
Three-Dimensional Trajectory Optimization in Constrained Airspace

Except where reference is made to the work of others, the work described in this
dissertation is my own or was done in collaboration with my advisory committee.

This dissertation does not include proprietary or classified information.

Ran Dai

Certificate of Approval:

David Cicci
Professor
Aerospace Engineering

John E. Cochran Jr. Chair
Professor
Aerospace Engineering

Roy Hartfield
Professor
Aerospace Engineering

Anwar Ahmed
Associate Professor
Aerospace Engineering

George T. Flowers
Graduate School, Interim Dean



Three-Dimensional Trajectory Optimization in Constrained Airspace

Ran Dai

A Dissertation

Submitted to

the Graduate Faculty of

Auburn University

in Partial Fulfillment of the

Requirements for the

Degree of

Doctor of Philosophy

Auburn, Alabama
December 17, 2007



Three-Dimensional Trajectory Optimization in Constrained Airspace

Ran Dai

Permission is granted to Auburn University to make copies of this dissertation at its
discretion, upon the request of individuals or institutions and at

their expense. The author reserves all publication rights.

Signature of Author

Date of Graduation

iii



Vita

Ran Dai, the daughter of Degang Dai and Hongdi Qiao was born in Taizhou,

Jiangsu Province, P.R.China. She graduated from Taizhou High School in June,

1998 and entered school of Automation Science and Electrical Engineering, Beijing

University of Aeronautics and Astronautics in September, 1998. She graduated in

June, 2002 with a Bachelor of Automation Science. From January, 2004, she started

her graduate study in Auburn University in the Department of Aerospace Engineering

under the supervision of Dr. John, E. Cochran Jr. and received her master degree of

Aerospace Engineering in August, 2005.

iv



Dissertation Abstract

Three-Dimensional Trajectory Optimization in Constrained Airspace

Ran Dai

Doctor of Philosophy, December 17, 2007
(MAE, Auburn University, 2005)

(B.S., Beijing University of Aeronautics and Astronautics, 2002)

162 Typed Pages

Directed by John E. Cochran Jr.

This dissertation deals with the generation of three-dimensional optimized tra-

jectory in constrained airspace. It expands the previously used two-dimensional air-

craft model to a three-dimensional model and includes the consideration of complex

airspace constraints not included in previous trajectory optimization studies. Two

major branches of optimization methods, indirect and direct methods, are introduced

and compared. Both of the methods are applied to solve a two-dimensional minimum-

time-to-climb (MTTC) problem. The solution procedure is described in detail. Two

traditional problems, the Brachistochrone problem and Zermelo’s problem, are solved

using the direct collocation and nonlinear programming method. Because analytical

solutions to these problems are known. These solutions provide verification of the nu-

merical methods. Three discretization methods, trapezoidal, Hermite-Simpson and
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Chebyshev Pseudospectral (CP) are introduced and applied to solve the Brachis-

tochrone problem. The solutions obtained using these discretization methods are

compared with the analytical results.

An 3-D aircraft model with six state variables and two control variables are

presented. Two primary trajectory optimization problems are considered using this

model in the dissertation. One is to assume that the aircraft climbs up from sea level

to a desired altitude in a square cross section cylinder of arbitrary height. Another

is to intercept a constant velocity, constant altitude target in minimum time starting

from sea level. Results of the optimal trajectories are compared with the results

from the proportional navigation guidance law. Field of View constraint is finally

considered in this interception problem.

The CP discretization and nonlinear programming method is shown to have

advantages over indirect methods in solving three-dimensional (3-D) trajectory opti-

mization problems with multiple controls and complex constraints.

Conclusions from both problems are presented and properties of each one are

discussed. Finally, suggestions for future research are addressed.
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Chapter 1

Introduction

1.1 Background

Over the last 50 years, the trajectory optimization problem has attracted the

interests of many researchers. Due to the development of high speed digital comput-

ers, the trajectory optimization technology has been widely applied in both military

and civil areas, including space mission planning[24], missile guidance[11], aircraft

transportation systems[17], towed-aerial-cable systems[23] and more. Some of the

researchers have focused their attention on minimum time-to-climb (MTTC) trajec-

tories. Many methods have been used to solve this kind of problem. As exam-

ples, Bryson and Denham[1] used the summarized steepest-ascent method, Calise[3]

applied singular perturbation techniques and Ardema[4] used matched asymptotic

expansions to get approximate analytical solutions to the MTTC problem. These

methods, categorized as indirect optimal control (IOC) methods, are aimed at solv-

ing only two-dimensional (2-D) MTTC problems which satisfy the initial and final

boundary conditions.

Meanwhile, other researchers paid more attention to minimum-time interception

(MTI) problems. Most focused on the onboard generation of trajectories varying from
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short to long range. For example, Visser, Kelley and Cliff[11] used a singular pertur-

bation method to find an approximate optimal trajectory and then apply neighboring

optimal guidance to transfer an aircraft which has deviated from the reference trajec-

tory to the desired trajectory. Kumar, Seywald and Cliff[12] proposed finding medium

range optimal trajectories for air-to-air missiles using a three-stage guidance scheme.

These methods and some similar ones[13]-[14] are primarily applicable to small de-

viations from the planned path. For large deviations and unplanned interception,

other real-time guidance laws are applied. Proportional navigation guidance (PNG)

is very generally applied. This type guidance firstly studied by Yuan[7] was in two

dimensions and extended to three dimensions by Adler[8], Duflos[9] and Cochran[10].

PNG has the advantage of on-time realization, but its success depends on some ini-

tial conditions. Furthermore, PNG does not consider performance optimization and

reduction of final miss distance.

With the increase in computing power, the use of direct collocation and non-

linear programming (DCNLP) to convert two-point-boundary-value-problems (TP-

BVPs) into nonlinear programming problems (NLPs) the so-called direct optimal

control (DOC) methods have become feasible. Early in 1987, Hargraves and Paris[19]

applied the collocation method to solve a 2-D MTTC problem. Then, in 1993, Betts

and Huffman[20] explained the procedures of the DCNLP methods in more detail,

especially the sparse sequential quadratic programming algorithm. In 1999 Horie and
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Conway[25] published a paper in which they described how this method was used to

solve minimum time and minimum fuel aeroassisted orbital interception problems.

Quite recently, in 2006, Geiger, Horn and Delullo[27] applied DCNLP to find un-

manned aerial vehicle trajectories that maximize viewing time.

Although the DCNLP has been widely used in aerospace trajectory optimization,

it has had limited application in 3-D MTTC and short range MTI trajectory planning.

These are the focus of this dissertation.

1.2 Statement of Problem and Approach

The operational airspace of aerospace vehicles, including airplanes and unmanned

aerial vehicles, is often restricted. These restrictions may come from local terrain con-

straints, radar coverage constraints, or collision avoidance constraints. Considering

these limitations, aerospace vehicles cannot be assumed to be free to fly anywhere in a

given airspace. Forbidden zones can be defined in 2-D or 3-D spaces. So that climbs,

descents and other maneuvers are all required to be performed in three dimensions.

One of the principal problems considered here is to find optimal trajectories of an

aircraft that is climbing from sea level to a desired altitude in an airspace, consisting

of cylindrical volume of unlimited height. The aircraft motion model used here is a

3-D, point-mass model consisting of six first-order differential system equations. It

is intuitively expected that a MTTC trajectory in a constrained airspace would be

3



similar to the horizontal projection of a 2-D MTTC trajectory with corresponding

initial and final altitudes. Hence, considerable turning will be required if the horizonal

range of the constrained airspace is shorter than the required distance in the 2-D

MTTC results.

If the IOC method is used, the traditional procedure is to write the Hamilto-

nian and then derive the necessary conditions in terms of differential equations for

Lagrangian multipliers and the maximum(minimum) of the Hamiltonian with respect

to the control variables. Because some of the initial conditions are usually unknown,

a method for determining them must be applied. For example, in the ”shooting

method”, a guess is made of to all unknown initial state variables and the Lagrangian

multipliers and the system equations are integrated forward to get final conditions,

which generally deviate from the required boundary conditions. Some adjustment of

the initial guess is then made according to the deviation in the final known boundary

conditions. The above process is repeated until the final boundary conditions are

satisfied within a specified tolerance.

When the DCNLP is applied, the trajectory is discretized into numerous seg-

ments, characterized by state and control variables as parameters. In this way, a

TPBVP is transformed into a problem of determining the parameters that satisfy the

constraints and at the same time maximize or minimize a performance index. The

constraints mentioned here can be in the form of system equations constraints, state

4



and control variables constraints, initial and final boundary constraints, and some

other forms.

In the 3-D MTTC problem, the final objective of the DCNLP method is to

find the parameterized vertical and horizontal load factors as controls and the state

variables while minimizing the performance index: the final time. A simplified model

representing a climbing helical curve similar to the final optimized MTTC trajectory

is used as the initial input of the state and the control variables.

The 3-D MTI problem is to intercept a constant-velocity, constant-altitude target

from sea level. This appears to be quite a different type of problem than the MTTC

problem. But, if the DCNLP method is applied and all the control factors and state

variables are parameterized, the interception point status will be transferred to one

of the final boundary conditions. The interception trajectory also show similarities in

terms of effect of different initial velocities on time consuming comparing with MTTC

trajectory.

1.3 Dissertation Outline

This dissertation is organized as follows. The first part of Chapter 2 contains

a review of the previous research on methods for trajectory optimization, especially

those used on 2-D MTTC problems. These are the energy state method, gradient

method, singular perturbation method and modified sweep method. Then methods

5



used in solving MTI problems will be reviewed. Finally, the DCNLP method is

considered and some previous applications discussed.

Chapter 3 deals with the traditional indirect optimal control method which con-

siders both equality and inequality constraints. Chapter 4 introduces the DCNLP

method in detail including three kinds of discretization methods, Trapezoidal, Hermit-

Simpson method and CP Method and the nonlinear programming solver. Two tra-

ditional problems, the Brachistochrone Problem and Zermelo’s Problem, are solved

using the DCNLP method to illustrate the accuracy of this method in Chapter 5.

In Chapter 6 a description is given of the 3-D aircraft model. Then the indirect

optimal method is applied to get a MTTC trajectory in constrained airspace. Follow-

ing that, the DCNLP method is applied to this same problem. Results from the two

methods are compared. Solutions to the minimum-fuel-to-climb (MFTC) problem

are also presented.

Chapter 7 starts with a derivation of the traditional PNG law. It is then applied

to 3-D intercept problem. Then, results using DCNLP method to solve this same MTI

problem are compared to the results using PNG law. Finally, field-of-view constraints

are added to the original problem and new trajectories that are consistent with the

additional constraints are discussed.

Conclusions are presented in Chapter 8. Some suggestions for future research

are also provided.
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Chapter 2

Literature Review

The methods developed in solving trajectory optimization, especially MTTC

problems, almost became the signs of the development in the fields of optimal control.

Betts[18] summarized these methods in his survey and divided them into two major

branches: Indirect Optimal Control (IOC) and Direct Optimal Control (DOC). In

this chapter, methods in both branches are introduced and compared. The IOC

methods as applied to the MTTC and MTI problems are introduced first, followed

by the DOC methods, and then the DCNLP.

2.1 Methods in Solving MTTC Problem

2.1.1 Gradient Method

The objective of the gradient method[1], also called the method of steepest-

ascent/descent, is to find control variable changes that will cause the maximum in-

crease or decrease in the cost function. A steepest descent computation program

will start from an initial guess of the control variables and then integrate the system

differential equations to get a nominal path using this initial guess. An adjustment
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of the control is then is determined by the numerical integration of the adjoint dif-

ferential equations when certain perturbations are added to the nominal path. This

procedure is repeated until the convergence criteria are satisfied.

The gradient method has been applied to many TPBVPs. This systematic nu-

merical procedure requires suitable initial guess and reasonable selection of the mean-

square perturbation of the control variable program which is named as ”step size”.

Under some cases, a good initial guess is not available, and this may lead to diver-

gent results. Also, when system equations include many state variables, deriving the

adjoint differential equations will be expensive and tedious. These properties limited

the application of this method.

2.1.2 Energy State Method

Normally, the 2-D aircraft point-mass model is represented by its state variables

of speed, flight path angle and altitude. At the same time, its total energy per

unit mass can be treated as the summation of potential energy and kinetic energy

expressed in terms of the variables of speed and altitude. When this energy is used as

a state variable, the minimum-time approximate model is to find the maximum time

derivative of total energy at different given energy levels. Then, the MTTC path is

the connection of the continuous summit point of excess power at constant energy.
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This approximation method can also be applied to MFTC and minimum range glide

problems[2].

The results obtained from the energy-state approximation model are similar to

those obtained using the gradient method. But, if higher accuracy is required for the

solution, this approximate method is not suitable.

2.1.3 Singular Perturbation Method

In the system equations, some state variables have more effect on the solution

than others. Some states are important, while others can be neglected without any

obvious change to the original system. When these neglected terms are deleted from

the original equations, the solution to the approximate model is called the outer or

slow solution. Generally, the optimal control problems are in the form of TPBVPs.

It is easy to see that the simplified model cannot satisfy all of the final boundary

constraints. So in a fast time region, the state variables will vary rapidly from the

outer stage to the boundary constraints, which is called inner or fast solution. This

phenomena is similar to the solution of Navier-Stokes equations, here the names of

outer and inner solution. In the fluid mechanics problem, fast and slow layers of the

hydrodynamics solution exist. Finally, the theory of singular perturbation method is

to find the combination of simplified model and asymptotic expansion series which

represents the approximate and exact solution separately[3].
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In the 2-D MTTC problem, the flight path angle is less important than the

altitude and altitude is less important than the energy state. So the zeroth-order

outer solution includes only the energy state variables. If higher accuracy is required,

the first-order or higher order terms will be considered. For the MTTC problem, the

first-order solution is very close to the solution obtained using the gradient method.

