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Abstract

We study the conjugacy theorems of Cartan subalgebras and Borel subalgebras of gen-

eral Lie algebras. We present a history of the problem, along with two proofs of the the-

orems which stay completely within the realm of Lie algebras. The first is a reworking by

Humphreys of an earlier proof, relying upon the ideas of Borel subalgebras and using dou-

ble induction. The second proof is a newer proof presented by Michael which substantially

simplifies the theory.
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Chapter 1

Introduction

A Cartan subalgebra of a Lie algebra L over the field F, often abbreviated CSA, is a

subalgebra H of L that is (1) nilpotent and (2) self-normalizing. For example, any nilpotent

Lie algebra is its own Cartan subalgebra.

Any nilpotent subalgebra is also solvable, thus contained in a maximal solvable subal-

gebra of L. Such subalgebras are of sufficient importance to merit their own name, Borel

subalgebras, and are often denoted BSAs.

In a Lie algebra over an algebraically closed field of characteristic 0, it is a truly re-

markable fact that any pair of CSAs are conjugate, in the sense that the subgroup E(L) of

IntL acts transitively on the set of CSAs. Indeed the BSAs are also conjugate under the

same set of automorphisms. This paper will examine two different elementary proofs of the

conjugacy theorems.

CSAs over C were first introduced by Élie Cartan in his 1894 doctoral dissertation [8] in

order to better study complex semisimple Lie algebras. His work was a major contribution to

Lie algebras in that Cartan completed the classification of the complex semisimple algebras

which Wilhelm Killing had begun. CSAs play an important role in the structure theory of

semisimple Lie algebras. Due to their importance and to Cartan’s contribution to the theory,

Chevalley [9] proposed naming them Cartan subalgebras.

If the field is algebraically closed and of characteristic 0 and the algebra is finite di-

mensional, Chevalley [9] proved that two CSAs of L are conjugate via IntL. Also see the

comments of Borel [4, p.148] on the history of the development. The special case where L is

semisimple had already been proved previously by Weyl [23] (also see Hunt [12] for a metric

proof) using analytic methods (F = C) and by Weil [22] by topological methods (also see
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Hopf and Samelson [10]). However, Chevalley assumed that more generally the field is alge-

braically closed and has characteristic zero so that he did not have a ready-made analogue

of the adjoint group IntL to perform the conjugacy [4, p.148]. Chevalley’s proof uses the

methods of algebraic geometry. Of particular importance in the proof is the use of Plücker

coordinates.

Winter [25], based on the techniques developed by Mostow, gave an elementary algebraic

(non-geometric) proof of the conjugacy theorem. The proof presented in Humphreys’ book

[11] follows the approach of Winter [25].

Michael [16] gave a new elementary proof for the conjugacy theorem of CSAs of a finite-

dimensional Lie algebra over an algebraically closed field of characteristic zero. The approach

fits into the theme of the presentation in Bourbaki [7].

Humphreys begins his proof of the conjugacy of CSAs by proving the theorem directly

for solvable Lie algebras. However, his focus soon shifts to BSAs, and after establishing

several properties of BSAs and providing connections between the mechanics of BSAs and

CSAs, he proceeds to prove that BSAs of a semisimple Lie algebra are conjugate. The proof

is highly technical and employs double induction.

Humphreys then shows that the BSAs of a general Lie algebra L are in 1-1 correspon-

dence with the BSAs of the semisimple Lie algebra L/R. As the conjugacy of BSAs of

semisimple algebras has already been established, the conjugacy in a general algebra follows

readily. Humphreys finally returns his attention to CSAs; since any CSA is contained in a

BSA, the conjugacy of CSA is almost immediate.

The proof contributed by Michael begins, as with that of Humphreys, with a proof of

the conjugacy of CSAs of solvable Lie algebras; this particular proof is a reworking of a proof

given in Bourbaki [5].

Similar to Humphreys approach, Michael relies heavily upon BSAs. However, he uses

properties of BSAs that are readily established and involve relatively simple facts from linear
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algebra. In particular, he uses dimension arguments and orthogonal complements to simplify

the proofs.

Michael extends the vector space properties of BSAs in semisimple Lie algebras in such

a way that the conjugacy of CSAs of semisimple Lie algebras is relatively easily proven.

He then uses a “connecting lemma” to pull the argument back to the general case, thus

establishing the conjugacy of CSAs of any Lie algebra.

Finally, in order to establish the conjugacy of BSAs, Michael proves that any BSA must

contain a CSA. The proof of the conjugacy of BSAs then follows by a standard argument.
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Chapter 2

Definitions and Preliminaries

All Lie algebras L are finite dimensional, and the field F is algebraically closed with

characteristic 0.

Definition 2.1. ([11, p.1]) Let L be a vector space over a field F. Then L is a Lie algebra

if it is endowed with a bilinear operation [·, ·] such that for all x, y, and z ∈ L,

1. [x, x] = 0.

2. [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 (the Jacobi Identity).

A subalgebra of C of L is a vector subspace of L that is closed under [·, ·].

Example 2.2. The following are Lie algebras:

1. The general linear algebra gl(V ) (V a vector space over F) is the set End (V ) endowed

with the operation [x, y] = xy − yx, x, y ∈ gl(V ). Here End (V ) denotes the set of all

endomorphisms of V .

2. The algebra of n × n matrices gl(n,F) over F, with [·, ·] given by [A,B] = AB − BA,

A,B ∈ gl(n,F).

3. L in which [·, ·] is trivially defined, i.e. [x, y] = 0 for every pair of elements x and y of

L; in such a case we call L abelian.

Definition 2.3. ([11, p.7]) The normalizer of a subalgebra C of L is

NL(C) := {x ∈ L | [x,C] ⊂ C}.
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We call C self-normalizing if NL(C) = C. The centralizer of C is

ZL(C) := {x ∈ L | [x,C] = 0}.

We write Z(L) = ZL(L) and call it the center of L. So L is abelian if and only if

Z(L) = L.

Definition 2.4. ([11, p.6]) An ideal I of L is a subalgebra such that [x, y] ∈ I for all x ∈ L

and y ∈ I.

We note that all ideals are two-sided, for bilinearity combined with condition (1) of

Definition 2.1 imply that [x, y] = −[y, x] for any x, y ∈ L. If L has no ideals except itself

and 0, then we call L simple.

Given an ideal I of L, the quotient space L/I is endowed with a bracket: [x+I, y+I] :=

[x, y] + I, x, y ∈ L. The operation is unambiguous so that L/I is a Lie algebra, called the

quotient algebra.

In general, the vector space sum I + J = {x + y | x ∈ I, y ∈ J} of two subalgebras I

and J of L need not be a subalgebra; however, if I is an ideal and J is a subalgebra, then

I + J is indeed a subalgebra. If both I and J are ideals, then I + J is an ideal as well.

Definition 2.5. ([11, p.7]) A vector space homomorphism ϕ : L → L′ is a Lie algebra

homomorphism if ϕ([x, y]) = [ϕ(x), ϕ(y)] for all x, y ∈ L. If ϕ : L → L is an isomorphism,

we call ϕ an automorphism. The group of all automorphisms of L is denoted by AutL.

The image Imϕ is a subalgebra of L′ and the kernel Kerϕ is an ideal of L. The inverse

image ϕ−1(C ′) of a subalgebra C ′ of L′ is a subalgebra of L.
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Theorem 2.6. [11, p.7] (First Isomorphism Theorem) If ϕ : L → L′ is a Lie algebra

homomomorphism, Kerϕ = K, then L/K ∼= Imϕ, and the following diagram commutes:

L

ϕ !!CC
CC

CC
CC

C
π // L/K

ψ

��
L′

Proof. Let π be the canonical projection of L onto L/K, and define ψ : L/K → L′ by

ψ(x+K) = ϕ(x). Then ψ(π(x)) = ψ(x+K) = ϕ(x), and the diagram commutes.

Given a = ϕ(x) ∈ Imϕ, we have ψ(x+K) = a, and ψ is onto. If ψ(x+K) = ψ(y+K) we

have 0 = ψ((x−y)+K) = ϕ(x−y), and x−y ∈ Kerϕ. So π(x−y) ∈ K, i.e. x+K = y+K,

and ψ is one to one, thus an isomorphism.

Given a Lie algebra L, denote by adx ∈ EndL the endomorphism defined by

adx(y) = [x, y], y ∈ L.

If the subspace C of L is adx stable, we denote the restriction of adx to C by ad Cx : C → C.

Definition 2.7. An endomorphism t is nilpotent if tk = 0 for some k > 0. An endomorphism

is semisimple if the roots of its minimal polynomial over F are distinct.

An element x ∈ L is called ad-nilpotent if the endomorphism adx is a nilpotent one.

Similarly, we call x ad-semisimple if ad x is a semisimple endomorphism.

Definition 2.8. ([11, p.8]) The adjoint map ad : L→ gl(L) is a representation of L, i.e., a

homomorphism of L with a Lie algebra of endomorphisms. Clearly the kernel of ad , denoted

Ker ad , is the center Z(L) of L.

As we shall see, the adjoint representation has many useful properties which make it of

fundamental importance in the study of Lie algebras.

We now introduce two important classes of Lie algebras, namely, nilpotent and solvable

algebras.
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Definition 2.9. ([11, p.11]) The Lie algebra L is nilpotent if the descending central (or

lower central) series defined by L0 := L, L1 := [L,L], . . . , Li := [L,Li−1] terminates.

Example 2.10. The algebra of all strictly upper triangular matrices n(n,F) over F is nilpo-

tent.

It is not hard to see that adx ∈ gl(L) is nilpotent for all x ∈ L (i.e. x is ad-nilpotent)

if L is nilpotent. The converse is true and is known as Engel’s theorem ([11, p.12-13] or [5,

p.39-40]).

Theorem 2.11. (Engel)

1. Let L ⊂ gl(V ) be a subalgebra of gl(V ), V finite dimensional. If L consists of nilpotent

endomorphsims and V ̸= 0, then there exists nonzero v ∈ V such that ℓv = 0 for all

ℓ ∈ L.

2. A Lie algebra L is nilpotent if and only if adx ∈ EndL is a nilpotent endomorphism

for all x ∈ L.

Definition 2.12. ([11, p.10]) The Lie algebra L is solvable if the derived series defined by

L(0) := L, L(1) := [L,L], . . . , L(i) := [L(i−1), L(i−1)] terminates, i.e., if there is n ∈ N such

that L(n) = 0.

Every nilpotent algebra is solvable: clearly L(i) ⊂ Li for all i, so if the descending central

series terminates, the derived series does as well.

The following is Lie’s theorem ([11, p.15-16] or [5, p.46]) on the characterization of

solvable algebras.

Theorem 2.13. (Lie) The Lie algebra L is solvable if and only if the derived algebra [L,L]

is nilpotent.

