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Abstract

The conjecture that α(G) ≥ γ′(G) is unproven where α(G) is the vertex independence

number and γ′(G) is the inverse domination number of a simple graph G. We have found

the conjecture to be true for all graphs with domination number less than 5 and for many

other infinite classes of graphs. We examine related questions involving DI-pathological

graphs which are graphs such that every maximal independent set intersects with every

minimum dominating set. Finally, we use two central results in linear programming to

characterize minimum fractional total dominating functions as well as maximum fractional

open neighborhood packings for certain graphs.
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Chapter 1

Introduction

1.1 Basic Definitions

Throughout this dissertation, the graph G = (V,E) will be a finite simple graph with

vertex set V = V (G) and edge set E = E(G).

If v ∈ V , then the open neighborhood of v, denoted NG(v), is {u ∈ V : uv ∈ E} and

the closed neighborhood of v, denoted NG[v], is {v} ∪ NG(v). If G is the only graph in the

discussion, N will replace NG. If S ⊆ V , N(S) =
⋃
v∈S N(v) and N [S] = S ∪N(S).

Let G and H be two graphs with V (G)∩V (H) = ∅. Then G+H is the graph such that

V (G + H) = V (G) ∪ V (H) and E(G + H) = E(G) ∪ E(H). G ∨H is the graph such that

V (G∨H) = V (G)∪V (H) and E(G∨H) = E(G)∪E(H)∪{vu : v ∈ V (G) and u ∈ V (H)}.

A set S ⊆ V is dominating (in G) if V = N [S]. The domination number of G is γ(G)=

min[|S| : S ⊆ V is dominating]. A minimum dominating set in G is a dominating set S ⊆ V

such that |S| = γ(G). A minimal dominating set is a dominating set no proper subset of

which is a dominating set. A set of vertices which is dominating and disjoint from a minimum

dominating set is an inverse dominating set. When G has no isolated vertices, the inverse

domination number of G is γ′(G) = min[|B|: B ⊆ V \ S for some minimum dominating set

S ⊆ V , and B is dominating in G]. γ′(G) is well defined when G has no isolated vertices by

Theorem 1.1, below. Clearly γ(G) ≤ γ′(G).

To see an example of an inverse dominating set, consider the graph H in Figure 1.1 where

γ(H) = 1, and {y} is the unique minimum dominating set. Thus any inverse dominating set

cannot include y. Therefore {x, z} is a minimum inverse dominating set and γ′(H) = 2.
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Figure 1.1: H

Theorem 1.1 ([9], [10]) If G has no isolated vertices and S is a minimal dominating set in

G, then V \ S is dominating in G.

Proof Suppose otherwise. Then there exists v ∈ V (G) such that N [v] ∩ (V \ S) = ∅.

Therefore N [v] ⊆ S. But that is a contradiction to the minimality of S since S \ v would

then also be a dominating set in G.

For a graph G, the closed neighborhood packing number, π(G), is the maximum number

of disjoint closed neighborhoods in G. The open neighborhood packing number, π0(G), is the

maximum number of disjoint open neighborhoods in G. As we will see in Chapter 4, π(G)

and π0(G) are very closely related to γ(G) and γt(G) respectively.

A set I ⊆ V is independent if no two vertices of I are adjacent in G. A maximal

independent set is one not properly contained in any other independent set. Clearly a max-

imal independent set in G is dominating in G. The (upper) independence number α(G)

and the lower independence number ı(G) are defined by α(G) = max[|I|: I ⊆ V is inde-

pendent] and ı(G) = min[|I|: I ⊆ V is maximal independent]. By remarks above, clearly

γ(G) ≤ ı(G) ≤ α(G).

Many of the above definitions can be adapted to give analogues pertinent to the study of

fractional graph theory. A fractional dominating function onG is a function f : V (G)→ [0, 1]

such that for every v ∈ V (G),
∑

u∈N [v] f(u) ≥ 1. The fractional domination number of G

is then γf (G) = min[
∑

v∈V (G) f(v) : f is a fractional dominating function on G]. Since the

characteristic function of a dominating set is a fractional dominating function, γf (G) ≤ γ(G).

2
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Figure 1.2: G

To see an example of a fractional dominating function., consider the graph G in Figure

1.2. Here one of the minimum dominating sets is D := {v, x}, so the characteristic function

on D, f0 : V (G) → [0, 1] such that f0(v) = f0(x) = 1 and f0(w) = f0(y) = f0(z) = 0,

is a fractional dominating function. However f1 : V (G) → [0, 1] such that f1(v) = 0,

f1(z) = f1(w) = 1
2
, and f1(y) = f1(x) = 1

4
is also a fractional dominating function, and it

can be shown that it is minimum. Proving that f1 is minimum will come from arguments

made later in Chapter 4. Therefore γ(G) = 2 while γf (G) =
∑

u∈V (G) f1(u) = 3
2
.
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Figure 1.3: G with the weightings assigned by f1

An inverse fractional dominating function of G is a fractional dominating function g of

G that satisfies g(v) ≤ 1− f(v) for all v ∈ V (G), for some minimum fractional dominating

function f of G. From [8], if G has no isolated vertices and f is a minimum fractional

dominating function of G, then 1 − f is a dominating function on G. Therefore such a

function g exists on graph G with no isolated vertices. The inverse fractional domination

number of G is (γf )
′(G) = ming[

∑
v∈V (G) g(v)] where the minimum is taken over all inverse

fractional dominating functions. Since every inverse fractional dominating function of G is

a fractional dominating function of G, γf (G) ≤ (γf )
′(G).

3



To see an example of an inverse fractional dominating function, again consider the

graph G in Figure 1.2. As mentioned above, f1 is a minimum fractional dominating func-

tion. Therefore an inverse fractional dominating function, f2 : V (G) → [0, 1], could be any

fractional dominating function such that f2(z), f2(w) ≤ 1
2
, and f2(y), f2(x) ≤ 3

4
. Therefore

f2(z) = f2(w) = f2(x) = 1
2

and f2(y) = f2(v) = 0 is such an inverse fractional dominating

function, and in fact since
∑

u∈V (G) f2(u) = 3
2

and γf (G) ≤ (γf )
′(G), (γf )

′(G) = 3
2
. It can

also be seen that (γf )
′(G) = 3

2
due to the fact that f1 ≤ 1 − f1. This demonstrates the

obvious fact that if there exists a minimum fractional dominating function g on a graph G

such that g(v) ≤ 1
2
∀v ∈ V (G), then (γf )

′(G) = γf (G).

v

z w

xy
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Figure 1.4: G with the weightings assigned by f2

For another fractional analogue of the inverse dominating number, first let D be a

minimum dominating set of a graph G. A fractional inverse dominating function g of G

(with respect to D) is a fractional dominating function of G such that g(v) = 0 for all

v ∈ D. In other words, g ≤ the characteristic function of V (G) \D. The fractional inverse

domination number of G is (γ′)f (G) = ming[
∑

v∈V (G) g(v)] where the minimum is taken

over all fractional inverse dominating functions g (with respect to minimum dominating

sets D). Because the characteristic function of a dominating set of vertices that is in the

complement of a minimum dominating set is also a fractional inverse dominating function,

(γ′)f (G) ≤ γ′(G).