Compared to the gradient method, the singular perturbation method has advan-

tage of greatly reduced computation burden and avoidance of initial guess for the

adjoint variables. But its application does has some limitation. First of all, some

of the terms must have smaller effect than others. Secondly, the boundary layer

equations need to reach a stable solution which will makes the ”matching” possible.

2.1.4 Modified Sweep Method

In the application of singular perturbation method in TPBVPs, it’s well known

that the two-time-scale solutions are composed of an outer boundary solution that

slowly approaches an equilibrium point and an inner solution rapidly changes from

the equilibrium point to the final boundary conditions. So, finding such a equilibrium

point became the key point of the problem. Rao and Mease[5] proposed a modified

sweep method to solve especially for the outer segment, also named as the infinite

horizon regulator problem.
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In the modified sweep method, a basis vector is first chosen to identify the stable

and unstable variables in the system. Normally, the eigenvectors of the Jacobian

matrix of the phase rate vector, which is the time derivative of the state and adjoint

variables, is a good choice for this basis vector. The forward integration uses the

unstable rate coordinate as input and the backward integration uses the stable rate

coordinate as input so that the unstable behavior will be suppressed in each sweep.

The new value for the final stable rate and initial unstable rate obtained from each

loop are saved to be used in the next sweep to improve the convergency. The entire

process is repeated until relative error reaches the required level. This modified sweep

method provides a more accurate way to estimate the initial adjoint variables, but it

is used only for the zeroth-order approximation of the system. A complete solution

to the whole problem requires more work.

2.1.5 Conclusion

The above IOC methods reviewed are all designed for solving TPBVPs without

considering path constraints. For the gradient method, finding a good initial guess for

the adjoint variables is the major difficulty. Generally, the state variables and adjoint

variables are combined together so that poor first time estimation may even cause

these values to exceed the numerical range of the computer. Although some techniques

are proposed to improve the efficiency of initial guess[28], they simultaneously add
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complexity to the problem while reducing the sensitivity of the solution. The energy

state approximation method is applicable only to a 2-D airplane model. When another

system model is used, another optimization method must be employed. Both singular

perturbation and modified sweep methods are based on the Hamiltonian and the

found necessary conditions. But these procedures do not produce unified solutions

to every optimization problem which means that although the basic theory is same,

the analytic expression must be derived according to different problems. Therefore,

when a system model is complex and includes many state variables, this task is quite

heavy.

When path constraints are considered, the Hamiltonian must be reformulated

with introduction of new Lagrange multipliers. This makes the problem more difficult

to solve, especially when the constraints are inequalities, the trajectory needs to be

divided into piecewise parts of active and inactive arcs to meet the specified path

inequality constraints.

2.2 Methods in Solving MTI Problem

Optimal methods for solving MTI problems have been used for many years.

Practical realization of ”optimality” requires the consideration of uncertainties and

disturbances like wind gusts, temperature changes, weight loss, deviation of starting

point and interception point, command error and other unexpected perturbations.
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Most optimal methods focus on generation of onboard trajectories varying from short

to long range.

For example, Visser, Kelley and Cliff[11] use a singular perturbation method to

find the approximate optimal trajectory and then apply neighboring optimal guidance

to transfer the aircraft, which has deviated from the reference trajectory, to the

desired trajectory. This procedure is composed of two major parts. The first part

is to get the nominal path that will find the minimum time transfer trajectory from

the initial conditions to the dash point that will possess maximum velocity. The

singular perturbation method applied there has the same theory basis as mentioned

above and the zeroth order approximate model is considered here with application

of state energy model. The second part is to generate the near-optimal guidance

law to eliminate deviation effects and pull the interceptor back to the optimal path.

Then two control functions, load factor and bank angle, are linearized with respect

to the two state variables, altitude and flight path angle, respectively. The feedback

coefficients derived from the linearized model are evaluated at the reference trajectory

and multiplied by the perturbations of the two state variables. Results obtained from

the above calculation are adjusted values about the nominal control commands.

Kumar, Seywald and Cliff[12] proposed finding medium range optimal trajecto-

ries for air-to-air missiles using a three-stage guidance scheme. The first stage is the

boost phase which requires the missile reaches high altitude and desired horizontal
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distance before the boost motor shut down. Also the nominal time optimal path is

derived with consideration of initial perturbation only. The resultant control load

factor is limited which causes the missile remains at the maximum acceleration limit

line for a finite time period. The second stage is mid-course guidance considering

both state perturbations and a maneuvering target. Transversal comparison and per-

formance augmentation methods has been applied to this longest duration phase. For

the target is capable of maneuvers, the terminal guidance law requires autonomous

tracking of the final object. Pure proportional navigation is applied in the final stage

to intercept the target. These three guidance laws applied to boost, sustain and coast

phases are more accurate than traditional single phase approximate model.

Even the three-phases guidance scheme is based on a simplified approximate

model. But under some circumstances, such an approximate model cannot adequately

represent the system and a more accurate optimization is required. Also at the final

stage when classical Proportional Navigation (PN) guidance law is applied, the time

efficiency is neglected in order to realize real-time control objective. So at least the

final phase is not time optimized which leaves space to make the trajectory further

improved.

Except for the MTI problem, the optimal guidance scheme is also applied to

other areas. For example, Corban, Calise and Flandro[15] used the combination of

singular perturbation and feedback linearization techniques to solve minimum fuel
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transatmospheric vehicle assent. Bollino, Ross and Doman[16] used pseudospectral

methods to generate the optimal trajectory with minimal miss distance for the reentry

vehicle, then Runge-Kutta integration scheme is applied to integrate forward with

conjunction of disturbances factors to get the current state variables which is feedback

to the on-time optimal trajectory generator to find new control variables at the current

situation. Their simulation results showed that this optimal guidance scheme can

guide the vehicle to an accurate landing even under hurricane wind effect Category

5.

2.3 DCNLP Application Examples

The following are examples of DCNLP applications to aircraft optimal trajectory

design, space mission planning, and unmanned aerial vehicles optimal path planning.

2.3.1 Aircraft Optimal Trajectory Design

1. Hargraves and Paris[19] solved the 2-D MTTC problem using third-order de-

scretization and nonlinear programming. This technology, applied in 1986, is

not as mature as the method used today and some refinement is required to

obtain more accurate results, such as variable scaling, nodes selection, partial
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derivatives computation and data smoothing. Although not as mature as to-

day’s technology, the method was well developed to successfully solve a wide

variety of problems at that time.

2. Betts and Huffman[20] described a nonlinear programming algorithm in detail in

1993, including a quadratic programming subproblem, merit function, param-

eter definition, algorithm strategy, finding a feasible point and minimization

process. They also compared characteristics of different transcription methods,

trapezoidal, hermite and Runge-Kutta, in terms of computation cost, error and

robust estimation. Maximum crossrange and MTTC problem trajectories are

simulated using the above different transcription methods.

3. Ringertz[21] solved the minimum fuel turn problem using this DCNLP method.

He applied six-degree-of-freedom dynamics model of the aircraft with control of

lift and bank angle. The aircraft was expected to make a heading angle turn

of 180◦ and keep the same altitude, velocity and flight path angle as initial

conditions while maximizing the final fuel mass.

4. Norsell[22] found a multistage aircraft long distance optimal trajectory consid-

ering radar coverage constraints. In this problem, the 3-D aircraft model is

simplified under different additional conditions, such as constant altitude, con-

stant indicated airspeed or constant march number. The performance to be
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minimized is the radar cross section beam which will reduce the possibility of

being detected when passing the radar station.

5. Williams, Sgarioto and Trivailo[23] applied a DCNLP method to aerial-towed

cable system path planning. The cable tip was attached to a aircraft with

wings and control surfaces and the interaction between the cable and aircraft

was connected by the tension force of the cable tip. Aerodynamic drag and wind

forces are also considered in the aircraft model. The task was designated to let

the cable tip pass specified points in 3-D airspace while optimizing combined

aircraft performance.

2.3.2 Space Mission Planning

1. Herman and Spencer[24] used higher-order collocation to solve a wide variety

of orbital transfer problems including from low Earth orbit to geosynchronous

Earth orbit, medium Earth orbit, and high Earth orbit while minimizing fuel

consumption. The numerical results of the optimized trajectories were com-

pared to the analytical solution which used burn-coast-burn structured assump-

tion and the comparison showed the results using the two methods are very

close.
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2. Horie and Conway[25] developed the minimum-time and minimum-fuel optimal

trajectories for an aeroassisted orbital transfer vehicle (AOTV) to intercept a

target located on a lower circular orbit. Because the low density of the atmo-

sphere at high altitude will cause the large reduction of the aerodynamic force

and cause the disappearance of the control variables, the maximum altitude

constraints are considered. Another constraint introduced is one on the aero-

dynamic heating that comes from the atmospheric flight. The results indicate

that the AOTV has more advantages on time consumption than ballistic flight

in interception problem.

3. Betts[26] published his results about space shuttle optimal orbit transfer in the

presence of uncertainty. The transfer task was accomplished by two successive

stages with different impulsive velocity increments and the performance, pay-

load, was maximized. A solid rocket motor was ignited to perform the designed

nominal task and a liquid propellant reaction control system was used to com-

pensate for the off-nominal part. The major uncertainty considered here came

from the specific impulse predicted by weight history.

2.3.3 Unmanned Aerial Vehicles (UAV) Optimal Path Planning

Although DCNLP has wide application in aircraft and space mission planning,

it has limited use in UAVs. So in 2006 Geiger, Horn, DeLullo and Long[27] published
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their studies on UAVs focusing on maximizing the viewing time for a camera fixed on

the UAV. A single UAV may perform tasks like rendezvousing a slow or fast target or

surveil a stationary target while maximizing the sensor coverage of the object. When

two UAVs are involved, the optimized trajectory may provides full time coverage

of the stationary target. But this method is still not fast enough to be applied in

realtime operation, faster algorithm is required for onboard calculation.

2.3.4 Conclusion

With the advantages of fast convergence, avoidance of adjoint variable estimation,

and the capacity of including complex boundary conditions, the DCNLP has been

successfully applied in wide areas of aircraft and spacecraft research. But this method

has limited application in 3-D trajectory optimization in constrained airspace. In

order to simplify the problem, the previous studies focused on 2-D model considering

constraints about control variables only. The following discussion will make problems

like MTTC and MFTC more complete and accurate with the same properties showed

in 2-D model. The optimality verification will also be conducted to prove the accuracy

of this method.
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Chapter 3

Indirect Optimal Control Method

3.1 Optimal Control Problem

The objective of an optimal control problem (OCP) is to find the history of

the control variable(s) that will maximize or minimize a given performance index

while satisfying the system constraints. The system constraints considered herein

include first-order, ordinary differential equations subject to initial and final boundary

conditions and some additional constraints on the states and controls. The differential

equations are written here as

ẋ = f(t, x, u) (3.1)

where x is an n × 1 vector of states, f is an n × 1 vector of functions, t is the time

and u is an m× 1 vector of controls. With prescribed initial conditions

x(0) = x0 (3.2)

and prescribed final boundary conditions

ψ(tf , xf ) = 0 (3.3)
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where ψ is a p× 1 vector of functions, t0 is the initial time and the terminal time tf

is free. The scalar performance index is expressed as

J = φ(tf , xf ) +
∫ tf

t0
L(t, x, u)dt (3.4)

where φ and L are scalars.

The basic idea of IOC is to find the control u that will make the gradient of

the objective function be zero. So it is necessary to compute the Jacobian gradient

of J to decide which solution will drive it to zero. When the system constraints are

considered, the Hamiltonian equation is introduced as well as the Euler-Lagrange

equations.

3.2 Hamiltonian Equation and Necessary Conditions

The traditional, or indirect, optimal control method is to formulate the Hamil-

tonian function with Lagrange multipliers, also called adjoint variables vector λj(t)

H = L+ λTf (3.5)
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where λ = [λ1, λ2, . . . , λn]T . Now, the optimal states x(t), controls u(t) and Lagrange

multipliers λ(t) must satisfy the Euler-Lagrange equations

ẋ =
∂H

∂λT = f(t, x, u) (3.6)

λ̇
T

= −∂H
∂x

= −∂L
∂x

− λT ∂f

∂x
(3.7)

The optimized performance is obtained by choosing the control variables, such that

0 =
∂H

∂u
=
∂L

∂u
+ λT ∂f

∂u
(3.8)

Then, the solution to the indirect OCP is found by solving Eqn.3.6-Eqn.3.8

subject to the constraints Eqn.3.2 and Eqn.3.3. If there are n state variables xj and

m control variables u, from Eqn.3.8, one can express control variables as functions of

the n state variables xj and n adjoint variables λj. By inserting these new forms of

u into Eqn.3.6 and Eqn.3.7, the problem is solved by integrating the 2n first-order

derivative functions of x and λ while satisfying the specified boundary conditions

on x. If we also know the initial conditions of λ, the problem could be finished by

solving the differential equations. Unfortunately, the initial conditions on the λj are

not known. Moreover, it is often difficult to find their values.
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The initial and final state and adjoint variables satisfy boundary constraints that

have the following forms:

Initial Conditions

δxj(t0)λj(t0) = 0 (3.9)

Final Conditions

λ(tf ) = (
∂φ

∂x
+ νT ∂ψ

∂x
)
T

t=tf

(3.10)

[
∂φ

∂t
+ νT ∂ψ

∂t
+ (

∂φ

∂x
+ νT ∂ψ

∂x
)f + L]

t=tf

= 0 (3.11)

ψ(tf , xf ) = 0 (3.12)

where ν is a p× 1 new introduced Lagrange multiplier vector.

