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Abstract

The primary objective of this research is to develop analytical models for typical supply

chain situations to help inventory decision-makers. We also derive closed form solutions

for each model and reveal several managerial insights from our models through numerical

examples. Additionally, this research gives decision-makers insights on how to implement

demand uncertainty and shortage into a mathematical model in a two-stage supply chain

and shows them what differences these proposed analytical models make as opposed to the

traditional models.

First, we model customer impatience in an inventory problem with stochastic demand

and time-sensitive shortages. This research explores various backorder rate functions in a

single period stochastic inventory problem in an effort to characterize a diversity of customer

responses to shortages. We use concepts from utility theory to formally classify customers

in terms of their willingness to wait for the supplier to replenish shortages. Additionally,

we introduce the notion of expected value of risk profile information (EVRPI), and then

conduct additional sensitivity analyses to determine the most and least opportune conditions

for distinguishing between customer risk-behaviors.

Second, we optimize backorder lead-time (response time) in a two-stage system with

time-dependent partial backlogging and stochastic demand. In this research, backorder cost

is characterized as a function of backorder response time. We also regard backorder rate as

a decreasing function of response time. We develop a representative expected cost function

and closed form optimal solutions for several demand distributions.

Third, we adopt an option approach to improve inventory decisions in a supply chain.

First of all, we apply a real option-pricing framework (e.g., straddle) for determining order
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quantity under partial backlogging and uncertain demand situation. We establish an op-

timal condition for the required order quantity when a firm has an desirable fill rate. We

develop a closed form solution for optimal order quantity to minimize the expected total

cost.

Finally, we implement an option contract to hedge the risk of the demand uncertainty.

We show that the option contract leads to an improvement in the overall supply chain prof-

its and product availability in the two-stage supply chain system. This research considers

a standard newsvendor problem with price dependent stochastic demand in a single man-

ufacturer and retailer channel. We derive closed form solutions for the appropriate option

prices set by the manufacturer as an incentive for the retailer to establish optimal pricing

and order quantity decisions for coordinating the channel.
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Chapter 1

Introduction

1.1 Problem Statement

Carrying inventories becomes inevitable in most businesses because the production and

consumption take place at different times in different locations and at different rates. In

fact, inventory is one of the single largest investments made by most businesses. Given

today’s global financial crisis, the supply chain inventory management could be more cru-

cial than before. The roughly 400 companies in the S&P Industrials have close to $ 500

billion invested in inventory. Inventory capital costs absorb a significant percentage of op-

erating profits for a company. For automotive and consumer products, these costs absorb

approximately 40% of operating profits. Therefore, inventory optimization is one of the

significant topics in supply chain circles today considering the dynamic state of markets

all over the world. As a growing number of organizations have proved, astute planning

and management can wring 20-30 % out of current inventories, saving ”several millions” in

direct costs and achieving huge gains in operational performance, all the while maintaining

or even improving product availability and customer service.

Indigent supply chain inventory management could spell disaster for any company. The

higher the inventory investment as a percentage of total assets of a company, the higher the

damage caused by poor inventory management. Consider the following situation recently

faced by the Japanese game company Nintendo, Inc. (Schlaffer, 2007):

Wii Shortages Could Cost Nintendo Billions In Sales:

The Nintendo Wii was one of the most popular consoles in 2006 and it is the most
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popular in 2007. Only there is a problem, the company is still having problems meeting

demand. If you were hoping to provide your children, family or other loved one/friend

with a Wii this Christmas, I say that it is far too late to do so. No store will have

it in stock though you may be able to purchase one that has been jacked up in price

on eBay, chances of receiving it in time are slim. It seems a parts shortage has struck

Nintendo and it is going to hurt the company financially. Despite the shortage, the

company says it is doing everything it can to meet demand. But that’s not enough; it

may end up losing just slightly over a billion dollars if it cannot fix these problems.

To optimize the deployment of inventory, you need to manage the uncertainties, con-

straints, and complexities across a multi-stage supply chain on a continuous basis. There-

fore, many companies adopt inventory control systems, enabling them to handle many

variables and continuously update in order to optimize their multi-stage supply chain sys-

tems.

However, in many cases inventory decision-makers need analytical models to grasp

the big picture of supply chain inventory problems before making executive decisions or

implementing inventory control systems. In fact, a reliable analytical model is important

for practitioners (e.g., decision-maker) to make proper predictions of their field of interest.

Especially, this research develops appropriate models in order to abstract the features of a

supply chain system as a set of parameters or parameterized functions. These analytical

models are simple but provide effectively an overall view of the supply chain system.

In general, there are five basic blocks for inventory management activities: (1) De-

mand forecasting or demand management, (2) Sales and operations planning, (3) Produc-

tion planning, (4) Material requirements planning, (5) Inventory reduction and shortage

management.
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Every activity is critical, but as shown in the Nintendo shortage case, demand fore-

casting and shortage management play a key role in supply chain inventory management.

Therefore, we focus our attention on the activities of demand forecasting and shortage man-

agement. In particular, this research focuses on how to implement the situation of demand

uncertainty and shortage into a mathematical model properly based on a two-stage supply

chain.

1.2 Research Objectives

The first objective of this study is to implement time-sensitive shortages into a con-

ventional analytical inventory model. We consider the fact that shortages are partially

backlogged; a fraction of shortages incur lost sales penalties while the remaining short-

ages are backlogged. Therefore, we examine the implications of incorporating the notion of

time-dependent partial backlogging in the single period stochastic inventory problem. More-

over, we explore linear and nonlinear decreasing backorder rate functions with respect to

lead-time in an inventory problem with time-dependent partial backlogging, demand uncer-

tainty, and emergency replenishment in an effort to characterize diverse customer responses

to shortages.

The second objective of this study is to consider demand uncertainty in an inventory

decision model. The conventional approach, such as the newsvendor problem, of inventory-

stocking decisions relies on a specific distribution of demand for the inventory item to

implement demand uncertainty. In dealing with market uncertainty, option-pricing models

have become a powerful tool in corporate finance. The literature that applies option-pricing

models to capital budgeting - often referred to as real options - is extensive. We explore an

option-pricing model to consider demand uncertainty in a supply chain.
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The third objective of this research is to establish a coordination model of a two-stage

supply chain with a real option framework (e.g.,option contract). Actions taken by the two

parties in the supply chain often result in profits that are lower than what could be achieved

if the supply chain were to coordinate its actions with a common objective of maximizing

supply chain profits. This research develops an option contract in a newsvendor problem

with price dependent stochastic demand and shows that the option contract could lead to

coordination in the supply chain through improving the product availability and the overall

supply chain profits.

1.3 Research Plan

Chapter 2 develops a decision model considering customer impatience with stochastic

demand and time-sensitive shortages. We use concepts from utility theory to formally

classify customers in terms of their willingness to wait for the supplier to replenish shortages.

We conduct sensitivity analyses to determine the most and least opportune conditions for

distinguishing between customer risk-behaviors.

Chapter 3 establishes an additional model to optimize backorder lead-time (response

time) in a two-stage system with time-dependent partial backlogging and stochastic demand.

We consider backorder cost as a function of response time. A representative expected cost

function is derived and the closed form optimal solution is determined for a general demand

distribution.

Chapter 4 develops an inventory decision model with an option framework in a supply

chain. We apply a real option-pricing framework (e.g., straddle) for determining order quan-

tity under partial backlogging and demand uncertainty. We compare the results between

the traditional approach and the option approach with a numerical example.
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Chapter 5 implements an option contract to improve an overall supply chain profits and

product availability in a two-stage supply chain system. We derive closed form solutions for

the appropriate option prices to coordinate a supply chain system. We illustrate our result

with numerical examples to help decision making in a supply chain coordination.

Chapter 6 presents a brief conclusion along with some suggestions for future research.
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Chapter 2

Modeling Customer Impatience in an Inventory Problem with Stochastic Demand and

Time-Sensitive Shortages

Abstract

Customers across all stages of the supply chain often respond negatively to inventory short-

ages. One approach to modeling customer responses to shortages in the inventory control

literature is time-dependent partial backlogging. Partial backlogging refers to the case in

which a customer will backorder shortages with some probability, or will otherwise solicit

the supplier’s competitors to fulfill outstanding shortages. If the backorder rate (i.e., the

probability that a customer elects to backorder shortages) is assumed to be dependent on

the supplier’s backorder replenishment lead-time, then shortages are said to be represented

as time-dependent partial backlogging. This research explores various backorder rate func-

tions in a single period stochastic inventory problem in an effort to characterize a diversity

of customer responses to shortages. We use concepts from utility theory to formally classify

customers in terms of their willingness to wait for the supplier to replenish shortages. Under

assumptions, we verify the existence of a unique optimal solution that corresponds to each

customer type. Sensitivity analysis is conducted in order to compare the optimal actions

associated with each customer type under a variety of conditions. Additionally, we intro-

duce the notion of expected value of risk profile information (EVRPI), and then conduct

additional sensitivity analyses to determine the most and least opportune conditions for

distinguishing between customer risk-behaviors.
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2.1 Introduction

Inventory shortages are often an indicator of suboptimal supply chain performance

caused by a mismatch between supply and demand. In general, shortages are classified as

either backorders or lost sales. Immediate consequences of backlogged shortages include

increased administrative costs, the cost of delayed revenue, emergency transportation costs,

and diminished customer perception (i.e., the loss of customer goodwill), while lost sales are

characterized by the opportunity cost of lost revenue and diminished customer perception.

In the long run, inventory shortages can compromise an organization’s market share and

negatively affect long term profitability.

Conventional stochastic inventory models such as the single period problem (or the

newsvendor problem) and its many variants (e.g., Khouja 1999) often assume that short-

ages are either completely backlogged or that all sales are lost. Although this assumption

is sometimes plausible in practice, there are situations in which an alternative approach to

modeling shortages is appropriate. This research explores the implications of incorporating

the notion of time-dependent partial backlogging in the single period stochastic inventory

problem. When shortages are partially backlogged, a fraction of shortages incur lost sales

penalties while the remaining shortages are backlogged. Therefore, time-dependent par-

tial backlogging implies that the backorder rate (i.e., the fraction of shortages backlogged)

depends on the time associated with replenishing the outstanding backorder. In many prac-

tical situations, customers are likely to fulfill shortages from a supplier’s competitor who has

inventory on hand if the backorder lead time is extensive. On the other hand, the supplier

is more likely to retain the customer’s business and possibly avoid the long-term conse-

quences of shortages if the backorder lead-time is reasonably short. From this perspective,

it is evident that the time-dependent partial backlogging approach to modeling shortages

is particularly useful to firms who compete in time-sensitive markets and embrace service

and responsiveness as a competitive strategy (e.g., Stalk and Hout 1990).
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Table 2.1: A summary of the related literature.
Literature Demand Emergency Pricing Stock # backorder

uncertain replenish decision deteriorate rate functions
Zhou et al.(2004) x x x x 1
Skouri et al.(2003) x x x o 1
Dye et al.(2006) x x x o 1
Dye(2007) x x o o 1
Abad(1996) x x o o 1
Lodree(2007) o o x x 1
My Model o o x x 3

Several variations of inventory models with time-dependent partial backlogging have

been discussed in the research literature as shown in Table 2.1 including (i) models with

time-varying demand (Zou et al. 2004); (ii) models with time-varying demand and stock de-

terioration (e.g., Skouri and Papachristos 2003; Dye et al. 2006); (iii) models with stock de-

terioration, ordering decisions, and pricing decisions (Dye 2007); and (iv) models with time-

varying demand, ordering decisions, pricing decisions, and stock deterioration (Abad 1996).

In general, the backorder rate is assumed to be a piecewise linear function of the backo-

rder lead-time, except for Papachristos and Skouri (2000) and San José et al. (2006) who

consider exponential backorder rate functions. Additionally, the majority of the litera-

ture involves continuous review inventory policies in which shortages are replenished at the

time of the next scheduled delivery. However in practice, suppliers may attempt to re-

plenish backlogged shortages before the next scheduled delivery by engaging an emergency

replenishment process that involves emergency procurement of component parts, emergency

production runs, overtime labor, and expedited delivery. The time-dependent backlogging

literature also addresses various demand processes including time-varying, price-dependent,

and stock dependent; but the majority ignore demand uncertainty. The latter two issues

(demand uncertainty at the time of the inventory decision and emergency replenishment

after demand realization) are addressed in Lodree (2007), where the time-dependent partial

backlogging approach is used to model shortages in the newsvendor problem.
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This study explores linear and nonlinear backorder rate functions in an inventory prob-

lem with time-dependent partial backlogging, demand uncertainty, and emergency replen-

ishment in an effort to characterize a diversity of customer responses to shortages. Moreover,

we find it convenient to use concepts from utility theory to characterize customer responses

to shortage as either risk-averse, -neutral, or -seeking. We also compare the optimal inven-

tory levels associated with each customer type through sensitivity analysis and identify the

conditions in which there are minute or significant differences in the optimal levels. Finally,

we use this framework to determine the benefit of understanding the dominant market char-

acteristic in terms of being risk-averse, -neutral, or -seeking with respect to time sensitivity.

In particular, if a firm is uncertain about the characteristics of the market it serves, we

define the expected value of risk profile information (EVRPI) so that the firm can assess

the value of a study or survey whose results reveal the true dominant market characteristic.

2.2 General Mathematical Model

In this section, we present a mathematical model for the newsvendor problem with time-

dependent partial backlogging. To do so, let β represent the backorder rate, which can be

interpreted as the fraction of shortages backlogged or the probability that a given customer

will choose to backlog shortages. Since β is time-dependent, we have that β : L 7→ [0, 1],

where L ∈ [0,∞) is the backorder lead-time (refer to Table 2.2 for a list of notations used

repeatedly in this study). We assume that L is directly proportional to the magnitude of

an observed shortage. In other words, we assume that L is a linear function in x − Q for

x ≥ Q, where x is observed demand, Q is the inventory level before demand realization, and

max{x−Q, 0} is the observed number of shortages. Without loss of generality, we assume

that L = x−Q so that the terms “backorder lead-time” and “magnitude of shortage” can

be used interchangeably for the purposes of this study. Therefore, the backorder rate is

expressed as the function β(x−Q). Let M be the maximum allowable shortage in the sense

that the probability of backlogging is zero if x−Q ≥ M . Then assuming X is a continuous

9



Table 2.2: List of notations.
Q: Order quantity (the decision variable).
X: Supplier’s demand (the buyer’s order), a continuous random variable.
x: Actual value of demand.
f(x): Probability density function (pdf) of X.
F (x): Cumulative distribution function (cdf) of X.
cO: Unit ordering/production cost before demand realization.
cH : Unit cost of holding excess inventory at the of the season.
cB : Unit ordering/production cost after demand realization for backlogged shortages.
cLS : Unit cost of shortages that are lost sales.
β(x−Q): Fraction of shortages that are backlogged.
M : Lost sales threshold.
TC(Q): Total expected cost function.
Q∗: Optimal quantity that minimizes TC(Q).

random variable that represents demand, the newsvendor problem with time-dependent

partial backlogging can be expressed as follows:

TC(Q) = Order Cost + Expected Holding Cost + Expected Backorder Cost

+ Expected Lost Sales Cost

= cOQ + cH

∫ Q

0
(Q− x)f(x)dx + cB

∫ Q+M

Q
(x−Q)β(x−Q)f(x)dx

+ cLS

∫ ∞

Q
(x−Q) [1− β(x−Q)] f(x)dx (2.1)

The backorder rate function should satisfy the following properties.

Property 2.1
dβ(x−Q)
d(x−Q)

< 0 ∀ x ∈ [Q,Q+M) and
dβ(x−Q)
d(x−Q)

= 0 ∀ x ∈ [Q+M,∞).

Property 2.2 lim
(x−Q)→0+

β(x−Q) = 1.

Property 2.3 lim
(x−Q)→∞

β(x−Q) = 0.

10



Property 2.1 indicates that β(x − Q) is a continuous and decreasing function in the

number of observed shortages, which suggests that customers are more likely to wait for

backorder replenishment if the backorder lead-time is short, and are less likely to wait if the

lead-time is close to the lost sales threshold. The second part of Property 2.1 is a result of

the fact that the probability of backlogging remains zero if x−Q ≥ M . Properties 2.2 and

2.3 reiterate Property 2.1, but also ensure that β(x−Q) ∈ [0, 1].

We want to determine the inventory level Q∗ that minimizes TC(Q) given by Eq. (2.1),

provided an optimum exists. It turns out that the convexity of Eq. (2.1) cannot be guaran-

teed in general, but the following theorem identifies a sufficent (but not necessary) condition

for the existence of a unique minimizer. Before presenting the theorem, we introduce the

following assumption.

Assumption 2.1 cO < cB < cLS

The inequalities cO < cB and cO < cLS are assumed in order to avoid trivial cases and

are also reflective of practice. The inequality cB < cLS is also representative of practice,

although there are some situations where backorder costs exceed short term lost sale costs

such as lost revenue. Additionally, the latter inequality will enable us to prove the next

theorem as well as other results presented later.

Theorem 2.1 A sufficient condition for TC(Q) to be a convex function for all Q ≥ 0 is

(x−Q) · β′′(x−Q) ≤ 2β′(x−Q) (2.2)

where β′(x−Q) =
dβ(x−Q)

dQ
and β′′(x−Q) =

dβ′(x−Q)
dQ

Proof: It is shown in Appendix A.1.
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Figure 2.1: Customer impatience and lost sale thresholds.

2.3 A Classification of Customer Impatience

An obvious candidate for measuring customer impatience is the lost sales threshold,

M . For example, if M1 < M2 (where M1 and M2 are lost sales thresholds for customer 1

and customer 2 respectively), then it seems reasonable to conclude that customer 1 is more

impatient than customer 2. However, Figure 2.1 tells a different story. In particular, one

can argue from Figure 2.1 that customer 3 is more impatient than customer 2 and that

customer 2 is more impatient than customer 1, even though M1 < M2 < M3. At the very

least, Figure 2.1 reveals that M alone does not distinctively measure customer impatience

and that the shape of β(x−Q) should also be taken into account in distinguishing among

varying degrees of customer impatience.