To see an example of a fractional inverse dominating function, again consider graph G in

Figure 1.2. As before, D = {v, x} is a minimum dominating set for G, and f0 : V (G)→ [0, 1]

such that f0(v) = f0(x) = 1 and f0(w) = f0(y) = f0(z) = 0 is the characteristic function

4



on D. Therefore a fractional inverse dominating function, f3 : V (G) → [0, 1], could be any

fractional dominating function satisfying f3(v) = f3(x) = 0. Thus f3 such that f3(w) =

f3(y) = f3(z) = 1
2
, and f3(v) = f3(x) = 0 is a fractional inverse dominating function. Since∑

u∈V (G) f3(u) = 3
2

and γf (G) ≤ (γ′)f (G), (γ′)f (G) = 3
2
.

v

z w

xy
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1
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2 0

Figure 1.5: G with the weightings assigned by f3

A function φ : V (G) → [0, 1] is fractional independent if for any pair v, w of adjacent

vertices of G, φ(v) + φ(w) ≤ 1; i.e., φ is a fractional packing of the ”hypergraph” G. The

fractional independence number is αf (G) = maxφ[
∑

u∈V (G) φ(u)] where the maximum is

taken over all fractional independent functions on G.

A fractional clique-independent function of G is a function φ̂ : V (G)→ [0, 1] such that

for all cliques K of G,
∑

v∈V (K) φ̂(v) ≤ 1. The fractional clique-independence number of

G is α̂f (G) = maxφ̂[
∑

v∈V (G) φ̂(v)] where the maximum is taken over all fractional clique-

independent functions. Clearly α(G) ≤ α̂f (G) ≤ αf (G).

To see examples of fractional independent and fractional clique-independent functions,

once again consider graphG from Figure 1.2. Here α(G) = 2. The function g1 : V (G)→ [0, 1]

defined such that g1(u) = 1
2
∀u ∈ V (G) is certainly fractional independent, and it can be

shown that g1 is in fact maximum. Thus αf (G) =
∑

u∈V (G) g1(u) = 5
2
. However, g1 is not

fractional clique-independent since g1(v) + g1(w) + g1(z) > 1 and {v, w, z} form a clique of

size three in G. The function g2 : V (G) → [0, 1] defined such that g2(x) = g2(y) = 1
2
, and

g2(v) = g2(w) = g2(z) = 1
3
. g2 is certainly clique-independent, and it can be shown that it is

maximum. Thus α̂f (G) = 2.

5
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Figure 1.6: G with the weightings assigned by g1 and g2

A total dominating set of G is a set of vertices, S ⊆ V (G), such that for every v ∈ V (G),

there exists a u ∈ S with v ∈ N(u). Notice that if G has an isolated vertex, no total

dominating set exists. If G has no isolates, then the total domination number of G, denoted

γt(G), is the smallest size of total dominating set in G. Since every total dominating set is

certainly dominating, it is clear that γ(G) ≤ γt(G).

A fractional total dominating function on G is a function f : V (G) → [0, 1] such that

for every v ∈ V (G),
∑

u∈N(v) f(u) ≥ 1. As in the non-fractional case, notice that if G has

an isolated vertex, then there is no fractional total dominating function on G. If G has no

isolates, then the fractional total domination number ofG is (γt)f (G) = min[
∑

v∈V (G) f(v) : f

is a fractional total dominating function onG]. Since any fractional total dominating function

on G is also a fractional dominating function, γf (G) ≤ (γt)f (G).

To see an example of a fractional total dominating function consider the cycle on five

vertices, C5. Clearly γ(G) = 2, and γt(G) = 3. The function h1 : V (G)→ [0, 1] that assigns

weights of 1
3

to every vertex is clearly fractional dominating, but it is not total fractional

dominating. In fact, it can be shown that h1 is minimum and γf (C5) = 5
3
. An example

of a fractional total dominating function is h2 : V (G) → [0, 1] defined by h2(u) = 1
2

for all

u ∈ C5. It can be shown that h2 is minimum and (γt)f (C5) = 5
2
.

A fractional closed neighborhood packing of G is a function g : V (G)→ [0, 1] such that

for every v ∈ V (G),
∑

u∈N [v] g(u) ≤ 1. The fractional closed neighborhood packing number

for G is then πf (G) = max[
∑

v∈V (G) g(v) : g is a fractional closed neighborhood packing of

G]. A fractional open neighborhood packing of G is a function ĝ : V (G)→ [0, 1] such that for

6
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Figure 1.7: C5 with the weightings assigned by h1 and h2

every v ∈ V (G),
∑

u∈N(v) ĝ(u) ≤ 1. The fractional open neighborhood packing number for G

is then π0
f (G) = max[

∑
v∈V (G) ĝ(v) : ĝ is a fractional open neighborhood packing of G]. As

will be explained in Chapter 4, it is true that for a simple graph G with no isolated vertices,

γf (G) = πf (G) and (γt)f (G) = π0
f (G).

Now suppose G is a graph with no isolated vertices. The following inequalities follow

directly from the above definitions.

i) γ(G) ≤ ı(G) ≤ α(G) ≤ α̂f (G) ≤ αf (G)

ii) γf (G) ≤ γ(G) ≤ γ′(G)

iii) γf (G) ≤ (γf )
′(G)

iv) γf (G) ≤ (γ′)f (G) ≤ γ′(G)

v) γf (G) ≤ (γt)f (G) ≤ γt(G)

In [8] the following two additional inequalities were also proven.

vi) (γf )
′(G) ≤ αf (G)

vii) (γ′)f (G) ≤ αf (G)

These next five inequalities are expected to be true but have not been proven. Notice

that if inequality viii were proven true, then this would immediately imply that inequality

ix would be true as well due to inequality iv. Inequality x is the original Kulli and Sigarkanti

conjecture discussed in the next section. Inequalities xi and xii, if true, are stronger, respec-

tively, than vi and vii.

7



viii) (γf )
′(G) ≤ (γ′)f (G)

ix) (γf )
′(G) ≤ γ′(G)

x) γ′(G) ≤ α(G)

xi) (γf )
′(G) ≤ α̂f (G)

xii) (γ′)f (G) ≤ α̂f (G)

1.2 History

The study of domination is nothing new in Graph Theory. Since the 1950’s, with the

growth of computer science, the study of dominating sets in graphs has expanded rapidly.

There have been over one thousand papers written on domination in graphs, and most of

those papers have been written in the last 35 years.

One little known paper written in 1991 by Kulli and Sigarkanti [9] introduced the inverse

domination number, γ′(G). It was shown that γ′(G) is well defined when G has no isolated

vertices, and it was asserted that when G has no isolated vertices then γ′(G) ≤ α(G). The

attempted proof of this assertion was invalid; this was noticed, in due course, by Gayla

Domke, Jean Dunbar, Teresa Haynes, Steve Hedetniemi, and Lisa Markus, who transmitted

the open question to those interested in domination. (The first and third authors of [6] heard

about the problem from Haynes, Hedetniemi, and Markus in 2000 or 2001, at a conference

at Clemson University. Hedetniemi offered a prize for a resolution of the problem: a copy of

[2]. The question appeared as a conjecture in [1].)

1.3 Outline

Much of Chapter 2 was inspired by the observation that if a graph G has a minimum

dominating set D and a maximally independent set I which are disjoint, then γ′(G) ≤ α(G).

Therefore a graph G such that α(G) < γ′(G), if such a graph exists, must be found among

8



those with no isolated vertices and the additional property that every minimum dominating

set of G must have nonempty intersection with every maximally independent set of G. This

class of graphs, the DI-pathological graphs, is examined in Chapter 3. In Chapter 4, two

important results of linear programming are used to examine many fractional analogues to

the Kulli and Sigarkanti conjecture continuing the work previously started in [8]. In Chapter

5, the tools explained in Chapter 4 are applied to minimum fractional total dominating

functions, and these functions are totally characterized for certain graphs.

9



Chapter 2

The Inverse Domination Number

In this chapter, we consider the inverse domination number problem originally stated

in [9] which conjectures that γ′(G) ≤ α(G) for every simple graph with no isolated vertices.

Observe that if G = K1,t then ı(G) = 1 = γ(G) and α(G) = t = γ′(G); a sign that this

problem may be peskier than might have been evident at first glance.