An alternate characterization of solvable Lie algebras is given by Cartan’s Criterion([11,

p.20] or [5, p.48]):
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Theorem 2.14. (Cartan’s Criterion) The Lie algebra L is solvable if and only if tr (adx ad y) =

0 for all x ∈ [L,L], y ∈ L.

Every Lie algebra L has a unique maximal solvable ideal R [11, p.11]: for if I is any

other solvable ideal of L, then R + I is a solvable ideal as well. By the maximality of R,

R + I = R, or I ⊂ R.

Definition 2.15. ([11, p.11]) The radical of L, denoted by R = RadL, is the unique maximal

solvable ideal. If R = 0, then L is called semisimple.

Lemma 2.16. ([11, p.11]) Let L be a Lie algebra with radical R. Then the Lie algebra L/R

is semisimple, i.e., the radical of L/R is 0.

Proof. Let R′ be the radical of L/R and π : L → L/R be the canonical projection. Since π

is a homomorphism, π−1(R′) is an ideal of L. As R′ is solvable, we know that the derived

series of R′ terminates, that is (R′)(n) = R for some n; then π((π−1(R′))(n)) ⊂ (R′)(n) means

that (π−1(R′))(n) ⊂ R, that is π−1(R′) is a solvable ideal, and by maximality is contained in

R.

Indeed the radical R of L is the smallest ideal of L such that L/R is semisimple.

Given x ∈ L, adx is a vector space endomorphism of L. According to Jordan-Chevalley

decomposition [11, p.17-18], L is the direct sum of generalized eigenspaces

La(adx) := Ker (adx− a · 1)m

where m is the multiplicity of the eigenvalue a of adx. Each La(adx) is invariant under

adx and the restriction of adx to La(adx) is the sum of a scalar multiple (namely a) of the

identity and a nilpotent endomorphism. For each nonzero x ∈ L, 0 is an eigenvalue of adx

since ad x(x) = [x, x] = 0, so that we have L0(adx) ̸= 0. We set La(adx) = 0 if a is not an

eigenvalue of adx. Thus we have the following
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Lemma 2.17. ([11, p.78]) Given x ∈ L, the Lie algebra L may be decomposed as

L =
⨿
a∈F

La(adx) = L0(adx)⊕ L∗(adx)

where L∗(adx) denotes the sum of those La(adx) such that a ̸= 0. In addition, any subal-

gebra K of L that is stable under adx can be written as K = K0(adx) ⊕K∗(adx), where

Ki(adx) = K ∩ Li(adx).

Lemma 2.18. [11, p.78] If a, b ∈ F, then [La(adx), Lb(ad y)] ⊂ La+b(adx). In particular

L0(adx) is a subalgebra of L. When a ̸= 0, each element of La(adx) is ad-nilpotent.

Proof. Binomial expansion [11, p.79] yields

(adx− (a+ b))m[y, z] = (adx− a− b)m[y, z]

=
m∑
i=0

(
m

i

)
[(adx− a)iy, (adx− b)m−iz].

For sufficiently large m, all terms on the right side are 0 for y ∈ La(adx) and z ∈ Lb(adx).

So [La(adx), Lb(ad y)] ⊂ La+b(adx). Then L0(adx) is a subalgebra of L.

Each z ∈ L can be written z = z0 + za1 + . . .+ zan with zai ∈ Lai(adx) by Lemma 2.17.

When a ̸= 0 and y ∈ La(adx), we have (ad y)
ri(zai) ∈ Lria+ai(adx) = 0 for sufficiently large

ri, since there are finitely many eigenvalues for adx (recall that L is finite dimensional). We

need merely choose r =
∑
ri to force (ad y)r(z) = 0. Thus ad y is a nilpotent endomorphism,

i.e., elements of La(adx) are ad-nilpotent.

We note that y ∈ L0(adx) need not be ad-nilpotent.

Definition 2.19. [11, p.82] We call x ∈ L strongly ad-nilpotent if x ∈ La(ad y) for some

a ̸= 0. The set of all strongly ad-nilpotent elements of L will be denoted N (L).

By Lemma 2.18 strongly ad-nilpotent elements are ad-nilpotent.
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Definition 2.20. [7, p.1] Given a nilpotent subalgebra H of L, α ∈ H∗, and h ∈ H, we set

Lα,h := Lα(h)(adh) = Ker (adh− α(h) · 1)m

where m is the algebraic multiplicity of the eigenvalue α(h), and set

Lα(H) := ∩h∈HLα,h.

When H is understood, we will often denote Lα(H) by Lα.

Theorem 2.21. ([7, p.8]) If H is a nilpotent subalgebra of L, then L may be decomposed

as

L =
⨿
α∈H∗

Lα(H).

The decomposition is called the root space decomposition.

Lemma 2.22. [11, p.14] A nilpotent Lie algebra L contains no proper self-normalizing

subalgebras.

Proof. Indeed, a Lie algebra L containing a proper self-normalizing subalgebra K must also

contain a (nonzero) x1 ∈ L\K, and (as K is self-normalizing) a corresponding k1 ∈ K such

that x2 = [k1, x1] ̸∈ K. Then there is a k2 ∈ K with [k2, x2] = x3 ̸∈ K; thus we have a

nonzero sequence x1, . . . , xn, . . . with xi ∈ Li−1. Then the descending central series of L is

non-terminating, i.e. L is not nilpotent.

Lemma 2.23. Let L and L′ be isomorphic as Lie algebras via ϕ. Then the subalgebra C of

L is self-normalizing if and only if ϕ(C) is self-normalizing.

Proof: It suffices to show one implication. By virtue of the isomorphism ϕ, elements of

L and L′ are in 1 to 1 correspondence; we are thus justified in denoting ϕ−1(x′) = x for any

x′ ∈ L′. In addition, preimages of subalgebras of L′ are isomorphic subalgebras in L; thus

for any subalgebra C ′ of L, we have C ′ ∼= C ⊂ L, where ϕ−1(C ′) = C.
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Suppose that the subalgebra C of L is self-normalizing, and let x′(= ϕ(x)) ∈ NL′(C ′),

that is [x′, C ′] ⊂ C ′. So ϕ([x,C]) = [ϕ(x), ϕ(C)] ⊂ ϕ(C). But ϕ is an isomorphism, so

[x,C] ⊂ C. As C is self-normalizing, we have x ∈ C so that ϕ(x) ∈ ϕ(C) and ϕ(C) is

self-normalizing.

Lemma 2.24. Let ϕ ∈ EndV , where V is a vector space. If K ⊂ V is an invariant subspace

under ϕ and contains the eigenspace corresponding to the eigenvalue 0, then the induced

endomorphism ϕ′ : V/K → V/K defined by ϕ′(v+K) = ϕ(v)+K has no nonzero eigenvalues.

Proof. Choose a basisBK = {k1, . . . , kt} ofK and extendBK to a basisBV = {k1, . . . , kt, v1, . . . , vn−t}

of V . With respect BV , the matrix (denoted by Mϕ) of ϕ is in block form

Mϕ =

A B

0 C


Clearly A is the matrix of ϕ|K : K → K with respect to BK . The eigenvalues of ϕ are those of

A and C so that C has only non-zero eigenvalues . The map ϕ′ is a well-defined endomorphism

on the quotient (vector) space V/K. With respect to the basis {v1 + K, . . . , vn−t + K} of

V/K, the matrix of ϕ′ is C: for each i = 1, . . . , n− t,

ϕ′(vi +K) = ϕ(vi) +K

= (b1ik1 + · · ·+ btikt + c1iv1 + . . .+ cn−t,ivn−t) +K

= (c1iv1 + . . .+ cn−t,ivn−t) +K

= c1i(v1 +K) + . . .+ cn−t,i(vn−t +K).

Lemma 2.25. Let F ⊂ EndV be a commuting diagonalizable family, where V is a vector

space over F. Suppose W ⊂ V is a subspace stable under F . Then FW := {T |W ∈ EndW :

T ∈ F} ⊂ EndW is a commuting diagonalizable family.
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Proof. If S, T ∈ F , then S|W ◦ T |W = (S ◦ T )|W = (T ◦ S)|W = T |W ◦ S|W . Hence FW is

a commuting family. It suffices to show that each T |W ∈ EndW is diagonalizable, i.e., each

T |W has k linearly independent eigenvectors (k := dimW ), or the geometric multiplicity

m of each eigenvalue λ of T |W is 1. Now w ∈ Ker(T |W − λ · 1W )m implies that w ∈ W

and 0 = (T |W − λ · 1w)mw = (T − λ · 1)mw. But T is diagonalizable so that the geometric

multiplicity of the eigenvalue λ of T is 1, i.e., (T − λ · 1)w = 0, i.e., m = 1.

Recall from Definition 2.19 that N (L) denotes the set of strongly ad-nilpotent elements

of L.

Lemma 2.26. ([11, p.82]) For any epimorphism ϕ : L→ L′,

ϕ(La(ad y)) = L′
a(ad (ϕ(y))), y ∈ L. (2.1)

So ϕ(N (L)) = N (L′).

Proof. Given a Lie algebra homomorphism ϕ : L → L′, that ϕ(La(ad y)) ⊂ L′
a(ad (ϕ(y))) is

readily seen: for x ∈ La(ad y) means that (ad y − a · 1)k(x) = 0 for some k ∈ N. So

((adϕ(y))− a · 1)k(ϕ(x)) = ϕ((ad y − a · 1)k(x)) = 0,

i.e., ϕ(x) ∈ L′
a(adϕ(y)).

On the other hand, any x′ ∈ L′
a(adϕ(y)) has a preimage x in L by the surjectivity of ϕ.

We employ Jordan-Chevalley decomposition [11, p.17] to write

L = La1(ad y)⊕ . . .⊕ Lan(ad y),

where a1, . . . , an are the eigenvalues of ad y. Then we may decompose x accordingly:

x = xa1 + . . .+ xan , xt ∈ Lat(ad y).
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By the above, ϕ(xt) ∈ L′
at(adϕ(y)). In addition, the sum L′

a1
(adϕ(y))⊕ . . . ⊕ L′

an(adϕ(y))

is direct. Suppose a = ai. Then

L′
ai
(adϕ(y)) ∋ x′ − ϕ(xai) = ϕ(x)− ϕ(xai)

= ϕ(xa1) + · · ·+ ϕ(xai−1
) + ϕ(xai+1

) + · · ·+ ϕ(xan)

∈ L′
a1
(adϕ(y))⊕ · · · ⊕ ̂L′

ai
(adϕ(y))⊕ · · · ⊕ L′

an(adϕ(y))

where the hat indicates the term L′
ai
(adϕ(y)) is deleted. But x− ϕ(xai) ∈ L′

ai
(adϕ(y)). As

the sum is direct, we have x′−ϕ(xai) = 0, i.e. x′ = ϕ(xai) and we have found xai ∈ Lai(ad y)

such that ϕ(xai) = x′. So ϕ(La(ad y)) = L′
a(ad (ϕ(y))).