Consider the case in which M1 = M2 = M3 = M as shown in Figure 2.2. According

to Figure 2.2, customer 3 is more impatient than customer 2, and customer 2 is more

impatient than customer 1. Figure 2.2 also suggests that customer 1 is patient at first, but

decreasingly patient because his rate of change in impatience is increasing. On the other

hand, customer 3 is impatient at first, but decreasingly impatient. The relative impatience

of these customers can be attributed to individual attitudes and personalities, but could

12
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Figure 2.2: Customer impatience and backorder rates.

also be interpreted as one person’s attitude with respect to waiting for different classes of

products.

For instance, customer 3 could represent an individual’s willingness to wait for a prod-

uct, such as a dairy, party product or a computer mouse pad, in which a suitable substitute

can be easily identified. In this case, the customer will most likely purchase the suitable

substitute as opposed to waiting for backorder replenishment, even if the backorder lead-

time is relatively short. Customer 1 would represent this same customer’s willingness to

wait for a different product type, such as automobile parts, classic furniture, or specialized

computer software, in which a product of comparable utility cannot be as easily identified.

In this case, the customer is more likely to wait for backorder replenishment, especially if

the backorder lead-time is relatively short. These notions of impatience, increasing impa-

tience, and decreasing impatience for describing customer behavior with respect to waiting

for backorder replenishment can be defined more precisely using analogous concepts and

terminology from utility theory.
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Let u(y) represent the utility of the value y. Then the following result is fundamental

to utility theory (for example, see Winkler 2003):

Theorem 2.2 Let u(y) be a continuous and twice differentiable function. Then a decision-

maker is

� Risk-averse if and only if u′′(y) < 0.

� Risk-neutral if and only if u′′(y) = 0.

� Risk-seeking if and only if u′′(y) > 0.

We will classify customers as risk-averse, risk-neutral, or risk-seeking based on the

backorder rate function β(x − Q) as opposed to some utility function u(y). In order to

develop our classification scheme, we introduce the following definitions all of which are

special cases of classical utility theory.

Definition 2.1 A lottery with respect to waiting time, L = (t1, p1; . . . ; tn, pn), consists

of a set of waiting times {t1, . . . , tn} and a set of probabilities {p1, . . . , pn} such that a

decision-maker waits for ti time units with probability pi, where i = 1, . . . , n.

Definition 2.2 The certainty equivalent with respect to waiting time of a lottery

L = (t1, p1; . . . ; tn, pn), denoted CEW (L), is the waiting time such that the decision-maker

is indifferent between L and waiting for CEW (L) with certainty.

Definition 2.3 The risk premium with respect to waiting time of a lottery L =

(t1, p1; . . . ; tn, pn), denoted RPW (L), is defined as

RPW (L) = EW [L]− CEW (L)

where EW [L] is the expected value of the lottery L.
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Definition 2.4 If L = (t1, p1; . . . ; tn, pn) is a lottery with respect to waiting time with

n > 1, then a decision-maker is

� Risk-averse with respect to waiting time if and only if RPW (L) < 0.

� Risk-neutral with respect to waiting time if and only if RPW (L) = 0.

� Risk-seeking with respect to waiting time if and only if RPW (L) > 0.

The difference in conventional utility theory and utility theory with respect to waiting

time as described by definitions 2.1 ∼ 2.4 is noticeably observable in Definition 2.4. In

particular, the definition of conventional risk aversion is RPW (L) > 0 (see Winkler 2003,

for example), but the definition of risk aversion with respect to waiting time is RPW (L) < 0.

Similarly, the inequalities are also reversed in the definitions of conventional risk-seeking and

risk-seeking with respect to waiting time. In order to illustrate Definition 2.4, consider two

decision-makers, DM1 and DM2, who are presented with a lottery with respect to waiting

time related to the time they wait to be seated in a restaurant. In particular, the lottery

is defined as L = (50-min., 0.25; 10-min., 0.75). Suppose DM1 specifies CEW1(L) = 12

minutes and DM2 specifies CEW2(L) = 40 minutes. Since EW [L] = 20 minutes, we have

RPW1(L) = 20− 12 = 8 minutes and RPW2(L) = 20− 40 = −20 minutes. Since CEW1(L)

is a shorter wait than EW [L], DM1 considers L to be RPW1(L) = 8 minutes better than

its expected value, which suggests that DM1 is influenced more by the possibility of the 10-

minute wait than the risk of a 50-minute wait. Therefore, DM1 is risk-seeking. On the other

hand, since CEW2(L) is a longer wait than EW [L], DM2 considers L to be RPW2(L) = −20

minutes better (i.e., 20 minutes worse) than its expected value, which suggests that DM2 is

more influenced by the risk of a 50-minute wait than the chances of a 10-minute wait. Thus

DM2 prefers to avoid the lottery’s risk and is therefore risk-averse. This example gives some

insight into the logic behind Definition 2.4.

The following theorem relates the backorder rate function, β(x − Q), to risk-averse,

-neutral, and -seeking behavior with respect to waiting time.
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Theorem 2.3 Let β : y 7→ [0, 1], where y ∈ [0,∞), be a continuous and twice differentiable

function. Then a decision-maker is

� Risk-averse with respect to waiting time if and only if β′′(y) < 0.

� Risk-neutral with respect to waiting time if and only if β′′(y) = 0.

� Risk-seeking with respect to waiting time if and only if β′′(y) > 0.

Proof: Please refer to Appendix A.2.

Based on Theorem 2.3, customers 1, 2, and 3 in Figure 2.2 are risk-averse, -neutral,

and -seeking, respectively. Thus when customers all have the same lost sales threshold,

M , the risk-averse customer is more patient than the risk-neutral customer, and the risk

neutral customer is more patient than the risk-seeking customer since β1 > β2 > β3 for all

x−Q ∈ [0,M ], where βi is the backorder rate for customer i.

2.3.1 Risk-Neutral Behavior

A backorder rate function β(x − Q) that describes risk-neutral behavior with respect

to waiting time (see definitions 2.1 ∼ 2.4) should satisfy properties 2.1 ∼ 2.3 as well as the

second part of Theorem 2.3. The following proposition defines a representative backorder

rate function that satisfies these conditions.

Proposition 2.1 Suppose x−Q ≥ 0. Then

β(x−Q) =

 1− x−Q
M , x ∈ [Q,Q + M)

0, x ∈ [Q + M,∞)
(2.3)

satisfies properties 2.1 ∼ 2.3 and the second part of Theorem 2.3.
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Proof: Since

dβ(x−Q)
d(x−Q)

=

 − 1
M

< 0, x ∈ [Q,Q + M)

0, x ∈ [Q + M,∞)

Property 2.1 holds. Also,
d2β(x−Q)
d(x−Q)2

= 0

shows that the second part of Theorem 2.3 holds. Now

lim
x−Q→0

max
{

1− x−Q

M
, 0

}
= 1

shows that Property 2.2 holds, and

lim
x−Q→∞

max
{

1− x−Q

M
, 0

}
= max{−∞, 0} = 0

shows that Property 2.3 holds. Q.E.D.

The next result indicates the existence of Q∗ that minimizes TC(Q) given by Eq. (2.1)

when β(x−Q) is defined as in Proposition 2.1.

Theorem 2.4 Suppose β(x − Q) is defined as in Proposition 2.1. Then TC(Q) given by

Eq. (2.1) is a convex function.

Proof: If x ∈ [Q,Q + M), then β′(x − Q) = 1
M and β′′(x − Q) = 0. Thus the inequality

(x − Q)β′′(x − Q) ≤ 2β′(x − Q) given by Eq. (2.2) reduces to 2
M ≥ 0. Since the last

inequality always holds, it follows that β(x−Q) satisfies the condition in Theorem 2.1. If

x ∈ [Q + M,∞), then β(x − Q) = 0, which also satisfies the condition in Theorem 2.1.
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Therefore, Theorem 2.1 guarantees that TC(Q) is a convex function for all Q ≥ 0 whenever

β(x−Q) is defined as in Eq. (2.3).

This can be proven by showing the second derivation of TC(Q) is positive. When

β(x−Q) is defined as the linear equation, TC(Q) can be written as

TC(Q) = cOQ + cH

∫ Q

0
(Q− x)f(x)dx + cLS

∫ ∞

Q
(x−Q)f(x)dx

+ (cB − cLS)
∫ Q+M

Q
(x−Q)

(
1− x−Q

M

)
f(x)dx (2.4)

Thus, the first order derivatives of TC(Q) are calculated as follows

dTC(Q)
dQ

= cO + cH

∫ Q

0
f(x)dx− cLS

∫ ∞

Q
f(x)dx

+ (cB − cLS)
∫ Q+M

Q

[
−1 +

2(x−Q)
M

]
f(x)dx

(2.5)

and second derivatives of TC(Q) yields

d2TC(Q)
dQ2

= (cH + cLS)f(Q) + (cLS − cB)f(Q)

+
2(cLS − cB)

M

∫ Q+M

Q
f(x)dx (2.6)

If Assumption 2.1 holds, it follows that cLS − cB > 0 so that all terms of TC(Q) are defi-

nately non-negative and it means the convexity of TC(Q) can be ascertained for a general

demand distribution.Q.E.D.
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2.3.2 Risk-Seeking Behavior

A backorder rate function β(x − Q) that describes risk-seeking behavior with respect

to waiting time should satisfy properties 2.1 ∼ 2.3 as well as the third part of Theorem

2.3. The following proposition defines a representative backorder rate function that satisfies

these conditions.

Proposition 2.2 Suppose x−Q ≥ 0 and a > 0 is a constant. Then

β(x−Q) =

 e−a(x−Q), x ∈ [Q,Q + M)

0, x ∈ [Q + M,∞)
(2.7)

satisfies properties 2.1 ∼ 2.3 and the third part of Theorem 2.3.

Proof: The proof is similar to the proof of Proposition 2.1. Refer to Appendix A.3 for

details.

Theorem 2.5 Suppose β(x − Q) is defined by Eq. (2.7) and a < 2
M . Then TC(Q) given

by Eq. (2.1) is a convex function.

Proof: Let A = (0, 2
a) and B = (M,∞). It is straightforward to show that Eq. (2.7)

reduces to x − Q ∈ A. Since β(x − Q) = 0 ∀ x − Q ∈ B and Eq. (2.7) holds, it follows

from Theorem 2.1 that TC(Q) is convex ∀ x−Q ∈ A ∪B. In order to verify that TC(Q)

is convex ∀ Q ≥ 0, we need to show that convexity holds ∀ x − Q ∈ R+, which actually

reduces to showing that A ∪ B = R+. Let C = ( 2
a ,M). Then A ∪ B ∪ C = R+. However,

since the condition a ≤ 2
M is given, we have that C = ∅ and A ∪B ∪ C = A ∪B = R+.
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This can be proven by showing the second derivation of TC(Q) is positive. When

β(x−Q) is defined as a exponential decreasing function, TC(Q) can be written as

TC(Q) = cOQ + cH

∫ Q

0
(Q− x)f(x)dx + cLS

∫ ∞

Q
(x−Q)f(x)dx

+ (cB − cLS)
∫ Q+M

Q
(x−Q)

(
e−a(x−Q)

)
f(x)dx (2.8)

Thus, the first order derivatives of TC(Q) are calculated as follows

dTC(Q)
dQ

= cO + cH

∫ Q

0
f(x)dx− cLS

∫ ∞

Q
f(x)dx

+ (cB − cLS)
∫ Q+M

Q

[
−e−a(x−Q) + (x−Q)ae−a(x−Q)

]
f(x)dx

(2.9)

and second derivatives of TC(Q) yields

d2TC(Q)
dQ2

= (cH + cLS)f(Q) + (cLS − cB)f(Q)

+ (cLS − cB)
∫ Q+M

Q

[
2ae−a(x−Q) − (x−Q)a2e−a(x−Q)

]
f(x)dx

(2.10)

If Assumption 2.1 holds, it follows that cLS − cB > 0. We need one condition of[
2ae−a(x−Q) − (x−Q)a2e−a(x−Q)

]
> 0. It can be reduced to a(x−Q) < 2 for

x ∈ [Q,Q+M). Therefore, all terms of TC(Q) under the condition of a < 2
M are definately

non-negative. It means the convexity of TC(Q) can be ascertained for a general demand

distribution. Q.E.D.
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Note that the parameter a controls the rate at which β(x − Q) given by Eq. (2.7)

decreases. In particular, a1 > a2 implies that customer 1 is more risk seeking (or more

impatient) than customer 2. The condition a < 2
M suggests that Theorem 2.5 can only

guarantee convexity if β(x−Q) does not decrease too quickly as x−Q approaches M .

2.3.3 Risk-Averse Behavior

A backorder rate function β(x − Q) that describes risk-averse behavior with respect

to waiting time should satisfy properties 2.1 ∼ 2.3 as well as the first part of Theorem

2.3. The following proposition defines a representative backorder rate function that satisfies

these conditions.

Proposition 2.3 Suppose x−Q ≥ 0. Then

β(x−Q) =


cos

[
(x−Q)π

2M

]
, x ∈ [Q,Q + M)

0, x ∈ [Q + M,∞)

(2.11)

satisfies properties 2.1 ∼ 2.3 and the first part of Theorem 2.3.

Proof: The proof is similar to the proof of Proposition 2.1. Refer to Appendix A.4 for

details.

Theorem 2.6 Suppose β(x−Q) is defined by Eq. (2.11). Then TC(Q) given by Eq. (2.1)

is a convex function.

Proof: If x ∈ [Q,Q + M), then

β′(x−Q) =
π

2M
sin

(
x−Q

2M
π

)
β′′(x−Q) = − π2

4M2
cos

(
x−Q

2M
π

)
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Thus the inequality given by Eq. (2.2) reduces to

−(x−Q)π
4M

cot
(

x−Q

2M
π

)
≤ 1. (2.12)

If we let z = (π/2M)(x−Q), then Eq. (2.12) becomes (−z/2) cot(z) ≤ 1, where z ∈ (0, π/2).

Since cot(z) > 0 and −z/2 < 0 for z ∈ (0, π/2), we have (−z/2) cot(z) < 0 ≤ 1, which

implies that the inequality given by Eq. (2.12) holds. Thus it follows that β(x−Q) satisfies

the condition in Theorem 2.1. If x ∈ [Q + M,∞), then β(x − Q) = 0, which also satisfies

the condition in Theorem 2.1. Therefore, Theorem 2.1 guarantees that TC(Q) is a convex

function for all Q ≥ 0 whenever β(x−Q) is defined as in Eq. (2.11).

This can be proven by showing the second derivation of TC(Q) is positive. When

β(x−Q) is defined as a smoothly decreasing function, TC(Q) can be written as

TC(Q) = cOQ + cH

∫ Q

0
(Q− x)f(x)dx + cLS

∫ ∞

Q
(x−Q)f(x)dx

+ (cB − cLS)
∫ Q+M

Q
(x−Q) cos(

x−Q

2M
π)f(x)dx (2.13)

Thus, the first order derivatives of TC(Q) are calculated as follows

dTC(Q)
dQ

= cO + cH

∫ Q

0
f(x)dx− cLS

∫ ∞

Q
f(x)dx + (cB − cLS)

×
∫ Q+M

Q

[
− cos(

x−Q

2M
π) + (x−Q)

π

2M
sin(

x−Q

2M
π)

]
f(x)dx

(2.14)

and second derivatives of TC(Q) yields

d2TC(Q)
dQ2

= (cH + cLS)f(Q) + (cLS − cB)f(Q) + (cLS − cB)

×
∫ Q+M

Q

[
π

M
sin(

x−Q

2M
π) + (x−Q)(

π

2M
)2 cos(

x−Q

2M
π)

]
f(x)dx
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(2.15)

If Assumption 2.1 holds, it follows that cLS−cB > 0. We need to verify π
M sin(x−Q

2M π)+

(x − Q)( π
2M )2 cos(x−Q

2M π) > 0. It can be reduced to −(x−Q)π
4M

cot
(

x−Q

2M
π

)
< 1 for

x ∈ [Q,Q + M). Therefore, all terms of TC(Q) are definately non-negative and It means

the convexity of TC(Q) can be ascertained for a general demand distribution. Q.E.D.

2.4 Sensitivity Analysis and Management Insights

This section investigates the effects that various problem parameters have on optimal

ordering decisions. The following example data was used for the analysis:

X ∼ N(500, 500), cO = 50, cH = 20, cB = 75, cLS = 100,M = 1000 (2.16)

Based on the results shown in Figure 2.3 through 2.6, we observe the following:

Observation 2.1 Let QA, QN , and QS be the optimal order quantity associated with the

risk-averse, -neutral, and -seeking cases, respectively. Then QS ≥ QN ≥ QA.

This is intuitive since according to Figure 2.2, the risk-averse customer is more patient

than the risk-neutral customer, and the risk-neutral customer is more patient than the risk-

seeking customer. Therefore, it is reasonable to expect the optimal order quantity to be an

increasing function of customer impatience.

Observation 2.2 Optimal order quantities are always non-decreasing in cLS and cB, and

always non-increasing in cH and M .

These results are intuitive and consistent with the results reported in Lodree (2007).
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Figure 2.3: The effect of cLS on the optimal order quantity.
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Figure 2.4: The effect of cB on the optimal order quantity.
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Figure 2.5: The effect of M on the optimal order quantity.
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Figure 2.6: The effect of cH on the optimal order quantity.
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Observation 2.3 According to Figure 2.3 and Figure 2.5, differences in optimal order

quantities among the three customer types are increasing functions of cLS and M .

From a managerial perspective, this means that it is in the decision-maker’s best interest

to be astute with respect to customer risk profiles when (i) the lost sales cost is expensive

(i.e., the product is expensive) and (ii) when the backorder / lost sales threshold is large.

These effects can be explained mathematically by observing Eq. (A.1) from Appendix A.

In particular, the effect of the backorder rate function β(x−Q) on the total expected cost

function TC(Q) is magnified when either cLS or M is increased. Thus it is reasonable

to expect increasing differences in Q∗ among the three cases as β(x − Q) assumes a more

dominant role in TC(Q). Finally, note that of these two parameters, it can be observed

from Figure 2.3 and 2.5 that the optimal decision is more sensitive to cLS .