From the initial conditions, it can be seen that either the initial condition xj(t0) is

given or λj(t0) = 0. This means that the initial conditions of either the state variables

or the adjoint variables are known. The final boundary conditions must satisfy all

three constraints Eqn.3.10, Eqn.3.11 and Eqn.3.12. Eqn.3.11 is a general case with

the state variables specified at an unspecified terminal time. When the final time is

specified, this equation is not needed. In either case, the information provided at the

final point is not sufficient to solve for the final state variables, Lagrange multipliers

and final time. If all these variables were known at the final time , it would be easy
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to integrate them backward to get the initial conditions, but they are not. Finally,

the backward integration method still turned out to be unsuccessful.

Considering the importance and difficultly of getting the initial values of the λj

in solving optimal problems, many researchers have proposed methods to find them.

Since the adjoint variables often have no easily discernable physical meaning, we

cannot determine them from common sense. Furthermore, they sometimes tend to

be very sensitive to changes in the adjoint variables. That is, a small change can cause

great difference in the calculated answer. All this adds up to make obtaining initial

values of adjoint variables very difficult. This difficulty provided the motivation for

finding ways to avoid using the adjoint variables.

3.3 Path Constraints

In the above discussion, we did not consider the extra constraints, which are func-

tions of state and control variables. Some are types of equality constraints including

state and control variables

C(x, u, t) = 0 (3.13)

where C is a q × 1 vector. When these constraints are considered in the OCP,

the Hamiltonian function may be reformulated by introducing additional Lagrange

24



multipliers µ

H = L+ λTf + µTC (3.14)

as well as new adjoint equations

λ̇
T

= −∂L
∂x

− λT ∂f

∂x
− µT ∂C

∂x
(3.15)

and optimality conditions

0 =
∂L

∂u
+ λT ∂f

∂u
+ µT ∂C

∂u
(3.16)

The path constraints C here reduces the number of independent control variables to

m−q. If L, f and C are not explicit functions of time, then the Hamiltonian equation

will be a constant value over the whole time interval[29, 30]. The control variables

can be decided from the Pontryagin’s minimum principle which is formulated as

Theorem 3.3.1 [30]The optimal control u∗(t) must make the Hamiltonian an abso-

lute minimum with respect to the control at every point of the minimal path x∗(t) and

stated as

H(t, x∗, u∗, λ∗) ≤ H(t, x∗, u, λ∗) t ∈ [t0, tf ] (3.17)
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Other kinds of constraints are inequality constraints

C(x, u, t) ≤ 0 (3.18)

where

µ


= 0, C < 0

> 0, C = 0

(3.19)

In this case, the adjoint equations are

λ̇
T

= −∂H
∂x

=


−∂L

∂x
− λT ∂f

∂x
, C < 0

−∂L
∂x
− λT ∂f

∂x
− µT ∂C

∂x
, C = 0

(3.20)

and the optimality conditions are

∂H

∂u
≡ ∂L

∂u
+ λT ∂f

∂u
+ µT ∂C

∂u
= 0 (3.21)

In solving such inequality constraints problems, it is common practice to divide the

solution space into active(C = 0) and inactive(C < 0) arcs. In the inactive arcs,

the solution is assumed to satisfy the additional constraints and necessary condition

Eqn.3.21 is solved as discussed above. In the active pieces, Eqn.3.18 and Eqn.3.20

must be combined together to solve u(t) and µ(t). The classification of active and

inactive arcs may start by deciding the junction point between these two types. If
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the control u(t) at the junction point is discontinuous, it is called a corner. But if λ,

∂H
∂u

and H are continuous, it follows that u(t) and µ(t) will be continuous across the

junction point. Generally, making a priori estimate of the arc sequences is quite dif-

ficult. Without prior knowledge of the number of the constrained and unconstrained

subarcs, it is very difficult to fix the accurate junction point and each arc boundary

conditions.

Then, these constraints all add to the complexity of the problem and make finding

the initial values of the adjoint variables even more difficult. Also when the system

equations include many state variables, deriving the adjoint equations will seem to be

a nightmare. These are some of the reasons why the DCNLP method introduced in

Chapter 4 is so attractive as an efficient way to solve complex optimization problems.
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Chapter 4

The Method of Direct Collocation and Nonlinear Programming

In this chapter we introduce the idea of direct collocation and describe procedures

for the trapezoidal, Hermite-Simpson and CP discretization methods. The nonlinear

programming solver is also introduced along with its detailed algorithm. The impor-

tance of the application of direct collocation method in setting up the NLP solver

will also be illustrated.

4.1 Direct Collocation Method

A complete trajectory of an aerospace vehicle is composed of numerous points

representing its continuous coordinates as they change from initial time to final time.

Actually, if we pick up some discrete characteristic points on this trajectory, they

can be used to reproduce an approximate trajectory that is almost as good, for some

purpose, as the continuous trajectory. The basic idea of Direct Collocation (DC) is

to discretize the continuous solution to a problem represented by state and control

variables by using linear interpolation to satisfy the differential equations. In this

way, an OCP is transformed into a nonlinear programming problem (NLPP). Since

the solution to the OCP is in terms of infinitely many values of state and control
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Figure 4.1: Trajectory History Discretization

variables, the DC is an approximation. However, this is also the case for any solution

obtained via numerical integration.

To explain the DC method, we present a simple example illustrated in Fig. 4.2.

The continuous trajectory, T , is divided into n segments at n+1 different time points

such that t0 = t1 < t2 < ti < · · · < tn = tf , where t0 is the initial time, tf is the final

time, and the n + 1 individual time points are called nodes. The value of the state

vector at the ith node is represented by xi, the control vector is ui, and the derivative

of the state vector at node i is expressed as f
i
. The time interval between node i and
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i+ 1 is

hi = ti+1 − ti (4.1)

Our objective is to use these discrete nodes to reproduce system equations. Three

discretization methods are introduced here: the Trapezoidal Method, Hermit-Simpson

Method and CP method. A description of the procedure and properties of each of the

methods is also provided. In both of the methods, the defect equations are enforced

on each node equal to zero, so that the state vector and control vector at those nodes

are constrained to satisfy the system equations.

4.1.1 Trapezoidal Method

In the trapezoidal method, the defect vector di of phase i is defined as

di = xi+1 − xi −
hi

2
[f(xi, ui) + f(xi+1, ui+1)] (4.2)

These defect vectors are set according to the approximate trapezoidal integration

algorithm as shown in Fig. 4.2. We know the system equation is expressed as ẋ =

f(t, x, u), so in this figure the left area of the dash line under the curve is

xi =
∫ ti

t0
f(t, x, u)dt (4.3)
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and the left area of the straight line under the curve is

xi+1 =
∫ ti+1

t0
f(t, x, u)dt (4.4)

The shaded area is the difference between the two areas listed above and if this area

is treated as a trapezoidal area, it can be calculated as

xi+1 − xi
∼=
hi

2
[f

i
+ f

i+1
] (4.5)

0t it 1+it

if

1+if

ix

1+ix

ih

Figure 4.2: Trapezoidal Discretization
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When more nodes are considered, and the difference in xi and xi+1 becomes

smaller, in this approximate area calculation, each approximate area can be treated

as being very close to the actual area. Then, the right part of Eqn.4.5 may be moved

to the left-hand side to get

xi+1 − xi −
hi

2
[f

i
+ f

i+1
] = 0 (4.6)

4.1.2 Hermit-Simpson Method

If Simpson’s integration rule and the Hermite interpolation method are used

instead of the trapezoidal rule, then the defect vector of phase i is defined to be

di = xi+1 − xi −
hi

6
[f(xi, ui) + 4f(xci, uci) + f(xi+1, ui+1)] (4.7)

where xci and uci are the state and control vectors, respectively, at the center of nodes

i and i+ 1 and are defined as

xci =
1

2
(xi + xi+1) +

hi

8
[f(xi, ui)− f(xi+1, ui+1)] (4.8)

and

uci =
1

2
(ui + ui+1) (4.9)
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To derive this discretization result, first the Simpson’s rules of integration is applied

here instead of trapezoidal integration.

Theorem 4.1.1 (Simpson’s Rule) Consider y = f(x) over [x0, x2], where x1 = x0+
h
2
,

and x2 = x0 + h. Simpson’s rule is

SR(f, h) =
h

6
(f(x0) + 4f(x1) + f(x2)) (4.10)

This is an numerical approximation to the integral of f(x) over [x0, x2], that is,

SR(f, h) ∼=
∫ t2

t0
f(x)dt (4.11)

According to Simpson’s rule, the area difference between xi and xi+1 over the interval

[ti, ti+1] is expressed in a new form as

xi+1 − xi =
hi

6
[f(xi, ui) + 4f(xci, uci) + f(xi+1, ui+1)] (4.12)

In the above equation the center point xci is interpolated with application of Hermite

interpolation. To explain Hermite interpolation, Newton’s divided difference method

of interpolation is introduced first.

Theorem 4.1.2 (Newton Polynomial) Consider y = f(x), given a set of k + 1 data

points (x0, y0) . . . (xk, yk), where no two xj are the same, the interpolation polynomial
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in the Newton form is a linear combination of Newton basis polynomials

N(x) =
k∑

j=0

aj[
j−1∏
i=0

(x− xi)] (4.13)

The coefficients aj are defined as the divided differences

aj = [y0, ...yj] (4.14)

where the notation used for the divided differences is expressed as

[y0, ...yj] =
[y1, . . . , yj]− [y0, . . . , yj−1]

xj − x0

(4.15)

Then the Newton polynomial can be written as

N(x) = [y0] + [y0, y1](x− x0) + · · ·+ [y0, . . . , yk](x− x0) . . . (x− xk) (4.16)

For better illustration, the divided differences can be written in a form of a table,
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x0 [y0]

x1 [y1]
[y1]−[y0]
x1−x0

x2 [y2]
[y2]−[y1]
x2−x1

[y2]−[y1]

x2−x1
− [y1]−[y0]

x1−x0

x2−x0

...
...

...
...

. . .

xn · · · · · · · · · · · · [y0, . . . , yn]

Hermite interpolation is very similar to the Newton divided difference method,

but it uses the data points repeatedly and considers the derivatives at data points.

Theorem 4.1.3 (Hermite Interpolation) The derivatives are treated as extra points,

and in the divided difference table, the points are repeated. To avoid division by

zero, the values where the division by zero would take place are replaced with the

derivatives, multiplied by a constant, depending on the position in the table. Using

the notation used in the Newton polynomial theorem, if point xi is repeated n times,

then [xi, xi · · · , xi] = f (n−1)(xi)/(n− 1)!

When this method is applied to the interpolation of ẋ = f(x) with two data points

xi and xi+1, its divided differences are listed as follows:

xi xi

xi xi fi

xi+1 xi+1 1 1−fi

xi+1−xi

xi+1 xi+1 fi+1
fi+1−1
xi+1−xi

fi+1+fi−2
(xi+1−xi)2
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So the Hermite polynomial can be written as

H(x) = xi + fi(x−xi)+
1− fi

xi+1 − xi

(x−xi)
2 +

fi+1 + fi − 2

(xi+1 − xi)2
(x−xi)

2(x−xi+1) (4.17)

Then the center point xci = H(xi+xi+1

2
), so we can insert x = xi+xi+1

2
in Eqn.4.17 to

get the result for xci that is exactly the same as Eqn.4.8

4.1.3 Chebyshev Pseudospectral Method

The above two methods and some higher order-discretization techniques[24] put

the constraints on the defect phase between two adjacent nodes and the distribution

of the nodes is arbitrary. That is, the collocation points can be dense in one area

and sparse in another. On the other hand the ideal distribution as we expected

is to be evenly located for the nodes in the time interval considered. Thus, the CP

method[32, 33, 34], which uses Chebyshev-Gauss-Lobatto (CGL) collocation to locate

these points, may perform this nodes distribution task better. The standard interval

considered here is unified as τ ∈ [−1, 1] with collocation points τk set as

τk = −cos(πk/N), k = 0, . . . , N (4.18)
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By using a linear transformation, the actual time t can be expressed as a function of

τ via

t = [(tf − t0)τ + (tf + t0)]/2 (4.19)

The state and control variables can then be approximated by Nth-order Lagrange

interpolating polynomials

xN(τ) =
N∑

j=0

xjφj(τ) (4.20)

uN(τ) =
N∑

j=0

ujφj(τ) (4.21)

where

φj(τ) =
N∏

l=1,l 6=j

τ − τj
τj − τl

(4.22)

and

xN(τk) = xk, uN(τk) = uk (4.23)

From Eqn.4.20, it is clear that the derivative of xN(τk) can be expressed as

sk =
d

dt
xN(τk) =

N∑
j=0

xj
d

dt
φj(τk) k = 0, , . . . , N (4.24)
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and expanded as 

d
dt
xN(τ0)

...

d
dt
xN(τN)


= D



x0

...

xN


(4.25)

where D is the (N + 1)× (N + 1) differentiation matrix and is defined as

Dkj =
d

dt
φj(τk), j, k = 1, . . . , N + 1 (4.26)

Eqn.4.26 is the general form of the differentiation matrix. For the Chebyshev differ-

entiation matrix, Dkj is defined in the following theorem.

Theorem 4.1.4 For each N ≥ 1, let the rows and columns of the (N + 1)× (N + 1)

Chebyshev spectral differentiation matrix DN be indexed from 0 to N . The entries of

this matrix are

Dkj =



−(ck/cj)[(−1)(k+j)/(τk − τj)], j 6= k

−(2N2 + 1)/6, j = k = 0

(2N2 + 1)/6, j = k = N

τk/2(1− τ 2
k ), otherwise

(4.27)

where c0 = cN = 2 and c1 = . . . = cN−1 = 1.
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Unlike the trapezoidal and Hermite-Simpson collocation methods which are based

on enforcing the defect vector of mid points be zero to satisfy the system differential

equations, the CP method enforces constraints directly at the CGL points selected

by

dk = sk −
tf − t0

2
f(xk, uk, tk) = 0, k = 0, . . . , N (4.28)

Then, the derivative of the state variables can be calculated using these nodes them-

selves with the differentiation matrix. In this way, the CP method achieves a high

degree of accuracy using orthogonal polynomials instead of the numerical integration

polynomials.