Recall that N (L) is defined as the set of all x ∈ L such that x ∈ La(ad y), where a is a

nonzero eigenvalue of the endomorphism ad y. From the above, it is clear that ϕ(N (L)) =

N (L′).
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Chapter 3

Properties of Cartan Subalgebras

We introduce Cartan subalgebras and discuss properties that will be useful in both of

the conjugacy proofs.

Definition 3.1. [11, p.80] Let L be a Lie algebra over F. A Cartan subalgebra H (abbrevi-

ated CSA) of L is a self-normalizing nilpotent subalgebra of L.

Unfortunately, this definition does not imply the existance of CSAs of a given Lie alge-

bra.

Both conjugacy proofs will employ the following definition:

Definition 3.2. ([11, p.83]) A Borel subalgebra (abbreviated BSA) B of L is a maximal

solvable subalgebra of L.

Note that BSAs are subalgebras, while RadL is required to be an maximal solvable

ideal.

A helpful propety of Borel subalgebras is the following:

Lemma 3.3. ([11, p.83]) Every BSA B of L is self-normalizing.

Proof. If x ∈ L normalizes B, we may create B + Fx, which is certainly a subalgebra of L

since

[B + Fx,B + Fx] ⊂ [B,B] + [B,Fx] + [Fx,Fx].

The last term is zero, and the term [B,Fx] is inside of B since x is a normalizer. Clearly

[B + Fx,B + Fx] ⊂ B, so B + Fx is solvable. Now B is Borel (maximal solvable) so that x

must be an element of B.
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While the proof of the following lemma is beyond the scope of this paper, we shall use

the result to establish several properties of CSAs:

Lemma 3.4. [7, p.8] If H is a nilpotent subalgebra of L, then there is an x ∈ L such that

L0(adx) = L0(H).

We note that H ⊂ L0(H) as H is nilpotent.

Lemma 3.5. [7, p.14] Let H be a nilpotent subalgebra of L. Then H is a CSA of L if and

only if L0(H) = H.

Proof. We first note that any nilpotent subalgebra H is contained in L0(H). If L0(H) =

H, H is self-normalizing (see [7, p.10]), thus a CSA. On the other hand, if H ( L0(H),

considering the nilpotent subalgebra adH of gl(L0(H)/H), we may apply Engel’s theorem

to the (nontrivial) quotient algebra L0(H)/H to find an x ∈ L0(H)\H such that [x,H] ⊂ H,

that is x ∈ NL(H), and H is not self-normalizing, i.e. not a CSA.

Theorem 3.6. [7, p.14] Every CSA H of L may be written in the form H = L0(adx) for

some x ∈ L.

Proof. Lemmas 3.4 and 3.5 allow us to find an x ∈ L such that L0(adx) = L0(H) = H.

Definition 3.7. [16, p.156] The rank of L, rankL, is defined as min{dimL0(adx) | x ∈ L}.

Any x with rankL = dimL0(adx) is called regular.

Lemma 3.8. [7, p.17] LetH be a subalgebra of L. Then every regular element of L contained

in H is also regular in H.

Theorem 3.9. [7, p.18] Let x be a regular element of L. Then L0(adx) is a CSA of L.

Proof. If x is regular in L, set H := L0(adx). By definition, H0(adx) = H. By the

previous lemma, x is a regular element of H, so rankH = dimH. Then for all h ∈ H,
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dimH0(adh) = dimH, so adHh is a nilpotent endomorphism of H. By Lie’s Theorem,

then, H is nilpotent; so we have H ⊂ L0(H) ⊂ L0(adx) = H, and by 3.5, H is a CSA of L.

As a consequence of the previous theorem, we now know that CSAs of a finite dimen-

sional Lie algebra over an algebraically closed, characteristic 0 field F always exist.

Lemma 3.10. [7, p.13] A CSA H of L is a maximal nilpotent subalgebra.

Proof. If H is a nilpotent subalgebra of L containing a CSA H ′, we note that H ′ is self-

normalizing not only in L, but also in H; by Lemma 2.22, H = H ′.

Compare the following with [11, p.79].

Lemma 3.11. If K ⊂ L is a subalgebra of L containing a CSA H of L, then K is self-

normalizing.

Proof. By Theorem 3.6, we may write H = L0(adx) ⊂ K for some x ∈ L, and make the

following observations:

(1) [x, x] = 0 so x ∈ H ⊂ K; thus [NL(K), x] ⊂ K.

(2) In particular adx(K) ⊂ K since K ⊂ NL(K) , i.e., K is an invariant subspace of

NL(K) under the endomorphism adx. In addition, K contains the eigenspace of adx

corresponding to the eigenvalue 0 since L0(adx) ⊂ K.

By Lemma 2.24, the endomorphism adx acts on NL(K)/K with no zero eigenvalues. By

(1), every coset of NL(K)/K is mapped by adx into K, i.e.,

adx(m+K) = adx(m) +K = K

where m ∈ NL(K). In other words, adx acts trivially on NL(K)/K. On the other hand, by

(2), adx has no zero eigenvalues on NL(K)/K. So K is the only possible coset of NL(K)/K

and we conclude that NL(K) = K.
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Lemma 3.12. ([11, p.81]) If ϕ : L → L′ is an epimorphism of Lie algebras, then ϕ(H) is a

CSA of L′ for every CSA H of L. If H ′ is a CSA of L′, there is a CSA H of L such that

ϕ(H) = H ′.

Proof. Obviously ϕ(H) is nilpotent so we need only show that it is self-normalizing. Let

A = Kerϕ. Then by the First Isomorphism Theorem (Theorem 2.6), L/A ∼= Imϕ = L′ and

we have the induced (Lie algebra) isomorphism ψ : L/A→ L′, defined by ψ(x+ A) = ϕ(x).

The function ψ allows us to isomorphically identify the subalgebra H/A of L/A with ϕ(H),

for by the above ψ(H/A) = ϕ(H). By Lemma 2.23 ϕ(H) self-normalizing is equivalent to

H/A being self-normalizing. This will be simpler to prove, so we focus our attention upon

L/A, in particular the subalgebra H/A of L/A. In L itself, H is a subalgebra and A is an

ideal, so H +A ⊂ L is a subalgebra of L. This subalgebra contains the CSA H. By Lemma

3.11, H + A is self-normalizing as a subalgebra of L.

Now suppose that H/A ⊂ L/A is normalized by the coset x + A, i.e., [x,H]/A =

[x+ A,H/A] ⊂ H/A. We must have [x,H] ⊂ H + A so that

[x,H + A] = [x,H] + [x,A] ⊂ H + A ⊂ L

(note that [x,A] ⊂ A since A is an ideal). So x normalizes H +A. By the above, x ∈ H +A

so that that x+A ∈ H/A. So H/A is self-normalizing as a subalgebra of L/A, and ϕ(H) is,

as well; thus ϕ(H) is a CSA of L′.

Finally, if H ′ is a CSA of L′, Set K := ϕ−1(H ′). We may choose a CSA H of K; then

ϕ(H) is a CSA of H ′ by the above, that is ϕ(H) is a self-normalizing, nilpotent subalgebra of

H ′. But we may view H ′ as a Lie algebra in its own right, and note that H ′ is nilpotent. As

CSAs are maximal nilpotent subalgebras (Lemma 3.10), ϕ(H) = H ′. We must show that H

is a CSA of L. If x ∈ L normalizes H, then ϕ(x) normalizes ϕ(H) = H ′ so that ϕ(x) ∈ ϕ(H),

i.e. x ∈ H +Kerϕ. But Kerϕ ⊂ K so that x ∈ H +K ⊂ K. Now x ∈ NK(H) = H since H

is a CSA of K. See [7, Corollary 2, p.18].
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Chapter 4

Humphreys’ Proof

We first prove the conjugacy of CSAs following Humphreys’ approach. Indeed as

Humphreys [11, p.88] points out the approach is from Winter [25, Section 3.8, p.92-99]

and was inspired by Mostow [23, p.vii]. Since some of Humphreys’ arguments are very brief,

elaboration is needed.

Definition 4.1. ([11, p.9,82]) IntL is the subgroup of AutL generated by all

exp(adx) := 1 + adx+ (adx)2/2! + (adx)3/3! + · · ·

where x ∈ L is ad-nilpotent. Note that the sum has a finite number of terms, for (adx)n = 0

for some n. We define E(L) as the subgroup of IntL generated by all exp(adx) such that

x ∈ N (L) (see Definition 2.19).

Remark 4.2. ([11, p.82]) Given a subalgebra K of L, we note that N (K) ⊂ N (L), and

define E(L;K) as the subgroup of E(L) generated by exp adx, where x ∈ N (K). Thus

E(K) is precisely the restriction of the automorphisms of E(L;K) to K. In particular, given

τ ′ ∈ E(K), we may extend τ ′ to τ ∈ E(L), where τ |K = τ ′.

It turns out that if L is semisimple, E(L) = IntL.

Lemma 4.3. ([11, p.82]) Let ϕ : L → L′ be an epimorphism of Lie algebras. For any

σ′ ∈ E(L′), there exists σ ∈ E(L) such that the following diagram commutes:

L

σ

��

ϕ // L′

σ′

��
L

ϕ // L′
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i.e., σ′ ◦ ϕ = ϕ ◦ σ.

Proof. As E(L′) is generated by σ′ = exp adx′, where x′ ∈ N (L′), it suffices to show the

theorem true for such σ′. By Lemma 2.26, we may choose x ∈ N (L) such that ϕ(x) = x′,

and we set σ := exp ad x ∈ E(L). For any z ∈ L,

(ϕ ◦ σ)(z) = ϕ(exp ad x(z)) = ϕ(z + [x, z] + (1/2)[x, [x, z]] + · · · )

= ϕ(z) + [ϕ(x), ϕ(z)] + (1/2)[ϕ(x), [ϕ(x), ϕ(z)]] + · · ·

= ϕ(z) + [x′, ϕ(z)] + (1/2)[x′, [x′, ϕ(z)]] + · · ·

= exp adx′(ϕ(z))

= (σ′ ◦ ϕ)(z).

One of our main goals is to show that CSAs of a Lie algebra L are conjugate via E(L);

we first handle the special case when L is solvable.

Theorem 4.4. ([11, p.82]) CSAs of a solvable L are conjugate via E(L).

Proof: We proceed by induction. The theorem is obvious when dimL = 1.

If L is nilpotent, there is nothing to prove, for L itself will be its only self-normalizing

subalgebra by Lemma 2.22.

