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A propeller performance analysis program has been developed and integrated into 

a Genetic Algorithm for design optimization. The design tool will produce optimal 

propeller geometries for a given goal, which includes performance and/or acoustic 

signature. A vortex lattice model is used for the propeller performance analysis and a 

subsonic compact source model is used for the acoustic signature determination. 

Compressibility effects are taken into account with the implementation of Prandtl-Glauert 

domain stretching. Viscous effects are considered with a simple Reynolds number based 

model to account for the effects of viscosity in the spanwise direction. An empirical flow 
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separation model developed from experimental lift and drag coefficient data of a NACA 

0012 airfoil is included. The propeller geometry is generated using a recently introduced 

Class/Shape function methodology to allow for efficient use of a wide design space. 

Optimizing the angle of attack, the chord, the sweep and the local airfoil sections, 

produced blades with favorable tradeoffs between single and multiple point optimizations 

of propeller performance and acoustic noise signatures. Optimizations using a binary 

encoded IMPROVE© Genetic Algorithm (GA) and a real encoded GA were obtained 

after optimization runs with some premature convergence. The newly developed real 

encoded GA was used to obtain the majority of the results which produced generally 

better convergence characteristics when compared to the binary encoded GA. The 

optimization trade-offs show that single point optimized propellers have favorable 

performance, but circulation distributions were less smooth when compared to dual point 

or multiobjective optimizations. Some of the single point optimizations generated 

propellers with proplets which show a loading shift to the blade tip region. When noise is 

included into the objective functions some propellers indicate a circulation shift to the 

inboard sections of the propeller as well as a reduction in propeller diameter. In addition 

the propeller number was increased in some optimizations to reduce the acoustic blade 

signature. 
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1 INTRODUCTION 

 
Even though aircraft propellers have been designed for over a century, investigations 

of the performance and the design of propellers are as important as ever. The continued 

interest in propeller propulsion is due to the fact that propellers are more efficient at low 

and modest flight speeds when compared to turbofan propulsion. A relatively new field in 

propeller design is the prediction and reduction of propeller noise, which is driven by the 

public living close to airports or large wind turbines. Aircraft propeller noise is also of 

special interest to the military and was first investigated in 1919 by Lynam and Webb. [1] 

This military interest in minimizing noise continues today with the recent fielding of low 

flying Unmanned Aerial Systems (UAS) on reconnaissance missions. 

This work describes an effort to optimize the propeller performance of small thin 

airfoil propellers, which are found on electric powered UAS’s and Remotely Piloted 

Vehicles (RPV). Previous work on 2D airfoil optimization using a Genetic Algorithm 

(GA) has been investigated by Refs. [2]- [4]. Fanjoy and Crossley [3] generated 2D airfoil 

geometries using a B-spline method with 80 panels distributed over the airfoil surface 

and used a panel method to do the aerodynamic analysis. Penalty functions were added to 

provide a minimum thickness thus structural integrity is guaranteed. The two Genetic 

Algorithm’s used are a binary tournament selection with uniform crossover and a real 

encoded GA. The shortcoming is following: If there are cases for which the 
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analysis over predicts the desirable features of an airfoil, the population will move toward 

those cases. 

 A 3D propeller analysis and optimization was done by Miller [5]. In his approach, 

the Vortex Lattice Method (VLM) using a single panel in the chordwise direction was 

employed to determine the aerodynamic propeller performance. The propeller geometries 

were generated using an extended version of the classical method in which the blade 

shank is the center of rotation. Airfoil camber is not considered due to the limitation of 

using only a single chordwise panel. The work includes a subsonic noise analysis using 

sectional forces located at the quarter chord to represent the blade loading and point mass 

sources and sinks to represent blade thickness. The multivariable optimization method 

used was developed by Powell [6] and is a conjugate directions technique. The propeller 

optimization is limited because of constraints of the propeller geometry functions as well 

as the constraints of the lifting line method to account for chordwise geometric shapes. 

Olsen [7] described ship propeller optimizations using the VLM where the propeller blade 

is replaced by a lattice of quadrilateral panels with constant circulation and the horseshoe 

vortices follow regular helices. The propeller surface geometry is defined by a vector 

which contains the rake, the skew of the midchord and the horizontal pitch angle. The 

propeller optimization solves a variational problem to find the radial circulation 

distribution which provides the lowest torque for a given thrust, thus generating 

propellers with minimum losses. The propeller performance computation did not include 

viscous effects and the propeller geometries were generated using simple cosine and sine 

functions.  

 



 3

Hampsey [1]investigated the optimization of small wind turbines employing a three 

dimensional panel method with distributions of source and doublet singularities over the 

discretised blade surface. Airfoil geometries were generated by least squares B-spline 

curve fitting through specified data points. The spanwise geometry was defined by 

stringing a handful of scaled and rotated airfoils along the blade span and then skinning it 

with a similar B-spline surface in the radial direction. The optimization scheme used was 

a differential evolution algorithm which allows for multi-objective optimization. In 

addition to the aerodynamic performance optimization, Hampsey included a wind turbine 

blade structure model. 

The main focus of the present work was: 

• Develop a propeller program which accurately computes the propeller 

aerodynamic performance parameters while being computationally 

efficient; 

• Implementation and development of a new way to generate propeller 

geometries using the Class/Shape function Transformation (CST) 

methodology; 

• Increase computational accuracy by including viscosity, compressibility 

and flow separation models; 

• Implementation of an acoustic signature model. 

The developed propeller performance program is attached to both a binary encoded GA 

and a real coded GA.  

A fundamentally new method to generate airfoil and propeller geometries based on a 

Class/Shape function methodology is utilized. The VLM using lifting surfaces with 
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vortex ring elements has been used to determine the aerodynamic performance 

parameters. In an effort to reduce computation times, a detailed wake extension 

convergence model has been developed and a panel density investigation has been 

completed. The focus of this work is the optimization of propellers with multiple 

objectives, which has not been researched extensively. Finally the implementation of a 

validated acoustic propeller signature model in combination with the VLM performance 

analysis and the optimization scheme using a GA has been developed. 

 This investigation can be split up into four major areas: propeller geometry 

determination, aerodynamic analysis, noise analysis and an optimization scheme. In each 

Chapter, the background in the field begins with a discussion of the basic issues, followed 

by a detailed description of the analysis method used, and concluded by the presentation 

of the work done to verify the method. Optimization results include single and multipoint 

performance and acoustic signature optimizations with performance trade-off’s. 
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2 BASIC THEORY 

The first and simplest method to predict propeller performance was developed by 

Rankine [9]. The basic version is called axial momentum theory, in which the propeller is 

replaced with a disc and the thrust is considered uniformly distributed. Even though the 

theory was extended to account for swirl, friction losses [10] and compressibility [11], it still 

ignores many real world effects, which makes it useful only for predicting the upper 

limits of propeller efficiency. 

The blade element theory was formulated by Froude [12] and Drzewiecki. [13]  

Anderson [14] said “Wilbur Wright was the first person to recognize … that a propeller is 

nothing more than a twisted wing.” Using information from their wind tunnel tests, 

Wilbur Wright had invented “blade element theory,” which is the idea that at each point 

along the span, a propeller meets the air at a different angle and speed. Blade element 

theory divides the propeller blade into elements, each of which is analyzed separately by 

an analogy drawn between propeller and finite wing. The method takes axial and 

associated rotational velocities at each spanwise section into account and uses 2D airfoil 

coefficients to compute local and overall propeller performance. Even though this method 

is more accurate than the axial momentum theory it does not consider the influence of the 

propeller wake. Glauert [15] combined the momentum theory with the blade element theory 

and assumed that the propeller is lightly loaded, hence slip stream contractions are small 
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and the radial components of the induced velocities are negligible. The Vortex Theory as 

discussed above does not include tip losses. An improvement can be made using lifting 

line theory which is discussed in the following section. 

2.1.1 Lifting-Line Theory 

The lifting-line theory was the first practical theory for incompressible, inviscid 

flow to predict aerodynamic properties of unswept three dimensional wings. [16] The 

theory was developed by Ludwig Prandtl and colleagues [17] between 1911 and 1918 and 

is essentially an implicit potential flow solution. The wings are modeled as a single 

bound vortex line, which is located at the quarter chord position and has a shed vortex 

sheet extending to infinity to satisfy the Helmholtz theorem, [16] shown in Figure 2.1 

below. 

 

 

 
Figure 2.1 Lifting-line model with single horseshoe vortex on finite wing 
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To realistically simulate the downwash distribution of a wing, a large number of 

horseshoe vortices are superimposed, each with a different bound vortex length located at 

the quarter chord. Solution methods to the lifting line theory are described in numerous 

texts including Katz & Plotkin [16], Kuethe and Chow [18] and Anderson. [14] 

 

 

Figure 2.2 Distribution of horseshoe vortices, lifting-line model 

Figure 2.2 shows the geometric arrangement of the horseshoe elements over the wing 

span with circulation Γ changing along the lifting-line. 

The unknown circulation Γ of the individual horseshoe vortices is obtained using 

the Biot-Savart Law [16] with the boundary condition, 0ˆ =⋅ nV
r

 (zero flow normal to the 

surface) at a pre-defined collocation point (also referred to as a control point). The 

resulting form of the Biot-Savart Law is: 

 34 r
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The local lift is obtained from the Kutta-Joukowski Theorem [18], which states that 

lift, L per unit span, is directly proportional to the circulation Γ, and is always 

perpendicular to the local freestream velocity.  

 Γ⋅⋅=
∞

VL ρ  (2.2) 

The total lift is the summation of the local lift, L, which is perpendicular to the 

free stream velocity. An illustration of the velocities and related forces is shown in Figure 

2.3. To determine the induced drag, the resultant velocity, V, which has two components, 

the free stream and the induced velocity, wi, must be determined. The induced angle, αi, 

is the angle between the free stream velocity and the resultant velocity. With the induced 

angle of attack known, the induced drag is obtained as shown in Figure 2.3. 

 

Figure 2.3 Induced drag due to induced downwash of the trailing vortices 

The induced downwash velocity, wi, at any span location can be determined once 

the circulation Г is known. This allows for the computation of the local flow angles on 

V∞ 
x 

y 

V∞ 

wi 

αi 

Γ⋅⋅= ∞VL ρ  

( )ii VD αρ sin⋅Γ⋅⋅−=

Γ

Γ⋅⋅= VL ρ  

V 
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the entire wing. A consequence of the downwash flow is that the direction of action of 

each section’s lift vector is rotated relative to the freestream direction. The local lift 

vectors are rotated backwards and hence give rise to a lift induced drag. By integrating 

the component of section lift that acts parallel to the freestream across the span b, the 

induced drag Di can be found as  

 ( )∫
−

⋅Γ⋅⋅=
2/

2/

sin
b

b
ii dyVD αρ  (2.3) 

2.1.2 Lifting Surface Theory 

Due to the limitations of predicting accurately aerodynamic performance for only 

straight medium to high aspect ratio wings, the Lifting-Line Method was extended by 

placing a series of lifting vortex lines along different wing chord stations. [2], [14] Each 

lifting line has two associated trailing vortices which are parallel to the x axis. As the 

location for lift calculations shifts downstream in the chordwise direction, starting at the 

leading edge, additional superimposed trailing vortices are added. Thus vortex strength 

dependency is gained in both the x and y direction. The vortex sheets cover both, the 

spanwise and the chordwise direction and make up the lifting surface. Figure 2.4, a wing 

with two chordwise vortex elements is shown. 
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Figure 2.4 Lifting surface method by horseshoe elements 

As with the lifting-line method, the unknown circulations Γ must be determined 

based on the flow-tangency condition, ( )0ˆ =⋅ nV
r

, at all points on the wing, so that lift 

and induced drag can be calculated. The central problem with lifting surface theory is to 

solve for all the unknown circulations since circulation strengths are mutually dependent. 

One numerical method is the Vortex Lattice Method (VLM) which was developed to 

compute aerodynamic performance data of various wing geometries. Numerous 

papers [19]- [22] have been published which demonstrate the accuracy and applicability of 

the VLM. In this method, the wing is covered by a net of bound and horseshoe elements 

which is called a vortex lattice system. When the Biot-Savart law and the flow tangency 

condition is applied at all collocation points, a system of simultaneous equations is 

obtained which then can be solved for the unknown circulation strengths, Γ. 
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Lifting Surface Method by Vortex Ring or Quadrilateral Elements 

In this method, vortex ring elements are distributed over the wing surface instead 

of the horseshoe elements as previously shown. This simplifies the vortex model as well 

as reduces computation times due to the lower number of vortex filaments. The boundary 

condition on each ring vortex is the same as before: no flow through the wing at a control 

point. 

Since all vorticity based solutions are essentially implicit potential flow solutions, 

flow separation, viscous and compressibility effects cannot be simulated and must be 

taken into account separately, as discussed in Chapters 2.5 – 2.7. 

A single ring vortex consists of four straight bound vortex elements, which are 

arranged in a geometric closed form. Positive circulation is defined according to the 

right-hand rotation rule, which is illustrated in Figure 2.5. 

 

 

 

 

 

 

Figure 2.5 Vortex ring element arrangement 

In previous efforts [5] the lifting surface solution by horseshoe elements was used, 

which is computationally more expensive but yields similar results when compared to 

vortex ring elements. The vortex geometry method used in this effort has been applied to 

ship propellers [7], aircraft propellers [23] and yacht sails [24] and is proven to give accurate 

Element 2 

Element 4 

Element 1 

Γ 

Element 3 
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aerodynamic performance predictions. In the present work, a single propeller blade is 

divided up into chordwise and spanwise panels. The corners of the panels are defined by 

nodal points and the geometric center by a collocation point.  

For thin propeller airfoils, a single layer of panels is placed on the mean camber 

line. For thick airfoil propeller blades (>10%), the upper and lower blade surface is 

covered with a single layer of vortex elements. 

Vortex ring elements are placed on the propeller surface starting at the blade 

leading edge and extending to the second last element in the chordwise direction. The last 

chordwise panel elements are horseshoe elements with a spanwise bound vortex and two 

trailers. The horseshoe trailers extend downstream to infinity following the pitch of the 

last chordwise panel. Figure 2.6 illustrates the discretization of a propeller blade by 

vortex elements. 



