.5 Implementation RESUILS o e eeeeeiniiise e e s e e e e e e e eeeeeeeeeseesrennnneseennnn e eeeas 64
4.6 CONCIUSIONS ...ttt e e e e e e e e e e e e bbbt e e e e e e e e e s e s e bbb bbb e e s s e e e e 70

Vi

4.7 ACKNOWIEUGEIMENTS ...ttt ettt e e e e e e e e 70

4.8 REIEIEINCES ittt erreee et e e e e e e e e eeb e e e e e e e e 71
Chapter Five. Embedded Processor Based Faultimjeshd SEU Emulation for FPGAs 73
5.1 Introduction and BacKgroUNdcccceceeeiiiiiiiiiiiiiiiiiisss s e e e e e ee e s eeeeeeeseeeaeeeeeennnnn 73
5.2 Hard Core Processor Case StUAY e «seenarreeeaeeeeaeeereeeeeiinsnennnnnnnasennnnnns 75
5.3 Soft Core ProCcessor Case StUAYceeemmmmieeiiieieeeeeieiirieeeeiiiinnnnn s sreseessnsseeeaeeeeaes 79
5.3.1 Overview Of APPrOACKH.........oouuiiiit et e e e e a e e e e e e e e e e eeeeeaeeannees 80
5.3.2 Architecture and OPEIatiON............cuuuuusssssseeseeeeeeeeerreeeeeeersrnnnnn e aaeeeaeee 85
5.3.3 Implementation RESUILS oo eeeeeeeeeeeiiiiiiiirre s e e e e e e e e e eeeaaeeeeeeeeeeeennnes 88
5.4 Summary and CONCIUSIONSoeviimemmmmeeeeiieeeeeeieiies s e e e e e e e e e e eeeeeeeeseeaeeeeeenennne 92
5.5 ACKNOWIEAGEMENTS ...ttt e e e e e e e 92

5.6 REIEIEINCESceeiiii it et e e e e e as 93
Chapter Six. Soft-Core Embedded Processor-BasdtIBBelf-Test of FPGAS..........cccuu...... 95
6.1 INEFOAUCTIONeiiieee ittt eeeas 95
6.2 BACKGIOUNG ... eeee e e s s e e e e e e e e e e e eeeeeeeeaannnes 96
6.3 Embedded BIST ArChiteCUIe...........iiicmiieieee e 100
6.4 SOftware DEVEIOPMENTuuiiiieiit s e e e e e e e e e ettt et eeeae bbb sreee e s e s e e e e e e e e e e eeees 104
6.5 Design Flow and Implementation RESUILScccccooveeiiieiiiiiiieccee e 109
6.6 CONCIUSIONS ...ttt e e e e e e e e e e e n e e e e e e e e e e e e e e e s e 111
A Ao 0] (=T (o =T 0 0 T=T o 111
6.8 REIEIENCESo ettt e e e e e e e e e e e e e e as 112
Chapter Seven. Soft-Core Embedded Processor-BaskdrBSelf-Test of FPGAs Case Study ;
... 11
4% R 1] o 18 o1 1o o FO PSSO TP PP 113
7.2 BACKGIOUNG ... eeeeaeeeennnnns 114
7.3 Results of Implementation IN VIreX-5 ... oiieeeeeeeiiiiiiieeeisss e ereee e e 118

Vii

7.4 FULUIE IMPIOVEIMENTS ... iiiiiiiii et ettt e e e e et e e et e e e e e e e e era e e e eaa e e eennns 123

7.5 Other APPHCALIONSuuuiiiiiiie e e et e ettt s s s e e e e e e e e aaeaaaeaaeaaeeeeeeensrennnnnns 124
L 0] g od U] o] o PRSP 125
A AXe o) [=To Lo =T 0 0= o 127

7.8 References

Chapter Eight. On-line Single Event Upset Detectiod Correction in Field Programmable

Gate Array Configuration MEMOIIESc.ceeeeeieiiiiiiiiiaaaa e e e e e e e e e e et eeeeeee e ennneeeeeneennnns 129
S [11 70 To [8 [ox 1 o] o PSP P TP PPPPPEPPRP 129
8.2 BACKGIOUNG ...t e rraanaaa 134
8.3 Operation of SEU Detect and COITECTcceeiiiiiieiee e e 137
8.4 SEU Detect and Correct ArChiteCtUre.....cceeei i 140
8.5 Implementation RESUILSooi et s e e e e e e e e e e e e e e ee e e eene e eeeeeennn s 145
8.6 EXPEriMeNntal RESUILSuuuuiiiiit s e e e e e e ettt s e e e e e e e e e e e e e eeees 149
8.7 CONCIUSIONS ...ttt e e e e e e e e e e e e e eeeas 153
8.8 ACKNOWIEAGEMENTS ...ttt e e as 154
8.9 RETIEIBINCES ..ottt e e e e e e 155

Chapter Nine. Summary and CONCIUSIONS ... eeeeee e 157
S IR ST 0 g F= U o A o] 1 157
9.2 FULUIE WOTK ...t ettt e e e e e e e e e et e e e s emmmr e e et e e e e e e e e eeaeeaeaanns 160

2]] oo =Y o]) Y20 162

viii

Table 2.1:

Table 2.2:

Table 2.3:

Table 2.4:

Table 3.1:

Table 4.1:

Table 4.2:

Table 4.3:

Table 5.1:

Table 5.2:

Table 5.3:

Table 5.4:

Table 5.5:

Table 6.1:

Table 6.2:

Table 7.1:

Table 8.1:

Table 8.2:

Table 8.3:

List of Tables

S 00) = T 0] 1Y/ 0. 1P 20
SliceL logic BIST configurationsuuuuiiiiiiiiieieeeeeeeeeeeeeeeveeeeeeeeeees 25
SliceM BIST CONfIQUIAtIONSueeemmeeieeee e e eeeeeeeeeeeeeeeee e erre e e e e e e e e e eees 26
CLB BIST totals (17 CONfIgQUIratiONS). e vevvvvvvrrrneiiiaaseeeeeeeeeeeeeeeesesreeenneeesnssnnnnnns 32
I/O tile BIST totals (15 configurationS).......cceeeieeeeeeeeeiieeieeeeeiiiiiiere e 48
Frame ECC COUESoooeii st ettt e s e s enmn e s e e e e 55
Hamming parity matriXx €Xampleccceeiiiviiiieeiiiiiiiiiise e eeeeeee e e eeeeeeeeens 57
ICAP and Frame ECC BIST SUMMAIY ceerevvveiiiiiiieieeeeeeeeeeeseeeeeeeessvennnnsennnnes 70
Embedded fault injection run time aniglysr ATO4K40............oovvvveevieinnnnnns 78
Parity bit encoding, where X = dontear.........oooooiiiiiiiiiiiiiieee e e 87
Embedded fault liISt formatoooooiiii e 87
Embedded fault injeCtion COre reSOULCES........coeeeeeeeiieeeeeeeeeiieiii s 88
Fault/SEU injection core 1/O deSCrPHAN...........oooiiiiiiiiiiiiiiiieeeee e 91
BIST CONLIOl r@QISTEIS ...t 103
Compressed partial reconfiguration &@.................cccccviiiiiiiieeeeee s 107
Test configurations developed for VaBIBEPGAS..........cccvvvviiiiiiiiiiiiieeeeeeeeeee 115
Memory resources in two Virtex-5 FPGAS.........ccccuviiiiiiiiie e 130
Frame ECC error COdes [25][26] .. caaaaaeeeeeiiiiiiiiiiiiiiiiiiiie e 135
Hamming bit error diagnosSiS [25][26]c..vvvreeeeeiiiiiiiiiieiieiiiiieeeeee e 143

Table 8.4: SEU controller resource utilization imt®X-4 deVICeScoveieiieeeeiiieei et

Table 8.5: SEU controller resource utilization imt®X-5 deVICESccoveieeieieieieei et e

Table 8.6: SEU emulation reSUILSo e,

Table 8.7: Approximate number of configuration iiiscommon resources [5]

Figure 1.1:
Figure 1.2:
Figure 1.3:
Figure 1.4:
Figure 1.5:
Figure 1.6:
Figure 1.7:
Figure 2.1:
Figure 2.2:
Figure 2.3:
Figure 2.4:
Figure 2.5:
Figure 2.6:
Figure 2.7:
Figure 2.8:

Figure 2.9:

List of Figures

Basic BIST architeCture [3].....ceeeeeeeeeeeriiiiiiiiiiie e eeeeeeeeeeee s 3
Typical custom ASIC, standard cell ASd@d FPGA cost vs. volume......................
Typical FPGA archite@Cture [12] ..o eeeeeeeeeeieiiieeeieiiiiiiiisas s e e e ereseesseeaeeeaeaaaeeees 6
Simplified basiC [0gIC ElIEMENT ... 7
Virtex-5 configurable 10giC BIOCK [15]......ciiiiieiiieiii e 8
VirteX-5 6-INPUL LUT [L16] ..ccoviiiee et e e e e e e e e e e e e ee e e e e e e eeeanennennnnes 9
lllustration of a single-event effatia CMOS iNVerter.........ccceevvveeeeeeeeev e, 12

Simplified basic [0gIiC €leMEeNt ..o 21
Virtex-5 configurable 10gic BIOCK [11].....uueuiiiiiiiiiiii e 21
Circular compariSON ArChITECIUNE cuveeee.vvviiiiiiieiiiieeeee e 23
Equivalent ORA arChit@CtUIeccceiiiiiiiiiiiieee e 24
SliceL fault coverage (SIMUIALION).cccc .. uiiiiiiiiiiiiiiieee e 29
SliceL fault coverage (fault INJECHIOMN).........evvviiiiiiiiiieii e 29
SliceM fault coverage (SIMUIAtioN).caaa..ccooiiiiiiiiie e 30
SliceM fault coverage (fault injectian)..............cooooiiiiiiiiiiieeeee 30

Boundary Scan interface test time ... 31

Figure 2.10: 32-bit parallel interface test tiMe ... 31

Figure 3.1:

Figure 3.2:

Simplified programmable 1/O Cell..o...ooo e 37

Virtex-5 programmable 1/O tile ... 38

Xi

Figure 3.3:
Figure 3.4:
Figure 3.5:
Figure 3.6:
Figure 3.7:
Figure 4.1:
Figure 4.2:
Figure 4.3:
Figure 4.4:
Figure 4.5:
Figure 4.6:
Figure 4.7:
Figure 4.8:
Figure 5.1:
Figure 5.2:
Figure 5.3:
Figure 5.4:
Figure 5.5:
Figure 5.6:
Figure 5.7:

Figure 5.8:

Column oriented circular COMPANSON au iiieeeeeeeeee et 40
Virtex-5 equivalent ORA arChiteCture............ouuvviiiiiiiii e 41
Bitslip SYNCNIroNIZEer CIFCUILcooeeeeiiiiee e 45
50 MHz Boundary Scan configurationifaee test timecccceeviiiiiiiienn. 47

100 MHz 32-bit parallel configuratiorarface test timevvvviiiiiiceeennens 47

Frame ECC and ICAP PriMItIVES .. cocceeeieiiiiiiie e 56
Sequential Hamming bit calculation ... 60
Test pattern write sequence via ICABIMBACEcceiiiiiiiiiiiiiee e e 61
Test pattern read sequence via ICAERTBIEEoeeveeiiiiiiiiii e e, 61
ICAP and Frame ECC BIST architeCture............cuuvvvumiiiiiiieeeeeeeeeeeeeeeeeee e 65
BIST VHDL component declaration.coooveeeieiiiiiiiiiiiiiiii e 66
Virtex-4 FX12 with ICAP/Frame ECC BIST......ccoooiiiiiiiii e 68

Virtex-5 LX20T with ICAP/Frame ECC BIST.........uuuiiiiiiiiiiieeeeeeeeeeeeeeee 69

ATI4K serieS SOC arChiteCUIeceeriiii it 76
ATOI4K routing arChitECIUIE ... eeeeeeeeeeeeee e ereee e s e e e e e e e e e eees 77
SliceL simulation stuck-at fault COMBEA.............ccoviiiiiiiiiiie e e 83
SliceL fault injection stuck-at faulirage.........ccceeeeeeeeeeeeeiiiieeeeeve 83
Total CLB test time via Boundary SCaN........ccccoeeeeeeeiiiiiiiieieeieai 84
Frame read-modify-write flIOWCNAI e ..vveeiiiiiicce e 85
Block diagram of fault injection CQre...............ouviiiiiiiiii e, 88

Routed embedded fault inject core (iglith half-array of routed CLB BIST (left)

ARV L§ (=) G T I 2 0 N ISP OTORRTRT 90

Figure 5.9:

Fault inject core component declaration............ccccoeeeeeiiieeeeiiiiiieeeieceeeeeeeiaes 91

Xii

Figure 6.1: Configurable logic block (CLB) BIST BIECIUIevvvveviiiiiiiieeeeee e 97

Figure 6.2: Embedded soft core processor based Bi&iitecturecccccvviiiiiriannn. 103
Figure 6.3: Embedded processor BIST algorithms..............ooooiiiiiiiiiiiiiii e 105
Figure 6.4: Compressed BIST partial reconfigurastocture in C............oevvveiiinieeess s 107

Figure 6.5: Original reconfiguration file sizes aswmpressed data structure sizes for one CRC

BIST and a set of 5 1/O Logic BIST partial reCOmMgtioNS...........ccooeeeeeeeiiiiiieeeeiies e 108
Figure 6.6: Embedded processor BIST design implégmtiencccoeeeeeiiieeeiiiiiiienees 110
Figure 7.1: Simplified soft-core processor-basefBarchitecture................ccoeevvevvviinnnne. 117

Figure 7.2: Unrouted embedded processor-based &d8figuration for top configurable logic
blocks (CLB) in Virtex-5 LX30T viewed in FPGA EdItO...........ccoooviiiiiiiiiiiiiiie e, 119
Figure 7.3: CLB BIST test time for external configtion (full compressed and patrtial
compressed bitstreams) and embedded processtmest.............ccceeeeeieieieiiiin e eeeeeeenn, 120
Figure 7.4: Contribution to embedded processord&ieB BIST test time by initial external
configuration and by five internal partial reComfigtionscoooviiiiiiiiiienenn s 122
Figure 7.5: Comparison of CLB BIST ORA read bachkds with embedded processor-based
approach and external Boundary Scan iNterfaCuuuuurruiiiiiiiiiiieeeeeieeieeeeeeeeeeeeeeeiins 122
Figure 7.6: 32-bit, 100 MHz interface test time fiolt chip CLB west or east with one full
compressed configuration and five partial reCoOmagoNS..............ccoooriviiiiiiiiiineens e 124
Figure 8.1: FIT rate (corrected for sea-level NearkY NY) versus Xilinx device family, initial

release year, and minimum feature size [6] whezecenter line represents the nominal value

and the span of the line represents the upperaamer 195% confidence levels.................. 131
Figure 8.2: Frame ECC and ICAP PriMitiVES .. .ccceeeiveiiiiiiii e 137
Figure 8.3: SEU controller VHDL component declarati.................cooeevviivviiiienieee e, 137

Xiii

Figure 8.4: SEU controller behavioral pseudocade................uveviiiiiiiiiiiiiiiiiiiiiiiee, 139

Figure 8.5: SEU controller block diagramcoooviiiiiiiiiiiiiiii e 142
Figure 8.6: SEU controller LOG cycle time vS. VK& deVICe...........uviiiieeiieeeeeeeiieee 146
Figure 8.7: SEU controller cycle time VS. VIrteXdBVICecooovviivuuiiniiiiieeeeee e 147
Figure 8.8: Routed SEU controller implemented in&4-5 LX20T device.........cccceevvveeeeeeel aL5

Xiv

ATE

BIST

BRAM

BSCAN

BUT

CAD

CLB

CMOS

CuUT

DFT

DSP

DUT

ECC

FF

FIFO

FPGA

FSM

GUI

HDL

List of Abbreviations

Automatic Test Equipment
Built-In Self Test

Block RAM

Boundary Scan

Block under Test
Computer-aided Design
Configurable Logic Block
Complementary Metal-oxide-semiconductor
Circuit under Test

Design for Testability

Digital Signal Processor

Device Under Test

Error Correction Code

Flip-flop

First-in First-out

Field Programmable Gate Array
Finite State Machine

Graphical User Interface

Hardware Description Language

XV

LUT

LSB

MSB

ORA

PIP

PLB

RAM

SERDES

SEU

SoC

SRAM

TCK

TDI

TDO

T™MS

TPG

VLSI

Input / Output

Integrated Circuit

Internal Configuration Access Port
Intellectual Property

Look-up Table

Least Significant Bit

Most Significant Bit

Output Response Analyzer
Programmable Interconnect Point
Programmable Logic Block

Random Access Memory
Serializer / Deserializer

Single Event Upset
System-on-Chip

Static Random Access Memory

Test Clock

Test Data In

Test Data Out

Test Mode Select

Test Pattern Generator

Very Large Scale Integration

XVi

Chapter One. Introduction

Moore’s law, which predicts a doubling of integiht@rcuit (IC) transistor density every
18 to 24 months, has been an accurate predicttleoexponential growth in the number of
transistors in ICs since it was first observed lyrd®n Moore in 1965 [1]. According to the
most recent International Technology Roadmap faniSenductors (ITRS) report, minimum
feature size is expected to continue to decreasa fagtor of two €.g. transistor density will
increase by a factor of two) every two years uR@R2 [2]. With very large-scale integration
(VLSI) circuits already surpassing the one billitnansistor mark in 2008, this report, in
accordance with Moore’s law, predicts that the nembf transistors on a single IC of
comparable physical area will exceed 128 billior2bg2.

Increasing transistor count and density and inangaslevice interface bandwidth,
coupled with new surface mount and low profile @agkg technologies, have made testing of
integrated circuits increasingly difficult and dgsat all levels of the testing process [3] [4h |
addition, larger device sizes and smaller featimesshave increased both the number and type of
faults that can occur [4]. Testing embedded resmiin VLSI devices is especially difficult
because their embedded nature makes them dificutontrol and observe from the external
chip 1/O; furthermore, the number of external 1&continually decreasing in proportion to the
number of transistors on a single die [4]. While humber of I/O has increased by an order of
magnitude for most VLSI devices, the number of drstiors on a single die increased by more
than 4 orders of magnitude over the same time gé¢dip (This trend is commonly called Rent’s

Rule, for E. F. Rent of IBM, who was the first tovestigate a relationship between the number

of I/O and the number of internal logic blocks i86D [5]). Due to the limited number of
external 1/0 in proportion to the number of tratis on a chip, and without the inclusion of any
additional test circuitry, the controllability ambservability of most VLSI designs are severely
limited during testing.

Another factor affecting testing of VLSI ICs is tlo®st of automatic test equipment
(ATE). While the cost of manufacturing transistersvVLSI circuits has continued to decrease
with each new technology node, the cost of testiag increased both in absolute terms and in
proportion to overall manufacturing cost. In fatte cost of testing a single transistor already
exceeds its cost of production [3], and due to ¢ker increasing density and bandwidth of
integrated circuits, testing costs will continuerige. It is expected that by the year 2014, the
cost of a leading edge VLSI test machine will excegenty million dollars [4]. Consequently,
design for testability (DFT) methods, which incomie additional test circuitry during the
design phase to increase circuit controllabilityl abservability during testing, are included in
some form in virtually every VLSI design. Two dfet most common DFT techniques are scan
design and built-in self-test (BIST). Another DRIethod, known as Boundary Scan or JTAG
(Joint Test Action Group) [6], is usually includexifacilitate board-level testing of systems with
high pin-count and surface mount components [3] [A recent offshoot of Boundary Scan,
IEEE standard 1500-2005 [8], describes a scalabdgper architecture and control mechanism
for testing embedded cores in System-on-Chip (S@&J)ices and the interconnect between

cores [3]. The primary focus of this thesis wil dbn BIST as a solution for testing VLSI ICs.

1.1 Overview of Built-In Self-Test
BIST was introduced around 1980 as a way to tesieeaed cores in VLSI devices [4].

The basic idea of BIST is to incorporate extrawitry and functionality in the device under test

such that the circuit can test itself [3] [4]. $hmplies that the circuit is capable of generating

test patterns and compacting output responsesrefbine, BIST, in contrast to other techniques

such as scan design which relies on externallyieghpést patterns, does not require costly ATE

hardware. In addition, many BIST techniques amdiegble at every level of the testing process,

from wafer-level manufacturing test to board-leaeld in-system test. Another advantage of
some BIST approaches when compared to scan-basetetdniques is that patterns can be

applied to the circuit under test and the outpgpomses monitored at system speeds, which
facilitates the detection of delay and couplingt&[#] [9].

A simple BIST architecture, shown in Figure 1.1nsists of a test pattern generator
(TPG), output response analyzer (ORA), circuit unest (CUT), and some additional control
circuitry [3] [4]. For system-level use of BISThdut isolation circuitry and a dedicated BIST
controller must be included. The BIST controllande used to initiate the BIST, initialize the
CUT, activate the input isolation circuitry, andpide an indication when the test is complete.
During off-line tests, the TPG generates a setesf patterns which are applied to the circuit
under test (CUT) to sensitize potential fault sieesd the ORA compacts the output response of
the CUT. At the conclusion of the test, the resalte determined by examination of the ORA

contents (generally, by comparison to the faulé-ftecuit “signature”) [4].

Test Pattern Output Response
Generator (TPG) Analyzer (ORA) pass/Fail
" Input Circuit
solatio Under Test > System
System Circuit (CUT) Outputs
Inputs

Figure 1.1: Basic BIST architecture [3]

There are some costs associated with BIST that migaken into consideration. In
ASICs, BIST requires additional circuitry and fuociality that results in area and performance
penalties. This additional circuitry is shown irag in Figure 1.1. Typically, the performance
penalty is minimal, amounting to no more than atiplexer delay in the primary input data path
and additional fan-out in the primary output daéghpof the circuit under test. The area penalty
varies depending on the exact BIST architecturel {adich is, in turn, usually a function of
desired fault coverage and the type of circuit undst). This additional area is disadvantageous
because larger chip areas result in fewer chipsvpér, and, therefore, higher cost per chip due
to lower yield [4]. Also, some additional I/O pinsay be required for activation of the BIST
circuitry and results retrieval [4]. The inclusiohBIST also increases the design effort and risk
to the project, because, on top of designing tls¢esy function, the BIST circuitry must also be
designed and verified. However, most case stuthes found that the benefits of BIST usually
outweigh the costs (including addition design tiamel overhead) when included in a project [4],
and many computer-aided design (CAD) tools now seupm@mutomatic insertion of pre-
engineered BIST circuitry during the design phagaich reduces the design effort and risk to

the project.

1.2 Introduction to Field Programmable Gate Arrays (FPGAS)

Field Programmable Gate Arrays (FPGAS) are preidated semiconductor devices that
can be programmed.€. configured) after manufacturing to perform compkequential or
combinational logic functions. Compared to stadetz@ll or custom ASIC designs, FPGAs
provide lower non-recurring engineering costs auder time-to-market [10]. The non-recurring
engineering costs associated with the design amiifacture of FPGAs are initially absorbed by

the manufacturer and are passed to the custontiee iorm of a higher price-per-part. This cost,

coupled with the cost of the additional logic reqdifor programming of the device, makes the
recurring costs of designs with FPGAs higher threosé with ASICs. For these reasons, FPGAs
are commonly used for rapid prototyping of designsr to first silicon and in low-volume,
highly-specialized digital systems (where the FP&Ased in lieu of an ASIC). An illustration
of the total costi(e. recurring plus non-recurring costs) as a funcwérvolume (number of
parts) for a design implemented as a standardA&IC, as a custom ASIC, and in an FPGA is

shown in Figure 1.2 [10].

Total cost
A
Custom ,:— -
ASIC .-
=T \ FPGA & Standard
- * IStandard-Cefl’ Cell ASIC break-
ASIC even point
~|FPGA
Number of parts

Figure 1.2: Typical custom ASIC, standard cell 8Sand FPGA cost vs. volume

Due to the programmable nature of FPGAs, area, pawe performance penalties are
incurred for designs implemented in FPGAs when cmexqb to the same design implemented as
an ASIC. For several benchmark circuits impleménte both a 90 nm FPGA and 90 nm
standard-cell ASIC, the FPGA implementation reciiipetween 18 and 35 times greater silicon
area, and the critical path delay of the circutréased by 3 to 4 times versus the ASIC
implementation [11].

A typical FPGA is composed of an array of prograrladogic blocks (PLB) (also

called configurable logic blocks, or CLB) and injputput (I/O) cells connected by a

programmable interconnect network, as illustratefligure 1.3 [12]. Most modern FPGAs also
include “hard” cores such as reduced instructidrcemputer (RISC) or complex instruction set
computer (CISC) processors, digital signal process@®SPs), random access memories
(RAMSs), and high-speed serializer/deserializer (BER) input/output (1/0O) cells. These “hard”
cores can perform certain common functions, such m@sltiply/accumulate or
serialization/deserialization, with greater effitoy than can be achieved by implementing the
same function in CLBs, which helps to reduce thdgpmance/area penalties when compared

with ASICs [11].

oo oo oo g

Input/Output
Cell (/0 Cell)

PLB PLB PLB PLB

PLB PLB PLB PLB

PLB PLB PLB PLB

Programmable
S~ Interconnect
Network

PLB PLB PLB PLB

DDf oo oo oog

oo oo o OO0

od oo og 0O0

Figure 1.3: Typical FPGA architecture [12]

The front-end of the FPGA design process is idahtic that for a standard-cell ASIC.
However, the post synthesis design flow is much tesnplex for FPGA implementations. After
behavioral simulation and functional verificatiamgmputer aided design (CAD) tools (usually
supplied by the FPGA manufacturer, but also avkl#irough third parties) translate the digital
designs in Hardware Description Language (HDL)dresnatic form to a device specific netlist

which maps the design into the FPGA’s configurdbfgc and programmable routing network.

A configuration bit-file is generated from this &t and downloaded to the configuration

memory of the FPGA to implement the desired usection.

1.3 Overview of Virtex-5 FPGAs

This body of work is primarily concerned with XikrVirtex-5 FPGAs. Virtex-5 FPGAs
are fabricated in a 1.0 V, 65 nm CMOS copper poedath 12 metal layers [13]. The number of
flip-flops and LUTSs in a single Virtex-5 device gas from 12,480 up to 207,360. As many as
1,200 user I/O are available in the highest pinatgackage [13]. The configuration memory in
all Virtex-5 devices is a large static random asaegemory (SRAM), ranging in size from 4.94
Mb (4,935,744 bits) to 82.7 Mb (82,687,488 bitg)][1

Each CLB in an FPGA consists of one or more bagicclelements. The Virtex-5 basic
logic element, illustrated in Figure 1.4, comprisas six-input look-up table (LUT), a
configurable flip-flop/latch (FF/LAT), a multiplexao control the combinational output, and a

multiplexor to control the registered output (FF/LAput) [15].

T couT

Carry) I
Logic

6 LUT/ I .
— | rRAM] Fr/ [

LAT

CIN >

Figure 1.4: Simplified basic logic element

Additional dedicated carry logic is included to foem special logic and arithmetic
functions. In some slices, the LUT can be configuas a small RAM, called a free RAM or

LUT RAM, with an independent read and shared waiddress input. Four such logic elements

are grouped to form a slice, and two slices areiged to form a complete configurable logic
block (CLB), as illustrated in Figure 1.5. The ilodlocks are replicated and tiled in columns
and rows, as in Figure 1.4, and are connectedregr@mmable switch-boxes to local and global
routing resources. Larger devices include more €Ut the structure of the CLB is identical

across all devices in the FPGA family [15].

_CouTs coursr .

, CLB Logic | !

— »| Slice(l) | :

Switch ! SliceL | i
Matrix l Memory !
<——p| Slice(0) !

: SliceM

""" C_INT"""_C_I_II_\I_

Figure 1.5: Virtex-5 configurable logic block [15]

The LUTs in Virtex-5 devices are designed with taudputs each. The primary output
can utilize the full 64-bit LUT to implement anyxsvariable Boolean function. The second
output can be used to control the carry chain,ath lmutputs can implement two five variable
Boolean functions for five shared inputs. Bothpui$ can be selected by the multiplexors for
the registered or combinatorial CLB output pathAsblock diagram of the Virtex-5 6-input LUT
is shown in Figure 1.6 [16].

Select slices also support RAM and shift registedes of operation. Each LUT can be
configured as a simple 64 x 1-bit or 32 x 2-bit RANdynamic multiplexors in each slice allow
for Shannon expansion of the four slice LUTs torf@ 256 x 1-bit RAM. Additionally, the four
slice LUTs can share address inputs to form a 8bk RAM. Each LUT can also form a single
32-bit or two 16-bit shift registers. The four LB1n the slice can be cascaded to form a 128-bit

shift register or can operate in parallel form axX&hbit shift register in a slice [15] [16].

A A2 ;
A4 A3 !
A3| : A4 LUTS i
A2 A5 ;
AL D>~ A6 :
| j 06
A2 |
| A3 |
| A4 LUTS [6 . ™05
i A5 ;
A LUTS |

Figure 1.6: Virtex-5 6-Input LUT [16]

In addition to CLBs, every device in the Virtex-&niily includes DSP and Block RAM
“hard” cores. Each DSP core can perform 25 x E3c@mplement multiplication, and includes
an adder/subtractor/accumulator block. The DSP aao perform bit-wise logic operations
including NOR, OR, AND, NAND, XNOR, and XOR. Up fove pipeline registers may be
configured for use in the data path for increasebughput (up to 550 MHz) in high
performance applications [17]. Each Block RAM c@se36 Kbit in size, with true dual-port
read/write access to each memory element. Eactheofead and write ports are configurable,
such that the address and data bus widths carfraany32K x 1-bit to 1K x 72-bit. In addition,
the Block RAM can operate in a FIFO mode (with egufable data width and programmable
almost-full and almost-empty flags) and/or in aroecorrection code (ECC) mode [15]. Some
devices in the Virtex-5 family also include othdwatd” cores such as gigabit transceivers,

Ethernet MACs, PCI Express blocks, and/or PowepRiCessors [13].

1.4 BIST for FPGAs

Testing FPGAs is difficult when compared to testidgICs because of their
programmable nature and overall complexity [9].clicaf the programmable resources must be
tested in all modes of operation to achieve higlitfeoverage. This implies that multiple re-
configurations of the device are required duringfitgy. Because the total test time is usually
dominated by the time spent configuring the dewinder test, the size of FPGA configuration
memories is also a factor in testing [9]. FPGAs, an general, not well-suited for scan-based
testing methods. However, the programmable naitifePGAs allows for the creation of test
circuitry in the programmable logic during testinn addition, the regular structure of FPGAs
makes pseudo-exhaustive test methods highly efti¢d [9] [17] [18] [19].

BIST for FPGAs exploits the re-programmability d?GAs to create BIST circuitry in
the FPGA fabric during manufacturing and systeneleiff-line testing [4] [9] [17] [18] [19].
The only overhead is the external memory requicestdre the BIST configurations along with
the time required to download and execute the BIN®.area overhead or performance penalties
are incurred in the user function because the BIfjIc is replaced by the intended system
function after testing is complete. The BIST cguofations are applicable to all levels of testing
because they are independent of the intended syatertion and require no specialized external
test fixture or equipment. Most research and dgraent in BIST for FPGAs has focused on
reducing the number of test configurations, reduydime size of test configuration files, and
decreasing BIST execution time [4] [7] [8] [23].tH@r research has focused on developing BIST
techniques for the complex embedded cores includedany modern FPGAs, such as DSPs
[24] and RAMs [3] [5]. This thesis presents nevwsBlapproaches for the CLBs, 1/O Tiles, and

SEU detection cores in Virtex-5 FPGASs.

10

This thesis also presents a new approach to BISTREGAs that utilizes a soft-core
processor configured in the fabric of the FPGA untist to execute the BIST sequence,
including retrieval and analysis (fault diagnostd) BIST results and reconfiguration of the
FPGA for subsequent BIST configurations. The appinoreduces the required number of
configurations for BIST of any logic resource tsmaximum of four, and by moving the complex
BIST controller logic into the FPGA fabric, the extal hardware requirements for BIST of
FPGAs is greatly reduced. This approach is pdartuuseful in high-reliability and fault-

tolerant applications, especially when fault-diagjeas required.

1.5 Single Event Upsetsin FPGAs

BIST is typically targeted at detecting manufactgrdefects or “hard” faults that appear
during normal operation. However, “soft” errorsiokvn as Single Event Upsets (SEUs), are
known to affect the configuration memory and ottmemory elements of FPGAs during normal
operation. These errors are caused when charggdem such as heavy ions or protons, travel
through the FPGA, as illustrated in Figure 1.7 [271]hese particles can alter the state of any
static memory element, resulting in an SEU [27] [[2®]. While SEUs occur more frequently
in high radiation environments such as space, e also been experimentally observed in
FPGAs at ground level [28] [29] [30]. Because ttenfiguration memory of an FPGA
establishes the overall system function performgdhe FPGA, an SEU in the configuration
memory can alter the FPGA functionality. This, plea with the large size of the configuration

memory, makes SEUs a significantly greater conceFPGAs than in typical ASICs [31].

11

Energetic

Particle e
VDD VSS
| ,_L_,
n+ n+ n+ p-l-

SEU Can Occur ifa
Conducting Channel

Is Created n-substrate

_ p-well

Figure 1.7: lllustration of a single-event effeca CMOS inverter

Several methods exist to mitigate the effects oS FPGAs. The most common
methods include power cycling, triple modular redmcy, redundant devices, and active
configuration memory scrubbing [27]. Power cyclimg) essentially the simplest form of
configuration memory scrubbing, because the ectirdiguration memory is refreshed (from a
radiation hardened memory) each time that poweydsed off and on. When a power cycling
mitigation scheme is employed, SEUs can persistemory elements for a period of time equal
to the power-cycling period. This approach is Ugusufficient for non-critical applications in
low radiation environments [27].

Triple modular redundancy creates three identicglies of the user function in the
FPGA fabric and adds majority voters on the inpatall flip-flops and on all primary outputs of
the circuit [32]. This approach is very robustyasingle SEU cannot cause the circuit to
malfunction, and multiple SEUs must alter the sdhpeflop input or primary output in two
circuit copies on the same clock cycle in ordertfoe error to propagate. However, the area
penalty for any TMR approach is greater than 200%he original circuit size, which increases

system cost and power requirements. Also, ciqpeiformance can be adversely impacted due

12

to the increased size of the circuit and inclusainmajority voters in critical paths [27].
Duplicating the user function in multiple FPGAs gperforming voting on the outputs of the
FPGAs in a radiation hardened device is the mastuisbfrom of SEU mitigation. However,
designing systems with multiple FPGAs is both goatid difficult, and requires special design
considerations such that the FPGAs remain synchednafter an SEU is repaired in any one of
the devices [27].