Thus we may assume that L is solvable but not nilpotent. As the last term of the

derived series of L must be abelian, we are guaranteed the existence of non-zero abelian

ideals of L; choose one, A, of minimum dimension. Set L′ := L/A, the homomorphic image

of L under the canonical projection ϕ : L→ L/A. Then for CSAs H1, H2 of L, ϕ(H1) = H ′
1

and ϕ(H2) = H ′
2 are themselves CSAs of L′ by Lemma 3.12. By the induction hypothesis,

since dimL/A = dimL − dimA < dimL, these are conjugate via σ′ ∈ EL′ . By Lemma 4.3,

σ ∈ E(L) exists such that σ′ϕ = ϕσ.
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Setting Ki := ϕ−1(H ′
i), i = 1, 2, we note that the Ki are subalgebras of L. We have

ϕσ(K1) = σ′ϕ(K1) = σ′(H ′
1) = H ′

2. But ϕ−1(H ′
2) = K2, so σ(K1) ⊂ K2. Similarly,

σ(K2) ⊂ K1. As σ is an automorphism, we must have σ(K1) = K2.

L
ϕ−−−→ L′∪

H1 ⊂ K1 −−−→ H ′
1yσ yσ′

H2 ⊂ K2 −−−→ H ′
2

We consider two cases.

Case 1. K2 ( L. Then again by the induction hypothesis, we have τ ′ ∈ E(K2) with

τ ′σ(H1) = H2, since by Lemma 3.12 σ(H1) as well as H2 are CSAs of K2. Extend τ ′ to

τ ∈ E(L) to complete the proof (see remark 4.2).

Case 2. K2 = L. As before, we have σ(K1) = K2 = L, so K1 = K2 = L. Now L/A =

ϕ(L) = ϕ(K1) = H ′
1 ⊂ L/A; so L/A = H ′

1 = ϕ(H1). For any y ∈ L, ϕ(y) = y + A ∈ H1/A,

which means y ∈ H1 + A ⊂ L. A similar argument applies for H2, so we have

L = H1 + A = H2 + A.

Now by Lemma 3.6, we write

H2 = L0(adx)

for some x ∈ L. Since A is an ideal, it is stable under adx (i.e., ad Ax : A→ A) and Lemma

2.17 allows us to write

A = A0(adx)⊕ A∗(adx).

We will show thatA0(adx) is an ideal of L: on one hand [H2, A0(adx)] = [L0(adx), A0(adx)] ⊂

L0(adx) since A0(adx) ⊂ L0(adx); on the other hand [H2, A0(adx)] ⊂ [H2, A] ⊂ A since A

is an ideal ([A0, A] = 0 since A is abelian). Thus [H2, A0(adx)] ⊂ L0(adx) ∩ A = A0(adx).

20



As an ideal of L, A0(adx) must be trivial, otherwise by the minimality of A we have

A = A0(adx). But this is impossible, for it would force A ⊂ L0(adx) = H2, that is

L = H2 + A = H2, a nilpotent algebra. Note that the argument is symmetric, thus applies

to H1 as well.

Since A0(adx) = 0, we have A = A∗(adx) ⊂ L∗(adx), and since H2 = L0(adx), the

sum L = H2 + A is direct and we have

A = A∗(adx) = L∗(adx).

Since L = H1+A, we may write x = y+z, with y ∈ H1 and z ∈ L∗(adx). The endomorphism

adx is invertible on A = L∗(adx), for L∗(adx) clearly has no zero eigenvalues under adx.

Thus a z′ ∈ L∗(adx) exists such that z = [x, z′]. As A is abelian, (ad Az
′)2 = 0; in addition,

A is an ideal and H1∩A = 0, so ad z′(H1) = 0. Thus (ad z′)2 = 0. Thus exp ad z′ = 1+ad z′

and in particular,

exp ad z′(x) = x+ [z′, x] = x− [x, z′] = x− z = y.

By Lemma 2.26 with ϕ := exp ad z′ ∈ AutL, we have

exp ad z′(L0(adx)) = L0(ad (exp ad z
′(x))) = L0(ad y).

By Lemma 3.12 H := L0(ad y), as the isomorphic image of the CSA H2 = L0(adx) of L,

is also a CSA. Now y ∈ H1, a nilpotent subalgebra, implies that ad y acts as a nilpotent

endomorphism on H1 (by Engel’s theorem). Then by H1 ⊂ L0(ad y) = H, we have H = H1,

for both are maximum nilpotent subalgebras (Lemma 3.10).

Now exp ad z′ ∈ AutL sends H2 to H1; it remains to show that exp ad z′ ∈ E(L).

By Lemma 2.17 we write z′ ∈ L∗(adx) as a sum of strongly ad-nilpotent elements, say
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z′ =
∑
a

z′a, with z
′
a ∈ La(adx), a a non-zero eigenvalue for adx. Then

exp ad z′ = 1 + ad z′ = 1 + ad (
∑
a

z′a) = 1 +
∑
a

ad z′a.

But each z′a is an element of the abelian ideal A, so (ad z′a)(ad z
′
b) = 0 ∈ EndL. Thus

1 +
∑
a

ad z′a =
∏
a

(1 + ad z′a) =
∏
a

exp ad z′a ∈ E(L)

since (ad z′a)
2 = 0 (indeed (ad z′)2 = 0). Thus H1 and H2 are conjugate via an element of

E(L).

In order to prove the general case, we will employ several useful properties of Borel

subalgebras.

Lemma 4.5. ([11, p.83]) The BSAs of L are in natural 1-1 correspondence (with respect to

the canonical projection) with the BSAs of the semisimple L/R, where R denotes the radical

of L.

Proof. The radical R of L is a maximal solvable ideal, thus B + R is a solvable subalgebra

of L for any BSA B of L since B is solvable. Thus we have R ⊂ B by the maximality of B.

Now B/R is solvable in L/R. Any subalgebra K ′ ⊂ L/R properly containing B/R is

not solvable, otherwise the subalgebra K := π−1(K ′) of L containing B would be solvable,

forcing B ( K, a contradiction. Thus B/R is indeed a BSA of L/R.

Conversely if B′ ⊂ L/R is a BSA of L/R, then the subalgebra B := π−1(B′) of L is

solvable . Any subalgebra B̂ properly containing B is not solvable, otherwise the solvable

B̂/R properly contains the BSA B′ = B/R of L/R.

When L is semisimple, the abstract Jordan decomposition [11, p.24] asserts that any

element x of L may be decomposed as x = xs + xn, where the ad-semisimple part xs of x
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and the ad-nilpotent part xn of x are also elements of L. The same is true for any BSA of a

semisimple L:

Lemma 4.6. [11, p.85] Any Borel subalgebra B of a semisimple L contains the semisimple

and nilpotent parts of all of its elements.

Proof. Jordan-Chevalley decomposition implies that if the endomorphism σ maps a subspace

B of L into A ⊂ B, then both the nilpotent and semisimple parts of σ map B into A [11,

p.17]. For each x ∈ B, view ad x ∈ EndL. Then by Lemma 3.3, x ∈ B if and only if adx

maps B into itself. Thus adxs and adxn map B into itself, i.e. xs and xn are normalizers of

B, thus elements of B. We conclude that any Borel subalgebra contains the semisimple and

nilpotent parts of all of its elements.

A subalgebra T of L is said to be toral if T consists of ad-semisimple elements. Toral

subalgebras certainly exist in a semisimple Lie algebra. Any Lie algebra consisting entirely

of ad-nilpotent elements is a nilpotent algebra by Engel’s Theorem (Theorem 2.11). A

semisimple Lie algebra L has no solvable ideals and cannot be nilpotent; we conclude that

L has an ad-semisimple element, thus a nonzero toral subalgebra T .

Lemma 4.7. ([11, p.80]) The CSAs of a semisimple L are precisely the maximal toral

subalgebras of L. In particular, CSAs of semisimple Lie algebras are abelian.

If H is a CSA of the semisimple L, then adH is an abelian subalgebra of semisimple

endomorphisms in EndL and thus adH is simultaneously diagonalizable according to linear

algebra. So given h ∈ H, we have Lα,h = Lα(h)(adh) = Ker (adh−α(h) · 1), i.e., m = 1, and

thus Lα(H) takes the special form

Lα(H) = {x ∈ L | [h, x] = α(h)x for all h ∈ H},

i.e., each nonzero x ∈ Lα(H) is a common eigenvector for all endomorphisms adh, h ∈ H.

Note that L0(H) is simply the centralizer of H. The α such that Lα(H) ̸= 0 are called
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roots of L with respect to H, a subcollection of H∗ which we will denote by Φ(H). We will

frequently make use of the root space decomposition of a semisimple L.

Lemma 4.8. ([11, p.35]) Given a CSA H of the semisimple L, we have the root space

decomposition

L = H ⊕
⨿

α∈ Φ(H)

Lα(H).

We may fix a base ∆ of Φ(H) and note that

B(∆) := H +
⨿
α≻0

Lα(H)

is a Borel subalgebra of L, which we call a standard Borel with respect to H. In addition,

N(∆) := [B(∆), B(∆)] =
⨿
α≻0

Lα(H)

is nilpotent [11, p.84].

The following result on semisimple algebras is similar to Lemma 2.18:

Lemma 4.9. [11, p.36] Let H be a CSA of the semisimple Lie algebra L, and let α, β ∈ H∗.

Then [Lα(H), Lβ(H)] ⊂ Lα+β(H).

Lemma 4.10. ([11, p.84]) Let H be a CSA of the semisimple L. All standard Borel subal-

gebras of L relative to H are conjugate via E(L).

The second main goal in this chapter is the following conjugacy theorem for BSAs.

Theorem 4.11. ([11, p.84]) The BSAs of a semisimple Lie algebra L are conjugate via E(L).

Proof. We will employ induction on dimL. The proof is trivial if dimL = 1, for L is itself

its only BSA.

Let L be semisimple and H a CSA, and fix a base ∆ and thus a standard BSA B with

respect to H. We will show that any other BSA B′ of L is conjugate to B via an element of
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E(L). If B ∩ B′ = B, then B = B′ by the maximality of B, and there is nothing to prove.

Thus a downward induction on the dim(B ∩B′) is appropriate: we may assume that a BSA

whose intersection with B has dimension greater than dim(B ∩B′) is already a conjugate of

B.

We divide the proof into cases, and the first case into two subcases.

Case 1: B ∩B′ ̸= 0.

Let N ′ ⊂ B ∩ B′ be the set of ad-nilpotent elements of B ∩ B′, i.e., x ∈ B ∩ B′ and

adx ∈ EndL is nilpotent.

Subcase (i): Suppose N ′ ̸= 0. By Lemma 4.8, B may be decomposed as

B = H +
⨿
α≻0

Lα(H), N := [B,B] =
⨿
α≻0

Lα(H)

where H is the fixed CSA of L. So by Lie’s theorem, the derived algebra N = [B,B] =
⨿
α≻0

Lα

is nilpotent (N ′ = N ∩ B′). Now as [B ∩ B′, B ∩ B′] is properly contained in both [B,B]

and [B′, B′], we see that [B ∩ B′, B ∩ B′] ⊂ B ∩ B′ is nilpotent. Thus, by Engel’s theorem

again, [B ∩ B′, B ∩ B′] ⊂ N ′, so N ′ is an ideal of B ∩ B′. As L is semisimple, it is allowed

no proper solvable (thus no nilpotent) ideals, so N ′ is not an ideal of L and

K := NL(N
′) ( L.