 13

 

Figure 2.6 Propeller blade grid discretization 

The aerodynamic performance of the propeller is obtained, as described for the 

lifting surface method with horseshoe elements by applying the boundary condition to 

each panel that the flow normal to the panel surface is zero. For a detailed description of 

the numerical computation of the aerodynamic performance of the propeller is given in 

Section 2.3. 

2.2 Propeller Wake 

Generally there are two types of wake models, the prescribed wake 

models [23], [25], [26], which define the wake by a function and the free wake 

methods [24], [27], [28], which adjust the wake structure to account for wingtip roll up.  
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In this effort, the propeller wake geometry follows Goldstein’s [25] helical model, which 

assumes lightly loaded propellers. Thus the interference flow of the vortex system is 

small compared to the velocities of the blade. The pitch of the wake is constant and there 

is no slipstream contraction. In Ref.  [23], it is shown that aerodynamic propeller 

performance can be accurately predicted using constant pitch wakes. To consider wing 

tip rollup, a free wake model must be chosen. Most free wake models use an iterative 

process to determine the exact wake geometry. The free wake models are not considered 

within this optimization effort due to the increased computation time and minimal gains 

in accuracy. 

The wake of the propeller is simulated by horseshoe vortices which extend from 

the last chordwise panel extending two revolutions downstream. More details on 

propeller wake extensions are discussed in Section 4.2. The wake gradient follows the 

trailing edge panel slope to closely approximate the Kutta condition. 

 

Figure 2.7 Propeller wake geometry 
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The trailers are divided up into 10 degree rotational increments which are 

implemented in Equations 2.4-2. The y and z coordinates of the horseshoe trailers are 

computed similarly but offset by 90 degrees. The x coordinates are determined by the 

gradient of the last chordwise vortex elements multiplied by the distance traveled during 

a 10 degree rotation. Once the gradient, m, of the last chordwise panels is obtained and 

the angles θ of each last chordwise nodal point with the y-axis are determined, the x, y 

and z-coordinates of the horseshoe vortex elements can be written as: 

mijncynodaljncxnodaljixhorseshoe ⋅
⋅

⋅⋅⋅+=
360

)(10),(_2),(_),(_ π  (2.4) 

)
180

),()(10cos()),(_),(_(),(_ 5.022 jncijncznodaljncynodaljiyhorseshoe Θ+⋅
⋅+=

 (2.5) 

)
180

),()(10sin()),(_),(_(),(_ 5.022 jncijncznodaljncynodaljizhorseshoe Θ+⋅
⋅+=  (2.6) 

with m being the gradient of the last streamwise propeller panel 

 
),1(_),(_
),1(_),(_

jncznodaljncznodal
jncxnodaljncxnodalm

−−
−−

=  (2.7) 

and Θ the angle in the x-y-plane associated with the last chordwise nodal point. 

 
π

180
)),(_),(_(

),(_sin),(
5.022

⋅⎥
⎦

⎤
⎢
⎣

⎡
=Θ

jncznodaljncznodal
jncznodalajnc  (2.8) 
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The counter i runs to 72 to generate two full wake rotations and j from 1 to nr which are 

the spanwise number of nodal points.  

 

Figure 2.8 Propeller wake horseshoe trailer discretization 

Initially, a single propeller blade including horseshoe trailers is generated. The geometry 

is then rotated about the origin depending on the required number of propeller blades. 

2.3 Propeller Performance Prediction by VLM  

For the computation of the propeller loading, three different methods are available. 

The methods differ in accuracy and computation time. One method is the Trefftz plane 

analysis [29] in which it is assumed that the induced flow far downstream from the 

propeller does not depend on the streamwise coordinate and thus is considered to be two 

dimensional in all planes normal to the trailing vortex sheet. The induced velocities of the 
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bound vortex elements are neglected since they are determined far downstream in a cross 

plane normal to the wake. Thus, the analysis is essentially reduced to finding the flow 

field of a two dimensional vortex sheet to satisfy certain boundary conditions. The second 

method is the pressure summation method [30] which uses the velocity difference on the 

upper and lower propeller surface to obtain pressure differences. The total force acting on 

the propeller is obtained by surface integration.  The third method is the Joukowski 

method which determines the forces on each discrete vortex line in the lattice and through 

summation obtains the total propeller loading. There are different ways of determining 

the induced velocity which are described in Refs. [31]- [33]. A comparison of the three 

computational methods with respect to accuracy and computational effort, applied to 

yacht sails is found in Ref. [24]. The analysis concludes that the Joukowski method has 

good accuracy and provides the force distributions in both the spanwise and the 

chordwise directions. The Joukowski method was also used by Cheung and generated 

good accuracy in the performance prediction of propellers. Based on this analysis, the 

Joukowski method was selected to determine propeller performance parameters. 

 

Lifting-Surface Solution by Vortex Ring Elements: 

The Propeller blade is divided into chordwise and spanwise vortex ring elements. 

The ring elements cover the entire blade except the last chordwise panels, which are 

horseshoe elements. The horseshoe trailers leave the propeller blade with the same pitch 

as the last chordwise panels as discussed in Section 2.1. The velocity induced by a vortex 

element of the strength Γ with a length of dl on a collocation point P(x,y,z) is calculated 

by: 
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( )

3
10

10

4 rr

rrdl
V

−

−×
⋅

⋅
Γ

=Δ
π

 (2.9) 

with ( )10 rr −  being the vector from the collocation point to the midpoint of the vortex 

element. The circulation Γ and the induced velocities are initially unknown and the last 

part of Equation 2.9 contains the influence coefficients which are obtained with: 

 
( )

3
10

10

4
1inf_

rr

rrdl
coeff

−

−×
⋅

⋅
=

π
 (2.10) 

The influence coefficients describe the geometric relation between the length of a vortex 

element and the point at which the induced velocity is to be determined. Figure 2.9 

illustrates the geometric relations of a vortex element and the point of velocity 

evaluations.

 

Figure 2.9 Induced velocity at point P(x,y,z) by a single vortex element 
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For a single quadrilateral vortex element the total influence coefficients in the x, y 

and z direction are the summations of the influence coefficients in x, y and z direction of 

the four straight bound vortex legs. Cheung [23] determines them by 

 

( ) ( ) ( ) ( )[ ]

( ) ( ) ( ) ( )[ ]

( ) ( ) ( ) ( )[ ] Ixxyyyyxxcoeff

Izzxxxxzzcoeff

Iyyzzzzyycoeff
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⋅−⋅−−−⋅−=

⋅−⋅−−−⋅−=

⋅−⋅−−−⋅−=

∑

∑

∑

=

=

=

4

1

4

1

4

1

inf_
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 (2.11) 

with  
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⎢
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+⋅+
+

⋅
−⋅
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c
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2

1
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  (2.12) 

and 

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )222

222

ncollocatiostartncollocatiostartncollocatiostart

ncollocatiostartstartendncollocatiostartstartendncollocatiostartstartend

startendstartendstartend

zzyyxxc
zzzzyyyyxxxxb

zzyyxxa

−+−+−=

−⋅−+−⋅−+−⋅−=
−+−+−=

 (2.13) 

 
with I, a, b, c being variables which describing the geometric relations of a vortex 

element with respect to a collocation point. 

The same applies to the horseshoe elements, with the difference that the 

summation of the influence coefficients consists of one bound vortex element and two 

trailers which extend two revolutions downstream and which are divided into 10° 

sections. It is of importance to follow the right hand rule when defining start and end 
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point of a single vortex element. The direction of the circulation within the panels cannot 

change. Also once a direction of the circulation is selected, all following panel 

circulations must be in the same rotational direction. 

The sequence of calculating the influence coefficients with respect to one 

collocation point is as follows: The first collocation point on the first panel of the first 

propeller blade is selected and the influence coefficients in the x, y and z direction of the 

first vortex ring element is computed. The obtained x, y and z values of the influence 

coefficients are then stored in the first location of the matrices Ax 1,1, Ay 1,1, and Az1,1. The 

next step is to keep the first collocation point and determine the influence coefficients of 

the second vortex ring element, which is the second panel in the spanwise direction of the 

propeller blade. Again the influence coefficients are stored in the matrices at the location 

Ax 1,2, Ay 1,2, and Az 1,2. This process is repeated until all influence coefficients in x, y and 

z direction are determined with respect to all vortex ring elements and horseshoe 

elements of all propeller blades. Then the process is repeated with the collocation point of 

the second vortex ring element selected. The individual influence coefficients are 

determined and stored in the matrices Ax 2,n, Ay 2,n, and Az 2,n. The computations of all the 

influence coefficients ends with the last collocation point on the last propeller blade and 

the last horseshoe panel on the last propeller blade. Figure 2.10 the scanning sequence of 

the propeller panels is shown. 



 21

 
Figure 2.10 Scanning sequence on propeller blade panels 

All influence coefficients in x, y and z directions are stored in the matrices Ax, Ay, 

and Az with the rows representing the dependencies with respect to a single collocation 

point and the columns representing the dependencies of a single panel with respect to all 

collocation points of all propeller blades. Thus the Biot-Savart law becomes: 
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To calculate the unknown circulations, Γ, the boundary condition that the velocity at each 

collocation point normal to the individual panel is zero, or: 
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 0ˆ =⋅ nV  (2.15) 

The surface normal of each quadrilateral and horseshoe element is determined as the 

cross product of the diagonal vectors of each panel and is given as: 

 
kk

kk
k BA

BAn
×
×

=  (2.16) 

 

 

Figure 2.11 Normal vector on propeller blade panel 

The boundary condition applied to each collocation point is: 
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with αk being the angle of attack of the onset velocity Vonset_k with the x- axis, λk the 

angle of each panel normal with the z-axis and φ the orientation of the panels. Figure 2.12 

illustrates the geometric relations in the propeller coordinate system. 
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Figure 2.12 Propeller boundary condition and orientation angles 

 

The onset velocity Vonset changes with each spanwise panel, since it is a combination of 

the free stream velocity and the rotational speed of the propeller. 
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Equation 2.14 is a system of linearly dependent equations which are solved for the 

unknown circulations Γ with a Gauss Seidel solver. Section 4.1 describes in detail the 

Gauss Seidel Solver. 

 [ ] [ ] [ ]BxA =⋅  (2.19) 
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and x the unknown circulations: 

 
[ ]kx ΓΓΓΓ= ,...,, 321

 (2.21) 

and B the boundary condition zero flow normal to the panel surface: 
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The returned vector x  contains the circulations Γk of each propeller blade panel as shown 

in Figure 2.13 below. 

 

Figure 2.13 Vortex circulation sequence on a two bladed propeller 

With the returned circulations, the normal force of each quadrilateral and horseshoe 

element is obtained by the use of the Kutta-Joukowski theorem [16]. Kutta-Joukowski 

theorem states that the forces are always perpendicular to local onset flow, which is the 

combination of the free steam velocity and the local rotational speed of the propeller. The 

forces for the panels on the propeller blade, except for the forces on the leading edge 

panels are: 
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 ( ) jjijijionsetji yVF Δ⋅Γ−Γ⋅⋅=Δ −∞ ,1,,_, ρ  (2.23) 

For the leading edge panel (i=1) the forces are: 

 ( ) yVF jionsetji Δ⋅Γ⋅⋅=Δ ∞ ,, ρ  (2.24) 

For the computation of the thrust and required power of the propeller, the induced 

downwash at each collocation point must be determined. The influence coefficients from 

only the trailing vortex segments with respect to each collocation point are computed in a 

manner similar to the approach used for the quadrilateral panels. These coefficients are 

stored in the matrices Bx, By, and Bz. Figure 2.14 shows a propeller blade with related 

horseshoe elements. 
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Figure 2.14 Trailing vortex segments responsible for induced downwash 

Since the circulations Γk are known from the previous calculations, the induced 

downwash on each collocation point is determined by: 
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The circulations used for the computations of the induced downwash are obtained from 

the Gauss Seidel solution. 
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With the induced downwash, the induced drag on each panel is determined with: 

 ( ) 1,,,1,,_,_ >Δ⋅Γ−Γ⋅⋅−=Δ − iywD jijijijiindjiind ρ  (2.26) 

 ( ) 1,,,,_,_ =Δ⋅Γ⋅⋅−=Δ iywD jijijiindjiind ρ  (2.27) 

The total induced drag is the summation of all individual panel contributions of one 

propeller blade multiplied by the number of the propeller blades. 
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N

j
jiind

M

i

⋅⎥⎦
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== 1
,_

1

 (2.28) 

To compute the thrust and the required power of the propeller the forces and the induced 

drag forces on each panel must be rotated in the propeller coordinate system as illustrated 

in Figure 2.15. 
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Figure 2.15 Total thrust and drag of the propeller 

The angle of rotation is defined by the onset flow angle γj which changes in the spanwise 

direction. Thus the propeller thrust contributions of the individual panels are:  

 ( ) ( )jjiindjjiji DFT γγ cossin ,_,, ⋅Δ−⋅Δ=Δ  (2.29) 
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and the drag contributions are: 

 ( ) ( )jjiindjjiji DFD γγ sincos ,_,, ⋅Δ+⋅Δ=Δ  (2.30) 

The total thrust of the propeller is obtained by the taking the summation of the individual 

panel contributions multiplied by the number of the propeller blades: 
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 (2.31) 

To compute the required propeller power, the torque ΔQi,j generated by the individual 

drag component of the panels, is multiplied by the distance from the collocation point to 

the axis of rotation. The summation of the torque contributions of the individual panels 

multiplied by the number of the propeller blades nxbl will determine the total propeller 

torque Qtotal. 
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The required propeller power is the total torque multiplied by the rotational speed ω of 

the propeller. 

 ω⋅= totalQP  (2.33) 
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With the propeller thrust and power known, the thrust and power coefficients are: 

 
42 dn

T
c total

t ⋅⋅
=

∞ρ
 (2.34) 

 53 dn
Pc p ⋅⋅

=
∞ρ

 (2.35) 

with n being the revolutions in rad/sec and d the propeller diameter. The propeller section 

lift coefficient, cl, and the propeller efficiency are other parameters which are commonly 

used in the performance analysis. 