All three collocation methods can approximate the system equations, but each

of them has different properties, which are listed in Table.4.1. Examples using these

methods are presented in Chapter 5.

Table 4.1: Comparison of Three Discretization Methods
Trapezoidal Hermite-Simpson Chebyshev Pseudospectral

State Variables Error O(h2) O(h4) O(h4)
Control Variables Error O(h1) O(h2) O(h3)
Robust good less less
Convergence fast slow fast
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4.2 Nonlinear Programming Solver

The NLP solver used to solve the NLPP considered in this work is based on

a Sequential Quadratic Programming (SQP) algorithm and is called SNOPT[38].

SNOPT can be used to solve problems such as the following: Minimize a performance

index J(x) , subject to constraints on individual state and/or control variables

xL < x < xU (4.29)

constraints defined by linear combinations of state and/or control variables

bL < Ax < bU (4.30)

and/or constraints defined by nonlinear functions of state and/or control variables

cL < c(x) < cU (4.31)

This SNOPT solver defines the slack variable S, which will transfer the inequality

constraints into equality constraints, as follows:

l <

 c(x)

Ax

 < u =⇒

 c(x)

Ax

− S = 0 with l < S < u (4.32)
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The algorithm of this solver performs two kinds of iterations: major and minor.

In major iterations, the slack variables are classified as nonlinear slack variables, SN ,

and linear slack variables, SL, and the nonlinear constraint equations are expanded

in a first-order Taylor series as

c(xk) + c′(xk)(x− xk)− SN = 0 or c′(xk)x− SN = c′(xk)xk − c(xk) (4.33)

The linear constraints are expressed as

Ax− SL = 0 (4.34)

The two kinds of constraints are combined in one equation as

Atx− S = b (4.35)

where At =

 c′(xk)

A

, b =

 c′(xk)xk − c(xk)

0

 and l < S =

 SN

SL

 < u. The

objective in this major iteration is to minimize

q(x) = gTp+
1

2
pTHp (4.36)
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subject to the constraints in Eqn.4.35, where g = ∇xJ(x), p is the search direction

vector and H is the Hessian matrix of J(x). This formulation comes from New-

ton’s Method for Minimization. The approximation of the objective function can be

extended in Taylor series at the current x point

J(x∗) = J(x) + [∇xJ(x)]T (x∗ − x) +
1

2
(x∗ − x)T∇2

xxJ(x∗ − x) (4.37)

Where x∗ is the optimized point and x∗ − x is the search direction p. Then Eqn.4.37

is reformulated as

J(x∗) = J(x) + gTp+
1

2
pTHp (4.38)

To make x∗ be the minimum point of the quadratic approximate function of J , we

must have

∂J(x∗)

∂x∗
= g +H(x∗ − x) = 0 (4.39)

which yields the Newton search direction as

p = x∗ − x = −H−1g (4.40)

The above procedure doesn’t include introducing the states only constraints such

as c(x) = 0 with p×1 elements. In this case, Eqn.4.37 is adjoined to L using Lagrange
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multipliers λ (p× 1)

L(x, λ) = J(x)− λT c(x) (4.41)

The Hessian matrix of the above Lagrangian function L is

HL = ∇xxL = ∇xxJ − λT∇xxc(x) (4.42)

The minimum points generate at

∇xL(x∗, λ∗) = g −GTλ (4.43)

∇λL(x∗, λ∗) = −c(x) = 0 (4.44)

where G = ∇xc. The Taylor series expansions analogous to Eqn.4.37 are constructed

as

0 = g −GTλ+HL(x∗ − x)−GT (λ∗ − λ) (4.45)

0 = −c(x)−G(x∗ − x) (4.46)
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Finally, comparing to Eqn.4.39, the solution of the above linear equations, which is

called the Karush-Kuhn-Tucker(KKT) system and write

 HL GT

G 0


 −p

λ

 =

 g

c

 (4.47)

In the SQP algorithm, the search direction vector is found so that in the next iteration,

the new state variables are updated using

xk+1 = xk + αp (4.48)

where α is the step size and its value is restricted between [0, 1].

In a minor iteration, Eqn.4.35 is partitioned into

BxB + SxS +NxN = b (4.49)

where xB is a basic variable that is to satisfy Eqn.4.35, xS is a super basic variable

chosen to improve the objective function and xN is a nonbasic variable. The number

of xS indicates degrees of freedom. In each minor iteration, one of xN is picked up

and added to xS to improve Eqn.4.36 and at the same time satisfying Eqn.4.49, this

procedure is repeated until no further improvement can be made.
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In summation, the NLP solver is to maximize the objective function and, at the

same time, satisfy all constraints.The important point here is how to apply the DC

method and the NLP solver settings so that the nonlinear system of equations can be

satisfied in the form of constraints added to the solver. From the definition of defect

vectors in both of the discretization methods, Eqn.4.2 and Eqn.4.7, it’s obvious that

those defect vectors are all nonlinear equations and are supposed to be zero when the

system equations are satisfied. So, the nonlinear constraints of the SNOPT solver

can be set as

cL = ci(X) = di(X) = cU = 0 i = 1, . . . , n (4.50)

Then, the dynamic system equations will be defined as nonlinear constraints together

with state variable constraints and linear constraints.

4.3 Mistake Prevention

Although the NLP solver have been used successfully to solve many problems,

there are some specific things that require attention from user if unexpected mistakes

are to be avoided.

First, the constraints added to the optimized problem must yield feasible solu-

tions. This means the solution of each constraint must have a cross section with other
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constraints. Also, the Jacobian matrix of the constraint must be full rank. Otherwise

it will cause the NLP solver to iterate without obvious progress.

Second, redundant constraints must be avoided because they will cause some

Lagrange multipliers to converge to zero and make it more the difficult to find the

active arcs.

Third, discontinuities encountered in the programming will cause slow conver-

gence or divergence and the KTT necessary conditions are not applicative in such

a case. So, in the optimal problem formulation, it is necessary to avoid using IF

statement, absolute, min or max functions and linear interpolation of tabular data.

Forth, the independent variables should have similar magnitudes to expedite the

convergency rate, improve termination tests and numerical conditioning. Normally,

the state and control variables are scaled by using transformations like,

xs(t) = [x(t)− xN(t)]/Sx(t) (4.51)

where Sx is an estimate of an upper bound for x−xN and xN is the nominal trajectory.

The time factor is scaled by

Ts = T/ST (4.52)

where ST is the estimated upper bound for T
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Chapter 5

Using DCNLP To Solve Optimal Control Problems

In this chapter, the DCNLP method is applied to solve two classical calculus

of variations problems, the Brachistochrone Problem and Zermelo’s Problem. Both

these problems have known analytical solutions that can be used to verify the DCNLP

method. The detailed problem formulation and SNOPT solver settings are presented.

Results using DCNLP is compared with the analytical solutions to verify the accuracy

of this method.

5.1 Brachistochrone Problem

The Brachistochrone[40] Problem is that of finding the shape of the curve down

which a weight, classically ”a bead”, acted upon by the force of gravity, will descend

from rest and accelerate to a desired point in the least time. If the starting point

and ending point lie on the same vertical line, then clearly the shape of the curve is

a straight line between the two points. But, if there is a horizontal distance between

those two points, the weight will travel in a more complex way. Many researchers

have contributed to the solution of this problem. Early in 1697, Newton published

his solution, then Leibniz, L’Hospital and Bernoullis found analytical solutions in the

form of cycloids.
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The problem as formulated mathematically is to minimize t12, the time required

for the weight to travel between two points P1 and P2 with speed v. We can write

t12 =
∫ P2

P1

ds

v
(5.1)

α

Figure 5.1: Fermat’s Principle

According to Fermat’s Principle as illustrated in Fig. 5.1, we have

v/ sin(α) = k (5.2)
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where α is the angle between the vertical and the tangent to the curve and k is

constant. Under the assumption that energy is conserved 1
2
v2 − gy = const., so that

if v = 0 when y = 0,

v =
√

2gy (5.3)

By substituting for v in Eqn.5.2, we obtain

y = ksin2(α) (5.4)

then, there is the relationship between y and y′

y(1 + y′
2
) = h (5.5)

where h = 1/2k2.

A cycloid satisfies Eqn.5.4 and can be represented as its analytical solution in

terms of parameter θ as

x(θ) = h(θ − sin θ) (5.6)

y(θ) = h(1− cos θ) (5.7)
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From the energy equation Eqn.5.3, the minimum time t can be expressed by x, y and

their derivatives

tm =
∫ P2

P1

√√√√1 + y′2

2gy
dx =

∫ P2

P1

√
h

g

dx

|y|
(5.8)

When y is substituted by the analytical solution, the above equation can be further

simplified to get

tm =
∫ θf

θ0

√
h

g
dθ =

√
h

g
(θf − θ0) (5.9)

The DCNLP was applied to this problem. The first step was to set up the

first-order derivatives of the system equations. From Eqn.5.3 the energy conservation

equation can be reformulated as

v2 = (ẋ2 + ẏ2) = 2g(y0 − y) (5.10)

where y0 is the initial position of the y axis. The control variable tanu here is the

gradient of the curve

tanu = y′ =
ẏ

ẋ
(5.11)
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We can insert ẏ = ẋ tanu in Eqn.5.10 and get the system equations as (assuming the

weight can only slip in the positive direction of the x axis)

 ẋ

ẏ

 =


√

2g(y0 − y) cos u√
2g(y0 − y) sinu

 = f(x, y, u) (5.12)

If n nodes are used to represent the trajectory and trapezoidal discretization

method is applied, the nonlinear constraints of the SNOPT are

cL(i) = xi+1 − xi −
∆ti
2

[f(xi, yi, ui) + f(xi+1, yi+1, ui+1)] = cU(i) = 0 (5.13)

where i = 1, 2, . . . , n and ∆ti =
tf−t0
n−1

. The objective function is

J =
n−1∑
i=1

∆ti = tf − t0 (5.14)

Table 5.1: Analytical and DCNLP Results for Brachistochrone Problem
initial position final position analytical solution DCNLP solution
x0 = 0, y0 = 0 xf = 2, yf = −1 tm = 0.8052 sec tm = 0.8059 sec
x0 = 0, y0 = 0 xf = 3, yf = −1 tm = 1.0178 sec tm = 1.0190 sec
x0 = 0, y0 = 0 xf = 5, yf = −1 tm = 1.3870 sec tm = 1.3890 sec

In table.5.1, the results of both the analytical and DCNLP method are provided.

The minimum time difference is less than 0.13%, which serves to verify the accuracy of

the DCNLP method. The major error here comes from the approximate discretization
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procedure. Also, the trajectories of both methods are illustrated in Fig. 5.2, where

the circle line is the analytical solution and the plus sign (+) line stands the DCNLP

method.

0 1 2 3 4 5
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X
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Figure 5.2: Analytical and DCNLP Results for Brachistochrone Problem

Hermite-Simpson method and CP method were also applied to this problem

with initial position x0 = 0, y0 = 0 and final potion xf = 5, yf = −1. Together with

trapezoidal method, the results for minimum time and computation time are given

in Table.5.2 The results shown in Table.5.2 indicate that the minimum time obtained

using the CP method is more accurate than that found using the Trapezoidal and

Hermite-Simpson method with less computation time. Thus, it appears that the
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Table 5.2: Comparison of Brachistochrone Results for Various Collocation Methods
Method Minimal Time Absolute Error Computation Time
Analytical tm = 1.386950 sec 0 N/A
Trapezoidal tm = 1.389010 sec 0.002060 sec 5.2375 sec
Hermite-Simpson tm = 1.386895 sec 0.000055 sec 9.2633 sec
CP tm = 1.386944 sec 0.000006 sec 6.0587 sec

CP method is superior to the other two methods in terms of accuracy and rate of

convergence for same problems. Considering the advantages of CP method, in the

following cases only this technique is to calculate the final results.

5.2 Zermelo’s Problem

In guidance and control problems, hitting a fixed point in minimum time in an

appropriate coordinate is similar to Zermelo’s problem. As Zermelo proposed it in

1931[41]: ”A ship moves at constant velocity V , relative to water, through currents

having constant velocity components p and q in the x and y directions, respectively,

of a Cartesian coordinate system. Find the path of minimum time from the origin to

a specified point xf , yf”.

With reference to Fig. 5.3, the first-order differential kinematic equations for the

boat’s motion are

ẋ = p+ V cos θ

ẏ = q + V sin θ

(5.15)
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Figure 5.3: Zermelo’s Problem

where θ is the angle between the velocity of the boat with respect to the water and the

positive x direction and is treated as the only control variable. Powers[42] used the

Hamilton-Jacobi method to obtain the following analytical solution for the minimum

time

tm =
pxf + qyf ±

√
V 2(xf

2 + yf
2)− (pyf − qxf )

2

(p2 + q2 − V 2)
(5.16)

where the minus sign is chosen only when

pxf + qyf >
√
V 2(xf

2 + yf
2)− (pyf − qxf )

2 (5.17)
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Otherwise, the positive sign will be used here. To obtain this optimal solution, the

control variable θ is

θ = arctan[
yf − qtm
xf − ptm

] (5.18)

The results from the DCNLP are compared with this analytical results in table.5.3

under same initial condition x0 = 0, y0 = 0, but different final conditions and different

velocity of the water.