We are going to show that B ∩ B′ is properly contained in both B ∩ K and B′ ∩ K.

Clearly from the above B ∩B′ ⊂ B ∩K and B ∩B′ ⊂ B′ ∩K. For each x ∈ N ′ ⊂ B, adx is

a nilpotent endomorphism of B (as well as of B′) since B (respectively B′) is stable under

adx. But B ∩B′ is also stable under adx, so the induced action of adx on the vector space

B/(B ∩ B′) is nilpotent (see the proof of Lemma 2.24). This is true for all x ∈ N ′, so by

Engel’s Theorem, there is a non-zero y +B ∩B′ ∈ B/(B ∩B′) killed by all elements of N ′.

We have found a y ∈ B \ B ∩ B′ such that [N ′, y] ⊂ B ∩ B′. In addition, [N ′, y] ⊂ [B,B]

(since y ∈ B and N ′ ⊂ B), which is nilpotent. So every [x, y] ∈ [N ′, y] is nilpotent, forcing
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[x, y] ∈ N ′ which is the set of nilpotent elements of B ∩B′. Thus y ∈ NB(N
′) = B ∩K, but

y ̸∈ B ∩B′, i.e., B ∩B′ ( B ∩K. The argument is symmetric for B and B′ so

B ∩B′ ( B ∩K, B ∩B′ ( B′ ∩K.

As BSAs, B and B′ are solvable in L, so B ∩K and B′ ∩K are solvable subalgebras of

K. We choose BSAs of K, C and C ′, containing B ∩K, B′∩K respectively (see the figure).

L

|

K

� �

C C ′

| |

B ∩K B′ ∩K

� �

B ∩B′

|

N ′

Since K ( L, by the first induction hypothesis (on dimL), C and C ′ are conjugate via

σ′ ∈ E(K). So there is σ ∈ E(L;K) ⊂ E(L) such that σ(C ′) = C [remark 4.2]. Now B ∩ B′

is a proper subalgebra of both B ∩ K ⊂ C and B′ ∩ K ⊂ C ′. Note that C may not be a

BSA of L, but as it is solvable, it is contained in a BSA M of L. We have

B ∩B′ ( B ∩K ⊂ B ∩ C ⊂ B ∩M,
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so dim(B∩M) > dim(B∩B′). By the second induction hypothesis (downward, on dim(B∩

B′)), there is a τ ∈ E(L) with τ(M) = B. We have τ(C) ⊂ B, i.e.,

τσ(C ′) ⊂ B.

Since B ∩B′ ( B′ ∩K, we have τσ(B ∩B′) ( τσ(B′ ∩K). Clearly B′ ∩K = B′ ∩ C ′, so

τσ(B ∩B′) ( τσ(B′ ∩K) = τσ(B′ ∩ C ′) ⊂ τσ(B′) ∩ τσ(C ′) ⊂ τσ(B′) ∩B.

Then dim(B ∩ τσ(B′)) > dim τσ(B ∩ B′) = dim(B ∩ B′). Clearly B and τσ(B′) are BSAs

of L. Then we use the second induction hypothesis (downward, on dim(B ∩B′)) to see that

B is conjugate to τσ(B′) via an element of E(L).

Subcase (ii): Suppose N ′ = 0. Hence B ∩B′ contains no nonzero nilpotent elements.

By Lemma 4.6, any BSA contains both the semisimple and nilpotent parts of any of its

elements, so all elements of B ∩B′ are semisimple, i.e.,

T := B ∩B′ ̸= 0

is a toral subalgebra of the semisimple L. Recall that B = H +N is a standard Borel and

the subalgebra N = [B,B] of L consists entirely of nilpotent elements. Since 0 is the only

element which is both nilpotent and semisimple, T ∩ N = 0. For any x ∈ B, [x, T ] ⊂ T

means that [x, T ] ⊂ T ∩N = 0. Thus

NB(T ) = CB(T ).

As T is toral, T ⊂ CB(T ), and we may choose a maximal toral subalgebra C of CB(T )

containing T . By definition, C is nilpotent and self-normalizing (in CB(T )). So we have

T ⊂ C ⊂ CB(T ) = NB(T ) ⊂ NB(C).

27



If n ∈ NB(C) ⊂ B, then for each t ∈ T ⊂ C, (ad t)kn = 0 for some k ∈ N since C

is nilpotent. However, ad t ∈ EndL is a semisimple endomorphism since T is toral. So

L0(ad t) = Ker ad t = Ker(ad t)k. Then we may choose k = 1, i.e., n ∈ NB(C) ⊂ CB(T ).

But C is its own normalizer in CB(T ). Then

C = NCB(T )(C) = NB(C).

As a nilpotent self-normalizing subalgebra of B, C is a CSA of the solvable algebra B.

Clearly H is a CSA of both B and L. By Theorem 4.4, C is conjugate, via an element of

E(B) (hence via E(L)), to H.

Thus without loss of generality we may assume that T ⊂ H.

Now we consider two subcases.

(A) T = H. Now H = B ∩ B′ ( B′ (otherwise B = B′ and there is nothing to

prove). Recall that B = H +
⨿
α≻0

Lα. Notice that [H,B′] = [B ∩ B′, B′] ⊂ B′, i.e., B′ is

stable under ad LH. Since ad LH is simultaneously diagonalizable (as adH ⊂ EndL is a

commuting family of semisimple endomorphisms), ad B′H ⊂ EndB′ is also simultaneously

diagonalizable by Lemma 2.25. This allows us to decompose B′ into root spaces under H:

B′ = H +
⨿

β B
′
β where

B′
β = {x ∈ B′ | [h, x] = β(h)x for all h ∈ H}.

Clearly each β ∈ Φ and B′
β = Lβ since dimLβ = 1 [11, p.39]. Since H = B ∩ B′ ( B′, we

must have B′ = H+
⨿

α≺0 Lα. So there is at least one α ≺ 0 relative to ∆ with 0 ̸= Lα ⊂ B′.

The reflection τα [11, p.42] sends α into −α, H is preserved, and ∆′ = τα(∆) is a base.

Then B′ is conjugate to the standard Borel B′′ := B(∆′) whose intersection with B includes

H +L−α. So the second induction hypothesis (downward, on dimB ∩B′) applies and B′′ is

conjugate to B.
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Remark: Instead of using τα, one can use the longest element ω0 ∈ W [17, p.88] of the

Weyl group W to get the conclusion immediately, i.e., B and B′ are conjugate via ω0, since

ω0(Φ
+) = −Φ+ where Φ+ denotes the positive roots.

(B) T ( H. Then we have two subcases:

(B1) B′ ⊂ CL(T ). The semisimple L has zero center and we are assuming T = B ∩B′ ̸= 0.

So CL(T ) ( L as T itself is abelian, and we have dimCL(T ) < dimL. We are thus

justified in using the first induction hypothesis on CL(T ). Now H = CL(H) [11, p.36]

and T ⊂ H so that H = CL(H) ⊂ CL(T ). Since H is abelian and thus solvable, there

is a BSA B′′ of CL(T ) containing H. By the first induction hypothesis, there exists

σ ∈ E(L;CL(T )) ⊂ E(L) with σ(B′) = B′′, since B′ and B′′ are BSAs of CL(T ). By

virtue of the fact that B′′ is the isomorphic image of the BSA B′ of L, B′′ is a BSA of

L as well. Moreover B′′ contains H, so

dim(B ∩B′′) ≥ dimH > dimT = dim(B ∩B′).

By the second induction hypothesis (downward, on dim(B ∩ B′)), B and B′′ are con-

jugate via E(L), thus B and B′ are, as well.

(B2) B′ ̸⊂ CL(T ). As in (A), since we are assuming T ( H, ad B′T is simultaneously diago-

nalizable. Since B′ ̸⊂ CL(T ), there is t′ ∈ T and a common eigenvector x ∈ B′\CL(T )

of the endomorphisms of ad B′T such that [t′, x] = c′x, where c′ ∈ F is nonzero. Setting

t := t′/c′, we have [t, x] = x. Let Φt := {α ∈ Φ : α(t) > 0 and rational} ⊂ Φ. Given α,

β ∈ Φt, α+ β ∈ Φt. Then

S := H +
⨿
α∈Φt

Lα

is subalgebra of L. Notice that x ∈ S since x is of the form

x = xh +
∑
α∈Φ

xα, xα ∈ Lα, xh ∈ H
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and

xh +
∑
α∈Φ

xα = x = [t, x] =
∑
α∈Φ

[t, xα] =
∑
α∈Φ

α(t)xα

so that xh = 0 and xα = 0 if α ̸∈ Φt. By Lemma 4.9 S is solvable and so lies in a BSA

B′′. Since T ⊂ B′′ and x ∈ B′′

B ∩B′ = T ( T + Fx ⊂ B′′ ∩B′.

we see that dim(B′′ ∩B′) > dim(B ∩B′); by the second induction hypothesis, B′′ and

B′ are conjugate. In addition, dim(B′′ ∩B) > dim(B ∩B′) since H ̸⊂ B ∩B′; thus B′′

and B are conjugate, so B′ and B are as well.

Case 2: B ∩ B′ = 0. As a standard BSA of L, B = H +
⨿
α≻0

Lα(H). But L itself is

semisimple, thus allowing us to decompose L = H ⊕
⨿

α∈ Φ(H)

Lα(H). We know that α is a

root if and only if −α is a root [11, p.37]; so dimB > (dimL)/2. However, since B ∩B′ = 0,

we employ a standard argument regarding dimension in vector spaces to see that

dimB + dimB′ = dim(B +B′) ≤ dimL.

Thus B′ must be a “small” Borel, i.e., dimB′ < (dimL)/2. Choose a maximal toral subalge-

bra T of B′. If T = 0, then B′ consists solely of ad-nilpotent elements. By Engel’s theorem

B′ is nilpotent, and as it is Borel, it is also self-normalizing by Lemma 3.3. In other words,

B′ is a CSA of L; but this is impossible, for on one hand each CSA of the semisimple L is

toral by Lemma 4.7, while on the other hand T = 0. So we must have T ̸= 0. Once again

applying Lemma 4.7, choose a CSA H0 of L containing T , and B′′ a standard Borel with

respect to H0. Then B′ ∩ B′′ ̸= 0, and by Case 1 of the proof, B′ and B′′ are conjugate so

that dimB′′ = dimB′ < (dimL)/2. However B′′ is standard so that dimB′′ > (dimL)/2, a

contradiction.