 ( )
cV

rc il ⋅
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P
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2.4 Propeller Geometry 

In general the geometric definition of propellers can be reduced to the airfoil type, 

the chord length, the sweep and the angle of attack function. In this effort the CST 

(Class/Shape Function Transformation) method for defining general aerodynamic shapes 

has been applied to the generation of random propeller shapes which is discussed as 

follows. 

2.4.1 2-D Airfoil Geometry 

Several methods have been developed to represent general airfoil shapes for the 

use in aerodynamic design optimizations. The goal is to define a simple analytic function 
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which efficiently describes the entire design space for airfoils. Some of the methods used 

in previous efforts can be found in Ref. [34]- [39]. 

The method chosen is based on the work of Ref. [40] and Ref. [41]. In this 

approach a simple and well behaved analytic unit shape function, based on Bernstein 

polynomials (BP) is introduced. This shape function directly controls key airfoil 

parameters including leading edge radius, thickness and trailing edge angle. A unit class 

function is added to the unit shape function to allow for a wider variety of general body 

shapes. 

The streamwise class function in the design space is defined as 

 ( ) ( ) [ ] 211

2
1 NNN

NC ψψψ −⋅=  (2.38) 

 
with ψ being the fraction of the local chord. In the physical space the unit class function 

is 
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where c is the chord and x is the local chord fraction having a range from 0-1. The first 

term of Equation 2.39 defines the shape of the airfoil leading edge and the second term 

can be used to ensure a sharp trailing edge. If N1 = 0.5 and N2 = 1.0 a round airfoil 

leading edge and a sharp trailing edge, is enforced. Figure 2.16 shows some examples for 

different values of the class function coefficients N1 and N2. Further geometry class 

determinations due to N1 and N2 variation can be found in Ref. [40]. 
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Figure 2.16 Class function 2D design space 

 

The unit shape function is defined by a BP of the order n with the variable x ranging 

from 0-1.0. The BP’s were chosen due to the mathematical property of “Partition of 

Unity” as described in Ref. [41]. The first term of the shape function defines the binomial 

coefficients with increasing order n of the BP. For each order n of BP there exist n+1 

terms which are defined by Equation 2.40. 
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The individual terms of the BP’s can be illustrated by means of a Pascal’s triangle as 

shown in 2.17. 
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Figure 2.17 Bernstein polynomial representation of the unit shape function 

The first term of Equation 2.40, when written in polynomial form as shown in 

Figure 2.17, defines the leading edge radius and the last term the trailing angle. The other 

terms are shaping terms which do not influence airfoil leading or trailing edge shape. 

The entire airfoil can be represented by one upper and one lower unit class function (if 

thickness is included) multiplied by a unit shape function with Bernstein polynomials. In 

Ref. [41] it was found that a BP of the order n of 6-9 matched the airfoil geometries and 

aerodynamic forces. It was further suggested that for optimization purposes the order n 

could be lowered to 4 which reduces the design variables and thus improves computation 

times. Based on the findings in Ref. [41] the order of the BP is set to n=4 for all further 

propeller optimizations. 

Equations 2.41 and 2.42 define the upper and lower airfoil geometry. The first two terms 

are the class function which sets the leading and trailing shape of the airfoil. The 
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remaining terms are the BP for n=4 with the individual coefficients as shown in Figure 

2.17. When thin airfoil propellers are considered only the upper airfoil geometry function 

is used to define the propeller shape. A single layer of vortex elements is placed onto the 

geometry function to represent the mean chord of the thin bladed propeller.  

 

Upper surface definition: 
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Lower Surface definition: 

   

( )

[

]
4

10

23

9

22

8

3

7

4

6

114

1614

1
43

⎟
⎠
⎞

⎜
⎝
⎛ −⋅+⎟

⎠
⎞

⎜
⎝
⎛⋅⎟

⎠
⎞

⎜
⎝
⎛ −⋅⋅+

⎟
⎠
⎞

⎜
⎝
⎛⋅⎟

⎠
⎞

⎜
⎝
⎛ −⋅⋅+⎟

⎠
⎞

⎜
⎝
⎛⋅⎟

⎠
⎞

⎜
⎝
⎛ −⋅⋅+⎟

⎠
⎞

⎜
⎝
⎛⋅

⋅⎟
⎠
⎞

⎜
⎝
⎛ −⋅⎟

⎠
⎞

⎜
⎝
⎛−=

c
xA

c
x

c
xA

c
x

c
xA

c
x

c
xA

c
xA

c
x

c
xxy

NN

lower

 (2.42) 

 
with c being the maximum chord, x the local variable ranging from 0 – 1 and A1-10 the 

coefficients (with a range of 0-1). This 2-D class/shape function requires 14 variables for 

a thick airfoil (upper and lower surface) and 7 variables for a thin propeller with a single  
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surface geometry function. Figure 2.18 illustrates two random airfoils from the design 

space of the class/shape function, one thick and one thin. 

 

 

 

Figure 2.18 Class/Shape function single and dual surface geometries 

2.4.2 3-D Propeller Geometry 

The class/shape function methodology of representing 2D airfoils is extended here 

to define general 3D propeller shapes. This approach is based on the work done by 

Ref. [40] and  [41] and then extended further to allow for a more open design space in the 

creation of general propeller geometries. To accomplish spanwise geometry variation the 

coefficients A1-10 and N1-4 for the top and the bottom airfoil side must be dependent on 

the local spanwise position. Thus for each of the dependent variables A1-10 a BP function 

with n=3 describing the spanwise coefficient variation, is defined. For the coefficients of 

the Class function, N1-4, a BP function with n=1 is introduced, to provide smooth 

spanwise coefficient transitions. Thus the variables for the upper and lower airfoil 

geometry are: 

Class/Shape function single mean chord airfoil geometry 

Class/Shape function upper lower airfoil geometry 
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   (2.43) 

b is the unit propeller radius, y is the local spanwise station, and i and j are the variable 

counters from 1-5 and 1-2. 

The total number of variables to describe the upper and lower airfoil geometry is 

44. Twenty for each, the upper and lower airfoil shape function and 4 variables to define 

the two class functions. The geometry of a single surface is described by the unit 

class/unit shape function for the upper airfoil side as: 
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An angle of attack (AOA), chord length and sweep variation function is added to 

the unit class/shape function to further extend the propeller design space. All three 

functions are defined in the same manner as the unit shape function variables A1-5, with 
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the addition of a multiplication factor to define the max value of the function. Each 

function requires 5 additional variables, four to define the BP with n=3 and one to set the 

max value of the function. 

The angle of attack, chord length and sweep function can be written as: 
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with aoa5 and chord5 being the max angle of attack and max chord length. 
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The variable, sweep5, defines the maximum sweep in multiples of the propeller root 

chord. Figure 2.19 illustrates how the sweep function influences the propeller shape. This 

brings the total number of variables to 66. Sixty three for the blade geometry, one for the 

propeller radius, one for number of propeller blades and one for the position, which the 

individual spanwise airfoil sections are rotated about. 
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Figure 2.19 Propeller sweep functions based on CST method 

In this effort, propeller optimizations for small electric powered UAS are investigated 

thus only thin airfoil propellers are considered. This eliminates one surface geometry 

function and reduces the number of variables to 40. An example of a single surface 

propeller blade with wake is shown in Figure 2.20. 

Propeller root 

Propeller tip 

Sweep backwards 
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Figure 2.20 Thin propeller blade geometry by Class/Shape function scheme 

2.5 Compressibility 

Even though only small thin bladed propellers are considered in this effort, air 

density variations, ρ, due to Mach numbers higher than M > 0.3 can have noticeable 

effects on the propeller performance. The general, Prandtl-Glauert compressibility 

correction uses the Mach number to correct pressure, lift and moment coefficients at 

Mach numbers up to M=0.7 for thin airfoil and at small angle of attack. The derivation of 

the compressibility correction is described in Ref. [14]. Gennaretti and Morino [42] showed 

that at higher Mach numbers the Prandtl-Glauert rule greatly over predicts the pressure, 

moment and lift coefficients at helicopter rotor tip sections when applied directly to 

incompressible results from lower Mach numbers as shown in Figure 2.21. Further 

background information on compressibility is described in Ref.  [31] [43] [44]. 
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Figure 2.21 Comparison of lift coefficient for incompressible and compressible 
flow with direct application of the Prandtl-Glauert rule (Source  
from Ref. [45] ) 

Szymendera [45] derived the Prandtl-Glauert rule starting with the continuity equation 

based on Ref. [31], [43], [44] and then applied it to the Biot-Savart law. This resulted in a 

domain stretching in the flow direction which is dependent on the Mach number and has 

a direct effect on the induced velocity computation. Equation 2.48 and Figure 2.22 show 

the relation between domain stretching and Mach number. 
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As shown in Fig. 2.21 compressible results from Szymendera show better agreement with 

the coefficients than the results computed directly by applying the Prandtl-Glauert rule. 

♦ Experiment 
⎯ ⎯ Incompressible Method 
----- Prandtl-Glauert Correction 
____ Compressible Method 
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Figure 2.22 Prandtl-Glauert domain stretching in flow direction 

 

The implementation of compressibility into the propeller performance program is 

done after the propeller geometry is determined based on the input parameters. Since the 

tangential velocity increases along the propeller span, the stretching is more pronounced 

at the tip where the velocities are the highest, as illustrated in Figure 2.23 below. 
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Figure 2.23 Prandtl-Glauert domain stretching of vortex ring elements 

The propeller performance code was run with and without compressibility taken into 

account. The propeller diameter was 0.3 [m] and the propeller rpm was 10,000, which 

results in a tip Mach number of 0.47. The section lift coefficient for both the 

compressible and the incompressible solution is shown in Figure 2.24. This result agrees 

with the findings of Gennaretti and Morino [42]. The section lift coefficient is higher for 

the compressible case since the domain shrinking based on higher Mach numbers results 

in a smaller chord which in return increases cl. 

Stretched domain, 
incompressible 

Actual domain, 
compressible 
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Figure 2.24 Spanwise lift coefficient normalized by blade radius 

To determine the influence of the compressibility on the overall performance of 

small thin airfoil propellers at lower Mach numbers considered in this effort, a 

second investigation has been done. A generic propeller was selected as shown in 

Figure 2.25, with a diameter of 0.25 [m] operating at 36 [m/s] free stream velocity. 

The propeller speed was raised in steps starting from 4000 to 10000 revolutions per 

minute. The parameters of interest are the propeller efficiencies which are shown in 

Figure 2.26 for the compressible and incompressible case. It is observable that at 

Incompressible 

Compressible 
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Mach numbers above 0.25 efficiencies are slightly higher in the compressible case. 

The higher the tip Mach number the larger the discrepancy between incompressible 

and compressible solution. 

X

Z

Y

 

Figure 2.25 Generic two bladed propeller with wake 
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Figure 2.26 Compressibility effects vs propeller tip Mach number 

Most of today’s electric propulsion systems used on small UAS’s such as the US 

Army’s Raven system (manufactured by AeroVironment) use propeller speeds in cruise 

below 8000 revolutions per minute and propeller diameters of 0.2-0.4 [m]. This generates 

a maximum propeller tip speed in the range of M=0.3 and small propeller efficiency 

differences, of about 1% between incompressible and compressible solution, are 

noticeable. Figure 2.26 illustrates the reduced efficiency when compressibility is 

considered at different propeller speeds. 
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2.6 Viscous Model 

Since the VLM is an inviscid solution technique the physically accurate treatment 

of viscous flows is beyond its capability. Inviscid aerodynamic solvers predict lift and 

drag well for high Reynolds numbers (Re) and moderate angle of attacks, but these 

predictions become increasingly less accurate as the Re decreases and the sectional angle 

of attack increases. Viscous-inviscid interaction methods [46]- [47] increase the range of the 

prediction accuracy of the boundary element methods while maintaining computational 

economy, but they are beyond the scope of this work. Most of the viscous-inviscid 

interaction methods use the solution obtained by a boundary method and apply a 

numerical boundary layer model to account for viscous effects and flow separation. In 

this effort, a simple Reynolds number based model is implemented in an attempt to 

account for the effects of viscosity as it varies in the spanwise direction. Since the 

propeller blades considered in this effort all have thin airfoils, a flat plate boundary layer 

method [14] is used to determine the skin friction coefficients cf. It is assumed that laminar 

flow exists over the first 15% of the chord and that the remaining 85% the boundary layer 

flow is turbulent. [48] Thus the skin friction coefficients for laminar and turbulent flows 

are: 

 
c

arlafc
Re
328.1

min_ =  (2.49) 

 
5
1_

Re

074.0

c

turbulentfc =  (2.50 

 



 47

with Rec being the Reynolds number at the spanwise collocation points with respect to 

the propeller section chord length c. 

 
μ

ρ cVonset
c

⋅⋅
=Re  (2.51) 

Once the Reynolds number is determined, the skin friction coefficient on each spanwise 

collocation position is computed. The viscous drag is then obtained from: 

 [ ]fonsetvisc cSVD ⋅⋅⋅⋅= 2

2
1 ρ  (2.52) 

with S being the summation of all sectional wetted areas at one spanwise station. With 

the viscous drag known at each spanwise propeller blade position, the torque and the 

power increase due to viscous effects are: 
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 (2.53) 

The viscous torque is multiplied by 2.0 to account for both the top and the bottom 

side of the propeller surface. Finally the total power due to viscous effects is calculated 

by multiplying the viscous torque by the number of propeller blades. 