Table 5.3: Analytical and DCNLP Results for Zermelo’s Problem
final position water velocity analytical solution DCNLP solution
(m, m) (m/sec, m/sec) (sec, rad) (sec, rad)
xf = 100, yf = 100 p = 1, q = 3 tm = 11.111, θ = 0.644 tm = 11.111, θ = 0.644
xf = 50, yf = 80 p = 1, q = 3 tm = 7.231, θ = 0.938 tm = 7.231, θ = 0.938
xf = 50, yf = 80 p = 3, q = 1 tm = 7.712, θ = 1.215 tm = 7.712, θ = 1.215

The analytical solution and the DCNLP results were identical to three significant

figures. These results again verify the accuracy of the DCNLP method in solving at

least some optimal control problems.
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Chapter 6

Constrained Airspace Minimum Time and Fuel Flight Path

This chapter starts with an introduction of a two-dimensional aircraft model and

the solution of MTTC trajectories using energy state method, gradient method and

DCNLP method. The horizontal projection of this 2-D MTTC trajectory is calculated

and the necessities of considering space constraints are illustrated. Following this the

model is expanded to three dimensions and its MTTC and MFTC trajectories under

different constrained conditions are listed.

6.1 2-D MTTC Problem

6.1.1 2-D Mathematical Model

The state equations for a two-dimensional, point-mass aircraft model that is

commonly used to formulate minimum time problems are[3]

V̇ = [(T (M,h)−D(M,h, L))/W − sin γ]g

γ̇ = (g/V )[L− cos γ]

ḣ = V sin γ

ẋ = V cos γ

(6.1)
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Here, V is the flight speed, γ is the flight path angle, h is the aircraft’s altitude, and

Horizontal Distance
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L
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T
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D
r

Center of 
Aircraft mass

Figure 6.1: 2-D Aircraft Model

x is the horizontal coordinate of the aircraft. Also, T is the magnitude of the thrust,

which is assumed to be aligned with the velocity, D is the drag; W is the weight of

the aircraft, L is the lift; and M is the flight Mach number. The load factor n is the

control variable and is defined as

n = L/W (6.2)
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The lift and drag are modeled using

L =
1

2
ρV 2SCLα (6.3)

and

D =
1

2
ρV 2S[CD0 + ηCLαα

2] (6.4)

respectively. By setting L = nW , we may replace Eqn.6.4 by

D =
1

2
ρV 2SCD0 + η

2n2W 2

CLαρV
2S

(6.5)

The lift curve slope CLα and zero lift drag coefficient CD0 , and the drag due to lift

factor η, together with the aircraft’s weight and wing area S were used to obtain the

numerical results given in this paper. The atmospheric density, ρ, is derived from

the 1976 U.S. Standard Atmosphere[43]. The thrust magnitude is given by a table in

Ref.[2] and reproduced in Appendix A.

One of the conditions identified for special attention in Chapter 4.3 is to avoid

using linear interpolation of tabular data, thereby maintaining continuity and differ-

entiability of the system equations and the objective function. Unfortunately, because

of the physical constraints, analytical expressions for thrust, lift and drag coefficients

are generally unavailable, because propulsion and aerodynamic data from experiments
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are usually stored in tabular forms. No matter what caused the format of these data,

for computational efficiency, it is necessary to devise an alterative way to express these

data. Therefore, an approximate model is developed and is used here to reproduce

the thrust and aerodynamic properties. At a fixed March number, the thrust can be

expressed as a polynomial function T (h) of degree n that fits the data T (hi), hi with

least square error.

T (h) = pnh
n + pn−1h

n−1 + . . .+ p1h+ p0 (6.6)

Here, pi, i = 0, . . . , n is the polynomial coefficients of the thrust function. If a series

of such polynomial functions is given for different Mach numbers, then these pi can

be written as a function of Mach number pi(M). The polynomial function of degree

m is used again to approximately fit the variation of these coefficients with Mach

number

pi(M) = qmM
n + qm−1M

n−1 + . . .+ q1M + q0 (6.7)

In the thrust table.A.1, consider only the portion for which 0 ≤ h ≤ 80k ft and

0 ≤M ≤ 2. Using a second-order polynomial to fit the function T (h), the coefficients

at different March number are listed in table.6.1. From the table, the coefficients data

is more irregular than the thrust function of altitude, so a higher degree of polynomial

approximation function, degree four, is used here to approximate the coefficients as
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Table 6.1: Polynomial Coefficients at Different March Number
M 0 0.4 0.8 1.2 1.6 2.0
p2 0.0045 0.0041 0.0038 0.0040 0.0019 -0.0033
p1 -0.6523 -0.6101 -0.6085 -0.6830 -0.5367 -0.3551
p0 23.5739 22.6811 24.7042 30.1086 32.0151 32.0435

functions of Mach number. They are in the form of as

p2(M) = 0.0014M4 − 0.0070M3 + 0.0091M2 − 0.0039M + 0.0045 (6.8)

p1(M) = −0.1221M4 + 0.6723M3 − 1.0093M2 + 0.4581M − 0.6556 (6.9)

p0(M) = 0.9393M4 − 10.2110M3 + 24.4391M2 − 11.3770M + 23.6367 (6.10)

Finally, the thrust functions variation with altitude and Mach number is expressed

as

T (h,M) = (0.0014M4 − 0.0070M3 + 0.0091M2 − 0.0039M + 0.0045)h2+

(−0.1221M4 + 0.6723M3 − 1.0093M2 + 0.4581M − 0.6556)h+

(0.9393M4 − 10.2110M3 + 24.4391M2 − 11.3770M + 23.6367)

(6.11)

Using this same method, the lift and drag coefficients as a function of Mach number

can also be expressed as polynomial functions of degree 4.

CD0(M) = 0.0010M4 − 0.0113M3 + 0.0257M2 − 0.0130M + 0.0066 (6.12)

CLα(M) = 0.0122M4 − 0.0568M3 − 0.1500M2 + 0.2847M + 2.2397 (6.13)
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6.1.2 Energy State Method

In Eqn.6.1, the state variable V can be replaced mathematically by the total

energy per unit mass, which is defined as

E =
1

2
V 2 + gh (6.14)

and then

Ė = V V̇ + gḣ (6.15)

Using V̇ and ḣ expressions from Eqn.6.1 to rewrite Ė, we find

Ė = V (T −D)/m (6.16)

Assume L ' W , then the time integration can be expressed as

tf − t0 =
∫ m

V (T −D)
dE (6.17)

In order to minimize time interval tf − t0, it is obvious to maximize the denominator

of the right part of Eqn.6.17 at a given energy value E. We already know that

thrust T and drag D is a function about V and E, then the objective is to find the

velocity V that will maximize excess power, V (T (V,E) − D(V,E)), at a fixed E.
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Figure 6.2: 2-D MTTC Trajectory Using Energy State Model

Assume the aircraft is going to takeoff from sea level to an altitude of 80k ft and the

contours of constant E are plotted on a h− V plane. According to the above theory,

these numerous points of the maximum V (T (V,E) −D(V,E)) at different contours

constitute the approximate MTTC trajectory which is shown in Fig. 6.2.

In Fig. 6.2, the contours of both the constant energy and constant excess power

are illustrated. The dash line is the MTTC energy path which consists of an acceler-

ation of flight at sea level and a climb after the aircraft gains the speed over march

number. Then the gradient method is applied to this problem to see the difference

from the trajectory obtained above.
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6.1.3 Gradient Method

The gradient method for this 2-D MTTC problem requires to derive the adjoint

equations for the system first. With introduction a 3× 1 adjoint vector [λV , λγ, λh]
T ,

the Hamiltonian equation is written as

H = 1 + λV [(T −D)/W − sin γ]g + λγ[(g/V )(n− cos γ)] + λhV sin γ (6.18)

and the derivative of the adjoint equations are

λ̇V = −∂H
∂V

= −λV (
∂T

∂V
− ∂D

∂V
)
g

W
+ λγ

g

V 2
(n− cos γ)− λh sin γ (6.19)

λ̇γ = −∂H
∂γ

= λV g cos γ − λγ
g

W
sin γ − λhV cos γ (6.20)

λ̇h = −∂H
∂h

= −λV
g

W

∂T

∂h
(6.21)

with the initial and final boundary conditions

V (0) = V0, h(tf ) = hf

γ(0) = γ0, λΦ(tf ) = [0 0 0]′

h(0) = h0, λΩ(tf ) = [0 0 1]′

(6.22)

Here λΦ and λΩ are Lagrange multipliers, their definition and the detailed procedure

of the gradient method are given in Appendix B. In using the gradient method, it
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starts from an initial guess of control variables and final time to get the nominal path

and then gets the corrections of the control variables according to the procedure in

Appendix B. This process is repeated until the convergence condition is reached. As

an example, in the 2-D MTTC problem, assume that the aircraft starts at at sea level

with initial and final conditions,

V (0) = 558.2ft/sec, h(0) = 0

γ(0) = 0, h(tf ) = 80kft

(6.23)

The vehicle’s MTTC trajectory is shown in Fig. 6.3 and the time histories of the load

factor, velocity, flight path angle and altitude are shown in Fig. 6.4 separately. The

minimum time for the aircraft fly from sea level to an altitude of 80k ft is approx-

imately 180 sec. Compared to the energy state method, the results found from the

gradient method is more accurate and the state and control variable histories reflect

the real values instead the approximate values used in previous method. But, this

method’s successful implement depends on an adequate guess of the initial control

variables. This means that a large deviation of the initial guess will cause diver-

gence. Furthermore, the whole gradient calculation procedure is a burdensome task.

However, these difficulties can be avoided in the DCNLP method.
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Figure 6.3: 2-D MTTC Trajectory Using Gradient Method

6.1.4 DCNLP Method

The DCNLP method that is applied in this sub-section to solve a 2-D MTTC

problem uses CP discretization method with 18 collocation points. The objective is

to minimize tf subject to the equality constraints

2
tf
DV = [(T −D)/W − sin γ]g

2
tf
Dγ = (g/V )[n− cos γ]

2
tf
Dh = V sin γ

(6.24)
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Figure 6.4: 2-D MTTC State and Control Variables History Using Gradient Method

Here V , γ, h, T , D and n represent the solution vectors to this problem at the

collocation points. The initial and final conditions are the same as in the gradient

method examples. The minimum time obtained here is 178.25 sec with boundary

constraints and system equality constraints well satisfied. The MTTC trajectory

using this method is shown in Fig. 6.5 and the time history of load factor, velocity,

flight path angle and altitude are shown in Fig. 6.6 separately.

The results using DCNLP method are very close to the results obtained using

the gradient method, but the initial guesses for all the collocation points is more

arbitrary. Also, the convergence of the solution is much more rapid.
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Considering the complexity of 3-D aircraft model which will includes more state

variables and control variables, it will be more difficult to obtain the adjoint derivative

equations and guess adequate nominal control variables. So the DCNLP method

which will avoid deriving adjoint equations and guessing initial values is superior

than other two methods in solving the following 3-D problems.
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Figure 6.5: 2-D MTTC Trajectory Using DCNLP Method

In Fig. 6.7, the trajectory of an ”Altitude-Down Range” plot is illustrated. From

this figure, we see that the footprint required for an aircraft with modest performance

to climb from sea level to the desired altitude of 80k ft, the down range distance will be

more than half of its altitude. This is because most of the time the aircraft’s flight path
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Figure 6.6: 2-D MTTC State and Control Variables History Using DCNLP Method

angle is less than π/3 which makes the horizontal projection of the trajectory longer

than half of its magnitude of the altitude. While for some cases, such long horizontal

distance is not available because of local terrains constraints, so it’s necessary for the

aircraft to make some turns to avoid the collision. Thus, the 3-D aircraft model is

considered and some maneuvers are conducted based on this new model.
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Figure 6.7: 2-D MTTC Altitude and Down Range Trajectory Using DCNLP Method

6.2 3-D MTTC Problem

6.2.1 3-D Mathematical Model

Unlike the 2-D aircraft model, which focuses on the control in the longitudinal

plane only, the 3-D aircraft model also considers the control in lateral plane. So the

previously used control variable is replaced with two controls, a vertical load factor,

nV , and a horizontal load factor, nh. The heading angle, χ, and cross range, y, as

additional state variables are included in the system functions. Then, the system
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equations are also expanded to six first-order differential equations,

V̇ = [(T (M,h)−D(M,h, n))/W − sin γ]g

γ̇ = (g/V )[nV − cos γ]

χ̇ = (g/V )[nh/cosγ]

ḣ = V sin γ

ẋ = V cos γ cosχ

ẏ = V cos γ sinχ

(6.25)

The resultant load factor n is given by

n =
√
n2

V + n2
h (6.26)

and the aircraft bank angle, µ, is given by

µ = tan−1(nh/nV ) (6.27)

Together with other variables, µ is illustrated in Fig. 6.8. The other properties, such

as thrust, aerodynamic data and air density are treated the same as in the 2-D model.
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6.2.2 Initial NLP Variable Inputs

Although in most cases the choice of initial input of the NLP variables are arbi-

trary, a good guess generally improves the rate of convergence and avoids singularities

of the Jacobian matrix. Assuming that the aircraft is climbing inside a cylinder with

square projection in x-y plane, in order to allow for a large enough horizontal flight

distance, the final trajectory will make good use of the constrained airspace as much
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as possible. An initial guess of the path will probably be similar to a helix curve

wrapped on the a right-circular cylinder of radius R inscribed in the square cylinder,

as shown in Fig. 6.9.

γ
χ

Figure 6.9: Circular Helix Curve Wrapped on A Cylinder
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If the aircraft flies the helix curve with a constant speed and inclination angle.