We will say that G has Property DI if there exists a minimum dominating set D ⊆ V

and a maximal independent (and therefore dominating) set I ⊆ V \ D. If such a D and I

exist, then straight from the definitions we have γ′(G) ≤ |I| ≤ α(G).

Lemma 2.1 If G has property DI then G has no isolated vertices.

Proof Suppose G did have an isolated vertex, v. Clearly, v must be in every dominating

set. Therefore there cannot be two disjoint dominating sets.

Therefore, a graph G such that α(G) < γ′(G), if there are any, will be found among

graphs with no isolated vertices not having Property DI. Such graphs not having Property

DI will be called DI-Pathological. We may as well look among connected graphs, because

G has Property DI if and only if each component of G does, and if α(G) < γ′(G), then

α(H) < γ′(H) for some component H of G.

2.1 Trees

Lemma 2.2 If D ⊆ V and I is maximal among the independent subsets of V \ D, then I

is dominating in G if and only if D ⊆ N(I).

10



Proof Because I is maximal among the independent subsets of V \D, V \D ⊆ N [I]. There-

fore V = N [I] if and only if each vertex of D is adjacent to some vertex of I.

Corollary 2.1 If G has a minimum dominating set D such that there is an independent set

I ⊆ V \D with D ⊆ N(I), then G has Property DI.

Proof Let Ĩ be an independent set such that I ⊆ Ĩ ⊆ V \D, maximal among all indepen-

dent subsets of V \D. Then D ⊆ N(I) ⊆ N(Ĩ) so Ĩ is a dominating independent set in the

complement of D.

Theorem 2.1 Every tree of order >1 has Property DI.

Proof Clearly K2 has Property DI. Let T be a tree of order n ≥ 3, and let D be a minimum

dominating set in T containing no leaf of T . Let u be a leaf of T . Order V (T ) by the rule:

v ≤ w if and only if the path in T from u to w contains v.

Because T is a tree, every v ∈ V (T ) \ {u} has a unique immediate predecessor, i.p.(v),

in this ordering. Since D contains no leafs of T , every vertex in D has at least one immediate

successor, in this ordering.

Now we describe an algorithm that will result in a minimum dominating set D̃ in T and

an independent set I ⊆ V (T ) \ D̃ such that D̃ ⊆ NT (I). By Corollary 2.1, this will establish

that T has Property DI.

We start with D̃ = D and I = {u}, and move out from u, processing vertices as we go,

putting some in I, removing from or adding to D̃, and leaving some as they were. Obviously

certain purposes must be served: D̃ must continue to be a dominating set in T , |D̃| must

not change, I ⊆ V (T ) \ D̃ must be independent; for this it suffices to verify that each vertex

in V (T ) \ D̃ added to I is not adjacent to any vertex already in I. Finally, arrangements

must be made so that, at the end, I dominates D̃.
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From the many ways of organizing the algorithm, choose one satisfying: when the

algorithm begins the processing of w, all of the predecessors of w have been processed, and

none of the successors. The satisfying of the requirements in the paragraph above can be

checked as we go along; in the end, I will dominate D̃ if, after each processing episode, the

current I dominates D̃ ∩ [{w} ∪ {predecessors of w}].

So, suppose w is an unprocessed vertex of T , w 6= u, and all the predecessors of w and

none of the successors of w have been processed. Let v = i.p.(w). There are 6 cases to

consider.

1. If w ∈ D̃ and v ∈ I, do nothing and move on. [Note that if w is the support vertex

adjacent to u, then w ∈ D = D̃ and u ∈ I, so we are in case 1.]

2. If w ∈ D̃ and v 6∈ I ∪ D̃, then:

(a) If w has an immediate successor x ∈ V (T ) \ D̃, put x in I, leave w in D̃, and

move on. [Both w and x have now been processed.]

(b) If all immediate successors of w are in D̃ then replace D̃ with (D̃ \{w})∪{v}, put

w in I, and move on. [No immediate successor of w has been processed, in this

case; when each gets its turn, we will be in case 1.]

Remark: if w ∈ D̃ then, since w has not been processed earlier, w ∈ D and so, as

noted above, w does have successors.

3. If w, v ∈ D̃ then, because D̃ is a minimum dominating set, w must have an immediate

successor x which is not in D̃. Leave w in D̃, put x in I, and move on. [Both w and x

have been processed.]

4. If w 6∈ D̃ and v ∈ D̃, do nothing and move on.

5. If w 6∈ D̃ and v ∈ I, do nothing and move on.

6. If w 6∈ D̃ and v 6∈ D̃ ∪ I, put w in I.
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It is straightforward to see, in each case, that each new member of I is adjacent to none

of the previously inducted members of I, so I remains independent. Further, at each stage,

after the processing episode I dominates all members of D̃ that have been processed at that

point. Finally, in case 2(b), the only case in which D̃ is modified, by exchanging w for v, it is

clear that the new D̃ is still dominating, and with the same number of vertices as the old D̃.

Corollary 2.2 If F is a forest with no isolated vertices, then γ′(F ) ≤ α(F ).

After proving Theorem 2.1 we discovered that it answers a problem posed in [3], and

that the problem is also solved in [4], with a similar but more economical proof. We have

given our clunkier proof because it is algorithmic, and because we think it better illuminates

the following theorem.

Theorem 2.2 If T is a tree of order ≥ 2, and D is a minimum dominating set in T

containing at most one leaf, then there is an independent dominating set I ⊆ V (T ) \D.

We proposed Theorem 2.2 originally as a conjecture after proving Theorem 2.1. After

transmitting this problem to Michael Henning, he and two collaborators found our conjecture

to be true. The proof of this will appear in [5].

It might be useful to know for which minimum dominating sets D ⊆ V (T ), T as above,

there is an independent dominating set I ⊆ V (T )\D. Theorem 2.2 asserts that any minimum

dominating set for a tree containing at most one leaf is such a set.

In the smallest example in which D contains 2 or more leafs of T and there is no

independent dominating set I ⊆ V (T ) \D, T is P4, the path on 4 vertices, and D consists

of the two end vertices of the path.

2.2 γ(G) ≤ 2

Theorem 2.3 If γ(G) ≤ 2 and G has no isolated vertices then G has Property DI unless

G = Km,n for some m,n > 2.
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Proof If γ(G) = 1, let D = {v} be any minimum dominating set. By Lemma 2.2 any

independent set I maximal among independent subsets of V \D is a dominating set, so G

has Property DI.

Suppose that γ(G) = 2. Suppose that G does not have Property DI. Then for any

minimum dominating set D = {x, y} in G, N(x)∩N(y) = ∅, for if z ∈ N(x)∩N(y) ⊆ V \D

then {z} is an independent subset of V \ D such that x, y ∈ N({z}), so G would have

Property DI after all, by Corollary 2.1.

Let N(x,D) = N(x)\D, N(y,D) = N(y)\D, which partition V \D, by the observation

just above. Both sets are nonempty because γ(G) = 2 and G has no isolated vertices. By

the same argument as above, appealing to Corollary 2.1, there cannot exist u ∈ N(x,D)

and v ∈ N(y,D) which are not adjacent in G; that is, every vertex in N(x,D) is adjacent to

every vertex in N(y,D). Therefore, if u ∈ N(x,D) and v ∈ N(y,D) then D′ = {u, v} is a

minimum dominating set in G. Applying what has been shown about D to D′, we conclude

that N(u,D′) and N(v,D′) are disjoint and that x ∈ N(u,D′) and y ∈ N(v,D′) are adjacent.

We also conclude that N(x,D) and N(y,D) are each independent because if, for instance,

some u,w ∈ N(x,D), u 6= w, are adjacent, then, taking any v ∈ N(y,D), we would have

that w ∈ N(u,D′) ∩N(v,D′), D′ = {u, v}.