Observation 2.4 According to Figure 2.4 and Figure 2.6, differences in optimal order

quantities among the three customer types are decreasing functions of cB and cH .

From a managerial perspective, this means that the decision-maker should keenly observe

customer risk profiles when (i) the backorder cost is small relative to the lost sales cost

and (ii) the holding cost is small relative to the ordering cost, backorder cost, and lost

sales cost. These effects can also be explained mathematically by observing Eq. (A.1) from

Appendix A. Since cB ≤ cLS based on Assumption 2.1, our analysis involves increasing

cB only up until it reaches cLS . Thus as cB approaches cLS , the term involving β(x − Q)

in Eq. (A.1) approaches zero, and the effects of customer risk profiles become increasingly

negligible (in fact, TC(Q) becomes the newsvendor problem). As for cH , it is increased

beyond cO, cB, and cLS for the purpose of our analysis, although this is not likely to

occur in practice. However, the results suggest that differences in optimal order quantities

among the three customer types become increasingly insignificant as holding costs become

increasingly dominant in TC(Q) (or equivalently, as β(x−Q) becomes less dominant in the

expected cost function).
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Observation 2.5 Differences in optimal order quantities between the risk-seeking and risk-

neutral cases are always greater than the differences in optimal order quantities between the

risk-averse and risk-neutral cases.

This is necessarily a consequence of the specific backorder rate functions studied in this study

for the risk-averse and risk-seeking cases. More specifically, the risk-seeking backorder rate

function given by Eq. (2.7) is more different than the risk neutral case when compared to the

risk-averse backorder rate function given by Eq.(2.11). To illustrate this point, consider the

data in Eq. (2.16) and suppose x−Q = 300. Then using equations (2.3), (2.7), and (2.11),

βA(300)− βN (300) = 0.191 and βN (300)− βS(300) = 0.698, where βN (x−Q), βS(x−Q),

and βA(x−Q) are equations (2.3), (2.7), and (2.11), respectively. Since βN (300)−βS(300) >

βA(300)− βN (300), it is reasonable to expected that QN −QS > QA −QN .

2.5 Value of Risk Profile Information

Suppose a decision-maker can conduct a study to obtain more information about the

risk profile of a customer or market segment. This section explores the expected value of

conducting such a study. To carry out the analysis, let us first assume that the decision-

maker currently orders QN , which is the optimal order quantity associated with the risk-

neutral case. If the customer is actually risk-averse, then the expected value of a market

study is

V = TCA(QN )− TCA(QA),

where TCA(·) and QA are the expected cost function and optimal order quantity, respec-

tively, for the risk-averse case. In general, let Vij equal the value of the market study if the

decision-maker orders Qi and the customer risk profile is actually j, where i, j ∈ {A,N, S}

(Averse, Neutral, Seeking). Also, let TCi(·) and Qi represent the expected total cost func-

tion and optimal order quantity, respectively, for case i ∈ {A,N, S}. If i = j, then clearly
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Vij = 0 for all i ∈ {A,N, S}. Otherwise if i 6= j, then

VNA = TCA(QN )− TCA(QA)

VNS = TCS(QN )− TCS(QS)

VAN = TCN (QA)− TCN (QN )

VAS = TCS(QA)− TCS(QS)

VSA = TCA(QS)− TCA(QA)

VSN = TCN (QS)− TCN (QN ).

The example data from Eq. (2.16) was used to construct the graphs shown in Figure

2.7 through 2.15. The following insights can be interpreted from these figures:

Observation 2.6 The expected value of risk profile information (EVRPI) is an increasing

function of cLS and M , and a decreasing function of cB and cH .

This observation is intuitive since differences in optimal order quantities among the three

customer types are increasing in cLS and M , and decreasing in cB and cH (see Section 3.4.2).

Observation 2.7 EVRPI is most valuable when cLS is large and when the decision-maker

assumes a risk-seeking profile, but the customer is actually risk-averse (see Figure 2.7:

EVRPI is nearly 4,000). On the other hand, the risk profile information is least valuable

whenever the value of cB is very close to the value of cLS (see Figure 2.7 through 2.12).

More generally, the larger values of EVRPI occur when either the actual risk profile is

risk-seeking and the decision-maker assumes risk-averse, or vice-versa.

Observation 2.8 Based on the Observation 2.7, the decision that minimizes the worst

possible outcome (a min-max criterion) assumes that the risk profile is risk-neutral (see

Figure 2.7, 2.9, 2.10, 2.12, 2.13, and 2.15).
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Figure 2.7: The effect of cLS on EVRPI if customer is risk-averse.
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Figure 2.8: The effect of cLS on EVRPI if customer is risk-neutral.
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Figure 2.9: The effect of cLS on EVRPI if customer is risk-seeking.
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Figure 2.10: The effect of cB on EVRPI if customer is risk-averse.
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Figure 2.11: The effect of cB on EVRPI if customer is risk-neutral.
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Figure 2.12: The effect of cB on EVRPI if customer is risk-seeking.
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Figure 2.13: The effect of M on EVRPI if customer is risk-averse.
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Figure 2.14: The effect of M on EVRPI if customer is risk-neutral.
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Figure 2.15: The effect of M on EVRPI if customer is risk-seeking.

On the other hand, if the customer’s risk profile is not likely to be risk-seeking, then it is

better to assume that the customer is risk-averse. To see this, consider that if we ignore the

risk seeking case (Figure 2.9), then the penalty for assuming risk-neutral if the customer

is actually risk-averse is slightly greater than the penalty for assuming risk-averse and the

customer is actually risk-neutral (see Figure 2.7 and 2.8). Similar arguments can be used

to determine optimal decisions if the customer is not likely to be risk-averse or -neutral.

Observation 2.9 As previously mentioned, the largest values of EVRPI occur when cLS is

large. However, the rate of change in EVRPI is more sensitive to cB (compare Figure 2.7

through 2.9 to Figure 2.10 through 2.12).

2.6 Conclusion

Shortages are often represented as either backorders or lost sales in conventional inven-

tory models and in practice. The time-dependent backlogging approach to characterizing
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inventory shortages acknowledges that there is some probability associated with whether

or not a customer will backorder a shortage, and that this probability (i.e., the backorder

rate) is related to the lead-time associated with replenishing the outstanding backorder.

While the majority of the research literature considers time-dependent backlogging within

the context of continuous review models with deterministic demand, this research studies

time-dependent partial backlogging in the single period inventory problem with stochastic

demand.

The backorder rate function is used to classify customers as either risk-averse, -neutral,

or -seeking with respect to their willingness to wait for the supplier to replenish shortages.

Representative backorder rate functions are presented, and the existence of a unique order

quantity that minimizes total expected costs is shown for each case. Sensitivity analysis

experiments are conducted to examine the similarities and differences in optimal order

quantities among the three customer types as a function of various problem parameters.

Additionally, the expected value of risk profile information (EVRPI) is defined in order

to assess the expected benefit of knowing the risk behavior of a customer or market segment.

Our results suggest that EVRPI is most significant when the difference between the unit

lost sales cost cLS and the unit backorder cost cB is large. Our results also indicate that

EVRPI increases as the difference cLS − cB increases and as the lost sales threshold M

increases.

This study can be extended in several ways. A useful extension would be to relax

Assumption 1 such that cB > cLS is a possibility. This cost structure is known to happen in

practice based on one of the author’s interactions with the production manager of a major

manufacturing firm. In particular, this production manager’s primary objective in the event

of a shortage is to maintain a positive rapport with the client (especially a major client).

He is much less concerned with the short term cost inefficiencies associated with emergency

procurement, production, and delivery in light of the long term implications related to

compromising a business relationshp. Therefore, this manager would replenish backorders at
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unit cost cB, even in the event that cB far exceeds cLS . This manufacturing firm’s strategic

approach to managing shortages suggests another promising extension of this study, namely

an extension that entails both short term and long term management of inventory shortages

in a multi-period setting. Finally, consider that we have verified the existence of a unique

optimal order quantity for each of a specific set of backorder rate functions, and also that

some of the results presented in sections 2.4 and 2.5 are specific to these functions and their

interrelationships. Thus the development of other backorder rate functions, analysis of their

mathematical properties, and the validity of our management insight results based on these

functions and their interrelationships also warrants exploration.
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Chapter 3

Optimizing Backorder Lead-Time and Order Quantity in a Supply Chain

with Partial Backlogging and Stochastic Demand

Abstract

We examine a backorder lead-time (i.e., response time) optimization in a two-stage system

with time-dependent partial backlogging and stochastic demand. From the partial backlog-

ging point of view, the objective of representative mathematical models is to minimize the

expected total cost related to ordering, inventory holding, and shortages. Backordering cost

is often regarded as a constant in literature. However, the backorder cost is characterized

as a function of response time in a real situation. Moreover, the backorder rate (i.e., the

probability that a customer elects to backorder shortages) is a decreasing function of sup-

plier response time. We investigate a supply chain system with a time-dependent backorder

cost and rate in an uncertain demand setting. A representative expected cost function and

closed form solution are derived for specific demand distributions. We also illustrate our

results (e.g., cost savings) with an example.

3.1 Introduction

A firm achieving strategic fit shows the right balance between responsiveness and ef-

ficiency. Therefore, their supply chain should be structured to provide responsiveness to

customers while improving the overall efficiency (Chopra et al. 2007). Optimizing the re-

sponse time is one of the critical factors when companies are competing with each other

under a highly uncertain demand situation. The company works to optimize the response

time not only to reduce the expected cost as a faster response requires a higher cost, but

also to increase responsiveness to customers. Many companies often get opportunities to
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improve customer satisfaction and reduce the expected total cost by optimizing the response

time, which is evident in changes such as lean manufacturing as a philosophy of production

that emphasizes minimizing the amount of all resources (including time) used in various

enterprise activities.

To address this situation, we developed and solved newsvendor models involving stochas-

tic demand, time-dependent backorder rate and cost. A tactical planning approach is taken

by viewing a two-stage supply chain system consisting of one supplier and one retailer with

time-dependent partial backlogging and backorder cost. The objective of the supplier is to

optimize order quantity and response time to replenish backorders in order to minimize its

expected total cost. The decision variables considered are the order quantity Q and the

response time (backorder lead-time) t. It turns out that determining the response time is

equivalent to deciding how much financial capital should be invested in the future backo-

rders. Simply stated, our problem is to decide how many products should be ordered before

the selling season and how much financial capital should be invested into backorders during

mid-season so that both backorder cost and lost sales cost are minimized.

More specifically, we consider a single period model consisting of various backorder

processing time modes. A supplier determines the number of items Q to order such that

Q items are available at the beginning of the season. For the time being, assume that the

optimal value Q∗ is determined based on the information about the demand distribution X,

where X is a random variable with the probability density function f(x) and the cumulative

distribution function F (x). If Q is larger than the realized demand, then the supplier incurs

a unit inventory holding cost of cH for the season. If Q is less than the realized demand,

both backorder cost cB(t) and/or lost sales cost cLS are incurred. Backorder cost cB(t) is

one of the convex and decreasing functions for t > 0. The cost incurred during the backorder

process is based on the supplier’s selected backorder lead-time t. This assumption regarding

the form of cB(t) implies that the response time (i.e., backorder lead-time) t can be reduced

by increasing the backorder processing cost.
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Applications of this problem can be found in the auto industry, seasonal fashion prod-

ucts, and school supplies. In each of these examples, a number of products are available at

the beginning of the season where the inventory and other costs are incurred for ordering

too much, and backorders are used to satisfy the unfulfilled demand, and some amount of

unfulfilled demand becomes lost sales. Our objective as a supplier is to minimize the sum

of inventory holding costs, ordering costs, backorder, and lost sales costs.

3.1.1 The Newsvendor Problem with Time-dependent Partial Backlogging

Recall the newsvendor problem with time-dependent partial backlogging of Lodree

(2007). In this newsvendor problem, β represents the backorder rate, which can be inter-

preted as the fraction of shortages backlogged or the probability that a given customer will

choose to backlog shortages. Since β is time-dependent, β : L 7→ [0, 1], where L ∈ [0,∞)

is the backorder lead-time. L is directly proportional to the magnitude of an observed

shortage. In other words, L is a linear function in x − Q for x ≥ Q, where x is the ob-

served demand, Q is the inventory level before demand realization, and max{x − Q, 0} is

the observed number of shortages. Without loss of generality, L = x−Q so that the terms

backorder lead-time and ”magnitude of shortage” can be used interchangeably. Therefore,

the backorder rate is expressed as a function β(x − Q). Then X is a continuous random

variable that represents demand. The newsvendor problem with a time-dependent partial

backlogging can be expressed as follows:

TC(Q) = Order Cost + Expected Holding Cost + Expected Backorder Cost

+ Expected Lost Sales Cost

= cOQ + cH

∫ Q

0
(Q− x)f(x)dx + cB

∫ ∞

Q
(x−Q)β(x−Q)f(x)dx

+ cLS

∫ ∞

Q
(x−Q) [1− β(x−Q)] f(x)dx (3.1)
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β(x − Q) ∈ [0, 1] is a continuous and decreasing function in the number of observed

shortages, which suggests that the customers are more likely to wait for backorder replen-

ishment if the backorder lead-time is short, and are less likely to wait if the lead-time is too

long. It determines the inventory level Q∗ that minimizes TC(Q), provided an optimum

exists. It turns out that the convexity is guaranteed under a sufficient (but not necessary)

condition for the existence of a unique minimizer.

3.2 Literature Review

Our problem is a choice of approaches to integrate two variations of stochastic inven-

tory models that have been studied in literature. These variations can be classified as (1)

stochastic inventory models with variable lead-time, and (2) stochastic inventory models

with time-dependent partial backlogging. We now briefly review research in each of the

two aforementioned types of the stochastic inventory models. Table 3.1 summarizes some

literature related to stochastic inventory models.

First, Liao and Shyu (1991) present a probabilistic model in which lead-time is a

unique decision variable and the order quantity is predetermined to minimize the sum of

the expected holding cost and the additional cost. Moreover, in their model, the demand

follows a normal distribution and the lead-time consists of n components each having a

different cost for reduced lead-time. In many practical situations, lead-time is controllable;

that is, the lead-time can be shortened, at the expense of extra costs, so as to improve

customer service, reduce inventory investment in the safety stocks, and improve system

responsiveness. Ben-Daya and Raouf (1994) extend the Liao and Shyu (1991) model by

allowing both the lead-time and the order quantity as decision variables where the shortages

are ignored. Ouyang et al. (1996) assume that the shortages and stockout cost are allowed.

In addition, a mixture of backorders and lost sales is considered to generalize Ben-Daya and

Raouf’s (1994) model, where the backorder rate is fixed.
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Table 3.1: A summary of the related literature.
Stochastic Inventory Model Literature

Liao and Shyu (1991), Ben-Daya and Raouf (1994),
Variable Lead-time Ouyang et al. (1996), Wu (2001),

Lodree and Jang (2004)
Abad (1996), Chang and Dye (1999),

Time-dependent Papachristos and Skouri (2000),
Partial Backlogging Abad (2001), Wang (2002),

Papachristos and Skouri (2003), Lodree (2007)

Wu (2001) extends the model of Ouyang et al. (1996) by considering the mixtures

of normal distribution and allowing shortages. Moreover, the total amount of stock-out

is considered as a mixture of backorders and lost sales during the stock-out period. In a

practical situation, because the demands of the different customers do not have identical

lead-times, then they use the mixtures of normal distribution to describe the lead-time.

Lodree and Jang (2004) consider the customer response time minimization in a two-

stage system facing stochastic demand. They investigate a supply chain system in an

uncertain demand setting that encompasses the customer waiting costs as well as the tra-

ditional plant costs (i.e., production and inventory costs). In this study, they assume all

shortages are backlogged and replenished within a single period.

Second, some literature tackles the partial backlogging situation in an inventory deci-

sion problem. In many real-life situations, customers are likely to fulfill the shortages from a

supply competitor who has inventory on hand if the backorder lead-time is extensive. On the

other hand, the supplier is more likely to retain the customer’s business and possibly avoid

the long-term consequences of the shortages if the backorder lead-time is reasonably short.

Especially for fashion commodities and seasonal products, the willingness of a customer to

wait for backlogging during a shortage period declines with the length of the waiting time.

When shortages are partially backlogged, a fraction of shortages incurs lost sales penalties
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Table 3.2: Differences between Lodree (2007) & Proposed Model.
Lodree (2007) Proposed Model

Backorder cB : cB(t):
cost Constant Fuction of t

Backorder β(x−Q) = 1− x−Q
M β(t) = e−at

rate Linear fuction of x−Q Exponential function of t

Decision variable Q Q, t
Total cost fuction TC[Q] TC[Q, t]

while the remaining shortages are backlogged. Therefore, time-dependent partial backlog-

ging implies that the backorder rate (i.e., the fraction of shortages backlogged) depends on

the time associated with replenishing the outstanding backorder.

Abad (1996) investigates optimal ordering and pricing policies for a perishable product

with a deterministic and time-varying demand. The model is examined through an example

with constant demand rate, exponential backorder rate, and exponential stock decay. Chang

and Dye (1999) develop an inventory model in which the proportion of customers willing to

accept backlogging is the reciprocal of a linear function of the waiting time. They examine

the effect of the backlogging rate on the economic order quantity decision. Papachristos and

Skouri (2000) establish a continuous review inventory model over a finite-planning horizon

with deterministic varying demand and constant deterioration rate. The model allows for

shortages, which are partially backlogged at a rate which varies exponentially with time.

Later, several related articles are presented, dealing with such inventory problems. For

example, Abad (2001), Papachristos and Skouri (2003), and Wang (2002). Recently Lodree

(2007) investigates a supply chain system in which a supplier prepares for the selling season

by building stock levels prior to the beginning of the season and the shortages realized at

the beginning of the season are represented as mixtures of the backorders and the lost sales.