Then, the system equations for the initial trajectory can be simplified to

V̇ = 0 =⇒ V = VI

γ̇ = 0 =⇒ γ = γI

χ̇ = VI cos γ/R

ḣ = V sin γ =⇒ h = VIt sin γ

x = R sin γ

y = R cos γ

(6.28)

where VI and γI are the pre-assumed constant velocity and constant flight path angle

of the aircraft. Normally, they are assumed to be the take-off velocity and flight path

angle separately. If the time intervals are chosen as Chebyshev points, then, all the

initial NLP variables can be fixed according to Eqn.6.28.
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6.2.3 Results

The system equation constraints using the CP discretization method in this 3-D

MTTC problem are formulated as

2
tf
DV = [(T −D)/W − sin γ]g

2
tf
Dγ = (g/V )[nV − cos γ]

2
tf
Dχ = (g/V )[nh/ cos γ]

2
tf
Dh = V sin γ

2
tf
Dx = V cos γ cosχ

2
tf
Dy = V cos γ sinχ

(6.29)

with the boundary constraints and performance limitations listed in table.6.2

Table 6.2: Boundary Constraints and Performance Limitations for 3-D MTTC Prob-
lem
Constraints Values
Initial Coordinate Constraints x = x0, y = y0, h = 0
Initial V , γ and χ Constraints V = V0, γ = γ0, χ = χ0

Final Altitude h = hf

Airspace Constraints xmin ≤ x ≤ xmax, ymin ≤ y ≤ ymax

Maximum and Minimum Vertical Load Factor nV max = 10, nV min = −10
Maximum and Minimum Horizontal Load Factor nhmax = 10, nhmin = −10

The system equation constraints are treated as nonlinear constraints in the NLP

solver and the boundary constraints and performance limitations are set as NLP
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variable constraints in the solver. The objective function is the time interval between

initial time t0 and final time tf , which is free.

Case 1: Set the airspace constraints on x and y as ±10, 000 ft. The airplane is

required to fly from sea level to an altitude of hf = 30, 000ft with an initial flight

speed of Mach = 0.5, an initial flight path angle of γ0 = 12.6◦, and an initial heading

angle of χ0 = 0. The minimum time obtained for this case is 89.76 sec. The three-

dimensional trajectory is shown in Fig. 6.10 and the time histories of vertical and

horizontal load factors nV and nh, velocity V , flight path angle γ and heading angle

χ are shown in Fig. 6.11.

Case 2: Using the same initial conditions as in Case 1, but with the constraints on

both x and y of ±7, 500 ft, the aircraft cannot reach 30,000 ft within a time similar

to that in case 1. However, when the final altitude was reduced to 25, 000 ft, the

three-dimensional MTTC trajectory shown in Fig. 6.12 with a similar climb time of

91.49 sec was obtained. The corresponding state and control variable time histories

are shown in Fig. 6.13.

Case 3: When the final 30,000 ft altitude was reached under the same initial

condition of Case 1 and with the constraints on both x and y of ±7, 500 ft, the

minimum time calculated here is 125.24 sec. The trajectory, corresponding state and

control variable time histories are shown in Fig. 6.14 and Fig. 6.15 respectively.
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Case 4: When the final flight speed constraint of M = 0.8 is added to Case 1, the

climb time is increased to 156.01 sec with other initial and final conditions unchanged.

The trajectory, corresponding state and control variable time histories are shown in

Fig. 6.16 and Fig. 6.17, respectively.

Case 5: When the same final flight speed constraint M = 0.8 is added to Case

3 which has the smaller airspace horizontal projection, the climb time under this

condition is 175.28 sec. The trajectory, corresponding state and control variable time

histories are shown in Fig. 6.18 and Fig. 6.19 respectively.

6.2.4 Conclusions

Using the CP discretization method and the NLP solver, the 3-D MTTC problem

has been solved under different assumption conditions. The results show that the

performance index, the time to climb, has been determined accurately and system

equality constraints, boundary constraints and control constraints were satisfied.

In all the five cases, the final trajectory is similar to a helical curve wrapped on

a cylinder, which indicates that the initial guess of a helical trajectory is reasonable.

Cases 1 and 2 have similar climb times, but in Case 1, a higher altitude was reached.

The only difference between the cases is that Case 2 had a smaller constrained space

in terms of the x− y base. As expected, smaller airspace volumes result in more time

for the aircraft to climb to a desired altitude.
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Case 3 had the same airspace constraints as Case 2, but 20% higher final altitude.

The extra altitude in Case 2 cost 36.9% more in terms of climb time. These data

indicate that the climb time is not proportional to the altitude. It can also be said

that the time distribution is different at different altitude.

The optimal trajectory in each case can be treated as a process of ”climb-dive-

climb”. The aircraft stays at sea level initially to gain speed and then makes a fast

climb. In some cases, the aircraft’s speed decreases to close to zero before the aircraft

reaches its final altitude. To complete the climb task, it’s necessary for the aircraft

to make a dive to gain speed and then climb again. Cases 3 to 5 illustrate this

characteristic. When higher altitudes are required, more dives and climbs may be

performed. That’s why the trajectory is a repeat process of ”climb-dive-climb”. This

property can also be shown in the 2-D MTTC problem, when higher final altitudes

are required.

Another characteristic property of the trajectory is the final speed. If there is no

constraint on the final speed, then the aircraft speed will normally decrease close to

stall speed. This is not realistic. When a constraint on the final flight speed is added,

the stall point can be avoided subject to the penalty of more climb time. This can

be seen by comparing climb times for Cases 1 and 4 or Cases 3 and 5.
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6.3 3-D Minimum-Fuel-To-Climb Problem

In the 3-D MTTC problem, the aircraft weight is treated as a constant. Actually,

the consumption of fuel during this time interval makes the weight of the aircraft a

function of time. The change of the weight is omitted in above discussion because

the climb task is completed in a few minutes, which makes this change of weight

negligible. If this weight change is modeled, then the additional equation,

ṁ = −f = T/cg (6.30)

where c = 2800 sec and f is the thrust specific fuel consumption, is included and the

mass is an additional state variable to the pervious 6× 1 state variable vector. And

the previous system equations keep the same except the weight is substituted as a

function of time

W (t) = m(t)g (6.31)

The objective function now is to maximize the final weight

J = −Wf (6.32)

Some cases are tested with same boundary constraints and performance limitations

set as in previous MTTC problem.
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Case 6: Use the same initial and final conditions and airspace constraints in Case

1 with unspecified climb time. The MFTC trajectory spent similar time, 93.13 sec,

comparing to Case 1. The trajectory, corresponding state and control variable time

histories are shown in Fig. 6.20 and Fig. 6.21 respectively. The trajectory in Case

6 is similar to the trajectory in Case 1 and the mass of the aircraft changes in a

small scale which can be negligible. In order to obtain the objective of minimum fuel

consumption in the climb procedure, it is expected that the aircraft can reach the

final altitude in the least time to consume as little as possible fuel. From this point

of view, it is reasonable that the MTTC trajectory and MFTC trajectory is close to

each other.

Case 7: Use the same initial and final conditions, airspace constraints as in Case

3 with unspecified climb time. The MFTC trajectory also spent similar time 140.54

sec comparing to Case 3. The trajectory, corresponding state and control variable

time histories are shown in Fig. 6.22 and Fig. 6.23 respectively. When the airspace

constraints became smaller, it will cost more fuel to climb to the same altitude, the

same conclusion as the MTTC trajectories in different airspace constraints.

Case 8: When the same final flight speed constraint M = 0.8 is added to case

6 with final time still unspecified, the climb time under this condition is 175.28 sec.

The trajectory, corresponding state and control variable time histories are shown in

Fig. 6.24 and Fig. 6.25 respectively. Also as in corresponding MTTC conclusion,
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final speed constraints cost more time and fuel consumption comparing to none final

speed constraints.

Case 9: All the above MFTC cases consider only unspecified final time, the NLP

solver will choose the optimized time to get the minimum fuel results. When the final

time is specified as 100 sec in Case 6, the consumption of fuel is more than previous

result. The MFTC trajectory, corresponding state and control variable time histories

are shown in Fig. 6.26 and Fig. 6.27 respectively. Any specified time larger than the

time got from the unspecified final time result will cost more fuel consumption.
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Figure 6.10: 3-D MTTC Trajectory for Case 1
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Figure 6.11: Control and State Variables History for Case 1
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Figure 6.12: 3-D MTTC Trajectory for Case 2
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Figure 6.13: Control and State Variables History for Case 2
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Figure 6.14: 3-D MTTC Trajectory for Case 3
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Figure 6.15: Control and State Variables History for Case 3
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Figure 6.16: 3-D MTTC Trajectory for Case 4
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Figure 6.17: Control and State Variables History for Case 4
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Figure 6.18: 3-D MTTC Trajectory for Case 5
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Figure 6.19: Control and State Variables History for Case 5
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Figure 6.20: 3-D MFTC Trajectory for Case 6

91



0 20 40 60 80 100
-2

0

2

4

nv
 a

nd
 n

h
nv

nh

 

0 20 40 60 80 100
0

0.05

0.1

v 
(1

00
00

ft/
se

c)

 

0 20 40 60 80 100
-0.5

0

0.5

1

1.5

fli
gh

t p
at

h 
an

gl
e 

(ra
d)

 

0 20 40 60 80 100
0

2

4

6

he
ad

in
g 

an
gl

e 
(ra

d)

 

0 20 40 60 80 100
3.35

3.4

3.45

time(sec)

w
ei

gh
t (

10
00

0l
b)

 

Figure 6.21: Control and State Variables History for Case 6
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Figure 6.22: 3-D MFTC Trajectory for Case 7
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Figure 6.23: Control and State Variables History for Case 7
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Figure 6.24: 3-D MFTC Trajectory for Case 8
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Figure 6.25: Control and State Variables History for Case 8
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Figure 6.26: 3-D MFTC Trajectory for Case 9
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Figure 6.27: Control and State Variables History for Case 9
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Chapter 7

Other Constrained Optimal Trajectories

This chapter will focus on solving problems about optimal trajectories for an

aircraft intercepting or rendezvousing a constant velocity target. Results for several

different initial interceptor and target velocities are presented. A proportional navi-

gation type guidance law has been applied to the same interception problem to obtain

results that are compared to the time optimal trajectories. Then Field-of-view[35, 36]

limitations are introduced and added to the DCNLP problem and results for this more

constrained case are compared with original problem results.

7.1 Three-Dimensional Proportional Navigation Guidance Law

The most commonly used guidance laws are forms of Proportional Navigation

Guidance (PNG). It is therefore of interest to compare the trajectories generated

using DCNLP with corresponding PNG trajectories. Here, we use the idea of a three-

dimensional PNG law formulated in terms of the relative geometry. The commanded

acceleration from this law is perpendicular to the instantaneous interceptor to target

line-of-sight (LOS) and proportional to the LOS angular velocity magnitude (”LOS

rate”) times the magnitude of the closing velocity[6]. Mathematically, this can be

99



expressed as[9, 10]:

−→
A I = −KṘTI

−→
R TI

|RTI |
× −→Ω (7.1)

In Eqn.7.7, K is the constant effective navigation ratio (to be chosen greater than

2),
−→
Ω is the LOS angular velocity which is provided by the interceptor radar, and

−→
R TI =

−→
R T −

−→
R I is the relative position vector of the target with respect to the

interceptor and can be easily measured by the Doppler radar. The desired acceleration

command
−→
A I is perpendicular to both the LOS and the LOS angular velocity. This

relationship is represented geometrically in Fig. 7.1.

In Fig. 7.1, the line connecting the interceptor and target is known as LOS, the

LOS composed an angle velocity Ω with respect to the fixed reference frame. For

simulation purposes, the LOS angular velocity may be computed using:

−→
Ω =

−→
R TI ×

−→
V TI

|RTI |2
(7.2)

where
−→
V TI =

−→
V T −

−→
V I is the relative velocity of the target with respect to the

interceptor. The other component of acceleration ṘTI is found from

ṘTI =
RTIxVTIxx +RTIyVTIy +RTIzVTIz

|RTI |
(7.3)
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Figure 7.1: Engagement Geometry

where RTIx , RTIy and RTIz and the X, Y and Z components respectively of RTI and

VTIx , VTIy and VTIz are X, Y and Z component of VTI .

For the purpose of interception, is was expected that the distance between the

interceptor and target RTI is as small as possible and the identical value is zero.

The final closest distance between them is known as miss distance. From the theory

of maximum and minimum, when a maximum or minimum point of a function is
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obtained, the derivative of this function at this point will be zero and sign of this

derivative function will change before and after this summit point. So that at the

closest point, the derivative of the distance between interceptor and target, VTI , is

zero and the sign of this value will change after this point is reached. So the ending

point of this maneuver is when the VTI changes its sign. This is also called necessary

conditions for capture. If this condition can not be satisfied in expected intercept time,

it indicates that the interceptor can not perform this task under the current initial

condition and desired K value. Then it is necessary to adjust the initial condition of

the interceptor or change the K value to meet the capture condition.

This 3-D PNG law is applied in the problem of intercepting a constant-velocity,

constant-altitude target under different flight conditions. So the target velocity is

treated as a pre-defined value during the whole process as well as its initial coordi-

nates. The target’s corresponding position change can also be easily derived accord-

ing to its initial condition. The interceptor’s initial velocity and coordinates are also

known. Thereafter, the components of its acceleration Ω,
−→
R TI and ṘTI are all known

at this launch point. So that we can integrate the interceptor velocity and 3-D coor-

dinates values forward using trapezoidal integration method to get its corresponding

velocity and coordinates in the next step time point. And this procedure is repeated

until the closing velocity VTI changes its sign.
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Some Cases are simulated using this PNG law in the following section with

different launch velocity and target velocity. Trajectory results, state variables and

control variables history are compared with the corresponding simulation results using

DCNLP method with the objective of minimizing interception time. Some cases also

include the situation when the capture condition can not be satisfied in the desired

interception time to show the advantage of DCNLP method in solving such kind of

problems. The PNG algorithm code is included in Appendix C.