To gain confidence in the viscous flow modeling, a NACA 109622 straight blade 

propeller was simulated and compared with results obtained from lifting line method with 

and without viscous effects considered. To account for viscosity, Cheung [23] used drag 

data obtained from Ref. [49] of a NACA16-004 airfoil section. Figure 2.27 shows both the 

results of from Cheung obtained with lifting line method and the flat plate viscous 
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computation method shown above. There is good agreement between the two inviscid 

(lifting line and lifting surface) methods and small discrepancies in the results of the two 

viscous methods at lower advance ratios. 
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Figure 2.27 Spanwise lift coefficient normalized by blade radius [23] 

2.7 Flow Separation Model 

The flow field associated with propellers is highly three dimensional and unsteady 

in nature and, as yet, not well understood. [50]- [53] Of particular difficulty is the prediction 

of propeller performance at high angles of attack when flow separation occurs. In recent 

years, new efforts have been made to better predict post stall behavior since flow 

separation on inboard regions of wind turbines are common during much of their 
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operational times. [54]- [59] Most of the developed methods for predicting flow separation 

use an empirical or semi empirical stall model due to the complexity of the flow. Tangler 

and Kocurek [60] developed a global post stall method based on the Viterna’s 

equations. [61]- [62] The disadvantage is that the slope and the maximum value of the 

aerodynamic coefficients must be known for the model to be used. Further if the 

aerodynamic coefficients do not match the behavior of a flat plate, the method becomes 

unusable up to 20º angle of attack. In Ref. [60], it was demonstrated that even when thick 

airfoil sections are considered, post stall behavior of cl/cd of a rotor, beyond 20 degrees 

angle of attack, follows flat plate theory. In this effort, the first part of the Viterna 

equations is used, since it predicts the maximum section drag coefficient as a function of 

the aspect ratio of the propeller. The maximum global drag coefficient prediction, shown 

in Equation 2.54, was used by Ref. [60] for sectional post stall predictions and showed 

good agreement when compared to experimental data obtained from a rotor with five 

spanwise pressure sensors: 

 ARcd ⋅+= 018.011.1max_  (2.54) 

For the computation of the stall and post stall behavior of the flow, data obtained 

from a NACA 0009 symmetrical airfoil [63] were used to generate the empirical post stall 

model. The NACA 0009 airfoil was selected because experimental data exist for it and 

since it is still considered a thin airfoil which matches the thin propeller blade simulation 

efforts of this work. This was done with a simple curve fitting of the lift and drag 

coefficient slopes starting at ~11° and going up to 90° angle of attack. Figure 2.28 and 

2.29 illustrates the curve fitting of the lift and drag coefficients. In Appendix F the figures 
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generated from the experimental data from Ref. [63] are shown. If a single vortex panel 

exceeds 13º angle of attack, the flow separation model is applied to the corresponding 

panel of the propeller blade and new lift and drag forces are computed. This allows for 

performance computations of partially stalled propellers. During most of the 

optimizations, the panel angles of attack stay below 13°, since at larger Angle of Attack 

propeller efficiencies degrade. Thus the empirical flow separation model is mainly used 

when fixed pitch propellers designed for high cruise speeds are analyzed at low free 

stream velocities where local panel angles of attack exceed 13 degrees. 
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Figure 2.28 Lift coefficient of NACA 0009 in post stall 
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Figure 2.29 Drag coefficient of NACA 0009 in post stall 

The NACA109622 straight blade propeller was used to quantitatively verify the 

effects of the flow separation model. Figure 2.30 shows that below an advance ratio of 

1.3 certain propeller regions are above 13º angle of attack, which activates the flow 

separation model, thus reducing the lift and increasing the required power. Figure 2.30 

and 2.31 illustrate two runs with the propeller performance program where lift and power 

with and without the flow separation model activated are investigated. 
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Figure 2.30 Post stall thrust behavior of a NACA109622 propeller with empirical 

stall model 
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Figure 2.31 Post stall power behavior of a NACA109622 propeller with empirical 

stall model 
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2.8 Acoustic Signature Model 

 The aerodynamic noise prediction of propellers dates back to 1919 when Lynam 

and Webb first published their work, which was driven by the requirement to have 

aircraft flying undetected over enemy territory. Since then, several different empirical, 

semi empirical and theoretical methods of propeller noise prediction have been developed 

and continuously improved. In recent years, propeller noise has again become of public 

interest due to the rapid increase in air traffic and the popularity of wind turbines for 

electric power generation. A summary of some of the different methods can be found in 

Reference  [64]. More recently, the introduction of UAS’s as reconnaissance platforms in 

military operations, brought attention to the propulsion and propeller noise, since low 

flying reconnaissance UAS’s have low detectability requirements. Engine related noise, 

especially for small unmanned aircraft, is avoided by switching to an electric propulsion 

system, which leaves the propeller as one of the main sources of noise. [65] 

In this effort, a subsonic steady analysis using point sources (point forces located at the 

quarter chord for the elemental forces and point mass sources and sinks to represent 

propeller thickness) is implemented. The location of the point sources is illustrated in 

Figure 2.32 
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Figure 2.32 Locations of noise sources 

The model is based on the work of Lowson [66] and was further developed by 

Miller [5] to account for noise generated by radial forces. It is assumed that the forward 

flight velocity is small M<0.1 which seems appropriate because only small low airspeed 

aircraft are considered in this work, thus a static analysis technique is applicable. For 

optimization efforts only the pressure perturbation, p-p0, is considered and implemented 

into the objective function to reduce propeller noise. If the perceived noise level dBA of a 

human ear is of interest, the pressure perturbation must be converted to sound pressure 

levels (SPL) and then adjusted based on the frequency to represent human ear sensitivity. 

The pressure perturbation after Miller [5] is: 
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where Ms is the Mach number of a point on the quarter chord in the spanwise direction, r 

is the distance between the source and observer, robs is the distance of the observer to the 

origin, ω is the angular velocity, τ is the retarded time, Rs is the distance between the 

source and the origin, φ is the angle of the observer with the x axis, and θ is the angle of 

the source with respect to the y axis. A geometric illustration is shown in Figure 2.33. 
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The volume displacement of the propeller is simulated by a Rankine [5] body with a single 

source sink pair on each spanwise collocation position. The source strengths are 

determined by solving for the Rankine body in the freestream with the major axis length 

equal to the local propeller chord. Thus the maximum diameter, h, of the Rankine body is 

determined from: 

 2ht
c
tS ⋅=⋅⎟

⎠
⎞

⎜
⎝
⎛⋅Δ π  (2.61) 

with ΔS the spanwise width of the panels and (t/c) the local thickness ratio. 
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Figure 2.33 Acoustic signature analysis geometry 

Since the aerodynamic propeller analysis of this work does not consider airfoil thickness, 

a generic thickness profile based on thin bladed propellers is applied, which is shown in 

Figure 2.34. 
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The point mass flux, qm, is obtained by solving the source/sink position from 

 ( ) 01 2222 =+⋅−− ςξςξ  (2.62) 

where 

 hc
=⋅

2
ς  (2.63) 

and 

 
chordmidfrompositionk

sourcec
____sin2

=⋅ξ  (2.64) 

Once ξ is known, qm is obtained from 
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To determine the overall pressure perturbation the time of each spanwise pressure 

perturbation to reach the observer must be known as the propeller turns. This is done by 

initially calculating the distance each blade pressure perturbation has to the observer and 

dividing it by the speed of sound. The propeller blade is then rotated backwards in time in 

1° increments and the observer time for each spanwise pressure perturbation is now 

determined by computing the times the pressure perturbations take to reach the observer 

minus the time the blade took to rotate 1º. Then, by matching the times of each pressure 

perturbation, the total pressure perturbation is the sum of all the local pressure 

perturbations with equal observer times. 
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Figure 2.34 Linearized airfoil thickness distribution of a APC 14x7 propeller 

The test case for verifying the acoustic noise signature is the data obtained by 

Succi [67]- [70]. The simulated propeller is a ¼ scale model of a Cessna 172 Skyhawk 

propeller with the type description 1C160. The geometry of the 1C160 quarter scale 

propeller is taken from Succi who describes the chord and propeller pitch in the spanwise 

direction. In Appendix G the propeller geometric description is given. Based on this 

information, a flat plate propeller was generated with 18 panels spanwise and 3 panels 

chordwise which is illustrated in Figure 2.35. In the spanwise direction are placed 

sectional forces which are located at the quarter chord position. The point mass sources 

and sinks are located with equal distance from the middle chord of each spanwise panel 

center. 
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Figure 2.35 1C160 quarter scale Cessna 172 propeller 

For the test case verification, the observer was located 0.5 meters from the propeller. The 

wave form is for an observer in the plane of rotation behind the propeller φ = 130º. The 

propeller speed was 10000 rpm and the free stream velocity 29 [m/s]. In Figure 2.36 the 

experimental and theoretical results of Succi as compared to the results of Miller. The 

implemented acoustic signature model of his work is shown in Figure 2.37 and agrees 

well when compared to the results of Succi and Miller. 
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Figure 2.36 Pressure perturbation comparison experiment and theory from 

Miller [5] 
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Figure 2.37 Pressure perturbation of 1C160 quarter scale propeller 
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3 PROPELLER AERODYNAMIC PERFORMANCE PREDICTION 
PROGRAM 

 The propeller performance program is the principal portion of the objective 

function for the GA. The program consists of nine major routines. 

• Airfoil and propeller geometry generation 

• Influence coefficient determination 

• Gauss Seidel solver subroutine to solve for the unknown circulations 

• Main program to connect the subroutines and to compute the lift, drag and 

power of the propeller 

• Compressibility correction subroutine 

• Viscous model analysis 

• Pressure perturbation determination 

• Flow separation model 

The geometry of the propeller is defined by 40 variables: 

• 22 variables describe the airfoil geometries 

• 5 variables describe the spanwise angle of attack function 

• 5 variables describe the spanwise chord length variation function 

• 5 describe the propeller sweep function 

• 1 for the number of propeller blades 

• 1 for the propeller radius 

• 1 is related to the position about which the pitch of the propeller is changed 
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The 40 propeller geometry design variables are allowed to change during the 

optimization process and other fixed parameters such as the free stream velocity, 

rotational speed, number of panels and propeller hub diameter are constants. Figure 3.1 

illustrates the program structure. A description of the variables can be found in Section 2 

and Appendix B. The open program structure allows for optional activation of certain 

individual subroutines to account for compressibility effects, viscous and acoustic 

signature determination. In addition to single (design and operating) point analysis the 

program is capable of analyzing a propeller over a range of free stream velocities and 

propeller rotational speeds. Additionally variable pitch propellers can be designed by 

adding variables which offset the angle of attack function of the propeller by a constant 

value. 

 The program starts by loading the propeller geometry input parameters from the 

file “Snglerun.dat.” The subroutine “coordgen” generates the propeller shape based on 

the input parameters. The influence coefficients are determined and the unknown 

circulations are returned by a Gauss-Seidel solver. The accuracy of this basic inviscid 

solution can be increased by activating a viscous, compressibility model. Additionally an 

acoustic signature model can be used to determine propeller pressure perturbations. 

Based on the optimization requirements either thrust, power input, efficiency or acoustic 

signatures can be returned and used as an optimization objective. 
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Figure 3.1 Flow chart propeller aerodynamic performance program 

Input Parameters: 

pr           = (x(1))  nxbl       = (x(2))  ua_1      = (x(3)) 

ua_2      = (x(4))  ua_3      = (x(5))  ua_4     = (x(6)) 

ua_5     = (x(7))  ua_6     = (x(8))  ua_7     = (x(9)) 

ua_8     = (x(10)) ua_9     = (x(11)) ua_10    = (x(12)) 

ua_11    = (x(13)) ua_12    = (x(14)) ua_13    = (x(15)) 

ua_14    = (x(16)) ua_15    = (x(17)) ua_16    = (x(18)) 

ua_17    = (x(19)) ua_18    = (x(20)) ua_19    = (x(21)) 

ua_20    = (x(22)) fau_1    = (x(23)) fau_2    = (x(24)) 

• Compressibility Model 
• Viscous Model 
• Flow Separation Model 
• Noise Model 

•Propeller airfoil and Geometry 
•Grid Discretization 
•Compressibility Domain stretching 

Influence Coefficient Determination

Gauss Seidel Solver 

Write Output 
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4 CODE VERIFICATION 

The aerodynamic propeller performance code was developed without significant use 

of existing programs. Thus the numerical scheme was verified using experimental 

published and existing numerical data. In an effort to reduce optimization computation 

times the Gauss Seidel subroutine which solves for the unknown circulations was 

investigated to determine the minimum requirement for the convergence of solution. The 

minimum propeller wake extension and the minimum number of chordwise and spanwise 

panels which still produce accurate results were also investigated to further reduce 

computation times. 

4.1 Gauss Seidel Solver convergence 

After the determination of the influence coefficients in the x, y and z-direction and 

the application of the BC that the flow is parallel to the propeller surface 0ˆ =⋅ nV
r

, a 

system of linear dependent equations is obtained. 
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with 

 ),(),(inf_),(),(inf_),(),(inf_ jinjicoeffjinjicoeffjinjicoeffb zzyyxxij ⋅+⋅+⋅= (4.2) 

To solve for the unknown circulations Γ, an implicit or explicit solver can be 

used. Due to the large number of panels on the propeller (up to 5000) an explicit Gauss 

Seidel solver [71] is used to determine the individual circulations of each quadrilateral and 

horseshoe element. The advantage of the explicit solver is that it is much faster when 

solving a system with a large number of equations. [71] 

The Gauss Seidel solver begins with the first linear equation, solves it for the first 

unknown Γ as shown in Equation 4.3. The second linear equation is then solved after the 

circulation for the second panel and is updated with the vortex strength of the first panel. 

This procedure is repeated until all equations are solved once. The process is then 

reversed and all linear equations are solved again starting at the bottom of the matrix. 
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  (4.3) 

The convergence of the solution is measured by the summation of the errors 

between the left hand sides (LHS) and the right hand sides (RHS) of the linear equation 

after each matrix sweep. Equation 4.4 defines the determination of the related errors. 
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A two bladed propeller with panel numbers ranging from 32 to 1568 has been 

investigated to determine the minimum number of required matrix sweeps which still 

produce accurate results. Figure 4.1 shows the convergence of the solution over the 

number of matrix sweeps. Noticeable is that after about 250 matrix sweeps the 

summation of the errors for all panel densities reach the numerical accuracy of the 

computer. 
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Figure 4.1 Summation of LHS and RHS difference after matrix sweeps 
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To evaluate the convergence of the solution the thrust of a two bladed propeller 

using 512 and 1565 panels respectively is plotted over the number of matrix sweeps. 