Active configuration memory management (also caltive configuration memory
scrubbing) utilizes error correction code (ECC) ratb with configuration data in the
configuration memory to actively detect and ref@fiUs [14]. The ECC, in conjunction with
some additional user-accessible dedicated logit peaused to detect SEUs in the configuration
memory [15]. This approach incurs minimal arearbgad, and SEUs persist for only a small
window of time. The configuration management hacwwmay be hosted on an external
radiation hardened FPGA, microprocessor, ASICnhahe FPGA itself. However, in the latter
case, the circuitry responsible for the repair BUS is also susceptible to SEUs [31]. Therefore,
the area of the detection and repair circuitry sthdne minimized to decrease the probability of
an SEU in that logic. An active configuration magnmanagement approach for Xilinx Virtex-

4 and Virtex-5 FPGAs that requires no additionaéexal hardware is described in this thesis.

1.6 Verification by Fault Injection

During the development of BIST approaches for FPGiAs necessary to verify the fault
coverage of the BIST configurations. It is difficdo find actual faulty devices and their
usefulness is limited due to the fixed nature @ thults. Physical faults can be created by
etching the packaged device and creating openbartssin routing resources that lie at the top

level of interconnect metal for example, but ongaia the usefulness of these devices is limited.

13

A more efficient approach is to manipulate the gunfation memory bits to emulate physical
faults in the device [33] [34] [35] [36]. For exala, a stuck-at fault in a look-up table (LUT) bit
can be emulated by overwriting the particular ogunfation memory bit and setting it to the
desired stuck-at fault value. SEUSs, on the otlaerdh can be emulated by flipping the value of
bits in the configuration memory. Shorts and oparthe interconnect network can be emulated
along with almost any fault in the logic resourdbat can be controlled by configuration
memory bits. An approach for the emulation of ktat faults and SEUs in the configuration

memory of Virtex-4 and Virtex-5 FPGAs is presenithis thesis.

1.7 Thesis Statement

Testing FPGAs is difficult due to their high comytg, the limited observability and
controllability of embedded cores, and their progmaable nature. Also, the increasing density
and large size of the configuration memory has ntealesient and on-line faults due to SEUs
more common and of greater concern, even in faldtdant applications that operate at ground
level. This work considers both “hard” faults doemanufacturing defects and device ageing as
well as transient or “soft” faults induced by SEldsVirtex-5 FPGAs. Furthermore, this work
considers “hard” faults that may affect the detattand correction of SEUs by corrupting the
dedicated SEU detection hardware in Virtex-5 FPGa#®] presents BIST approaches for this
hardware. Other BIST methods are proposed as w@i@olto detect “hard” faults and
manufacturing defects that can affect the configomamemory and programmable resources in
Virtex-5 FPGASs, including the CLBs and I/O Tile®A novel BIST approach for FPGAs that
utilizes a soft-core processor configured in tHaitaof the FPGA under test to perform complex
functions such as reconfiguration of resources utelt and fault diagnosis is also presented.

Finally, a method for active detection and corttdf temporary or “soft” errors by active

14

configuration memory management and without thelireqent of additional external hardware

is presented for Xilinx Virtex-4 and Virtex-5 FPGAs

1.8 Thesis Format

This thesis is written in “publication format” asiggested by the Auburn University
Graduate SchooElectronic Thesis and Dissertation Gujdand consists of conference and
journal papers that were published (or acceptedotdmication) during the course of research
conducted by the author while in the graduate @nogat Auburn University. A majority of the
actual research and the writing of all publisheggra included in this thesis represents the
efforts of the primary student author and not dwilators. Each paper is presented “as
published”, with the exception of an acknowledgrsesgction at the end of each chapter that
provides the name, location, and date of publicatd the original paper along with any
information regarding relevant published papers$ doanot appear in this thesis. The papers are
reformatted to comply with the guidelines set foby the Graduate School. References are
organized as follows: Each chapter in the bodyth&f thesis contains its original list of
references (numbered consecutively beginning asudh that the chapter may stand-alone and
as it appears in the original published paper. adidition, a cumulative bibliography of all

references cited in the thesis is included at ttkaf the thesis.

1.9 References

[1] G. Moore, “Cramming More Components onto IntegraBaduits,” Proc. of the IEEE
vol. 86, no. 1, pp. 82-85, 1998.

[2] Semiconductor Industry Association)nternational Technology Roadmap for
Semiconductors: 2007 editiphttp://public.itrs.net.

[3] Y. Min and C. Stroud, “Introduction,” iVLSI Test Principles and Architecturds-T
Wang, C-W Wu, and X. Wen, Eds., San Francisco: Morigaufmann, 2006, pp. 1-33.

15

[4]
[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]
[14]
[15]
[16]

[17]

[18]

[19]

[20]

[21]

C. Stroud A Designer’s Guide to Built-In Self-Te8toston: Springer, 2002.

P. Christie, D. Stroobandt, “The Interpretation akaplication of Rent’'s Rule, JEEE
Trans. on VLSI Systemsol. 8, no. 6, pp. 639-648, 2000.

IEEE Standard Test Access Port and Boundary-Scamitecture IEEE Std 1149.1-
2001, New York, 2001.

M. Bushnell and V. Agrawal:ssentials of Electronic Testing for Digital, Memand
Mixed-Signal VLSI CircuitdNew York: Springer, 2000.

IEEE Standard Testability Method for Embedded (®ased Integrated CircuitdEEE
Std. 1500-2005, New York, 2005.

L-T Wang, C. Stroud, and N. Toub@ystem-on-Chip Test Architectur&an Francisco:
Morgan Kaufmann, 2007.

M. Smith, Application-Specific Integrated Circujtdddison-Wesley, 1997.

l. Kuon and J. Rose, “Measuring the Gap BetweenA®&d ASICs,IEEE Trans. on
Computer-Aided Design of Integrated Circuits andt&ms vol.26, no.2, pp.203-215,
2007

S. Brown and J. Rose, “FPGA and CPLD architecturdsitorial,”|[EEE Design & Test
of Computersvol.13, no.2, pp.42-57, 1996

Virtex-5 Family OverviewDS100 (v5.0), Xilinx Inc., 2009.
Virtex-5 FPGA Configuration User GuidedG191 (v3.2), Xilinx Inc., 2008.
Virtex-5 FPGA User GuideJG190 (v 4.2), Xilinx Inc., 2008.

A. Cosoroaba and F. Rivoallon, “Achieving Highersg&m Performance with the Virtex
5 Family of FPGASs,” Xilinx Inc., San Jose, CA, 2006

Virtex-5 FPGA ExtremeDSP Design Considerations:ri@eide UG193 (v3.3), Xilinx
Inc., 20009.

M. Abramovici and C. Stroud, “BIST-based test amagdosis of FPGA logic blocks,”
IEEE Trans. on VLSI Systool. 9, no. 1, pp. 159-172, 2001.

S. Toutounchi and A. Lai, “FPGA test and coverad&dc. IEEE Int. Test Confpp.
599-607, 2002.

J Sunwoo and C. Stroud, “BIST of Configurable ComesSoCs Using Embedded
Processor Dynamic Reconfiguratiof,foc. Int. SoC Design Conpp. 174-177, 2005.

B. Dutton and C. Stroud, “Built-In Self-Test of Gmurable Logic Blocks in Virtex-5
FPGAs,”Proc. IEEE Southeastern Symp. on System Thppry230-234, 2009.

16

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

B. Dutton and C. Stroud, “Built-In Self-Test of Brammable Input/Output Tiles in
Virtex-5 FPGAs,”Proc. IEEE Southeastern Symp. on System Thppr235-239, 2009.

C. Stroud, S. Konala, P. Chen, and M. AbramoviBulift-in self-test of logic blocks in
FPGASs,”Proc. IEEE VLSI Test Sympp.387-392, 1996.

M. Pulukuri and C. Stroud, “Built-In Self-Test ofigkal Signal Processors in Virtex-4
FPGAs,”Proc. IEEE Southeastern Symp. on System Thppryd4-38, 2009.

C. Stroud, S. Garimella and J. Sunwoo, “On-ChipBE&ased Diagnosis of Embedded
Programmable Logic Cores in System-On-Chip Devic&spc. ISCA Int. Conf. on
Computers and Their Applicationgp. 308-313, 2005.

B. Garrison, D. Milton, and C. Stroud, “Built-In B&est for Memory Resources in
Virtex-4 FPGASs,”Proc. ISCA Int. Conf. on Computers and Their Amglans pp. 63-
68, 2009.

B. Bridgford, C. Carmichael, and C. Tseng, “SinBldent Upset Mitigation Selection
Guide,” XAPP987 (v1.0), Xilinx Inc., 2008.

E. Normand, “Single Event Upset at Ground Lev&EEE Trans. on Nuclear Science
vol. 43, pp. 2742-2750, 1996.

A. Lesea and P. Alfke, “Xilinx FPGAs Overcome th&e Effects of Sub-90 nm
Technology,” WP256 (v1.0.1), Xilinx Inc., 2007.

A. Lesea, “Continuing Experiments of Atmosphericuden Effects on Deep Submicron
Integrated Circuits,” WP286 (v1.0), Xilinx Inc., @8.

K. Chapman and L. Jones, “SEU Stratagies for ViBeRevices,” XAPP864 (v1.0.1),
Xilinx Inc., 20009.

Xilinx TRMTool User Guide: TMRTool Software Versgogi, UG156 (v2.2), Xilinx Inc.,
20009.

P. Ellervee, J. Raik, K. Tammemae and R. Ubar, ii®mwment for FPGA-based Fault
Emulation,”Proc. Estonian Acad. Sci. Engol. 12, pp. 323-335, 2006.

T. Slaughter, C. Stroud, J. Emmert and B. Skaggault Injection Emulation for Field
Programmable Gate ArraysProc. Int. Society for Optical Engvol. 4525, pp. 1-9,
2001.

E. Johnson, M. Caffrey, P. Graham, N. Rollins andvirthlin, “Accelerator Validation
of an FPGA SEU SimulatorJEEE Trans. on Nuclear S¢vol. 50, no. 6, pp. 2147-2157,
2003.

F. Kastensmidt, L. Carro and R. Relault-Tolerance Techniques for SRAM-based
FPGAs The Netherlands: Springer, 2006.

17

Chapter Two. Built-In Self-Test of Configurable Logic Blocksin Virtex-5 FPGAS

A Built-In Self-Test (BIST) approach is presentemt the configurable logic blocks
(CLBs) in Xilinx Virtex-5 Field Programmable Gaterrays (FPGAs). A total of 17
configurations were developed to completely test ftill functionality of the CLBs, including
distributed RAM modes of operation. These configions cumulatively detect 100% of stuck-
at faults in every CLB. There is no area overheagerformance penalty and the approach is
applicable to all levels of FPGA testing (wafer,ckage, and in-system). A novel output
response analyzer (ORA) design, which is efficienmtiplemented in FPGAS, provides both an
overall single-bit pass/fail result and optimalgfastic resolution when faults are detected. The
implementation of the BIST approach in all VirtexF?GAs and experimental results are

discussed.

2.1 Introduction And Background

Built-In Self-Test (BIST) for Field Programmable 8aArrays (FPGAS) is typically
targeted at manufacturing defects and operatiomalts that can appear at any point in the
product life-cycle. As a result, BIST for FPGAs @oys a defect-oriented test strategy [1].
Ideally, a BIST approach would be applicable tdalkls of testing, from manufacturing test to
in-system test, and would be entirely independdrthe end user function. Additionally, the
BIST would achieve maximal stuck-at fault coveragel would be executed at-speed to provide
high fault coverage for a variety of fault modeM/hen possible, high diagnostic resolution of

detected faults is desired for fault-tolerant aggtions. This chapter presents a BIST approach

18

for the configurable logic blocks (CLBs) in Virtédx+PGAs that represents the culmination of
over 15 years of work in FPGA BIST to address theseerns.

The first BIST for the configurable logic in FPGA&s proposed in [2]. The approach
exploits the re-programmability of FPGAs to creBIST circuitry in the FPGA fabric during
off-line testing. The only overhead is the extérmemory required to store the BIST and
system function configurations along with the tiregquired to download and execute the BIST.
No area overhead or performance penalties arergdtince the BIST logic “disappears” after
the test session. Furthermore, the tests arecapj#i at all levels of testing since they are
independent of the system function and requirextereal test fixture or equipment. The basic
idea for the BIST is to configure some of the CL#s Test Pattern Generators (TPGs) and
Output Response Analyzers (ORASs) while configuiatiger CLBs as blocks under test (BUTS).
The BUTSs are repeatedly configured until they hbgen tested in every mode of operation [1].
These tests achieve maximal fault coverage by agplyseudo-exhaustive test patterns such that
each sub-circuit of the BUT is exhaustively teqtd

Several examples of BIST for the CLBs in FPGAs haeen published, with each
offering some improvement over the previous apgroaReference [3] introduced Boundary
Scan as a means of controlling the BIST sequeiXiinx engineers, in [4], introduced a set of
iterative array logic tests with similarities toetapproach presented in [2] and [3]. The general
BIST approach, which is independent of the CLB yas&e, can also be adapted for on-line
BIST techniques, as discussed in [5]. Previousnges of the implementation of this BIST
approach on Xilinx 4000, Spartan, Virtex-l, Spaftaand Atmel FPGAs are contained in [6],
[7], and [8]. Partial reconfiguration was used[%) to reduce the overall download and test

times as well as system down time.

19

The BIST approach for Virtex-5 FPGAs builds primany the previous work in [2], [3],

[8], and [10]. However, our approach offers antiayed ORA architecture and fewer total test
configurations. We also improve the accuracy of flault simulation models and add
verification of the configurations on the targetvide via configuration memory bit fault
injection. The remainder of this chapter is orgadias follows. Section 2.2 gives an overview
of the CLB architecture in Virtex-5 FPGAs. Secti@r8 describes the BIST approach and
implementation specific to Virtex-5 FPGAs. Sectdd describes the experimental result and
verification of the BIST. Section 2.5 summarized aoncludes the chapter.

Table 2.1: List of acronyms

Acronym Definition Acronym Definition
CLB Configurable Logic Block BUT Block Under Test
BIST Built-in Self-test LUT Look-Up Table
ORA Output Response Analyzer SliceL Logic Slice
TPG Test Pattern Generator SliceM Memory Slice

2.2 Overview of Virtex-5 CLBs

The basic Virtex-5 logic element, illustrated irgéie 2.1, is composed of a 6-input look-
up table (LUT), a configurable flip-flop/latch, andultiplexers to control the combinational
logic output and the registered output (flip-flgadh input). Additional dedicated fast carry
logic is included to perform special logic and lamietic functions. In some slices, the LUT can
be configured as a small RAM, called a distribu®M or LUT RAM, or as a shift register
[11]. Four such basic logic elements are groupefbrtm a slice, and two slices are grouped to
form a complete CLB, as shown in Figure 2.2 [1LERch CLB is connected by a switch matrix
to local and global programmable routing resourcktentical CLBs are tiled in columns and
rows with larger devices including more columns /andows of CLBs. Additionally, the

structure of the CLB is identical across all desigethe Virtex-5 family. The 6-input LUTs are

20

designed with two outputs each. The primary oyt@8, can utilize the full 64-bit LUT to

implement any 6-variable Boolean function. Theoselary output, O5, can be used to initialize
the carry chain, or both the O5 and O6 output ogriéement an independent 5-variable Boolean
function for five shared inputs. Either LUT outpoédn be selected by the configuration

multiplexers for the registered or combinatorialBChutput paths [11].

T CouT
Carry j -
Logic
6 LUT/ I
7| RAM FF/ [
LAT
CIN S

Figure 2.1: Simplified basic logic element

__COUT _COUT .

' CLB Logic |

G » Slice(1)| :
Switch Slicel |
Matrix . |Memory !
G| Slice(0) !

SliceM

_____ C iN_?"""C_:I_N

Figure 2.2: Virtex-5 configurable logic block [11]

Some slices (specifically the lower slice in everther column of CLBs and both
columns to the left of a digital signal processolumn) also support RAM and shift register
modes of operation. The LUT RAMs in each sliceenawdependent read address inputs and
share a set of write address inputs. The indepgnéad inputs facilitate the construction of
dual-port RAMs within a slice. Each LUT can be figared as a simple 64x1-bit or 32x2-bit

RAM. Dynamically controlled multiplexers in eaclice allow the four LUTs to form a 256x1-

21

bit RAM. Additionally, the four LUTs can share &vread address inputs and utilize eight
independent data inputs to form a 32x8-bit RAM.clE&aUT can also form a single 32-bit or
two 16-bit shift registers. The four LUTs can lascaded to form a 128-bit shift register or can

operate in parallel form a 16x8-bit shift regidtank [11].

2.3 BIST Approach And Architecture

The BIST approach takes advantage of the regularctaste of FPGAs by using
comparison-based ORAs to compare the outputs ofiptauidentical BUTs. This detects all
faults affecting any combination of BUTs (since &lult-free BUTs must produce the same
pattern) so long as all of the BUTs compared bgtaof ORAs do not fail identically and at the
same time [3]. Since a faulty TPG could cause wtyfaBUT to escape detection, multiple
identical TPGs are used to drive alternating BUThis eliminates the assumption that the TPGs
are fault-free because, with multiple identical B@& faulty TPG will cause the outputs of some
of the BUTSs to disagree, resulting in ORASs repaytiailures.

The CLB BIST architectures can be divided into twabtegories based on the slice mode
being tested. The first set of configurationsgdestery CLB in the FPGA in SliceL (logic) mode
of operation. The second set of configurationsstesery SliceM. Only those slices which
support SliceM (memory) mode are tested duringsde®nd set of configurations.

In SliceL BIST architecture, alternating columnsQifBs are configured as ORAs and
BUTs, as illustrated in Figure 2.3. The set of Bl&nfigurations is repeated twice with the
roles of the CLBs reversed such that every CLBeshoth as ORA and as BUT. Two outputs
of each BUT are compared by an ORA with the outpfitsvo adjacent identically configured
BUTs in the same row, as shown in Figure 2.4. Amaitch of two identically configured BUT

outputs latches a logic 0 in the ORA flip-flop. h@twise, a logic 1 is retained in the ORA and is

22

interpreted as a passing result at the end ofdsiesequence. Traditionally, the results of the
BIST are recovered via partial configuration mem@gdback where the contents of every ORA
are retrieved from the configuration memory. Hoamwe use a new ORA design that utilizes
the dedicated carry logic in the CLB to form amatese-OR of the ORA outputs. In each ORA,

a passing result of logic 1 selects the Carry-putnwhich is the Pass/Fail result of the previous

ORA.

Figure 2.3: Circular comparison architecture

The Carry-in input of the first ORA in the itera#@hOR chain is connected to Boundary
Scan Test Data In (TDI), with the output of thet l@RA connected to Test Data Out (TDO). If
any ORA in the chain registers a failure, a logmnOthe output of that ORA will select the logic
1 input of the carry chain multiplexer which traatsis to a logic 1 on TDO. Otherwise, TDO
passes the state of TDI such that by toggling Tid abserving TDO, the integrity of the
iterative-OR chain can be verified at the end ef ST sequence. If the output of the OR chain
indicates a failure (TDO is a logic 1 regardlesshef state of TDI), the contents of the ORAs can
be retrieved via partial configuration memory reacibto determine the location(s) of the failing
BUT(s). This facilitates the single-bit pass/fiaitlication for faster test time without sacrificing

diagnostic resolution for fault-tolerant applicaiso

23

ORA

carry-out
BUT, outpuy 70 I\
BUT outpu L
BUT; outpuy, P ORA
BUTY outpuy, carry-out

Figure 2.4: Equivalent ORA architecture

In Virtex-5 FPGASs, the carry-in of the bottom CLBdathe carry-out of the top CLB in
each column are not connected. To continue thg chain, the carry-out of the top ORA in one
column is connected to the D output and is routethe AX input of the bottom ORA in an
adjacent column. The AX input is selected as timeyechain input in the bottom ORA in each
column. In the ORA, each LUT is programmed withe thhexadecimal value
0x90090000FFFFFFFF. By tying the A6 LUT input ¢gic 1, the O6 LUT output reads only
the upper 32-bits of the LUT which implements thmmparison ORA equation shown in
Equation 2.1, while the O5 output reads only theelo32-bits of the LUT (which controls the

carry chain multiplexer for the iterative-OR chain)

06=(A10A2) (A30 A4« A5 (2.1)

The architecture of the Virtex-5 CLBs requires animium of six configurations to test
each of the 6 inputs to the flip-flop input mulagers, (A-C)FFMUX. The first five of these
configurations can also test the 5 inputs to thehdoational logic output multiplexers (A-
D)OUTMUX. Alternating XOR and XNOR functions inghLUTs detects every LUT stuck-at
fault in two BIST configurations. Multiple idenat TPGs are implemented in a column of
embedded digital signal processors (DSPs) and dtteenating columns of BUTs. This reduces
loading on the TPGs in large devices and elimindtesassumption that the TPG is fault-free.

The DSPs are configured to accumulate a large pniomeber placed on the DSP inputs. This

24

number, 0XxCA6691, was shown in [12] to produce xraastive sequence of 12-bit test patterns
in 22 clock cycles with a relatively high number of tsitions in the most significant bits of the
accumulator output. Virtex-5 CLBs require at [eb3tTPG lines for pseudo-exhaustive testing,
and, therefore, 4,096 clock cycles for the exhaassiet of test patterns to be produced by the
accumulator. Six of the TPG outputs fan out toitiputs of each of the four LUTs. Adjacent
LUTs are alternately programmed with XOR and XNQRdtions such that adjacent LUTs will
produce opposite logic values. Another six TP@dirxercise the AX, BX, CX, DX, CE, and
SR slice inputs with pseudo-exhaustive test patterd total of 12 SliceL BIST configurations
are generated, such that every CLB is a BUT forcerxfigurations and an ORA for another six
configurations. A summary of the SliceL BIST caguffations is given in Table 2.2.

Table 2.2: SliceL logic BIST configurations

ConFigure#| A-DLUTs FF/Latch CYINIT CLKIINV
#1 XOR/XNOR FF INIT1 #OFF CLK
#2 XNOR/XOR FF INITO AX CLK
#3 XOR/XNOR FF INITO 0 CLK
#4 XNOR/XOR LAT INIT1 1 CLK
#5 XOR/XNOR FF INITO 0 CLK
#6 XNOR/XOR FFINIT1 AX CLK_B

ConFigur e# A-D FFMUX A-D MUX
#1 06, 06, 06, O6 CY, CY, CY, CY
#2 05, 05, 05, 05 XOR, XOR, XOR, XOR
#3 AX, BX, CX, DX 05, 05, 05, 05
#4 XOR, XOR, XOR, XOR 06, 06, 06, O6
#5 CY, CY, CY, CY F7,F8, F7, CY
#6 F7, F8, F7, DX F7,F8, F7, CY

Every other CLB column contains a SliceM. In aigalif the CLB column to the left of a
DSP column contains a SliceM and, in SX devicessdcond CLB column to the right of a DSP
column contains a SliceM. In columns containinge&Ws, only the bottom slice in each CLB is

a SliceM. Therefore, every SliceM can be testatianeously since there is at least one SliceL

25

for every SliceM (located in the same CLB) that camve as an ORA. The ORAs for the
SliceM BIST architecture are the same as those ims#te SliceL BIST architecture, including
the iterative-OR chain. However, the circular camigon chain is formed along each column
containing SliceMs by comparing the outputs of eBE with the identically configured BUT
in an adjacent row. A 2048x18-bit block RAM, efigely configured as a ROM, is used to
store deterministic test patterns and, in conjanctvith a DSP configured as an address counter,
forms a TPG. Multiple identical TPGs are configlite drive alternating rows of BUTs. The
SliceM BIST configurations are summarized in Tabl@. To test the LUT RAMSs in single-port
modes (configurations #1 and #2), the block RAMs iaitialized with the test patterns for a
March Y test algorithm. A March Y RAM test requsréN test patterns, wheng is the number
of address locations [10] [13]. For the remainoogfigurations, the block RAMs are initialized
with test patterns for a dual-port RAM test algamit[1] [6].

Table 2.3: SliceM BIST configurations

ConFigure## RAM mode DIIMUX WEMUX FFMUX
#1 SPRAM64 DX CE 06
#2 SPRAM32 A-DX CE 06
#3 DPRAM32 DX WE 05
#4 SRL32 MC31 WE MC31
#5 SRL16 A-DX WE 06

ConFigure## OUTMUX WAS8used | WA7used BIST CCs
#1 06 0 0 2,048
#2 06 #OFF #OFF 2,048
#3 06 #OFF #OFF 2,048
#4 06 #OFF #OFF 2,048
#5 MC31 #OFF #OFF 2,048

2.4 Experimental Results
The BIST configurations were developed using adeugate-level models of the Virtex-

5 CLB. The SliceL and SliceM were modeled sepéydte fault simulation. For both SliceL

26

and SliceM, the BIST configurations and their agsed fault coverage were first optimized
using these gate-level models. The single stuchad-level fault coverage for SliceL and
SliceM BIST configurations obtained from fault silations of these models are summarized in
Figure 2.5 and Figure 2.7, respectively.

The BIST configurations were then verified on Vg LX30T and SX35T devices via
configuration memory bit fault injection. UsingetHault injection approach, configuration
memory bits can be manipulated to emulate phys$adts in the FPGA core including shorts
and opens in programmable interconnect as wellnagsa any fault in logic resources controlled
by a configuration memory bit. Configuration bdsntrolling the SliceLs and SliceMs were
injected with faults and the BIST configurationsrev@xecuted with the faulty configuration on
the device. The BIST results of the faulty confegion are retrieved via partial configuration
memory readback. The fault injection results siioat the 17 BIST configurations cumulatively
detect every configuration memory bit fault in gv€LB. The results of the fault injection for
SliceL BIST are shown in Figure 2.6. The similardf the fault injection results and fault
simulation results serve as a good indicator ofaitmuracy of the gate-level fault models, which
include every stuck-at fault in the CLB (includisgnfiguration memory bits). Figure 2.7 and
Figure 2.8 summarize the fault simulation resuftd ¢he results of configuration memory bit
fault injection, respectively, for the SliceM BlIfbnfigurations. It should be noted that three of
the SliceM faults are detected by SliceL configiorz.

There are two methods by which the results of ttf®TBsequence can be obtained. First,
the single bit pass/fail result can be determinedtire TDO output of the ORA iterative-OR
chain. However, the location of failing BUTs catbe determined using this method. Another

option is to perform a partial configuration memoeadback to determine the contents of each

27

ORA at the end of the BIST. By this method, theaton of the failing BUT(s) can be easily
determined with diagnostic resolution of LUT orpfflop. To minimize test time and achieve
maximum fault resolution, a combination of the tmethods is used. First, the pass/fail status
of the BIST is determined by observing TDO. If Tp@sents a logic 1 regardless of the state
of TDI, at least one ORA has observed a failurarti® configuration memory readback can
then be used to obtain the locations of the failDiA(s) and, thereby, determine the location(s)
of the faulty BUT(S).

We have developed two C programs that automaticgiyerate the 17 BIST
configurations for all Virtex-5 LX, LXT, SXT, andXT devices. Table 2.4 summarizes the total
download file size for the 17 BIST configuratiotise maximum BIST clock frequency, and the
total number of BIST clock cycles for full chip teoon several Virtex-5 devices. The total full
chip test time for serial and parallel configuratimterfaces is summarized in Figure 2.9 and
Figure 2.10. The calculated test time assumes MHD BIST clock for all configurations and
devices. However, on most devices, the BIST comfitions can operate at higher clock

frequencies.

28

Faults Detected

Faults Detected

3000

2500

I | ndividual FC
—o— Cumulative FC

2000

1500 -

1000 -

500

100

inn

Conflguratlon #

Figure 2.5: SliceL fault coverage (simulation)

600

500

400 -

4

2 5

Configuration #

4

Figure 2.6: SliceL fault coverage (fault injectjon

29

Faults Detected

Faults Detected

8000
7000
6000
5000
4000
3000
2000
1000

/ + 90
+ 80
+ 70
-+ 60
+ 50
+ 40
+ 30
+ 20
+ 10
1 1 1 1 -0
1 2 3 4

Configuration #

Figure 2.7: SliceM fault coverage (simulation)

—— 100

80
70

/

60
50

30
20

10

1 2 3

Configuration #

4 5

Figure 2.8: SliceM fault coverage (fault injectjon

30

2000

1800 - B Readback
1600 O Execution
@ Configuration
1400 -+
Téﬂ_zoo 1
EETIOOO
= 800
600
400 -
- j
O |
A A A A 4\ A
‘19 R S > B S £
FFFF Y s &S
Figure 2.9: Boundary Scan interface test time
35
B Readback
30 | O Execution
o5 || B Configuration
w
£ 20
(]
£ 15 -
|_
10 -
5 i
0 1 I I

Figure 2.10: 32-bit parallel interface test time

31

In early FPGAs, all LUTs were able to function asai RAMs such that the first BIST
configuration applied typically tested the LUTs tire RAM mode of operation. Using this
approach, the first BIST configuration was abledétect most faults that could affect the LUT
[2]. When combined with a simultaneous test of ftheeflop, the first BIST configuration was
able to achieve around 80% fault coverage. A sintharacteristic can be observed in the first
SliceM BIST configuration in Figure 2.7, which aewes greater than 70% fault coverage.
However, current FPGAS, such as Virtex-4 and Videximit the number of LUTs that can
function as small RAMs. Therefore, two BIST configtions are required (with alternate XOR
and XNOR programming) to detect most of the faultall LUTs. This can be observed in
Figure 2.5, where the cumulative fault coveragerathe first configuration reaches 51% and
after two configurations exceeds 92%.

Table 2.4: CLB BIST totals (17 configurations)

Total ConFigure Max. BIST
Device Size (kB) Clock Freg. BIST CCs
LX20T 1,762 90.7 MHz 59,392
LX30T 2,630 74.0 MHz 59,392
LX50T 3,930 74.4 MHz 59,392
LX85T 6,265 58.2 MHz 59,392
LX110T 8,837 58.0 MHz 59,392
SX35T 3,378 59.2 MHz 59,392
SX50T 5,041 61.1 MHz 59,392
SX95T 8,818 44.7 MHz 59,392

2.5 Summary And Conclusions

A BIST approach for testing the CLBs in Virtex-5GRs was presented. A total of 17
test configurations were developed to achieve 1G@@tk-at fault coverage in every CLB.
Twelve of these configurations pseudo-exhaustivesf every SliceL and every SliceM in the

SliceL mode. Another five configurations test gv&liceM in their RAM and shift register

32

modes of operation. The BIST configurations weegeloped using accurate gate-level fault
models of the CLB and verified using configuratimemory bit fault injection. A novel ORA
design provides a single bit pass/fail result facte BIST sequence and is independent of the
configuration interface. Optional partial configtion memory readback provides optimal
diagnostic resolution for fault-tolerant applicasowhen the pass/fail output indicates failures.
As a result, the BIST approach is applicable to lellels of FPGA testing including
manufacturing testing and in-system testing foltfealerant applications. We modified SliceL
BIST to support FXT devices by creating two cirecutemparison chains across rows directly
above the PowerPC core because CLBs above the PGwWeve no carry-in routing. We have
also applied this approach to Virtex-4 devices Itesyin 20 and 5 BIST configurations for
SliceL and SliceM tests, respectively, compare®@lototal configurations for Virtex-4 CLBs
reported in [8]. Our Virtex-4 CLB BIST also inclesl the new ORA design for single bit

pass/fail indication.

2.6 Acknowledgements

The contents of this chapter were published under title “Built-In Self-Test of
Configurable Logic Blocks in Virtex-5 FPGAs” iRroceedings of the #1IEEE Southeast
Symposium on System Thed2909, pp. 230-234. Prof. Charles Stroud is awthor on the
paper. The design of the ORA presented in thiep#pprotected by U.S. Provisional Patent
#61/196,964, 2008, “Output Response Analyzer fat&np-Level Test of Field Programmable
Gate Arrays”. The student author and committeér ¢haf. Charles Stroud are co-applicants on
the provisional patent. A majority of the actuasearch and the writing of the published paper
represents the efforts of the primary student autmd not collaborators, and the research

represents work performed while in the graduatganm at Auburn University.

33

2.7 References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

L-T Wang, C. Stroud, and N. Toub&ystem-on-Chip Test Architectureglorgan
Kaufmann, 2007.

C. Stroud, S. Konala, P. Chen, and M. AbramoviBulift-in self-test of logic blocks in
FPGASs,”Proc. IEEE VLSI Test Sympp.387-392, 1996.

M. Abramovici and C. Stroud, “BIST-based test amagdosis of FPGA logic blocks,”
IEEE Trans. on VLSI Systool. 9, no. 1, pp. 159-172, 2001.

S. Toutounchi and A. Lai, “FPGA test and coveraderdc. IEEE Int. Test Confpp.
599-607, 2002.

M. Abramovici, C. Stroud, and J. Emmert, “OnlineSBl and BIST-based diagnosis of
FPGA logic blocks,”IEEE Trans. on Very Large Scale Integr. (VLSI) Syatl.12,
no.12, pp. 1284-1294, 2004.

C. Stroud, K. Leach, and T. Slaughter, “BIST fofitét 4000 and Spartan series FPGASs:
a case study,Proc. IEEE Int. Test Confpp. 1258-1267, 2003.

C. Stroud, J. Harris, S. Garimella, and J. SunwBailt-in self-test for system-on-chip: a
case study,Proc. IEEE Int. Test Confpp. 837-846, 2004.

S. Dhingra, D. Milton, and C. Stroud, “BIST for iogand memory resources in Virtex-4
FPGASs,”Proc. IEEE North Atlantic Test Workshapp. 19-27, 2006.

S. Dhingra, S. Garimella, A. Newalker, and C. StkotBuilt-in self-test of Virtex and
Spartan Il FPGAs using partial reconfiguratiorfroc. IEEE North Atlantic Test
Workshop pp. 7-14, 2005.

C. Stroud and S. Garimella, “BIST and diagnosisnoitiple embedded cores in SoCs,”
Proc. Int. Conf. on Embedded Systems and Applicgtpp. 130-136, 2005.

Virtex-5 FPGA User GuiddJG190 (v 4.2), Xilinx Inc., San Jose, CA, May 800

S. Gupta, J. Rajski, and J. Tyszer, “Test patteemegation based on arithmetic
operations,’Proc. IEEE Int. Conf. on Computer-Aided Desigp. 117-124, 1994.