7.2 Three-Dimensional Minimum-Time Interception Trajectory Planning

The ideal interception condition is that the interceptor and target has the same

coordinate, so we have the following relationship

hI = hT , xI = xT , yI = yT
(7.4)

here, the subscripts T and I are used to denote the interceptor and the target, re-

spectively. Eqn.7.4 can be treated as final boundary conditions of the MTI problem.

Because the target is flying under constant velocity. Assuming the y axis is parallel

to the velocity direction of the target, then the final position of the target can be
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expressed as

hT f = hT

xT f = xT

yT f = yT 0 + VT (tf − t0)

(7.5)

where hT , xT and VT are the constant altitude, x-position and speed of the target, re-

spectively. Also, yT 0 and yT f are the initial and final y-position of target, respectively.

tf is the final time and t0 is the initial time. Its performance limitations for Aircraft

2 as well as the initial conditions and final interception conditions are included in

table.7.1.

Table 7.1: Boundary Constraints and Performance Limitations for 3-D MTI Problem
Constraints Values

Initial Coordinate Constraints xI0 = x0, yI0 = y0, hI0 = 0
Initial V , γ and χ Constraints V = V0, γ = γ0, χ = χ0

Final Altitude and x-position of interception point hIf = hT , xIf = xT

Final y position of interception point yIf = yT 0 + VT (tf − t0)
Maximum and Minimum Vertical Load Factor nV max = 2, nV min = −2

Maximum and Minimum Horizontal Load Factor nhmax = 2, nhmin = −2

In table.7.1, hIf , xIf and yIf are the final altitude, x-position and y-position of

the interceptor, respectively. The state and control variables constraints in table.7.1

together with the nonlinear constraints listed in Eqn.6.29 and objective function

J = tf − t0 formulated the MTI problem. The DCNLP solution will optimize the

interception time and at the same time satisfy both the maneuvered system equations

and the interception conditions.
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Case 1: set the initial conditions on the interceptor state as: xI0 = 0, yI0 =

−10000 ft, hI0 = 0, γ0 = 12.6◦, MI0 = 0.4; set the initial and constant conditions

on the target as: xT = 10000 ft, yT 0 = −10000 ft, hT = 10000 ft and MT = 0.5. In

Case 1, the minimum time for the interceptor to reach the target is 47.82 sec and

the miss distance at the terminal time is very close to zero. The 3-D trajectory and

relative properties for this case are shown in Fig. 7.2 and Fig. 7.4. The trajectory

and velocity history of Case 1 using PNG laws with K = 5 is shown in Fig. 7.3 and

Fig. 7.4. Interception time using this method is 418.473 sec and the miss distance is

0.0257 ft. It’s obvious to see that the DCNLP planning trajectory will intercept the

target with much less time and high accuracy.

Case 2: For the interceptor, the same initial conditions as Case 1 are used, except

we set MI0 = 0.5 and MT = 0.4. The minimum time for the interceptor to reach

the target is 36.52 sec and the miss distance at the terminal time is also close to

zero. The 3-D trajectory and relative properties of this case is shown in Fig. 7.5 and

Fig. 7.7. The trajectory and flight speed history for Case 2 using the PNG laws with

K = 5 are shown in Fig. 7.6 and Fig. 7.7. The interception time using this method

is 272.025 sec and the miss distance is 0.0026 ft. The time is so large because the

interception speed does not increase as much as in the MTI solution.

Case 3: For the interceptor, the same initial conditions as Case 1 are used, except

we set MT = 0.6. The minimum time for the interceptor to reach the target is 51.45
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sec and the miss distance at the terminal time is also close to zero. The 3-D trajectory

and relative properties of this case is shown in Fig. 7.8 and Fig. 7.10. While the

PNG law does not work on this case. The closing velocity will change its sign in the

distance of 12492.1 ft which is far away from the desired miss distance. The trajectory

and flight speed history for Case 3 using the PNG laws with K = 5 are shown in Fig.

7.9 and Fig. 7.10.

Case 4: For the interceptor, the same initial conditions as Case 2 are used, except

we set MI = 0.6. The minimum time for the interceptor to reach the target is 30.43

sec and the miss distance at the terminal time is also close to zero. The 3-D trajectory

and relative properties of this case is shown in Fig. 7.11 and Fig. 7.13. While the

PNG law does not work on this case. The closing velocity will change its sign in the

distance of 13368.7 ft which is far away from the desired miss distance. The trajectory

and flight speed history for Case 4 using the PNG laws with K = 5 are shown in Fig.

7.12 and Fig. 7.13.

7.3 Three-Dimensional Minimum-Time Rendezvous Trajectory Planning

The 3-D minimum-time rendezvous (MTR) problem is to catch up the target, also

in constant-altitude and constant-velocity, with same velocity and desired distance.

So this kind of problem is similar to the 3-D MTI problem except that MTR problem

requires the interceptor has same final velocity as the target’s velocity in addition to
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the final coordinates constraints. They are formulated as

hI = hT xI − xT = d

yI = yT vIf = vT

γIf = 0 χIf = −π/2

(7.6)

where d is the final x-position distance between the interceptor and the target, vIf ,

γIf and χIf are the final velocity, flight path angle and heading angle of the in-

terceptor, respectively. Two cases are simulated using different launch velocity and

target velocity for the MTR problem with same performance limitations illustrated

in table.7.1.

Case 5: Use the same initial conditions of interceptor and target as Case 1.

The final distance in x-position is d = 50 ft. The minimum time for the interceptor

to catch up the target is 38.84 sec using DCNLP method. The 3-D trajectory and

relative properties of this case is shown in Fig. 7.14 and Fig. 7.16.

Case 6: Use the same initial conditions of interceptor and target as Case 2.

The final distance in x-position is also 50 ft. The minimum time for the interceptor

to catch up the target is 57.90 sec using DCNLP method. The 3-D trajectory and

relative properties of this case is shown in Fig. 7.15 and Fig. 7.17.
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Figure 7.2: 3-D MTI Trajectory using DCNLP for Case 1
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Figure 7.3: 3-D MTI Trajectory using PNG for Case 1
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Figure 7.4: Control Factors and Velocity History for Case 1
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Figure 7.5: 3-D MTI Trajectory using DCNLP for Case 2
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Figure 7.6: 3-D MTI Trajectory using PNG for Case 2
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Figure 7.7: Control Factors and Velocity History for Case 2
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Figure 7.8: 3-D MTI Trajectory using DCNLP for Case 3
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Figure 7.9: 3-D MTI Trajectory using PNG for Case 3
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Figure 7.10: Control Factors and Velocity History for Case 3
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Figure 7.11: 3-D MTI Trajectory using DCNLP for Case 4
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Figure 7.12: 3-D MTI Trajectory using PNG for Case 4
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Figure 7.13: Control Factors and Velocity History for Case 4
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Figure 7.14: 3-D MTR Trajectory using DCNLP for Case 5

0
0.2

0.4
0.6

0.8
1

-1
0

1
2

3
0

0.2

0.4

0.6

0.8

1

X (10000ft)Y (10000ft)

A
lti

tu
de

 (1
00

00
ft)

Figure 7.15: 3-D MTR Trajectory using PNG for Case 6
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Figure 7.16: Control Factors and State Variables History for Case 5
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Figure 7.17: Control Factors and State Variables History for Case 6
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7.4 View Constraints

In tactical flight, the interceptor seeks the target using the homing eye to provide

the necessary measurement required for the implemented guidance law. So the success

of the interception task depends largely on accuracy of the measurement. Some typical

missile uses gyroscopes and a antenna mounted on the gimbals of the interceptor and

the rotation of these gimbals is in a limited angle. So that the interceptor’s look angle

is also limited. These missiles’ velocity direction is aligned with the imaginary LOS

and their looking angle is measured from this imaginary LOS.

When a field of view constraint (FVC) is considered for the interceptor the tar-

get is expected to remain within the volume specified during the engagement. In this

paper, we address only the interceptor velocity view limitation. In Fig. 7.18, the

dotted line is the interceptors trajectory. At any point the angle between the inter-

ceptors velocity vector and LOS, θLOS, is expected to be smaller than the constraint

cone angle, θc. In other words, the target is required to stay between the two points

intercepted with the target trajectory and cone bottom. This additional condition

can be treated as a nonlinear constraint and stated as:

θLOS = arctan(

−→
V · −→R TI

|−→V | · |−→R TI |
≤ θc) (7.7)
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Figure 7.18: Control Factors and State Variables History for Case 7

One case is simulated considering this FVC. Case 7: Set the initial flight path

angle of the interceptor as γI0 = 0.5 with other conditions the same as Case 1. When

we added the FVC condition to the same problem and let θc = 30◦, the minimum

time increased to 42.43 sec. The new trajectory is shown in Fig. 7.19 with relative

properties shown in Fig. 7.20.

7.5 Conclusion

Three-dimensional minimum time intercept trajectory planning has been consid-

ered using direct collocation and nonlinear programming based on CP discretization.

The results show that the performance indices, the interception times, are much less
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Figure 7.19: 3-D MTI Trajectory using DCNLP for Case 7

than those for trajectories generated by an idealized Proportional Navigation Guid-

ance law, and the miss distances are smaller.

The interception time will of course depend on the engagement conditions, such

as the interceptor’s starting velocity and the target’s speed, since to reach the desired

target altitude, the interceptor needs to make a climb after it gets enough speed.

Hence, the larger the magnitude of the starting velocity, the shorter the interception

time. This property is similar to the 3-D MTTC problem. On the other side, a larger

magnitude constant velocity of target directed away from the interceptor will require a

larger interception time. The DCNLP method showed advantage in short interception

time, low miss distance as well as wide range of initial conditions constraints for

121



0 5 10 15 20 25 30 35 40 45
0

0.5

1

1.5

ve
rti

ca
l l

oa
d 

fa
ct

or

0 5 10 15 20 25 30 35 40 45
0

0.5

1

1.5

ho
riz

on
ta

l l
oa

d 
fa

ct
or

0 5 10 15 20 25 30 35 40 45

0.35

0.4

0.45

0.5

fli
gh

t p
at

h 
an

gl
e(

ra
d)

0 5 10 15 20 25 30 35 40 45
0

0.5

1

1.5

2

he
ad

in
g 

an
gl

e(
ra

d)

0 5 10 15 20 25 30 35 40 45
550

600

650

700

time (sec)

fli
gh

t s
pe

ed
 (f

t/s
ec

)

 

Figure 7.20: Control Factors and State Variables History for Case 7
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interception. While PNG law will not work out for any condition of interception

which is illustrated in Case 3 and 4.

The rendezvous results cost more time than the corresponding MTI trajectory

to compensate the time used to satisfy the additional final constraints, those are the

speed, flight path angle and heading angle constraints.

When field-of-view constraints are added to the original problem, more time is

required to intercept because the interceptor cannot turn as rapidly. Although the

direct collocation and nonlinear programming method has many advantages in solving

this kind of optimal control problem, the computation time is large enough that even

with fast computers it is not suitable for real-time applications. When the target’s

velocity is variable and trajectories need to be updated frequently according to radar

tracking data, even more computation time will be needed. Then PNG law is superior

considering on-board application.
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Chapter 8

Summary and Recommendations

In this dissertation, the problems of finding solutions to three-dimensional minimum-

time-to-climb (MTTC), minimum-fuel-to-climb (MFTC), minimum-time-interception

(MTI) and minimum-time-rendezvous (MTR) problems in constrained airspace have

been considered. The direct optimization method, direct collocation and nonlinear

programming (DCNLP), has advantages in terms of (1) the avoidance of guessing ini-

tial adjoint variables, (2) fast convergence and (3) the capacity of including complex

boundary conditions. Hence, it is considered to be the best method for solving these

minimum time problems. The Chebyshev Pseudospectral discretization method was

chosen as the primary collocation method due to its high accuracy and fast conver-

gence in interpolating between the collocation points.

The MTTC and MFTC trajectories are similar to each other under same bound-

ary conditions if the climb task is performed in a relatively short period time. Simi-

larities also exist between the effect of engagement conditions on the performance of

MTI and MTR trajectories. There are also common points between the MTTC and

MTI trajectories in the effect of start up velocity on the final time. Accurate results

and properties of the optimal trajectories are useful for the studies of the approximate
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or analytical solutions for these problems. They also provide valuable guidance to

pilots regarding maneuver an aircraft how to achieve high performance.

Although the DCNLP method has many advantages in solving this kind of op-

timal control problems, the computation time is large enough that even with fast

computers it is probably not suitable for real-time applications. It follows that the

trajectories calculated here are flight planning trajectories which can be used as nomi-

nal for on-board guidance methods. This is specially true regarding the MTI problem,

when the target’s velocity is variable and trajectories need to be updated frequently

according to radar tracking data, more computation time will be needed. Future

research should focus on the development of simplified computation algorithms that

can be applied on-board.
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Appendix A

Aircraft Propulsion and Aerodynamic Data

This Appendix presents the aircraft propulsion data effected by Altitude and

March number and aerodynamic data effected by March number only in tables.

Table A.1: Thrust as a function of altitude and Mach number from Ref.[2] for aircraft
2.