These results of this study are shown in Figure 4.2 below. 
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Figure 4.2 Accuracy of the solution after matrix sweeps by Gauss Seidel solver 

A single matrix sweep is defined by solving all equations in the matrix once 

downstream and once upstream while updating the circulations continuously. The results 

shown in Figure 4.2 are referenced against the solution obtained after 1000 matrix 

sweeps. It is observed that with increasing panel numbers the number of matrix sweeps 

must be increased to maintain a prescribed numerical accuracy. Figure 4.2 shows that at 

about 70 sweeps, the solutions are within 1%. Thus for all further propeller performance 
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computations the number of matrix sweeps is set to 100, which will provide an accuracy 

of 0.01 in this case while maintaining computational efficiency. 

4.2 Wake investigation 

To minimize the computation times during the optimization process, a wake 

analysis was done to determine the convergence behavior of the aerodynamic 

performance parameters. The goal is to reduce the number of downstream rotations of the 

propellers rigid helical vortex sheet, while maintaining accuracy of the solution. 

The wake analysis was done on optimized two and four bladed propellers with a 

diameter of 0.32 meters, a freestream velocity of 21 [m/s] and a propeller speed of 5800 

RPM. The wake vortex sheet was extended in steps from 1/8 to 5 rotations downstream 

and propeller performance parameters were noted. An illustration of the wakes is shown 

in Figures 4.2-4.4:  
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Figure 4.2-4 Wake vortex sheet extensions for ¼, 2 and 5 rotations downstream 
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The investigated performance parameters are thrust and power since in most 

propeller optimizations these are of special interest. Figure 4.5 shows the thrust generated 

form two and four bladed propellers, depending on the wake extension in numbers of 

360o rotations. Also shown is the percent difference of the propeller thrust with respect to 

the max vortex sheet (5 rotations downstream). More details of the wake convergence 

investigation are given in Appendix C. 
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Figure 4.5 Propeller thrust variation due to wake vortex sheet extension 

In both, the two and four bladed propeller cases, the thrust converges within 0.3% 

after only 2 full downstream rotations of the wake vortex sheet. This result is confirmed 

by Cheung [23] who showed that, even with a limited wake, good agreements with 
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experimental data is obtained. Thus in all further optimizations the propeller wake is 

extended only to two 360º rotations downstream. 

4.3 Number of Chordwise and Spanwise Panels 

To minimize the optimization computation times, a grid convergence study has been 

done. The goal is to reduce the numbers of chordwise and spanwise panels while 

maintaining solution accuracy. Two different propeller grid discretizations have been 

investigated as shown in Figure 4.6 below. The chosen schemes are based on the work 

done by S. Werner [24], Fiddes & Gaydon [28] and Labrujere & Zandbergen [72]. The 

investigated schemes are 

1. Full cosine distribution in the chordwise direction and even spacing in the 

spanwise direction 

2. Full cosine distribution in the chordwise direction and half cosine in spanwise 

direction    

 

Figure 4.6 Propeller Discretization schemes 

Propeller root 

Propeller tip 

1 2
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Figure 4.7 shows that the discretization scheme with a full cosine distribution in the 

chordwise direction and the half cosine in the spanwise direction converge the fastest. 

The accuracy when compared to the converged thrust value is within 0.5% with a 7x14  

(7 panels in chordwise and 14 panels in spanwise direction) panel arrangement. This 

agrees with the findings form Cheung [23], who found good agreement with experimental 

data with a blade discretization of 7 chordwise and 10 spanwise panels. 
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Figure 4.7 Lift force convergence by discretization scheme and panel number 
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4.4 Validation of the numerical method 

4.4.1 Comparison to lifting line and lifting surface method 

The VLM by lifting surface was applied to a simple test case to validate the 

numerical method. The validation includes the accuracy of lift coefficient and drag 

coefficient for a flat plate wing with zero thickness and an aspect ratio of AR=6 at 

different angles off attack. The wing is simulated with a single layer of vortex ring 

elements and is discretized in four even spaced panels spanwise and two even spaced 

panels chordwise. Figure 4.8 illustrates the wing geometry and the horseshoe trailers. 

Even though the lifting line method agrees well with results obtained by the lifting 

surface solution when compared to flat plates, the lifting line method is not capable of 

predicting more complex geometries accurately. 
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Figure 4.8 Wing and wake discretization 

The results are compared to the solutions obtained from lifting line method by 

Kuethe and Chow [18], which is illustrated in Figure 4.9. 



 77

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14

Angle of Attack [deg]

L
ift

 C
oe

ff
ic

ie
nt

 c
l [

-]
cl from Kuethe & Chow (lifting line method)

cl from Propeller Program (lifting surface method)

 

0

0.01

0.02

0.03

0.04

0.05

0.06

0 2 4 6 8 10 12 14

Angle of Attack [deg]

D
ra

g 
C

oe
ff

ic
ie

nt
 c

d 
[-

]

cd from Propeller program (lifting surface method)

cd from Kuethe & Chow (lifting line method)

 

Figure 4.9 Lifting line and lifting surface method cl and cd of flat plate wing AR=6 
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Good agreement between the lifting surface solution and the lifting line method is 

obtained for both, the lift and the drag coefficient for the investigated flat plate wing with 

AR=6. 

4.4.2 NACA 109622 Propeller 

In a second validation case the lifting surface method was used to predict the 

performance of a NACA109622 straight blade propeller with three blades. The blades are 

modeled by ten spanwise and two chordwise panels with a blade angle β=45.4° at the 

75% propeller radius. The geometry of the propeller is given in Appendix E. Figure 4.10 

shows the propeller geometry with the horseshoe trailers extending two full propeller 

rotations downstream. 

 



 79

X

Z

Y

 

Figure 4.10 NACA109622 propeller geometry with wake 

The results are plotted in Figure 4.11-13 and incorporate experimental data as well 

as data obtained from lifting line method by Cheung [23] with and without 2D drag data. 

The lifting line method with no drag data and the lifting surface method agree very well. 

This is primarily due to the fact that the propeller blade is not cambered, thus the lifting 

surface method does not improve the accuracy of the solution. 
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Figure 4.11 Propeller efficiency comparison at different advance ratios 

Figures 4.12 and 4.13 show the thrust and power coefficients obtained from experimental 

data from a lifting line solution with and without drag data included and from the lifting 

surface solution developed in this effort. The lifting line and the lifting surface solution 

agree very well for both the thrust and the power coefficient. Discrepancies between the 

experimental data are mainly due to the simplified model which does not include 

thickness or Reynolds number effects. 
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Figure 4.12 Propeller thrust coefficient at various advance ratios 
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Figure 4.13 Propeller power coefficients at various advance ratios 
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5 GENETIC ALGORITHM 

The optimization of designs in early stages of product development has become 

more popular in recent years. The goal is to find an optimal solution for any given design 

problem. This effort is driven by cost savings in the development stage and product 

competitiveness. Real world applications are found today in every sector of life, which is 

mainly due the introduction of very powerful and cheap computers. This lead to the 

development of various mathematical optimization theories which range from simple 

methods using first derivatives to advanced evolutionary algorithms. 

5.1 Optimization methods 

Even though optimizations existed before the 17th century, with the development of 

Newton’s calculus, initially differentiation was used with simple functions to find local 

minimums and maximums. Problems emerged when multiple functions were combined 

for a system description and nonlinear algebraic equations were produced which were not 

easy to solve. In the 19th century gradient based methods emerged, which used the 

steepest ascent or descent (steps are proportional to the gradient) to find the functions 

maximum or minimum. The disadvantages of this method are that the function must be 

differentiable in the design space with respect to all independent variables and only local 

minimums or maximums can be found, which requires a good initial guess of the solution 
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before starting the optimization. Linear programming as stated by Gabasov and 

Kirillova [73] was first formulated by a Soviet mathematician L.V. Kantorovich in the 

1930’s in which an objective function with linear constraints was used. The disadvantage 

of this method is that it cannot handle complex problems with multiple variables since the 

objective function and the constraints must be linear. Another method developed around 

1960 by Hooke and Jeeves is pattern search optimizations which looks at the behavior of 

a function to be analyzed and based on this information generates new points which are 

closer to the optimum. The disadvantages of pattern methods are that they may find a 

local minimum or maximum depending on the initially guessed starting solution. The 

concept of “Design of Experiments” was initially developed in the 1920s with the 

requirement to analyze vast amounts of experimental data. Weber and Skillings [74] 

defined steps for the experimenter to define the structure of the experiment and to find 

the proper testing setup. In this method, goals are defined, experiment variables and 

ranges are set, the experiment is run and the results are analyzed. A linear statistical 

model is then used to describe the structure of the data resulting from the experiment. 

 Monte Carlo methods are also popular methods since they are able to solve 

complex physical and mathematical problems with many variables. They are 

computationally expensive since they randomly “walk” through the design space by 

changing variable numbers to find a minimum or maximum. An incorporated gradient 

based method can facilitate the determination of the optimum.  

A relatively new method is the Particle Swarm Optimization method which was 

developed by Kennedy and Eberhart [75] in the mid 1990s. It is a population based 

stochastic optimization technique inspired by social behavior of bird flocking or fish 
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schooling. PSO shares many similarities with evolutionary computational techniques 

such as Genetic Algorithms (GA’s). The system is initialized with a population of 

random solutions and searches for optima by updating generations. However, unlike 

GA’s, PSO’s have no evolutionary operators such as crossover and mutation. In PSO, the 

potential solutions, called particles, fly through the problem space by following the 

current optimum particles. Each particle keeps track of its coordinates in the problem 

space which are associated with the best solution (fitness) it has achieved so far and 

stores the fitness value. Another "best" value that is tracked by the particle swarm 

optimizer is the best value, obtained “to date” by any particle in the neighborhood of the 

particle. If a particle takes all the population as its topological neighbors, the best value is 

a global best. The particle swarm optimization concept consists of an evaluation of the 

performance of each particle at each time step and based on the particles and the global 

best solution a change in the velocity of (accelerating) each particle is determined. 

Acceleration is weighted by a random term, with separate random numbers being 

generated for acceleration toward best (individual particle and global) locations. In the 

past several years, PSO has been successfully applied in many research and application 

areas Ref  [76]- [81]. It has been demonstrated that PSO gets results in a faster, cheaper 

way as compared with Genetic Algorithms [82]- [84]. Another reason that PSO is attractive is 

that there are few parameters to adjust. One version, with slight variations, works well in 

a wide variety of applications. The drawbacks of PSO’s are that they may prematurely 

converge and are not able to improve on the solution. The second drawback is that 

stochastic approaches have problem dependent performance. This dependency normally 

results from the parameter settings of each algorithm. 
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5.2 Genetic Algorithm 

Mitchell [85] states that “Genetic Algorithms were invented by John Holland in the 

1960’s and were developed by Holland and his colleagues at the University of Michigan 

in the 1960’s and 1970’s”. Holland wanted to take the evolutionary processes that are 

hypothesized to occur in nature (adaptation, survival of the fittest, etc) and incorporate 

them into a computer system. Holland’s classic book “Adaptation in Nature and Artificial 

Systems” formulated evolutionary/population based algorithms that can be used to 

optimize a variety of real world systems. 

According to Coley [86], Genetic Algorithms are numerical optimization algorithms 

built around natural selection and natural genetics. Sometimes GA’s are referred to as 

evolutionary optimizers because they mimic some of the process in Darwinian evolution 

theory. Darwinian evolution theorizes that totally new species can be produced via 

mutation and random chance. However, unlike evolution, GAs operate more on the 

principal of improvement of an initial population of solutions to a design problem rather 

than pure optimization. Coley [86] describes the make-up of a typical GA in a number of 

ways. First, a GA can be described as a number, or population, of guesses of the solution 

to the problem. Second, The GA employs a method of calculating how good or bad the 

individual solutions within the population are. This method is called determining the 

fitness of the solution. Additionally, a method for mixing fragments of the better 

solutions to form new and on average, even better solutions can be used. This method is 

called crossover. Finally, the GA is able to use a mutation operator to avoid permanent 

loss of diversity within the solutions. 
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One of the main benefits of using a GA is the fact that the algorithm can start 

without a single point, or initial guess, to get the optimization running. The previously 

described direct methods all, except the design of experiments and PSO, need an initial 

guessed solution to “march” toward the desired optimized result, which can be a 

maximum or a minimum value. The GA uses a population of guesses that are random and 

spread throughout the search space. Powerful operators such as selection, crossover and 

mutation help direct members of each population toward the desired goal(s) of the 

problem. A binary encoding system allows for a host of variables to be manipulated by 

the GA and then used in a suite of performance codes. These codes analyze the 

performance of each member of the population and the GA ranks each one according to 

how well the member of the population meets the desired goal(s). In GA terminology, the 

objective function is the function that determines the performance of a particular 

chromosome (i.e. member of the population). [87] Thus, in this study, the suite of 

performance codes, grouped together as a whole, represent the objective function. 

At the same time the GA has some disadvantages. In using the GA there is a greater 

likelihood that a global optimum solution will be found. However, finding this global 

optimum is not guaranteed. Even if the GA is in the neighborhood of the global optimum, 

there is a possibility, that through crossover and mutation the global optimum may not be 

selected. Also the GA does not address the robustness of the individual design solutions it 

creates. The GA simply attempts to meet the desired goals and will adjust the design 

parameters accordingly. Thus, it is up to the user to ensure the proper operation of the GA 

and to verify that the results are genuine. Finally, the satisfactory operation of the GA 
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relies on the accuracy of the system models that make up the objective function. The 

accuracy of the system and overall objective function is described in Chapter 2 and 3. 

 In this effort a binary encode tournament based GA which was developed by 

Anderson [87] was used to drive the design optimization. The population size of each 

generation was 400 and the optimizations were run for about 700 generations. Results 

from initial GA propeller optimizations showed premature convergence behavior. A 

second real coded GA, which was recently developed by John [88], was implemented and 

showed better convergence to an optimum solution when compared to the binary encoded 

GA. 
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6 IMPLEMENTATION OF THE PROPELLER PERFORMANCE PROGRAM 
INTO THE GENETIC ALGORITHM 

 The propeller aerodynamic performance program is integrated in the GA as a 

subroutine which, when required, is called by the GA. The GA design variables are listed 

in a separate file with min and max value limitations as well as step resolution. This input 

file also contains the GA parameters, population size, number of generations and 

advanced features such as elitism, niching and pareto. 