Theorem 4.12. ([11, p.84]) The BSAs of a Lie algebra L are conjugate under E(L).
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Proof. We have previously established the theorem for semisimple Lie algebras; if L is not

semisimple, then we construct the semisimple Lie algebra L/R (̸= L). Now the BSAs of L

are in 1-1 correspondence with the BSAs of L/R by Lemma 4.5. Given BSAs B1 and B2 of

L, we identify them with the BSAs B′
1 and B′

2 of L/R. Now B′
1 and B′

2 are conjugate via

an element σ′ of E(L/R), and by Lemma 4.3, there is a σ ∈ E(L) such that ϕ ◦ σ = σ′ ◦ ϕ,

where ϕ is the canonical projection. So

ϕσ(B1) = σ′ϕ(B1) = σ′(B′
1) = B′

2,

thus σ(B1) = B2.

Theorem 4.13. ([11, p.84]) The CSAs of L are conjugate under E(L).

Proof. Any nilpotent subalgebra is solvable, thus contained in a maximal solvable subalgebra.

So given a pair H, H ′ of CSAs of L, there is a pair B, B′ of BSAs containing H, H ′

respectively. By Theorem 4.12, there is σ ∈ E(L) such that σ(B) = B′. We have two CSAs

of the solvable B′, namely σ(H) and H ′, which are conjugate via τ ′ ∈ E(B′) thanks to

Theorem 4.4. We have τ ′σ(H) = H ′; once again, we extend τ ′ to τ ∈ E(L). Then we have

an endomorphism τσ ∈ E(L) such that τσ(H) = H ′.

Corollary 4.14. Every BSA of a Lie algebra L contains a CSA of L.

Proof. We have previously established the existence of CSAs in any Lie algebra (see remark

following Theorem 3.9). Given a CSA H of L, H is contained in some BSA B of L. For any

BSA B′ of L, B and B′ are conjugate via ϕ ∈ E(L), thus B′ contains the CSA ϕ(H).
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Chapter 5

Michael’s Proof

Bourbaki [7, p.22-23] provides a proof for the conjugacy of CSAs using algebraic geom-

etry; the approach is very different from that of Humphreys.

Michael’s approach does not use algebraic geometry and is along the presentation of

Bourbaki [5, 7]. Similar to Humphreys, he begins by proving the conjugacy of CSAs of

solvable Lie algebras. The proof is similar to that in [7, p.25] and will be omitted here.

His next task is to provide a few lemmas to ease the way to a full proof. We will utilize

Lemma 3.12, as well as various technical lemmas. We will also need Definition 2.20 in the

following discussion:

Lα,h := Lα(h)(adh) = Ker (adh− α(h) · 1)m,

where m is the algebraic multiplicity of the eigenvalue α(h), and

Lα(H) := ∩h∈HLα,h

where H is a nilpotent subalgebra of L. Clearly Lα(H) ⊂ N (L), indeed each Lα,h ⊂ N (L)

(Definition 2.19).

Definition 5.1. ([7, p.22], [16, p.156]) Given a Lie algebra L and CSA H, we denote by

EL(H) the subgroup of IntL generated by exp adx, where x ∈ Lα(H) for some α ̸= 0.

Michael’s proof relies upon several results which can be viewed as analogues of Lemma

2.26 and Lemma 4.3, which we will state in the following lemmas.
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Recall Lemma 2.26: an epimorphism ϕ : L → L′ has the property that ϕ(La(ad y)) =

La(adϕ(y)). The following lemma for Lα(H) corresponds to Lemma 2.26:

Lemma 5.2. Let ϕ : L→ L′ be an epimorphism, and H a nilpotent subalgebra of L. Then

ϕ(Lα(H)) = Lα′(ϕ(H)), where α′ ∈ (ϕ(H))∗ is given by α′(ϕ(h)) = α(h).

Proof. Define α′ as above; it is clear that ϕ(Lα(h)(adh)) = L′
α′(ϕ(h))(adϕ(h)) for all h ∈ H,

i.e. ϕ(Lα(H)) = Lα′(ϕ(H)).

As analogue to Lemma 4.3, we have

Lemma 5.3. Given an epimorphism ϕ : L→ L′ and σ′ ∈ EL′(H ′), H ′ a CSA of L′, there is

a CSA H of L with ϕ(H) = H ′ and σ ∈ EL(H) such that σ′ ◦ ϕ = ϕ ◦ σ.

Proof. Lemma 3.12 allows us to choose a CSA H of L such that ϕ(H) = H ′. Let σ :=

exp ad x′ be a generator of EL′(H ′), i.e. x′ ∈ L′
α′(H

′); by Lemma 5.2 there is x ∈ Lα(H) such

that ϕ(x) = x′. Then σ := exp ad x ∈ EL(H) is the promised automorphism.

Similar to Remark 4.2, we note the following:

Lemma 5.4. Given a Lie algebra L and subalgebra B containing a CSA H of L, any

σ ∈ EB(H) may be extended to a σ′ ∈ EL(H) such that σ′|B = σ.

Proof. A generator exp ad Bx of EB(H) may be viewed as a generator of EL(H): for x ∈

Bα(H) means that x ∈ Lα(H), as well. Thus exp ad L x ∈ EL(H).

Lemma 5.5. Given a Lie algebra L, CSA H, and u ∈ EL(H), we have EL(u(H)) =

u(EL(H))u−1.

Proof. By Lemma 3.12, u(H) is a CSA, thus EL(u(H)) is defined.

Given a generator exp adx of EL(u(H)), we note that

1. (adu(h)− α(u(h))I)k(x) = 0 for all h ∈ H

2. adu(h) = u ◦ (adh) ◦ u−1
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Define α′ ∈ H∗ by α′(h) := α(u(h)). Then for all h ∈ H,

0 = (adu(h)− α(u(h))I)k(x) = u ◦ (adh− α′(h)I)k ◦ u−1(x).

So u−1(x) ∈ Lα′(H), and exp ad (u−1(x)) ∈ EL(H). Then we readily see that

exp adx = u(exp ad (u−1(x)))u−1 ∈ u(EL(H))u−1.

Thus EL(u(H)) ⊂ u(EL(H))u−1.

On the other hand, given y ∈ Lβ(H), we wish to show that u(exp ad y)u−1 ∈ EL(u(H)).

Clearly u(exp ad y)u−1 = exp adu(y). Defining β′ ∈ (u(H))∗ by β′(u(h)) = β(h), we see by

Lemma 5.3 that u(y) ∈ Lβ′(u(H)). The lemma follows.

The following is a refinement of [7, p.25-26] and the proof is almost identical.

Theorem 5.6. If L is solvable and H1, H2 are CSAs of L, there exist ui ∈ EL(Hi), i = 1, 2,

such that u1(H1) = u2(H2).

Corollary 5.7. ([16, p.158]) If L is solvable and H1, H2 are CSAs of L, EL(H1) = EL(H2).

Proof. Using Lemma 5.5 and Theorem 5.6, we have

EL(H1) = u1EL(H1)u
−1
1 = EL(u1(H1)) = EL(u2(H2)) = u2EL(H1)u

−1
2 = EL(H2).

So if L is solvable, the choice of H is inconsequential and we may denote EL(H) = EL.

Corollary 5.8. ([16, p.158]) Assume that L is solvable.

1. EL acts transitively on the set of CSAs of L.

2. Any CSA of L has dimension rankL.

3. L0(adx) is a CSA of L if and only if x is regular.
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Proof. (1) is clear from Lemma 3.12 and Corollary 5.7. For (2), we note that EL is a group

of automorphisms; so by (1), all CSAs have the same dimension. By Lemma 3.9, this must

be the rank of L. Lemma 3.6 combined with Lemma 3.9 immediately give us (3).

Definition 5.9. ([11, p.21]) Given a Lie algebra L, the Killing form κ is a symmetric bilinear

form on L given by

κ(x, y) = tr (adx)(ad y).

Elements x and y of L are orthogonal via κ if κ(x, y) = 0. Two subspaces H1 and H2 are

orthogonal, H1 ⊥ H2, if their elements are mutually orthogonal via κ.

Remark 5.10. We will have occasion to employ a useful identity regarding the Killing form.

Note that, since [adx, ad y] ∈ gl(L), we know the action of [·, ·]:

ad [x, y] = [adx, ad y] = adx ad y − ad y adx.

Then

κ([x, y], z) = tr ([adx, ad y]ad z) = tr (adx ad y ad z)− tr (ad y adx ad z).

But we may commute matrices without changing the trace, so the above is equal to

tr (adx ad y ad z)− tr (adx ad z ad y) = tr (adx[ad y, ad z]) = κ(x, [y, z]).

Thus κ([x, y], z) = κ(x, [y, z]).

Theorem 5.11. ([11, p.22]) Let L be a Lie algebra. Then L is semisimple if and only if its

Killing form is nondegenerate, i.e., the radical S of the Killing form, defined by

S := {x ∈ L | κ(x, y) = 0 for all y ∈ L}

is 0.
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In general, if V is a finite dimensional vector space over F with nondegenerate symmetric

form [15, Chapter XV] κ and if W ⊂ V is a subspace, we denote by

W⊥ := {v ∈ V |κ(v, w) = 0 for all w ∈ W}

the orthogonal complement of W with respect κ. See [15, Chapter XV], [24] for the general

theory of bilinear form. An orthogonal basis [15, p.575] always exists for V with dimV ≥ 1

(but not necessarily an orthonormal basis, for example, κ on F2 defined by the matrix0 1

1 0

). Moreover κ induces an isomorphism between V ∗ and V : f 7→ (x, ·), f ∈ V ∗ and

x ∈ V . The restriction of κ on a subspace W is nondegenerate if and only if W ∩W⊥ = 0.

Lemma 5.12. Let V be a finite dimensional vector space with nondegenerate symmetric

bilinear form κ. Let W,V1, V2 be subspaces of V . Then

1. dimW + dimW⊥ = dimV (but W +W⊥ = V is not necessarily true).

2. (W⊥)⊥ =W .

3. V1 ⊂ V2 if and only if V ⊥
2 ⊂ V ⊥

1 ; V1 ( V2 if and only if V ⊥
2 ( V ⊥

1 .

4. (V1 + V2)
⊥ = V ⊥

1 ∩ V ⊥
2 .

5. V ⊥
1 + V ⊥

2 = (V1 ∩ V2)⊥.

Proof. 1. Denote by f : V → W ∗ the map defined by f(v)(w) = κ(v, w), w ∈ W , v ∈ V .

Clearly Kerf = W⊥ and Im f = W ∗ so that dim Im f = dimW ∗ = dimW . Then

apply the dimension theorem

dimKerf + dim Im f = dimV.

2. ClearlyW ⊂ (W⊥)⊥. Then from (1) dimW+dimW⊥ = dimV = dimW⊥+dim(W⊥)⊥

so that dimW = (W⊥)⊥. Hence (W⊥)⊥ = W .
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3. The first part is clear and the second part is from (1) and (2) since dimV ⊥
1 = dimV −

dimV1 > dimV − dimV2 = dimV ⊥
2 .