In this research, we consider the concept of variable lead-time and time-dependent

partial backlogging simultaneously in a stochastic inventory model unlike literature. The

backorder cost is regarded as a constant in Lodree (2007) recently. However, the backorder
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cost is characterized as a function of backorder lead-time in many real situations. Table

3.2 summarizes differences between Lodree (2007) and our proposed model. Our proposed

model extends the basic newsvendor problem to consider the feature of time-dependent

partial backlogging when a backorder occurs. The supplier fulfils the remaining customer

demand at an optimal backorder cost and backorder rate, even though some amount of

remaining customer demand becomes lost sales as the response time gets delayed further.

3.3 Model Formulation

We consider backorder lead-time as a decision variable, and we incorporate the possibil-

ity of an emergency replenishment during the selling season in the name of backorder after

demand is realized. We apply a time-dependent partial backlogging approach to optimize

the backorder lead-time and the order quantity to minimize the expected total cost.

Assumption 3.1 All items during the expedited back ordering process are shipped together

in one shipment.

Assumption 3.2 All variables, parameters, and costs (except for Q ≥ 0 and f(x) ≥ 0) are

strictly greater than zero.

Assumption 3.3 cO < cB(t∗) < cLS

Assumption 3.4 The plant produces a single product type.

The goal of our model is to determine the number of items Q to order during the

off-season and the backorder lead-time t to be used to replenish the backorders during the

season to minimize the expected total costs. The notation of Table 3.3 will be used through-

out this research. We assume backorder cost is the unit backorder processing cost function
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Table 3.3: List of notations.
cO: Unit ordering cost
cH : Unit cost of the holding excess inventory
cB(t): Unit back order cost

where cB(t) is strictly convex and decreasing for t > 0
cLS : Unit cost of shortages that are lost sales
β(t): Fraction of shortages that are backlogged

where β(t) is strictly convex and decreasing for t > 0
K(y): Setup cost after demand realization

where K(y) is increasing for y > 0
t: the unit back order processing time (the decision variable)
Q: Order quantity (the decision variable)
Ne−bt: Special case of cB(t) for b > 0

where N is a maximum value of the back order processing cost
e−at: Special case of β(t) for a > 0
αy: Special case of K(y)
X: A continuous random variable of demand
f(x): Probability density function (pdf) of X
F (x): Cumulative distribution function (cdf) of X
TC(·): Total expected cost function

of the backorder lead-time t. Therefore, the backorder cost can be represented as a function

of cB(t). Thus the expected cost function is given by

TC(Q, t) = Order(production) Cost + Expected Holding Cost

+ Expected Back order Cost + Expected Lost Sales Cost

= cOQ + cH

∫ Q

0
(Q− x)f(x)dx + cB(t)

∫ ∞

Q
(x−Q)β(t)f(x)dx

+ cLS

∫ ∞

Q
(x−Q) [1− β(t)] f(x)dx

= cOQ + cH

∫ Q

0
(Q− x)f(x)dx + cLS

∫ ∞

Q
(x−Q)f(x)dx

+ (cB(t)− cLS)
∫ ∞

Q
(x−Q)β(t)f(x)dx. (3.2)
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Our goal is to derive the optimal solution (Q∗, t∗) that minimizes Eq.(3.2). Although

the expected cost function Eq.(3.2) is not convex for all feasible values of Q and t, its

marginal properties allow us to find the globally optimal solution. To derive the solution,

consider the following derivatives of TC(Q, t). If the total cost function is a convex function,

then the unique minimizer Q∗ can be obtained by equating the first derivative to zero. First

of all, we verify whether the total cost function is a convex function or not. The convexity

of the total cost function is ensured since the second derivation is always positive as follows:

dTC(Q, t)
dQ

= cO + cH

∫ Q

0
f(x)dx− cLS

∫ ∞

Q
f(x)dx + (cLS − cB(t))

∫ ∞

Q
β(t)f(x)dx

d2TC(Q, t)
dQ2

= {cH + β(t)cB(t) + (1− β(t))cLS}f(Q) (3.3)

We have a convex objective function and we can get a feasible point, a unique minimizer

of order quantity, at which the first-order conditions hold that first derivative equal to zero.

Q∗ = F−1

[
β(t)cB(t) + (1− β(t))cLS − cO

β(t)cB(t) + (1− β(t))cLS + cH

]
(3.4)

The first and second order derivatives of TC(Q, t) are then

dTC(Q, t)
dt

= {c′B(t)β(t) + cB(t)β′(t)− cLSβ′(t)}
∫ ∞

Q
(x−Q)f(x)dx

d2TC(Q, t)
dt2

= {c′′B(t)β(t) + 2c′B(t)β′(t) + cB(t)β′′(t)− cLSβ′′(t)}
∫ ∞

Q
(x−Q)f(x)dx

= {c′′B(t)β(t) + 2c′B(t)β′(t) + (cB(t)− cLS)β′′(t)}
∫ ∞

Q
(x−Q)f(x)dx

(3.5)
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Consider the second part of Eq.(3.5). Clearly the second part is non-negative if the

condition of Eq.(3.6) is satisfied. The detailed derivation is in Eq.(B.3). The sufficient

condition is simplified as follows:

c′′B(t)β(t) + 2c′B(t)β′(t) + (cB(t)− cLS)β′′(t) ≥ 0

cLS − cB(t) ≤
c′′B(t)β(t) + 2c′B(t)β′(t)

β′′(t)

cLS − cB(t) ≤ 2ab + b2

a2
Ne−bt

cLS ≤
(

a + b

a

)2

cB(t)

(3.6)

Thus, TC(Q, t) is convex in t for any fixed Q where the condition of Eq.(3.6) is satisfied,

and the optimal value t∗ corresponding to a fixed value Q is obtained by setting the first

part of Eq.(3.5) equal to zero and solving for t, which yields Eq.(3.7) The value t∗ is unique

because Eq.(3.5) shows TC(Q, t) is strictly convex in t for any fixed Q.

c′B(t)β(t) = −cB(t)β′(t) + cLSβ′(t)

β(t) =
{cLS − cB(t)}β′(t)

c′B(t)

t∗ = ln

(
(a + b)N
a · cLS

)
b−1 (3.7)

We need to determine the optimal regular season production quantity Q∗, which can be

accomplished by examining Eq.(3.2) as a function of Q only. Because the second part

of Eq.(3.3) is non-negative, TC(Q, t) is convex in Q so that the optimal value Q∗ (for a

fixed value t) satisfies the resulting equation when Eq.(3.3) is set to zero. Since t∗ given

by Eq.(3.7) is independent of Q, Q∗ is also optimal for t = t∗. Therefore it follows that

45



the global optimal solution (Q∗, t∗) satisfies the first order conditions. Now equating the

first part of Eq.(3.3) to zero and solving, we attain the optimal value Q∗ as a closed form.

By observing Eq.(3.7), we see that the optimal backorder processing policy is such that

optimal backorder lead-time increases as N , a maximum value of back order processing cost,

increases and decreases as cLS increases. According to Eq.(3.7), we define the relationship

between cB(t∗) and cLS . The details are in Eq.(B.5)

cB(t∗) = Ne
−b·b−1ln

“
(a+b)N
a·cLS

”

= Ne
ln

“
a·cLS

(a+b)N

”

= N
a · cLS

(a + b)N

=
a · cLS

(a + b)
(3.8)

3.3.1 The Model with Backorder Setup Cost

The backorder setup cost is incurred in setting up a work center, assembly line, or ship-

ment to switch from a regular order process to a backorder process. We add the backorder

setup cost to the proposed expected total cost function. Thus the expected cost function is

given as follows:

TC(Q, t) = Order(production) Cost + Expected Back order Cost

+ Expected Lost Sales + Expected Holding Cost

= cOQ +
∫ ∞

Q
[K((x−Q)β(t)) + cB(t)(x−Q)β(t)] f(x)dx

+ cLS

∫ ∞

Q
(x−Q) [1− β(t)] f(x)dx + cH

∫ Q

0
(Q− x)f(x)dx (3.9)
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We use a similar process to attain optimal decisions for this model as in the former

model considering no backorder setup cost. Finally, we attain the optimal value t∗ and Q∗

as a closed form and define the relationship between cB(t∗) and cLS in Appendix B.2.

3.3.2 Managerial Insights regarding the Response Time

By observing Eq.(3.7), we see that the optimal response policy is such that the response

time decreases as the customer impatience factor(a), the backorder cost parameter(b), and

the lost sales cost(cLS) increase and response time increases as the maximum value of the

backorder cost(N) increases. Eq.(3.8) implies that the optimal backorder cost is related to

a proportion a
(a+b) of the lost sales cost. It is the same as our intuition that the suppliers

want to reduce the amount of lost sales in case of increasing the customer impatience

factor(a), increasing the backorder cost parameter(b), and/or increasing the lost sales cost.

Additionally, by observing Eq.(B.9), we see that the response time increases as the backorder

setup cost parameter(α) increases. It is also reasonable that increasing the backorder setup

cost parameter(α) causes a decrease in the backorder rate and it causes the optimal response

time to increase consequently.

In subsequent sections, we determine the optimal order quantity for various demand

distributions with numerical examples and illustrate how these solutions can be interpreted.

3.4 An Illusrative Example

An example problem will be constructed in this section using the set of data. The

example will be given for each of the following demand distributions: exponential and nor-

mal. First, the optimal backorder lead-time will be determined using Eq.(3.7)and Eq.(B.9).

Recall that the optimal backorder lead-time (t∗) is independent of the demand distribu-

tion and the order quantity Q. Thus for the example problems, the optimal lead-time (t∗)

is computed once while the optimal order quantity(Q∗) is determined for each different

demand distribution. The following data will be used for the example problems.

47



E(X) = 2000, σX = 2000, cO = $10, cH = $75, cLS = $200, a = 0.005, b = 0.02, N = $1000

In this section, the results of the numerical examples are studied in further detail so as

to validate the mathematical model. We examine our results and then compare this solution

to the result of the prior newsvendor model. We now illustrate that the prior newsvendor

models solution produces higher expected cost than our solutions when backorder lead-

time is optimized. The illustration includes the cases of the normal and the exponential

distribution of demand.

Based on the results shown in Table 3.4 and 3.5, we infer the following insights. With

regular ordering cost to the backorder processing, the prior newsvendor model’s optimal

order quantities associated with normal distribution and exponential distribution case are

2,530 for normal and 1,853 for the exponential case. Detailed comparisons of the prior

newsvendor and the proposed solution are shown in Table 3.4 and 3.5. Tables show the

differences of the optimal order quantities and the total costs between both models. Thus

a negative value indicates a reduction of optimal order quantity or total cost. A study of

Table 3.4 and 3.5 reveals the following insights:

3.4.1 Insights from Table 3.4 and 3.5

The data used have satisfied the sufficient condition of Eq.(3.6) and the optimal back-

order lead-time is determined using Eq.(3.7). The optimal backorder lead-time is 160.94

hours (6.7days). The backorder lead-time determines a backorder rate of 0.447 and a back-

order cost of $40. When we assume the demand is normally distributed, the optimal fill

rate is 58.2% and the optimal order quantity is 2,415 and the total cost is $137,634. The

difference between the prior and the proposed model shows 115 items for the order quantity

and $5,324 for the total cost. In the exponentially distributed demand case, the optimal fill

rate is the same and the optimal order quantity is 1,743 and the total cost is $168,366. The
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difference between the prior and the proposed model shows 110 items for order quantity

and $9,325 for total cost.

Table 3.4: Comparison of Optimal Order quantities.
Dist. Model Optimal Q* Difference
Norm. Prior 2,530 -115

Proposed 2,415
Expo. Prior 1,853 -110

Proposed 1,743

Table 3.5: Comparison of Total costs.
Dist. Model Cost Total cost Difference

Order Holding Backorder Lostsales
Norm. Prior $25,300 $39,203 $1,773 $76,682 $142,958 -$5,324

Proposed $24,150 $35,455 $10,867 $67,162 $137,634
Expo. Prior $18,525 $48,344 $2,504 $108,318 $177,691 -$9,325

Proposed $17,432 $43,485 $14,964 $92,485 $168,366

When we do not optimize the backorder lead-time, the prior newsvendor solution results

in significant expected loss (over $5,300 per season for normal demand and over $9,300 per

season for exponential demand).

3.4.2 Sensitivity Analysis and Management Insights

This section investigates the effects that various problem parameters have on the op-

timal order quantity or the backorder lead-time decisions. Based on the results shown in

Figure 3.1 through Figure 3.5, we observe the following:

Observation 3.1 According to Figure 3.1, optimal response times are non-increasing in

the customer’s impatience factor(a). As the customer’s impatience factor(a) increases to

infinity, optimal response time converges at a certain point.

Increasing the customer’s impatience factor(a) means that more lost sales occur in

shortages. The suppliers can prevent the amount of lost sales by decreasing the response
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time to backorder. Assuming the extreme case, when the customer’s impatience factor(a)

is relatively large, every shortage becomes lost sales. The case should be the same as an

entire lost sales case. Otherwise, when the customer’s impatience factor(a) is very small,

every shortage becomes a backorder. This case is regarded as an entire backorder case.

Observation 3.2 According to Figure 3.2, optimal response times are non-increasing in

the backorder cost parameter(b). As the backorder cost parameter(b) increases, optimal

response time converges at a certain point.

Increasing the backorder cost parameter(b) means that the backorder cost is decreased

more sharply as the response time increases. Assuming the extreme case, when the back-

order cost parameter(b) is relatively large, the backorder cost is very sensitive (a large

difference in costs either way) to the response time and to the supplier’s efforts to decrease

the response time as much as possible. Otherwise, when the backorder cost parameter(b)

becomes very small (but not zero), the backorder cost is not sensitive (not much difference

in the costs either way) to the response time and to the supplier’s efforts to increase the

response time as much as possible.

Observation 3.3 According to Figure 3.3, optimal response times are non-decreasing in

N,α and non increasing in cLS.

When the maximum value of backorder cost(N) increases, the supplier will increase the

optimal response time to reduce the backorder cost. Similarly, as the backorder setup cost

parameter(α) increases, the supplier will increase the optimal response time to reduce the

backorder cost. Otherwise, when the lost sales cost(cLS ) increases, the supplier decreases

the optimal response time to reduce the amount of shortages.

Observation 3.4 According to Figure 3.4, optimal order quantities are non-decreasing in

cLS and non-increasing in cO, cH .
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Figure 3.1: The effect of a on the optimal response time.
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Figure 3.2: The effect of b on the optimal response time.
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Figure 3.5: The effect of t on the optimal order quantity.

Optimal order quantity increases with the lost sales cost as the company is not willing to

have lost sales when the lost sales cost increases. Otherwise, the ordering and the holding

cost show an opposite phenomenon. These results are intuitive and consistent with the

results reported in Lodree (2007).

Observation 3.5 According to Figure 3.5, the optimal order quantity shows the minimum

at the point of the optimal backorder lead-time.

A fast backorder response costs so much that the company tries to reduce the shortages

and increase the optimal order quantity. On the other hand, a delayed backorder response

causes more lost sales and the company works to reduce the shortages by increasing the

order quantity. At the optimal backorder lead-time, all trade offs between the backorders

and the lost sales costs were mitigated and the optimal order quantity shows the minimum

among other optimal order quantities.
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3.5 Conclusion

The time-dependent backlogging approach is prevalent in characterizing inventory

shortages in an inventory decision model. This approach acknowledges that there is some

probability associated with whether or not a customer will backorder a shortage, and that

this probability (i.e., the backorder rate) is related to the backorder lead-time associated

with replenishing the outstanding backorder.

In this study, we consider the fact that the backorder cost is also related to the back-

order lead-time on a stochastic inventory model for a two-stage supply chain system. We

simultaneously consider the order quantity and the backorder lead-time as decision vari-

ables. Closed form optimal solutions are derived for the specific demand distribution, and

intuitive insights were acknowledged by examining the solution for the normally distributed

demand. Our example problem suggests that significant cost savings can be achieved by

implementing the derived optimal solution as opposed to the prior model solution.

A limitation of the model arises from the selection of specific functions for (e.g., back-

order cost function) which contain many cost behaviors as the parameters change, but not

enough for the general case. For instance, the function cB(t) as Ne−btwas selected because

it logically represents the behavior of the time-cost trade-offs (i.e., the cost increases as

the processing time decreases) and it exhibits analytic properties such that the analysis is

tractable. However, a variety of the backorder cost functions should be explored. Practi-

tioners should investigate these functions to implement this model into their specific supply

chain situation. Even though the setup cost shows piece-wise increasing behaviors in prac-

tice, we approximate the backorder setup cost function as the linearly increasing continuous

function in our model. Further research is needed to see how the results could change with

a better approximation for the behavior of the setup cost.
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Chapter 4

The Effects of an Option Approach to Stochastic Inventory Decisions

Abstract

This study presents an option approach (e.g., straddle) for determining the order quantity

under partial backlogging and demand uncertainty. First, we establish an optimal condition

for the required order quantity when a firm has a desirable fill rate. Second, we develop

a closed form solution for optimal order quantity to minimize the total cost. Finally, we

compare the results between the traditional and the option approaches with a numerical

example. The comparison could lead to several inventory decision implications and shows

the advantages of an inventory decision with an option framework over the traditional

inventory decision under high uncertainty.

4.1 Introduction

Almost every decision-maker needs to take a forecast. If he has an idea of what will

happen in the future, he can make appropriate management decisions. He also needs to

assess the effect of his present decisions on the future so that the right decisions are made

today to create a desired condition in the future.

Inventory is capital intensive and, therefore, cost sensitive. The size of the investment

in inventory is typically between 10% and 40% of the total assets of most large corporations

(Stowe 1997). If we know how many items are likely to be demanded, we can improve

the quality of decisions concerning production, procurement, placement and promotion.

Consequently, we can minimize the expected total cost tied up in inventories, avoid running

out of stock and, generally, increase the sales and improve the profits.
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Figure 4.1: General problem description.

For decades, most studies on traditional inventory management under demand uncer-

tainty analyze the detrimental impacts of demand distributions (i.e., normal distribution).

Companies have typically estimated the demand using the normal distribution with its clas-

sic bell-shaped curve.

It is not appropriate to forecast demand as a normal distribution where negative demand

is possible to generate in a highly uncertain situation. In addition, a traditional approach

with demand distribution does not consider the information about a current demand that

significantly affects the future demand.