A. van de GoorTesting Semiconductor Memories Theory and Pracfioan Wiley and
Sons, 1991.

34

Chapter Three. Built-In Self-Test of Programmable Input/Output Tilesin Virtex-5 FPGAs

A Built-In Self-Test (BIST) approach is presenteor fthe logic resources in the
programmable input/output (I/O) tiles in Virtex-ell programmable gate arrays (FPGASs). A
total of 15 BIST configurations were developedédstthe I/O cell programmable logic resources
in all modes of operation. The approach utilizedidated 1/O buffer bypass routing in the I/O
tile such that the BIST is package independentagmdicable to all levels of testing from wafer-
level to system-level. The approach offers condfoBIST execution and maximal diagnostic
resolution of faulty I/O tiles for device and pagkaindependent testing. Either the Boundary
Scan interface or a simple system-level interfaeg tme used for BIST execution, control, and
diagnosis independent of the configuration intexfac Experimental results are presented

including fault detection capabilities.

3.1 Introduction

The input/output (I/0O) buffers of JTAG compliantvilges are typically tested using the
Boundary Scan EXTEST feature [1]. However, fietkdgrammable gate arrays (FPGAs) have a
significant amount of configurable logic resouressociated with the 1/O buffers that cannot be
tested in this manner. These configurable logioueces typically include multiplexers and flip-
flops/latches, as illustrated in Figure 3.1, fopmaving system timing specifications such as set-
up and hold times as well as clock-to-output del&dditional logic resources are included to
support single data rate (SDR) and double data(EdDdR) transmission and reception as well as

for serialization/de-serialization (SerDes) modéseration. In Xilinx Virtex-5 FPGAs, for

35

example, there are at least 32 multiplexers andlig-flops included in the configurable logic
associated with each 1/0O cell to support variousd@soof operation. The Boundary Scan
INTEST feature can be used to test the configurkalgie resources in an I/O cell [1]. However,
the INTEST feature is supported by few FPGA manufacs. While there has been some prior
work in testing I/O cells [2][3][4][5], previous wk in Built-In Self-Test (BIST) for FPGAs has
largely overlooked 1/O cells and their associategld resources. However, it has been observed
that the programmable logic in unused or un-bonid@dcells is sometimes used by FPGA
synthesis tools for implementing system logic fiuoms [5].

The work presented in this chapter builds primaoitythe prior work in [5], in which an
I/O cell BIST architecture was proposed and impletae for Atmel AT40K series FPGAs and
Atmel AT94K series programmable system-on-a-chipQ)5[6]. However, this chapter offers
several improvements over that previous BIST apgrodn addition, this chapter describes the
actual implementation, operation, and verificatndBIST configurations developed for Virtex-5
FPGAs [7] whose I/O cells are much more complex tise found in the AT40K and AT94K
devices [6]. The BIST configurations presentecehest the full functionality of logic resources
included in the Virtex-5 1/O cells including inpldgic (ILOGIC), output logic (OLOGIC), as
well as input and output Serializer/Deserializezr(¥es) operation. The chapter begins with an
overview of the prior work in 1/0O cell BIST in Séot 3.2, followed in Section 3.3 by an
overview of Virtex-5 I/O tiles. The overall BISTpproach is described in Section 3.4, and
details of the specific BIST configurations arecdissed for Logic and SerDes modes in Sections
3.5 and 3.6, respectively. We present experimeagallts from actual implementation in Virtex-
5 FPGAs in Section 3.7. Section 3.8 discusses d Blfproach for the configurable 1/0 buffers

before the summary and conclusion in Section 3.9.

36

Boundaryi
Scan!
Access!

Tri-state Contro '

to/from interna
configurable<
routing resource

Figure 3.1: Simplified programmable I/O cell

3.2 Prior Work

There has been limited prior work in the area ating 1/0 cells in, or applicable to,
FPGAs [2] [3] [4] [5]- In [5], a system-level BISarchitecture is presented for the 1/O cells of
Atmel FPGAs. The overall BIST approach was simtlarthat used for configurable logic
resources in the FPGA core [8]. The BIST architectin [5] consists of a single TPG
implemented in configurable logic blocks (CLBs) song test vectors to the 1/0 cells under test.
A single TPG was implemented under the assumphiahibternal FPGA resources had already
been tested and found to be fault-free. The I/Is eander test are identically configured with
bidirectional 1/0 buffers such that the output @sges are sent back into the FPGA internal
resources. However, for in-system testing, theggimes that all connecting devices be tri-stated
during testing. The output responses of the 1/ e monitored by CLBs configured as
comparison-based output response analyzers (ORWAA)ile presenting a general architecture
applicable to any FPGA or configurable SoC withFR®GA core and bidirectional 1/0 buffers,
[5] implemented 27 BIST configurations applicabte the Atmel AT94K SoC and AT40K

FPGA only.

37

3.3 Overview of Virtex-51/0 Tiles

The 1/0O cells in Virtex-5 FPGAs include an outpagic block (OLOGIC), input logic
block (ILOGIC), I/0 delay block, and a bidirectidi&O buffer, as illustrated in Figure 3.2 [7]
The number of I/O cells in Virtex-5 ranges from 3601,200 depending on the size of the

particular FPGA.

Master 1/0 Celli

Device——>{ Logic

To/From Input :
Device—> Logic I
Resource 1 | (ILOGIC) |q d , :
: j_ NS

From i Output ’; :
Device—>{ Logic l
Resource : | (OLOGIC) |, :
TolFronm Input :
Device—— Logic :
Resource ' | (ILOGIC) |« <|I | i
: ’ |

From i Output [: i

Resource (OLOGIC)

Slave 1/O Cell,

Figure 3.2: Virtex-5 programmable 1/O tile

Each OLOGIC includes registers for improving systefock-to-output timing and
supporting SDR and DDR transmission of data. Th®GIC can also perform parallel-to-serial
conversion of output data for widths between 2 @Gufits when operating in SerDes mode. The
ILOGIC includes registers for improving system gptand hold times and supporting SDR and
DDR reception of data. It can also perform semaparallel conversion of input data for widths

between 2 and 6-bits when operating in SerDes mdde ILOGIC also incorporates a Bitslip

38

sub-module for synchronizing serial interfaces timude a training pattern. Invoking the
Bitslip input re-orders the data on the paralleipaotis of the input logic block in a barrel-shifter
operation [7]. In Virtex-5 FPGAs, two I/O cellseagrouped to form an 1/O tile, as illustrated in
Figure 3.2. Each 1/O tile includes dedicated shoftiting to support expanded SerDes data
widths. In master/slave mode, two 1/O cells in saene I/O tile are connected via the dedicated
shift routing to support data widths of 7, 8 andnlf3 [7]. Each I/O cell also includes dedicated
routing (also shown in Figure 3.2) directly fromet®LOGIC to the ILOGIC that bypasses the

I/O buffer.

3.4 Overview of BIST Architecture

Our BIST approach for I/O tiles is similar to othBtST approaches that we have
developed for testing CLBs in Virtex-4 and Virtext®GAs [9]. A set of deterministic test
patterns is stored in 36-kbit block random accessmaries (RAMSs) in the FPGA fabric. The
outputs of the block RAMs are connected directlyhte inputs of alternating rows of I/O tiles
under test. One block RAM is configured for everyows of 1/O tiles under test. One digital
signal processor (DSP) per block RAM is configueeda counter to sequentially address the
block RAM. Collectively, one 36-kbit block RAM arahe DSP form the TPG for every /O tile
BIST configuration. However, the block RAM conterire modified for some configurations to
target specific resources/functions under teste ativantage of configuring multiple TPGs is
twofold: first, multiple TPGs reduce loading, thieyemaximizing the BIST execution frequency
in large devices, and, secondly, configuring migtiplentical TPGs eliminates the assumption
that the TPG logic resources are fault-free. Aawltf affecting the behavior of a TPG will be
detected by the comparison-based ORAs monitoriad/@ cells at the boundaries of any faulty

and fault-free TPG.

39

BIST of 1/O cells is well suited for circular compson-based ORAs since many identical
I/O cells are tested simultaneously. The outptissagh 1/0O cell under test are monitored by two
ORAs and compared with the outputs of two othentidally configured 1/O cells in an adjacent
row, as shown in Figure 3.3. To complete the ¢acoomparison, 1/0 cells in the top row of the

test area are compared with 1/0 cells under tesstarbottom row of the test area.

TPG

TPG

&

|

Figure 3.3: Column oriented circular comparison

o
OO
S T Tt

The circular comparison approach does not suffanfaliasing effects as long as all of
the BUTs being compared do not fail identically atdthe same time. Furthermore, circular
comparison improves diagnostic resolution [4]. Aumtput response mismatch between two
identically configured I/O cell outputs is latched a logic 0 in the ORA flip-flop for the
duration of the test session. Otherwise, logis fetained in the ORA and is interpreted as a
passing result at the conclusion of the BIST segeienin previous implementations of the
comparison-based ORA, the dedicated carry logicranting resources in the ORA CLBs were

un-used [4]. However, in all BIST configuratiodsat we have developed for Virtex-5 FPGAS,

40

these resources are utilized to form an iteratiRdaDain of every ORA in the test area. In each
ORA, a passing result of logic 1 selects the Carrinput to the CLB, which is the Pass/Falil
result of an adjacent ORA. The carry-in input loé¢ tfirst MUX in the iterative-OR chain is
connected to a system input, with the carry-ouheflast ORA connected to a system output. If
any ORA in the chain records a failure (e.g. mispgta logic O on the output of that ORA will

select a logic 1 as the input to the carry MUXillastrated in Figure 3.4.

ORA\
carry-out
BUT; outpug 70 1\
BUT outpug 1
BUT; outpuy, D ORA
BUT outpuy carry-out

Figure 3.4: Virtex-5 equivalent ORA architecture

If no failure is observed in the ORA, the carryiiput is propagated through the CLB. If
no ORAs in the iterative-OR chain observe failutég, carry-in input to the first ORA in the
chain will propagate through every ORA slice to tlaery-out output of the final ORA such that
an overall pass/fail result is obtained withoutdiag back the configuration memory to obtain
the contents of the ORA flip-flops. By togglinget®R-chain input and observing the OR-chain
output at the end of each BIST sequence, the ityegfrthe iterative OR-chain is verified. If the
output of the iterative OR-chain indicates failuresre detected, the contents of the ORAs can
be retrieved via partial configuration memory reaclbfor precise fault diagnosis.

Another important difference between our I/O tilkSB architecture and the prior work is
in the configuration of the 1/O tiles under teftrevious approaches have relied on bidirectional
I/0O buffers to provide the return path for testtgats exiting the output logic and returning to the

ORAs via input logic [5] [10]. However, the reli@mon bi-directionally configured 1/0 buffers

41

severely limits the applicability of this type of&I for in-system testing. With every 1/0O buffer
configured in the path of the logic under test,reguired that all connecting devices be tri-stated
during in-system testing. Connecting passive @syicsuch as termination resistors or light
emitting diodes (LEDSs), introduce another probldantes these devices cannot be disconnected
or tristated during in-system tests. In [9], theth@rs observed that, at certain frequencies, LEDs
connected to I/O buffers under test caused the adsgn ORAs to erroneously report failures
for otherwise fault-free 1/O tiles. These failumesre observed at frequencies as low as 325 kHz
[9], which is unacceptable for an at-speed tesheflogic resources. As a result, the generality
of the BIST is compromised. Fortunately, the Ii@stin Virtex-4 and Virtex-5 FPGAs include
dedicated routing from the OLOGIC to the ILOGICttbgpasses the 1/O buffer [7]. Using this
feedback routing instead of the I/O buffer mearad tio signals from the FPGA under test can
reach, and therefore be influenced by, externaicdsy Furthermore, bypassing the 1/O buffer
does not sacrifice fault coverage in the 1/O tdgit resources. With the 1/O buffers removed
from all tests for logic resources, these tests bwgpplied without concern for the external test
environment, thus making our approach applicablltevels of FPGA testing.

The obvious disadvantage of this approach is thdbés not concurrently test the I/O
buffer. However, we have developed a stand-aldisd Birchitecture for the 1/O buffers that is
applicable to device and wafer-level testing. Tdmishitecture tests the programmable analog
features of the 1/0O buffers in every bidirectionadde of operation. Additionally, the Boundary
Scan EXTEST feature may be used for in-system tégtse 1/0O buffers in their system mode of

operation.

42

3.5 Configurationsfor 1/0 Logic M odes

Six test configurations are required to fully teke I/O tile logic resource in all
ILOGIC/OLOGIC modes of operation. The I/O delaydute is concurrently tested in these I/O
Logic mode tests in two of three modes of operatiBaedback routing from the OLOGIC to the
ILOGIC has two possible routes: one through the digday module and one dedicated route
which bypasses the 1/0O delay module. The routauiin the I/O delay module allows for testing
of the output delay functionality in all supportddlay modes (fixed delay, variable delay, and
default). However, testing delay of input and aitgignals simultaneously is not possible
without configuring the I/O buffers in bidirectiodnenode. Three of the six 1/O logic BIST
configurations test the DDR transmit and receivel@soof operation, including, in the OLOGIC,
opposite-edge, same-edge, and same-edge pipeliogaitomodes. The fourth and fifth
configurations test the flip-flop and latch functadity of the primary registers. In the sixth and
final configuration, the combinatorial (un-regigtdy path through the 1/O tile logic resources is
tested. Programmable initialization values, sséfrevalues, and synchronous/ asynchronous
reset/toggle inputs are concurrently tested. Timabrer of clock cycles for BIST execution is

2048 for all 1/0 Logic BIST configurations.

3.6 Configurationsfor 1/0 SerDes Modes

A total of nine configurations are required to yulest the 1/O tile logic resource in the
SerDes modes of operation. Six of these configurattest the 1/0O SerDes logic configured for
data widths of 2, 3, 4, 5, and 6-bits. Two confaions are included for the 4-bit data width to
test the programmable active level on the tri-siafuts of the OLOGIC. Another three
configurations test the master/slave SerDes manfeddta widths of 7, 8, and 10-bits. Two of

the nine configurations test the SerDes in DDR mudléh the other seven configurations testing

43

SDR modes of operation. SerDes operations redquieclocks: a high speed clock for serial
data and a divided clock for the FPGA fabric. Hmeount of clock division is an integer equal
to the data width when testing SDR modes, and lisdiahe data width when testing DDR
modes. We use regional clock buffers with integplatlock division, called BUFRs [7], to
provide the divided clock for the ORAs and TPGsSierDes configurations. The BUFR has
programmable clock division, from 1 to 8, and BYFRA®odes. There are also clear (CLR) and
clock enable (CE) inputs to the BUFR. We connket€LR and CE inputs of every BUFR to
the TPGs to achieve a simultaneous test of the BU&RI the I/O SerDes logic. Concurrent
testing of the BUFRs is beneficial since they wolikdly be used in conjunction with SerDes.
Since each BUFR clocks only one adjacent clockorega faulty BUFR will cause failures in the
ORAs along at least one boundary of an adjacekalegion. As with the I/O tiles under test, a
faulty BUFR can only escape detection if every BURRhe test area fails identically and on the
same clock cycle(s).

One addition to the BIST architecture for SerDeglentesting stems from the need for
synchronization of the serial bit streams beforeceting the BIST sequence. In SerDes mode,
the positioning of deserialized data on the pdraltde of the OLOGIC is initially indeterminate.
Due to the nature of comparison-based ORAs, datheparallel outputs of every I/O cell under
test must be synchronized. To ensure identicgnaient of deserialized test patterns, the
SerDes BIST architecture adds a Bitslip synchronceeuit, illustrated in Figure 3.5. Upon
download of any SerDes mode configuration, the OR#ssheld disabled and the TPGs are held
in reset. A training pattern, stored in the progmaable set/reset values of the block RAM output
registers, is presented to the inputs of the I/{s emder test. The training pattern positions a

single zero in a field of ones on the parallel safethe output logic block. The Bitslip

44

synchronizer circuit monitors the Q2 parallel lit@ butput and one-shots the Bitslip control line
until the zero is shifted into the Q2 position. &sesult of the clock division and Bitslip latency
synchronization will be obtained in no more thaw-4N clock cycles, wherd\ is the SerDes
data width for the configuration. Each I/O celshadedicated Bitslip synchronizer circuit that
will continue to one-shot the Bitslip control linmtil the training pattern is positioned with the
single zero at the Q2 output, thereby identicallgreng the test patterns for the comparison-
based ORAs. The synchronizer is then disableth&y PG during the BIST execution.

from Synchronizer Enable

ISERDES | to ISERDES
‘e
Q2 —x Y | Z I

> —D> —I>
|_ ' i — | TPG Bitslip
CLKDIV test pattern

Figure 3.5: Bitslip synchronizer circuit

For SerDes configurations, the number of BIST clogkles is equal to 1024 times the
amount of clock division used during that configioa plus the worst case synchronization time
for the data width being tested. It should alsobeed that the number of BIST clock cycles is

independent of the size of the array, and indepgrafehe number of 1/0O cells under test.

3.7 Experimental Results

All of the BIST configurations are automaticallyngeated for any size and family of
Virtex-5 FPGAs by a set of ANSI C programs thathvese developed. Two programs are used
to generate the six configurations for the 1/0O ¢ogiodes of operation described in Section 3.5.
Another set of two programs generates all ninehef ¢onfigurations to test the 1/0 SerDes
modes of operation described in Section 3.6. @sir program in each set generates a template

BIST configuration in Xilinx Description LanguagX@L) and then converts the template to

45

Native Circuit Description (NCD) format using Xikis conversion toolXDL.exe The BIST
template is routed by Xilinx’s place and route w@ite, PAR.exe before conversion back to
XDL format. Our second program modifies the rourddlL file to produce the various BIST
configurations, and converts those files back tdN@mat. The final download configuration
files are created using Xilinx’s bitstream genenatsoftwareBitGen.exe

Table 3.1 summarizes the total size of the 15 IISTBconfiguration files, the maximum
BIST clock frequency, and the total number of Bi@dck cycles for all Virtex-5 LXT and SXT
devices. Note that the total number of BIST clankcles is device-independent due to
concurrent testing of 1/0 cells by the BIST arctitee. The totals shown in Table 3.1 were used
to calculate the best- and worst-case total testdj which are dependent on the configuration
interface. The total test time for Boundary Scad &electMap 32-bit parallel configuration
interfaces are shown in Figure 3.6 and Figure &%pectively. A 50 MHz BIST clock is
assumed for all configurations and all devices. addack time is for partial configuration
memory readback of the ORA contents after evenyfigoration for diagnosis of failing BIST
configurations. However, when diagnosis is nounegl, or there are no failures, the single bit
pass/fail result can be determined via the ORAaitee-OR chain. To minimize the test time
and achieve maximum fault resolution, a combinatdrihe two methods is used. First, the
pass/fail status of the BIST is determined by oliagrthe output of the ORA iterative-OR
chain. If the OR chain indicates failures, partiahfiguration memory readback can be used to
obtain the locations of the failing ORA(s) and,rit®y, determine the location(s) of the failing

I/0O Tile(s).

46

1400

1200 B Readback
O Execution
1000 m Configuration
)
E 800
)
£ 600
|_
400 ~
200 -
O]
B O)
VMNTNTNT FEEGE 99 9
Figure 3.6: 50 MHz Boundary Scan configuratiorifdace test time
25
B Readback
20— O Execution

Time (ms)

@ Configuration

Figure 3.7: 100 MHz 32-bit parallel configuratimrierface test time

47

Table 3.1: 1/O tile BIST totals (15 configurations

Total Config. Max. BIST BIST

Device Size (kB) Clock Freq. CCs
LX20T 862 102.8 MHz 47112
LX30T 1482 89.38 MHz 47112
LX50T 2186 102.4 MHz 47112
LX85T 2726 73.96 MHz 47112
LX110T 3641 74.40 MHz 47112
LX155T 4181 66.10 MHz 47112
LX220T 4706 58.75 MHz 47112
LX330T 6985 56.17 MHz 47112
SX35T 1740 91.19 MHz 47112
SX50T 2511 75.17 MHz 47112
SX85T 3923 69.59 MHz 47112

3.8 BIST for Programmable I/O buffers

In addition to the BIST approach presented forl&gic and SerDes modes of operation,
we have developed a stand-alone BIST approachh&t/©O buffers in FPGAs. The approach
tests the I/O buffers in all bidirectional modes agferation and associated I/0O standards,
requiring 77 configurations for Virtex-5 FPGAs. &hpproach is directly applicable to device
and wafer-level testing, and is applicable to isteyn testing with some customization of
configurations. The bidirectional buffers configdrduring in-system tests can be expected to
have different load characteristics in the systdepending on the way they are terminated and
whether they are normally an input, output, or feidiional port during system operation. For
example, we would expect the I/O buffers that amenected to large external loads to fail if they
are tested at a high frequency. For in-systenminggsall of the 1/O buffers can be tested at a
single low frequency that is guaranteed to be cefiitly slow to allow fault-free I/O buffers to

pass. However, this may result in faulty 1/0 bgfe@scaping detection in the case of delay

48

faults. Alternatively, the 1/O buffers can be goed together by loading characteristics to be

tested independently and at different frequencies.

3.9 Conclusions

A BIST approach for testing the programmable laggources of I/O cells in FPGAs was
presented including the actual development for iamglementation in Xilinx Virtex-5 FPGAs.
Six BIST configurations were developed to testitiput and output logic resources in ILOGIC
and OLOGIC modes. Another nine configurations tieetSerDes functionality of the 1/0O logic
resources for all supported data widths. By tegstie I/O buffers separately, the logic resources
in the 1/O tiles may be tested in-system in all e®df operation. The BIST configurations are
package independent because they can test I/QOntilledooth bonded and unbonded 1/O buffers.
This is important since FPGA synthesis tools somesi use 1/0 logic and routing resources to
implement the system function. All of these BIS®nfigurations have been generated,
downloaded, and verified on LX30T, LX50T, SX35Tda®X50T FPGAs. Due to similarities in
architectures, features, and operational modefef/O cells in Xilinx Virtex-4 and Virtex-5
FPGAs, we have also applied the BIST approach ibestin this chapter to Virtex-4 FPGAs
where a total of five 1/0 Logic, nine 1/0O SerDesda76 1/O buffer BIST configurations were
developed, downloaded, and verified on LX60, SX8% FX12 FPGAs. The iterative-OR ORA
provides a simple interface for BIST results retalethat is very fast relative to partial
configuration memory readback and is independeth@iconfiguration interface. However, for
fault-tolerant applications, maximal diagnosticalesion of faulty 1/O tiles can still be obtained
via partial configuration memory readback. The Bl&nfigurations can detect faults in the

configuration memory bits associated with 1/0O fibgic and routing excluding the 1/O buffer.

49

Clocking at system speeds during testing couldni@tdy improve parametric fault coverage in

the I/O delay element.

3.10 Acknowledgements

The contents of this chapter were published under title “Built-In Self-Test of
Programmable Input/Output Tiles in Virtex-5 FPGAsProceedings of the &EEE Southeast
Symposium on System Thead2909, pp. 235-239. Prof. Charles Stroud is awthor on the
paper. Prior to publication, a preliminary versminthe paper was presented at the 2008 IEEE
North Atlantic Test Workshop. The proceedingshef tEEE North Atlantic Test Workshop are
not published. As of this writing, a paper detalithe 1/0O Buffer BIST approach (describe
briefly in Section 3.8) is pending publication undiee title “On System-Level Use of BIST for
Programmable Input/Output Buffers in FPGAs,”Rroc. of the 2010 IEEE Southeast Regional
Conference A majority of the actual research and the wgtof the published paper presented
in this chapter represents the efforts of the piynsaudent author and not collaborators, and the

research represents work performed while in thdugate program at Auburn University.

3.11 References

[1] IEEE Standard Test Access Port and Boundary-Scamitecture IEEE Std 1149.1-
2001, 2001.

[2] C. Jia and L. Milor, “A BIST Solution for the Tesf I/O Speed,’Proc. IEEE Int. Test
Conf, pp. 1023-1030, 2003.

[3] L. Zhao, D. Walker and F. Lombardi, “IDDQ Testing lmput/Output Resources of
SRAM-Based FPGAs,Proc. Asian Test Symmpp. 375-380, 1999.

[4] L-T Wang, C. Stroud, and N. Toub&ystem-on-Chip Test Architecturesglorgan
Kaufmann, 2007.

[5] S. Vemula and C. Stroud, “Built-In Self-Test foroBrammable 1/O Buffers in FPGAs
and SoCs"Proc. IEEE Southeastern Symp. on System Thppry34-538, 2006.

50

[6] AT94K Series Field Programmable System Level latedrCircuit Data Sheet, Atmel
Corp., 2001.

[7] Virtex-5 FPGA User GuiddJG190 (v 4.2), Xilinx Inc., San Jose, CA, May 800

[8] D. Milton, S. Dhingra, and C. Stroud, “Embeddeddessor Based Built-In Self-Test and
Diagnosis of Logic and Memory Resources in FPGASdc. Int. Conf. on Embedded
Systems and Applicationgp. 87-93, 2006.

[9] L. Lerner, S. Vemula, and C. Stroud, “System-Le®ST for Programmable I/O Buffers
in FPGAs and SoCsProc. IEEE North Atlantic Test Workshagp. 1-9, 2006.

[10] L. Lerner, “Built-In Self-Test for Input/Output Bk in Field Programmable Gate
Arrays,” M.S. thesis, Dept. of Elect. and ComputgE Auburn Univ., Auburn, AL, Dec.
2007.

51

Chapter Four. Built-In Self-Test of SEU Detection Coresin Virtex-4 and Virtex-5 FPGAs

A Built-In Self-Test (BIST) approach is presented the Internal Configuration Access
Port (ICAP) and Frame Error Correcting Code (EGHg)d cores embedded in Xilinx Virtex-4
and Virtex-5 Field Programmable Gate Arrays (FPGA$he Frame ECC logic facilitates the
detection of Single Event Upsets (SEUs) in the FP&figuration memory. The ICAP
provides read and write access to the configuratmmory from within the FPGA fabric,
enabling embedded dynamic reconfiguration and faldtant applications with memory
scrubbing. Therefore, the fault-free operatioringf ICAP and Frame ECC logic is critical for
space and fault-tolerant applications that requie¢ection and repair of SEUs. The BIST
approach presented is applicable to all Virtex-d ¥intex-5 FPGAs for both manufacturing and
system-level testing of the ICAP and Frame ECCdogdihe actual implementation of the BIST

approach in Virtex-4 and Virtex-5 FPGAs and asded&xperimental results are discussed.

4.1 Introduction
The increased use of Field Programmable Gate A(RYSAS) for implementing digital

logic applications over the past two decades has lbecompanied by increased concern about
radiation effects; in particular, the effects ofi@e Event Upsets (SEUs). In addition to memory
elements, such as flip-flops and random access mesn(RAMS), the contents of the static
random access memory (SRAM) used as the configaratiemory to establish the overall
application performed by the FPGA is also suscéptitn SEUs. An SEU induced bit-flip in the
SRAM configuration memory can alter the functiotyalof the FPGA. This makes SEUs of

significantly more concern in FPGAs than in tramhil application specific integrated circuits

52

(ASICs). Radiation experiments indicate the SEté ra FPGAs increased by a factor of 4.74
when design rules decreased from 600nm to 350nt aitorresponding reduction in Vcc
supply voltage from 5V to 3.3V [1]. Xilinx Virted- FPGAs are reported to have SEU FIT
(failures in 18 hours) rates of 246 per million bits of configiuwat memory, and only 151 in
Virtex-5 FPGASs [2]. This reduction in SEU FIT rat®m Virtex-4 to Virtex-5 indicates that
Xilinx is designing FPGA configuration memories b@ more robust, as suggested in [3].
However, the largest FPGAs currently have configonamemories with up to 160 million bits
[4]. As a result, some recent FPGAs, like Virtexdd Virtex-5, have incorporated additional
logic that enables the detection of SEUs in thdigaration memory. This logic can be used in
conjunction with user-defined circuitry in the FPQAre to correct erroneous configuration
memory bits that result from SEUs [5]. Approacfeson-line SEU detection and correction for
Virtex-4 FPGAs have been proposed in [5] and [@] Bor Virtex-5 FPGAs in [6] and [7]. All of
these approaches assume that the embedded spetiades for SEU detection, including the
Internal Configuration Access Port (ICAP) and Fraareor Correcting Code (ECC) modules,
are fault-free.

This chapter presents an off-line BIST approachctwhiompletely tests the internal
hardware mechanisms used for SEU detection aneatmn in the configuration memory of
Xilinx Virtex-4 and Virtex-5 FPGAs. Since the FPGA reconfigured for BIST only when
testing is desired or required, there is no arepesformance penalty incurred by the system
application(s) normally executed in the FPGA. TDimy overhead for the BIST approach is the
memory required to store one additional configoratised to configure the target device for
BIST. The BIST approach is VHDL-based and is agaflle to all production Virtex-4 and

Virtex-5 devices. Furthermore, the BIST can bedu®e both manufacturing and system-level

53

testing of the ICAP and Frame ECC logic. The chapegins with an overview of the ICAP
and Frame ECC circuitry included in Virtex-4 andrté€k-5 FPGAs in Section 4.2. The test
algorithm employed by the BIST approach to deteatlt§ in parity-based ECC circuits is
described in Section 4.3. Section 4.4 describesrtathod for generating and applying the test
patterns to the ICAP and Frame ECC logic as welth@smethod used for output response
analysis. Section 4.5 describes the actual impkatien of the BIST approach in the fabric of
Virtex-4 and Virtex-5 FPGAs along with experimentasults. The chapter is summarized and

concludes in Section 4.6.

4.2 Frame ECC and ICAP Logic

Like any RAM, the configuration memory of an FPG# partitioned into words, also
referred to asrames which represent the smallest addressable utiteo€onfiguration memory
for write and read operations. Virtex-4 and Viretrames consist of 1,312 bits [8]-[11]. Each
frame includes a 12-bit field of 11 Hamming bitsdasn overall parity bit for to provide the
potential for single error correction (SEC) as wadldouble error detection (DED) in the frame
data. The parity and Hamming bits are generatéeread to the FPGA by the configuration
bitstream generation software and are subsequebtiynloaded with the application specific
configuration data to the FPGA configuration memorfn overall cyclic redundancy check
(CRC) performed on the device during the downloadfies the integrity of configuration data
during download. However, system memory data stiltjgechange during the operation of the
FPGA, such as contents of block RAMs and look-upet (LUTS) used as distributed RAMSs,
are not covered by the overall parity and Hammiitg b

Virtex-4 and Virtex-5 FPGAs provide a specializedre; called Frame ECC, for

detection and identification of single-bit erromsdadetection of double-bit errors in the frame

54

data [9][11]. The Frame ECC primitive, illustratedFigure 4.1, has 11 syndrome outputs, an
error output, and syndrome valid output. Each tiheg a frame is read from the configuration
memory the Frame ECC module calculates the Hamiitsgas well as overall parity for the
frame data, and compares these bits with the Hambits and parity stored for that frame in the
configuration memory. Based on this comparisoa,Rrame ECC module produces indications
for no error, single-bit error, and double-bit eria addition to a syndrome indicating the
location of single-bit errors. System memory elatrentents (for example, block RAMs, LUT
RAMs, and flip-flops) are masked from the interparity and Hamming calculation by the
Frame ECC. The error codes for the Frame ECCuamensrized in Table 4.1.

Table 4.1: Frame ECC codes

Error Tvbe Condition
yp (when syndromevalid = 1)
No bit error Hamming match w/ no parity errgr

1-bit correctable error (SE€) Hamming mismatch w/ parity error
2-bit error detection (DED)Hamming mismatch w/ no parity erfor

A Hamming mismatch with an overall parity error icates that a single-bit correctable
error has occurred. In this case, the bit-wisduskee-OR of the stored Hamming code and the
regenerated Hamming code, which is called diledrome gives the location of the single-bit
error. A Hamming mismatch (non-zero syndrome) aadoverall parity error indicate a non-
correctable double-bit error has occurred. Indhge of a double-bit error, the frame data must
be repaired with data from a reliable external seur Single-bit errors in the configuration
memory can be repaired with additional user logiplemented in the FPGA fabric to flip the bit

in error as was done in [5], [6], and [7].

55

CLK
BUSY
_>—>

CLK_EN
—»

_ ICAP_OUT[31:0]
ICAP_IN[31:0]
I ICAP >

WRITE
—>

ERROR
—>

Frame |SYNDROME[11:0]
ECC .

SYNDROMEVALID
—>

Figure 4.1: Frame ECC and ICAP primitives

The SYNDROMEVALID output is asserted for one clanjfcle per frame during a frame
read operation to indicate that the SYNDROME andRBER outputs are valid for the current
frame [9][11]. The most significant bit of the SBIROME[11:0] bus is the overall parity error
indication. The ERROR output is asserted whemgleibit or double-bit error is detected. To
distinguish between single-bit correctable errard double-bit non-correctable errors, the user
must add logic to determine the result based osdbaarios in the last two entries in Table 4.1.

The ICAP provides access to status and controstergi as well as to the configuration
memory from the FPGA fabric [9][11]. The ICAP warlike the external SelectMAP
configuration interface except that it has sepaB2+it read and write buses, as opposed to a
bidirectional 32-bit bus. The maximum operatingginency of the ICAP is 100 MHz, and it
supports 8-bit, 16-bit, and 32-bit word sizes. ywevice includes two ICAPs. However, both
ports cannot be used simultaneously. A bit in atrob register is used to select whether the

upper or lower ICAP is the active port.

56

4.3 Test Algorithm

Hamming bits are parity calculated over a certaivsst of bits in the configuration frame
data. For example, the Hamming parity matrix iml€a4.2 can be extended to any number of
data bits (D#) where the Hamming bits (H#) occulpg power-of-2 number locations in the
counting sequence. Each Hamming bit is calculateelxclusive-ORing the data bits that have a
logic 1 in the same row as that Hamming bit, yieddihe logic equations shown in the lower
half of the table for this example.