Thus G is a complete bipartite graph with bipartition N(x,D) ∪ {y}, N(y,D) ∪ {x}.

Say G ∼= Km,n, m ≤ n. Then 2 ≤ m because γ(G) = 2. If m = 2 then G does have Property

DI; just take D to consist of the 2 vertices on one side of the bipartition and I to be the

other side of the bipartition. Therefore, m,n > 2.

Corollary 2.3 follows from the fact that Property DI implies γ′ ≤ α, and that if G =

Km,n, m,n ≥ 2, then γ′(G) = γ(G) = 2.

Corollary 2.3 If γ(G) ≤ 2 and G has no isolated vertices then γ′(G) ≤ α(G).
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Corollary 2.4 Suppose that γ(G) = 2 and G has no isolated vertices. Then the following

are equivalent:

(a) G = Km,n for some m,n > 2.

(b) G does not have Property DI.

(c) G does not have Property DI and for each e ∈ E(G), G− e does have Property DI.

(d) G does not have Property DI and for each e ∈ E(Ḡ), G ∪ e does have Property DI.

Proof (a) and (b) are equivalent by Theorem 2.3, and the observation that Km,n, m,n > 2,

does not have Property DI. Clearly (c) or (d) implies (b). If m,n > 2 then adding or

removing an edge to Km,n results in a connected graph with domination number 2 which is

not Ka,b for any a, b. By Theorem 2.3, the modified graph must have Property DI. Thus

(a) implies (c) and (d).

2.3 3 ≤ γ(G) ≤ 4

Lemma 2.3 Suppose that G has no isolated vertices, and that γ′(G) = α(G) + c for some

c ≥ 1. Suppose that D is a minimum dominating set in G and I ⊆ S = V \ D is an

independent set of vertices, maximal among independent subsets of S. Let D0 = D \ N(I),

a = a(D, I) = α(< D0 >), and b = b(D, I) = min[|S0|; S0 ⊆ S and D0 ⊆ N(S0)]. Then

a+ c ≤ b ≤ |D0|.

Proof Note that because γ′(G) > α(G), G does not have Property DI and therefore, by

Corollary 2.1, D0 is necessarily nonempty. Also, because G has no isolated vertices, every

vertex in D must have a neighbor outside of D, i.e., in S. Therefore b is well defined, and

b ≤ |D0|.

Let S0 ⊆ S satisfy |S0| = b and D0 ⊆ N(S0). Then I ∩ S0 = ∅, and I ∪ S0 dominates

G. Therefore α(G) + c = γ′(G) ≤ |I ∪ S0| = |I| + |S0| = |I| + b ≤ α(G) − a + b, using the
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obvious inequality |I|+a ≤ α(G). Rearranging, α(G)+c ≤ α(G)−a+b, we have a+c ≤ b.

Corollary 2.5 In the circumstances of Lemma 2.3, |D0| ≥ a + c ≥ 1 + c ≥ 2 and < D0 >

must have at least c ≥ 1 edges.

Proof The first assertion follows directly from the conclusion of Lemma 2.3. The second

assertion arises from the fact that adding an edge to a graph can decrease its independence

number by at most one, so, since |D0|− c ≥ a = α(< D0 >), < D0 > must be obtained from

the empty graph on |D0| vertices by inserting at least c edges.

Theorem 2.4 If G has no isolated vertices and γ(G) ≤ 4 then γ′(G) ≤ α(G).

Proof Suppose, on the contrary, that c = γ′(G)−α(G) ≥ 1. By Corollary 2.3, γ(G) = 3 or

4. First suppose that γ(G) = 3 and that D = {x, y, z} is a minimum dominating set in G.

Let S = V \D, and let Nx = N(x) ∩ S, Ny = N(y) ∩ S, and Nz = N(z) ∩ S. By Corollary

2.5, every set I maximal among independent subsets of S must be contained in only one

of Nx, Ny, Nz – otherwise, the corresponding D0 would have at most one element. From

this observation it follows that Nx, Ny, Nz are disjoint, and that any two vertices not in the

same set, among these, must be adjacent. Therefore, taking one vertex from each of Nx, Ny,

Nz, we obtain a dominating set of size 3 in S = V \D, whence γ′(G) ≤ 3 = γ(G) ≤ α(G),

contrary to supposition.

Now suppose that γ(G) = 4 and D = {x1, x2, x3, x4} is a minimum dominating set in G.

As above, let S = V \D and Ni = N(xi)\D = N(xi)∩S, i = 1, 2, 3, 4. The Ni are nonempty

because G has no isolated vertices. By Corollary 2.5, each maximal independent subset of

S can dominate at most 2 elements of D, and so the same is true of any independent subset

of S.

We show that there must exist i, j, 1 ≤ i < j ≤ 4, and u ∈ Ni, v ∈ Nj, such that u, v

are not adjacent. If not, then for every such i, j, every edge uv, u ∈ Ni, v ∈ Nj, u 6= v, is
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an edge of G. Choosing a representative from each Ni, we obtain a dominating set with no

more than 4 elements in V \D, whence γ′(G) ≤ 4 = γ(G) ≤ α(G), contrary to supposition.

So, without loss of generality, suppose that u ∈ N3, v ∈ N4, u 6= v, and u and v are

not adjacent. Let I be any maximal independent subset of S containing u and v. Then

I ⊆ (N3 ∪N4) \ (N1 ∪N2), and the D0 of Lemma 2.3 is {x1, x2}. Then u, v 6∈ N1 ∪N2 and

u, v must dominate N1∪N2. Further, with a, b as in Lemma 2.3, by Lemma 2.3 we have that

2 ≤ a + c ≤ b ≤ |D0| = 2. We conclude that a = c = 1 and b = 2. Therefore N1 ∩ N2 = ∅

(because b = 2), and x1x2 ∈ E(G) (because a = 1).

Now, if y ∈ N1 and z ∈ N2 were not adjacent, then by the reasoning applied to u and v,

y, z must dominate N3 ∪N4, and so u, v, y, z would be a dominating set in G in S = V \D,

whence γ′ = γ ≤ α, again contrary to supposition. So every edge yz, y ∈ N1, z ∈ N2, is

in G. Choose any y ∈ N1. Then D′ = {x1, y, x3, x4} is a minimum dominating set, because

x1x2 ∈ E(G) and y dominates N2. But then u, v, x2 is an independent set in S ′ = V \ D′

which dominates 3 elements of D′, namely x1, x3, and x4, which is impossible by Corollary

2.5.
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Chapter 3

DI-Pathological Graphs

3.1 Minimal DI-Pathological Graphs with Domination Number Three

A graph G is said to be DI-pathological if every minimum dominating set in G intersects

every maximally independent set of G. In other words, G is DI-pathological if and only if

G does not have property DI defined in Chapter two.

Therefore the result in Theorem 2.3 could be restated as follows: for graphs G with no

isolated vertices and with γ(G) = 2, G is DI-pathological if and only if G ∼= Km,n for some

m,n ≥ 3.

In this section, we find the DI-pathological graphs with domination number three with

the least number of vertices and edges.

First of all, it is a trivial fact that if a graph has an isolated vertex, then certainly every

minimum dominating set must intersect every maximally independent set at that vertex.

Therefore, technically, the graph with the least number of vertices or edges and that has

domination number three and is DI-pathological is the complement of K3. Our interest,

however, is in DI-pathological graphs with no isolated vertices.

Now, if we restrict our graphs to those with no isolated vertices, then at least one

component of the graph must be DI-pathological if the whole graph is DI-pathological.