Many companies receive orders continuously from its customers. At a decision point,

A company could attain current demand information from their reservation systems (i.e.,

airlines industry). There will be additional customer orders for units or the cancellation

of orders during the planning horizon after the decision point as shown in Figure 4.1. In

a highly uncertain situation, the decision-makers are not sure whether the current demand
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will go up or down. This situation is closely related to the financial option-pricing frame-

work. We adopt the framework of option pricing to implement a demand process in an

uncertain situation.

This study develops a variant of the option pricing theory as applied to the inventory

planning and reevaluates the basic newsvendor problem with partial backlogging to show

that the tool of financial options can be used to make inventory decisions in supply chain

management.

4.1.1 The Traditional Newsvendor Approach with Partial Backlogging

The newsvendor problem is not complex, but it can give sufficient information that

enables us to compare between the traditional and the option approaches in a two-stage

supply chain. First of all, we figure out how to decide the optimal order quantity in a

traditional newsvendor approach. In this newsvendor problem, a unit inventory holding

cost of cH is incurred if Q is larger than the demand(x), and the unit back order cost

β · cB or/and unit lost sales cost (1− β)cLS is incurred if Q is smaller than the demand(x).

Then, X is a continuous random variable that represents the demand and β represents the

backorder rate. The objective is to determine the quantity (Q) that minimizes the following

expected cost function.

E[TC(Q)] = Order Cost + Expected Holding Cost + Expected Back order Cost

+ Expected Lost Sales Cost

= cOQ + cH

∫ Q

0
(Q− x)f(x)dx + cB

∫ ∞

Q
(x−Q)βf(x)dx

+cLS

∫ ∞

Q
(x−Q)(1− β)f(x)dx (4.1)

If the total cost function is a convex function, then a unique minimizer (Q∗) can be

obtained. And then, we determine whether the total cost function is a convex function.
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The convexity of the total cost function is guaranteed since the second derivation is always

positive. Refer to Appendix C.1 for details. Because we have a convex objective function,

we can get an optimal order quantity at which the first-order condition is equal to zero.

Q∗ = F−1

[
βcB + (1− β)cLS − cO

βcB + (1− β)cLS + cH

]
(4.2)

Therefore, the optimal demand fill rate is represented by the following:

ρ∗ =
βcB + (1− β)cLS − cO

βcB + (1− β)cLS + cH
(4.3)

The traditional approach, such as the basic newsvendor problem, assumes demand

as a specific distribution (e.g., normal distribution) to implement demand uncertainty as

shown in this model. The optimal order quantity totally depends on the assumed specific

distribution in the traditional approach.

4.2 Literature Review

There has been limited literature which applies financial theory to inventory decisions.

Kim and Chung (1989) and Morris and Chang (1991) use the capital-asset pricing model

(CAPM) as an alternative to the conventional profit-maximization approach. A key insight

of this approach is that a demand beta (sensitivity of demand to the market index) is

inversely related to the stocking level.

Several studies have applied the option-pricing approach to the inventory problem since

1990. Stowe and Gehr (1991) provide two financial approaches to handling the inventory

problem. The first is a replicating portfolio approach comparing the value of a portfolio

of securities to the inventory investment. The second approach applies an option-pricing
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solution to the discrete sales problem. Chung (1990) also shows another option-pricing

solution for inventory payoffs that is a linear function of the demand when the demand and

the investors’ discount rate are jointly log-normally distributed. Becker (1994) solves for

the inventory reorder point using a binomial option-pricing approach.

Agrawal et al. (2000) show a single-period inventory model in which a risk-averse

retailer faces uncertain customer demand and makes a purchasing-order quantity and a

selling-price decision with the objective of maximizing the expected utility. Birge and Zhang

(1999) derive an optimal policy with an option valuation model. Berling and Rosling (2005)

apply a real options framework considering the stochastic demand and the purchase costs.

They present the two inventory models, a single-period model of the newsboy type and an

infinite-horizon model with a fixed set-up cost.

Our approach is an extension of the earlier studies. Our intuition is that if any inventory

payoff function can be mapped onto an underlying state variable, the payoff can be replicated

by a portfolio of options (e.g., straddle strategy). Straddle is one of the most popular options

trading strategies in buying both a call and a put option at the same strike price and the

same maturity date in the case of a volatile market. We also refer to the discrete time

option pricing model of Cox et al. (1979) for the evaluation of the firm’s inventory decision.

The option approach presented here associates the demand for an inventory item with

an underlying state variable. This approach is well chosen for the analysis of the firm’s

inventory decisions under uncertainty because the payoff from the firm’s inventory decision

is an option with its value depending on the uncertain future demands.

This study is organized as follows. The next section introduces the model and presents

a total cost valuation using the option-pricing model. The following section then presents

the optimality for the required order quantity when a firm has a given fill rate and yields

a closed form solution for the optimal order quantity to minimize the total cost. The final

section is a summary and has concluding remarks.
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Figure 4.2: Analogy between financial option and inventory decision.

4.3 Model formulation

The underlying asset price can fluctuate continuously over time. A commonly used

process to describe the evolution of the demand (asset price) is the lognormal diffusion

process. A key feature of this process is that the demand (asset price) never drops below

zero. Another feature of the lognormal diffusion process that is similar to the binomial is

that the variance of the demand (asset price) grows with time. In fact, the variance grows

proportionally to the length of the time horizon (Chopra 2007). We substitute the demand

for the asset price in the option valuation because we assume that the characteristics of

demand are the same as the asset price of the option in this study. The decision problem

which the firm is facing at the decision point is to determine and to notify its supplier of

the order quantity(Q), in order to meet the unknown accumulated orders (i.e., demand) of

units from its customers at the end of the period. We consider the change of demand during

a considerable lead-time to determine the order quantity at the decision point. Here we

discuss a single period inventory problem. This approach is closely related to the principles

of an asset pricing model, such as the Black-Scholes option-pricing model. Then we set up
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Table 4.1: List of notations.
cO : Unit ordering cost
cH : Unit cost of the holding excess inventory
cB : Unit cost of the backlogged shortages
cLS : Unit cost of the shortages that are lost sales
β : Fraction of shortages that are backlogged
rf : Risk free interest rate
T : Lead-time
ρ: Demand fill rate
Q : Order quantity
Qρ : Order quantity with a given demand fill rate
Q∗: Optimal order quantity that minimizes the total cost
D0: Initial demand(i.e., number of reservations by the decision point)
DT : Demand (the customers order) at time T
X: Random variable of demand
f(x): p.d.f. of the demand distribution
F (x): c.d.f. of the demand distribution
TC(·): Total expected cost function

an analogy between the financial option and the inventory decision as shown in Figure 4.2.

The notation of Table 4.1 will be used throughout this study.

4.3.1 Model Formulation with an Option Pricing Framework

The total cost may be represented as the order cost, holding cost, backorder cost,

and lost sales cost. If the demand (D) is greater than the quantity ordered (Q), the cost

is assumed to be the profit lost on unsatisfied demand. If the demand is less than the

quantity ordered, unsold units incur a holding cost for storage at a warehouse. The total

cost function can be represented as follows:

TC(Q) =

 Order cost + Backorder cost + Lost sales cost if D ≥ Q

Order cost + Holding cost if D < Q

(4.4)
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Figure 4.3: A Straddle quoted from John C.Hull (2002).

With the end-of-period convention, the cash flows at the end of the period will be

cOQ+ cBβ(D−Q)+ cLS(1−β)(D−Q) if the demand is greater than the quantity ordered,

or cOQ + cH(Q−D) if the demand is less than the quantity ordered. To consider a general

situation, we assume cB < cLS , although there are some situations where backorder costs

exceed the short term lost sale costs.

TC(Q) =

 cOQ + cBβ(D −Q) + cLS(1− β)(D −Q) if D ≥ Q

cOQ + cH(Q−D) if D < Q

(4.5)

This total cost combination closely imitates a straddle strategy in financial options

as shown in Figure 4.3. Straddle is one of the most popular options trading strategies in

buying both a call and a put option at the same strike price and on the same maturity

date in the case of a volatile market. If you buy a straddle, you expect the price of the
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underlying asset to move significantly, but you’re not sure whether it will go up or down.

Your risk in buying a straddle is limited to the premium you pay. The first part of Eq.

(4.5) represents a call option situation and the second part of Eq. (4.5) represents a put

option situation. Then the present total cost of cash flows can be expressed as the following

conditional expectation. Refer to Appendix C.4 for details.

E[TC(Q)] = e−rf T · E[{cBβ + (1− β)cLS}D

−{cBβ + (1− β)cLS − cO}Q|D ≥ Q] · P (D ≥ Q)

+e−rf T · E[(cO + cH)Q− cHD|D < Q] · P (D < Q)

(4.6)

We convert the end of the period’s conditional cash flow into a certain present value

with a continuous discount factor. We can divide the former equation into two components.

E[TC(Q)] = E[TCa(Q)] + E[TCb(Q)]

E[TCa(Q)] = e−rf T · E[{cBβ + (1− β)cLS}D

−{cBβ + (1− β)cLS − cO}Q|D ≥ Q] · P (D ≥ Q)

E[TCb(Q)] = e−rf T · E[(cO + cH)Q− cHD|D < Q] · P (D < Q) (4.7)

We denote the current demand by D0 and the demand at the end of the lead-time by

DT . The ratio DT
D0

is a random variable with a lognormal distribution where ln( Di
Di−1

) = ri

is the rate of demand change in the ith period and is a random variable with normal

distribution under our assumptions. Let ri have the expected value µr and variance σ2
r

for each i . Then r1 + r2 + r3 + · · · + rT is a normal random variable with the expected
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value and variance . Thus, we can define the expected value of DT
D0

= er1+r2+r3+···+rT as

E[DT
D0

] = eTµr+
Tσ2

r
2 .

The risk neutral approach to valuation, introduced by Cox et al. (1979), is based on

the same arguments that underlie the option valuation. Under this assumption that the

expected demand change for one period (e.g.,D1
D0

= erf ) is regarded as the exponential

value of the risk free interest rate, the expected demand change rate E[DT
D0

] is assumed to

be erf ·T where rf is the risk free interest rate. In other words, since we assume that DT
D0

is

log-normally distributed, we can define that the rf as µr+
σ2

r
2 . Therefore, ln(DT

D0
) is normally

distributed using the relationship between the lognormal and the normal distribution. We

can rewrite the first part of Eq. (4.7) as follows. Refer to Appendix C.6 for details.

E[TCa(Q)] = e−rf T ·D0 · {cBβ + (1− β)cLS}
∫ ∞

ln( Q
D0

)
rf(r)dr

−e−rf T ·Q{cBβ + (1− β)cLS − cO}
∫ ∞

ln( Q
D0

)
f(r)dr

= D0{cBβ + (1− β)cLS}N(d1)− e−rf T ·Q{cBβ + (1− β)cLS − cO}N(d2)

where d1 =
ln(D0

Q ) + (rf + σ2
r
2 )T

σr

√
T

, d2 =
ln(D0

Q ) + (rf − σ2
r
2 )T

σr

√
T

(4.8)

We also rewrite the second part of Eq. (4.7) using similar procedures as follows. Refer

to Appendix C.7 for details.

E[TCb(Q)] = e−rf T ·Q(cO + cH)
∫ ln( Q

D0
)

0
f(r)dr − e−rf T ·D0cH

∫ ln( Q
D0

)

0
rf(r)dr

= e−rf T ·Q(cO + cH)N(−d2)−D0 · cHN(−d1)

where d1 =
ln(D0

Q ) + (rf + σ2
r
2 )T

σr

√
T

, d2 =
ln(D0

Q ) + (rf − σ2
r
2 )T

σr

√
T

(4.9)
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Then we can rewrite the Eq. (4.7) simply as follows where N(·) denotes the cumulative

distribution function of the standard normal distribution.

E[TC(Q)] = E[TCa(Q)] + E[TCb(Q)])

= D0{cBβ + (1− β)cLS}N(d1)− e−rf T ·Q{cBβ + (1− β)cLS − cO}N(d2)

+e−rf T ·Q(cO + cH)N(−d2)−D0 · cHN(−d1)

where d1 =
ln(D0

Q ) + (rf + σ2
r
2 )T

σr

√
T

, d2 =
ln(D0

Q ) + (rf − σ2
r
2 )T

σr

√
T

(4.10)

4.4 Inventory Decisions

We develop two closed form solutions for the inventory problem with this model. First,

we consider a firm that has an desirable fill rate to meet a certain level of customer satisfac-

tion. Next, we consider a firm wants to minimize the expected total costs with an optimal

fill rate.

4.4.1 Order Quantity with a Desirable Fill rate

Suppose that the decision-maker of the firm has a desirable fill rate, ρ. The firm desires

to satisfy this level of fill rate. N(−d2) is interpreted as the fill rate, demand being less

than the quantity ordered, as shown in the following equation.

P (D < Q) = P (
D

D0
<

Q

D0
)

= P (ln(
D

D0
) < ln(

Q

D0
))

= 1− P (r ≥ ln(
Q

D0
))

= 1−
∫ ∞

ln( Q
D0

)
f(r)dr = 1−N(d2)

= N(−d2)
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where ln(
Dt+1

Dt
) = r ∼ Normal(µr, σr) (4.11)

Then the minimum required order quantity can be obtained by letting N(−d2) equal

to ρ. Finally, we develop the closed-form solution for the minimum required order quantity.

Refer to Appendix C.10 for details.

ρ = N(−d2)

Qρ =

 D0e
(rf−

σ2
r
2

)T

eN−1(1−ρ)σr

√
T

 (4.12)

N−1(·) denotes the inverse cumulative distribution function of the standard normal distri-

bution.

4.4.2 Optimal Fill rate and Order Quantity

Now suppose that the objective is to minimize the present total cost cash flows. Then,

we could attain optimal stock out probability and order quantity fromd[E[TC(Q)]]
dQ = 0.

d[E[TC(Q)]]
dQ

= e−rf T (cO + cH)N(−d2)− e−rf T {cBβ + (1− β)cLS − cO}N(d2) = 0

e−rf T (cO + cH)N(−d2) = e−rf T {cBβ + (1− β)cLS − cO}N(d2)

(4.13)

Note that cBβ +(1−β)cLS − cO represents the penalty cost of the shortage (i.e., lost profit

per unit), and N(d2) represents the probability of stock-out. Thus the right-hand side of

Eq. (4.13) measures the expected cost of shortages. Similarly, note that cO + cH is the

implicit cost of each unsold unit, and N(−d2) represents the fill rate. Thus the left-hand
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side of Eq. (4.13) measures the expected cost of an overstock. The Eq. (4.13) can be

simplified as follows:

ρ∗ = N(−d2) =
βcB + (1− β)cLS − cO

βcB + (1− β)cLS + cH

(4.14)

If we have a convex objective function and a feasible point at which the first-order

conditions hold, then we know that we have found a unique minimizer. We need to verify

the convexity of Eq. (4.10) as the convexity of the function guarantees the expected total

cost function has a unique minimizer. The convexity of Eq. (4.10) is guaranteed since the

second derivation is always positive as follows. Refer to Appendix C.9 for details.

d[E[TC(Q)]]2

d2Q
= e−rf T {cH + cBβ + (1− β)cLS}(Qσr

√
T )−1f(d2) (4.15)

The optimal order quantity occurs when the expected shortage penalty cost equals the

expected cost of the overstock. We derive the optimal order quantity (Q∗) as follows. Refer

to Appendix C.10 for details.

N(−d2) = ρ∗

Q∗ =
D0e

(rf−
σ2

r
2

)T

eσr

√
TN−1(1−ρ∗)

(4.16)

The value of ρ∗ can be interpreted as the optimal fill rate to minimize the expected

total cost. Then, we also obtain the closed-form solution for the optimal order quantity.

The optimal fill rate is the same as the partial backlogging newsvendor problem. It is
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reasonable to make the option framework approach applicable as the equation of optimal

fill rate is composed with determined parameters.

4.5 An Illustrative Example

Comparisons between the traditional and option approaches will be given in this section

using the same set of data. The following example data was used for the analysis:

cO = 10, cH = 5, cB = 20, cLS = 40, D0 = 500, rf = 0.05, β = 0.3, T = 1 (4.17)

We adopt the relationship proposed by Dixit et al. (1994) between the volatility of

demand (σr) and the volatility of future demand at the end of the study period (σT ) to

compare both the approaches.

σr =

√√√√√ ln
(

σ2
T

D2
0e

rf T + 1
)

T
(4.18)

Order Quantity with an Desirable Fill rate

The required order quantities of both the approaches with an desirable fill rate are at-

tained according to the change of the volatility of demand (σr). We illustrate the differences

between both the approaches with graphs to find some implications.

As shown in Figure 4.4, optimal order quantities are exponentially increased as the

volatility of demand (σr) is increased with the fill rate greater than 50%. Otherwise, optimal

order quantities are exponentially decreased as the volatility of demand (σr) is increased

with the fill rate less than 50%. Optimal order quantities are the same regardless of the

change of the volatility of demand (σr) with the fill rate 50%. However, the optimal order
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Figure 4.4: Order quantity with traditional approach.

0

200

400

600

800

1000

1200

1400

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Q s

p=0.9

p=0.7

p=0.5

p=0.3

p=0.1

σ
r

Figure 4.5: Order quantity with option approach.
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Table 4.2: Comparison Optimal order quantities and Total costs.
Q* TC(Q*)

σr Traditional Option app. Difference Traditional Option app. Difference
0 526 526 - $ 5,000 $ 5,000 -

0.2 557 546 (10) $ 6,843 $ 6,525 ($ 318)
0.4 590 546 (44) $ 8,496 $ 8,078 ($ 418)
0.6 627 524 (104) $ 10,167 $ 9,598 ($ 569)
0.8 672 483 (189) $ 12,003 $ 11,029 ($ 974)

1 728 428 (300) $ 14,277 $ 12,322 ($ 1,955)
1.2 802 364 (439) $ 17,310 $ 13,445 ($ 3,865)
1.4 906 297 (609) $ 21,569 $ 14,383 ($ 7,186)
1.6 1058 234 (825) $ 27,824 $ 15,134 ($ 12,689)
1.8 1289 176 (1,113) $ 37,369 $ 15,714 ($ 21,655)

2 1655 128 (1,527) $ 52,491 $ 16,143 ($ 36,348)

quantities show different shapes when using the option approach as shown in Figure 4.5.