Table 4.2: Hamming parity matrix example

H1| H2| D1|H3| D2| D3| D4 H4| D5| D6| D7| D8| D9| D10| D11
1,0,1] 0] 1, 0 1] 0¥ 0 1 0 o 0 L
oj1/1, 0] 0, 1] 11 00 g1 1 0 0 1 1
00|02 1] 1] 1 0 O 0 0 ¥ 1 1 1
0,0/ 0, 0] O OO0 1] 1] 1] 11 117 1 1

H1=D10 D20 D40 D50 D70 D90 D11
H2=D10 D30 D41 D6 D7 D10l D11
H3=D20 D30 D4 D8 D9[] D10 D11
H4=D50 D60 D70 D81 D90 D10 D11

As a result, the Frame ECC logic consists mainlganfty generators. A parity generator
is simply an exclusive-OR tree, and can be arranmgdithear tree or balanced tree forms; both
arrangements are C-testable with four test pati€arsd only ifthe exact parity tree construction
and interconnections are known for every gate énttee [13][14]. However, for cases where the
parity tree structure is unknown, a pseudo-exhaeiggst set to detect all gate level single and
multiple stuck-at faults is: 1) walk a single oheaugh a field of zeros, and 2) all combinations
of two ones in a field of zeros [15]. This set@dt patterns also detects all bridging faultn t
Hamming generation circuit and overall parity gettien circuit [16]. Therefore, the number of
test vectorsNry, required in terms of the number of inpulg, to test any parity generator

(regardless of structure) is given by:

57

NTv:(Nj+N=N2+N (4.1)
2 2

For the Virtex-4 and Virtex-5 Frame ECC logic, whicalculates Hamming and parity
over 1312-bits, the number of test patterns requeEquation 4.1 il = 861,328.

It is interesting to note that the parity calcwas could be performed sequentially (32-
bits at a time), as opposed to in parallel basedhenentire 1312-bit frame. This leads to a
significant reduction in the amount of logic foetbalculation of Hamming code bits and overall
parity. By masking appropriate bits from the patiees (forcing bits to logic 0 using a mask
LUT in conjunction with AND gates) the entire sef ocalculations can be performed
sequentially, one 32-bit word at a time, as illattd in Figure 4.2. The sequential Hamming
generator requires twelve 32-input parity trees (fum each Hamming bit and one for the overall
parity bit) with the cumulative parity calculatiossored in 12 flip-flops. The Hamming and
overall parity bits stored in the middle word ottframe are latched for comparison with the
regenerated bits to produce the syndrome and dveaaity error. This sequential parity
generation would require only about 372 XOR gates 2362 AND gates for the masks. Parallel
calculation over the entire 1312 frame bits, on ditleer hand, would require approximately
8,516 XOR gates.

It is possible that the number of test vectorstfa sequential Hamming and parity bit
calculation circuit might be reduced from that giviey Equation 4.1. However, the set of test
vectors described previously will also ensure cateplesting of the word counter, masking
circuit, and flip-flops/latches used to perform geguential Hamming calculation. This means
the test pattern sequence is independent of thlaatchitecture of the Frame ECC circuit. In
addition, the walking patterns in the set of temttars will detect stuck-at and bridging faults in

the ICAP.

58

4.4 BIST Approach

Our approach to testing the Frame ECC logic isriplement a customized embedded
core in the FPGA fabric that will repetitively weitand read a single frame of configuration
memory via the ICAP with the set of test patterasatdibed in Section 4.3. The target frame for
the BIST is arbitrarily located in the programmablgerconnect network to avoid any
configuration memory bits that are masked from Frame ECC circuitry as a result of
potentially legitimate changes to LUT-RAMs and {flpp contents [9][11]. The basic
procedure is as follows: (1) Write a configuratimemory frame with a test pattern via the
ICAP. (2) Read the frame containing the test patteompacting the ICAP output response. (3)
Compact the output response of the Frame ECC wieisyndrome is valid. (4) Generate the
next test pattern and repeat Steps 1 through 8llf861,328 test vectors.

Even using the 32-bit ICAP interface, this testusetge is time-intensive because each
frame write and read requires a significant amadrdaverhead in terms of clock cycles. In our
implementation of the BIST, there are 318 clockleyof overhead for each of the 861,328 test
patterns. Therefore, the actual test time is 34fg the number of test patterns (as will be
discussed in Section 4.1), or 273,902,304 clockesyc However, the amount of logic that is
tested is not insignificant, and the Frame ECCdagi critical for space and fault-tolerant

applications that rely on the detection and coiweadf SEUs during on-line operation.

59

32x12 2 2 2
_\ ,'x, 1/ > \ 1,’, FFs 9‘—;‘%1 >
ConFigure / w Kj Syndrome

Memory 32 : nd parity
Word Mask :
Counter LuT :

ror
Figure 4.2: Sequential Hamming bit calculation

Q

Q

441 Test Pattern Generator

The test pattern generator (TPG) used to gendratpdrity tree test patterns is the largest
component of the BIST architecture. It requires tiy312-bit shift registers, 1,312 two-input
OR gates, and a 32-bit 64-to-1 multiplexor arraye (TPG is identical for both Virtex-4 and
Virtex-5). In all, the TPG occupies about 100@edi in Virtex-5 — 90% percent of all of the
resources occupied by the BIST circuitry. Virtexadd Virtex-5 FPGASs incorporate several
configuration registers to provide write/read asctsthe configuration memory. The Frame
Address Register (FAR) stores the memory addréé®io which frame data is written/read.
The Frame Data Register Input (FDRI) and Frame Register Output (FDRO) registers
facilitate input/output data to/from the configuosit memory. There are other registers such as
the status (STAT) register, the cyclic redundanbgc& (CRC) register, and the command
(CMD) register which stores the next register openato perform such as “Write FAR” or
“Read FDRO”. To write/read to/from the configucatimemory, a combination of these registers
must be used. In Virtex-4 and Virtex-5, the frammgte and read instructions for the BIST are
stored in a single 512x32-bit block RAM. The coatplset of write and read instructions utilize

about 10% of the Block RAM. The procedure for imgireading to/from the configuration

60

memory in the context of the BIST is illustratediire pseudocode of Figure 4.3 and Figure 4.4,

respectively.

Wite Test Pattern (Test Pattern, FRAVE ADDR){
Wite to Command RESET_CRC
Wite to ID Register DEVICE_ID
Wite to Command WCFG WRI TE_CONFI G_MVEM
Wite to Frane Address FAR FRAVE ADDR
Wite to Frane Data | nput FDRI 82 words
for(i=0; i<41; i++){

Wite word(i) of Test_ Pattern

}

for(i=0; i<41; i++){
Wite pad word 0x00000000
}

Wite NO OP
Wite NO OP
Wite to CRC 0xO000DEFC

Figure 4.3: Test pattern write sequence via |ICAtBrface

Read_Test Pattern (FRAVE_ADDR) {
Wite to Conmand READ CONFI G MEM WCFG
Wite to Frame Address FAR FRAME_ADDR
Read Franme Data CQutput FDRO 82 words
for(i=0; i<41; i++){
/1l Discard pad frane
}

for(i=0; i<41; i++){
/1 Enable M SR to conpact out put
/1 of FrameECC and | CAP

}

Wite NO OP

Wite NO OP

Figure 4.4: Test pattern read sequence via |ICAd?face

In both Virtex-4 and Virtex-5, the frame addreskesied as the write/read destination for
the test patterns cannot contain LUT-RAM or flipgl configuration bits because these bit
locations are masked in the Frame ECC logic duéagl back (due to the fact that these bits can

change after configuration if the capture commandecoded via the configuration interface or

61

if the capture input to the capture primitive ise$ed) [9][11]. Additionally, no BIST logic or
routing resources can be located in the targenfepgation memory region. Otherwise, the test
logic could overwrite and modify parts of its ownclatecture. To eliminate the risk of
overwriting the configuration of BIST logic or rong), the target configuration memory frame is
located in the routing resources in the leftmosummm of 1/O Tiles (however, any frame
containing only routing resources and not utilifedthe BIST logic could be used). In Virtex-4,
the target configuration frame is arbitrarily loeatin the leftmost column of I/O Tiles in the 16
rows below the center line. In Virtex-5, the tdrgenfiguration frame is arbitrarily located in
the lower 20 rows of the leftmost column of I/O€Bl To avoid the target frame resources, the
BIST logic is physically constrained to the riglalthof the target device during placement and
routing. Additionally, before synthesizing the BlSthe Block RAM contents may require a
minor modification. The Block RAM contents are a®vdependent, since the correct device 1D
must be written to the ID register before dataloanvritten to the configuration memory via the
ICAP. This is to ensure that a configuration fitematted for one device is not written, by

mistake, to the wrong device.

4.4.2 Output Response Analyzer

Since only one Frame ECC component is includedrémyeVirtex-4 and Virtex-5 device,
comparison-based output response analysis of @grilocks under test (BUT) is not possible.
Furthermore, comparison with stored good circuitpati responses is not practical, since the
861,328 12-bit syndromes could not be stored ondthace. Instead, a 32-bit multiple input
signature register (MISR) with internal feedbaclkd gorimitive characteristic polynomial is
employed to compact the Frame ECC output respomgesa final signature. The MISR

characteristic polynomiaR(x), is given by:

62

P(X) = x*+x® +x*" + x+1 4.2)

At the conclusion of the BIST, the signature in MESR is compared with the known
good circuit signature stored in the BIST logic,oqucing a single-bit pass/fail output.
Additionally, the MISR is configured in a scan ahauch that the signature can be retrieved via
Boundary Scan for comparison with the good cir@iginature. Any mismatch of the good
circuit signature and the signature obtained byBH&T indicates a faulty circuit response. It
should be noted that all MISRs have some probghilit signature aliasing and fault escape.
Signature aliasing occurs when a faulty circuitduwes the same signature as the fault-free
circuit. However, signature aliasing is extremahlikely for properly designed MISRs. The
classical approximation for the probability of faaliasing is 2, wheren is the degree of the
MISR’s primitive polynomial [17]. Therefore, thergbability of signature aliasing is
approximately 1 in 4.3 billion for the 32-bit MISiRscribed by Equation 4.2.

The ICAP is tested by adding another identical B2"SR to observe the ICAP outputs
during the BIST sequence. This MISR, which is éedlvhen the ICAP read input is asserted,
will detect any stuck-at faults as well as any @ing faults in the ICAP inputs and outputs. The
MISR used to detect faults in the ICAP uses a sirmoh-chip comparison with the known good
ICAP signature to produce a pass/fail output tedogically ORed with the pass/fail output of
the Frame ECC MISR and comparison circuit, astilied in Figure 4.5. A simultaneous test
of the ICAP and Frame ECC is logical since the IGR®uld almost certainly be used for any
space or fault-tolerant application that activestetts and corrects SEUs. However, because
each device includes two ICAPs, only one of the RSAnay be tested per BIST configuration in
our current approach. Both ICAPs can be testedsibhply generating, downloading, and
executing two BIST configurations that alternatdwesen the two ICAPs. It may also be

possible to modify the BIST architecture such thath ICAPs are tested during the same

63

configuration by using the top ICAP for the firstlhof the BIST sequence and switching to the
bottom ICAP during the remainder of the BIST seauaerior example. This would require two
additional instructions to write a logic 1 to th€EAP_SELECT bit in the control register,

enabling access via the lower ICAP.

4.4.3 Additional Logic

In addition to the TPG and MISRs, the BIST architee includes a custom soft-core
embedded processor to control the BIST sequenceugas. The processor is modeled in
VHDL and is implemented entirely in configurableio blocks. It controls the ICAP read/write
signal and clock enable, the TPG/Block RAM multiale select inputs, and the TPG clock
enable. The processor also includes three coufaeddressing the instruction Block RAM,
the TPG multiplexor, and for frame read timing.blck diagram of the ICAP and Frame ECC
BIST architecture, including (from left to righthé TPG, circuits under test (CUT) and MISR
output response analyzers, is shown in Figure #tte input/output behavior of the architecture

is discussed in Section 4.5.

4.5 Implementation Results

The entire BIST circuit is implemented in VHDL, andly one configuration download
is required for the BIST application. Some minmhéectural differences between Virtex-4 and
Virtex-5 devices require changes to the VHDL mofiel the two families of devices. First,
before writing to the configuration memory, a devid check must be performed by writing the
correct device ID to the IDCODE register. This yanets accidental configuration with a
bitstream formatted for another device. Any attetopwrite the configuration memory without
a successful device ID check will cause the FPGAttempt a fallback reconfiguration [9][11].

The device IDs are kept in a look-up table speddid/irtex-4 or Virtex-5 and are synthesized

64

with the design as a constant. Second, the fraideeas register is formatted differently for

Virtex-4 and Virtex-5, requiring a modification tbe stored target frame address. Finally, the
input/output ordering for the ICAP in Virtex-5 igte-swapped, compared to the Virtex-4 ICAP.

Therefore, we maintain two VHDL BIST models, one Yrtex-4 and one for Virtex-5 with

each model supporting all devices within that gattir family.

>
2 TEOTTTTY pone
3 | L —
1 1 Scan_Out
! ! (Signatures
TPG . L oap 32 so-bif 32\
(Generates| e ! P mis |7 D_
1 1
861,328 teqt © 1
patterns) i ! ! Good
/‘(i | Signatur SD —
1 1 ~
6 1 1
1 1 TD TDO
1 1
Counte (B 112 32-bi 32
—- 32 : :rame i ool
Start / I ECC | !
I I R
1 T
10 Good
Counte [gl:;\:/lk_ b----- /37‘ Signatur
SYNDROMEVALID \ -
Scan_|In

Figure 4.5: ICAP and Frame ECC BIST architecture.

There are six primary inputs and three primary otggor the BIST architecture. The
VHDL component declaration illustrating these pngnanputs and outputs of the BIST
configuration is given in Figure 4.6. It should heted that the four inputs associated with the
MISR scan chainScan_Clock Scan_Modg Scan_In and Scan_Out are included only for
design verification. Therefore, only three primamputs and two primary outputs are required
for a typical application.

The Clockinput can be a free-running system clock or casupplied by the Boundary
Scan interface via TCK (DRCK internally). The mayam BIST clock frequency when the

clock is supplied externally is 100 MHz, which @sponds to the maximum ICAP clock

65

frequency. When the clock is supplied by Boundaecgn, the maximum BIST clock frequency
is limited to 50 MHz which corresponds to the maximTCK clock frequency. It should be
noted, however, that the BIST logic in the FPGArialtan actually operate well above the
maximum configuration frequency of 100 MHz in alirtéx-4 and Virtex-5 devices based on

timing analysis of the synthesized and routed akesig

conponent Frame_ECC BI ST is

port (Clock : in std_|ogic;
TDI : in std_|logic;
Start : in std_|logic;

Scan_In : in std_logic;

Scan_Mde : in std_|logic;

Scan_C ock : in std_|ogic;

TDO : out std_| ogic;
Done : out std_l ogic;
Scan_Qut : out std_logic);
end conponent Franme_ ECC BI ST;

Figure 4.6: BIST VHDL component declaration.

The Startsignal is an active-high, asynchronous signal wieicables the execution of the
BIST sequence. Thstart signal should be asserted for a minimum of threges of Clock to
begin the BIST sequence, but then may be de-adsertmay be left asserted. The BIST will
start and run automatically to completion after dimad by tying theStart signal to logic 1 in
the top-level VHDL model. Toggling thetart signal low and then high after the completion of
the BIST will clear the MISRs and cause the erBI8T sequence to repeat. This feature can be
used to check for reproducible BIST results dumiegign verification. Thé&can_Modeanput
places both MISRs in a scan mode. WSitan_Modeasserted, th&can_Ininput is an optional
input to the MISR scan chain, which can be usembimunction withScan_Ou{the output of the
MISR scan chain) for loading and retrieving sigmesuduring design verification. The input

TDI and outpuffDO provide a single-bit pass/fail result for the BISAs illustrated in Figure

66

4.6, TDI is one input to a 3-input OR gate, with the otfwey inputs coming from the outputs of
the MISR signature comparators. When both MISRgain the good circuit signatureBDO
(the output of the OR gate) will equBDI. However, if either MISR does not contain the @joo
circuit signature, the output of the functional @®l be logic 1, regardless of the stateTddI.
The Done output is asserted when the BIST sequence is &epl When th®one signal is
asserted, the pass/fail result is valid on Ti¥O output. The BIST sequence, after download
(and without tyingStartto logic 1), is as follows: (1) Assert the Stamput. (2) Wait for the
Done signal to be asserted. (3) Drive TDI low,| @@O (should be logic 0). (4) Drive TDI
high, poll TDO (should be logic 1). The BIST igtarpreted as passing if the TDO output
presents a logic 0 in Step 3 and a logic 1 in 8tefhis ensures that the TDO output is not stuck
in the fault-free state due to a fault in the FPGAptionally, the contents of the two 32-bit
MISRs may be scanned out and verified by exteroeahparison to the known good circuit
signatures.

The total execution time for the BIST with an ertr100 MHz clock is 2.739 seconds.
The BIST has been downloaded, executed and verifired/irtex-4 FX12, SX35, and LX60
devices and on Virtex-5 LX30T, LX50T, SX35T, and %X devices using both Boundary Scan
and external clock and control. Due to the diffees in the configuration interfaces, Virtex-4
and Virtex-5 produce different good circuit sigrnasy as reflected in Table 4.3. Figures 4.7 and
4.8 show the ICAP and Frame ECC BIST implementether smallest Virtex-4 (FX12) and
Virtex-5 (LX20T) devices, respectively. As candsen in both figures, the BIST circuitry easily
fits in programmable logic resources in the righhth half of the array. This shows that the

BIST can be implemented in all other Virtex-4 aniit&&-5 devices, all of which have larger

67

arrays than those illustrated in Figures 4.7 ai®d 4The target configuration frame areas that

should be avoided by constraining the design placem@re also illustrated in the figures.

T Targel
Reconfiguration) : " &

b %P (5
o o

Figure 4.7: Virtex-4 FX12 with ICAP/Frame ECC BIST

68

Figure 4.8: Virtex-5 LX20T with ICAP/Frame ECC BIS

Table 4.3 summarizes the actual implementation STBcircuitry in Virtex-4 and
Virtex-5 FPGAs. This includes the number of slicesupied by the BIST circuitry, the number
of lines of VHDL code for the complete BIST cirquétnd the total test time (excluding initial
configuration time) at the maximum operating freqeyeof 100 MHz. The primary reason for
the difference in the number of logic slices is doghe fact that Virtex-5 incorporates four 6-
input LUTs and four flip-flops per slice while V@x-4 slices incorporate only two 4-input LUTs
and two flip-flops. As a result, a Virtex-5 slibas twice the logic of a Virtex-4 slice — hence,
Virtex-4 requires at least twice the number ofesdic The smaller LUTs in Virtex-4 account for
the additional slices. The 32-bit good circuitreitures for the Frame ECC and ICAP modules

are also included in Table 4.3.

69

Table 4.3: ICAP and Frame ECC BIST summary

Virtex-4 Virtex-5

of logic slices 2546 1010

lines of VDHL 1125 1125
Total test time 2.739 sec. 2.739 sec|

Frame ECC signatuneédx9BC92CDB | 0x969C47DD
ICAP signature |O0xB3FFB18B |0x31D989BD

4.6 Conclusions

This chapter has presented a BIST approach fofGA® and Frame ECC modules in
Virtex-4 and Virtex-5 FPGAs. These modules aréiaai components used for SEU detection
and correction in the configuration memory of FPGé&sspace and fault-tolerant applications.
The BIST approach was developed in VHDL and is iapple to all Virtex-4 and Virtex-5
devices, and the only overhead is the memory requio store the BIST configuration and
downtime for the test application. The total tiaste is independent of the size of the FPGA.
However, when using compressed configuration leigstr files, the download time can vary with
the size of the FPGA depending on the physicaltcaimés applied during synthesis. The BIST
can be periodically downloaded and executed inesystwhich rely on the Frame ECC and
ICAP logic for on-line detection and correction®EUs to guarantee the fault-free operation of
these resources. The approach has been implemeéitgdloaded, and verified on a variety of

Virtex-4 and Virtex-5 devices.

4.7 Acknowledgements

The contents of this chapter were published undertitle “BIST of Embedded SEU
Detection and Correction Cores in Virtex-4 & Virtex FPGAS” in Proceedings of the
International Conference on Embedded Systems amdicApons 2009, pp. 149-155. Prof.

Charles Stroud is a co-author on the paper. A ntgjof the actual research and the writing of

70

the published paper represents the efforts of tiragoy student author and not collaborators,

and the research represents work performed whileeigraduate program at Auburn University.

4.8 References

[1] M. Ohlsson, P. Dyreklev and K. Johansson, “Neutsimgle Event Upsets in SRAM-
Based FPGAs,Proc. IEEE Nuclear and Space Radiation Effects Cqy. 177-180,
1998.

[2] A. Lesea, “Continuing Experiments of Atmosphericunen Effects on Deep Submicron
Integrated Circuits,” WP286 (v1.0), Xilinx Inc., @8.

[3] A. Lesea, P. Alfke, “Xilinx FPGAs Overcome the Sideffects of Sub-90 nm
Technology,” WP256 (v1.0.1), Xilinx Inc., March ZD0

[4] Virtex-6 Family OverviewDS150 (v1.0), Xilinx Inc., 2009.

[5] L. Jones, “Single Event Upset (SEU) Detection aond€:tion Using Virtex-4 Devices,”
Application Note XAPP714 (v 1.5), Xilinx Inc., 2007

[6] B. Dutton and C. Stroud, “Single Event Upset Detecand Correction in Virtex-4 and
Virtex-5 FPGAs,”Proc. ISCA International Conf. on Computers andiif Applications
pp. 57-62, 2009.

[7] K. Chapman and L. Jones, “SEU Stratagies for ViBeRevices,” XAPP864 (v1.0.1),
Xilinx Inc., March 2009.

[8] Virtex-4 FPGA User GuideJG070 (v2.5), Xilinx Inc., 2008.
[9] Virtex-4 FPGA Configuration User GuiggdG071 (v1.1), Xilinx Inc., 2008.
[10] Virtex-5 FPGA User Guid&dG190 (v4.2), Xilinx Inc., 2008.
[11] Virtex-5 FPGA Configuration User GuidelG191 (v3.2), Xilinx Inc., 2008.

[12] J. Heiner, N. Collins, and M. Wirthlin, “Fault-taknt ICAP Controller for High-Reliable
Internal Scrubbing,TEEE Aerospace Confpp. 1-10, 2008.

[13] D. Bossen, D. Ostapko, and A. Patel, “Optimum pegterns for parity networksProc.
AFIPS Fall 1970 Joint Comput. Conpp. 63-68, 1970.

[14] W-B Jone and C-J Wu, "Multiple fault detection iarjty checkers," "EEE Trans. on
Computersvol.43, no.9, pp.1096-1099, 1994.

[15] S. Mourad and E. McCluskey, “Testability of parfyeckers,1EEE Trans. on Industrial
Electronics vol. 36, no. 2, pp. 254-262, 1989.

71

[16] L-T Wang, C. Stroud, and N. Toub@ystem-on-Chip Test Architectur&an Francisco,
CA: Morgan Kaufmann, 2007.

[17] C. StroudA Designer’s Guide to Built-In Self-Te&oston, MA: Springer, 2002.

72

Chapter Five. Embedded Processor Based Fault Injection and SEU Emulation for FPGAs
Two embedded processor based fault injection ctasdies are presented which are
applicable to Field Programmable Gate Arrays (FPG&sd FPGA cores in configurable
System-on-Chip (SoC) implementations. The casdiedunclude embedded hard core and soft
core processors which manipulate configuration mgnhits to emulate physical and transient
faults in the FPGA core including shorts and opengrogrammable interconnect and many
different faults in logic resources. The emulafadlts are used to evaluate fault detection
capabilities of Built-In Self-Test (BIST) approashéncluding fault identification capabilities of
diagnostic procedures, and to evaluate the effeSirgle Event Upsets (SEUSs), including their
detection and correction. Embedded processor baggatoaches provide significant
improvement over previous fault injection technigjend, in turn, enable a more thorough

analysis of BIST, diagnosis, and SEU mitigation.

5.1 Introduction and Background

There are a number of Field Programmable Gate AfiFGA) applications that can
make use of the presence of physical faults. Tlas#ications include Built-In Self-Test
(BIST) of the FPGA itself [1], some fault-tolerasesign techniques [2], and Single Event Upset
(SEU) detection/correction techniques for FPGA auhtion memories [3]. These
applications target FPGA devices as well as FPG&<m configurable System-on-Chip (SoC)
implementations. Verification, analysis, and ewaéibn of these applications can be performed

with the ability to inject or emulate physical feuin the FPGA.

73

It is difficult to find actual faulty devices anddir usefulness is limited due to the fixed
nature of the fault [1]. Physical faults can beated by etching the packaged device and
creating opens in routing resources that lie atapdevel of interconnect metal for example, but
once again the usefulness of these devices i=limiA more efficient approach is to manipulate
the configuration memory bits to emulate physieallts in the device [4]. For example, a stuck-
at fault in a look-up table (LUT) bit can be emeldtoy overwriting the particular configuration
memory bit and setting it to the desired stuckaatitfvalue. SEUs on the other hand can be
emulated by flipping the value of bits in the cguofiation memory. Shorts and opens in the
interconnect network can be emulated along withoatmany fault in the logic resources that can
be controlled by configuration memory bits. Wheowdloading the intended system
configuration, the faults to be emulated can bedt@d in the configuration data just prior to the
actual download process [1]. Alternatively, theemded configuration can be downloaded with
subsequent partial reconfiguration used to injadt@mulate the fault.

One of the first FPGA applications to use faultegtjon emulation was hardware
acceleration techniques for fault simulation [4Jowever, the download time for fault injection
detracted from the hardware acceleration to thengxthat the manipulation of configuration bits
was abandoned and replaced by fault emulationitiydinat was modeled and downloaded with
the circuit to be simulated [5][6]. The overheddhe additional fault emulation circuitry and its
associated routing was significant but acceptablédhe case of fault simulation [7]. The
additional circuitry and routing was not acceptahléhe case of BIST approaches since the goal
was to maximize the resources under test in angngtonfiguration such that there are no
remaining resources available to emulate faults aAresult, fault injection via configuration

memory bit manipulation has been used extensivelyebug, verify, and analyze development

74

of BIST configurations and diagnostic proceduresHBGAs [1][8]. Similarly, analysis of the

affects of SEUs [3] as well as SEU detection andextion in FPGA configuration memories [9]
can use manipulation of configuration memory bit&l das been shown to be effective in
emulating 97% of the SEUs induced and observeddration chamber experiments [3].

In this chapter, we present two case studies ofeeladd processors used to manipulate
FPGA configuration memory bits for FPGA BIST andSHetection/correction applications.
The first case study uses a hard core embedde@égsmcthat has dedicated program and data
memories with write access to the configuration menof an FPGA core in a configurable
SoC. In this case study, described in Section the,device is the Atmel AT9K series Field
Programmable System Level Integrated Circuit (FEJLI The second case study uses a soft
core embedded processor in an FPGA for manipuladfoconfiguration memory bits via an
internal configuration access port (ICAP). Thetswdre processor is downloaded with the
application to be injected with faults. In thisseastudy, described in Section 5.3, the devices
include Xilinx Virtex-4 and Virtex-5 FPGAs. Eaclase study includes an overview of the
device architectures, description of the fault ¢tign emulation technique, and experimental

results of the actual implementation. The chaistesummarized and concludes in Section 5.4.

5.2 Hard Core Processor Case Study

The Atmel AT94K series configurable SoC consistsanf FPGA core, various RAM
cores, and an 8-bit Advanced Virtual RISC (AVR) romontroller core as shown in Figure 5.1
[10]. Three types of memory resources include:[19Jmany small 324-bit RAMs distributed
throughout the FPGA core, 2) a 4-Kbyte to 16-Kbgteal-port data RAM shared by AVR
microcontroller and the FPGA core, and 3) a 20-khgt 32-Kbyte program memory accessible

only by the AVR microcontroller and used for stgrimachine code.

75

The AVR core is an 8-bit RISC architecture withgheral purpose registers including a
number of peripherals like watchdog timer, UARTG Et0]. There are two 8-bit bi-directional
general purpose 1/O ports. An 8-bit bi-directiortdta bus between the FPGA and AVR
(controlled by the AVR) provides communicationsvibe¢n the two cores. Whenever 8-bit data
is written to (or read from) the data bus by theR\a strobe signal to the FPGA core is
generated on FPGAIOWE (or FPGAIORE) along with afiel6é decoded select lines to the
FPGA. There are four external interrupts to theRAMong with 16 interrupts from the FPGA.

O=RAM (O=PLB ==repeater [Periphera}

OOSPCC);AC%%eOO| 18 gee%gcﬁlrrl]tgs e
OOOOI00OOI | 8 dat: AVR
Q00010000 14,i P
C_)OOOéIOO O_ L_16 interrupt L r?c;essosr
OOOO|OOOO| 16 acldresaddress ‘data'cont
8888I8888 1. 8 dat Data| Program
OOOO&IOOOO&| 2.contro [RAM | Memory

Figure 5.1: AT94K series SoC architecture

The FPGA core is constructed as a symmethied array of programmable logic blocks
(PLBs), whereN=48 for the AT94K40 device (the largest AT94K seri&oC) [10]. Each PLB
contains two 3-input LUTs, a D flip-flop, and addrtal multiplexers/gates. Every PLB has
dedicated diagonal (X) and orthogonal (Y) localtiog resources to its neighboring PLBs, as
shown in Figure 5.2a [10]. As shown in Figure 5.@fe vertical and horizontal global routing
resources associated with each PLB traverse adbtalr PLBs &4 lines) and eight PLB<8
lines). Vertical and horizontal bus repeatersmaeed at the boundaries of evemsddarray of
PLBs (shown in Figure 5.2c for the horizontal bus)prevent signal degradation in lengthy
and/or heavily loaded signal nets. The repeatersfacilitate connections betweed andx8

lines as seen in Figure 5.2d.

76

O:Programmablg rou
Interconnect Point (PIPLHES NN

>
h e 11111

h e 11111

=

YV
)
194

L e
(a) local routing 7 (b) global routing (1 PLB)
--------- =x4line —= x8 Iingé O=repeate x4 line

T ELL _TG" LT
;_; g_ 3
: = ol
O000; 0000000 x8 line
4 PLBE—J'78_PLBE——-‘ d) repeater

(c) horizontal repeaters in global routing connections

(][]] i
1

Figure 5.2: AT94K routing architecture

The AVR microcontroller core can write to (but nmtad from) the FPGA core
configuration memory such that the FPGA can be nyaally reconfigured (either fully or
partially) by the AVR core during normal system igimn [10]. The FPGA configuration
memory access is via a 24-bit address bus anddatatbus. The address bus is partitioned into
three 8-bit components referred to as FPGAX, FPGAYd FPGAZ. FPGAX and FPGAY
correspond to horizontal and vertical location leé programmable resource in the array while
FPGAZ corresponds to specific logic/routing resesravithin the specified programmable
resource. A write to the 8-bit data bus, FPGABulEs in a write cycle to a byte of the FPGA
configuration memory.

Sets of BIST configurations were developed to tlestvarious programmable resources
in the FPGA core including PLBs, RAMs, and the pamgmable interconnect network with

horizontal and vertical repeaters [11]. During tlegification and analysis of the sets of BIST

77

configurations, every configuration bit associateih the specified resource under test was
injected in turn with a stuck-at-O fault and a &k:at-1 fault. For each fault injected, the BIST
configurations that target that resource were agplwith the injected fault present). The BIST
results indicate which BIST configurations, if amlgtected the emulated fault. Because of the
large number of faults to be emulated (twice thenber of configuration bits) for each BIST
configuration, injecting the faults in the configtion download file prior to each download
takes considerable time as indicated by the “doaadhloun time” in Table 5.1. Note that bank
clock and set/reset lines are associated with éngcal repeaters, hence, the larger number of
configuration bits when compared to the horizorggkeaters and associated routing.

Table 5.1: Embedded fault injection run time asmyor AT94K40

RESOUITCe | s Bits”|Fauits| Run Time | Run Time
ﬁlI;_JBfI\(I)VpI)tQ 8 81 162 23 rr:1rin ;14220
I'\}ge;_arg;?;rs; 20 1 142 52 rr;\rin ir:gé
Repeatert 20 | 8 | 130 soi | a0se
Free RAM 3 4 8 13 min 14 sec

BIST configurations can also be generated and e@dcby the embedded AVR
processor [11]. In this case, fault injection eation is somewhat more difficult since the
processor core has write-only access to the FPG#igtoation memory. If the processor core
could also read the configuration memory, it coplerform a read-modify-write (RMW)
operation to inject a fault at any desired configian memory bit. With write-only access, one
must also know the normal BIST configuration datagach configuration memory byte in order
to inject a single fault without disturbing the ettseven bits of configuration data; otherwise, we

could be injecting eight faults at a time. Whea #mbedded processor is generating the BIST

78

configuration, the information is contained withimat resident program. As a result, the fault
injection emulation can more realistically be pemfed from the embedded processor, although
the development effort is greater without the RMWpability. Table 5.1 gives the run time
when using the embedded processor core to perfauth ihjection emulation along with the
BIST configuration generation and execution. Aespap of almost a factor of 60 is obtained
when the embedded processor core performs the ifgatition emulation analysis including

BIST configuration generation, BIST sequence exeanytand BIST results retrieval.

5.3 Soft Core Processor Case Study

The configuration memories of Virtex-4 [12] and téx-5 [13] FPGAs are partitioned
into frames, where each frame has a fixed length,812 bits, or forty-one 32-bit words. A
frame is the smallest addressable segment of thigaoation memory; therefore all memory
write/read operations must be performed on wha@més. In Virtex-4 devices, a frame contains
the configuration data for 16 rows of configurahdgic blocks (CLBs) and input/output (1/0O)
tiles, or four rows of block random access memo(RAMs) and digital signal processors
(DSPs) tiles in the same column [12]. In Virtextévices, a frame covers 20 rows of CLBs and
I/O tiles or five rows of block RAMs and DSPs tilg3]. This means that individual FPGA
resources cannot be reconfigured without also giogi explicit configuration data for other
FPGA resources that occupy the same frame.

Virtex-4 and Virtex-5 FPGAs incorporate several faguration registers to provide
write/read access to the configuration memory. Fheme Address Register (FAR) stores the
memory address to/from which frame data is writkssd. The Frame Data Register Input
(FDRI) and Frame Data Register Output (FDRO) regsstacilitate input/output data to/from the

configuration memory. There are other registehsas the status (STAT) register, the cyclic

79

redundancy check (CRC) register, and the commarMD(Cregister which stores the next
register operation to perform such as “Write FAR™RBead FDRO”. To write/read to/from the
configuration memory, a combination of these regstmust be used. These registers are
accessible from both Boundary Scan and SelectMAf#iguration interfaces as well as the
internal configuration access port (ICAP) locatedand accessible from, the FPGA fabric.
Emulated SEUSs, or faults injected for BIST, requihe reconfiguration of a single
configuration memory bit after system configuratioor each BIST configuration, is
downloaded. Furthermore, the contents of the framleich configure multiple rows of
resources, must be preserved during reconfigurdgtonemulated SEU/fault injection. Our
approach takes advantage of partial reconfiguradioth read back capabilities of Virtex-4 and

Virtex-5 FPGAs to implement RMW for bit-level patireconfiguration.