 The GA starts by creating a population of different propellers based on a random 

selection of the blade geometry variables. All members are then sent to the propeller 

program where the performance parameters lift, drag, power and efficiency are 

determined. In the final step the value of the objective parameter or function is send back 

to the GA for evaluation. The best performing members of the first generation are 

selected and, based on the values of these variables, a new generation of propellers is 

created. Figure 6.1 shows the optimization structure. 
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Figure 6.1.Flow chart propeller performance program implementation into GA 

 The objective function returns a parameter which can be minimized or maximized 

by the GA. Based on the requirements of the user, different propeller performance 

parameters can be integrated into the objection function. When a combination of 

parameters is included in one single objective function, close attention must be given to 

how each parameter is weighted in the function. To avoid multiple design variables 
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within a function, the GA allows for simultaneous optimization of multiple objective 

functions. This simplifies the goal function and leads to more diverse goal options. 
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7 OPTIMIZATION RESULTS 

The motivation behind this effort was to investigate the feasibility of designing 

propellers using a binary coded GA and a real encoded GA. The goal has been to speed 

up the design process while optimizing the propeller for a specific objective composed of 

a single or multiple goals. For the purpose of finding an optimal propeller the design 

space of available geometries has been developed with a wide range of design 

parameters. Throughout all optimizations, the number of chordwise and spanwise panel 

elements (7 and 14) has been fixed based on the findings of Section 4.3. In addition, the 

number of propeller blades was limited in the program to a maximum of four blades. 

The cases are broken down into single and multiple point optimizations as well as 

inclusions of compressibility, viscous effects and propeller acoustic signature. The 

objective was to design a propeller with better performance than existing propellers. The 

propeller operating conditions are defined by the cruise power, the flight speed and the 

maximum propeller diameter. These propeller operating conditions were set to match a 

small generic UAS like the Raven which is currently used by the US Army and which 

was developed by AeroVironment. Therefore the power was set to 200-300 Watts in 

cruise, the maximum propeller diameter was 0.25 meters and the flight speed 36 [m/s]. 

The test cases considered are described in the following. 
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7.1 Comparison of propeller optimizations with and without viscous and 
compressibility effects taken into account 

For comparison of viscous and compressibility effects, three different propeller 

optimization cases at different operational points have been investigated. In the first case 

a fixed pitch propeller was optimized for a cruise airspeed of 36 [m/s]; in the second case 

a fixed pitch propeller is optimized for a launch condition of 9 [m/s]; and in the third case 

a fixed pitch propeller is optimized using both cruise and launch conditions as the 

objective. The parameters of interest are the propeller thrust (the first goal to be matched) 

and power (second goal to be minimized to maximize propeller efficiency). 

7.1.1 Single point Optimization for Cruise Condition: Binary encoded GA 

 
Three different single point optimization runs have been conducted to determine 

the influence of viscous and compressibility effects. The first case did not include 

compressibility or viscous effects, the second one considered only compressibility, and 

the last took only viscous effects into account. All of the cases had the same fixed input 

parameters as shown in Table 7.1. 

 

Table 7.1 Fixed input parameters cruise condition 

Free stream velocity 35 [m/s] 

Propeller speed 7500 [rpm] 

Propeller max diameter 0.25 [m] 

Propeller hub diameter 0.06 [m] 
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The binary encoded GA was set up to drive the design using two objective functions 

which must be minimized. Within the GA the two objective functions are combined to 

one single function which is stored in the “GAout1” file and used to determine 

convergence behavior. The first objective function contains the required thrust in cruise, 

which was set in this design effort to 7.0 [N]. The cruise thrust selected was a guess, 

based on available data for small, UAS and does not represent a particular system. 

Subtracted from the required thrust is the generated thrust determined by the aerodynamic 

prediction program. Equation 7.1 shows the function which is minimized when the 

propeller thrust reaches the required thrust. 

 Thrustobj −= 0.71_  (7.1) 

In the second objective function the power was set as a goal to be minimized which 

drives the propeller efficiency. The power was divided by 300 to equalize the weighting 

of the objective functions. 

 
300

2_ Powerobj =  (7.2) 

Table 7.2 shows the results of the three optimization cases which have been run for about 

200 generations with each generation consisting of 400 members. In all of the cases the 

thrust required was matched. The propeller efficiencies range between 78 and 87% 

depending if viscosity or compressibility are taken into account. A variable pitch 

propeller with similar diameter was tested in the wind tunnel at 18 [m/s] free stream 
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velocity and was rated with a max efficiency of 62 %. Wind tunnel data are given in 

Appendix H. 

 

Table 7.2 Optimized propellers performance parameter results cruise condition 

 Case 1 
Inviscid 

Incompressible 

Case 2 
Inviscid 

Compressible 

Case 3 
Viscous 

Incompressible 
Thrust [N] 7.0 7.0 7.0 
Power [W] 306.9 290.2 321.3 

Efficiency [%] 82.0 86.8 78.4 
 

In Figures 7.1, 7.2 and 7.3 the optimized propellers for inviscid, compressible and 

viscous solutions are illustrated. All blades are two bladed with the inviscid and the 

viscous solutions showing some form of a proplet. Noticeable in Figures 7.1-7.3 are also 

the leading edge panels of the propeller blades are bent downwards in the tip region 

which would explain why the efficiencies in some cases are lower. 

 



 95

 

Figure 7.1 Optimized cruise propeller geometry from binary encoded GA; inviscid, 
incompressible 



 96

 

Figure 7.2 Optimized cruise propeller geometry from binary encoded GA; inviscid, 
compressible 
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Figure 7.3 Optimized cruise propeller geometry from binary encoded GA; viscous, 
 incompressible 
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Figure 7.4 Optimized propeller spanwise circulation distributions for cruise 

The spanwise circulations for the propellers considered in this section are presented in 

Figure 7.4. All the cases have discontinuities in the spanwise circulation, which reduces 

propeller efficiencies and is a sign that only a local optimum has likely been found. The 

viscous incompressible case in Figure 7.3 developed a noticeable large proplet at the tip, 

which allows for a higher tip loading which is shown in Figure 7.4 by an increased 

circulation. 
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Figure 7.5 Objective function convergences binary encoded propeller 

Since the three optimizations have been run for only 200 generations a separate run has 

been done to investigate the long term convergence behavior. Therefore the inviscid 

incompressible case has bee run for 1300 generations which relates to 520,000 propeller 

evaluations and took about 6 days of computation. The convergence result is illustrated in 

Figure 7.6 and demonstrates that after about 100 generations no significant improvements 

are achieved even though a gain of about 3-4 % in propeller efficiency is possible. 
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Figure 7.6 Objective function convergence inviscid, incompressible, for binary 
encoded GA 

7.1.2 Single point Optimization for Cruise Condition: Real encoded GA 

The three different cases presented in section 7.1, the inviscid, incompressible, the 

inviscid, compressible and the viscous incompressible were run again using a real 

encoded GA to investigate convergence behavior to determine whether on not the 

objective functions are minimized to an lower value. All input parameters and objective 

functions are identical to the cases shown in Section 7.1.1. 

In table 7.3 are illustrated the results obtained from the optimizations of the real coded 

GA. The thrust objective in all cases is satisfied exactly with the inviscid incompressible 
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case having the highest efficiencies. The compressible case lags the efficiency by about 7 

% when compared to the results obtained be the binary encoded GA, which indicates a 

premature convergence thus a global optimum is not reached. 

Table 7.3 Optimized propellers performance parameter results real encoded GA 

 Case 1 
Inviscid 

Incompressible 

Case 2 
Inviscid 

Compressible 

Case 3 
Viscous 

Incompressible 
Thrust [N] 7.0 7.0 7.03 
Power [W] 288.9 320.5 320.4 

Efficiency [%] 87.2 79.2 79.0 
 

The propeller geometries generated by the real coded GA are shown in the Figures 7.7 – 

7.9. It is again characteristic that two propeller geometries have proplets which would 

indicate a loading shift to the tip. Though the circulation distributions in Figure 7.10 

shows that the loading is actually more spread out when compared with the results 

obtained by the binary encoded GA. The lag in efficiency of the viscous incompressible 

case is also seen in the discontinuous circulation distribution illustrated in Figure 7.10. 
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Figure 7.7 Optimized cruise propeller geometry from real encoded GA; inviscid, 
incompressible 
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Figure 7.8 Optimized cruise propeller geometry from real encoded GA; inviscid, 
compressible 
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Figure 7.9 Optimized cruise propeller geometry from real encoded GA; viscous, 
incompressible 
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Figure 7.10 Optimized circulation distributions for cruise propeller, real encoded 
GA 

When comparing Figure 7.5 and 7.10 it is noticeable that even though both GA versions 

seem to level off in the convergence behavior around 100 generations, the real encoded 

GA shows a higher gradient in the objective functions after the first 100 generations. 

Thus for all the following optimizations the real coded GA is used. The case where 

viscous effects are taken into account is the only one used in the remaining optimizations 

since the subroutine for compressibility effects should only be used in determining the 

performance of a propeller when compared to an inviscid or viscous solution.  
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Figure 7.11 Objective function convergences real encoded GA, cruise condition 

To verify that the optimized propeller has better performance a CAM 13x7 propeller, set 

up with a variable pitch mechanism, was tested in a wind tunnel at about 19 [m/s] free 

stream velocity. The power input was kept constant while the propeller pitch was 

changed gradually. Figure 7.12 shows that the maximum propeller efficiency of the CAM 

13x7, at 19 [m/s], is 63% while the optimized propeller operates at about 80% efficiency. 
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Figure 7.12 CAM 13x7 propeller efficiency at 19 [m/s] free stream velocity 

7.2 Single point Optimization Launch Condition 

A single point optimization was conducted to design a propeller for a launch condition of 

9 [m/s]. The investigation included the case where viscous effects are taken into account 

as described in section 7.1.1. The only difference in the fixed input parameters is the 

launch airspeed which simulates a hand launch of a UAS by a human and the thrust 

requirement of 14 [N]. The input parameters for this case are shown in Table 7.3. The 

thrust required for the launch was set to a high value since the operational mode of this 
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system does not include a mechanical launch by catapult or bungee cord. Thus the 

optimization objective functions are 

 Thrustobj −= 0.141_  (7.3) 

 
300

2_ Powerobj =  (7.4) 

Table 7.3 Fixed input parameters for launch condition 

Free stream velocity 9 [m/s] 

Propeller speed 7500 [rpm] 

Propeller max diameter 0.25 [m] 

Propeller hub diameter 0.06 [m] 

 

The optimized propeller satisfies the thrust requirement by generating exactly 14 [N] of 

thrust. The efficiency of 65 percent seems initially low, but this is due to the 

characteristic of the efficiency equation which only produces high efficiencies at higher 

free stream velocities when propeller size is limited. Results from wind tunnel tests of a 

CAM 13x7 propeller reached an efficiency of 58 %. The data of the wind tunnel test are 

shown in Appendix H. 

Table 7.4 Optimized propellers performance parameter results for launch condition 

 Case: 
Viscous, Compressible 

Thrust [N] 14.0 
Power [W] 193.6 

Efficiency [%] 65.1 
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Figure 7.13 Optimized launch propeller geometry: viscous, incompressible case 

The optimized propeller has an efficiency of 65 % which is 7% better than the propeller 

tested during wind tunnel experiments. The propeller which has four blades due to the 

thrust requirement of 14 [N] is shown in Figure 7.13. 
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Figure 7.14 Optimized propeller spanwise circulation distribution viscous, 
incompressible case 

The spanwise circulation of the launch propeller shown in Figure 7.14 is smooth in the tip 

region, but shows breaks toward the propeller root. The reason is due to either premature 

convergence or convergence that has not yet been reached. 
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Figure 7.15 Objective function convergence from real encoded GA: viscous, 
incompressible case 

The convergence of the objective function in Figure 7.15 is obtained after about 32,000 

evaluations. 

7.3 Dual point Optimization Cruise and Launch Condition 

In this case a propeller is optimized for both, the launch and the cruise conditions. The 

only parameter which changes is the free stream velocity which, for the launch condition 

is equal to the single point optimization of section 7.1.2 and, for the cruise condition is 36 

[m/s] as described section 7.1.1. The first objective function (Equation 7.5) includes the 
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absolute value of required thrust for launch minus the generated propeller thrust and the 

second objective function (Equation 7.6) contains the cruise thrust requirement as well as 

the actual cruise power. The weighting of the propeller thrust and power in the second 

objective function (Equation 7.6) was normalized by dividing the power by 300. The first 

objective function did not contain any power term since it is assumed that the launch 

power setting is only a very short time period thus it is negligible in the overall flight 

endurance. 

 launchThrustobj −= 0.141_  (7.5) 

 
300

0.72_ cruise
cruise

PowerThrustobj +−=  (7.6) 

The fixed input parameters shown in Table 7.5 are the same as from section 7.1.1 and 

7.1.2. 

 

Table 7.5 Fixed input parameters for dual point optimization 

Free stream velocity 9 / 36 [m/s] 

Propeller speed 7500 [rpm] 

Propeller max diameter 0.25 [m] 

Propeller hub diameter 0.06 [m] 

 

The thrust required in both the launch and cruise condition is well matched. When 

compared to the single point optimizations the efficiencies in the dual point optimizations 

are lower which is expected since the propeller has to satisfy both operating conditions. 

Noticeable is that the geometry of the optimized two bladed propeller appears to be very 
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smooth even in the tip region where the single point optimized propellers exhibits small 

ripples in the geometry. 