Thrust T (thousands of lb)

Mach Altitude h (thousands of ft)

No.M 0 5 15 25 35 45 55 65 75 85 95 105
0 23.3 20.6 15.4 9.9 5.8 2.9 1.3 0.7 0.3 0.1 0.1 0.0

0.4 22.8 19.8 14.4 9.9 6.2 3.4 1.7 1.0 0.5 0.3 0.1 0.1
0.8 24.5 22.0 16.5 12.0 7.9 4.9 2.8 1.6 0.9 0.5 0.3 0.2
1.2 29.4 27.3 21.0 15.8 11.4 7.2 3.8 2.7 1.6 0.9 0.6 0.4
1.6 29.7 29.0 27.5 21.8 15.7 10.5 6.5 3.8 2.3 1.4 0.8 0.5
2.0 29.9 29.4 28.4 26.6 21.2 14.0 28.7 5.1 3.3 1.9 1.0 0.5
2.4 29.9 29.2 28.4 27.1 25.6 17.2 10.7 6.5 4.1 2.3 1.2 0.5
2.8 29.8 29.1 28.2 26.8 25.8 3.4 1.7 1.0 0.5 0.3 0.1 0.5
3.2 29.7 28.9 27.5 26.1 24.9 20.3 13.0 8.0 4.9 2.8 1.4 0.5

Table A.2: Lift and drag coefficients as a function of angle of attack and Mach Number
for aircraft 2.
M 0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2
CLα 2.240 2.325 2.350 2.290 2.160 1.950 1.700 1.435 1.250
CD0 0.0065 0.0055 0.0060 0.0118 0.0110 0.0086 0.0074 0.0069 0.0068

S = 500ft2, W = 34200lb, η = 1
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Appendix B

Gradient Method for 2-D MTTC problem

This Appendix listed the calculation procedure for the 2-D MTTC problem.

1. Assume a nominal control load factor history n∗(t), integrate the system differ-

ential equations forward from the starting point, store state variables history

V (t), γ(t) and h(t).

2. Derive the adjoint variables derivative equations as

λ̇V = −λV ( ∂T
∂V
− ρV SCD0 + 1

2
ρV 2S

∂CD0

∂V
+ 4n2W 2

CLαρV 3S
+ 2n2W 2

C2
Lα

ρV 2S

∂CLα

∂V
)g/W

+λγ
g

V 2 (n− cos γ)− λh sin γ

λ̇γ = λV g cos γ − λγ
g
V

sin γ − λhV cos γ

λ̇h = −λV
g
W

∂T
∂h

(B.1)

define the objective function

Φ = tf (B.2)

and the final conditions function as

Ω = h− hf = 0 (B.3)
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There is no path constraints, so

Ψ = 0 (B.4)

Then the lagrange multipliers with boundary conditions are defined as

λ′Φ(tf ) = (∂Φ
∂x

)
∗
t=tf

= ( ∂Φ
∂V

∂Φ
∂γ

∂Φ
∂h

)
∗
t=tf

= [0 0 0]

λ′Ω(tf ) = (∂Ω
∂x

)
∗
t=tf

= ( ∂Ω
∂V

∂Ω
∂γ

∂Ω
∂h

)
∗
t=tf

= [0 0 1]

(B.5)

Integrate λΦ and λΩ backward with stored state variables in step (1).

3. At the same time, calculate the quantities λΦΩ and λΦΩ defined as

Φ̇ = (∂Φ
∂t

+ ∂Φ
∂x
f)

∗
t=tf

= 1

Ω̇ = (∂Ω
∂t

+ ∂Ω
∂x
f)

∗
t=tf

= ḣf

Ψ̇ = 0

λΦΩ = λΦ − Φ̇
Ω̇
λΩ = −λΩ

ḣf

λΨΩ = λΨ − Ψ̇
Ω̇
λΩ = [0 0 0]′

(B.6)

4. Also, integrate the following numbers simultaneously with step(2)

IΨΨ =
∫ T
t0
λ′ΨΩGW

−1GλΨΩdt

IΨΦ =
∫ T
t0
λ′ΨΩGW

−1GλΦΩdt

IΦΦ =
∫ T
t0
λ′ΦΩGW

−1GλΦΩdt

(B.7)
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where G is

G =
∂f

∂n
=



∂f1

∂n

∂f2

∂n

∂f3

∂n


=



− 4ngW
ρCLαSV 2

∂g
∂V

0


(B.8)

and W is the pre-selected weighting matrix.

5. Select reasonable valuable dP and the correction of control variable value δn is

calculated as

δn(t) = ±W−1G′λΦΩ[
(dP )2

IΦΦ

]
1
2 (B.9)

6. The new control variable history is obtained as

n(t) = n∗(t) + δn(t) (B.10)

and repeate process (1)-(5) until convergent.
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Appendix C

Proportional Navigation Guidance Law Algorithm

% This program is to use the Proportional Navigation Proportional

% law to simulate the three-dimensional intercepting trajectory

clear all close all

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

global K Vt

% set initial condition of target and interceptor

V_air_sea = 1116.9;

V_air_h = 1077.9;

Rt0 = [10000;-10000;10000];

Mt= 0.6;

Vty = V_air_h*Mt;

Vt = [0;Vty;0];

Rm0 = [0;-10000;0];

Mm = 0.4;

Vm0_abs = V_air_sea*Mm;

gama0 = 0.22;

kai0 = 0;
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Vm0 = [Vm0_abs*sin(gama0);

Vm0_abs*cos(gama0)*cos(kai0);...

Vm0_abs*cos(gama0)*sin(kai0);];

% set the constant effective navigation ratio

K = 5;

% set integration step size

dt = 1;

% set integration initial condition

Rt = Rt0;

Rm = Rm0;

Vm = Vm0;

Rtm = Rt-Rm;

Vtm = Vt-Vm;

Rtm_abs =norm(Rtm);

Vc =-(Rtm(1)*Vtm(1)+Rtm(2)*Vtm(2)+Rtm(3)*Vtm(3))/Rtm_abs;

% integrate the velocity and coordinates forward using trapezoidal method

for i = 1:1000000

% set loop stop condition, that is when the close velocity changes its

% sign

if Vc<=0
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break

end

if Rtm_abs <1000

dt=0.001;

else

dt=0.1;

end

Rt_old = Rt;

Rm_old = Rm;

Vm_old = Vm;

Rtm = Rt-Rm;

Vtm = Vt-Vm;

Rtm_abs = norm(Rtm);

Vc = -(Rtm(1)*Vtm(1)+Rtm(2)*Vtm(2)+Rtm(3)*Vtm(3))/Rtm_abs;

A = acc(Rm,Vm,Rt);

Rt = Rt+dt*Vt;

Rm = Rm+dt*Vm;

Vm = Vm+dt*A;

Rtm = Rt-Rm;

Vtm = Vt-Vm;
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Rtm_abs = norm(Rtm);

Vc = -(Rtm(1)*Vtm(1)+Rtm(2)*Vtm(2)+Rtm(3)*Vtm(3))/Rtm_abs;

A = acc(Rm,Vm,Rt);

Rt = 0.5*(Rt_old+Rt+dt*Vt);

Rm = 0.5*(Rm_old+Rm+dt*Vm);

Vm = 0.5*(Vm_old+Vm+dt*A);

Rmx(i) = Rm(1)/10000;

Rmy(i) = Rm(2)/10000;

Rmz(i) = Rm(3)/10000;

Rtx(i) = Rt(1)/10000;

Rty(i) = Rt(2)/10000;

Rtz(i) = Rt(3)/10000;

if i==1

t(i) = dt;

else

t(i) = dt+t(i-1);

end

vi(i) = norm(Vm);

acel(i) = norm(A);

end
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time = t(i-1);

fprintf(’The interception time usd is:\n[%3.6f] seconds\n ’, time);

fprintf(’The final miss distance is:\n[%3.6f] feet\n ’, Rtm_abs);

figure (1)

plot3(Rmx,Rmy,Rmz)

hold on

plot3(Rtx,Rty,Rtz)

xlabel(’X(10000ft)’)

ylabel(’Y (10000ft)’)

zlabel(’Altitude (10000ft)’)

figure(2)

plot(t,vi)

ylabel(’flight speed (ft/sec)’)

% This function calculate the acceleration command of the interceptor at

% each step time

function A=acc(Rm,Vm,Rt)

global K Vt

% calculate the relative position and relative velocity

Rtm=Rt-Rm;

Vtm=Vt-Vm;
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% calculate the closing velocity and line-of-sight angular velocity

Rtm_abs=norm(Rtm);

dRtm=-(Rtm(1)*Vtm(1)+Rtm(2)*Vtm(2)+Rtm(3)*Vtm(3))/Rtm_abs;

omega=cross(Rtm,Vtm)/Rtm_abs^2;

% calculate the acceleration

A=-K*dRtm/Rtm_abs*cross(Rtm,omega);
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Appendix D

Chebyshev Pseudospectral Collocation and Nonlinear Programming

Codes in Solving Brachistochrone Problem

% This is the major function which will use SNOPT to run the nonlinear

% programming solver

clear all Name = ’Brachistochrone Problem’;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

global nc_defect ndiffeq nnodes nlp_state ncv nlpv x_0 xf2 xf1 x01

x02

% number of differential equations

ndiffeq = 2;

% number of control variables

ncv = 1;

% number of discretization nodes

nnodes = 25;

% number of state nlp variables

nlp_state = ndiffeq * nnodes;

% number of control nlp variables

nlp_control = ncv * nnodes;
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% total number of nlp variables

nlpv = nlp_state + nlp_control

% number of state vector defect equality constraints

nc_defect = nlp_state;

% number of auxiliary equality constraints (boundary conditions)

nc_aux = 4;

% total number of equality constraints

nc_total = nc_defect + nc_aux;

% set the initial input of NLP variables

x01 = 0; % starting point

x02 = 0;

xf1 = 5; % ending point

xf2 = -1;

% guess the initial input of the control variables

u_guess=atan((xf2-x02)/(xf1-x01));

% guess the initial input of the state variables

for i=1:1:nnodes

x_0(2*i-1)=x01+(xf1-x01)/(nnodes-1)*(i-1);

x_0(2*i)=x02+(xf2-x02)/(nnodes-1)*(i-1);

x_0(nlp_state+i)=u_guess;
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end

x_0(nlpv+1)=1.3; % guess the final time

% set the NLP variables bounds

for i=1:1:nnodes

x_L(2*i-1)=-20;

x_U(2*i-1)=20;

x_L(2*i)=-20;

x_U(2*i)=20;

x_L(nlp_state+i)=-2*pi;

x_U(nlp_state+i)=2*pi;

end

x_L(nlpv+1)=0;

x_U(nlpv+1)=10;

% set the nonlinear function constraints

for i=1:1:nc_total

c_L(i)=0;

c_U(i)=0;

end fLowBnd = 0;

Prob = conAssign(’trapm3_f’, [], [], [], x_L, x_U,Name, x_0,[],

fLowBnd, [], [], [], ’trapm3_cbr’, [], [], [], c_L, c_U);

142



Prob.Warning = 0; % Turning off warnings.

Result = tomRun(’snopt’, Prob, 1);

X_OUT= Result.x_k;

for i=1:1:nnodes

yff(i)=X_OUT(2*i);

xff(i)=X_OUT(2*i-1);

uff(i)=X_OUT(nlp_state+i);

end

figure (1) % plot the trajectory

plot(xff,yff)

function c = trapm3_cbr (x,prob)

% equality constraints

% Chebyshev pseudospectral collocation method

% inputs: x = current nlp variable values

% outputs: c = vector of nonlinear equality constraints evaluated at x

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

global nc_defect ndiffeq nnodes nlp_state ncv nlpv xf2 xf1 x01 x02

% compute state vector defect equality constraints

t_total = x(nlpv+1);

if t_total==0
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t_total=0.001;

end

for k = 1:1:nnodes

% state vector elements

% reset to previous node

nks = (k - 1) * ndiffeq;

for i = 1:1:ndiffeq

xk(i) = x(nks + i);

end

% control variable elements

% reset to previous node

nkc = nlp_state + (k - 1) * ncv;

for i = 1:1:ncv

uk(i) = x(nkc + i);

end

% save one node states in one column of a matrix

sx(:,(nnodes-k+1)) = xk’;

% compute state vector defects for current node

f = deriv2 (xk, uk);

% save one node f value in one column of a matrix
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sf(:,(nnodes-k+1)) = f’;

end

% calculte the Chebyshev-Gauss-Lobatto differentiation matrix D

N = nnodes-1;

t = cos(pi*(0:N)/N)’;

p = [2; ones(N-1,1); 2].*(-1).^(0:N)’;

T = repmat(t,1,N+1);

dT = T-T’;

D = (p*(1./p)’)./(dT+(eye(N+1))); % off-diagonal entries

D = D - diag(sum(D’)); % diagonal entries

% compute the defects array for current node

for k=1:1:nnodes

nks = (k - 1) * ndiffeq;

for i=1:1:ndiffeq

d(i,k) = D(k,:)*sx(i,:)’; % calculate the derivative of f at node k

resid(nks + i) = 2/t_total*d(i,k)-sf(i,k);

end

end

% set active defect constraints

% (offset by 1)
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for i = 1:1:nc_defect

c(i) = resid(i);

end

% current final state vector

xfinal(1) = x(nlp_state - 1);

xfinal(2) = x(nlp_state);

% current initial state vector

xinitial(1) = x(1);

xinitial(2) = x(2);

% initial boundary conditions

c(nc_defect + 1) = xinitial(1)-x01;

c(nc_defect + 2)=xinitial(2)-x02;

% final boundary conditions

c(nc_defect + 3) = xfinal(1)-xf1;

c(nc_defect + 4) = xfinal(2)-xf2;

c = c’; % transpose

function f = trapm3_f (x,prob)

% objective function

% inputs: x = current nlp variable values

% outputs: f = objective function evaluated at x
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global nlpv

tfinal = x(nlpv+1);

f = tfinal; % objective function (maximize final time)

function xdot=deriv2(x,u)

% equations of motion

% input: x = current state vector, u = current control vector

% output: xdot = derivative of x and y

global x02

% constant parameter

g = 9.82;

% evaluate equations of motion at current conditions

xdot(1) = sqrt(2*g*(x02-x(2)))*cos(u);

xdot(2) = sin(u)*sqrt(2*g*(x02-x(2)));
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