5.3.1 Overview of Approach

The basic approach begins with locating the framm®aining the target bit for fault or
SEU emulation. The frame is read in its entiratg atored. Next, the target bit is located within
the frame, and overwritten with the desired stuckedue in the case of a fault. This approach
also supports emulation of SEUs by simply inverting target bit. Finally, the modified frame
is written back to the same location in the configion memory from which it was read.
Optionally, a subsequent read back of the framebeansed to verify the frame RMW results.
The frame address and index of the bit targeteddoit/SEU emulation are stored in a list of
faults/SEUs to be emulated. For each fault inligte the BIST configuration is downloaded,
executed with the fault on the device, and theltesetrieved. If any of the output response
analyzers (ORAs) record a failure, indicating dtfablock under test (BUT), the fault has been

detected [9]. However, most tests of a specifilGRPresource require multiple BIST

80

configurations to test its programmability and aedei high fault coverage. Gived BIST
configurations andM faults in the fault list, the total number of ddwaads, executions, and
retrievals of BIST results iBIxM. The main reason why this many downloads areiredjus
that there is no way to reset the ORAs once a fauletected such that failures are latched until
a new configuration is downloaded. Partial reagunfation can be used to reduce download
time, but it does not reset the ORAs between twtseoutive BIST configurations. Therefore,
once a fault is detected, the ORAs return failunglidations for the remaining BIST
configurations that may not detect the fault. Ettresugh ORA failure indications imply a fault
was detected, it is not clear which configuratietedted the fault for proper evaluation.

Since the BIST approach pseudo-exhaustively testfipte identically configured
BUTSs, the fault coverage in one BUT may be assutodoe the overall fault coverage for all
BUTs. This assumption greatly reduces the numbédaudts, M, that need to be emulated to
obtain accurate fault coverage. For example, dendrigure 5.3, which shows the simulated
individual and cumulative single stuck-at fault ecage for our BIST configurations for Virtex-5
CLBs in SliceL mode of operation. The simulati@sults are based on gate-level models of the
CLB. The simulation results show that six BIST figarations are required to cumulatively
detect 100% of single stuck-at faults in the CLBSiceL mode of operation. However, as
discussed in [14], the SliceL configurations mustapplied twice such that every CLB serves
both as a BUT and an ORA.

A total of 3,006 collapsed stuck-at faults wererfduor the SliceL and another 8,462
faults for SliceM, all of which were cumulativelyetécted in fault simulation. These
comprehensive fault lists include all faults affegtthe CLB, including configuration memory

bit stuck-at faults. Therefore, by using faulteiction to emulate a subset of the complete fault

81

list (specifically, those faults affecting the cgfration memory bits), both the quality of the
BIST configurations and the accuracy of the gatelléault simulation models can be gauged.
Less than 100% fault coverage from fault injectraould suggest inaccuracies in the simulation
model and potentially lower fault coverage than thelt simulations suggest. Of the 3,006
faults in the SliceL, 614 represent configuratioamnory bit stuck-at faults. These faults were
emulated using the RMW approach previously desdrilvath results shown in Figure 5.4.

Using fault injection, 100% of the configuration mery bit faults affecting the SliceL mode of

operation were detected, confirming the simulattesults in Figure 5.3. Furthermore, the
similarity of the fault coverage trends in Figue8 and 5.4 helps to verify the accuracy of
simulation models.

The biggest drawback of prior fault injection apgebes is the large numbeéd<M) of
downloads required to emulate a sufficient samplsoafiguration memory bit faults. To obtain
the results shown in Figure 5.4, a total of 614x@,684 downloads, fault injections, BIST
executions, and results retrievals were requireddditionally, any revision to a BIST
configuration requires the complete fault list benragain to ensure that the modified
configuration does not jeopardize fault detectiapabilities. The total time required for fault
injection can be calculated by multiplying the tiste for the set of BIST configurations by the
number of faults in the fault list. Figure 5.5 slsothe total test time for the set of all CLB BIST
configurations using compressed downloads via at®Moundary Scan interface. Consider
the set of CLB BIST configurations for the mid-gizeX50T, which requires 3,147 ms using the
50 MHz Boundary Scan interface from Figure 5.5.r e complete list of 698 configuration
memory bit faults (which includes SliceM mode cguafiation bits), the fault injection time is

698x3.147 = 2,197 seconds. The more realistid fajdction time that we experienced, using a

82

333 kHz PC parallel port interface to Boundary Scaas approximately 150%x2,197 = 81,666
seconds, or 91.53 hours. This lengthy applicatio® prompted us to develop the embedded
soft core processor based fault injection apprageich greatly improves the test time by both
increasing the achievable configuration interfaggfiency and by increasing the configuration

interface word size using the ICAP.

3000 * 100
+ 90

2500 B Individual FC 1 80

2000 —o— Cumulative FC T 70

Faults Detected

1500 ~

1000
500 I

0

Conflguratlon #

Figure 5.3: SliceL simulation stuck-at fault coage

600 —4——— 100

500

400 |

300 -
200 -
100 +
0 - 1 1 1 1
1 2 5

Configuration #

Faults Detected

Figure 5.4: SlicelL fault injection stuck-at faativerage

83

7000 B Readback
6000 O Exec_utlon _
@ Configuration
%5000
£
o 4000
£
— 3000
2000
1000]
0 - ‘

Figure 5.5: Total CLB test time via Boundary Scan

The ICAP provides access to configuration registang the configuration memory
internally from the FPGA fabric. The ICAP workkdithe external SelectMAP interface except
that it has separate 32-bit write and read busespaosed to a bidirectional 32-bit bus. The
maximum operating frequency of the ICAP is 100 MEgad it supports 8-bit, 16-bit, and 32-bit
word sizes [12][13]. Every device includes two IE# however, both ports can not be used
simultaneously. A configuration bit in the configtion interface control register selects
between the upper and lower ICAPs. The basic afean embedded fault/SEU emulation
approach is to embed all of the logic requiredffame RMW operations in the FPGA with the
BIST or SEU controller configuration, using the IBAo access the configuration memory. The
benefit of embedded fault/SEU emulation approach minimum 32 times speed up over the
external Boundary Scan configuration interface afieg at the same frequency. In addition,

configuration frequencies of 100 MHz are achievatithin the FPGA fabric.

84

5.3.2 Architecture and Operation
In our embedded fault/SEU emulation approach, digeration containing both the

BIST and SEU controller architecture and some &aufdht logic is downloaded to the device. A
list of fault/SEU sites (configuration memory adsBeand bit indexes) is loaded into the
embedded fault/SEU emulation logic in the FPGA aitlvith the download or via an external
interface after download. The embedded systemepds: by reading the configuration frame
containing the first fault/SEU site. The frameamporarily stored in the FPGA fabric while the
target bit is located and the fault/SEU injectedllext, the frame is written back into the
configuration memory and the BIST is allowed to@xe as normal. When the BIST has run to
completion, a single-bit pass/fail result for thenfiguration is stored. Normally, using the
external interface, the BIST would proceed to tegtrconfiguration. However, the embedded
logic can correct the previously injected fauliseethe ORAs, and then inject the next fault in
the fault list, as can be seen in the flowchaifigure 5.6. This approach has been implemented

in Virtex-4 and Virtex-5 FPGAs. The implementatian discussed in the remainder of this

= FC

section.

. . No
Read Modify Write EOF 4 \
IDLE Frame[™ Bit [| Frame[> ?
N~ /[\ NO
Reset
Fault List Yes
— Pointer
Yes

Figure 5.6: Frame read-modify-write flowchart

85

The embedded fault/SEU emulation core is entinglglemented in CLBs and two block
RAMs in the FPGA fabric. A central component oé tarchitecture is the dual port 18-kbit
block RAM. Block RAMs have two independently canfrable read and write ports (A port and
B port); only the stored data is shared [12][1&)ne block RAM is used to temporarily store
frames during the RMW procedure. To accomplishRMV, the B port is configured for 32-bit
reads/writes and the B port input data bus is cotededirectly to the ICAP 32-bit data output
bus. The B port data output bus is connecteddd@AP inputs via a 32-bit 2-to-1 multiplexor.
A frame read is initiated at the configuration meynvame address specified by the current fault
and as the frame is read it is stored in the fody-one 32-bit words in the block RAM. Next,
the A port, configured for 1-bit read/write opeoais, is used to locate the target bit in the
location specified by the fault list entry. In thase of a stuck-at 1/stuck-at O fault, a 1/0 is
written at the specified bit. However, for SEU dation, the contents of the specified bit
address are read, inverted, and then written badkd same address. Finally, the modified
frame is written back to the same address from kvitievas read via the 32-bit B port output
data bus.

The fault list is stored in a second dual-port b#-block RAM. The block RAM is
configured with independent 512x36-bit read andewpiorts. The write port is connected to a
Boundary Scan user access register with some additlogic for controlling the address bus;
namely, a 32-bit shift register and address counidre read port output bus of the block RAM
is connected to the embedded fault/SEU injectiagicl@and state machine. This block RAM
structure allows a fault list to be written inteethlock RAM after the device is configured, and
the list is immediately accessible by the fault/Sigjéction logic and state-machine. However,

the block RAM contents can also be initialized watffiault list in the VHDL model, eliminating

86

the need to shift in the fault list via the Bound&can user access register. The block RAM is
capable of storing up to 512 faults.

The core must be capable of facilitating any lerfgthit list up to the maximum of 512
faults. Therefore, an end-of-file delimiter is vegd. Each 32-bit word in the block RAM has
four parity bits which we use to store the fileideders as well as control bits for stuck-at faults
and bit-flips (SEU emulation). The ability to isfemultiple faults simultaneously is also
desirable. This requires the inclusion of a ‘pawdsimiter in addition to the ‘end-of-file’
delimiter. Our solution is to use the two leagingicant bits of the parity word to encode the
fault type (stuck-at 1, stuck-at O, or bit-flip)dato use the two most significant parity bits to
store delimiters. The encoding scheme for thetseidbishown in Table 5.2, and the overall fault
list format for the 32-bit data word and 4-bit pasivord is shown in Table 5.3.

Table 5.2: Parity bit encoding, where X = don'teca

Parity[3:2] Description Parity[1:0] | Description
00 Continue to next faylt 00 Stuck-at zero
01 Pause at fault 01 Stuck-at one
1X End-of-file (EOF) 1X Bit-flip (SEU

Table 5.3: Embedded fault list format

35:34 33:32 32:21 20:0
Delimiters| Fault Code Bit Index| Frame Address

The other significant component of the architeciara 40x256-bit ROM implemented in
LUTs in the FPGA fabric. This ROM is used to staike32-bit ICAP instructions required for
the frame RMW process. Another eight control lidsitrol the ICAP write and clock enable
inputs, and serve as inputs to the state machgie.ldnstructions are stored in the ROM in the

order in which they are written to the block RAMchuhat the block RAM may be sequentially

87

addressed to initiate new frame reads and wrifdse two block RAMSs, instruction ROM, and

ICAP are connected by an assortment of glue lagatuding the large 32-bit 2-to-1 multiplexor.

A block diagram of the overall embedded fault/SE|gction core appears in Figure 5.7.

VHDL Generic:
Device Name

GO——

BSCAN

5.3.3 Implementation Results

EOF

FaultList

ROM

FSM

PAUSED

T>0—

Frame
RMW
Block
RAM

Figure 5.7: Block diagram of fault injection core

The total number of slices used in Virtex-4 andt&ir5 FPGAs is shown in Table 5.4.

The primary reason for the difference in the nundidogic slices is due to the fact that Virtex-5

incorporates four 6-input LUTs and four flip-floper slice while Virtex-4 slices incorporate

only two 4-input LUTs and two flip-flops. As a tds a Virtex-5 slice has twice the logic of a

Virtex-4 slice — hence, Virtex-4 requires at letagite the number of slices. The smaller LUTs

in Virtex-4 account for the additional slices.

Table 5.4: Embedded fault injection core resources

Attribute Virtex-4 | Virtex-5
lines of VHDL| ~950 ~950
block RAMs 2 2
slices 228 67

88

The entire embedded fault/SEU emulation core isetestlin VHDL. For VHDL-based
designs to be faulted, the fault/SEU emulation goey be instantiated in the top level of the
design and synthesized with the intended systenctiim to be faulted. Our BIST
configurations are not modeled in VHDL, and in tbése the fault injection core is added later
in the design flow. Because our BIST configuragi@re modeled in Xilinx Design Language
(XDL), the fault/SEU emulation core is synthesizawd converted to XDL. The XDL of the
embedded core and the BIST can then be combinedh@ndesign flow continued. In either
case, it will be necessary to constrain the placéroéthe design to an area of the FPGA not
targeted for fault injection. For example, if tfault injection core is embedded with a block
RAM BIST configuration [15], the two fault injectiocore block RAMs must be constrained to
an area of the device away from the BIST configamat Furthermore, the fault list must not
contain the address of fault sites located in thdexlded fault/SEU emulation core’s block
RAMs. If any configuration memory frame addressethe fault list happen to correspond with
any of the embedded core’s resources, the corel awarwrite a bit controlling the functionality
of its own resources, resulting in likely failurén example of a properly constrained design is
shown in Figure 5.8. In the figure, a partial grcd test pattern generators ORAs and CLBs
under test is placed in the left half of the deweigh the embedded fault injection core is
constrained to the right half of the device. Thebedded fault injection core is loaded with fault
addresses residing only in the left half of thearr

The component declaration for the embedded faull/Bection core is shown in Figure
5.9. There are two primary inputs and two primamyputs for the model, as well as a generic
which specifies the device. It should be noted tha Boundary Scan access to the fault list

block RAM is embedded in the VHDL model, so thef tlo not appear in the top level

89

component declaration. While the top level commbrkeclaration is identical for Virtex-4 and
Virtex-5, we maintain separate VHDL models for ¥&t4 and Virtex-5 because of some minor
architectural differences between the device fasili First, before writing to the configuration
memory, a device ID check must be performed byingithe correct device ID to the IDCODE
register. (This prevents accidental configuratioth a bitstream formatted for another device.)
The device IDs are kept in a LUT specific to Vidéyor Virtex-5 and are synthesized with the
design as a constant; all Virtex-4 and Virtex-5ides are supported. The generic device in the
top level model is used to locate the correct deViz in the VHDL LUT. Second, the frame
address register is formatted differently for \ire and Virtex-5, requiring small changes in the
ordering of the fault list block RAM data outputsuFinally, the input/output ordering for the

ICAP in Virtex-5 is byte-swapped, compared to \iire ICAP.

e’ EY [T b
‘ Irar LF 1 1]
I 1 |
il
= T
mE i
a2 ?
e [

T

Figure 5.8: Routed embedded fault inject coreh(jigvith half-array of routed CLB BIST (left)
in Virtex-5 LX20T

90

Table 5.5: Fault/SEU injection core 1/0O descripto

Name |Direction Description
CLK Input Clock input up to 100MHz (ICAP max)
GO Input Digital 1-shot input asserted to start injectioriadr more faults

separated by ‘pause’ delimiters.
PAUSED| Output Asserted to |n(‘JI|cate |’njec_t|o_n of 1 or more faskparated by
pause’ delimiters is complete.
EOF Output End-of-file asserted when end of fasttis reached.

conponent fltinject is
generic(DEVICE : string(1l to 6):="LX110T");
port (& : in std_|ogic;
CLK : in std_|l ogic;
EOF : out std_ | ogic;
PAUSED : out std | ogic);
end conponent fltinject;

Figure 5.9: Fault inject core component declaratio

The details of the primary inputs and outputs & émbedded core are summarized in
Table 5.5. The normal embedded fault injectiorcpss with a free running system clock (up to
100 MHz) is as follows: (1) Download BIST configtion with embedded fault injection core.
(Optionally load fault list via Boundary Scan usercess register). (2) Toggle the GO input.
Fault injection begins and runs to completion otilum “pause at fault” is encountered. (3)
Monitor the PAUSED and EOF outputs. When PAUSEDasserted, execute the BIST
configuration and record results. Repeat stepsdZauntil both PAUSED and EOF are asserted,
then go to step 4. (4) Execute the BIST for alftme and record results. The end of fault file
is reached and fault injection is complete.

The embedded fault injection core has been verifiedVirtex-4 and Virtex-5 devices.
The core was initially verified by synthesizing prnhe core, loading a fault list, and executing
the fault injection. To verify the injection ofudlis and bit-flips, the contents of the configuoati

memory were read back via the Boundary Scan irderfand compared line-by-line to the

91

original configuration download file. The coredapable of injecting stuck-at faults and SEU
bit-flips anywhere in the configuration memory eptdlock RAM contents. It is possible,
however, to modify the architecture to support ¢tipn of faults in block RAM contents.
Transient faults can be emulated by back-to-back 8E-flips such that the fault exists for a
minimum of 3us - the minimum RMW time for a single frame. Byamporating two back-to-

back bit-flips with a ‘pause’ delimiter, the usemccontrol a transient fault for longer periods.

5.4 Summary and Conclusions

We have presented case studies for two embeddeggs@ approaches for SEU and
fault injection emulation in FPGA and FPGA coregéconfigurable SoCs. In the first case, a
dedicated hard core processor was used to injegiaéed faults in the FPGA core configuration
memory via a write-only interface. The lack of deaccess to the configuration memory
increased the development effort and difficulty e in the evaluation and analysis of BIST
configurations for the FPGA. In the second casmfaicore processor was developed which was
capable of read-modify-write access to the FPGAfigaration memory. This facilitates the
emulation of single and multiple stuck-at faultsagl as bit-flipping for emulation of single and
multiple SEUs. Hence, the embedded SEU/fault etimmgrocessor supports a wide variety of
fault types with no download penalty for more a#fitt and thorough evaluation of BIST and
SEU mitigation. It should be noted that the fanjection is used in a fault-free device to
analyze SEU detection/correction and BIST develograed is not part of the manufacturing or

system-level operation or test.

5.5 Acknowledgements
The contents of this chapter were published undettitle “Embedded Processor Based

Fault Injection and SEU Emulation for FPGAs”"Rnoceedings of the International Conference

92

on Embedded Systems and Applicatid@@09, pp. 183-189. Prof. Charles Stroud and éorm
Auburn University Department of Electrical and Cangy Engineering students Mustafa Ali
and John Sunwoo are co-authors on the paper. Arityapf the actual research and the writing
of the published paper represents the efforts efptimary student author and not collaborators,

and the research represents work performed whileeigraduate program at Auburn University.

5.6 References

[1] C. Stroud, J. Nall, M. Lashinsky and M. Abramovi#|ST-Based Diagnosis of FPGA
Interconnect,’Proc. IEEE Int. Test Confpp. 618-627, 2002.

[2] F. Kastensmidt, L. Carro and R. Relault-Tolerance Techniques for SRAM-based
FPGAs Springer, 2006.

[3] E. Johnson, M. Caffrey, P. Graham, N. Rollins andvrthlin, “Accelerator Validation
of an FPGA SEU SimulatorJEEE Trans. on Nuclear S¢vol. 50, no. 6, pp. 2147-2157,
2003.

[4] P. Ellervee, J. Raik, K. Tammemae and R. Ubar, if®mwment for FPGA-based Fault
Emulation,”Proc. Estonian Acad. Sci. Engol. 12, pp. 323-335, 2006.

[5] S. Hwang, J. Hong and C. Wu, “Sequential CircuitulE&imulation Using Logic
Emulation,”IEEE Trans. on CAD of ICs and Systend. 17, no. 8, pp. 724-736, 1998.

[6] P. Civera, L. Macchiarulo, M. Rebaudengo, M. Reoadd M. Violante, “An FPGA-
Based Approach for Speeding-Up Fault Injection Caigips on Safety-Critical Circuits,”
Journal of Electronic Testing: Theory and Applicets vol. 18, pp, 261-271, 2002.

[7] R. Sedaghat, “Routability estimation of FPGA-bafadt injection,” Electronics Letters
vol. 41, no. 14, pp. 790-792, 2005.

[8] T. Slaughter, C. Stroud, J. Emmert and B. Skaggault Injection Emulation for Field
Programmable Gate ArraysProc. Int. Society for Optical Engvol. 4525, pp. 1-9,
2001.

[9] B. Dutton and C. Stroud, “Single Event Upset Detecand Correction in Virtex-4 and
Virtex-5 FPGASs,”Proc. ISCA Int. Conf. on Computers and Their Amilans pp. 57-
62, 2009.

[10] AT94K Series Field Programmable System Level latedr Circuit Datasheet, Atmel
Corp., 2001.

93

[11]

[12]
[13]
[14]

[15]

J. Sunwoo and C. Stroud, “Built-In Self-Test of @gurable Cores in SoCs Using
Embedded Processor Dynamic Reconfiguratiétrgc. Int. SoC Design Confpp. 174-
177, 2005.

Virtex-4 FPGA Configuration GuidéJG071 (v1.5), Xilinx Inc., 2007.
Virtex-5 FPGA Configuration User GuidedG191 (v2.7), Xilinx Inc., 2008.

B. Dutton and C. Stroud, “Built-In Self-Test of Gmurable Logic Blocks in Virtex-5
FPGAs,”Proc. IEEE Southeastern Symp. on System Thppry35-249, 2009.

B. Garrison, D. Milton, and C. Stroud, “Built-In B&est for Memory Resources in

Virtex-4 FPGASs,”Proc. ISCA Int. Conf. on Computers and Their Amtlans pp. 63-
68, 20009.

94

Chapter Six. Soft-Core Embedded Processor-Based Built-1n Self-Test of FPGAS
This chapter presents the first implementation ofltBn Self-Test (BIST) of Field
Programmable Gate Arrays (FPGAS) using a soft eanbedded processor for reconfiguration
of the FPGA resources under test, control of BI8&cation, retrieval of BIST results, and fault
diagnosis. The approach was implemented in Xilinkex-5 FPGAs but is applicable to any

FPGA that contains an internal configuration menamgess port

6.1 Introduction

Built-In Self-Test (BIST) for Field Programmable @©aArrays (FPGAS) exploits the re-
programmability of FPGAs to create BIST circuitry the FPGA fabric during manufacturing
and system-level off-line testing [1]. The only dvead is the external memory required to store
the BIST configurations along with the time reqdite download and execute the BIST. No area
overhead or performance penalties are incurrethenuser function because the BIST logic is
replaced by the intended system function afteingss complete. The BIST configurations are
applicable to all levels of testing because theyiadependent of the intended system function
and require no specialized external test fixturequipment. Most research and development in
BIST for FPGAs has focused on reducing the numbégst configurations, reducing the size of
test configuration files, and decreasing BIST etieoutime [2]-[8]. But the ever increasing
complexity and level of integration in FPGAs hasthwiew exceptions, resulted in longer test
times, more downloads, and more memory requiredsforing BIST configurations for each
new generation of FPGA. However, the increasing simd complexity of FPGAs have also

created opportunities for innovation in FPGA tegtin

95

This chapter presents the first implementation ¢81Bfor FPGAs using a soft core
embedded processor synthesized into the fabribe@FPGA under test. The approach reduces
the number of configuration files required for BISly exploiting the regularity of BIST
structures to significantly compress and store iglatonfiguration data in the embedded
processor's program memory. The embedded processotrols and executes the BIST
sequence, including retrieval and analysis (faidgdosis) of BIST results, and reconfiguration
of the FPGA for subsequent BIST configurations. sTkimbedded processor based BIST
approach is possible for two reasons: first, thewgng size and complexity of FPGAs facilitates
the inclusion of complex circuitry that only occapia small percentage of the total configurable
resources, leaving adequate area for BIST logid, a®condly, the ability to access the
configuration memory from inside the FPGA fabrishraade possible internal reconfiguration
and read back. The approach has been successmiiemented in Xilinx Virtex-5 but is

applicable to any FPGA with internal configuratimemory access.

6.2 Background

A number of BIST approaches have been developedh®rconfigurable logic and
memory resources in FPGAs [1]. Due to the prograblenaature of resources to be tested, all
BIST approaches for FPGAs require multiple configians in order to obtain high fault
coverage. Generally, a BIST approach is organinéal testsessionsandphaseq?2]. Each test
session consists of a set of test phases (tesgooations) for a particular resource under test in
order to test that resource in all modes of openati-or example, BIST of configurable logic
blocks (CLBSs) requires two test sessions. In thst fest session, half of the CLBs are configured
as blocks under test (BUTs), with the remainingf lsrving as comparison-based output

response analyzers (ORASs) and test pattern gengi@BGs). In recent CLB BIST approaches,

96

the TPGs are implemented in non-CLB resourcesrge€ILBs to function as additional ORAs
such that circular comparison can be implemented|ustrated in Figure 6.1, where the outputs
of each BUT in a row or column are monitored by @BAs and compared to the outputs of
two other identically configured BUTs [1]. This cidar comparison in conjunction with
multiple identically configured TPGs provides hidiagnostic resolution with low probability of
fault escape [1]. In the second test session, tiséipns of the BUTs and ORAs are swapped,
such that every CLB is configured as a BUT in ogst session and as ORA in the other test

session.

Figure 6.1: Configurable logic block (CLB) BISTcaitecture

BIST control, including downloading the initial BISconfiguration, executing the BIST
sequence, retrieval of results, fault diagnosisefasn failing results, and reconfiguration of
subsequent BIST phases, has traditionally beenewaetii via interface to an external BIST
controller. However, the increased complexity ofGA3, large number of test configurations
associated with various programmable resources,speéd limitations of external download
interfaces result in long manufacturing test tim@sl limit practicality of system-level testing.
Various approaches have been investigated to reitieceverall test time while achieving high
guality tests. Beyond minimizing the number of telsases, partial reconfiguration reduces test

time by reconfiguring only the resources under festvarious modes of operation once the

97

overall test structure has been downloaded intadthece. BIST configurations that have been
recently developed for Virtex-4 and Virtex-5 FPGAlude a single-bit pass/fail output to
eliminate retrieval of ORA contents for passing f@sases or when fault diagnosis is not desired
[5]-[8]. When failures are observed, partial configtion memory read back can be used to
obtain the ORA contents to diagnose the faultyusse(s) for fault tolerant applications. Beyond
these techniques, the only new development in FBGY has been introduction of embedded
processor based approaches.

Prior work in embedded processor based BIST ingduglesstem-on-chip (SoC) testing
with hard core microprocessors [9] but did not addrtesting of FPGAs or FPGA cores in SoCs.
The first embedded processor based BIST approadiHGAs was developed to minimize test
time, number of downloads, and complexity of theemxal BIST controller by relocating BIST
reconfiguration, control, and diagnosis to the datiid hard core embedded processor in the
Atmel AT94K series configurable SoC [3][4]. The d=v consists of an FPGA core, various
RAMs, and an 8-bit Advanced Virtual RISC (AVR) nocontroller [10]. Sets of BIST
configurations were developed to test each of #réous programmable resources in the FPGA
core including CLBs, RAMs, I0Bs, and programmaldeating network [3][4]. The embedded
processor was used to configure the FPGA for eashdession, execute the BIST sequence,
retrieve BIST results from the ORAs, and performgaiosis based on failing BIST results. This
embedded processor based BIST approach achiewtal éefst time speed-up of about 43.5 over
the tradition approach of downloading each BIST figumation [4]. External memory
requirements for storing BIST configurations wexduced by a factor of about 158 because only
a single program needed to be downloaded into ¥ig program memory, from which all BIST

configurations were generated and executed.

98

While this embedded processor based BIST approah wactical for system-level
testing, the approach was developed specificallyA©94K devices such that application to
other FPGAs is limited due to reliance on the heode processor with dedicated program
memory. Some hardcore processors (such as the PGwarVirtex-4 and Virtex-5 FX series
FPGASs) do not have a dedicated program memory argd use programmable resources in the
FPGA. Soft core processors, on the other handpbeamplemented in most FPGAs such that a
soft core processor based approach would be apfdita a wider range and variety of FPGAs
and applications. The primary requirement is tiha EPGA include an internal configuration
access port (ICAP) to provide processor accedsetadnfiguration memory.

The configuration memories of Virtex-4 [11] and ¥i-5 [12] FPGAs are partitioned
into frames, where each frame has a fixed length,812 bits, or forty-one 32-bit words. A
frame is the smallest addressable segment of thigaoation memory; therefore all memory
read/write operations must be performed on whaenés. This means that individual FPGA
resources cannot be reconfigured without also giogi explicit reconfiguration data for other
FPGA resources that occupy the same frame. In¥bte frame contains the configuration data
for 20 rows of CLBs and (1/O) tiles, or 5 rows dbtk RAMs and DSPs tiles in the same
column. In Virtex-4, a frame contains configuratideta for 16 rows of CLBs and I/O tiles, or 4
rows of block RAMs and DSP tiles.

Both Virtex-4 and Virtex-5 FPGAs include severahfiguration registers to access the
configuration memory, including Frame Address RegigFAR), Frame Data Register Input
(FDRI), and Frame Data Register Output (FDRO) wtigdilitate writing/reading data to/from a
specific frame of configuration memory. There atbeo registers for functions such as status

(STAT), cyclic redundancy check (CRC), command (OMEtc. To access the configuration

99

memory, a combination of these registers must led.uBhese registers are normally accessible
from both Boundary Scan and SelectMAP configuratiterfaces but are also accessible via the
ICAP located inside fabric. The ICAP works like eternal SelectMAP configuration interface

except that it has separate 32-bit write and rese$y as opposed to a bidirectional 32-bit bus.

The maximum ICAP clock frequency is 100 MHz.

6.3 Embedded BIST Architecture

The soft core embedded processor based BIST apprimac FPGAs incorporates
additional logic in the FPGA fabric along with tB&T logic to perform tasks typically assigned
to an external BIST controller or computer. The edded BIST approach offers several
advantages over the external BIST approach. Rhet,32-bit ICAP configuration interface is
used for reconfiguration, eliminating the test tipenalties associated with the lower speed serial
Boundary Scan interface. Secondly, the total nundfeexternal download configurations is
reduced to one per test session. In addition,caftrol of the BIST configurations and sequences
can be implemented in the embedded controller. miatic procedures can also be performed by
the embedded BIST controller, further reducingabmplexity of the external BIST controller in
fault tolerant applications and providing considdeaspeed-up when compared to Boundary
Scan based read back and diagnosis.

The implementation of the embedded processor Blggraach in Virtex-5 FPGAs
incorporates elements of both hardware and softwasign to achieve an architecture that is
general enough for any Virtex-5 device as well asany BIST approach for the resources in
Virtex-5 FPGAs. The design is applicable to anyt&r5 device with only minor modifications
to system software and no modifications to systand\ware. Furthermore, the design can easily

be extended to Virtex-4 devices for similar impnments in test time. To minimize the number

100

of external downloads per test session, the emlgepideessor based BIST hardware must fit in
one half of the smallest supported device. The elae processor core must also be capable of
storing configuration data for all of the subseduest phases for each test session in memory in
the FPGA fabric using Block RAMs or distributed RAMFinally, the core must support
interfaces for connecting with the ICAP and BIShcuitry. There are a variety of designs which
can be used for the embedded processor ranging fietn full-custom register transfer level
(RTL) designs, to highly configurable general pupaoft core microprocessors. While RTL
level designs are useful for simple repetitive sasthis approach is not very efficient for
supporting multiple device architectures of a usrief BIST approaches. Such an approach
requires a different hardware configuration fortedevice and for each BIST session, which
requires a significant amount of hardware develagniene when compared with other, more
general purpose software based approaches. Angphien is to use a general purpose processor
in the form of a “soft” intellectual property (IRpre. One of the simplest and most efficient
general purpose architectures available for XiHBGAs is the PicoBlaze 8-bit microcontroller
[13]. The PicoBlaze occupies one block RAM and apjpnately 50 slices in Virtex-5 FPGAs —
much less than half of an array in the smallesteX#s device. The PicoBlaze is supported by a
simple assembler and software simulator. However,grogram memory in the PicoBlaze is
limited to 1024 stored instructions and scratch-psmory is limited to 64 Bytes. The 8-bit
architecture also creates timing penalties wheerfiating with the 32-bit ICAP port because
each ICAP write requires a minimum of four PicoRlaastructions of two clock cycles each. To
improve timing for ICAP operations, a 32-bit areluiture is best for embedded BIST
applications in Virtex-4 and Virtex-5 devices. ARecore that meets the requirement for a BIST

controller is the MicroBlaze soft core processohjch is a highly configurable 32-bit general

101

purpose RISC microprocessor for Xilinx FPGAs [IBhe MicroBlaze also includes an optional,
pre-engineered, interrupt driven ICAP hardwarerfatee. The MicroBlaze can be configured
with up to 64 kB of combined program and initiab#a data memory in Virtex-5 FPGASs that is
implemented in the FPGA fabric in Block RAMs. Th®gessor can be modified by the addition
of custom peripherals on the processor local buBYPThese features led to selection of
MicroBlaze as the embedded processor in our impi¢atien.

The basic architecture for the embedded procesk®F Bpproach is illustrated in Figure
6.2 for CLB BIST where half of the FPGA array isedgor processor and additional hardware
resources and the other half of the array conthe<LB BIST configuration. Custom memory-
mapped registers are included in the MicroBlaze YHDodel for interfacing with the BIST
circuitry. The processor interfaces directly witie tCAP for reconfiguration of the BIST array
and read back of BIST results. To test all CLBthm FPGA, a second configuration is generated
with locations of BIST logic and embedded processeapped, as shown in Figure 6.2b. For
some resources, such as 1/O tiles or CRC moduids, possible to test all of the resources
simultaneously by placing the MicroBlaze aroundBh8T circuitry.

One memory mapped write-only (WO) register, shownTable 6.1, is included for
control of the BIST circuitry and sequence. Thepatg of the register are connected directly to
inputs to the BIST logic, but not all of the regisbits are utilized in any one BIST session. One
read-only (RO) register, also shown in Table 6sljnicluded at the same memory-mapped
address as the output register. The inputs tordlgister are connected directly to outputs of the
BIST logic. Each register is general enough to fgaieable to all BIST configurations that have

been developed for Virtex-5.

102

Because many BIST configurations must be executed tifferent minimum number of
clock cycles to achieve the intended fault coveralgere is the need for a hardware timer for
BIST execution. Therefore, a 16-bit down countemiduded in addition to the RO and WO
BIST control registers. The counter is initializbyg writing to the lower 16-bits of the BIST
control register. The counter automatically cowds/n to zero, setting thent_eqbit when zero.
Thecnt_eqgpbit is used to enable the BIST logic and can béegdah software to determine when
the BIST is complete. The counter clock and BISdcklcan share the MicroBlaze clock or can
be clocked independently at a higher clock frequemgc connecting the BIST clock input and

16-bit counter clock to an independent BIST cloclrse.