It shows that optimal order quantities are increasing in a nonlinear fashion to some point

and then decreasing as the volatility of demand (σr) is increased with the fill rate greater

than 50%. Otherwise, optimal order quantities are decreasing in a nonlinear fashion as the

volatility of demand (σr) is increased with the fill rate less than or equal to 50%.

The traditional approach gives negative order quantities, which are not applicable in

practice as shown in Figure 4.4. The optimal order quantities show a different pattern when

we apply the option approach as the volatility of demand (σr) increase as shown in Figure

4.5. In the traditional approach with high volatility of demand (σr), the decision-maker can

increase the order quantity beyond an acceptable amount. Consequently, the traditional

approach does not address risk in an economically meaningful way under high uncertainty

because it provides information of optimal order quantity as negative or beyond acceptable

amount. The option approach shows that optimal order quantities are positive and have

upper limits even in a highly uncertain situation.
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Optimal Fill rate and Order Quantity

When we attain the optimal fill rate with data for an illustrative example, the optimal

fill rate is determined by constant parameters. The optimal fill rate is the same, 61.54%, in

this numerical example for both the approaches using Eq. (4.3) and Eq. (4.14). We check

the optimal order quantities for both approaches as the volatility of demand (σr) increases.

We change the volatility of demand (σr) within some intervals for both the approaches under

the optimal fill rate (61.54%). Table 4.2 shows the comparison of the order quantities and

total costs between the two approaches. As shown in Table 4.2, the optimal order quantities

of the traditional approach are increased as the volatility of demand (σr) increases with the

optimal fill rate. However, the optimal order quantities represent a different pattern when

using the option approach. It shows that the pattern of optimal order quantities is definitely

different from the traditional approach when the volatility of demand (σr) increases with the

same optimal fill rate. In the option approach, the probability density function of demand

under high volatility shows a more skewed shape towards the side of small demands. The

option approach suggests us to reduce order quantities in a highly volatile demand situation

unlike the traditional approach. The difference in optimal order quantities of both the

approaches is not significant at a low volatility of demand (σr) but the difference can be

significant at a high volatility of demand (σr). Table 4.2 shows us the difference of total

costs is $36,348 when the volatility of demand (σr) is equal to 2.

4.6 Conclusion

Our research presents an option approach to make a decision about the order quantity.

This approach incorporates the economic principles of the asset pricing models, such as the

Black-Scholes option-pricing model, to replace the expected total cost minimization sense

of the traditional approach. Asset-pricing models have been incorporated into many of the

other investing and financing pricing decisions of the firms, and we have shown that an

option-pricing approach looks promising for determining the inventory decisions as well.
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This study presents an option-pricing framework to decide the order quantity under

demand uncertainty during non-negligible lead-time. First, we establish an optimal condi-

tion for required order quantity when a firm has an desirable fill rate. Second, we develop

a closed-form solution for optimal order quantity to minimize the total cost. Moreover, we

compare the results between the traditional and option approaches with different values

of volatility of the demand (σr). The comparison could lead to several inventory decision

implications and shows the advantages (i.e., total cost reduction) of an inventory decision

with a real option framework. The option approach addresses risk in an economically mean-

ingful way. Specifically, it does not make any negative order quantity when the fill rate is

less than 50% with a high volatility of demand (σr) but the traditional approach gives us a

negative order quantity.

The usefulness of the option approach relies on the identification of financially traded

assets that can be used to forecast the customer demand, allowing for the specification of

payoff functions for the inventory problem. Another requirement for the application of the

option approach is the willingness of decision-makers to adapt option-pricing models to spe-

cific inventory situations. If these requirements are met, there should be more opportunities

for successfully applying the option approach to inventory decisions.

This work can be extended to various studies for inventory decisions in several ways. A

useful extension would be to apply this approach to a multi-period problem. A multi-period

problem is more likely to be applicable to practitioners. Another extension we suggest is

to use a time-dependent backorder rate function and not a deterministic backorder rate (β)

as used in this study. For example, the backorder rate is expressed as the function of the

magnitude of the shortages (Lodree 2007).
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Chapter 5

Coordinating a Two-Stage Supply Chain Based On Option Contract

Abstract

Manufacturers and retailers are implementing option contracts to improve overall supply

chain profits and product availability. This research considers a standard newsvendor prob-

lem with price dependent stochastic demand in a single manufacturer-retailer channel and

shows the expected profits that each party receives under an option contract designed to

eliminate the double marginalization problem. We derive closed form solutions for the ap-

propriate option prices by the manufacturer as an incentive for the retailer to make optimal

pricing and order quantity decisions for coordinating the channel. The option contract not

only coordinates the supply chain; it also can divide the profit between the manufacturer

and the retailer. The findings of this research are illustrated in a numerical example for a

normal demand distribution.

5.1 Introduction

Recent years have seen growing interest in the area of supply chain coordination. One of

the features of supply chain is the existence of the multiple decision-makers. Optimal supply

chain performance requires the execution of a precise set of actions. Unfortunately, those

actions are not always in the best interest of all the members of the supply chain. Actions

taken by the two parties in the supply chain often result in profits that are lower than what

could be achieved if the supply chain were to coordinate its actions with a common objective

of maximizing supply chain profits. We consider a product whose demand is significantly

affected by the retail price. And the retailer decides its price based on its margin. The

retailer’s margin is only a fraction of the supply chain margin, which could lead to a retail
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price that is higher than the optimal retail price and an actual order quantity that is lower

than the optimal amount for the supply chain. To improve overall profits, the manufacturer

designs a contract that encourages the retailer to purchase more and increase the level of

product availability. This requires the manufacturer to share in some of the retailer’s risk

of the demand uncertainty.

We suggest an option contract to hedge the risk of the demand uncertainty. This can

improve the product availability before the season and maximize the overall supply chain

profits at the end of the season through coordination of the option prices and the order

quantity. One of the most important benefits gained from trading in the option contract is

that the retailer can order a wide range of items with a relatively small initial investment

(e.g. option premium). When a retailer assumes a demand position in the future, he or she

locks in a price for the commodity from the manufacturer. This fixed price is the option

strike price at which the contract is bought or sold. Subsequently, as the demand for the

commodity rises or falls, the option strike price follows suit, making or losing money. The

option contract provides protection for each party (e.g.,manufacturer and retailer) against

dangerous demand swings.

We use a newsvendor model to illustrate the benefits of an option contract in the

supply chain. The newsvendor model is not complex, but it is sufficiently rich to offer

many implications for the manufacturer and the retailer in supply chain coordination. In

the newsvendor model the retailer orders a single product from the manufacturer well in

advance of the selling season with a stochastic demand. The manufacturer produces the

item after receiving the retailer’s order and delivers their production to the retailer at the

start of the selling season. The retailer has no additional replenishment opportunity. How

much the retailer chooses to order depends on the terms of the trade, i.e., the contract,

between the retailer and the manufacturer. Our model allows the retailer to choose his

discounted retail price to increase the product demand. Coordination is more complex in
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Table 5.1: A summary of the related literature.
Contract Literature
Buyback Padmanabhan and Png (1997), Emmons and Gilbert (1998),

Donohue (2000), Taylor (2001),
Lee, Padmanabhan, Taylor and Wang (2000)

Revenue Mortimer (2000), Dana and Spier (2001),
sharing Gerchak, Cho and Ray (2001)
Quantity Pasternack (1985), Eppen and Iyer (1997), Tsay (1999),
flexibility Cachon and Lariviere (2001), Lariviere (2002),

Plambeck and Taylor (2002)
Rebates Krishan, Kapuscinski and Butz (2001), Taylor (2002)
Quantity Jucker and Rosenblatt (1985), Pantumsinchai and Knowles (1991),
discounts Khouja (1996), Lin and Kroll (1997),

Chen, Federgruen, and Zheng (2001), Weng (1995)
Option Erkoc and Wu (2002), Barnes-Schuster, Bassok and Anupindi (2002),

Cheng, Ettl, Lin, Schwarz and Yao (2003), Kleindorfer and Wu (2003),
Kamrad and Siddique (2004),Martnez-de-Albenz and Simchi-Levi (2003),
Ozer and Wei (2004), Burnetas and Ritchken (2005)

this setting because the incentives provided to align one action (e.g., order quantity) may

cause distortions with the other action (e.g., option price).

5.2 Literature Review

Several different types of contract are shown to coordinate the supply chain and divide

its profit; buy back, revenue sharing, quantity flexibility, sales rebate, and quantity discount

contracts. In recent years, researchers have examined option contracts to help coordinate a

supply chain. Table 5.1 summarizes literature about the contract policies in supply chain

coordination.

Taylor (2000) incorporates a buy back contract with a sales rebate contract to coordi-

nate the newsvendor with an effort dependent demand. Donohue (2000) studies buy back

contracts in a model with multiple production opportunities and improving the demand

forecasts. For the literature related to revenue sharing contracts, Mortimer (2000) provides
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a detailed econometric study of the impact of revenue sharing contracts in the video rental

industry. Dana and Spier (2001) study these contracts in the context of a perfectly com-

petitive retail market. Gerchak, Cho and Ray (2001) consider a video retailer that decides

how many tapes to purchase and how long to keep them.

In addition, there are a number of papers about quantity- flexibility contracts. Cachon and

Lariviere (2001) and Lariviere (2002) study the interaction between quantity flexibility con-

tracts and forecast sharing. Plambeck and Taylor (2002) study quantity flexibility contracts

with more than one downstream firm and ex-post renegotiation. The sales rebate contract

is studied in Taylor (2000) and Krishan, Kapuscinski and Butz (2001). In Taylor (2000)

effort is chosen simultaneously with the order quantity, whereas Krishan, Kapuscinski and

Butz (2001) focus on the case in which the retailer chooses an order quantity, a signal of

demand is observed and then effort is exerted.

The literature about the option contracts is studied by Erkoc and Wu (2002). They

propose two channel coordination contracts, and discuss how such contracts can be tai-

lored for situations where the supplier has the option of not complying with the contract,

and when the buyer’s demand information is only partially updated during the supplier’s

capacity lead-time. Cheng, Ettl, Lin, Schwarz and Yao (2003) develop an option model

to quantify and price a flexible supply contract, by which the buyer (a manufacturer), in

addition to a committed order quantity, can purchase option contracts and decide whether

or not to exercise them after demand is realized. However, unlike our study, they assume

the retail price is constant. Martnez-de-Albenz and Simchi-Levi (2003) consider the impact

of a supply option contract on the newsvendor and derive an optimal replenishment policy

for a portfolio consisting of long-term and option contracts. Burnetas and Ritchken (2005)

investigate the role of option contracts in a supply chain when the demand curve is sloping

downward. They show that the introduction of the option contracts causes the wholesale

price to increase and the volatility of the retail price to decrease.
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Figure 5.1: Transactions between parties.

Our study is to consider contracting arrangements in a supply chain for a newsvendor

environment. Our approach, however, differs in that we do not assume the retail price

and the demand distribution as given; rather, we assume demand distribution is influenced

by the discount of the retail price, because, in practice, the retailer usually has a right to

discount the retail price to some extent and the demand is relative to the retail price.

The rest of this study is organized as follows. In section 5.3, we describe the channel

structure including the meanings of notations and the model assumptions for this study.

Section 5.4 describes the types of supply chain decisions as closed form solutions (i.e.,

optimal option purchase and strike prices, optimal order quantity) for the manufacturer

and the retailer respectively. In section 5.5, we demonstrate the results with numerical

examples. Finally, we conclude in Section 5.6 with possible extensions.
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Table 5.2: List of notations.
po : Original selling price.
p : Discounted selling price.
h: Holding cost.
c: Production cost.
X : r.v. of Demand.
Q : Order quantity.
x : Value of demand.
f(x): pdf of X with discounted retail price
f0(x): pdf of X with initial retail price
F (x): cdf of X with discounted retail price
F0(x): cdf of X with initial retail price
v0: Option Purchase price (e.g.,premium).
ve: Option Strike price.
γ: Proportion of the channel profit got by retailer
Vc: Profit in the centralized system.
Vr: Profit of retailer in the decentralized system.
Vm: Profit of manufacturer in the decentralized system.

5.3 Channel Structure with an Option Contract

We consider a single period two-stage supply chain option contract between a manu-

facturer and a retailer who sells a short life-cycle product to the customers. The retailer

can discount a retail price in an appropriate range. The interaction takes place between

the retailer and the manufacturer in a principal agent setting where the manufacturer is

the leader. Before the season the manufacturer provides the option contract consisting of

the option purchase and the exercise price, then the retailer determines the retail price and

the order quantity. Under the forced compliance environment, the manufacturer must build

enough quantity to satisfy the final order up to the number of the order quantity.

After the demand is realized the retailer exercises the option accordingly. So in this

setting there is no remainder, for the retailer has a right to return leftovers by return policy

as shown in Figure 5.1. In this study it is also assumed that the unsatisfied demand becomes

lost sales and there is no penalty cost for lost sales. Throughout the study, the parameters

and the decision variables of the model are given in Table 5.2.
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A discounted retail price could affect the expected demand and the variance of the de-

mand. Generally, with discounting of the retail price, the expected demand and the variance

will increase. We make the following assumptions concerning the model parameters:

c < v0 + ve

c < p < p0 (5.1)

These conditions rule out the cases where the contract cannot establish between the two

parties. The first condition ensures that the manufacturers marginal profit is nonnegative.

The second condition regulates the limits of the discounted retail price.

We compare two channel structures. In the Centralized System (CS), we assume that

there is one decision-maker who controls the channel and hence makes decisions to optimize

the total system profits. Observe that under this scenario, the option and the exercise prices

play no role in determining the system profits. The only appropriate decision variables are

the order quantity and the retail price decisions for the single period at the beginning of

the season. The optimal solution to the CS is called as the first-best solution.

In the Decentralized System (DS), the retailer and the manufacturer play in a principal

agent setting where the manufacturer is the leader and the retailer, the follower. This is

reasonable whenever the manufacturer has more influence in the channel than the retailer.

In this situation, for a given set of option prices announced by the manufacturer, the retailer

places orders and determines the appropriate discounted retail price in the single period,

which maximizes their expected profits. These orders act as implicit demand functions for

the manufacturer. The CS is used as a benchmark case to investigate whether there exists

an appropriate decentralization mechanism (through prices and/or quantities) such that

the DS will achieve the first-best solution.
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To establish a benchmark for the performance comparison, we analyze the centralized

system and the details are in Appendix D.1. In CS, the expected profit function of the

system and optimal order quantity are expressed as follows:

VC(Q) = p · E[[X ∧Q]]− h · E[[Q−X]+]− cQ

= (p− c)Q− (p + h) ·
∫ Q

0
F0(x)dx

where [x]+ = max{x, 0}, [x ∧ y] = min{x, y}

Q∗ = F−1
0

(
p− c

p + h

)
(5.2)

This reduces the problem to an optimization problem over the single variable p . Using

the single variable optimal theory, we can find the optimal retail price p∗ or demonstrate

that VC(Q∗, p∗) is uni-modal or concave. The value for p∗ can be found by using a one-

dimensional search algorithm within a closed interval [c, p0] in this research.

To analyze the DS, first we need to develop the expressions for the expected profits of

each system. In our setting, the retailer has a right to return the leftovers to the manufac-

turer without penalty. For clarity of exposition, we derive the individual profit function of

the manufacturer and the retailer respectively in the DS as follows:

Vm(v0, ve) = (v0 − c)Q + ve · E[X ∧Q]]− h · E[[Q−X]+]

= (v0 + ve − c)Q− (ve + h) ·
∫ Q

0
F (x)dx

Vr(Q, p) = (p− ve) · E[[X ∧Q]]− v0Q

= (p− ve − v0)Q− (p− ve) ·
∫ Q

0
F (x)dx

(5.3)
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5.4 Decisions for a Supply Chain Coordination

We want to provide closed form solutions for the option prices, the order quantity,

and the discounted retail price. We consider that demand distribution is influenced by the

retail price. It demonstrates that the options redistribute the risk between two parties in

shifting part of the retailer’s risk due to demand uncertainty to the manufacturer. The

manufacturer is compensated by the additional revenue obtained from the option contract.

Any share of this profit improvement can be represented by an option contract through

a suitable choice of the contract parameters. Under certain conditions, this profit sharing

mechanism with an option contract will achieve the channel coordination by eliminating

the double marginalization problem in the supply chain.

5.4.1 The Manufacturer’s Optimal Option Pricing Decisions

In this study we provide an option contract to coordinate the decentralized supply chain

with stochastic demand. By setting proper contract parameters, channel coordination is

achieved. Moreover the manufacturer who shares the risk of demand uncertainty can be

compensated by establishing favorable contract parameters in order to take a larger portion

of the channel profit. The contractual arrangements we designed between the manufacturer

and the retailer allow the decentralized supply chain to perform as well as a centralized

one. In order to eliminate the double marginalization problem and to induce the perfect

coordination, the relationship between the profit functions is established as follows:

Vr = γVC

Vm = (1− γ)VC

(5.4)
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where γ is a retailer’s portion of the channel profit. Through derivations of Eq.(5.4) in

Appendix D.3, the manufacturer should provide the explicit contract parameters as follows:

v0 = γ(h + c)

ve = (1− γ)p∗ − γh

(5.5)

The Eq.(5.5) represents the optimal option purchase and the strike price for the man-

ufacturer. The result shows that the manufacturer’s optimal option purchase price is not

dependent on retail price while the optimal strike price is dictated by the optimal discounted

retail price.

Furthermore, the result of Eq.(5.5) can support a division of the channel profit between

the manufacturer and the retailer by varying the contract parameters (i.e., the option

purchase or the strike price).