As noted before, if γ(G) = 1, then G is not DI-pathological. Therefore, among those

disconnected graphs of domination number three with no isolated vertices that are DI-

pathological, every one must have some component H such that γ(H) = 2 and H is DI-

pathological. By the statement above, H ∼= Km,n for m,n ≥ 3. Therefore, the smallest

disconnected DI-pathological graph with domination number three and no isolated vertices
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is K3,3 + K2. And every such graph is of the form Km,n + (K1 ∨ H), m,n ≥ 3, with ∨

denoting the join operation and H nonvoid.

Now we will turn our attention to connected DI-pathological graphs of domination

number three.

Definition 3.1

Let D be a minimum dominating set of a graph G. Let x ∈ D. Then, the D-private

neighborhood of x, written PD(x), is {v ∈ V (G) \ D : v ∈ N(x) and v 6∈ N(D \ {x})}. In

other words, PD(x) is the collection of vertices outside of D which are dominated only by

one vertex, x, of D. Vertices of PD(x) are called D-private neighbors of x.

Lemma 3.1 If D is a minimum dominating set in G, and J ⊆ V (G) \D is an independent

set such that D ⊆ N(J), then G is not DI-pathological.

Proof Suppose D is a minimum dominating set in G, and J ⊆ V (G) \D is an independent

set such that D ⊆ N(J). Then let I be a maximally independent subset of V (G) \D such

that J ⊆ I. Because I is a maximally independent subset of V (G) \D, (V (G) \D) ⊆ N(I),

and since J ⊆ I, D ⊆ N(I). Therefore I is maximally independent in G, and D ∩ I = ∅, so

G is not DI-pathological.

Remark: Lemma 3.1 is a restatement of Corollary 2.1.

Theorem 3.1 Let G be a connected DI-pathological graph with γ(G) = 3, and let D be a

minimum dominating set in G. Then for all x ∈ D, |PD(x)| ≥ 2.

Proof Let D = {x1, x2, x3} be a minimum dominating set for G, and let S = V (G) \ D.

First, assume |PD(x1)| = 0.

Then N(x1) ∩ S ⊆ [N(x2) ∪ N(x3)] ∩ S, and since D is minimum, x1x2, x1x3 6∈ E(G).

Pick v ∈ N(x1). Such a v exists because G is connected. Without loss of generality, since

|PD(x1)| = 0, say v ∈ N(x2). Then D1 := {v, x2, x3} is another minimum dominating set.
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Now, consider the subgraph Ĝ := < V (G) \ {x1} >. Certainly {x2, x3} is a minimum

dominating set of Ĝ.

Claim: Ĝ has no minimum dominating set and maximal independent set which are disjoint.

Suppose D̂ and Î were such a pair of a minimum dominating set and a maximally

independent set for Ĝ. Then v 6∈ D̂ since if it were, then D̂ would dominate G implying

that γ(G) < 3. Also, no vertex in NG(x1) is in Î: otherwise, Î would be an independent

dominating set in G disjoint from D̂ ∪ {x1}, a minimum dominating set of G. This cannot

be, since G is DI-pathological. Therefore D̂ ∪ {v} is a minimum dominating set for G, and

Î ∪ {x1} is an independent dominating set in G. This again contradicts the fact that G is

DI-pathological. Hence no such D̂ and Î exist and the claim is true.

Thus Ĝ is DI-pathological with no isolated vertices and γ(Ĝ) = 2, and hence Ĝ is a

complete bipartite graph with parts of size at least 3, by Theorem 2.3. Therefore {x2, x3} are

in different parts of Ĝ. Now, since Ĝ is a complete bipartite graph and v ∈ NG(x1)∩NG(x2),

{x2, v} is a minimum dominating set for G which is a contradiction since γ(G) = 3. Thus

|PD(x1)| 6= 0.

Now suppose |PD(x1)| = 1.

Say PD(x1) = {v}. Let D̂ = {v, x2, x3}. Note that D̂ is also a minimum dominating set

for G. Now x1x2, x1x3 6∈ E(G) since otherwise D̂ would be a minimum dominating set such

that |PD̂(v)| = 0, and, as shown above, |PD̂(v)| > 0.

Now, suppose there exists u ∈ N(x2) ∩ N(x3) ∩ S. Then {u} must dominate N(x1)

since otherwise G would not be DI-pathological; if w ∈ N(x1) \ N(u) then J = {u,w}

is an independent set in V (G) \ D such that D ⊆ N(J), whence Lemma 3.1 delivers the

contradictory conclusion. In particular, uv ∈ E(G). But then {u} dominates D̂, a minimum

dominating set of G, giving rise to a contradiction again, by Lemma 3.1, since G is DI-

pathological. Therefore N(x2) ∩ S ∩N(x3) = ∅.

Since |PD(xi)| ≥ 1, i = 2, 3, both N(x2) ∩ S and N(x3) ∩ S must be nonempty, so let

p ∈ N(x2) ∩ S and let q ∈ N(x3) ∩ S.
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Suppose p and q are non-adjacent. Then pv, qv 6∈ E(G) since otherwise {p, q} would

be an independent set disjoint from D̂ dominating D̂. Therefore {p, q, v} ⊆ V (G) \ D is

independent and dominates D, giving rise to a contradiction, and hence no such pair of

nonadjacent vertices p and q exist.

Therefore, if p ∈ N(x2) ∩ S, {p} dominates N(x3) ∩ S, and similarly if q ∈ N(x3) ∩ S,

{q} dominates N(x2) ∩ S. Thus {p, q, v} is a minimum dominating set. This implies that

x2x3 ∈ E(G) since if not then {x1, x2, x3} would be an independent set dominating {p, q, v}.

Since G is connected, there exists some edge connecting {x1, v} to N [{x2, x3}].

Suppose x1p ∈ E(G) where without loss of generality p is some vertex of N(x2) ∩ S.

Then {x2, p, v} is a minimum dominating set. x1 dominates {p, v}, and therefore x1 cannot

be nonadjacent to any vertex of N(x2)∩S. Therefore x1 dominates N(x2)∩S. This implies

{x1, x3} is a dominating set for G of size two which contradicts γ(G) = 3.

The same contradiction is reached if we say vp ∈ E(G) or if x1q or vq ∈ E(G) for some

q ∈ N(x3) ∩ S. Thus since G is connected, and one of these edges must exist, this is a

contradiction. Therefore |PD(x1)| 6= 1, and hence |PD(x)| ≥ 2 for all x ∈ D.

Corollary 3.1 If G is a connected DI-pathological graph with γ(G) = 3, then |V (G)| ≥ 9.

Proof For all x, y in a minimum dominating set D, |PD(x)| ≥ 2, and PD(x) ∩ PD(y) = ∅.

Since there are three vertices in D, |V (G)| ≥ 9.

Corollary 3.2 The graph G in Figure 3.1 is the unique connected, DI-pathological graph

with γ(G) = 3, with the least number of vertices and edges.

Proof First, to see that G is indeed DI-pathological, note that it has a unique minimum

dominating set of {x1, x5, x9}. Now if there were some maximally independent set I disjoint

from {x1, x5, x9}, then it must contain either x4 or x6. Without loss of generality, say that
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Figure 3.1: G

I contains x4. Then I cannot be independent and dominating without having x1 as one of

its vertices. Therefore G is in fact DI-pathological.

Note also that G is connected, and γ(G) = 3. By Corollary 3.1, G has the minimum

number of vertices that any such graph could have. Now suppose that H is connected, DI-

pathological on 9 vertices, γ(H) = 3, and E(H) ≤ 10. We aim to show that H ∼= G. This

will show not only that G is the unique connected DI-pathological graph with domination

number 3 with the least number of edges among those with the least number of vertices,

9, but also that G is the unique such graph with the least number of vertices among those

with the least number of edges, which is 10. To see this, suppose it has been shown that

H ∼= G. It then follows that the minimum number of edges in a connected DI-pathological

graph with domination number 3 is 10, because, by showing H ∼= G it is shown that among

such graphs with 9 vertices the minimum number of edges is 10, and any graph with 10 or

more vertices and 9 or fewer edges is either disconnected or a tree; by Theorem 2.1, every

tree with domination number 3 is not DI-pathological.