(a) session #1 | (b) session #2

Figure 6.2: Embedded soft core processor based &ichitecture

Table 6.1: BIST control registers

Write-only register Read-only register
31:24| 2321 | 20 | 19| 18 |17| 16 15:0 313 2 1 0
control reserved done|reset start| tdi | clk_en| cnt_init| reserved (read as 0¢nt_eq BIST_done tdo

103

6.4 Software Development

One important feature of this BIST approach stemsctdy from the generality of the
embedded processor. Namely, that only the softelaaages from one BIST session to the next;
the hardware remains unchanged for any and all BESEions. The software can be efficiently
constructed in a manner that exploits the regyl@fitBIST configurations, and only the code for
a particular BIST session need be compiled and rprogied in the MicroBlaze program
memory since a new download is performed at the efaeach test session. Each BIST for a
specific resource is composed of a set of phaseth ®ach phase corresponding to a
reconfiguration of the resources under test. Edads@ comprises writes of entire set of frames
of data to configuration columns that control tlesaurces under test. Therefore, only certain
portions of the partial reconfiguration files mus¢ stored because the array-half, row, and
column locations of the resources under test caddiermined algorithmically based on the
particular device in which BIST is implemented. Th&gorithm for the embedded BIST
reconfiguration process is shown in Figure 6.3. dlgerithm for frame address generation using
multi-frame write operations, given configuratioow and destination minor address for frame
data previously written to FDRI, is also shown igufe 6.3.

No modification to the MicroBlaze hardware is reqdi for support of other BIST
approaches such as DSP and Block RAM BIST [5][&wiver, the control bits [31:24] of the
WO BIST register are used during these test sessmioontrol the TPG mode. The outputs of
these register bits are connected directly to tlmlencontrol inputs of the TPG when the
MicroBlaze hardware and BIST hardware are mergdedclBRAM and DSP embedded BIST
architectures are otherwise arranged identicalltheoCLB BIST architecture shown in Figure

6.2 with the BIST circuitry occupying one-half dietdevice.

104

Reconfiguration files are generated in a manndrahaws full or partial reconfiguration
from an external memory without the need for antéliigent” controller. While ideal for
systems containing only non-volatile memory and=BGA, the partial reconfiguration files are
too large to be directly stored in the program atadmemory of an embedded processor. For
example, the total size of the 5 partial reconfagian files for CLB BIST in half of an array of a
small Virtex-5 device (LX30T) is 41,360 Bytes — erding the maximum 32 kB of data
memory that can be allocated for MicroBlaze. Phmteconfiguration files are also device
dependent since the size of the reconfiguratian il proportional to the device size. Hence,

compression of partial reconfiguration files isuggd for the embedded processor.

Overall BIST algorithm Addressing algorithm w/ multi-frame write
for all test phasedo for all configuration columnsgo

for all configurationrowsin BIST half do if column is block under teghen
for all frames in reconfiguration structude for all minor addresses in compressed codfig
construct configuration frame multi+fra write torow, column & minor

muti-frame write to all RUTSs ihalf & row end for
end for end if
end for end for

execute BIST phase
get BIST results
end for
set done bit in WO control register

Figure 6.3: Embedded processor BIST algorithms

Our compression scheme exploits four features deX45 partial reconfiguration files to
compress the data for storage in the embedded gg@cprogram memory and eliminate device
dependencies. First, each configuration file corstaiertain instructions, such as those for multi-
frame writes to the configuration memory, which aepeated many times during download.
Since, in the embedded processor BIST approaclddaivaload is executed under the control of
the embedded processor, ICAP instructions can dredstonce and regenerated when needed.
Second, multi-frame writes can only occur in onafiguration row in Virtex-5 devices. For

BIST configurations, which create identical configiions in BUTs and ORAs in every

105

configuration row, the overhead of multi-frame wrinstructions can be eliminated by storing
frame data only once for one configuration row; sitreicture of the partial reconfiguration file
can be regenerated by repetitively writing the feathata and frame addresses to the ICAP inside
of a software loop for all configuration rows. Tdhirbecause one frame of configuration data
spans 20 rows of identical resources under test,22words of frame data are repeated 10 to 20
times (in a repeating sequence) in each 41-worddrfor BIST. Therefore, only 2 to 4 words of
configuration data need to be stored for each fremikee partial reconfiguration file. The frame
can be reconstructed in its entirety from the sesaltepeating set of 32-bit words. Finally, the
partial reconfiguration file includes the addrességvery frame to which frame data must be
written for each configuration row. Again, due ke tregularity of the BIST structure, only the
minor addresses in the first BUT column for eachfiguration frame need to be stored. The
remaining addresses can be regenerated algoritlyni¢agure 6.3) given the locations of
resources under test in the FPGA fabric. We coatgdua program to automatically extract only
the essential data from every partial reconfigoratfiles for any BIST session using the
compression methods described above. The prograrargjes a C header file with a data
structure containing only essential data from tbhengressed partial reconfiguration file. The
data structure declaration is shown in Figure @Here the constant NRECONFIG is the number
of test phases for the BIST session.

When the compression program was used to compness partial reconfiguration files
for a CLB BIST session in a Virtex-5 LX30T, the dbsize of the files reduced from 41,360
Bytes to 820 Bytes. Table 6.2 shows the size ofotiginal compressed partial reconfiguration
files and the size of the essential data in congge$orm for different BIST sessions for Virtex-

5. The original file size given in the table is foxr LX30T and the size of the file will increase in

106

proportion to the number of configuration rows irgi@en device. However, the size of the
essential data in compressed format is indeperadeéhe device size. Figure 6.5 illustrates these
device dependencies of reconfiguration file sizmsthe smallest and largest devices in each

Virtex-5 family of devices (LXT, SXT, FXT, and TXT)

struct franedata {
unsi gned i nt numor d;
unsigned int word[MAXWORD]; //config data
unsi gned i nt nunmm nor; /1 # of addresses
unsigned int m nor[MAXM NOR] ; // m nor addr

[/ # of words

¥

struct partialconfig {
unsi gned i nt nunfrane; [1# frames
struct franedata frame[MAXFRAME] ;//franes

} config[NRECONFIG = {

/'l conpressed frame data pl aced here by program

};

Figure 6.4: Compressed BIST partial reconfigurastructure in C

Table 6.2: Compressed partial reconfiguration date

BIST Number of Number of BIST | Original File | Compressed
Session BIST Sessions | Reconfigurations | Size (Bytes) Size (Bytes)
CLB East 2 5 41,360 820
CLB West 2 5 41,360 820
LUT-RAM 2 4 10,944 1,232
I/O Logic 1 5 11,308 1,236
I/O SerDes 1 8 94,432 2,680
CRC 1 1 4,716 184
DSP 1 9 28,836 1152
Block RAM 2 5 285,040 4920
ECC RAM 2 2 19,384 1200
FIFO 2 3 29,076 1800
FIFO ECC 2 1 9,692 600

107

BCRC @BCRCCompressed O1/OLogic mI/O Logic Compressed

140

120 !

100]

8
|

[e2]
o
!

Total Size (kE

D
o
!

N
o
!

O a T

&L A & A A

PO ey S Y
D N

A
&

N A
Y \;\~ 2

Figure 6.5: Original reconfiguration file sizesdasompressed data structure sizes for one CRC
BIST and a set of 5 I/0O Logic BIST partial reconfigtions

Read back and diagnosis of BIST phases is perfobyesbftware in the embedded BIST
processor when fault diagnosis is desired for amgiapplication. The basic idea is to read back
every frame of configuration memory containing aRAOflip-flop. The ORA flip-flop contents
are then stored in an array in the processor dataary. An ORA contains a logic 0 when a
failure is detected, otherwise a logic 1. Sinceltdmations of ORAs are known for every BIST
session in any device, the frame addresses of QRAldps can be generated algorithmically
during read back. The diagnostic algorithm [1] docular comparison is easily implemented in
the embedded processor to identify faulty resourdéisen combined with the 32-bit parallel
access to the configuration memory, read back aagndsis via the embedded processor
provides a substantial improvement in test time rwbempared to serial access via Boundary

Scan.

108

6.5 Design Flow and I mplementation Results

The embedded BIST processor design flow, illustrateFigure 6.6a, is more complex
than the traditional BIST design flow due to thelusion of the MicroBlaze processor and BIST
session specific software. Generating the embedutedessor based BIST configurations
requires inputs from three sets of source filesstFithe C source file for the specific BIST
approach (e.g. CLB, DSP, block RAM, etc.) is comgito an executable linkable file (ELF)
format. The MicroBlaze hardware is modeled in VHBALd synthesized using the Xilinx ISE
design flow. The placement of the MicroBlaze logiconstrained to one half of the device. The
placed, unrouted design is then converted to Xilresign Language (XDL) format. The BIST
logic is generated concurrently by the BIST genenaprogram which produces an unrouted
XDL description of the BIST circuitry. The BIST aw is constrained to the other half of the
FPGA. The BIST XDL description and the MicroBlazeDIX description are merged by
concatenating the two XDL files and connecting niyninputs and outputs of the BIST logic to
the WO and RO BIST control registers included ia MicroBlaze logic to form the complete
unrouted embedded processor based BIST configaratiXDL format. Finally, the complete
hardware portion of the design is converted to @&@DNormat and routed, from which the
bitstream configuration file is generated using Xiknx BitGen program. At this point, the
compiled software in ELF format is translated idtock RAM initialization values in the

bitstream download file using the Xilinx Data2Memogram.

109

VHDL files

| BIST Program XST Synthesi

D e

i

| Merge XDL File:

_______ FPGAEdIto
XDL file | oooooooo | L Eeeee g
| oDooooooo | L e ———— i o e g
| booooooo RS e e n I
[XDLexe | Q ! o
l {Hardware DRC | ‘H
NCD file :

Oooooooo
Ooooooooo

BIT file Verificatio
on FPGA

| Data?MEM.ex [downloa

Fault Injectior

ELF file

ki il

SDK Developme

| CCompile | E—]
17
Software Debu
[_chile K—>
(a) design and verification process (b) |mpletaeon in LX30T dewce

Figure 6.6: Embedded processor BIST design imphtatien

The embedded processor based BIST approach hassheeessfully implemented for
BIST in Virtex-5 FPGAs. The unrouted embedded pseoe based BIST configuration for the
CLBs implemented in the top of a Virtex-5 LX30T &hown in Figure 6.6b. Two such
configurations are implemented to fully test theBSlwith the locations of the BUTs and ORAs
swapped, and another two configurations are reguivetest the bottom half CLBs. For the
purpose of embedded BIST, the MicroBlaze processaonfigured with a hardware integer
multiplier, five stage pipeline, and 64 kB of onjzlprogram and data memory (configured in
Block RAMs). In Virtex-5 devices, the MicroBlaze twi ICAP interface and BIST control

registers occupies three DSPs, 16 block RAMs, a@ @LBs. The percentage of utilized

110

resources is less than 50% in the smallest Virtebeice (LX20T). Timing analysis indicates
that the maximum operating frequency of the Mica#® processor when constrained to one-
half of a device is greater than 100 MHz in allte¢k-5 devices. Therefore, all ICAP operations

can be performed at the maximum frequency of 10&MH

6.6 Conclusions

We have presented the first embedded soft coreepsoc based FPGA BIST approach.
The approach reduces the number of external cawfiigms of the FPGA during any BIST
session to a maximum of two (one for each halfhef array); however, many resources can be
tested in a single BIST session. The embedded gsoceperforms reconfiguration of the
resources under test at the maximum allowable cfoeduency and data width. Read back of
ORA contents can be performed when fault diagnissaéesired for fault-tolerant applications.
The soft core processor approach was implementadriax-5 FPGAs using the MicroBlaze
processor. However, the overall approach is appkce any FPGA with internal write and read

access to the configuration memory.

6.7 Acknowledgements

The contents of this chapter were published unter title “Soft Core Embedded
Processor Based Built-In Self-Test of FPGAs”Rroceedings of the 34IEEE International
Symposium on Defect and Fault Tolerance in VLSte8ys 2009, pp. 29-37. Prof. Charles
Stroud is a co-author on the paper. A majoritythed actual research and the writing of the
published paper represents the efforts of the pyirstudent author and not collaborators, and

the research represents work performed while irgthduate program at Auburn University.

111

6.8 References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]
[11]
[12]
[13]
[14]

L-T Wang, C. Stroud, and N. Toub@ystem-on-Chip Test Architectur&an Francisco,
CA: Morgan Kaufmann, 2007.

M. Abramovici and C. Stroud, “BIST-Based Test anddhosis of FPGA Logic Blocks,
IEEE Trans. on VLSI Systenw®l. 9, no. 1, pp. 159-172, 2001.

C. Stroud, S. Garimella and J. Sunwoo, “On-ChipBE&ased Diagnosis of Embedded
Programmable Logic Cores in System-On-Chip Devic&spc. ISCA Int. Conf. on
Computers and Their Applicationgp. 308-313, 2005.

J Sunwoo and C. Stroud, “BIST of Configurable ConesSoCs Using Embedded
Processor Dynamic Reconfiguratiof,foc. Int. SoC Design Conpp. 174-177, 2005.

B. Garrison, et. al., “Built-In Self-Test for MempoResources in Virtex-4 FPGASProc.
ISCA Int. Conf. on Computers and Their Applicatigs 63-68, 2009.

M. Pulukuri and C. Stroud, “Built-In Self-Test ofigiXal Signal Processors in Virtex-4
FPGAs,”Proc. IEEE Southeastern Symp. on System Thppryd4-38, 2009.

B. Dutton and C. Stroud, “Built-In Self-Test of Gmurable Logic Blocks in Virtex-5
FPGAs,”Proc. IEEE Southeastern Symp. on System Thppry30-234, 2009.

B. Dutton and C. Stroud, “Built-In Self-Test of grammable Input/Output Tiles in
Virtex-5 FPGASs,"Proc. IEEE Southeastern Symp. on System Thppry235-239, 2009.

R. Rajsuman, “Testing a System-On-Chip with Embeddéroprocessor,Proc. IEEE
Int. Test Conf.pp. 499-508, 1999.

AT94K Series Field Programmable System Level IategrCircuit DS1138, 2005.
Virtex-4 FPGA Configuration User GuidedG071 (v1.1), Xilinx, 2008.

Virtex-5 FPGA Configuration User GuidelG191 (v2.7), Xilinx, 2008.

PicoBlaze 8-bit Embedded Microcontroller User Guidé&129 (v1.1.2), Xilinx, 2008.

MicroBlaze Processor Reference Guit&s081 (v.9.0), Xilinx, 2008.

112

Chapter Seven. Soft-Core Embedded Processor-Based Built-In Self-Test of FPGAs Case
Study

This chapter presents the results of a case studghwinvestigates the use of an
embedded soft-core processor to perform Built-lif-Best (BIST) of the logic resources in
Xilinx Virtex-5 Field Programmable Gate Arrays (FRE. We show that the approach reduces
the complexity of an external BIST controller arfite thumber of external reconfigurations,
making it particularly appealing for in-system tegt of high-reliability and fault-tolerant
systems with FPGAs. However, the overall test tismaot improved due to an increase in the
size of the required configuration files as a comemce of the inclusion of the soft-core
embedded processor logic, whose relative irregyladsults in less effective compression of

configuration data files.

7.1 Introduction

This chapter presents the results of the first @m@ntation of Built-In Self-Test (BIST)
for Field Programmable Gate Arrays (FPGAS) usisgf&core embedded processor synthesized
into the configurable fabric of the FPGA under teEhe approach, as originally proposed in [1],
reduces the number of configuration files requiicedBIST by exploiting the regularity of BIST
architectural structures to significantly compressl store partial configuration data in the
embedded processor's program memory. The embepidegssor controls and executes the
BIST sequence, including retrieval and analysisl{fdiagnosis) of BIST results, and performs
partial reconfiguration of the FPGA for subsequé&tET test phases [1]. This embedded

processor-based BIST approach is possible for temsans: first, the growing size and

113

complexity of FPGAs facilitates the inclusion ofngplex circuitry that only occupies a small
percentage of the total configurable resourcesjigaadequate area for BIST logic and routing;
and, secondly, the ability to access the configomamemory from inside the FPGA fabric has
made possible internal reconfiguration and read b&a&PGA logic and routing resources.

The approach was successfully implemented in XiNistex-5 [2] but is applicable to
any FPGA with internal configuration memory acces3he remainder of the chapter is
organized as follows: Section 7.2 presents anvoesrof BIST for FPGAs and the previously
proposed soft-core processor-based BIST technigBection 7.3 presents the results of our
implementation of soft-core embedded processorebB$8T in Virtex-5 FPGASs, including test
time analysis and comparisons with other BIST apgines for FPGAs. Section 7.4 discussed
ways in which the proposed approach might be imgadpwvith Section 7.5 covering other

potential applications of the approach. The chaptsummarized in Section 7.6.

7.2 Background

BIST for FPGAs exploits the re-programmability d?GAs to create test circuitry in the
FPGA fabric during off-line testing [3]. The onbverhead is the external memory required to
store the BIST configurations along with the timeguired to download and execute the
numerous BIST configurations. No area overhegaediormance penalties are incurred because
the BIST logic is reconfigured with the intendedtgyn function after testing is complete. The
BIST configurations are applicable to all levelste$ting because they are independent of the
end-user system function and require no speciakxéernal test fixture or equipment. Over the
past 15 years, a number of BIST approaches havedmeloped for the configurable logic and
routing resources in FPGAs. Due to the programenabture of FPGAs, all BIST approaches

for FPGAs require multiple configurations of theswarces under test in all of their modes of

114

operation in order to obtain high fault coverage&some of these BIST approaches are
summarized in Table 7.1, where the number of BISiifigurations is given for each type of
resource including configurable logic blocks (CLBB)put/output (I/O) tiles, random access
memories (RAMS), digital signal processors (DSBsY programmable routing resources.

Table 7.1: Test configurations developed for vagi6PGAs

FPGA CLBs Routing | 1/0 | RAMs| DSPs| References

ORCA 2C 9 27 - 0 0 [5][6]
ORCA 2CA 14 41 - 0 0 [5][6]
Delta 39K 20 419 - 11 0 [7]

4000/Spartan| 12 128 - 0 0 [8]
4000XL/XLA 12 206 - 0 0 [8]
AT40K/AT94K | 4 56 27| 3 0 [9] - [11]
Virtex/Spartan-7 12 283 7 5 0 [11][12]
Virtex-4 10+5 84 14| 15 5 | [13]-[17]
Virtex-5 6+5 ? 15| 16 | 11 | [17][18]

Most research and development in BIST for FPGAsfbassed on reducing the number
of test configurations, reducing the size of teehfiguration files, and decreasing BIST
execution time [2]-[8]. But the ever increasingrgaexity and level of integration in FPGAs
has, with few exceptions, resulted in longer tésies, more downloads, and more memory
required for storing BIST configurations for eacbwngeneration of FPGA. However, the
increasing size and complexity of FPGAs has alsated opportunities for innovation in FPGA
testing. In [1], we proposed an embedded procdszsed approach which exploits some of
these features of current FPGAs in an attempt fiwone test time and reduce the complexity of
BIST. The soft-core embedded processor-based Bdffroach for FPGAs incorporates
additional logic in the FPGA fabric along with tB&ST logic to perform tasks typically assigned
to an external controller or computer. The newrapph offers several advantages over the

traditional external BIST approach. First, the@2internal configuration access port (ICAP) is

115

used for reconfiguration of the resources unddr édisninating the test time penalties associated
with the lower speed, serial Boundary Scan intexfac Secondly, the total number of
configurations that are downloaded via the extecoafiguration interface is reduced to one per
test session. In addition, all control of the BISd@nfigurations and test procedures can be
implemented in the embedded processor. Finallylt fdiagnosis procedures can also be
performed by the embedded processor, further raduttie complexity of the external BIST
controller in fault-tolerant applications and pmivig considerable speed-up when compared to
Boundary Scan based readback and diagnosis.

The basic architecture of the embedded BIST appréacCLBs is illustrated in Figure
7.1 [1]. In this particular BIST approach, onethafl the FPGA array is configured with the
BIST circuitry, including multiple Test Pattern Gaators (TPGs), comparison-based Output
Response Analyzers (ORAs), and the Blocks Undet [BiSTs). The TPGs are constructed
from CLBs or other logic resources such as DSP9yIRAetc. The TPGs provide identical test
patterns to alternating rows or columns of idemiffcaonfigured BUTs whose outputs are
monitored by two ORAs and compared with the outpoftdwo other BUTs in a circular
comparison arrangement, as shown in Figure 7.1e QRAs are constructed from CLBs such
that only half of the CLBs can be BUTSs in a givesttsession, and the positions of the BUTs
and ORAs must be swapped during a subsequentetesibs in order to test all of the CLBs in
half of the array.

The second half of the FPGA array is reserved fbli@oBlaze soft-core processor and
any additional hardware resources associated hlptocessor [19]. Custom memory-mapped
registers are included in the MicroBlaze VHDL mod&l interfacing with the BIST circuitry.

One memory mapped write-only (WO) register is ideld for control of the BIST circuitry. The

116

outputs of the register are connected directiyltmputs to the BIST logic. One read-only (RO)
register is included at the same memory-mappedeaddas the output register. The inputs to
this register are connected directly to the outmitthe BIST logic. Each register is general
enough to be applicable to all BIST configuratitimst we have developed for Virtex-5. Finally,
the MicroBlaze interfaces directly with the FPGABAIP for partial reconfiguration of the BIST
array and for read back of output responses. 3ioalkof the resources in the FPGA, a second
configuration is generated with the location of BI&T logic and embedded processor swapped.
For BIST of some resources, such as input/outpdi tiles and cyclic redundancy check (CRC)
circuits, it is possible to test all of the targesources simultaneously by placing the MicroBlaze

around the BIST circuitry.

(b) BIST session #2
Figure 7.1: Simplified soft-core processor-basédTBarchitecture

117

7.3 Results of Implementation in Virtex-5

The embedded processor-based BIST approach wasnmapted for BIST of Virtex-5
FPGAs using the MicroBlaze soft processor [19]. e Tinmrouted embedded processor-based
BIST configuration for the top CLBs implementedtive Virtex-5 LX30T is shown in Figure
7.2. Note that two such configurations are impletad to fully test the top CLBs with the
locations of the BUTs and ORAs swapped, and andtherconfigurations are required to test
the bottom half CLBs. For the purpose of embed8¢8T, the MicroBlaze processor is
configured with a hardware integer multiplier, fistage pipeline, and 64 KB of on-chip program
and data memory (configured in Block RAMSs). Intéx-5 devices, the MicroBlaze with ICAP
interface and BIST control registers occupies tid&Fs, 16 block RAMs, and 400 CLBs. The
percentage of utilized resources is less than 50%e smallest Virtex-5 device such that the
approach works for all FPGAs in the Virtex-5 familyTiming analysis indicates that the
maximum operating frequency of the MicroBlaze pssoe when constrained to one-half of a
device is greater than 100 MHz in all Virtex-5 dms. Therefore, all ICAP operations can be
performed at the maximum ICAP configuration clomguency of 100 MHz.

For accurate measurements of test time and to rolegperimental results with the
MicroBlaze processor, an additional 32-bit hardwdimer/counter was included in the
MicroBlaze VHDL model. By starting the timer/coentat the beginning of a test phase, and
stopping it at the end of the test phase, the exactber of clock cycles for reconfiguration of
the resources under test, test execution, and @RA back can be determined. To extract the
value in the timer/counter at the end of each tdwt, MicroBlaze performs a read of the
timer/counter value and reports this number viaf&RU interface to a connected PC, where it is

displayed and logged in a terminal program.

118

Figure 7.2: Unrouted embedded processor-based &8figuration for top configurable logic
blocks (CLB) in Virtex-5 LX30T viewed in FPGA Edito

Figure 7.3 shows the total test time for one sessioCLB testing in several Virtex-5
devices for external configuration with full compsed configuration and partial compressed
reconfiguration bitstreams downloaded and contiollea the 50 MHz Boundary Scan

configuration interface and for the MicroBlaze emibed processor approach. These test times

119

take into account all of the configurations reqdite achieve 100% fault coverage in the CLB in
SliceL mode, as reported in [7], which used tradiéil external reconfiguration techniques.
However, these times double to achieve 100% fawméage in every CLB, because a second set
of identically sized configurations are requiredthwihe locations of the BUTs and ORAs
swapped. The optimized external reconfiguratioovigles the fastest overall test time when
compared with the other two approaches since thieeearray is tested concurrently. This
approach is about three times as fast as the emabgutcessor approach on average, but is
device dependent, as can be seen in Figure 7.3.weVv#, the embedded approach is

significantly faster than external configuratiortiwiull or compressed bitstream download files.

3
B Full Compressed
ot @ Partial Compressed
' @ Embedded Top
OEmbedded Top & Botton
2
(&)
©
c
Q
31.5
(]
E
|_
g 1 i
|_
0.5 -
O— 1
S S S S QS S QS S
Q Q Q 5 Q 5 Q e}
> 5 > N > e 9
FOFFF oy s S

Figure 7.3: CLB BIST test time for external configtion (full compressed and partial
compressed bitstreams) and embedded processtntest

By studying the configuration file sizes for theotBIST approaches, the cause for the

increase in test time for the embedded procesgmoaph becomes clear. Consider Figure 7.4,

120

which shows the contributions to test time for @ession of CLB BIST with the embedded
processor approach. The contribution from theahtompressed full configuration download
(using the 50 MHz external Boundary Scan configarainterface) is shown on bottom and the
contribution from the five subsequent partial rdaprations by the embedded processor (using
the 100 MHz 32-bit ICAP) is shown on top. The @letest time is dominated by the initial
download time. This is due, in part, to the sloweral Boundary Scan configuration interface;
however, the main contributor to the overall testetis an increase in the size of the initial
configuration file (relative to the traditional BlSapproach). The cause of the size increase is
due to the inclusion of the MicroBlaze configurati@ata in the configuration file, the
irregularity of which reduces the effectivenessha@ configuration file compression (see Figure
7.2). We observed that the inclusion of the Midez® logic increased the size of the first
compressed configuration file size by 2100 kB (Wh approximately constant for all devices).
The additional 2100 kB of configuration data isgkar than the next five partial reconfiguration
files combined, and, assuming Boundary Scan cordtgun, increases the time for initial
configuration by 336 ms. While it is possible toprrove the timing for internal reconfiguration
of the resources under test, there is no way torawg timing for the first compressed
configuration download.

The potential for savings in test time does existis systems which require fault
diagnosis, and, therefore, read back of ORA coatahthe end of each test phase. In this case,
the embedded approach provides a speed-up ofnae4 tiluring read back of ORA results versus

read back via Boundary Scan, as can be seen ing-fgbi.

121

Figure

0.7

05 Partial Reconfigurations
01 Compressed Config

0.6 +—

|

0.5

0.4
0.3 -
0.2 4
0.1
0 - . T

7.4: Contribution to embedded processoeth&3 B BIST test time by initial external
configuration and by five internal partial reconfigtions

Test Time (seconds)

1l

Q e Q)
) N ‘) °) °)

70

EBoundary Scan
60 1T mEmbedded Process¢

a1
o

N
o

W
o

N
o

ORA Readback Time (ms)

&&&&&&&& S &&&&&&&
QQ@Q 6@66,\9 °>¢Q‘> N

FPEFFPI IS F LS é:’&@ S

Figure 7.5: Comparison of CLB BIST ORA read baokess with embedded processor-based

approach and external Boundary Scan interface

122

7.4 Futurelmprovements

The overall reconfiguration times for the embedgdeatessor-based BIST approach can
be reduced by modeling a custom processor for fegoation and test control. When a full
custom embedded fault injection approach was coadpar the MicroBlaze based fault injection
presented in this work, a speed-up factor of alm@sivas observed for the FSM hardware-only
approach versus the general-purpose processor-lzggegdach. However, a hardware only
implementation requires a different hardware canfgjon for every device and BIST session,
as reported in [20]. Ultimately, with custom haate, the reconfiguration time could approach
the minimum achievable test time for the 100 MH2;b& SelectMAP or ICAP configuration
interface. This best case timing occurs when ooelws read or written on each active edge of
the clock, as is the case for configuration fromeaicated memory. The best case timing for
CLB BIST east or west configurations is shown igufe 7.6 (doubling the time shown in the
figure yields the total test time for all CLBs iticeL mode). However, these times should not
be directly compared to those in Figure 7.4 forehebedded processor-based approach, because
Figure 7.4 assumes initial configuration from theuBdary Scan interface. Another possibility
is to clock the MicroBlaze at a frequency grealemt 100 MHz, using a divided clock equal to
100 MHz for the ICAP and portions of the ICAP irigere logic. This will, however, require the
development of a custom ICAP interface. Basedimimg analysis, clock frequencies around
150 MHz are attainable in the MicroBlaze procesgben constrained to one-half of the FPGA.
Therefore, a speed-up of approximately 1.5 timesldcdoe achieved using a multiple clock

approach.

123

1€

O Readback
14 — O Execution —
@ Configuration]
12 - =
__10 _ .
w
£ |
) 8]| B]
£ —
F 6 — |
4] — |
2 | ﬁ
0 I I I I I
& & & < & A & &
Q Q N} o) Q No) Q
% > 2 > N > 2 S
FFFF S F S

Figure 7.6: 32-bit, 100 MHz interface test time fial chip CLB west or east with one full
compressed configuration and five partial recoragjons

7.5 Other Applications

An approach similar to the embedded processor-b&8d could be applied to an
external processor or microcontroller connectethéoSelectMAP 32-bit configuration interface.
Conceptually, the approach is similar to the apghmotor Atmel SoCs [3][4], except that the
processor and FPGA are integrated at the board, letber than at the chip level. The only
overhead required above that for the traditionégd Blpproach is processor downtime for the
test, additional circuit board interconnectionsdiidnal processor 1/0O, and a portion of the
processor program memory (16,558 Bytes for onei@essf CLB BIST) for storing the
embedded BIST software and reconfiguration datahe Tmpact to the system could be
minimized by performing tests of the FPGA as a fowrity, background task, at the expense of
increased test time. The approach could provide 3l times speed-up of the embedded
processor during reconfiguration and read back gudime 32-bit, 100 MHz SelectMAP

configuration interface without the penalty incurtey testing the FPGA in two sessions, one for

124

each half. The size of the initial download iscateduced when compared to the embedded
processor-based approach due to the highly optimiggucture of the BIST circuitry.
Furthermore, the memory required to store the Bt®nfigurations can be reduced at the
expense of some additional program memory in tiné peocessor.

The embedded processor-based BIST approach faxXvirtFPGAS is directly applicable
to Virtex-4 FPGAs [21] with some modification toetBBIST specific software (including device
specific subroutines such as algorithmic resourbeutest frame address generation) and stored
configuration data. Differences between the Videand Virtex-5 ICAP interfaces, such as
byte-swapping on the Virtex-5 ICAP, are accountadduring synthesis of the MicroBlaze and
associated ICAP interface circuitry based on thgeted device family. The frame address
register is also arranged differently in Virtex-ddaVirtex-5, but this can be accounted for in
software [22][23]. The overall test times for \@xt4 relative to external reconfiguration closely

match those results obtained in Virtex-5.

7.6 Conclusions

We have presented the results of a case study whiplements the first soft-core
embedded processor-based BIST approach. The appisaapplicable to any FPGA with
write/read access to the configuration memory froithin the FPGA fabric and with sufficient
configurable resources to implement both the sofe@rocessor and the BIST circuitry. The
number of external configurations of the FPGA dgriany BIST session is reduced to a
maximum of two (one for each half of the array) amirnal reconfiguration of the resources
under test are performed at the maximum allowalolekdrequency and data width. Read back
of ORA contents and diagnosis of faulty resouraesen test can be performed by the embedded

soft-core processor when fault diagnosis is desif@dfault-tolerant applications for example,

125

providing a speed-up of 5.4 versus readback vithendary Scan interface. The approach can
significantly decrease the overall test time inteys with a relatively slow external
configuration interface, as was the case for tle®ipus implementation of embedded processor-
based BIST using a dedicated hard-core procesgor [4

The soft-core processor approach was implementediitex-5 FPGAs using the
MicroBlaze processor for BIST reconfiguration, gohtof execution, fault injection, and fault
diagnosis. Reconfiguration of the resources urdst is achieved via the ICAP port in the
FPGA fabric. When implemented in Virtex-5, the aggeh requires more testing time when
compared with optimized external reconfigurationngscompressed partial reconfiguration
bitstreams. This is primarily due to the fact tthed overall BIST approach has been architected
for optimum configuration file compression. Thiludes orienting the BIST architecture with
the configuration memory for maximizing the effeethess of compressed download files with
multi-frame write features, partial reconfiguratioh the resources under test by maintaining
constant placement and routing between test phasésa single pass/fail indication to avoid
partial configuration memory read back for BISTules This is a testament to the advanced
state of FPGA BIST techniques as well as the featwand capabilities offered by FPGA
manufacturers to decrease configuration times.

However, the soft-core processor approach is sagmifly faster than configuration with
full or compressed configuration bitstreams alor@nly two downloads are required for each
BIST session when the embedded processor-basedaappris used, compared to six
configurations for CLB east/west tests and nine SerDes tests for example. BIST control,
execution and fault diagnosis implemented in théedded processor eliminate the need for

complex external test equipment for manufacturiegtibg and intelligent external BIST

126

controllers for in-system testing and diagnosi$amlt-tolerant applications. The architecture is
applicable to any BIST for Virtex-4 and Virtex-5 GRs without modification of the embedded

processor hardware; only the MicroBlaze program orgroontents need to be changed.

7.7 Acknowledgements

The contents of this chapter are accepted for gatohn in Proc. IEEE Southeastern
Symposium on System TheoPp10. Prof. Charles Stroud is a co-author onpgaper. A
majority of the actual research and the writinghaf published paper represents the efforts of the
primary student author and not collaborators, &edrésearch represents work performed while

in the graduate program at Auburn University.

7.8 References

[1] B. Dutton and C. Stroud, “Soft-core Embedded Preme8ased Built-In Self-Test of
FPGAs,”Proc. IEEE Int. Symp. On Defect and Fault Toleremc¥LSI Sys.pp. 29-37,
20009.

[2] Virtex-5 FPGA User GuiddJG190(v4.2), Xilinx, 2008.

[3] L-T Wang, C. Stroud, and N. Toub@ystem-on-Chip Test Architectur&an Francisco,
CA: Morgan Kaufmann, 2007.