γ =
p∗ − ve

p∗ + h

γ =
v0

h + c

(5.6)

5.4.2 The Retailer’s Optimal Order Quantity and Discount Retail price

We attain the retailer’s optimal order quantity and the discount retail price by solving

the system optimal problem. Sometimes the retailer insists on no discounting in his retail

price so as to keep the initial retail price p0 to get maximum margin from each sale. With a

contractual arrangement for coordination, the retailer could agree to a discount retail price

to increase expected demand for the product to improve the profitability of the overall
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supply chain. In that case, we assume that the demand (X) is a random variable, which

depends on the discount retail price p. The expected value of X is a concave decreasing

function in p where c < p < p0.

We can express the expected demand (µ) with discount as µ0 + µ0ω(p0 − p)α where ω

and α are empirically determined constants which indicate the effectiveness of the discount.

A condition of ω = 0 indicates that the expected demand is independent of the retail price.

For ω > 0, the larger the value of α, the more effective is the discounting. Three cases can

be identified for the variance of X:

1. A retail price discount increases the mean demand but does not change the demand

variance. Thus σ2 = σ2
0 : This case will be referred to as the fixed variance case (FVC).

2. A retail price discount increases both the mean and the variance of demand in a

proportional fashion. Thus, the coefficient of variation is a constant given by CV = CV0 :

This case will be referred to as the fixed coefficient of variation case (FCVC). The derivation

is in Appendix D.4.1.

3. A retail price discount increases the variance of demand at a faster rate than it

increases the mean demand. Thus, CV is an increasing function of the (p0 − p) : This case

will be referred to as the increasing coefficient of variation case (ICVC). The ICVC reflects

the stronger effects of other factors on the demand at a big discount. For example, the

effects of unanticipated economic conditions or competitor’s actions may lead to very large

deviations from the expected demand at a big discount. The derivation is in Appendix D.4.2.
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Fixed Variance Case (FVC)

We can express the expected demand and variance with discounted retail price as

follows:

µ = µ0 + µ0ω(p0 − p)α

σ2 = σ2
0

where ω, α > 0 (5.7)

The profit function and the optimal order quantity of a centralized system can be

expressed as follows:

VC(Q) = (p− c)Q− (p + h) ·
∫ Q

0
F (x)dx

= (p− c)Q− (p + h) ·
∫ Q

0
F0(x− µ0ω(p0 − p)α)dx

Q∗ = F−1
0 (

p− c

p + h
) + µ0ω(p0 − p)α

(5.8)

For example, we apply a uniform distribution of demand on a centralized system with

FVC and get an optimal order quantity solution as a consistent form with Eq.(5.8) above.

VC(Q) = (p− c)Q− (p + h) ·
∫ Q

0

x− µ0ω(p0 − p)α − a

b− a
dx

∂VC(Q)
∂Q

= (p− c)− p + h

b− a
(Q− µ0ω(p0 − p)α − a) = 0

Q∗ =
p− c

p + h
(b− a) + a + µ0ω(p0 − p)α
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= F−1
0 (

p− c

p + h
) + µ0ω(p0 − p)α

= Q∗
0 + µ0ω(p0 − p)α

(5.9)

5.5 An Illustrative Example

In this section, the numerical example shows a mechanism of supply chain coordination

with an option contract. The following example data is used for the analysis.

c = 55, h = 25, p0 = 95, γ = 0.125, µ0 = 5, 000, σ0 = 1, 000, ω = 1.5, α = 0 (5.10)

The illustration will consider a normal distribution of the demand. Based on the results

shown in the following figures, we observe the following insights.

First, we consider the case that each party agrees to a total option price (i.e., v0 +ve =

90) and the retailer could decide his order quantity without discounting his retail price.

Observation 5.1 According to Figure 5.2, optimal order quantity to maximize the supply

chain profit is independent of the option prices between parties.

Figure 5.2 shows us a consistency between Eq.(5.8), of the optimal order quantity and

the result of this numerical analysis. To maximize the overall supply chain profit, the

retailer should decide his order quantity based on Eq.(5.8). In these arbitrary combinations

of option purchase price and strike price, the retailer’s portion of the channel profit (γ)

fluctuates between 1.2% to 13.9% even if the retailer does order the optimal order quantity

for coordination. Therefore, the next question is what combination of option purchase price

and strike price can lead to guarantee the negotiated retailer’s portion of the channel profit

(γ).
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Observation 5.2 According to Figure 5.3 , optimal combination of the option purchase

price and the strike price (i.e., v0 = 10, ve = 80) from Eq.(5.5) guarantees the negotiated

retailer’s portion of the channel profit (0.125) when the retailer does order the optimal order

quantity for coordination.

The total option price (i.e., v0 + ve = 90) regulates a division of the channel profit between

the manufacturer and the retailer. In this case, we get 12.5% of the retailer’s portion of the

channel profit (γ) based on the Eq.(5.6). On the other hand, when we know the retailer’s

portion of the channel profit (γ), we can get an optimal combination of the option purchase

price and the strike price (i.e., v0 = 10, ve = 80) with Eq.(5.5) to coordinate the supply

chain.

Observation 5.3 According to Figure 5.4, with the optimal combination of the option pur-

chase price and the strike price (i.e., v0 = 10, ve = 80), the negotiated retailer’s portion of

the channel profit (γ) is protected even if the retailer does not order the optimal order

quantity for coordination.

Second, we consider the discount retail price with FVC (Fixed Variance Case). The

retailer decreases a retail price from the initial retail price p0 to a discount price p . A

retail price discount increases the mean demand but does not change the demand variance

in FVC. A discount retail price affects the optimal order quantity and the profits of each

party.

Observation 5.4 According to Figure 5.5, we can get an optimal state of decision variables

to maximize the profit of the centralized supply chain. In this example the optimal price is

decided at the point of $5 discount from the initial retail price of $95 with optimal order

quantity (14,836) and v0 = 10, ve = 76.

It is rather difficult to get a closed form solution for the optimal discount retail price

because it is complicated to derive analytically. With simulations and other tools, we can
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attain the solutions. We show one solution with a numerical example. The result could be

varied with changes of parameters (i.e., ω, α). We can verify our derivations of Appendix

D.4 for the cases of FCVC and ICVC.

5.6 Conclusion

We develop an option contract to hedge the risk of the demand uncertainty. This

option contract leads to an improved product availability by hedging the risk in the supply

chain and to maximize the overall supply chain profits at the end of the season through

coordination of the option prices and the order quantity. We consider the discount of retail

price. In addition, we examine that the discounted retail price affects the expected product

demand and the variance in several cases (i.e., FVC, FCVC, ICVC).

In this study we investigate the role of the option contract in a two-stage supply chain

system. We use a single period model with and without discounting the retail price and

the stochastic demand. We derive a closed form solution for the option purchase and strike

price for the manufacturer and the optimal order quantity for the retailer. Furthermore,

the analysis shows that the manufacturer’s optimal option purchase price is independent of

the retail price while the optimal strike price is dictated by the optimal discounted retail

price.

Several extensions of our research could be investigated. Current models are too de-

pendent on single shot contracting. Most supply chain interactions occur over long periods

of time with many opportunities to renegotiate or to interact with the spot markets. More

research is needed on how multiple suppliers compete for the affection of the multiple re-

tailers, i.e., additional emphasis is needed on many-to-one or many-to-many supply chain

structures.
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Chapter 6

Conclusion

This research developed several analytical models for typical supply chain situations

to help inventory decision-makers who need mathematical models to grasp the big picture

of supply chain inventory problems before making executive decisions. Additionally, we

derived closed form solutions for each model and found several managerial insights from

our models through sensitivity analysis of numerical examples.

First, we developed a decision model considering customer impatience with stochastic

demand and time-sensitive shortages. While the majority of the research literature con-

sidered time-dependent backlogging within the context of continuous review models with

deterministic demand, this research studied time-dependent partial backlogging in the single

period inventory problem with stochastic demand. We used concepts from utility theory to

formally classify customers in terms of their willingness to wait for the supplier to replenish

shortages. We conducted sensitivity analyses to determine the most and least opportune

conditions for distinguishing between customer risk-behaviors. Our results suggested that

the expected value of risk profile information (EVRPI) is most significant when the dif-

ference between the unit lost sales cost cLS and the unit backorder cost cB is large. Our

results also indicated that EVRPI increases as the lost sales threshold M increases.

Second, we established an additional model to optimize backorder lead-time (response

time) in a two-stage system with time-dependent partial backlogging and stochastic demand.

We considered backorder cost as a function of response time while other literature regarded

the backorder cost as a constant. A representative expected total cost function was derived

and the closed form optimal solution was determined for a demand distribution. Our result

showed that significant cost savings can be achieved by implementing the derived optimal

solution as opposed to the prior model solution.
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Third, we developed an inventory decision model applying an option-pricing framework

(e.g., straddle) for determining order quantity under the situation of partial backlogging and

uncertain demand. We compared the results between the traditional and option approaches

with a numerical example. The result showed the advantages (i.e., total cost reduction) of

an inventory decision with the real option framework under a highly uncertain demand

situation. Specifically, the option approach provided decision-makers with positive optimal

order quantity decisions even under the situation of high volatility of demand (σr) and low

fill rate while the traditional approach gave them a negative optimal order quantity decision.

We have shown that an option- pricing approach looks promising for determining inventory

decisions under a highly uncertain demand situation as well.

Finally, we implemented an option contract to hedge the risk of the demand uncer-

tainty. Our result showed that the option contract could lead to improvement of product

availability by hedging the risk in the supply chain and maximizing overall supply chain

profits at the end of the season through coordination of option prices and order quantity.

We considered the discount of retail price. In addition, we examined the case where the

discounted retail price affects the expected product demand and the variance in several

cases (i.e., FVC, FCVC, ICVC). We derived closed form solutions of the appropriate option

prices for the manufacturer as an incentive for the retailer to establish optimal pricing and

order quantity decisions for coordinating the channel. Furthermore, the result showed that

the manufacturer’s optimal option purchase price is independent of retail price while the

optimal strike price is dictated by the optimal discounted retail price.

This research gave decision-makers insights into how to implement the situation of

demand uncertainty and shortage into a mathematical model in a two-stage supply chain

and showed them what differences these proposed analytical models make as opposed to

the traditional models. Even though each analytical model is simple but each provided an

effective overall view of the supply chain system by abstracting the features of a supply

chain system as a set of parameterized functions. We implemented time-sensitive shortages
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into an inventory model under emergency replenishment. In an effort to characterize di-

verse customer responses to shortages, we explored several types of decreasing backorder

rate functions. In dealing with demand uncertainty, we adopted an option-pricing model.

This showed that the tool of financial economics can be used to help make inventory stock-

ing decisions. This research also developed an option contract in a newsvendor problem

with price dependent stochastic demand and showed that the option contract could help

coordination of a supply chain through improving the product availability and the overall

supply chain profits.

This study can be extended in several ways. A useful extension would be to apply

this approach to a multi-period problem. A multi-period problem is more likely to be

applicable to real problems. Current models are too dependent on single shot contracting.

Most supply chain interactions occur over long periods of time with many opportunities to

renegotiate or to interact with the spot markets. More research is needed on how multiple

suppliers compete for the affection of the multiple retailers (e.g., many-to-one or many-to-

many structure).
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Appendix A

Modeling Customer Impatience in an Inventory Problem with Stochastic Demand and

Time-Sensitive Shortages

A.1 Proof of Theorem 2.1

TC(Q) given by Eq. (2.1) can be written as

TC(Q) = cOQ + cH

∫ Q

0
(Q− x)f(x)dx + cLS

∫ ∞

Q
(x−Q)f(x)dx

+ (cB − cLS)
∫ Q+M

Q
(x−Q)β(x−Q)f(x)dx. (A.1)

The first and second order derivatives of TC(Q) are then

dTC(Q)
dQ

= cO + cH

∫ Q

0
f(x)dx− cLS

∫ ∞

Q
f(x)dx

+ (cB − cLS)
∫ Q+M

Q

[
−β(x−Q) + (x−Q)β′(x−Q)

]
f(x)dx (A.2)

d2TC(Q)
dQ2

= (cH + cLS)f(Q) + (cLS − cB)f(Q)

+ (cLS − cB)
∫ Q+M

Q

[
2β′(x−Q)− (x−Q)β′′(x−Q)

]
f(x)dx. (A.3)

The first term in Eq.(A.3) is obviously nonnegative. Since cLS − cB > 0 based on
Assumption 2.1, it follows that the second term is also nonnegative. Thus the third term is
nonnegative if and only if the integrand is nonnegative. That is, the optimality condition
holds if and only if

2β′(x−Q)− (x−Q)β′′(x−Q) ≥ 0 for all x ∈ [Q,Q + M). (A.4)

A.2 Proof of Theorem 2.3

For illustration, we will show that a decision-maker is risk-seeking if and only if his back
order rate function is convex. The proofs of parts 1 and 2 of Theorem 2.3 are similar.

(⇒) By definitions 2.3 and 2.4, we have RPW (L) > 0 and EW [L]−CEW (L) > 0. Now
β(CEW (L)) is the convex hull of {t1, . . . , tn}, which can be expressed as β(CEW (L)) =
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p1β(t1) + . . . + pnβ(tn), where p1 + · · · + pn = 1. Since β(y) is a decreasing function by
Property 2.1 and EW [L] − CEW (L) > 0, it follows that β(EW [L]) − β(CEW (L)) < 0, or
equivalently,

β(p1t1 + · · ·+ pntn) < p1β(t1) + · · ·+ pnβ(tn). (A.5)

Since Eq. (A.5) holds, it follows that β(y) is a convex function and β′′(y) > 0 (see, for
example, Jeter 1994 page 217).

(⇐)
Since β(y) is a convex function, it follows that Eq. (A.5) holds by Proposition 2.1

shown in Jeter 1994 (page 217). Since CEW (L) is the convex hull of {t1, . . . , tn} and
p1t1 + · · · + pntn = EW [L], Eq. (A.5) becomes β(EW [L]) − β(CEW (L)) < 0. Based on
the last inequality, we know that EW [L] − CEW (L) > 0 by Property 2.1. Therefore by
definitions 2.3 and 2.4, the latter inequality implies risk seeking.

A.3 Proof of Proposition 2.2

Since

dβ(x−Q)
d(x−Q)

=
{
−ae−a(x−Q) < 0, x ∈ [Q,Q + M)

0, x ∈ [Q + M,∞)

Property 2.1 holds. Also,
d2β(x−Q)
d(x−Q)2

= a2e−a(x−Q) > 0

shows that the third part of Theorem 2.3 holds. Now

lim
x−Q→0+

max
{

e−a(x−Q), 0
}

= 1

shows that Property 2.2 holds, and

lim
x−Q→∞

max
{

e−a(x−Q), 0
}

= 0

shows that Property 2.3 holds.
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A.4 Proof of Proposition 2.3

The derivative is computed as

dβ(x−Q)
d(x−Q)

=

 − π

2M
sin

(
x−Q

2M
π

)
, x ∈ [Q,Q + M)

0, x ∈ [Q + M,∞)

If we let z = (π/2M)(x−Q), then dβ(x−Q)/d(x−Q) becomes −z(x−Q) sin z, where z ∈
(0, π/2). Since −z(x−Q) < 0 and sin z > 0 in this interval, we have dβ(x−Q)/d(x−Q) < 0
which shows that Property 2.1 holds.Also,

d2β(x−Q)
d(x−Q)2

= − π2

4M2
cos(

x−Q

2M
π) < 0

shows that the first part of Theorem 2.3 holds. Now

lim
x−Q→0+

max
{

cos
(

x−Q

2M
π

)
, 0

}
= 1

shows that Property 2.2 holds, and

lim
x−Q→∞

max
{

cos
(

x−Q

2M
π

)
, 0

}
= lim

x−Q→M
cos

(
x−Q

2M
π

)
= 0

shows that Property 2.3 holds.
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Appendix B
Optimizing Backorder Lead-Time and Order Quantity in a Supply Chain

with Partial backlogging and Stochastic Demand

B.1 Derivations of Optimality for the Proposed Model

B.1.1 Optimal Order Quantity

We can get a feasible point, a unique minimizer, at which the first-order conditions
hold dTC(Q,t)

dQ = 0.

dTC(Q)
dQ

= cO + cH

∫ Q

0
f(x)dx− cLS

∫ ∞

Q
f(x)dx + (cLS − cB(t))

∫ ∞

Q
β(t)f(x)dx = 0

= cO + cHF (Q)− cLS(1− F (Q)) + (cLS − cB(t))β(t)(1− F (Q)) = 0

F (Q∗) =
β(t)cB(t) + (1− β(t))cLS − cO

β(t)cB(t) + (1− β(t))cLS + cH

Q∗ = F−1

[
β(t)cB(t) + (1− β(t))cLS − cO

β(t)cB(t) + (1− β(t))cLS + cH

]
(B.1)

B.1.2 Sufficient Condition for Convexity and Optimal Response Time

The first and second order derivatives of TC(Q, t) are then

dTC(Q, t)
dt

= {c′B(t)β(t) + cB(t)β′(t)− cLSβ′(t)}
∫ ∞

Q
(x−Q)f(x)dx

d2TC(Q, t)
dt2

= {c′′B(t)β(t) + 2c′B(t)β′(t) + cB(t)β′′(t)− cLSβ′′(t)}
∫ ∞

Q
(x−Q)f(x)dx

= {c′′B(t)β(t) + 2c′B(t)β′(t) + (cB(t)− cLS)β′′(t)}
∫ ∞

Q
(x−Q)f(x)dx

(B.2)

Clearly the second part of Eq.(B.2) is non-negative if the condition of Eq.(B.3) is
satisfied.

c′′B(t)β(t) + 2c′B(t)β′(t) + (cB(t)− cLS)β′′(t) ≥ 0
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cLS − cB(t) ≤
c′′B(t)β(t) + 2c′B(t)β′(t)

β′′(t)

cLS − cB(t) ≤ b2Ne−bte−at + 2bNe−btae−at

a2e−at

where cB(t) = Ne−bt, β(t) = e−at

cLS − cB(t) ≤ 2ab + b2

a2
Ne−bt

cLS − cB(t) ≤ 2ab + b2

a2
cB(t)

cLS ≤
(

a + b

a

)2

cB(t)

(B.3)