Let D = {x1, x2, x3} be a minimum dominating subset of V (H). By Theorem 3.1, and

the fact that |V (G)| = 9, the other six vertices in H are u1, u2 ∈ N(x1) \ (N(x2) ∪N(x3)),

v1, v2 ∈ N(x2) \ (N(x1) ∪ N(x3)), and w1, w2 ∈ N(x3) \ (N(x1) ∪ N(x2)). So H looks like

Figure 3.2 with at most four edges yet to be added.

To see that {u1, u2}, {v1, v2}, and {w1, w2} are independent suppose that, say, u1u2 ∈

E(H). Then D′ := {u1, x2, x3} is a minimum dominating set in H. If some edge viwj is not
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Figure 3.2: H minus 4 edges

in H, then {x1, vi, wj} is an independent set of vertices dominating D′ contradicting that H

is DI-pathological. Therefore all four edges viwj are in H. But, with u1u2 as an edge, that

implies that |E(H)| ≥ 11 which is a contradiction.

Let K = H−D. Then K is tripartite with parts {u1, u2}, {v1, v2}, and {w1, w2} and at

most four edges. First of all, K contains no isolated vertices. To see this, suppose that, say,

u1 is isolated in K. Then because H is DI-pathological, every edge viwj is in H. (Otherwise,

there would be an independent set in V (H) \D which dominates D.) But then there would

be ten edges in H, and no edge from {x1, u1, u2} to the rest of H, contradicting that H is

connected.

Now if |E(K)| < 4, then since K has no isolated vertices, there must be three edges

forming a perfect matching in K. If this were the case, however, there would be an inde-

pendent set I ⊆ V (H) \ D such that I would dominate D in H contradicting that H is

DI-pathological. Therefore |E(K)| = 4.

There exists a vertex of K, say u1, such that deg(u1) = 1. And, without loss of gener-

ality say that u1v1 ∈ E(K). If wiv2 6∈ E(K), i ∈ {1, 2}, then {wi, v2, u1} ⊆ V (H) \D would

be an independent set of vertices of H − D dominating D. Therefore w1v2, w2v2 ∈ E(K).

Since |E(K)| = 4, and u2 is not isolated, w1v1, w2v1 6∈ E(K). If u2v1 6∈ E(K), then

{u2, v1, w1} ⊆ V (G) \ D would be an independent set of H dominating D. Therefore

u2v1 ∈ E(K); K must be isomorphic to the graph in Figure 3.3 and H ∼= G.
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Figure 3.3: K

Definition 3.2

Let Bn for n ≥ 3 be the graph of two 4-cycles joined by a path of length 3n− 7.

Notice that B3 is the graph G in Figure 3.1. Also following the same basic argument

in Corollary 3.2, Bn has a unique minimum dominating set of size n, and Bn is clearly DI-

pathological for all n ≥ 3. These observations lead to the following conjecture.

Conjecture The unique connected, DI-pathological graph G with the fewest number of

edges and the fewest number of vertices such that γ(G) = n is Bn for n ≥ 3.

3.2 DI-Pathological Graphs

Definition 3.3

Let H be a simple graph. An exploded H is a graph G such that for all v ∈ V (H), v is

replaced by an independent set Av of size at least one, and every vertex of Av is adjacent to

every vertex of Au if and only if v is adjacent to u inH. G can also be called an explosion of H.

Definition 3.4 Πn
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Πn is the class of graphs such that G ∈ Πn if and only if G is an explosion of a path on n

vertices.

Definition 3.5 χn

χn is the class of graphs such that G ∈ χn if and only if G is an explosion of a cycle on n

vertices.

Hereafter, if G ∈ Πn ∪ χn, the independent sets replacing vertices in the path or cycle

of which G is an explosion will be listed A1, . . . , An corresponding to vertices around the

cycle or along the path, starting at an end. In the case of cycles, the indices i on the Ai are

adjusted mod n.

Lemma 3.2 Suppose that H is a graph with no isolated vertices and G is an explosion of H,

with independent sets Av replacing the vertices v ∈ V (H). If I is a maximally independent

set of vertices of G, v ∈ V (H), and I ∩ Av 6= ∅, then Av ⊆ I.

Proof Since I is maximally independent, I is dominating in G. Suppose that a ∈ Av ∩ I

and b ∈ Av \ I. Because I is independent, and a ∈ I, I can contain no vertices of any Au, u

a neighbor of v in H. But then b 6∈ NG[I], contradicting the fact that I is dominating in G.

Corollary 3.3 With H, G, and the Av as in the previous lemma, I ⊆ V (G) is maximally

independent in G if and only if for some maximally independent J ⊆ V (H), I = ∪v∈JAv.

Lemma 3.3 With H, G, and the Av, v ∈ V (H) as in the previous lemma, if D is a minimal

dominating set in G then for all v ∈ V (H), either Av ⊆ D or |Av ∩D| ≤ 1.

Proof If |D ∩Av| ≥ 2, then clearly, deleting one vertex of D ∩Av from D would result in a

dominating set which is a proper subset of D unless the deleted vertex and thus every vertex

of D ∩ Av dominates only itself. Therefore, |D ∩ Av| ≥ 2 implies Av ⊆ D.
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Lemma 3.4 With H, G, and the Av, v ∈ V (H), as previously, if v ∈ V (H), |Av| ≥ 3, and

D is a minimum dominating set for G, then |D ∩ Av| ≤ 1.

Proof By Lemma 3.3, if |D ∩ Av| > 1 then Av ⊆ D. If Av ⊆ D, then exchanging two

vertices of Av for one vertex of some Au, u ∈ NH(v), gives a smaller dominating set in G

than D.

Lemma 3.5 Let H, G, and the Av, v ∈ V (H), be as previously. Suppose v ∈ V (H) and

|Av| ≥ 3. If D is a minimum dominating set for G, and D ∩ Av 6= ∅, then there exists

u ∈ NH(v) such that Au ∩D 6= ∅.

Proof Suppose d ∈ D ∩ Av. By Lemma 3.4, (Av \ {d}) ∩ D = ∅. Therefore, since D is

dominating, there exists some u ∈ NH(v) such that Au ∩D 6= ∅.

Recall that a set D ⊆ V (G) is totally dominating if and only if V (G) = N(D), and that

the total domination number is defined to be γt(G) = min[|D|: D is a totally dominating

set of V (G)].

Corollary 3.4 If H is a graph with no isolated vertices, and G is an explosion of H with

|Av| ≥ 2 for all v ∈ V (H), then γ(G) = γt(H). If S is a minimum total dominating set

in H and D ⊆ V (G) is formed by taking one representative from Av for each v ∈ S, then

D is a minimum dominating set in G. If |Av| ≥ 3 for all v ∈ V (H), then every minimum

dominating set D of G is obtained as described above, by choosing one representative from

Av for each v in some minimum total dominating set in H.

Proof Suppose S is a minimum total dominating set in H and D is formed as described.

Label the vertex of D that is a representative of Av, v̂. First, to see that D is a dominating

set in G, note that for each v ∈ S, NG(v̂) = ∪{Au : u ∈ NH(v)}. Since S is total dominating
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in H, ∪{N(v) : v ∈ S} = V (H), and hence D is indeed dominating in G. Therefore, since a

total dominating set in H gives rise to a dominating set in G of the same size, γ(G) ≤ γt(H).

Suppose D is a minimum dominating set in G. Let S̃ ⊆ V (H) be the set {v ∈ V (H) :

D ∩ Av 6= ∅}. By Lemmas 3.3 and 3.4, any Av such that D ∩ Av 6= ∅ must be such that

|D ∩ Av| ∈ {1, 2}. Therefore, if |Av| ≥ 3 for all v ∈ V (H), D consists of one representative

of each Av, v ∈ S̃.