[4] S. Toutounchi and A. Lai, “FPGA Test Coveragerdc. IEEE Int. Test Confpp. 1248-
1257, 2003.

[5] M. Abramovici and C. Stroud, “BIST-Based Test anddhosis of FPGA Logic Blocks,
IEEE Trans. on VLSI Systenw®l. 9, no. 1, pp. 159-172, 2001.

[6] C. Stroud, J. Nall, M. Lashinsky and M. Abramovi#|ST-Based Diagnosis of FPGA
Interconnect,’Proc. IEEE Int. Test Confpp. 618-627, 2002.

[7] C. Stroud and J. Bailey, “Bridging Fault Extractifom Physical Design Data for
Manufacturing Test Developmemroc. IEEE Int. Test Confpp. 760-769, 2000.

[8] C. Stroud, K. Leach and T. Slaughter, “BIST forixd 4000 and Spartan Series FPGAs:
A Case StudyProc. IEEE Int. Test Confpp. 1258-1267, 2003.

127

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]
[20]

[21]
[22]
[23]
[24]

C. Stroud, S. Garimella and J. Sunwoo, “On-ChipBE&ased Diagnosis of Embedded
Programmable Logic Cores in System-On-Chip Devic&spc. ISCA Int. Conf. on
Computers and Their Applicationgp. 308-313, 2005.

J Sunwoo and C. Stroud, “Built-In Self-Test of Ggafable Cores in SoCs Using
Embedded Processor Dynamic Reconfiguratiétrgc. Int. SoC Design Confpp. 174-
177, 2005.

S. Vemula and C. Stroud, Built-In Self-Test for gi@mmable 1/0O Buffers in FPGAs and
SOCs,Proc. IEEE Southeastern Symp. on System Thppryp34-538, 2006.

S. Dhingra, S. Garimella, A. Newalkar and C. StrdBlilt-In Self-Test for Virtex and
Spartan Il FPGAs Using Partial Reconfiguration,”o®r IEEE North Atlantic Test
Workshop, pp. 7-14, 2005.

D. Milton, S. Dhingra and C. Stroud, “Embedded ssor Based Built-In Self-Test and
Diagnosis of Logic and Memory Resources in FPGASdc. Int. Conf. on Embedded
Systems and Applicationgp 87-93, 2006.

B. Garrison, D. Milton, and C. Stroud, “Built-In B&est for Memory Resources in
Virtex-4 FPGAs,”Proc. ISCA Int. Conf. on Computers and Their Appg. 63-68, 2009.

M. Pulukuri and C. Stroud, “Built-In Self-Test ofigkal Signal Processors in Virtex-4
FPGAs,”Proc. IEEE Southeastern Symp. on System Thppryd4-38, 2009.

J. Yao, B. Dixon, C. Stroud and V. Nelson, “Buitt-ISelf-Test of Programmable
Interconnect in Virtex-4 FPGAsProc. IEEE Southeastern Symp, on System Thepry
29-33, 20009.

B. Dutton and C. Stroud, “Built-In Self-Test of Gmurable Logic Blocks in Virtex-5
FPGAs,”Proc. IEEE Southeastern Symp. on System Thppry230-234, 2009.

B. Dutton and C. Stroud, “Built-In Self-Test of grammable Input/Output Tiles in
Virtex-5 FPGASs,"Proc. IEEE Southeastern Symp. on System Thppry235-239, 2009.

MicroBlaze Processor Reference Guitd&s081(v.9.0), Xilinx, 2008.

B. Dutton and C. Stroud, “Embedded Processor BasSadlt Injection and SEU
Emulation for FPGAs,Proc. Int. Conf. on Emb. Systems and Apms. 183-189, 2009.

Virtex-4 FPGA User GuiddJG070 (v2.5), Xilinx, 2008.
Virtex-4 FPGA Configuration User GuidelG071(v1.1), Xilinx, 2008.
Virtex-5 FPGA Configuration User GuidelG191(v2.7), Xilinx, 2008.

R. Rajsuman, “Testing a System-On-Chip with Embeddéroprocessor,Proc. IEEE
Int. Test Conf.pp. 499-508, 1999.

128

Chapter Eight. On-line Single Event Upset Detection and Correction in Field
Programmable Gate Array Configuration Memories

Larger field programmable gate array (FPGA) configion memories and shrinking
design rules have raised concerns about singlet ewpsets (SEUs), especially for high-
reliability, high-availability systems that use FR& We present a design for the on-line
detection and correction of SEUs in the configarmtmemory of Xilinx Virtex-4 and Virtex-5
FPGAs. The design corrects all single-bit erronsl a@letects all double-bit errors in the
configuration memory at maximum speed and with malioverhead and power dissipation. A
method for SEU emulation in the configuration meynof FPGAs is presented which enables
the experimental verification of the approach. Tésults of SEU emulation in Xilinx FPGAs

are discussed.

8.1 Introduction

The increased use of field programmable gate arfdy$SAs) for implementing digital
logic applications over the past two decades has lbecompanied by increased concern about
radiation effects, and, in particular, the effeofssingle event upsets (SEUs). In addition to
memory elements such as flip-flops, look-up talfledTs), and random access memory (RAM)
cores, FPGAs contain a large static random accemmiony (SRAM), referred to as the
configuration memory, which establishes the ovesyditem application performed by the FPGA.
An SEU induced bit-flip in the SRAM configurationemory can therefore alter the functionality
of the FPGA. This, coupled with the large sizethad configuration memory, makes SEUs of

significantly more concern in FPGAs than in tramhil application specific integrated circuits

129

(ASICs). In Xilinx Virtex-5 FPGAs, for example, éhconfiguration memory alone represents
greater than 99% of all memory elements in a goevice, as summarized in Table 8.1, where
the LX30T represents one of the smallest FPGAshe Yirtex-5 family and the LX330T
represents one of the largest [26][27].

Table 8.1: Memory resources in two Virtex-5 FPGAs

Number of Memory Elements

Memory Type LX30T % of Total LX330T % of Total
Flip-Flops 19,200 0.2% 207,360 0.25%
LUT RAM Bits 327,680 3.5% 3,502,080 4.22%

Block RAM Bits 1,327,104 14.1% 11,943,936 14.41%
Configuration Bits | 9,362,432 99.8% 82,687,488 9%75
Total 9,381,632 100.00% 82,894,848 100.00%

Finding an accurate measurement of the susceptibiliSRAM configuration memories
to SEUs has been the focus of much research, imguthat in [15], [18], [24] and [30].
Accelerator testing conducted with Xilinx 4000 ssriFPGAs indicates the SEU frequency
increased by a factor of 4.74 when design rulesedsed from 600nm to 350nm with a
corresponding reduction in power supply voltagenrV to 3.3V [18]. On the other hand,
90nm Xilinx Virtex-4 FPGAs are reported to have SEIT (failures in 18 hours) rates of 246
per 16 bits of configuration memory, while 65nm VirtexF®GAs have a lower SEU FIT rate
of 151 per 1B bits (adjusted for sea-level in New York, NY) [6]. The FIT rate per Mb of
configuration memory in Xilinx FPGAs has actuallgem decreasing since the Virtex-1l series in
the year 2000. This reduction in SEU FIT rate bgaor of about 3.5 from Virtex-1l to Virtex-
5, despite drastic reductions in feature size aupply voltage, indicates that Xilinx is
incorporating architecture dependent SEU hardenteghniques in the design of the
configuration memory. This trend can be seen gufé 8.1, where the SEU rate for each Xilinx

FPGA family is plotted along with the initial re&ayear and minimum feature size. According

130

to [16], since 2002 Xilinx has designed the confedion memory to be more robust in an

attempt to reduce soft failure rates even as the and density of the FPGA grows. That this

attempt has been successful is supported by théhi@cthe FIT rates reported for Xilinx FPGAs

are low when compared to typical SRAMs [18].

A moobust SRAM design is possible

because the SRAM configuration memory remainscstatmajority of the time, in contrast to

typical SRAM memories which are designed to benaallsand as fast as possible [5][18].

FIT/Mb Config Memory

500
450
400
350
300
250
200
150
100
50
0

«

‘98 ‘99 ‘00

‘01 ‘02 08 ‘04 ‘05 ‘06 year

250 180 150

130 90 90 90 65 nm

L

&
oF

Q
Qj‘\
&

S

Figure 8.1: FIT rate (corrected for sea-level Néwvk, NY) versus Xilinx device family, initial
release year, and minimum feature size [6] whezecenter line represents the nominal value
and the span of the line represents the upperaaver 195% confidence levels

However, even the relatively low FIT rates of XdifFPGAs can become problematic

when considering the design of high reliabilityglhiavailability systems or systems which

operate at high altitude or in space. The largesimercially available Xilinx FPGAs currently

have configuration memories with more than 80 MP] [@nd in the next generation of devices

the largest available FPGAs will include configimatmemories of over 160 Mb in size [28].

For the 80 Mb Virtex-5 device, the FIT rate peridevis 10,960 failures in 1 billion hours, or

131

mean time between failure (MTBF) of (114,155 yeH0960 FIT) = 10.4 years at sea level. At
the 95% confidence level, the FIT rate is betwe@d-183, or MTBF between 7.8-14.3 years.
However, it should be noted that an SEU in the igom&tion memory does not always
correspond to a failure of the system. It is eated that only between 10% [21] and 40% [24]
of the configuration bits used in any given desagptually affect the design functionality.
Therefore, for a more accurate estimate of the MTBé# sensitivity of the design based on
analysis of “care” versus “don’t care” configuraticdbits should be taken into account.
Nevertheless, for SRAM FPGAs to be adopted foraaditavionics and space applications where
little or no risk is acceptable, an effective SEUWtigation plan must be implemented. In
addition, systems operating in high-radiation emwnents may require an SEU mitigation plan
even if some risk is tolerable. As an examplehef variance of SEU occurrence with altitude,
consider that the neutron flux density increasea fgctor of 383 at the typical commercial flight
cruising altitude of 36,000 ft (relative to seadeMew York, NY) [9].

Techniques for hardening digital circuits againgtUS can be categorized as architecture
dependent or architecture independent. An ardhiteclependent technique is one that requires
a modification to the physical design of an intéggacircuit; for example, high reliability
systems can employ hardware redundancy in latcBes [n FPGAs, however, architecture
dependent SEU hardening techniques are only alailégbimplemented by the FPGA
manufacturer. Therefore, for a typical SRAM FP@Ay SEU hardening implemented by the
user must be one that is architecture independ®mie widely known architecture independent
technique used in FPGAs is triple modular redundgi®IR). The TMR approach triplicates
all of the user logic and adds majority votershet inputs to all flip-flops and on all primary

outputs. By eliminating all single point failurédbe design can be guaranteed to tolerate an SEU

132

in any of the three circuit copies. However, therbead for a TMR approach can be prohibitive
because it is greater than 200%. Therefore, tdeim@nt a TMR approach, the required size of
the FPGA (in terms of resources) would necessédymore than three times the size of the
original, non-TMR design. TMR also consumes moosvgr (approximately three times as
much) and incurs a performance penalty. The implgation of TMR for designs in Xilinx
FPGAs can be entirely automated using the XilinxR'Wool, which guarantees full SEU and
single-event transient (SET) immunity [29]. Howevavithout some additional form of
configuration memory scrubbing, the accumulatiomaotftiple SEUs over time can cause system
failure even in designs with full TMR [23][29].

Another architecture independent method, configomatnemory scrubbing, periodically
refreshes the contents of the configuration mematlgout attempting to determine if an SEU
has occurred. Power-cycling is essentially theptast form of configuration memory scrubbing
because the entire configuration memory can beskéd each time the FPGA is power-cycled
if the FPGA is set in master configuration mode [A] more intelligent approach is to externally
read back words of configuration memory contentsngaring each word to a copy in a
“golden” configuration bitstream. This approacts lthe advantage of being able to detect any
number of SEUs in the configuration memory (whempared to error correcting codes). Any
mismatch between the “golden” copy and the confifon memory contents should cause the
erroneous configuration memory to be overwritten twe “golden” configuration data.
However, both approaches require a radiation hadlexternal configuration management unit
(microprocessor or ASIC) and a radiation hardengolden” copy of the configuration data.

The second approach also doubles the required anobumemory, because both the “golden”

133

bitstream and a mask file, which is used to maskKigoration bits which are subject to change
during normal system operation, must be storetlersystem [1].

Some FPGAs, including Virtex-4 and Virtex-5, incorate a Hamming error correction
code (ECC) in the configuration memory. The EQCg¢onjunction with some additional user-
accessible dedicated logic can be used to detebts S& the configuration memory. With
additional user-defined circuitry in the FPGA coegroneous configuration memory bits that
result from SEUs can be not only detected, but etscected [12]. It is this method that is the
focus of this chapter where we present an effici8S&lU correction circuit that works in
combination with existing SEU detection mechanigmgirtex-4 and Virtex-5 FPGASs to correct
SEUs in the FPGA configuration memory. This cit@an be synthesized and incorporated with
any user-defined digital application in any Virtéxer Virtex-5 FPGA for detection and
correction of SEUs during normal on-line systemrapen. We begin with an overview of
existing SEU detection mechanisms in Section 8&2gwith an overview of previous work in
on-line SEU detection and correction in Virtex-4GAS. The operation and architecture of the
proposed SEU detection and correction circuit aresgnted in Sections 8.3 and 8.4,
respectively. Experimental results and analysisnfrthe actual implementation of the SEU
detection and correction circuit in Virtex-4 andriék-5 FPGAs are presented in Sections 8.5
and 8.6 along with a comparison to prior work. Tdi@apter concludes with a summary in

Section 8.7.

8.2 Background
Like any other RAM, the configuration memory of BRGA is partitioned into words,
also called frames, which represent the smalledteadable unit of the memory for write and

read operations. Virtex-4 and Virtex-5 frames ¢sinsf 1,312 bits [25][26]. Each frame

134

includes a 12-bit field of eleven Hamming bits amdoverall parity bit for the frame data. The
eleven Hamming bits provide the potential for stngfror correction (SEC), and the overall
parity bit enables double error detection (DED)rowe frame data. The parity and Hamming
bits are generated external to the FPGA by theigordtion bitstream generation software and
are subsequently downloaded with the applicatiatifigs configuration data (an internal CRC
check verifies the integrity of the downloaded Jlatelowever, system memory data subject to
change during the operation of the FPGA, such asctintents of block RAMs and look-up
tables (LUTs) used as distributed RAMs, are noeced by the parity and Hamming bits [4].
Virtex-4 and Virtex-5 provide a specialized corelled Frame ECC, for detection and
identification of single and double-bit errors imetframe data [25][26]. For each frame read
from the configuration memory, the Frame ECC modualleulates the Hamming bits as well as
the overall parity for the frame data, and compdnese bits with the Hamming bits and parity
for that frame stored in the configuration memoBased on this comparison, the Frame ECC
module produces indications for no error, singlkedsror, and double-bit error conditions in
addition to a syndrome indicating the location ioigie-bit errors. The error conditions for the
Frame ECC core are summarized in Table 8.2. Systemory contents—block RAMs and

LUT RAMs, for example—are masked from the interpatity and Hamming calculation by the

Frame ECC.
Table 8.2: Frame ECC error codes [25][26]
Error Type Condition (syndromevalid = 1)
No bit error Hamming match, no parity error

1-bit correctable error (SEC) Hamming mismatchitparror
2-bit error detection (DED) Hamming mismatch, noityaerror

135

The Frame ECC function is performed each time mér&s read from the external serial
Boundary Scan interface or parallel SelectMAP auntation interface [25][26]. In addition to
these external configuration interfaces, Virtex-AdaVirtex-5 include a 32-bit internal
configuration access port (ICAP), illustrated ingliie 8.2, that provides write/read access
to/from the configuration memory from within the GR core. As is the case with the external
interfaces, the Frame ECC function is performedhe@mme a frame is read via the ICAP.
Because the Frame ECC does not provide circuitpetform error correction, some additional
logic must be implemented in the FPGA fabric thegsuthe ICAP and Frame ECC modules to
cycle through all frames of the configuration meyntar detect SEUs and to correct those SEUSs.
Virtex-5 FPGAs also include dedicated circuitrytiie FPGA that can automatically detect SEUs
using built-in cyclic redundancy check (CRC) citepi[26]. When Readback CRC is enabled
(by setting the POST_CRC configuration option toABALE), the contents of the configuration
memory are continuously read back in the backgrafritie user design operation to calculate
and check the CRC of the configuration memory auste An SEU anywhere in the
configuration memory will cause the re-calculate/CCto disagree with the stored CRC. The
mismatch is signaled by asserting the CRC Erroputubf the Frame ECC (only present in
Virtex-5 and not shown in Figure 8.2). Optionallye external INIT_B output pin of the FPGA
may also be driven low when the error is detec&&].[The Readback CRC will begin to run
automatically upon a successful configuration ef PGA and will continue to run as long as no
configuration interfaces are in use; a configuraiiaterface is considered to be in use after the
synchronize (SYNC) command is decoded and untibtheynchronize (DESYNC) command is
decoded [26]. Similar background CRC read backudity has been incorporated in recent

Altera [21] and Lattice [14] FPGAs to support SEétettion.

136

CLK
BUSY ERROR
—>
CLK_EN - —>
ICAP_IN[3L:0] ICAP_OUT(31.0] Frame |SYNDROME[11:0]
NS ICAP f—p —
WRITE SYNDROMEVALID
—’ —>

Figure 8.2: Frame ECC and ICAP primitives

An implementation of internal SEU detection andrection using the Frame ECC and
ICAP logic in Virtex-4 devices was reported in [12The design uses an 8-bit PicoBlaze [19]
soft-core processor with additional circuitry andNR in the FPGA fabric for interfacing to the
ICAP to read and write the configuration memoryheTdesign can operate in a detection only
mode, or can detect and correct single-bit errofhe design was later implemented in triple
modular redundancy (TMR) [10]. While both [10] aji@] are applicable only to Virtex-4, the

approach in [12] was recently extended in [5] tpmurt Virtex-5 FPGAs.

8.3 Operation of SEU Detect and Correct

Our SEU detect and correct circuit,®iEU controlleras it is referred to in this chapter, is
designed to be integrated into any existing VHDIsdzhuser design with minimal effort. At the
top level, there are only two inputsleck and reset—and one output—error. The VHDL

component declaration for the SEU controller isegivn Figure 8.3.

conmponent seu_controller is
generic(device : string(l to 6));
port (rst : in std_|ogic;
clock : in std_logic;
error : out std _|ogic);
end conponent seu_controll er;

Figure 8.3: SEU controller VHDL component declamat

The generideviceis a text string that specifies the device in whilse SEU controller

will be implemented, such as “LX330T” for exampl&ll Virtex-4 and Virtex-5 devices are

137

supported such that only this generic need be Bpedy the user to indicate the target FPGA
for synthesis. Thesrror output is asserted when the first multiple-bitoeris detected, and
should trigger a reconfiguration of the FPGA fromelable external memory since multiple bit
errors cannot be corrected by the SEU controllEne clock input is directly connected to the
ICAP clock and the SEU controller. It is limiteg the maximum ICAP clock frequency of 100
MHz, but can operate at any frequency below 100 MHhzVirtex-5 devices, the ICAP and SEU
controller clock can be supplied by an internalNBidz oscillator [26]. The synchronous active
high resetinput forces the SEU controller into an inactivats, releasing the configuration
interface for use by other applications. Assertimgresetinput also resets the frame address to
the first frame of configuration memory and cletrserror output. Whemnesetis released, the
SEU controller will resume normal operation frone tlirst frame of the configuration memory
on the next rising edge afock Theresetinput may be tied to logic O for free-running SEU
detection and correction in user designs that daeguire access to the configuration memory
during normal system operation. The operatiorhef $SEU controller consists of the following
steps:

1. A 1312-bit frame of configuration memory is readotigh the ICAP as forty-one 32-bit

words and the frame data is stored in a block RAM.

2. If an error is indicated by the outputs of the FeaBCC primitive, the type of error is
determined as shown in Table 8.2. If the erroicaigs a double-bit error, theror
output of the SEU controller is latched high anald®ack continues with the next frame
of configuration memory. If a single-bit error iisdicated, the location of the bit is
determined from the syndronsnd the erroneous bit is correctee.(inverted) in the

frame data stored in the block RAM.

138

3. If a single-bit error was indicated in Step 2, tepaired frame is now written back into

the configuration memory at the same frame addresswhich it was read.

4. If a single-bit error was indicated in Step 2, réadk resumes with the first frame in the

configuration column containing the newly repaifieine.

5. When a configuration column has been completeld wead repaired (as determined by
no single-bit error indications for any frames an that configuration column), the SEU
controller advances to the next configuration r@iimn in the array and repeats the

process starting at Step 1.

This SEU controller behavior is summarized by teeyslocode of Figure 8.4.

Load starting frane address
while (reset == 0) {
Read single frame from configuration nenory
Read Frame ECC out puts
if (single bit error is detected) {
Transl ate syndronme to bit index in frame
Read erroneous bit
Wite inverted (corrected) bit to sanme |ocation
Wite frame back to configuration nmenory
br eak
}
else if (double bit error is detected) {
Assert ERROR out put
}

| ncrement Frane Address

Figure 8.4: SEU controller behavioral pseudocode

In Virtex-5 devices, the SEU controller may utilitee Read Back CRC feature of the
Frame ECC module for the initial detection of anUSEith a small modification to the design.

By enabling the Read Back CRC (in the design caimgf file) and using the complement of the

139

CRC Error output of the Frame ECC circuit as tasetinput to the SEU controller, the SEU
controller will remain idle (held in active highset) with the CRC Read Back circuit operating
in the background (at the frequency of the ICAPuingdock [26]). When a CRC mismatch is
detected, the CRC Error output of the Frame ECECutiis asserted, de-asserting tesetinput

to the SEU controller. The SEU controller will iegiormal operation, cycling through the
configuration memory detecting and correcting afgke-bit errors. However, after the last
frame of configuration memory is reached, the SBudtller will return to the reset state and
wait for a falling edge on theesetinput before resuming operation. By entering riéget state
and releasing the ICAP configuration interfaceaviBESYNC command, the internal CRC Read
Back will resume. This approach has the disadgentd doubling the cycle time in the worst
case since both the CRC Read Back circuit and Skitraler may require a complete cycle to
detect and then repair the SEU. As observed inHéever, this approach may offer some
additional immunity to SEUs in the detection phéseause the CRC Read Back circuit is
implemented as dedicated logic at the physicaltilevel, as opposed to the SEU controller,
which is implemented in configurable resourcese TMIT_B signal could be used to externally
verify the correction of the SEU by ensuring theTNB output pin of the FPGA does not
remain low longer than a predetermined time pe(agproximately three complete scan cycles
of the FPGA configuration memory). If, howevere tiNIT B remains low or the error output of
the Frame ECC is asserted, the error is not repainel the configuration memory should be

refreshed from a radiation hardened “golden” copy.

8.4 SEU Detect and Correct Architecture
Our SEU controller is implemented entirely in copiiable logic blocks (CLBs) and one

18 Kb block RAM in the FPGA fabric. It is consttad primarily around the ICAP and Frame

140

ECC primitives [25][26]. The operation of the SEbntroller, described in the previous section,
is managed with a finite state machine (FSM) immatad in CLB logic slices. The FSM
initiates reads and writes to the FPGA internalfigomation memory and control registers via
the 32-bit ICAP interface. A set of sixty-four Bi-instructions are stored in a 32x64-bit read-
only memory (ROM) formed in 32 LUTs (6-inputs eadh)Virtex-5 and 128 LUTs (4-inputs
each) in Virtex-4. The 32x64-bit LUT ROM is addsed by a counter that is enabled by
combinational logic from the FSM current state.e TWSM also generates the frame address for
reads and writes of the configuration memory. m&khds from and writes to the configuration
memory are 32-bits. The logic for the frame adslresunter is device dependent since every
device has different numbers of rows and/or colunfagrthermore, the arrangement of different
types of columnseg(g. CLB, DSP, RAM, etc.) can vary depending on the cevi The generic
device(shown in Figure 8.3) is used to determine andr®gize the correct frame address logic
for the target device.

The central component of the SEU controller archites is the dual-port block RAM (at
least two columns of 18 Kb block RAMs are includedvery Virtex-4 and Virtex-5 device). A
single block RAM is used to store each frame asiiead from the configuration memory. The
A port of the block RAM is configured for 32-bitad/write access, and the B port is configured
for 1-bit read/write access, as illustrated in Fgg®8.5. The data inputs of the A port are
connected directly to the outputs of the ICAP, #mel A port data outputs are connected to the

ICAP inputs via a 32-bit 2-to-1 multiplexer.

141

Reset
Clock

>

SEU
Controller
Logic &
Instruction
ROM

Error

syndromevalid

L 32 J
32 DOUTA
’ ICAP [32, .IpiNnA
>
» WEA
+# * ADDRA
11
* >BRAM
16
, » ADDRB
WEB
12,
Frame DINB
B t] ECC DOUTB—‘
4 T
ECCf error

Figure 8.5: SEU controller block diagram

the range 0-1311 is given by:

142

The A port address inputs are controlled by a cauimt the FSM. Every frame that is
read from the ICAP is stored in the first forty-oB2-bit words of the block RAM. Single-bit
errors are corrected via the 1-bit B port interfadehe B port address inputs are connected to
combinational logic which provides the bit offsdttbe bit in error based on the Frame ECC
syndromeoutputs. The 1-bit B port data output is invertethinected to the 1-bit B port input.
The B port write enable is controlled by combinagiblogic from thesyndromevalicandECC
error Frame ECC outputs in conjunction with the FSM.e Tocation of single-bit errors within
the frame is indicated by tleyndrom§L0:0] outputs of the Frame ECC primitive, however some
additional combinational computational logic isugqd to determine the exact bit-offset of the

error within the configuration frame. An equatifmm determining the bit-offset of the error in

offset = {S[10:5] — 6'd22 — S[10], S[5:0]} (8.1)

where S[10:0] are the Frame EG¢hdromeoutputs [25][26]. Otherwise, if the binary valuke o
syndromgl0:0] is 0 or a power of 2, then the error is kechin one of the Hamming bits, in
which case the location of the bit error is detewrdi as shown in Table 8.3. The output of the
syndrome combinational logic is tied to the B pattiress inputs. In this manner, the erroneous
bit, as indicated byyndromgl1:0], is inverted when the block RAM B port wriemable is
asserted. The repaired frame is then written liatckthe configuration memory via the A port
32-bit output to the ICAP.

Table 8.3: Hamming bit error diagnosis [25][26]

syndrome[11:0] | offset | syndrome[11:0] | offset
100000000001 640 100001000000 64
100000000010 641 100010000000 64
100000000100 642 100100000000 64
0
0
0

100000001000 643 10100000000 64
100000010000 644 11000000000 69
100000100000 645 10000000000 69

P OO0 ~NOD®

A rare, but potentially problematic situation cais@ when an odd number of bit errors
occur in a single frame of configuration memoryhe$e errors will cause both a syndrome
mismatch and overall parity mismatch, which aliagesa correctable single-bit error (refer to
Table 8.2). However, in this case, the syndrontpuia do not necessarily indicate the location
of any of the actual errors, and can erroneousigtmywhere in the range 0 t6'21 (2047).
Since the actual frame data only exists in the eahigo 1311, the following two scenarios are
possible.

First, the odd-multiple bit error aliases as a k&iflgit error with the syndrome outputs

pointing in the valid range of the frame data 01811. In response to the single-bit error

143

indication, the SEU controller will invert the fraabit pointed to by the syndrome, which may
satisfy the Hamming code by creating a valid distarode word, and the modified frame will be
written back into the configuration memory. ThelSEontroller will resume read back at the
start of the configuration column containing thé# damaged frame. When the erroneous frame,
now containing an even number of multiple errossrdad, the valid code word will cause a
Hamming code match and an overall parity-bit matabh that a “no bit error” indication is
obtained. However, by incorporating the CRC ReadkBmechanism with the SEU controller,
as described in Section 8.3, this multiple bit ecan be detected because the CRC will continue
to indicate a CRC Error with the SEU controllericading no error.

In the second scenario, when the frame containingdal number of errors greater than
one is read, the syndrome indicates an error bétion in the range from 1312 to 2047. This
range, while a valid address in the larger blockMRAies outside of the range of valid frame
data. Therefore, if events are allowed to proceth the first scenario, unmodified frame data
would be written back into the configuration memaeifectively creating an infinite loop, since
the same frame would be continually read from anttem to the configuration memory without
modification. Our solution is to include a greatean comparator in the SEU controller which
detects when the syndrome points outside of thgerari valid frame data (0 to 1311). When
this condition occurs, the SEU controller ignorbe syndrome and asserts t&or output,
indicating the existence of a multiple-bit errodahat the FPGA configuration bitstream data

should be reloaded from a reliable external memory.

144

8.5 Implementation Results

The greatest benefit of our SEU controller when parad to other approaches is the
relatively high speed at which errors are deteetsdi corrected. SEUs should be corrected with
a minimum amount of latency so that errors in thegmmming of the user logic persist for the
shortest possible period of time. Figure 8.6 shthwestime required for one full cycle of single-
bit error correction and double-bit error detection Virtex-4 devices for the Xilinx SEU
controller described in [12] and our SEU contrgllethere a cycle is defined as the time to
perform the operation over every configuration mgmfoame in the device, excluding frames
containing block RAM contents. The cycle time atswresponds to the maximum amount of
time that one SEU can persist in the configuratr@mory.

The Xilinx Virtex-4 SEU controller can operate id modes: single and double-bit error
detection only mode, and single-bit error corractamd double-bit error detection mode [12].
As shown in Figure 8.6, the Xilinx “detect only” dg time is nearly identical to our detestd
correct mode. However, when single-bit error ociiom is enabled, the total cycle time for the
Xilinx Virtex-4 SEU controller increases to about #mes that of our normal deteamd correct
cycle time. On average, our SEU controller redubegotal cycle time for SEC and DED with
respect to the Xilinx SEU controller by 94.7%. ig 8.7 shows the total cycle time for our
SEU controller in Virtex-5 devices. The cycle tiisencreased by an average ofis/for each
SEU detected and corrected. The repair time fer fomme is negligible. However, the cycle

time would double if there were one SEU presem®viery configuration column.

145

> D
& & P

e

&

&T@

\mf@

109110D pue 1991 Xul|IX |
AuQ 10918Q XUl|IX O
103110D pue 1091 |

T
o
-

(sw) awil 894D

- 00T

000T

Figure 8.6: SEU controller LOG cycle time vs. ¥xt4 device

146

m Overhead
m Frame Read

(@)
T 1 T 1 1 ézl—)
(e} N [ce] < o
— —

(sw) awll 394D

24
20 ~

Figure 8.7: SEU controller cycle time vs. Virtexdévice

147

To increase the reliability of the Xilinx SEU cooller, the authors of [10] used the
Xilinx TMR Tool [29] to implement the Xilinx Virtexd SEU controller with full TMR.
However, as the results in [10] show, this approaey be impractical for some applications
because of its high area overhead. A comparisahefevice utilization for the Xilinx SEU
controller [12], the Xilinx SEU controller with TMR10], and our approach implemented in
Virtex-4 is summarized in Table 8.4. While theiXXd approach uses 23 fewer slices, we use
one less block RAM and complete each cycle of thefiguration memory an average of 20
times faster. The Xilinx Virtex-4 SEU controlleritty TMR utilizes 1,308 logic slices and 6

block RAMs [10] — a 770% increase in area versesitn-TMR SEU controller.

Table 8.4: SEU controller resource utilizatiorMintex-4 devices

Resource Xilinx [12] Xilink TMR [10] | SEU Controller
Slices 149 1308 182
Block RAMs (18 Kb) 2 6 1
Avg Cycle (ms) 105.5 105.5 5.603
Lines VHDL 3656 -- 1051

A comparison of our SEU controller with the recgntkoposed Xilinx Virtex-5 SEU
controller [5] is given in Table 8.5. Our approaddes one less block RAM and 30 fewer slices.
The cycle time for the Xilinx Virtex-5 SEU contrell approach was not reported. However, due
to the similarity of the Virtex-4 [12] and Virtex{b] SEU controller architectures, our Virtetx-5
SEU controller is likely to have a speed-up fasiamilar to that observed in Virtex-4.

Table 8.5: SEU controller resource utilizatiorVintex-5 devices

Resource Xilinx [5] SEU Controller
Slices 95 65
Block RAMs (18 Kb) 2 1
Average Cycle Time (ms) -- 9.338
Lines VHDL 2625 945

148

Our SEU controller could also be implemented usheg Xilinx TMR Tool to mitigate
the risk of failure due to an SEU, as was donel for the Xilinx Virtex-4 SEU controller
TMR design. This approach would essentially alteww error-free SEU controllers to correct an
SEU affecting the third SEU controller. Howevehet configurable routing resources
surrounding the ICAP and Frame ECC cores could Is#il vulnerable to SEUs since these

modules and their interfaces cannot be replicated.

8.6 Experimental Results
Our SEU controller has been synthesized for alltex#d and Virtex-5 FPGAs.

Furthermore, the SEU controller has been downloadetl verified on Virtex-4 FX12, SX35,
and LX60 devices as well as Virtex-5 LX30T, LX503$X35T, SX50T, FX30T and FX70T
devices. The number of utilized CLB logic slicestbeen observed to vary by +3 slices in both
Virtex-4 and Virtex-5 devices depending on the devand the area optimization used with the
place and route software. During synthesis, the 8&ntroller logic and block RAM may be
constrained to any area of the FPGA or may beulebnstrained for automatic placement with
the user’s system function. The routed SEU coletrah a Virtex-5 LX30T device is shown in
Figure 8.8 where its location was constrained #odiea shown. The dynamic power dissipation
of the SEU controller was measured on both Virteadd Virtex-5 FPGAs and found to be less
than 5 mW at 100 MHz. Power requirements for thevipus approaches in [5], [10] and [12]

were not reported.

149

L o Sl

Figure 8.8: Routed SEU controller implemented irtéx-5 LX20T device

For design verification and analysis, we developedapproach to emulate SEUs in the
configuration memories of Virtex-4 and Virtex-5 FR&using a configuration memory read-
modify-write process [8] similar to the approachschiébed in [11]. The read-modify-write
process is executed by an external computer cosmheot the FPGA via the Boundary Scan
configuration interface. A list of configurationtbaddresses is generated by software we
developed to select random locations for SEU imgact Our SEU list generation software also
allows for control of the locations of the SEUs édher a specific region or the entire
configuration memory. Additionally, a rectanguea of the FPGA can be masked such that

SEUs are randomly located outside of the mask a€a. approach is capable of injecting any

150

number of errors in the configuration memory, si@uéously or individually, as determined by
the length of the SEU target list [8]. This SEU wation approach was shown in [11] to
reproduce 97% of actual SEU and SET induced faultsadiation chamber experiments.
Furthermore, because the entire configuration mgnmraccessible, greater than 99% of all
possible SEUs in the configuration memory of a givrtex-5 FPGA can be emulated with this
approach (refer to Table 8.1).