Table 7.6 Optimized propeller performance parameters: cruise and launch 

 Case: 
Viscous, Incompressible 

           Launch                         Cruise 
Thrust [N] 14.01 6.97 
Power [W] 373.9 396.6 

Efficiency [%] 33.7 63.7 
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Figure 7.16 Optimized cruise and launch propeller; viscous, incompressible case 

The circulation distributions for both the launch and cruise conditions shown in Figure 

7.17 have smooth distributions, with the launch case showing a higher circulation due to 

the larger thrust requirement. 
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Figure 7.17 Objective function convergences real encoded GA, cruise condition 

The convergence behavior of the goal for the two advance ratio optimization is shown in 

Figure 7.18. The objective function convergence appears to occur at about 60,000 case 

evaluations which are about 20,000 evaluations higher than the single point optimizations 

done before. 
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Figure 7.18 Objective function convergences real encoded GA, cruise condition 

7.4 Single Point Optimization in Cruise considering Propeller Noise 

The first case was set to optimize the cruise propeller as described in 7.1.1 with the 

same fixed input parameters. The objective functions contained the total pressure 

perturbation (divided by 5 to obtain about equal weighting) and the thrust required. Thus 

the two objective functions are 

 Thrustobj −= 0.71_  (7.7) 
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( )

0.5
2_ 0 totalpp

obj
−

=  (7.8) 

The propeller power was not part of the optimization goal since the propeller efficiency 

was not of interest in this optimization. 

The optimized propeller satisfies the thrust requirement by producing exactly the 

required thrust as shown in Table 7.7. Figure 7.19 illustrates the loading shift of the 

circulation to the inboard section which relates to a noise reduction. Also the span of the 

propeller is reduced, which results in lower noise due to lower tip Mach numbers. Finally 

the optimization lead to an increase from two to four blades, shown in Figure 7.20, which 

is known to lower the overall propeller noise. All of these findings follow the conclusions 

made by Miller [5] who investigated propeller noise optimization. The optimized propeller 

efficiency, shown in Table 7.7, is low since the power minimization was not an 

optimization objective. 

Table 7.7 Optimized propellers performance parameters cruise condition with noise 
considered 

 Case: 
Viscous, Incompressible 

Thrust [N] 7.0 
Power [W] 509.4 

Efficiency [%] 49.5 
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Figure 7.19 Spanwise circulation distribution of the optimized propeller in cruise  
condition 
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Figure 7.20 Optimized cruise propeller from real coded GA; viscous, incompressible  
with noise considered 

7.5 Single/Dual Point Optimization in Cruise/Launch Condition considering 
Propeller Noise and Performance 

The optimizations of three different propeller operational points are considered in this 

section. A cruise propeller at 36 [m/s] free stream velocity as described in section 7.1.1, a 

launch propeller at 9 [m/s] free stream velocity from section 7.1.2 and the combined case 

with cruise and launch condition described in section 7.1.3. For this analysis the propeller 

acoustic signature is included in the objective functions to reduce the overall propeller 

noise. The acoustic computation is done with the model described in section 2.8 without 
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the thickness noise taken into account. This is done because the thickness distribution 

cannot be changed during the optimization and acts only as a fixed source of noise. 

Additionally the thickness noise model only applies to propellers with a high aspect ratio 

and does not predict the thickness noise well for propellers with large chords. Thus the 

objective functions for the three different propeller operational points are as follows: 

For cruise condition: 

 Thrustobj −= 0.71_  (7.9) 

 
( )

0.3000.10
2_ _0 Powerpp

obj cruisetotal +
−

=  (7.10) 

For launch condition: 

 Thrustobj −= 0.141_  (7.11) 

 
( )

0.3000.10
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For launch / cruise condition: 

 launchcruise ThrustThrustobj −+−= 0.140.71_  (7.13) 
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The results from the three different optimizations are included in Table 7.8. The thrust 

requirements are all matched exactly and the propeller efficiencies seemed close to the 

ones where noise was not considered.  

Table 7.8 Propellers performance parameter results with noise optimization 

 Case 1 
Cruise 

36 [m/s] 

Case 2 
Launch 
9 [m/s] 

Case 3 
Launch / Cruise 

9 / 36 [m/s] 
Thrust [N] 7.0 14.0 13.7 /6.62 
Power [W] 322.9 267.8 366.8 / 350.9 

Efficiency [%] 78.0 47.0 30.0 / 70.2 
 

The geometries of the optimized propeller blades, illustrated in Figures 7.21-7.23 share 

similar shapes. The root chord is small and increases to the propeller mid section with a 

decrease in chord length towards the tip. The propeller blade geometries have a smooth 

shape with no geometric perturbation visible. 
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Figure 7.21 Optimized cruise propeller; viscous, incompressible case with noise and 
performance considered 
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Figure 7.22 Optimized launch propeller; viscous, incompressible case with noise and 
performance considered 
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Figure 7.23 Optimized launch / cruise propeller; viscous, incompressible case with 
noise and performance considered 
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Figure 7.24 Spanwise circulation distribution of the optimized propeller in cruise 

The optimization of the cruise propeller produced a significant reduction in the 

circulation strength and a shift towards the propeller mid section, which is illustrated in 

Figure 7.24. The noise optimized propeller shown in Figure 7.24 is normalized with 

respect to the propeller span of the optimized propeller where no noise was considered. 

Besides the reduction in circulation the noise optimized propeller shows also a smaller 

span which lowers the tip Mach number and as a result reduces the acoustic signature. [5] 

Even though the circulation distribution in the case of the noise optimized propeller is 

more uniform, the propeller efficiency is a little lower. The reasons for that are the 
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smaller propeller diameter which lowers the efficiency and the wider blade chord which 

generates higher viscous drag. 
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Figure 7.25 Spanwise circulation distribution of the optimized propeller at launch 

The circulation distribution of the launch condition propeller does not show any 

significant shift or reduction in the circulation. This may be explained by the significant 

objective function improvement toward the end of the optimization, where the design was 

driven by improving the efficiency and not by the acoustic propeller signature. 
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Figure 7.26 Spanwise circulation distribution of the optimized propeller in cruise  
and launch condition 

The last case considered both acoustic signature at launch and the acoustic signature at 

cruise condition. The noise optimized propeller shows a reduction in the circulation 

strength at both operating points as shown in Figure 7.26. The loading seemed to shift 

towards the tip region which is an indication that power and thrust required in the 

objective function are dominant. 
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Figure 7.27 Objective function convergences, cruise, launch and combined case 

The convergence of the objective functions of the three investigated propeller operating 

points is illustrated in Figure 7.27. The single point optimizations for launch and the 

cruise conditions show a convergence after about 30,000 evaluations, but the case 

considering the launch and the cruise condition together shows after an initial 

convergence tendency a steep gradient in the objective function around 90,000 

evaluations which indicates that an optimum has not yet been achieved. 
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8 CONCLUSION & RECOMMENDATIONS 

The goal of this research was to develop a tool for performance and acoustic noise 

signature optimization applicable to small thin-airfoil propellers with complex 

geometries. The optimization scheme consists of a propeller performance program, an 

acoustic signature subroutine and a GA for the optimization. A major thrust of this work 

was the development of a general geometric description of propeller blades which allows 

for a wide design space while generating smooth, viable blade geometries. The VLM 

using a lifting surface scheme with vortex ring elements was used to determine the 

aerodynamic propeller performance parameters. This allows for the computation of swept 

propellers including dihedral and camber variation. All propeller blades were considered 

to be thin and modeled using a single layer of vortex elements to describe the geometry. 

The research includes an investigation to reduce computational times by finding the 

minimum number of required panel elements and the minimal wake extension which 

produces accurate propeller performance results. The performance analysis scheme was 

verified by comparing it with flat plate wing results as well as a straight-blade 

NACA109622 propeller. The implemented acoustic signature model to determine 

propeller noise is based on the work of Miller, [5] and during the optimization, only 

loading noise was considered. 
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The optimizations were performed to generate a propeller for a small electric powered 

UAS. Fixed input parameters such as the maximum chord, the maximum propeller span 

and the propeller speed were kept constant to allow for comparisons of the optimizations. 

Three different propeller operational conditions were considered. One launch condition 

with a free stream velocity of 9 [m/s], one cruise condition with 36 [m/s] free stream 

velocity and one case were launch and cruise condition were considered as the same time 

to demonstrate multiobjective optimization. The analysis included inviscid 

incompressible, compressible and viscous flows. Additionally, a binary and a real 

encoded GA have been used to investigate the method that converges quicker and which 

method produces better performing propellers. Results showed that even though both 

GA’s converged within the same number of case evaluations, the real encoded GA was 

generally more successful over longer optimization runs. Some optimizations show 

premature convergence which can be improved upon by changing ranges and limitations 

on GA variables. The method produced trade-offs between best performing single run 

and dual-point optimizations. Some of the propellers showed the development of a 

proplet with a loading shift to the blade tip section. Since the optimization did not include 

a propeller structure model which would eliminate propellers with unrealistic high 

bending moments, propellers with proplets are competitive candidates. Noticeable is that 

the circulation distributions for the single point optimizations showed unevenness 

whereas the case with multiple objective goals generated a smoother circulation 

distribution. The inclusion of noise in the objective function resulted in a reduction of the 

propeller radius for some cases and a loading shift of the circulation towards the propeller 

mid section. When multiple parameters were used in a single objective function the 
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weighting of the individual goals within the objective functions must be carried out 

judiciously to achieve a propeller design which satisfies all goals. Further research on the 

effects of weighting of individual propeller parameters within an objective function 

should be investigated. 

Recommendations 

• The recommendations for improvement of this design tool are concerned mainly 

with premature convergence during the optimizations. Further investigations must 

be completed to fully understand why in some cases, the GA converges to a local 

and not a global minimum. 

• The implemented empirical flow separation and viscous model could be replaced 

by a viscous/inviscid interaction method to describe flow separation and viscous 

effects better. 

• To improve the noise prediction for blades with large chords, multiple chordwise 

noise sources are required. 

• To allow for the simulation of thick airfoil propellers, a second vortex layer must 

be added to describe the bottom airfoil geometry. 

• The implementation of a structure model based on the two vortex layers to 

describe the propeller geometry would generate a realistic thickness distribution. 

• The extension of the aerodynamic propeller performance program to include a 

duct around the propeller would allow for the optimization of ducted propeller/fan 

combinations. 

• Finally, for highly loaded and low advance ratio conditions, a free wake model 

can improve the aerodynamic prediction. 
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APPENDIX A: BIOT-SAVART LAW 

The following describes the derivation of the Biot-Savart law. 

Biot-Savart Law: 

 

The continuity equation in non-conservation form is  

 0q =⋅∇⋅+ ρρ
Dt
D  (A.1) 

with ρ being the density and q the velocity. 
 

For incompressible fluids (ρ=const.) the continuity equation reduces to 

 
0q

0q

=
∂
∂

+
∂
∂

+
∂
∂

=⋅∇

=⋅∇

z
w

y
v

x
u  (A.2) 

Angular velocity and vorticity  

The motion of a fluid element consists of translation, rotation, and deformation. The 

angular velocity of a fluid element is due to the velocity variation within the element. As 

a result the fluid element may deform and rotate. The derivation of the angular velocity is 

described in Ref. [16]. Thus the vector form of the angular velocity is
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 V×∇⋅=
2
1ω  (A.3) 

Vorticity ζ is defined as twice the angular velocity. 

 curlVV =×∇=⋅≡ ω2ζ  (A.4) 

To obtain the velocity field as a function of the vorticity distribution, Equation (A.4) must 

be inverted. As described in Ref. [16] the velocity field may be expressed as the curl of a 

vector field B, such that 

 Bq ×∇=  (A.5) 

Since the curl of a gradient vector field is zero, B is indeterminant to within the gradient 

of a scalar function of position and time, and B can be selected such that 

 0=⋅∇ B  (A.6) 

The vorticity then becomes 

 ( ) ( ) BBB 2qζ ∇−⋅∇∇=×∇×∇=×∇=  (A.7) 

The application of Equation A.6 reduces this to Poisson’s equation for the vector 

potential B: 

 B2ζ −∇=  (A.8) 

 

The solution of this equation, using Green’s theorem (see Ref. [29]) is 
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 dVB
V
∫ −

=
10 rr

ζ
4
1
π

 (A.9) 

Here B is evaluated at point P (which is a distance r0 from the origin, shown in Figure 

A.1) and is a result of integrating the vorticity ζ (at point r1) within the volume V. The 

velocity field is then the curl of B: 

 dV
V
∫ −

×∇=
10 rr

ζ
4
1q
π

 (A.10) 

 

Figure A.1 Velocity at point P due to a vortex distribution 

 

Before proceeding with the integration, an infinitesimal piece of the vorticity filament ζ, 

as shown in Figure A.2 is considered. The cross-sectional area dS is selected such that it 

P.
r0-r1 

ζ 

dV 

V

r1

r0 
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is normal to ζ, and the direction dl on the filament is 

 dld
ζ
ζl =  (A.11) 

Also, the circulation Γ is 

 dSζ=Γ  (A.12) 

and 

 dldSdV =  (A.13) 

 

 
Figure A.2 Induced velocity at point P by a vortex segment 

so that 

dl 

ds
ζ 

P 

r0 r1 

Origin 

r0 – r1 

Γ 
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1010 rr

l

rr
ζ

−
Γ×∇=

−
×∇

d
dV  (A.14) 

Carrying out the curl operation while keeping r1 and dl fixed we get 

 
( )

3

10

10

10 rr

rrl

rr
l

−

−×
Γ=

−
Γ×∇

dd  (A.15) 

Substitution of this result back into Equation A.6 results in the Biot-Savart law, which 

states 

 
( )

∫
−

−×Γ
= 3
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rr

rrl
4

q
d

π
 (A.16) 

or in differential form 
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 147

APPENDIX B: PROPELLER GA VARIABLES 

Shown below are the propeller variables which define the propeller geometry, the number 

of propeller blades as well as the max propeller span. If a variable pitch propeller is 

considered, the optional variables, which offset the angle of attack by a constant value are 

activated. 