If v ∈ S̃, and |Av| = |D ∩ Av| = 2, then another minimum dominating set in G may

be obtained by replacing one vertex of D in Av by a vertex in Au for some u adjacent to v

in H. (Because D is minimum dominating and Av ⊆ D, |Av| = 2, no such Au can contain

a vertex in D.) Continuing in this way we obtain another minimum dominating set for G

at most one vertex from each Aw, w ∈ V (H). Let us continue to call this set D, and let S̃

be defined as before. Note that if |Aw| ≥ 3 for all w ∈ V (H), then the new D is the D we

started with.

It remains only to show that S̃ is a total dominating set in H, for then we have that

γt(H) ≤ |S̃| = |D| = γ(G), so γt(G) = γ(G) and every D formed in G from a minimum total

dominating set in H as described is minimum dominating in G. Also, by previous remarks,

if |Av| ≥ 3 for all v ∈ V (G), every minimum dominating set in G must be obtainable in this

way.

But it is quite clear that S̃ is a total dominating set in H, for if w ∈ V (H) \ NH(S̃)

then no vertex in Aw is in NG(D); since V (G) = NG[D], it would follow that Aw ⊆ D, but

|Aw| ≥ 2 and arrangements have been made so that |Aw ∩D| ≤ 1.

Lemma 3.6 Let H, G, and the Av, v ∈ V (H), be as previously, and suppose that H is a

path or cycle of order n. Suppose that D ⊆ V (G), and for some i ∈ {1, . . . , n}, D ∩ Aj 6= ∅

for all j ∈ {i, i + 1, i + 2}. Then every maximal independent set of vertices in G intersects

D.
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Proof If I were a maximally independent set of vertices of G disjoint from D, then by

Lemma 3.2 I ∩Aj = ∅, j = i, i+ 1, i+ 2. But then I ∪Ai+1 is an independent set of vertices

properly containing I.

Lemma 3.7 Let H, G, and the Av, v ∈ V (H), be as previously, H a path or cycle of order

n, n ≥ 6, and |Av| ≥ 3 for all v ∈ V (H). If D is a dominating set in G such that there exist

six consecutive integers {i, i+ 1, i+ 2, i+ 3, i+ 4, i+ 5}, 1 ≤ i ≤ n− 5, such that Aj ∩D 6= ∅,

j ∈ {i, i + 1, i + 4, i + 5} and Aj ∩ D = ∅, j ∈ {i + 2, i + 3}, then there is no maximally

independent (and hence dominating) subset of V (G) disjoint from D. If H is a cycle, the

same holds without the requirement 1 ≤ i ≤ n− 5, reading indices mod n.

Proof By Lemma 3.2 if there existed a dominating independent set I of G disjoint from D,

then I ∩Ai+2 6= ∅ in order that I dominate Ai+1. But, by the same argument, I ∩Ai+3 6= ∅

in order that I dominate Ai+4. This is a contradiction because I is independent.

The following lemma is only true for graphs G ∈ Πn.

Lemma 3.8 If G ∈ Πn, n ≥ 2, and D is a minimum dominating set in G such that

D∩A1 6= ∅ and |A1| ≥ 3 or D∩An 6= ∅ and |An| ≥ 3, then no maximally independent subset

of V (G) is disjoint from D.

Proof If, say, |A1| ≥ 3 and D ∩ A1 6= ∅, then by Lemma 3.5 D ∩ A2 6= ∅. By Lemma 3.2,

if I is a maximal independent set of vertices of G disjoint from D then I ∩ Ai = ∅, i = 1, 2.

But then I ∪ A1 is an independent set in G properly containing I.

Theorem 3.2 If G ∈ Πn, an explosion of H ∼= Pn, n ≥ 2, n 6= 4, 7, 10, and |Av| ≥ 3 for all

v ∈ V (H), then G is DI-pathological.
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Proof If n = 2, then G ∼= Km,n for some m,n ≥ 3. By Theorem 2.2, G is DI-pathological.

Since |Av| ≥ 3 for all v ∈ V (H), by Corollary 3.4 D is formed by choosing one vertex from

each Av, v ∈ S, where S is a minimum total dominating set in H ∼= Pn. If n = 3, then

any minimum dominating set D for G must have the property that either D ∩ A1 6= ∅ or

D ∩ A3 6= ∅. In either case, by Lemma 3.8, G is DI-pathological.

Now, if n ≥ 5, then we must consider three cases.

(i) n ≡ 0(mod 4)

Note that since n 6= 4, n ≥ 8. Any minimum total dominating set S of Pn has the

property that there exist six consecutive vertices of Pn, {i, i+ 1, i+ 2, i+ 3, i+ 4, i+ 5}

such that {i, i + 1, i + 4, i + 5} ∈ S. The conclusion that G is DI-pathological now

follows from Corollary 3.4 and Lemma 3.7.

(ii) n ≡ 1(mod 4)

Any minimum total dominating set S of Pn has the property that there are three

consecutive vertices, {i, i + 1, i + 2} ∈ S. Thus in any minimum dominating set D of

G, there must exist a set of three consecutive integers {i, i+ 1, i+ 2} with the property

that D ∩Ai, D ∩Ai+1, D ∩Ai+2 6= ∅. By Corollary 3.4 and Lemma 3.6, no maximally

independent set of V (G) could be disjoint from D.

(iii) n ≡ 2, 3(mod 4)

Here, any minimum total dominating set S of Pn falls into at least one of the following

two categories.

(a) There exist three consecutive integers {i, i + 1, i + 2} ∈ S. In this case, by

Corollary 3.4 and Lemma 3.6 there is no maximally independent set disjoint from

any minimum dominating set D in G, derived from such an S.

(b) As long as n 6= 7, 10, either {1} ⊆ S, {n} ⊆ S, or there exist six consecutive

vertices of Pn {i, i+ 1, i+ 2, i+ 3, i+ 4, i+ 5} such that {i, i+ 1, i+ 4, i+ 5} ⊆ S.
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By Corollary 3.4 and Lemmas 3.8 and 3.7, no maximally independent subset of

V (G) is disjoint from any minimum dominating set D derived from such an S.

In every case there is are no minimum dominating sets which are disjoint from any maximally

independent sets. Thus G is DI-pathological.

Theorem 3.3 If G ∈ χn, n ≥ 4, n 6= 6, and |Av| ≥ 3 for all v ∈ V (H) where H ∼= Cn, then

G is DI-pathological.

Proof Let G ∈ χn as above. As in the proof of the previous theorem, by Corollary 3.4 any

minimum dominating set D of G will be formed by choosing one representative from each

of the sets Av v ∈ S, a minimum total dominating set of H. We must consider the following

three cases.

(i) n ≡ 0(mod 4)

When n = 4, G ≡ Kr,s, r, s ≥ 6, so assume n ≥ 8. Any minimum total dominating set S

of Cn is such that there exists six consecutive vertices of Cn {i, i+1, i+2, i+3, i+4, i+5}

such that {i, i + 1, i + 4, i + 5} ⊆ S. Thus any minimum dominating set D of G will

be such that Ai, Ai+1, Ai+4, Ai+5 ∩D 6= ∅ and Ai+2, Ai+3 ∩D = ∅. By Lemma 3.7, no

maximally independent set exists which is disjoint from D.

(ii) n ≡ 1(mod 4)

Any minimum total dominating set S of Cn is such that there are three consecutive

vertices of Cn, {i, i+ 1, i+ 2} ⊆ S. By Lemma 3.6, there is no maximally independent

set disjoint from any minimum dominating set D in G.