4. From (3) (V1 + V2)
⊥ ⊂ V ⊥

i , i = 1, 2, since Vi ⊂ V1 + V2. Thus (V1 + V2)
⊥ ⊂ V ⊥

1 ∩ V ⊥
2 .

For any w ∈ V ⊥
1 ∩ V ⊥

2 and for all v = v1 + v2 ∈ V1 + V2, where vi ∈ Vi, i = 1, 2, we

have κ(w, v1 + v2) = κ(w, v1) + κ(w, v2) = 0. We may choose either of v1, v2 to be 0,

so w ∈ (V1 + V2)
⊥.

5. By (2) each subspace W of V is the orthogonal complement of some subspace, namely,

W⊥. So it suffices to show V1 + V2 = (V ⊥
1 ∩ V ⊥

2 )⊥ and again by (2), it is simply (4).

We know focus our attention on semisimple Lie algebras.

Lemma 5.13. ([16, p.159]) Let L be a semisimple Lie algebra, H a CSA of L, and B a

solvable subalgebra of L containing H. Then

1. B = H ⊕ [B,B]

2. The set [B,B] coincides with the set of ad-nilpotent elements in L contained in B.

Proof. By virtue of the fact that H is a CSA of L, H is in turn a CSA of B. Since

[H,B] ⊂ B, ad BH ⊂ EndB is a simultaneously diagonalizable family by Theorem 2.25.

Thus B has root space decomposition B = H ⊕
∑

α∈Φ(H)

Bα(H). By Lemma 3.6, we write

H = L0(ad s) for some s ∈ H. Note that the restriction of ad s to B+(H) :=
∑
α ̸=0

Bα(H) is

bijective, for B+(H) contains no eigenvectors of ad s with corresponding eigenvalue 0. We

conclude that any x ∈ B+(H) can be written x = [s,m] for some m ∈ B+(H); so we have

B+(H) ⊂ [B,B]. Now B is solvable, thus [B,B] is nilpotent; in addition, H is semisimple.

Thus any y ∈ H ∩ [B,B] is both ad-nilpotent and ad-semisimple, that is y = 0. We have

B = H ⊕
∑
α ̸=0

Bα(H) ⊂ H ⊕ [B,B] ⊂ B, and (1) follows.
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The second statement follows from

[B,B] = [H ⊕
∑

α∈Φ(H)

Bα(H), H ⊕
∑

α∈Φ(H)

Bα(H)] =
∑

α∈Φ(H)

Bα(H).

On one hand, we know that the only endomorphism of L that is simultaneously nilpotent

and semisimple is 0. Since elements of H are ad-semisimple, the ad-nilpotent elements of

L contained in B must be in [B,B]. On the other hand, by Lemma 4.9 and the fact that

Bα(H) ⊂ Lα(H), ad Lx is a nilpotent endomorphism for any x ∈ [B,B].

We may now prove

Lemma 5.14. ([16, p.159]) A subalgebra B of a semisimple Lie algebra L is a BSA if and

only if [B,B] = B⊥.

Proof. Since L is semisimple, the subalgebra H ⊂ L is solvable if and only if adH is solvable.

For the forward implication, by Cartan’s criterion [11, p.20] B is solvable if and only if

κ(B, [B,B]) = 0. Thus [B,B] ⊂ B⊥. Suppose that the inclusion is proper; by Lemma 5.12,

B ( [B,B]⊥. We set P := [B,B]⊥/B, a (nontrivial) vector space quotient. The the matrices

of adB form a solvable subalgebra of gl(P ). By Lie’s Theorem, the matrices of adB are

upper triangular (with respect to the proper basis of P ); thus there is an x ∈ [B,B]⊥ \ B

such that [B, x] ⊂ B + Fx. Set B1 := B + Fx. Then B1 is a subalgebra of L.

By Lemma 5.12, B⊥
1 = (B + Fx)⊥ = B⊥ ∩ Fx⊥. Now [B1, B1] ⊂ [B,B] + [B,Fx];

by Cartan’s Criterion, since B is solvable, [B,B] ⊂ B⊥. But x was chosen from [B,B]⊥,

so we also have [B,B] ⊂ (Fx)⊥; thus [B,B] ⊂ B⊥ ∩ Fx⊥ = B⊥
1 . For any a, b ∈ B,

κ([a, x], b) = −κ(x, [a, b]) = 0, since x ∈ [B,B]⊥. Thus [B,Fx] ⊂ B⊥. Finally, given

a ∈ B, we note that κ([a, x], x) = κ(a, [x, x]) = 0, allowing us to write [B,Fx] ⊂ (Fx)⊥. So

[B,Fx] ⊂ B⊥
1 as well; we conclude that [B1, B1] ⊂ B⊥

1 . Once again using Cartan’s Criterion,

B1 is solvable; but B ( B1 was chosen as Borel, a contradiction. We are forced to have

[B,B] = B⊥.
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We now show the reverse implication. Suppose [B,B] = B⊥, and choose a solvable

subalgebra B1 of L containing B. Then

[B1, B1] ⊆ B⊥
1 ⊆ B⊥ = [B,B] ⊆ [B1, B1],

and all inclusions are forced to be equalities. So B⊥
1 = B⊥ implies B1 = B by Lemma 5.12,

and B is a BSA.

Theorem 5.15. ([16, p.160]) Let L be semisimple with CSAs H1 and H2, and let B1, B2

be BSAs containing H1 and H2, respectively. Then

1. B1 ∩B2 contains a CSA of L.

2. There exist ui ∈ EL(Hi) (i = 1, 2) such that u1(H1) = u2(H2).

Proof. 1. Define Ni := [Bi, Bi]; then by Lemma 5.13 and Lemma 5.14, we have Bi = Hi⊕Ni

and Bi = N⊥
i . Since Ni is the set of all ad-nilpotent elements of L contained in Bi, we know

that B1 ∩ N2 = N1 ∩ N2 = B2 ∩ N1 is the set of all ad-nilpotent elements of B1 ∩ B2. By

Lemma 5.12

B1 = N⊥
1 ⊂ (N1 ∩N2)

⊥ = (B1 ∩N2)
⊥ = B⊥

1 +N⊥
2 = N1 +B2.

We have shown that B1 ⊂ N1 +B2, thus

B1 = N1 + (B1 ∩B2).

Let ri = dimHi. By symmetry, we may assume r1 ≤ r2. By Corollary 5.8, ri = rankBi.

By Lemma 3.6 the CSA H1 may be written as H1 = L0(ad z) for some z ∈ H1. Since

B1 = N1 + (B1 ∩B2) = H1 +N1, we may choose n ∈ N1 such that

w := z + n ∈ B1 ∩B2.
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By Lie’s theorem, there is a basis of L so that adw, ad z and adn, in matrix form, are upper

triangular. In addition, because adn is nilpotent, it is also strictly upper triangularizable;

thus the diagonal entries of ad z are precisely those of adw, i.e. the pair of endomorphisms

share eigenvalues. Now dimL0(ad z) and dimL0(adw) are the algebraic multiplicity of 0 as

an eigenvalue of ad z and adw, respectively; thus dimL0(ad z) = dimL0(adw). So

r1 = dimH1 = dimL0(ad z) = dimL0(adw) ≥ dim(Bi)0(adw) ≥ rankBi = ri ≥ r1.

Thus each step above is an equality, and we have rankB1 = r1 = r2 = rankB2. So on one

hand, every CSA of L has dimension rankL = dimL0(ad z), while on the other hand, by

Lemma 3.9, if H = L0(adx) has dimension rankL, then H is a CSA. So a subalgebra is a

CSA if and only if H = L0(adx) for some regular x. In particular, L0(adw) ⊂ B1 ∩B2 is a

CSA, and (1) follows.

Considering H = L0(adw) and Hi as CSAs of the (solvable) Bi, we may choose ui ∈

EBi
(Hi) such that u1(H1) = H = u2(H2) by Theorem 5.6. We employ Lemma 5.4 to extend

each ui to an element u′i ∈ EL(Hi), and (2) follows.

The following theorem will fill in the gap between the solvable and semisimple cases.

Theorem 5.16. ([16, p.158]) Let L be a Lie algebra and ϕ : L → L/R the canonical

homomorphism of L, where R := RadL. Then the following statements for CSAs H1, H2 of

L are equivalent:

1. There exist ui ∈ EL(Hi) such that u1(H1) = u2(H2).

2. There exist vi ∈ EL/R(ϕ(Hi)) such that v1(ϕ(H1)) = v2(ϕ(H2)).

Proof. That (1) implies (2) is straightforward: given ui ∈ EL(Hi), ui =
∏

exp adx, define

vi ∈ End (L/R) by vi =
∏

exp ad (x + R); then vi(y + R) = ui(y) + R, so v1(ϕ(H1)) =

v2(ϕ(H2)). All that remains to show is that the vi are indeed elements of EL/R(ϕ(Hi)). Now

ui =
∏

exp(adx) where x ∈ Lα(Hi), and by Lemma 5.2, ϕ(x) ∈ ϕ(Lα(Hi)) means that
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x + R ∈ L/Rα′(ϕ(Hi)). Thus vi ∈ EL/R(ϕ(Hi)). By construction, we have vi ∈ EL/R(Hi)

satisfying v1(ϕ(H1)) = v2(ϕ(H2)).

The reverse implication requires more work: by Lemma 5.3, given v1(ϕ(H1)) = v2(ϕ(H2)),

we have ui ∈ EL(Hi) with ϕ(u1(H1)) = ϕ(u2(H2)), that is u1(H1)/R = u2(H2)/R. Consider

the set u1(H1) + R = u2(H2) + R as a subalgebra of L, called T ; viewed as a Lie algebra,

we see that each ui(Hi) is a CSA of T . Thus the ui(Hi) are solvable subalgebras of T ;

R, the radical of L, is also solvable, so T itself is solvable. We already know that CSAs

of solvable Lie algebras are conjugate (5.6), so we may choose u′i ∈ ET (ui(Hi)) such that

u′1u1(H1) = u′2u2(H2). By Lemma 5.4 the u′i may be extended to ui
′′ in EL(ui(Hi)).

Then u′iui ∈ ET (ui(Hi))ui can be written as u′′i ui ∈ EL(ui(Hi))ui. By Lemma 5.5

EL(ui(Hi))ui = uiEL(Hi) = EL(Hi), and we conclude that u′′i ui ∈ EL(Hi).

Theorem 5.17. ([16, p.160]) Given CSAs H1 and H2 of the Lie algebra L, there exist

ui ∈ EL(Hi) such that u1(H1) = u2(H2).

Proof. L/R is semisimple when R = RadL. By Theorem 5.15, with ϕ : L → L/R the

canonical projection, ϕ(H1) and ϕ(H2) are conjugate, and by Theorem 5.16 H1 and H2 are

as well.