Thus, TC(Q, t) is convex in t for any fixed Q where the condition of Eq.(B.3) is satisfied.
The optimal value t∗ corresponding to a fixed value Q is obtained by setting the first
derivative part of Eq.(B.2) equal to zero and solving for t, which yields Eq.(B.4) The value
t∗ is unique because Eq.(B.2) shows TC(Q, t) is strictly convex in t for any fixed Q.

c′B(t)β(t) = −cB(t)β′(t) + cLSβ′(t)

β(t) =
{cLS − cB(t)}β′(t)

c′B(t)

e−at =
−{cLS −Ne−bt}ae−at

−bNe−bt

bNe−bt = a{cLS −Ne−bt}
(a + b)Ne−bt = acLS

e−bt =
acLS

(a + b)N

−bt = ln
acLS

(a + b)N

t∗ = ln

(
(a + b)N
a · cLS

)
b−1 (B.4)

B.1.3 Relationship between Optimal Backorder cost and Lost sales cost

cB(t∗) = Ne−bt∗

= Ne
−b·b−1ln

“
(a+b)N
a·cLS

”
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= Ne
ln

“
a·cLS

(a+b)N

”
= N

a · cLS

(a + b)N

=
a · cLS

(a + b)
(B.5)

B.2 Derivations of Optimality for the Proposed Model with Backorder Setup
Cost

B.2.1 Optimal Order Quantity

We can get a feasible point, a unique minimizer, at which the first-order conditions
hold dTC(Q,t)

dQ = 0.

dTC(Q)
dQ

= cO + cHF (Q)−
[
cB(t)β(t) + cLS(1− β(t))− αβ2(t)

]
(1− F (Q)) = 0

F (Q∗) =
β(t)cB(t) + (1− β(t))cLS − αβ2(t)− cO

β(t)cB(t) + (1− β(t))cLS − αβ2(t) + cH

Q∗ = F−1

[
β(t)cB(t) + (1− β(t))cLS − αβ2(t)− cO

β(t)cB(t) + (1− β(t))cLS − αβ2(t) + cH

]
(B.6)

B.2.2 Sufficient Condition for Convexity and Optimal Response Time

The first and second order derivatives of TC(Q, t) are then

dTC(Q, t)
dt

= {c′B(t)β(t) + cB(t)β′(t)− cLSβ′(t) + αβ′(t)}
∫ ∞

Q
(x−Q)f(x)dx

d2TC(Q, t)
dt2

= {c′′B(t)β(t) + 2c′B(t)β′(t) + (cB(t)− cLS + α)β′′(t)}
∫ ∞

Q
(x−Q)f(x)dx

(B.7)

Clearly the second part of Eq.(B.7) is non-negative if the condition of Eq.(B.8) is
satisfied.

c′′B(t)β(t) + 2c′B(t)β′(t) + (cB(t)− cLS + α)β′′(t) ≥ 0

cLS − cB(t) ≤
c′′B(t)β(t) + 2c′B(t)β′(t)

β′′(t)
+ α
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cLS − cB(t) ≤ 2ab + b2

a2
Ne−bt + α

cLS ≤
(

a + b

a

)2

cB(t) + α

(B.8)

Thus, TC(Q, t) is convex in t for any fixed Q where the condition of Eq.(B.8) is satisfied,
and the optimal value t∗ corresponding to a fixed value Q is obtained by setting the first
part of Eq.(B.7) equal to zero and solving for t, which yields Eq.(B.9) The value t∗ is unique
because Eq.(B.7) shows TC(Q, t) is strictly convex in t for any fixed Q.

c′B(t)β(t) = −cB(t)β′(t) + cLSβ′(t)− αβ′(t)

β(t) =
{cLS − cB(t)− α}β′(t)

c′B(t)

t∗ = ln

(
(a + b)N

a · (cLS − α)

)
b−1 (B.9)

B.2.3 Relationship between Optimal Backorder cost and Lost sales cost

cB(t∗) = Ne
−b·b−1ln

“
(a+b)N

a·(cLS−α)

”

= Ne
ln

“
a·(cLS−α)

(a+b)N

”
= N

a · (cLS − α)
(a + b)N

=
a · (cLS − α)

(a + b)
(B.10)
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Appendix C
The Effects of an Option Approach to Stochastic Inventory Decisions

C.1 Derivations of Optimality for the Partial Back logging Newsvendor Ap-
proach

We need to check the total cost function is convex function or not. The convexity of the
total cost function is insured since second derivation is always positive as all terms are non
negatives.

dE[TC(Q)]
dQ

= cO + cH

∫ Q

0
f(x)dx− cLS

∫ ∞

Q
f(x)dx + (cLS − cB)

∫ ∞

Q
βf(x)dx

d2E[TC(Q)]
dQ2

= {cH + βcB + (1− β)cLS}f(Q) (C.1)

We have a convex objective function and we can get a feasible point, unique minimizer,
at which the first-order conditions hold dE[TC(Q)]

dQ = 0.

dE[TC(Q)]
dQ

= cO + cH

∫ Q

0
f(x)dx− cLS

∫ ∞

Q
f(x)dx + (cLS − cB)

∫ ∞

Q
βf(x)dx = 0

= cO + cHF (Q)− cLS(1− F (Q)) + (cLS − cB)β(1− F (Q)) = 0

F (Q) =
βcB + (1− β)cLS − cO

βcB + (1− β)cLS + cH

Q∗ = F−1[
βcB + (1− β)cLS − cO

βcB + (1− β)cLS + cH
] (C.2)

βcB+(1−β)cLS−cO

βcB+(1−β)cLS+cH
is an optimal over stocking probability and then optimal stock out

probability is equal to {1− βcB+(1−β)cLS−cO

βcB+(1−β)cLS+cH
} and that we can represent stock out probability

is following.

P ∗
s =

cO + cH

βcB + (1− β)cLS + cH
(C.3)

C.2 Derivation of Total Cost Function with Real Option Framework

Eq.(4.5) can be rearranged as follows:

TC(Q) =
{
{cBβ + (1− β)cLS}D − {cBβ + (1− β)cLS − cO}Q if D ≥ Q
(cO + cH)Q− cHD if D < Q

(C.4)
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Then, Based on Eq.(C.4), the present total cost of cash flows can be expressed as Eq.(4.6).

E[TC(Q)] = e−rf T · E[{cBβ + (1− β)cLS}D
−{cBβ + (1− β)cLS − cO}Q|D ≥ Q] · P (D ≥ Q)
+e−rf T · E[(cO + cH)Q− cHD|D < Q] · P (D < Q)

(C.5)

Eq.(4.8) can be derived as following

E[TCa(Q)] = e−rf T · E[{cBβ + (1− β)CLS}D|D ≥ Q] · P (D ≥ Q)]
−e−rf T · E[{cBβ + (1− β)CLS − cO}Q|D ≥ Q] · P (D ≥ Q)

= e−rf T ·D0 · {cBβ + (1− β)cLS}
∫ ∞

ln( Q
D0

)
rf(r)dr

−e−rf T ·D0 · {cBβ + (1− β)cLS − cO}
Q

D0

∫ ∞

ln( Q
D0

)
f(r)dr

= e−rf T ·D0 · {cBβ + (1− β)cLS}erf T N(d1)
−e−rf T ·Q{cBβ + (1− β)cLS − cO}N(d2)

= D0{cBβ + (1− β)cLS}N(d1)− e−rf T ·Q{cBβ + (1− β)cLS − cO}N(d2)

where d1 =
ln(D0

Q ) + (rf + σ2
r
2 )T

σr

√
T

, d2 =
ln(D0

Q ) + (rf − σ2
r
2 )T

σr

√
T

(C.6)

Eq.(4.9) can be derived as following

E[TCb(Q)] = e−rf T · [E[(cO + cH)Q|D < Q]P (D < Q)]− E[{cHD|D < Q] · P (D < Q)]

= e−rf T ·D0(cO + cH)E[
Q

D0
|ln(

D

D0
) < ln(

Q

D0
)]P (ln(

D

D0
) < ln(

Q

D0
))

−e−rf T ·D0cHE[ln(
D

D0
)|ln(

D

D0
) < ln(

Q

D0
)]P (ln(

D

D0
) < ln(

Q

D0
))

= e−rf T ·Q(cO + cH)
∫ ln( Q

D0
)

0
f(r)dr − e−rf T ·D0cH

∫ ln( Q
D0

)

0
rf(r)dr

= e−rf T ·Q(cO + cH)N(−d2)− e−rf T ·D0 · cHerf T N(−d1)
= e−rf T ·Q(cO + cH)N(−d2)−D0 · cHN(−d1)

where d1 =
ln(D0

Q ) + (rf + σ2
r
2 )T

σr

√
T

, d2 =
ln(D0

Q ) + (rf − σ2
r
2 )T

σr

√
T

(C.7)
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C.3 Derivation of Optimal Fill rate and Order Quantity

Eq.(4.14) can be derived as following.

d[E[TC(Q)]]
dQ

= e−rf T (cO + cH)N(−d2)− e−rf T {cBβ + (1− β)cLS − cO}N(d2) = 0

e−rf T [(cO + cH)− {cH + cBβ + (1− β)cLS}N(d2)] = 0
{cH + cBβ + (1− β)cLS}N(d2) = cO + cH

N(d2) =
cO + cH

{cBβ + (1− β)cLS + cH}

N(−d2) =
βcB + (1− β)cLS − cO

βcB + (1− β)cLS + cH

(C.8)

Eq.(4.15) is derived as following.

d[E[TC(Q)]]2

d2Q
=

d
dQ

[−e−rf T [(cO + cH)− {cH + cBβ + (1− β)cLS}N(d2)]]

= [−e−rf T {cH + cBβ + (1− β)cLS}
d[N(d2)]

dQ

= [−e−rf T {cH + cBβ + (1− β)cLS}
d

dQ
[N{

ln(D0
Q ) + (rf − σ2

r
2 )T

σr

√
T

}

= [−e−rf T {cH + cBβ + (1− β)cLS}f(d2)
d

dQ
[
ln(D0

Q )

σr

√
T

]

= [−e−rf T {cH + cBβ + (1− β)cLS}f(d2)
d

dQ
[
−lnQ

σr

√
T

]

= [−e−rf T {cH + cBβ + (1− β)cLS}f(d2){−(Qσr

√
T )−1}

= [e−rf T {cH + cBβ + (1− β)cLS}(Qσr

√
T )−1f(d2)

(C.9)

Eq.(4.16) is derived as following.

d2 = N−1[
cO + cH

{cBβ + (1− β)cLS + cH}
]

ln(D0
Q ) + (rf − σ2

r
2 )T

σr

√
T

= N−1[
cO + cH

cBβ + (1− β)cLS + cH
]

ln(
D0

Q
) = −(rf −

σ2
r

2
)T + σr

√
TN−1[

cO + cH

cBβ + (1− β)cLS + cH
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D0

Q
= Exp[−(rf −

σ2
r

2
)T + σr

√
TN−1[

cO + cH

cBβ + (1− β)cLS + cH
)]]

Q∗ =
D0e

(rf−
σ2

r
2

)T

e
σr

√
TN−1[

cO+cH
cBβ+(1−β)cLS+cH

]
(C.10)
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Appendix D
Coordinating a Two-stage Supply Chain Based on Option Contract

D.1 Derivations of Profit Function for CS

VC(Q) = p · E[[X ∧Q]]− h · E[[Q−X]+]− cQ

= p · E[Q− [Q−X]+]− h · E[[Q−X]+]− cQ

= pQ− (p + h) · E[[Q−X]+]− cQ

= (p− c)Q− (p + h) · E[[Q−X]+]

= (p− c)Q− (p + h) ·
∫ Q

0
F0(x)dx

where E[[Q−X]+] = E[max[Q−X, 0]]
= E[−[X −Q ∧ 0]]
= E[−[X ∧Q] + Q]
= E[−[X ∧Q]] + Q

= −E[X ∧Q] + Q

= −E[Q− [Q−X]+] + Q

= −Q + E[[Q−X]+] + Q

= −Q +
∫ Q

0
(Q− x)f0(x)dx + Q

= −
[
Q−

∫ Q

0
F0(x)dx

]
+ Q

= −
[∫ Q

0
1dx−

∫ Q

0
F0(x)dx

]
+ Q

= −
[∫ Q

0
1− F0(x)dx

]
+ Q

=
∫ Q

0
F0(x)dx

∂VC(Q)
∂Q

= (p− c)− (p + h)F0(Q) = 0

Q∗
0 = F−1

0

(
p− c

p + h

)
(D.1)
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D.2 Derivation of Profit Functions for DS

Vr(Q, p) = (p− ve) · E[[X ∧Q]]− v0Q

= (p− ve) · E[Q− [Q−X]+]− v0Q

= (p− ve − v0)Q− (p− ve) · E[[Q−X]+]

= (p− ve − v0)Q− (p− ve) ·
∫ Q

0
(Q− x)f(x)dx

= (p− ve − v0)Q− (p− ve) ·
∫ Q

0
F (x)dx

(D.2)

Vm(v0, ve) = (v0 − c)Q + ve · E[X ∧Q]]− h · E[[Q−X]+]
= (v0 − c)Q + ve · E[Q− [Q−X]+]− h · E[[Q−X]+]
= (v0 − c)Q + veQ− ve · E[[Q−X]+]− h · E[[Q−X]+]
= (v0 + ve − c)Q− (ve + h) · E[[Q−X]+]

= (v0 + ve − c)Q− (ve + h) ·
∫ Q

0
(Q− x)f(x)dx

= (v0 + ve − c)Q− (ve + h) ·
∫ Q

0
F (x)dx

(D.3)

D.3 Derivation of Optimal Option Prices

Vr = γVC

(p− ve − v0)Q− (p− ve) ·
∫ Q

0
F (x)dx = γ

[
(p− c)Q− (p + h) ·

∫ Q

0
F0(x)dx

]
{p− ve − v0 − γ(p− c)}Q + {−(p− ve) + γ(p + h)} ·

∫ Q

0
F0(x)dx = 0

p− ve − v0 − γ(p− c) = 0
(p− ve)− γ(p + h) = 0
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ve = p− γ(p + h)
v0 = (p− ve)− γ(p− c)

= p− {p− γ(p + h)} − γ(p− c)
= γ(h + c)

(D.4)

Vm = (1− γ)VC

(v0 + ve − c)Q− (ve + h) ·
∫ Q

0
F (x)dx = (1− γ)

[
(p− c)Q− (p + h) ·

∫ Q

0
F0(x)dx

]
(v0 + ve − p + γp− γc)Q− (ve − p + γp + γh) ·

∫ Q

0
F (x)dx = 0

v0 + ve − p + γp− γc = 0
ve − p + γp + γh = 0

ve = p− γ(p + h)
v0 = (p− ve)− γ(p− c)

= p− {p− γ(p + h)} − γ(p− c)
= γ(h + c)

(D.5)

D.4 Derivation of Optimal Order Quantity with Discounting

D.4.1 Fixed Coefficient of Variance Case (FCVC)

CV (X) = CV (X0) = σ0
µ0

= σ
µ

µ = µ0 + µ0ω(p0 − p)α

σ = σ0 + σ0ω(p0 − p)α

Uniform Distribution of Demand Case:

VC(Q) = (p− c)Q− (p + h) ·
∫ Q

0

x− a

b− a
dx
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= (p− c)Q− (p + h)
b− a

∫ Q

0
(x− a)dx

∂VC(Q)
∂Q

= (p− c)− p + h

b− a
(Q− a) = 0

Q∗ =
p− c

p + h
(b− a) + a

=
p− c

p + h
(b0 − a0)(1 + ω(p0 − p)α) + a0(1 + ω(p0 − p)α)

=
(

p− c

p + h
(b0 − a0) + a0

)
(1 + ω(p0 − p)α)

= F−1
0 (

p− c

p + h
)(1 + ω(p0 − p)α)

= Q∗
0(1 + ω(p0 − p)α)

(D.6)

Exponential Distribution of Demand Case:

VC(Q) = (p− c)Q− (p + h) ·
∫ Q

0
1− e

− 1
µ

x
dx

∂VC(Q)
∂Q

= (p− c)− (p + h)(1− e
− 1

µ
Q) = 0

e
− 1

µ
Q = 1− p− c

p + h

− 1
µ

Q = ln
(

1− p− c

p + h

)
Q∗ = −µ ln

(
h + c

p + h

)
= −µ0(1 + ω(p0 − p)α) ln

(
h + c

p + h

)
= −µ0 ln

(
h + c

p + h

)
(1 + ω(p0 − p)α)

= F−1
0

(
p− c

p + h

)
(1 + ω(p0 − p)α)

= Q∗
0 · (1 + ω(p0 − p)α)

(D.7)
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D.4.2 Increasing Coefficient of Variance Case (ICVC)

CV (X) = (1 + δpθ)CV (X0)

µ = µ0(1 + ω(p0 − p)α)
σ

µ
= (1 + δ(p0 − p)θ)

σ0

µ0

Uniform Distribution of Demand Case:

b + a

2
=

b0 + a0

2
(1 + ω(p0 − p)α)

b− a

b + a
= (1 + δ(p0 − p)θ)

b0 − a0

b0 + a0

a = (1 + ω(p0 − p)α)
{

a0 −
δ(p0 − p)θ

2
(b0 − a0)

}
b = (1 + ω(p0 − p)α)

{
b0 +

δ(p0 − p)θ

2
(b0 − a0)

}

VC(Q) = (p− c)Q− (p + h) ·
∫ Q

0

x− a

b− a
dx

= (p− c)Q− (p + h)
b− a

∫ Q

0
(x− a)dx

∂VC(Q)
∂Q

= (p− c)− p + h

b− a
(Q− a) = 0

Q∗ =
p− c

p + h
(b− a) + a

=
p− c

p + h
(1 + ω(p0 − p)α)

{
(b0 − a0) + δ(p0 − p)θ(b0 − a0)

}
+ (1 + ω(p0 − p)α)

{
a0 −

δ(p0 − p)θ

2
(b0 − a0)

}
= (1 + ω(p0 − p)α)

[
Q∗

0 + δ(p0 − p)θ(b0 − a0)
{

p− c

p + h
− 1

2

}]
(D.8)
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Exponential Distribution of Demand Case:

Exponential distribution is not applicable as its CV is always equal to one, which is
valid only for the FCVC.
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