Propeller GA Variables 

pr  xray(1)  Propeller span 
nxbl  xray(2)  Number of propeller blades 
ua_1  xray(3)  BP Shape Function Parameter airfoil upper side 
ua_2  xray(4)  BP Shape Function Parameter airfoil upper side 
ua_3  xray(5)  BP Shape Function Parameter airfoil upper side  
ua_4  xray(6)  BP Shape Function Parameter airfoil upper side 
ua_5  xray(7)  BP Shape Function Parameter airfoil upper side 
ua_6  xray(8)  BP Shape Function Parameter airfoil upper side 
ua_7  xray(9)  BP Shape Function Parameter airfoil upper side 
ua_8  xray(10) BP Shape Function Parameter airfoil upper side  
ua_9  xray(11) BP Shape Function Parameter airfoil upper side 
ua_10  xray(12) BP Shape Function Parameter airfoil upper side 
ua_11  xray(13) BP Shape Function Parameter airfoil upper sid 
ua_12  xray(14) BP Shape Function Parameter airfoil upper side 
ua_13  xray(15) BP Shape Function Parameter airfoil upper side  
ua_14  xray(16) BP Shape Function Parameter airfoil upper side 
ua_15  xray(17) BP Shape Function Parameter airfoil upper side 
ua_16  xray(18) BP Shape Function Parameter airfoil upper side 
ua_17  xray(19) BP Shape Function Parameter airfoil upper side 
ua_18  xray(20) BP Shape Function Parameter airfoil upper side  
ua_19  xray(21) BP Shape Function Parameter airfoil upper side 
ua_20  xray(22) BP Shape Function Parameter airfoil upper side 
fau_1  xray(23) Class Function upper Airfoil Parameter 
fau_2  xray(24) Class Function upper Airfoil Parameter 
aoa_1  xray(25) BP Angle of Attack Function Parameter 
aoa_2  xray(26) BP Angle of Attack Function Parameter 
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aoa_3  xray(27) BP Angle of Attack Function Parameter 
aoa_4  xray(28) BP Angle of Attack Function Parameter 
aoa_5  xray(29) Angle of Attack max min value 
chord_1 xray(30) BP Chord Length Function Parameter 
chord_2 xray(31) BP Chord Length Function Parameter 
chord_3 xray(32) BP Chord Length Function Parameter 
chord_4 xray(33) BP Chord Length Function Parameter 
chord_5 xray(34) Chord Length max min 
sweep_1 xray(35) BP Propeller Sweep Function Parameter 
sweep_2 xray(36) BP Propeller Sweep Function Parameter 
sweep_3 xray(37) BP Propeller Sweep Function Parameter 
sweep_4 xray(38) BP Propeller Sweep Function Parameter 
sweep_5 xray(39) Propeller Sweep in multiples of max chord length 
cprp  xray(40) Propeller rotational point 
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APPENDIX C: PROPELLER WAKE INVESTIGATION 

Propeller Wake Investigation of a two and four Bladed Propeller 

Below are shown the results of the thrust and power obtained from the propeller 

performance program based on the wake extension. The propeller speed was 5800 rpm, 

the free stream velocity Vinf= 21.0 [m/s] and propeller diameter was d=0.32 [m]. 

 

Wake extenstion 2 bladed propeller 4 bladed propeller 

in revolutions Thrust [N] Power [W] Thrust [N] Power [W] 

0.125 3.97 104.07 7.70 203.43 

0.250 3.93 103.22 7.45 198.42 

0.500 3.87 102.01 7.22 193.83 

1.000 3.83 101.28 7.10 191.36 

2.000 3.82 100.99 7.05 190.48 

3.000 3.81 100.94 7.04 190.23 

4.000 3.81 100.92 7.03 190.16 

5.000 3.81 100.91 7.03 190.12 
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APPENDIX D: PROPELLER PANEL DISCRETIZATION 

Propeller Panel Discretization and Panel Density 

Below are the results of the panel discretization and panel density investigation. This was 

done to determine the least number of panels which still produce accurate aerodynamic 

performance prediction in an effort to reduce computation times during the optimization 

process. The investigation contains two panel arrangement types. The first one uses a full 

cosine distribution of the panels in the chordwise direction. This assures that the panels 

are denser at the leading and training edge. The second panel arrangement has besides the 

full cosine distribution of the panels in the chordwise direction a half cosine distribution 

in the spanwise direction. In addition to that the Table below shows also the effects on 

the thrust when the number of spanwise and chordwise panels are changed. 

Full cosine panel distribution 

in the chordwise direction 

Full cosine panel distribution in the chordwise and 

half cosine panel distribution in the spanwise direction 

Panel Numbers 

Chordwise x Spanwise Thrust [N] 
Panel Numbers 

Chordwise x Spanwise Thrust [N] 

3x20 2.8144 7x7 3.9418 
4x20 2.9766 7x10 3.8095 
5x20 3.3385 7x12 3.7544 
6x20 3.6052 7x14 3.7281 
7x5 3.936 7x16 3.7195 
7x10 3.8262 7x18 3.7183 
7x20 3.8162 7x20 3.7203 
7x25 3.8152 7x24 3.7269 
7x30 3.8145 7x26 3.7316 
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APPENDIX E: NACA 109622 PROPELLER GEOMETRY 

NACA 109622 Propeller Geometry Data 

The propeller performance program was validated using a NACA 109622 straight blade 

propeller. The data below are from Ref. [23], where a three bladed propeller was 

simulated with a blade angle of β.75 =45.4°.at the 75% spanwise position. The x, y and z 

coordinates are given of the spanwise geometric description with C/r being the section 

chord to span ratio. 

 

x y z c/r β 

0.0 0.275 0.0 0.2415 1.15581 

0.0 0.3475 0.0 0.2415 1.07155 

0.0 0.42 0.0 0.2415 1.0034 

0.0 0.4925 0.0 0.2415 0.94246 

0.0 0.565 0.0 0.2415 0.88481 

0.0 0.6375 0.0 0.2415 0.83769 

0.0 0.71 0.0 0.2415 0.77661 

0.0 0.7825 0.0 0.2415 0.74869 

0.0 0.855 0.0 0.2415 0.70855 

0.0 0.9275 0.0 0.2415 0.67713 

0.0 1 0.0 0 0 

 



 152

The propeller geometry is generated based on the data from Table above. The propeller 

has 10 spanwise and two chordwise panels. Thus the individual nodal and collocation 

points of the first propeller blade are 

 

Nodal Points 

Leading Edge Center  Trailing Edge 

x y z x y z x y z 

0.0000 0.2750 0.0000 0.1113 0.2750 0.0449 0.2225 0.2750 0.0899 

0.0000 0.3475 0.0000 0.1071 0.3475 0.0542 0.2142 0.3475 0.1083 

0.0000 0.4200 0.0000 0.1032 0.4200 0.0613 0.2063 0.4200 0.1226 

0.0000 0.4925 0.0000 0.0992 0.4925 0.0675 0.1984 0.4925 0.1350 

0.0000 0.5650 0.0000 0.0952 0.5650 0.0731 0.1903 0.5650 0.1462 

0.0000 0.6375 0.0000 0.0916 0.6375 0.0775 0.1832 0.6375 0.1550 

0.0000 0.7100 0.0000 0.0867 0.7100 0.0829 0.1734 0.7100 0.1659 

0.0000 0.7825 0.0000 0.0844 0.7825 0.0853 0.1687 0.7825 0.1707 

0.0000 0.8550 0.0000 0.0809 0.8550 0.0886 0.1618 0.8550 0.1773 

0.0000 0.9275 0.0000 0.0781 0.9275 0.0911 0.1561 0.9275 0.1823 

0.0710 1.0000 0.0700 0.0779 1.0000 0.0913 0.0860 1.0000 0.1000 
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Collocation Points 

Leading Edge Panels Trailing Edge Panels 

xc yc zc xc yc zc 

0.0556 0.3113 0.0225 0.1669 0.3113 0.0674 

0.0535 0.3838 0.0271 0.1606 0.3838 0.0812 

0.0516 0.4563 0.0307 0.1547 0.4563 0.0920 

0.0496 0.5288 0.0337 0.1488 0.5288 0.1012 

0.0476 0.6013 0.0365 0.1428 0.6013 0.1096 

0.0458 0.6738 0.0387 0.1374 0.6738 0.1162 

0.0434 0.7463 0.0415 0.1301 0.7463 0.1244 

0.0422 0.8188 0.0427 0.1266 0.8188 0.1280 

0.0404 0.8913 0.0443 0.1213 0.8913 0.1330 

0.0390 0.9450 0.0456 0.1171 0.9450 0.1367 
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APPENDIX F: NACA 0009 AIRFOIL DATA 

The lift and drag coefficient data of a NACA 0009 airfoil section. [63] are taken to generate 

the empirical stall model for the propeller. 
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 156

APPENDIX G: PROPELLER GEOMETRY OF SKYHAWK 172 

The geometric description of the ¼ scale Cessna 172 Skyhawk propeller as described by 

Succi [69] and the generated geometry for the numerical verification of the test case is 

given in the following table. 

 

Geometric propeller description by Succi: 

Radius r/R Chord C/R Thickness t/C Pitch β 
0.133 0.149 0.43 31.5 
0.244 0.153 0.204 30.9 
0.32 0.153 0.156 29.5 
0.4 0.154 0.127 27.1 
0.48 0.153 0.109 24.6 
0.64 0.141 0.092 20.3 
0.8 0.119 0.092 17.3 
0.88 0.103 0.08 16.1 
0.96 0.079 0.08 15.1 

1 0 0 14.3 
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The collocation pints for the for the Cessna 172 1C160 blade model are 

x-Control Point y-Control Point z-Control Point 
0.00471 0.03879 0.00773 
0.00473 0.05218 0.00786 
0.00469 0.06346 0.00795 
0.00459 0.07263 0.00801 
0.00447 0.08204 0.00809 
0.00431 0.09169 0.00821 
0.00413 0.10135 0.00830 
0.00394 0.11100 0.00836 
0.00361 0.12548 0.00829 
0.00317 0.14478 0.00809 
0.00274 0.16408 0.00770 
0.00233 0.18339 0.00714 
0.00203 0.19787 0.00663 
0.00182 0.20752 0.00619 
0.00160 0.21717 0.00563 
0.00136 0.22682 0.00494 
0.00104 0.23406 0.00389 
0.00064 0.23889 0.00247 
0.01412 0.03879 0.02318 
0.01419 0.05218 0.02357 
0.01407 0.06346 0.02385 
0.01378 0.07263 0.02402 
0.01340 0.08204 0.02428 
0.01293 0.09169 0.02463 
0.01240 0.10135 0.02491 
0.01182 0.11100 0.02509 
0.01084 0.12548 0.02488 
0.00951 0.14478 0.02426 
0.00822 0.16408 0.02310 
0.00699 0.18339 0.02142 
0.00609 0.19787 0.01990 
0.00547 0.20752 0.01858 
0.00480 0.21717 0.01689 
0.00408 0.22682 0.01483 
0.00311 0.23406 0.01167 
0.00192 0.23889 0.00740 
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The nodal pints for the for the Cessna 172 1C160 blade model are 

x-Nodal Point y-Nodal Point z-Nodal Point 
0.00000 0.03209 0.00000 
0.00000 0.04549 0.00000 
0.00000 0.05888 0.00000 
0.00000 0.06805 0.00000 
0.00000 0.07722 0.00000 
0.00000 0.08687 0.00000 
0.00000 0.09652 0.00000 
0.00000 0.10617 0.00000 
0.00000 0.11582 0.00000 
0.00000 0.13513 0.00000 
0.00000 0.15443 0.00000 
0.00000 0.17374 0.00000 
0.00000 0.19304 0.00000 
0.00000 0.20269 0.00000 
0.00000 0.21234 0.00000 
0.00000 0.22200 0.00000 
0.00000 0.23165 0.00000 
0.00000 0.23647 0.00000 
0.00000 0.24130 0.00000 
0.00939 0.03209 0.01533 
0.00944 0.04549 0.01558 
0.00948 0.05888 0.01584 
0.00929 0.06805 0.01595 
0.00909 0.07722 0.01607 
0.00878 0.08687 0.01631 
0.00846 0.09652 0.01654 
0.00807 0.10617 0.01667 
0.00768 0.11582 0.01678 
0.00677 0.13513 0.01639 
0.00590 0.15443 0.01596 
0.00505 0.17374 0.01485 
0.00427 0.19304 0.01371 
0.00385 0.20269 0.01283 
0.00345 0.21234 0.01194 
0.00295 0.22200 0.01057 
0.00248 0.23165 0.00920 
0.00167 0.23647 0.00636 
0.00089 0.24130 0.00351 
0.01879 0.03209 0.03066 
0.01887 0.04549 0.03117 
0.01896 0.05888 0.03168 
0.01857 0.06805 0.03191 
0.01818 0.07722 0.03213 
0.01756 0.08687 0.03261 
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0.01693 0.09652 0.03308 
0.01615 0.10617 0.03333 
0.01537 0.11582 0.03357 
0.01355 0.13513 0.03278 
0.01180 0.15443 0.03191 
0.01011 0.17374 0.02970 
0.00854 0.19304 0.02742 
0.00770 0.20269 0.02565 
0.00689 0.21234 0.02388 
0.00591 0.22200 0.02115 
0.00497 0.23165 0.01840 
0.00334 0.23647 0.01272 
0.00179 0.24130 0.00701 
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APPENDIX H: WIND TUNNEL DATA CAM 13x7 PROPELLER 

Propeller wind tunnel data for a CAM 13x7 propeller. The propeller hub allowed for 

blade pitch changes to maximize the thrust. Motor efficiencies are about 72% for a power 

input of 67 [W]. The first Table below contains thrust and torque data of the CAM 13x7 

propeller at 60 feet free stream velocity and a constant power input of 67 Watts, while 

changing blade pitch. 

Pitch change 60 feet/sec free stream velocity 

Thrust [lbf] Torque [lb inch] 
0.032 0.685 
0.282 0.882 
0.335 0.987 
0.345 1.035 
0.348 1.072 
0.37 1.24 

0.362 1.308 
0.345 1.369 
0.339 1.534 
0.27 1.565 

The Table below contains the thrust data of the 13x7 propeller in a fixed pitch mode as it 

changes with increased free stream velocity and with a constant power input of 67 Watts. 

Free Stream Velocity [ft/sec] Fixed pitch propeller thrust [lbf] 

0 1.07 

20 0.92 

30 0.7 

40 0.524 

50 0.26 

60 0.22 
 