Theorem 5.18. ([16, p.161]) For any Lie algebra L,

1. EL(C) does not depend on the choice of the CSA C, and may be denoted EL.

2. EL acts transitively on the set of CSAs of L.

3. Any CSA has dimension rankL.

4. The element x ∈ L is regular if and only if L0(adx) is a CSA, and any CSA of L may

be written in this form.

Proof. The proof of (1) is identical to the proof of Corollary 5.7; (2), (3), and (4) are similar

to Corollary 5.8.

In order to establish the conjugacy of BSAs, we shall need several preliminary results.
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Lemma 5.19. ([16, p.161]) Any BSA of a semisimple Lie algebra L contains a CSA of L.

Proof. Given a BSA B of L, choose a CSA H of B. We will show that H is actually a CSA

of L as well; to do so we simply need NL(H) = H. Since H is nilpotent, by Theorem 2.21

L =
⨿
α∈H∗

Lα(H).

Given h ∈ H, we use abstract Jordan decomposition ([11, p.24]) to decompose h (in L) as

h = hs+hn, where hs and hn are the ad-semisimple and ad-nilpotent parts, respectively, of h.

We need both of the pieces hs and hn to be elements of H. Now adhn may be put into strictly

upper triangular form and adhs may be diagonalized simultaneously, so the action of adhs

on an element x ∈ Lα(H) is simply multiplication by α(h). Of particular importance is the

fact that [hs, L0(H)] = 0, so hs ∈ Z(L0(H)). Now adhs is a polynomial in adh ([11, p.17]),

so adhs(H) ⊂ H, thus hs ∈ NL(H). Also, h ∈ B implies that adh(B) ⊂ B, so hs ∈ NL(B),

indeed hs ∈ NL(B)∩NL(H). By Lemma 3.3, B = NL(B), so hs ∈ B∩NL(H) = NB(H) = H;

we have hs ∈ H, so hn ∈ H as well. Thus H contains the semisimple and nilpotent parts of

all of its elements.

Now L0(H) is reductive by [7, p.10], so we may use [5, p.56] to write

L0(H) = Z(L0(H))⊕ [L0(H), L0(H)].

As H ⊂ L0(H), [Z(L0(H)), H] = 0, so Z(L0(H)) ⊂ NL(H). Given x ∈ NL(H), adh(x) ∈ H

implies that (adh)n(adh(x)) = 0 for sufficiently large n, since H is nilpotent. Thus we know

that NL(H) ⊂ L0(H). We have Z(L0(H)) ⊂ NL(H) ⊂ L0(H), so utilizing the decomposition

of L0(H), we write

NL(H) = Z(L0(H))⊕ (NL(H) ∩ [L0(H), L0(H)]).

Thus we need to show
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1. Z(L0(H)) ⊂ H

2. NL(H) ∩ [L0(H), L0(H)] ⊂ H

The decomposition of L yields a decomposition of B:

B = B ∩ L = B ∩
⨿
α∈H∗

Lα(H) =
⨿
α∈H∗

Bα(H),

where Bα := B ∩ Lα. Set B+(H) :=
⨿
α ̸=0

Bα(H). As H is a CSA of B, we know that

B0(H) = H by Lemma 3.5. So the decomposition of B is given by

B = H ⊕B+(H).

Since we have finitely many nonzero α ∈ H∗ in the above decomposition such that

Bα(H) ̸= 0, we can find a nonzero β ∈ H∗ such that β is not contained in the union of the

orthogonal complements of α’s. Transporting back to H, that means that there exists h ∈ H

such that α(h) ̸= 0 for any nonzero α ∈ H∗ such that Bα(H) ̸= 0. Thus adh acts bijectively

on B+(H), so B+(H) ⊂ [B,B]. Then

[B,B] = B ∩ [B,B] = (H ∩ [B,B])⊕B+(H).

By [11, p.36], κ(Lα(H), Lβ(H)) ̸= 0 when α + β ̸= 0, and in particular since Z(L0(H)) ⊂

L0(H), we have κ(Z(L0(H)), B+(H)) = 0. This forces B+(H) ⊂ (Z(L0(H)))⊥. In addition,

[Z(L0(H)), H ∩ [B,B]] = 0 since H ∩ [B,B] ⊂ H ⊂ L0(H).

As B is solvable, [B,B] is nilpotent. Then for each h ∈ H ∩ [B,B], we know that ad Bh

is a nilpotent endomorphism. Given x ∈ Z(L0(H)) and h ∈ H ∩ [B,B], ad x ad y is also

a nilpotent endomorphism of B. We conclude that tr (adx ad y) = 0. Thus H ∩ [B,B] ⊂

(Z(L0(H)))⊥. We have previously shown that B+(H) ⊂ (Z(L0(H)))⊥; as [B,B] = (H ∩
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[B,B])⊕B+(H), we have shown

[B,B] ⊂ Z(L0(H))⊥.

As L is semisimple, we know by Lemma 5.14 that [B,B] = B⊥. Then B⊥ = [B,B] ⊂

Z(L0(H))⊥ implies

Z(L0(H)) ⊂ B.

Then Z(L0(H)) ⊂ B ∩NL(H) = H, i.e. we have shown (1): Z(L0(H)) ⊂ H.

We still need to show (2), that

NL(H) ∩ [L0(H), L0(H)] ⊂ H.

Suppose that z ∈ NL(H) ∩ [L0(H), L0(H)]. Then

[H + Fz,H + Fz] ⊂ [H,H] + [H,Fz] ⊂ H.

Thus H + Fz must be a solvable subalgebra of L, and by Cartan’s Criterion,

κ(H + Fz, [H + Fz,H + Fz]) = 0.

In addition, since L is semisimple and H + Fz is solvable, [H + Fz,H + Fz] is precisely

the set of ad-nilpotent elements of L contained in H + Fz by Lemma 5.13. Given h ∈ H,

ad Lhn is nilpotent and hn ∈ H; so hn ∈ [H + Fz,H + Fz]. Thus κ(z, hn) = 0. Recall that

[hs, L0(H)] = 0; so hs ∈ Z(L0(H)), and

κ(z, hs) ∈ κ([L0(H), L0(H)], Z(L0(H))) = κ(L0(H), [L0(H), Z(L0(H))]),
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where the last equality follows by Remark 5.10. But [L0(H), Z(L0(H))] = 0, so

κ(L0(H), [L0(H), Z(L0(H))]) = 0.

We have κ(z, hs) = 0, giving us κ(z, h) = 0 for any h ∈ H. Now z was an arbitrary element

of NL(H) ∩ [L0(H), L0(H)], so

NL(H) ∩ [L0(H), L0(H)] ⊂ H⊥.

Clearly NL(H) ∩ [L0(H), L0(H)] ⊂ L0(H), and since B+(H) ⊂
⨿
α∈H∗

Lα(H), we know

that L0(H) ⊂ (B+(H))⊥. Then B = H ⊕B+(H) implies that

NL(H) ∩ [L0(H), L0(H)] ⊂ H⊥ ∩ (B+(H))⊥ = B⊥.

Recall that B⊥ = [B,B]. Then

NL(H) ∩ [L0(H), L0(H)] ⊂ B⊥ ∩NL(H) ⊂ B ∩NL(H) = H,

and we have shown (2).

To conclude, we have shown that

NL(H) = Z(L0(H))⊕ (NL(H) ∩ [L0(H), L0(H)])

and as each piece of the summand is a subset of H, it follows that NL(H) = H, i.e. H is a

CSA of L.

Lemma 5.20. The intersection of two BSAs of a semisimple L contains a CSA.

Proof. Follow immediately by Theorem 5.15 and Lemma 5.19.
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Lemma 5.21. ([16, p.163]) The BSAs of a semisimple Lie algebra L are conjugate under

EL.

Proof. Given a pair B1, B2 of BSAs, by Lemma 5.20 their intersection contains a CSA H.

The Bi are stable under H, indeed the matrices of ad Bi
H are simultaneously diagonalizable.

So we may decompose Bi as

Bi = H +
⨿
α∈Φi

Bi,α,

where Φi ⊂ Φ. But if α ∈ Φi then Bi,α = Lα. We may then use a standard argument

involving the Weyl group to permute B1 onto B2. (See [11, p.75])

Theorem 5.22. ([16, p.161]) Each BSA B of a Lie algebra L contains a CSA of L.

Proof. Consider the image of B under the canonical homomorphism ϕ : L→ L/R, where R

is the radical of L. By Lemma 4.5 ϕ(B) = B′ is a BSA of the semisimple L/R and by Lemma

5.19 B′ contains a CSA H ′ of L/R. We may find a CSA H of L such that ϕ(H) = H ′ by

Lemma 3.12. H is contained in a BSA B̃, and the BSA ϕ(B̃) = B̃′ of L/R may be permuted

via an element σ′ of EL/R onto B′ by Lemma 5.21. By Lemma 5.3 there is a σ ∈ EL with

σ′ϕ = ϕσ, i.e.

σ′ϕ(B̃) = σ′(B̃′) = B′ = ϕσ(B̃).

But the BSAs of L are in 1-1 correspondence with the BSAs of L/R by Lemma 4.5, so

σ(B̃) = B, and in particular σ(H) is a CSA of L contained in B.

Theorem 5.23. ([16, p.163]) The following statements hold in any Lie algebra L:

1. The intersection of two BSAs contains a CSA.

2. The BSAs of L are conjugate under EL.

Proof. Both statements have already been established for semisimple L; using a process

similar to that in the proof of Theorem 5.22, the theorem follows.
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Chapter 6

Some remarks

Cartan subalgebras exist for finite dimensional Lie algebras whenever the base field is

infinite. Indeed Barnes [1] (see also [2]) shows that if L is a Lie algebra of dimension n over

a field F of at least n− 1 elements, then there exists a Cartan subalgebra of L. Barnes also

showed that every finite-dimensional solvable Lie algebra has a Cartan subalgebra over any

field.

When F has no more than dimF L elements, the existence of Cartan subalgebras of finite

dimensional Lie algebras is still an open problem [11, p.80] [19, p.509].

In [3] Billig and Pianzola give an example of a Lie algebra L of countable dimension

which has no Cartan subalgebras (the definition of CSA given in [3] reduces to the classical

case if L is finite dimensional).

Real case: In general, Cartan subalgebras in a real Lie algebra g are not necessarily

conjugate. Example: In sl2(R) there are two essentially different Cartan subalgebras

H1 =


α 0

0 −α

 : α ∈ R

 , H2 =


 0 α

−α 0

 : α ∈ R

 .

Notice that in sl2(C) these subalgebras are conjugate.

Kostant [14] and Sugiura [21] gave the theory of conjugacy classes of Cartan subalgebras

for a real simple (and hence semisimple) noncompact Lie algebra L.
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