The analysis process begins by configuring theetadgvice with the error-free SEU
controller configuration. The SEU controller iddhen reset while the SEUs are injected into the
configuration memory via the Boundary Scan intexfac For each SEU in the list, the
corresponding frame of configuration memory is rbadk from the target device to the external
computer. The SEU emulation bit in the frame igented, and the frame is written back to the
same location in the configuration memory. Aftgection of the SEU(s), the SEU controller is
released from reset and executed for one or marplete cycles. The number of single-bit and
multiple-bit errors reported by the SEU controbee recorded by internal counters included for
analysis and verification only, and these counti®alare read via the Boundary Scan interface at
the end of the error detection/correction cyclébe success of the SEU controller is determined
by comparing the values in the counters to the raunalb SEUs contained in the original list.
Emulated configuration memory SEUs are classifiedwo categories. The first category
includes all SEUs that are detected and correabechally, as verified by a comparison of the
retrieved count values and the original SEU lighe second category encompasses any SEU
that affects the operation of the SEU controlleshsthat either the SEU cannot be detected and
corrected or the values contained in the counteesimcorrect or cannot be retrieved for

verification. Note that a slight penalty is incauirfor the inclusion of the counters, which are

151

susceptible to SEUs, and could produce a failingepa despite the correction of the emulated
SEU. A total of 8,000 randomly generated SEUs wedées/idually injected in the configuration
memory of a Virtex-5 LX50T and the result of eadhltwas recorded. Our trials showed that,
of the 8,000 random SEUs, all but 178 were deteatedl corrected in the first full execution
cycle, yielding a probability of detection and @mtion of 97.78%. Considering the SEU
locations to be randomly distributed, independam@es, the lower bound for the probability of
correction of SEUs at the 99% confidence level/i80% [22]. Therefore, the likely probability
of detection and correction of any number of siemd#tous SEUs greater than one is given by:

Pr(correction) = [1—Pr(failuré)]

whereN is the number of simultaneously occurring SEUse Tesults of SEU emulation for
1000 SEUs in four Virtex-5 devices are shown inl&&6. In our trials, 100% of SEUs that lie
outside of the area of the configuration memoryt thantrols the functionality of the SEU
controller are corrected. The experimental succass for [10] and [12] were not reported.

Table 8.6: SEU emulation results

Pr (correction)
Device | Slice Count | Pop. Size (Mb) | Corrected/Injected | 99% Confidence
LX30T 59 7.29 950/1000 93.22%
SX35T 60 9.26 955/1000 93.46%
LX50T 59 10.9 980/1000 96.86%
SX50T 60 13.9 967/1000 94.96%
LX50T 59 10.9 7822/8000 97.35%

In general, the percentage of correctable SEU®s#ipely correlated to the size of the
configuration memory of the given device becauseniimber of configuration bits affecting the
SEU controller functionality are fixed in relatido the total size of the configuration memory.
According to the data provided in [5], the adjuskéd rate, considering only the vulnerable bits

which implement the SEU controller functionalityaynbe approximately calculated based on

152

the number of resources in use by the SEU contraltel the number of configuration bits
affecting the programming of each type of resolist®wn in Table 8.7). For the Xilinx Virtex-

5 SEU controller, the approximate number of sevesitonfiguration bits was reported to be
113,365 bits, or 0.108 Mb, yielding a nominal F@ter of 16.33, or MTBF of approximately
6,992 years [5]. For our SEU controller, whicHizgis less logic resources in Virtex-5, there are
approximately [(65 x 1,181) + (1 x 585)] = 77,35&por 0.0738 Mb, that are sensitive to SEUs.
Therefore, the adjusted FIT rate for our SEU cdi@ras 11.14, or MTBF of approximately
10,247 years. As was observed in the SEU emulaésults, the adjusted FIT rate for designs
protected by the SEU controller is independenthef device size because the size of the SEU
controller is approximately device independent.

Table 8.7: Approximate number of configuratiorsldidr common resources [5]

Resour ce Approximate number of configuration bits
Logic Slice 1,181
Block RAM (36 Kb) 1,170
Block RAM (18 Kb) 585
I/0 Tile 2,657
DSPA48E Slice 4,592

8.7 Conclusions

The increased use of FPGAs for implementing digijastems, in conjunction with their
larger configuration memories and shrinking desigles, has raised concerns about the effects
of SEUs, particularly for high-altitude and spapglecations as well as for high-reliability, high-
availability applications. As a result, some FP@?Rnufacturers are reducing the FIT rate
through their design of the configuration memory dy incorporating modules that support
SEU detection, such as the Frame ECC and ICAPdenteXilinx FPGAs [25][26] and CRC

background check circuitry in recent Altera [21pdrattice [14] FPGAs. We have presented an

153

SEU controller applicable to all Xilinx Virtex-4 drVirtex-5 FPGASs that is capable of correcting
single-bit errors and detecting double-bit errarsthe FPGA configuration memory, which
represents greater than 99% of all memory elensersiseptible to SEUs. Note that block RAMs
account for the second largest percentage (appat&lyn14%) of memory elements susceptible
to SEUs. However, recent Xilinx [25][26] and Alef21] FPGAs include RAMs cores with
user optional ECC modes of operation. The SEUrobtlet VHDL is easily integrated with any
existing user design with minimal resource overhaad power dissipation. Our approach
detects and corrects errors in the configuratioomorg 20 times faster than other reported
approaches in [10] and [12]. In addition, our dasis less susceptible to SEU induced failure
because it uses less logic resources, which resu#tdailure rate improvement of about 46.6%
for Virtex-5 FPGAs. Finally, TMR techniques canumed to prevent SEUs that occur within the
configuration bits that establish the SEU controlbgic from causing the SEU controller to fail

in high-reliability, high-availability applications

8.8 Acknowledgements

The contents of this chapter are published undertitle “On-line Single Event Upset
Detection and Correction in FPGAs Configuration Mems” in The ISCA International Journal
on Computers and Their Applicatigngol. 17, No. 2. Prof. Charles Stroud is a cdhauton the
journal article. The journal article is an extetidesrsion of the work previously published in
Proceedings of the ISCA International ConferenceComputers and Their Application2009,
pp. 57-62, under the title “Single Event Upset B&ta and Correction in Virtex-4 and Virtex-5
FPGAs”. A majority of the actual research andwhiing of the published paper represents the
efforts of the primary student author and not dmlators, and the research represents work

performed while in the graduate program at Aubuniversity.

154

8.9 References

[1] B. Bridgford, C. Carmichael, and C. Tseng, “Singlent Upset Mitigation Selection
Guide,” XAPP987 (v1.0), Xilinx Inc., March 2008.

[2] M. Caffrey, P. Graham, E. Johnson, M. Wirthlin,&armichael, “Single-Event Upsets in
SRAM FPGAs,” Military and Aerospace ProgrammablegicoDevices Conf., Sept.
2002.

[3] T. Calin, M. Nicolaidis, and R. Velazco, “Upset ldaned Memory Design for
Submicron CMOS TechnologyJEEE Trans. on Nuclear Scienceol. 43, no. 6, pp.
2874-2878, Dec. 1996.

[4] C. Carmichael and C. Wei Tseng, “Correcting SEUsVintex-4 Platform FPGA
Configuration Memory,” XAPP988, (v1.0), Xilinx IndMarch 2008.

[5] K. Chapman and L. Jones, “SEU Strategies for ViBeRevices,” XAPP864 (v1.0.1),
Xilinx Inc., March 2009.

[6] Device Reliability Report: Fourth Quarter 2008G116 (v5.3) , Xilinx Inc., Feb. 2009.

[7] B. Dutton and C. Stroud, “Single Event Upset Detecand Correction in Virtex-4 and
Virtex-5 FPGAS,”Proc. ISCA Int. Conf. on Computers and Their Amtlans pp. 57-
62, April 2009.

[8] B. Dutton, M. Ali, J. Sunwoo and C. Stroud, “EmbeddProcessor Based Fault Injection
and SEU Emulation for FPGAs,Proc. Int. Conf. on Embedded Systems and
Applications pp. 183-189, July 2009.

[9] “Flux Calculation,” <http://www.seutest.com/cgirBrluxCalculator.cgi>, April 2009.

[10] J. Heiner, N. Collins, and M. Wirthlin, “Fault Toknt ICAP Controller for High-
Reliable Internal ScrubbingProc. IEEE Aerospace Conpp. 1-10, March 2008.

[11] E. Johnson, M. Caffrey, P. Graham, N. Rollins, BhdVirthlin, “Accelerator Validation
of an FPGA SEU SimulatorJEEE Trans. on Nuclear Scienceol. 50, no. 6, pp. 2147-
2157, Dec. 2003.

[12] L. Jones, “Single Event Upset (SEU) Detection andré€ttion Using Virtex-4 Devices,”
XAPP714 (v 1.5), Xilinx Inc., Jan. 2007.

[13] F. Kastensmidt, L. Carro, and R. ReFault-Tolerance Techniques for SRAM-based
FPGAs Frontiers in Electronic Testing, Vol. 32, DordnécThe Netherlands, Springer,
2006.

[14] “LatticeECP3 Soft Error Detection (SED) Usage GuidéN1184 (v1.0), Lattice
Semiconductor Inc., Feb. 2009.

155

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]
[26]
[27]
[28]
[29]

[30]

A. Lesea, “Continuing Experiments of Atmosphericuden Effects on Deep Submicron
Integrated Circuits,” WP286 (v1.0), Xilinx Inc., ivtzh 2008.

A. Lesea and P. Alfke, “Xilinx FPGAs Overcome th&e Effects of Sub-90 nm
Technology,” WP256 (v1.0.1), Xilinx Inc., March 2D0

A. Lesea, S. Drimer, J. Fabula, C. Carmichael, Bndlfke, “The Rosetta Experiment:
Atmospheric Soft Error Rate Testing in Differingcheology FPGAS,IEEE Trans. on
Device and Materials Reliabilifyvol. 5, No. 3, pp. 317-328, Sept. 2005.

M. Ohlsson, P. Dyreklev, and K. Johansson, “Neutéamgle Event Upsets in SRAM-
based FPGAs,Proc. IEEE Radiation Effects Data Workshpp. 177-180, July 1998.

PicoBlaze 8-bit Embedded Microcontroller User Guid#G129 (v1.1.2), Xilinx Inc.,
June 2008.

H. Quinn, P. Graham, K. Morgan, M. Caffrey and Jome, "A Test Methodology for
Determining Space-Readiness of Xilinx SRAM-basedSAPDesigns," Proc. IEEE
Automatic Test Conf. (AUTOTESTCOPD, 252-258, Sept. 2008.

“Robust SEU Mitigation with Stratix 11l FPGAs,” WB1012-1.0, Altera Inc., Jan. 2007.

J. Sauro and J.R. Lewis, “Estimating CompletioneRalfrom Small Samples Using
Binomial Confidence Intervals,Proc. Human Factors and Ergonomics Socighp.
2100-2104, 2005, available at <www.measuringudgtabm/wald>.

L. Sterpone and M. Violante, “A Design Flow for Rrcating FPGA-based Systems
Against Single Event UpsetsProc. IEEE Int. Symp. obefect and Fault Tolerance in
VLSI System$pp. 436-444, Oct. 2005.

P. Sundararajan, S. McMillan, B. Blodget, C. Catmiel, and C. Patterson, “Estimation
of Single Event Upset Probability Impact of FPGAsms,” Military and Aerospace
Programmable Logic Devices Conf., Sept. 2003.

Virtex-4 FPGA Configuration User GuidedG071 (v1.10), Xilinx Inc., April 2008.
Virtex-5 FPGA Configuration User GuidelG191 (v3.6), Xilinx Inc., Feb. 2009.
Virtex-5 Family OverviewDS100 (v5.0), Xilinx Inc., Feb. 2009.

Virtex-6 Family OvervienDS150 (v1.0), Xilinx Inc., Feb. 2009.

Xilinx TRMTool User Guide: TMRTool Software Verstogi, UG156 (v2.2), Xilinx Inc.,
20009.

C. Yui, G. Swift, and C. Carmichael, “Single Evénpset Susceptibility Testing of the

Xilinx Virtex-1l FPGA,” Military and Aerospace Pragmmable Logic Devices Conf.,
Sept. 2002.

156

Chapter Nine. Summary and Conclusions
This chapter concludes and summarizes the the&isst, a summary of the work
presented in this thesis is provided, followed mggestions for future research and any

improvements to the work.

9.1 Summary of Work

A BIST approach was presented for the CLBs in XH%eFPGAs. A total of 17
configurations were used to obtain 100% stuck-alt feoverage in every CLB in any Virtex-5
device. Gate level fault simulation and configimatmemory fault emulation were used for the
development and verification of test configurati@msl for calculating fault coverage. A new
ORA design was introduced which provides a singigpass/fail result for all of the resources
under test. This ORA design has since been use¥erny BIST configuration that has been
developed for Virtex-4 and Virtex-5 FPGAs. The @lktest time is minimized by using partial
reconfiguration of the resources under test anditigde-bit pass/fail indication at the conclusion
of each test session. However, for fault diagndbis contents of every ORA may be retrieved
via partial configuration memory readback, and thecations of faults determined
algorithmically based on the locations of the fajliORAS.

This thesis also presented a BIST approach fol/@e€Tiles in Virtex-5 FPGAs. This
approach shares many features of the approachL®s,Gncluding pseudo-exhaustive testing of
the embedded resources and comparison-based aefgpdnse analysis (using the improved
ORA design with single-bit pass/fail). One inteieg difference with the 1/0O BIST approach is

the ability to apply a limited number of determtidstest patterns using block RAMs in the

157

FPGA fabric to store the test pattern set. Fotexid, 512 test patterns could be stored in a
block RAM, and in Virtex-5 the number increasedl@®4. However, due to the lack of any
gate-level description of the 1/0O Tiles in Xilinxedces, it is difficult to evaluate the
effectiveness of the test patterns. One of thet migsificant contributions of this work is the
use of dedicated feedback routing in the 1/0 Taldypass the 1/0O buffer (and pad) during tests
of the digital logic resources in the 1/O Tile. iteffectively separates the digital logic portion
of the I/O tiles from the external “analog” enviroant, making the approach applicable to
board-level and in-system testing. Consequentigependent tests for the I/O buffers were
developed. These BIST configurations are also ggekndependent because they can test 1/0
tiles with both bonded and unbonded 1/O buffersicilis important because synthesis tools will
sometimes use the logic resources in an I/O Tik &n un-bonded I/O buffer to implement a
portion of the system function.

Next, a BIST approach was presented for the emlokddees in Xilinx Virtex-4 and
Virtex-5 FPGAs that are used for the detection aodection of SEUs in the configuration
memory of these devices. This work is relatechtoSEU controller that is presented later in the
thesis in that the SEU controller uses these doregetection and correction of SEUs; therefore,
the fault-free operation of the cores is essentfahe interesting difference between this BIST
approach and the approaches presented for CLBsl/@ndiles is that this approach was
developed entirely in VHDL (as opposed to an XDLllis§. A VHDL-based approach is
possible because there is only one circuit to tewd, therefore, no redundant TPG or ORA logic
and no placement restrictions for the CUT.

Fault injection is a well known method for emulgtifaults or SEUs in the configuration

memory of FPGAs. However, this thesis improvesrugie existing approach by performing

158

fault-injection using a soft-processor configuradhe fabric of the FPGA. This approach can be
used during the development of BIST for FPGA resesiror for verification of SEU mitigation
schemes (but not as part of the manufacturing stesy-level test). For example, the fault-
injection core could “inject” a list of random SEuile monitoring the behavior of the system
function. Based upon the occurrence of errorfiengystem function, the actual FIT rate of the
user function in any environment could be estimatmid several different SEU mitigation
schemes could be quickly evaluated.

The next two chapters of the thesis present a mgwoach for BIST of FPGAs. This
approach uses a soft-core processor configureldeiriatoric of the FPGA under test to perform
reconfiguration of the BUTSs, control the BIST segee, and even perform fault diagnosis.
However, the irregularity of the embedded processakes configuration files too large to
compete with the highly optimized BIST configuraiso This thesis shows that the overall test
time is significantly less when performing partiatonfiguration of the full FPGA array from an
external BIST controller. However, the approachynséll be useful for in-system testing,
especially in fault tolerant applications, becaisgignificantly reduces the complexity of the
external BIST control hardware. For example, thedded processor can perform all of the
reconfigurations of the BUTs and determine the Itesof the BIST, reporting a single-bit
pass/fail result to the system for all of the resea under test.

Finally, an approach for the on-line detection aadection of SEUs in the configuration
memory of Virtex-4 and Virtex-5 FPGAs is presentetdhis chapter shows that no external
hardware is required for the approach, becausdéaeidf configuration data and error detection
and correction are all performed by additional ¢ogicluded in the FPGA fabric. While greatly

reducing the probability of an SEU, experimentalutes are provided to show that the approach

159

is not entirely immune to an SEU induced error. wdeer, no single SEU can permanently
corrupt the user function, and SEUs can only pemishe user function for a period of time
equal to the cycle period of the SEU controliex.the amount of time for the SEU controller to
read every frame of configuration data in a givemice). The thesis also shows that the cycle
time and probability of an SEU induced failure &ections of the device size, with larger
devices having a longer cycle time and lower prdlalof failure. In addition, a quantitative
method for estimating the FIT rate in devices pt#e by the SEU controller is provided based

on an approach in the previous work.

9.2 FutureWork

The BIST approaches presented for the CLBs andTll€s in Virtex-5 FPGAs can be
adapted to Virtex-6 devices with few architecturaldifications. The TPGs and ORAs can be
implemented in a similar manner in Virtex-6 devigesich include DSPs and Block RAMS),
but the detailed test configurations will need ¢onbodified for the new device architectures.

The embedded BIST approach can also be updateghpmr Virtex-6 devices, but larger
configuration file sizes for these devices may mé#ke approach impractical. However, in
systems with an intelligent BIST controller (embeddrocessor, PC, etc...) the configuration
file compression methods presented in this thesisapplicable and potentially very useful for
saving memory, especially for in-system testing.

The SEU controller is becoming more important daethie increasing size of the
configuration memory and shrinking design ruleshe Tonfiguration memory size in Virtex-6
devices is on average double that of Virtex-5 desi@and because the SEU controller cycle time
is a function of the size of the configuration me&ydhe average cycle time can be expected to

double. Testing the Frame ECC logic is also marportant in Virtex-6 devices. Due to the

160

doubling of the configuration frame size, therarisre logic in the Frame ECC that must be

tested.

161

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

Bibliography

M. Abramovici and C. Stroud, “BIST-Based Test anddhosis of FPGA Logic Blocks,
IEEE Trans. on VLSI Systepwsl. 9, no. 1, pp. 159-172, 2001.

M. Abramovici, C. Stroud, and J. Emmert, “OnlineSB1 and BIST-based diagnosis of
FPGA logic blocks,”IEEE Trans. on Very Large Scale Integr. (VLSI) Syatl.12,
no.12, pp. 1284-1294, 2004.

AT94K Series Field Programmable System Level latedr Circuif DS1138, Atmel
Corp., 2001.

J. Bailey et. al., “Bridging Fault Extraction frofhysical Design Data for Manufacturing
Test Development,Proc. IEEE Int. Test Confpp. 760-769, 2000.

D. Bossen, D. Ostapko, and A. Patel, “Optimum pedterns for parity networksProc.
AFIPS Fall 1970 Joint Comput. Conpp. 63-68, 1970.

B. Bridgford, C. Carmichael, and C. Tseng, “SinBldent Upset Mitigation Selection
Guide,” XAPP987 (v1.0), Xilinx Inc., 2008.

S. Brown and J. Rose, “FPGA and CPLD architectuadsitorial,”|EEE Design & Test
of Computersvol.13, no.2, pp.42-57, 1996.

M. Bushnell and V. AgrawalEssentials of Electronic Testing for Digital, Memand
Mixed-Signal VLSI CircuitdNew York: Springer, 2000.

M. Caffrey, P. Graham, E. Johnson, M. Wirthlin,&armichael, “Single-Event Upsets in
SRAM FPGAs,” Military and Aerospace ProgrammablgicadDevices Conf., 2002.

T. Calin, M. Nicolaidis, and R. Velazco, “Upset ldaned Memory Design for
Submicron CMOS TechnologyfEEE Trans. on Nuclear Scienceol. 43, no. 6, pp.
2874-2878, 1996.

C. Carmichael and C. Wei Tseng, “Correcting SEUsVintex-4 Platform FPGA
Configuration Memory,” XAPP988, (v1.0), Xilinx Inc2008.

K. Chapman and L. Jones, “SEU Stratagies for ViBeRevices,” XAPP864 (v1.0.1),
Xilinx Inc., 2009.

162

[13] P. Christie, D. Stroobandt, “The Interpretation akaplication of Rent's Rule, IEEE
Trans. on VLSI Systemsol. 8, no. 6, pp. 639-648, 2000.

[14] P. Civera, L. Macchiarulo, M. Rebaudengo, M. Recadd M. Violante, “An FPGA-
Based Approach for Speeding-Up Fault Injection Caigms on Safety-Critical Circuits,”
Journal of Electronic Testing: Theory and Applicats vol. 18, pp, 261-271, 2002.

[15] A. Cosoroaba and F. Rivoallon, “Achieving Highersg&m Performance with the Virtex-
5 Family of FPGAs,” Xilinx Inc., 2006.

[16] Device Reliability Report: Fourth Quarter 2008G116 (v5.3) , Xilinx Inc., 2009.

[17] S. Dhingra, D. Milton, and C. Stroud, “BIST for legand memory resources in Virtex-4
FPGAs,”Proc. IEEE North Atlantic Test Workshamp. 19-27, 2006.

[18] S. Dhingra, S. Garimella, A. Newalker, and C. SthoftBuilt-in self-test of Virtex and
Spartan Il FPGAs using partial reconfiguratiorPtoc. IEEE North Atlantic Test
Workshop pp. 7-14, 2005.

[19] B. Dutton, M. Ali, J. Sunwoo and C. Stroud, “EmbeddProcessor Based Fault Injection
and SEU Emulation for FPGAs,Proc. Int. Conf. on Embedded Systems and
Applications pp. 183-189, 2009.

[20] B. Dutton and C. Stroud, “Built-In Self-Test of Qaurable Logic Blocks in Virtex-5
FPGAs,”Proc. IEEE Southeastern Symp. on System Thppry230-234, 2009.

[21] B. Dutton and C. Stroud, “Built-In Self-Test of Brammable Input/Output Tiles in
Virtex-5 FPGAs,”Proc. IEEE Southeastern Symp. on System Thppr235-239, 2009.

[22] B. Dutton and C. Stroud, “Single Event Upset Datecand Correction in Virtex-4 and
Virtex-5 FPGASs,”Proc. ISCA Int. Conf. on Computers and Their Amglans pp. 57-
62, 2009.

[23] B. Dutton and C. Stroud, “Soft-core Embedded Preme8ased Built-In Self-Test of
FPGAs,”Proc. IEEE Int. Symp. On Defect and Fault Toleremc¥LSI Systempp. 29-
37, 20009.

[24] P. Ellervee, J. Raik, K. Tammemae and R. Ubar, ii®mnent for FPGA-based Fault
Emulation,”Proc. Estonian Acad. Sci. Engol. 12, pp. 323-335, 2006.

[25] “Flux Calculation,” <http://www.seutest.com/cgi-irluxCalculator.cgi>, April 2009.

[26] B. Garrison, D. Milton, and C. Stroud, “Built-In Bdest for Memory Resources in
Virtex-4 FPGAs,”Proc. ISCA Int. Conf. on Computers and Their Amilans pp. 63-
68, 2009.

[27] S. Gupta, J. Rajski, and J. Tyszer, “Test patteemegation based on arithmetic
operations,’Proc. IEEE Int. Conf. on Computer-Aided Desigp. 117-124, 1994.

163

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

J. Heiner, N. Collins, and M. Wirthlin, “Fault-talnt ICAP Controller for High-Reliable
Internal Scrubbing,TEEE Aerospace Confpp. 1-10, 2008.

S. Hwang, J. Hong and C. Wu, “Sequential CircuitlE&imulation Using Logic
Emulation,”IEEE Trans. on CAD of ICs and Systend. 17, no. 8, pp. 724-736, 1998.

IEEE Standard Test Access Port and Boundary-Scamitécture IEEE Std 1149.1-
2001, New York, 2001.

IEEE Standard Testability Method for Embedded (Based Integrated CircuitdEEE
Std. 1500-2005, New York, 2005.

C. Jia and L. Milor, “A BIST Solution for the Test I/O Speed,Proc. IEEE Int. Test
Conf, pp. 1023-1030, 2003.

E. Johnson, M. Caffrey, P. Graham, N. Rollins, EhdVirthlin, “Accelerator Validation
of an FPGA SEU SimulatorJEEE Trans. on Nuclear Scienceol. 50, no. 6, pp. 2147-
2157, Dec. 2003.

W-B Jone and C-J Wu, "Multiple fault detection iarjpy checkers,'lEEE Trans. on
Computersvol.43, no.9, pp.1096-1099, 1994.

L. Jones, “Single Event Upset (SEU) Detection andr€:tion Using Virtex-4 Devices,”
Application Note XAPP714 (v 1.5), Xilinx Inc., 2007

F. Kastensmidt, L. Carro, and R. Relault-Tolerance Techniques for SRAM-based
FPGAs Frontiers in Electronic Testing, Vol. 32, DordngcThe Netherlands: Springer,
2006.

l. Kuon and J. Rose, “Measuring the Gap BetweenA®&d ASICs,IEEE Trans. on
Computer-Aided Design of Integrated Circuits andt&ms vol.26, no.2, pp.203-215,
2007

K. Leach et. al., “BIST for Xilinx 4000 and Spart8eries FPGAs: A Case Studytoc.
IEEE Int. Test Confpp. 1258-1267, 2003.

“LatticeECP3 Soft Error Detection (SED) Usage Guid&€N1184 (v1.0), Lattice
Semiconductor Inc., 2009.

A. Lesea, “Continuing Experiments of Atmosphericuden Effects on Deep Submicron
Integrated Circuits,” WP286 (v1.0), Xilinx Inc., @8.

A. Lesea and P. Alfke, “Xilinx FPGAs Overcome th&le Effects of Sub-90 nm
Technology,” WP256 (v1.0.1), Xilinx Inc., 2007.

A. Lesea, S. Drimer, J. Fabula, C. Carmichael, Bndlfke, “The Rosetta Experiment:
Atmospheric Soft Error Rate Testing in Differingchmology FPGAS,IEEE Trans. on
Device and Materials Reliabilify/ol. 5, No. 3, pp. 317-328, 2005.

164

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]
[56]

[57]

L. Lerner, “Built-In Self-Test for Input/Output BE in Field Programmable Gate
Arrays,” M.S. thesis, Dept. of Elect. and ComputgE Auburn Univ., Auburn, AL, Dec.
2007.

L. Lerner, S. Vemula, and C. Stroud, “System-Le¥8T for Programmable 1/0 Buffers
in FPGAs and SoCsProc. IEEE North Atlantic Test Workshgmp. 1-9, 2006.

MicroBlaze Processor Reference Guit&s081(v.9.0), Xilinx Inc., 2008.

D. Milton, S. Dhingra, and C. Stroud, “Embeddeddessor Based Built-In Self-Test and
Diagnosis of Logic and Memory Resources in FPGASdc. Int. Conf. on Embedded
Systems and Applicationsp. 87-93, 2006.

G. Moore, “Cramming More Components onto Integra@@duits,” Proc. of the IEEE
vol. 86, no. 1, pp. 82-85, 1998.

S. Mourad and E. McCluskey, “Testability of parttyeckers,1EEE Trans. on Industrial
Electronics vol. 36, no. 2, pp. 254-262, 1989.

E. Normand, “Single Event Upset at Ground Lev&EEE Transs on Nuclear Science
vol. 43, pp. 2742-2750, 1996.

M. Ohlsson, P. Dyreklev and K. Johansson, “Neutgimgle Event Upsets in SRAM-
Based FPGAs,Proc. IEEE Nuclear and Space Radiation Effects Cqy. 177-180,
1998.

PicoBlaze 8-bit Embedded Microcontroller User GuidéG129 (v1.1.2), Xilinx Inc.,
2008.

M. Pulukuri and C. Stroud, “Built-In Self-Test ofigikal Signal Processors in Virtex-4
FPGAs,”Proc. IEEE Southeastern Symp. on System Thppryd4-38, 2009.

H. Quinn, P. Graham, K. Morgan, M. Caffrey and Jore, "A Test Methodology for
Determining Space-Readiness of Xilinx SRAM-basedSAPDesigns,” Proc. IEEE
Automatic Test Conf. (AUTOTESTCON), 252-258, 2008.

R. Rajsuman, “Testing a System-On-Chip with Embeddéroprocessor,Proc. IEEE
Int. Test Conf.pp. 499-508, 1999.

“Robust SEU Mitigation with Stratix Il FPGAs,” WP1012-1.0, Altera Inc., Jan. 2007.

J. Sauro and J.R. Lewis, “Estimating CompletioneRaffrom Small Samples Using
Binomial Confidence Intervals,Proc. Human Factors and Ergonomics Socighyp.
2100-2104, 2005, available at <www.measuringudgtatbm/wald>.

R. Sedaghat, “Routability estimation of FPGA-bafadt injection,” Electronics Letters
vol. 41, no. 14, pp. 790-792, 2005.

165

[58]

[59]

[60]
[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

Semiconductor Industry Association]nternational Technology Roadmap for
Semiconductors: 2007 editiphttp://public.itrs.net.

T. Slaughter, C. Stroud, J. Emmert and B. Skaggault Injection Emulation for Field
Programmable Gate ArraysProc. Int. Society for Optical Engvol. 4525, pp. 1-9,
2001.

M. Smith, Application-Specific Integrated Circujtdddison-Wesley, 1997.

L. Sterpone and M. Violante, “A Design Flow for Rrcating FPGA-based Systems
Against Single Event UpsetsProc. IEEE Int. Symp. obefect and Fault Tolerance in
VLSI System$pp. 436-444, 2005.

C. Stroud A Designer’s Guide to Built-In Self-Te8oston: Springer, 2002.

C. Stroud, S. Konala, P. Chen, and M. AbramoviBulift-in self-test of logic blocks in
FPGASs,”Proc. IEEE VLSI Test Sympp.387-392, 1996.

C. Stroud and S. Garimella, “BIST and diagnosisnoitiple embedded cores in SoCs,”
Proc. Int. Conf. on Embedded Systems and Applicgtpp. 130-136, 2005.

C. Stroud, S. Garimella and J. Sunwoo, “On-ChipBE&ased Diagnosis of Embedded
Programmable Logic Cores in System-On-Chip Devic&spc. ISCA Int. Conf. on
Computers and Their Applicationgp. 308-313, 2005.

C. Stroud, J. Harris, S. Garimella, and J. SunWBailt-in self-test for system-on-chip: a
case study,Proc. IEEE Int. Test Confpp. 837-846, 2004.

C. Stroud, K. Leach, and T. Slaughter, “BIST fofit¥t 4000 and Spartan series FPGAs:
a case study,Proc. IEEE Int. Test Confpp. 1258-1267, 2003.

C. Stroud, J. Nall, M. Lashinsky and M. Abramovit|ST-Based Diagnosis of FPGA
Interconnect,’Proc. IEEE Int. Test Confpp. 618-627, 2002.

P. Sundararajan, S. McMillan, B. Blodget, C. Catmil, and C. Patterson, “Estimation
of Single Event Upset Probability Impact of FPGAsms,” Military and Aerospace
Programmable Logic Devices Conf., 2003.

J. Sunwoo and C. Stroud, “Built-In Self-Test of @guarable Cores in SoCs Using
Embedded Processor Dynamic Reconfiguratiétrgc. Int. SoC Design Confpp. 174-
177, 2005.

S. Toutounchi and A. Lai, “FPGA test and coverag&dc. IEEE Int. Test Confpp.
599-607, 2002.

A. van de GoorTesting Semiconductor Memories Theory and Practimdoken: John
Wiley and Sons, 1991.

166

[73]

[74]
[75]
[76]
[77]
[78]

[79]
[80]
[81]

[82]

[83]

[84]
[85]

[86]

[87]

S. Vemula and C. Stroud, “Built-In Self-Test foroBrammable 1/O Buffers in FPGAs
and SoCs"Proc. IEEE Southeastern Symp. on System Thppryp34-538, 2006.

Virtex-4 FPGA Configuration User GuidgdG071 (v1.1), Xilinx Inc., 2008.
Virtex-4 FPGA User GuideJG070 (v2.5), Xilinx Inc., 2008.

Virtex-5 Family OverviewDS100 (v5.0), Xilinx Inc., 2009.

Virtex-5 FPGA Configuration User GuidelG191 (v3.2), Xilinx Inc., 2008.

Virtex-5 FPGA ExtremeDSP Design Considerations:ri@eide UG193 (v3.3), Xilinx
Inc., 20009.

Virtex-5 FPGA User GuiddJG190(v4.2), Xilinx Inc., 2008.
Virtex-6 Family OverviewDS150 (v1.0), Xilinx Inc., 2009.

L-T Wang, C. Stroud, and N. Toub@ystem-on-Chip Test Architectur&an Francisco:
Morgan Kaufmann, 2007.

L-T Wang, C-W Wu, and X. WenYLSI Test Principles and ArchitectureSan
Francisco: Morgan Kaufmann, 2006.

Xilinx TRMTool User Guide: TMRTool Software Versgoi, UG156 (v2.2), Xilinx Inc.,
20009.

XPS HWICAP Product SpecificationS586(v1.00.a),. Xilinx Inc., 2007.

J. Yao et. al., “Built-In Self-Test of Programmaligerconnect in Virtex-4 FPGAS,”
Proc. IEEE Southeastern Symp, on System Thppry29-33, 20009.

C. Yui, G. Swift, and C. Carmichael, “Single Evénpset Susceptibility Testing of the
Xilinx Virtex-1l FPGA,” Military and Aerospace Pragmmable Logic Devices Conf.,
2002.

L. Zhao, D. Walker and F. Lombardi, “IDDQ Testing lmput/Output Resources of
SRAM-Based FPGAs,Proc. Asian Test Symmpp. 375-380, 1999.

167