(iii) n ≡ 2, 3(mod 4)

Note that since n 6= 6, n ≥ 7. Therefore, a minimum total dominating set S in H ∼= Cn

falls into at least one of the following two categories.

30



(a) There exist three consecutive vertices of Cn, {i, i + 1, i + 2} ⊆ S. In this case,

by Lemma 3.6 there is no maximally independent set disjoint from any minimum

dominating set D derived from such an S.

(b) There exist six consecutive vertices of Cn, {i, i + 1, i + 2, i + 3, i + 4, i + 5}, such

that {i, i+ 1, i+ 4, i+ 5} ⊆ S. By Lemma 3.7, no maximally independent subset

of V (G) exists that is disjoint from any minimum dominating set D derived from

such an S.

In every case, there are no minimum dominating sets which are disjoint from any maximally

independent sets. Therefore G is DI-pathological.

Since it has been shown that many exploded paths and cycles are DI-pathological, it

is natural to examine if other graphs can be exploded giving rise to other DI-pathological

graphs. It turns out that many graphs may fall into this category. In fact, it is an easy

exercise to see that even any exploded Petersen graph with |Av| ≥ 3 for all vertices v is also

DI-pathological.

Another natural question would be if all DI-pathological graphs could be characterized

as explosions of simple graphs. It will be shown that this is not the case. In fact the theorem

below shows that DI-pathological graphs of a certain size can take various forms.

Definition 3.6

A graph G is said to have an exploded tail of length n if there exists S ⊆ V (G) such that

< S > ∼= H ∈ Πn for some n, and the only edges connecting S to V (G) \ S are incident to

vertices of A1 ⊆ S.

Definition 3.7

A graph G is said to have an exploded ear of length n if there exists S ⊆ V (G) such that
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< S > ∼= H ∈ Πn for some n, and the only edges connecting S to V (G) \ S are incident to

vertices in either A1 or An ⊆ S; and there is at least one edge with an end in Ai and the

other end in V (G) \ S, for each i ∈ {1, n}.

Theorem 3.4 If G is a simple graph with an exploded tail of order n1 ≥ 12 or an exploded

ear of order n2 ≥ 14, and with |Ai| ≥ 3, i = 1, 2, . . . , nj, j = 1, 2, then G is DI-pathological.

Proof Let G be such a graph, and let D be a minimum dominating set for G. Clearly,

whether G has an exploded tail of order n1 ≥ 12 or an exploded ear of order n2 ≥ 14, there

must exist six consecutive integers {i, i + 1, i + 2, i + 3, i + 4, i + 5} such that Aj ∩ D 6= ∅,

j ∈ {i, i+ 1, i+ 4, i+ 5}, and Ai+2 ∩D = Ai+3 ∩D = ∅. By the same logic as in Lemma 3.7,

there is no maximally independent set for G that is disjoint from D.

At first glance, it may seem that in the previous theorem the requirement that n1 ≥ 12

and n2 ≥ 14 is a little bit of an overkill. However, we have found that these are optimal

bounds for n. In other words, there are non-DI-pathological graphs such that they an

exploded tail of order 11, and there are also non-DI-pathological graphs such that they have

an exploded ear of order 13. Two such graphs are given in Figures 3.4 and 3.5.

Figure 3.4: A non-DI-pathological graph G with an exploded tail of order 11

It can clearly be seen that the graph G in Figure 3.4 has an exploded tail of order 11,

and it is not difficult to verify that γ(G) = 7. Thus the vertices that are boxed form a

minimum dominating set that is, in fact, disjoint from the maximally independent set of

vertices that are circled. The graph H in Figure 3.5 has an exploded ear of order 13, and
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Figure 3.5: A non-DI-pathological graph H with an exploded ear of order 13

γ(H) = 8. As before, it is clear to see that the boxed vertices form a minimum dominating

set disjoint from the maximally independent set of vertices that are circled.

The previous theorem sheds some light on how difficult it would be to classify all DI-

pathological graphs. The ”non-tail” or ”non-ear” part of the graph could be almost anything.

One also notices that every DI-pathological graph mentioned so far in this paper has

at least one set of clones, where two vertices x and y are called clones in G if N(x) = N(y).

So it may seem that the existence of clones might be a necessity for DI-pathological graphs.

Even this characteristic is not shared by all DI-pathological graphs. For example, the graph

of two cycles on 7 vertices joined by a path of length 2 is DI-pathological but has no clones.

In fact if G is the graph composed of two cycles, Cm and Cn joined by a path of length k

where m,n > 4, m,n ≡ 1(mod 3), and k ≡ 2(mod 3), then G is DI-pathological and has no

clones.
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Chapter 4

The Principle of Strong Duality and the Principle of Complementary Slackness

In Chapter 1 were introduced many fractional analogues to such parameters as the dom-

ination number, the total domination number, the inverse domination number, the closed

neighborhood packing number, the open neighborhood packing number, and the indepen-

dence number. Since the problems of finding these parameters can be viewed as integer

programs and the problems of finding their fractional analogues can be viewed as linear

programs, an extremely helpful tool is the Principle of Strong Duality. This is the central

result in the theory of linear programming, and a thorough examination of application of

the Principle of Strong Duality and its application to fractional graph theory can be found

in [11]. Here we purloin from [11] the basic definitions and results in linear programming

pertinent to our aims.

A linear program (LP) is an optimization problem that can be expressed in the form

”maximize ctx subject to Ax≤ b”, where b is an m-vector, c is an n-vector, A is an m-

by-n matrix, and x varies over all the n-vectors with nonnegative entries. (Inequalities are

coordinate-wise.) The problem ”minimize ctx subject to Ax≥b” is also a linear program;

again, we assume that x≥ 0. It is easy to see that problems with equality constraints or

with unconstrained variables can be put into the above form, so these variations may be

considered. For our purposes, LPs always take the standard forms introduced here.

An integer program (IP) is an optimization problem of the same form as a linear program

except that the vector x is subject to the additional constraint that all its entries must be

integers.

In an LP or an IP, the expression ctx is called the objective function, a vector x satisfying

the constraints Ax≤ b, x≥ 0 is called a feasible solution, and the optimum of the objective
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function over all feasible solutions is called the value of the program. It is natural to assign

the value −∞ to a maximization program with no feasible solutions and the value +∞ if

the objective function is unbounded on feasible solutions. The linear program obtained from

an integer program P by dropping the constraint that the entries of x be integers is called

the linear relaxation of P.

If P is the (linear or integer) program ”maximize ctx subject to Ax≤ b, x≥ 0”, then

the program ”minimize bty subject to Aty≥c, y≥ 0” is called the dual of P. If x is a feasible

solution for P and y is a feasible solution for the dual of P, then because x, y ≥ 0, we have

the weak duality inequality.

ctx = xtc ≤ xtAty = (Ax)ty ≤ bty

This implies that the value of P is less than or equal to the value of the dual of P. In fact,

if P is a linear program, more is true.

Theorem 4.1 The Principle of Strong Duality

A linear program and its dual have the same value.

4.1 The Fractional Domination Number and the Fractional Closed Neighbor-

hood Packing Number

For a graph G, the domination number, γ(G), and the closed neighborhood packing

number, π(G), were defined in Chapter 1. The problem of finding γ(G) and π(G) are

dual integer programs. Consequently, the problem of finding their fractional analogues,

γf (G) and πf (G) are dual linear programs. By the Principle of Strong Duality, therefore,

γf (G) = πf (G).

When attempting to find γf (G) or πf (G) for a graph G, one need only find two functions

g, h : V (G)→ [0, 1] such that g is fractional dominating, h is a fractional closed neighborhood

packing function, and
∑

v∈V (G) g(v) =
∑

v∈V (G) h(v). This then immediately shows that g is

minimum, h is maximum, and
∑

v∈V (G) g(v) =
∑

v∈V (G) h(v) = γf (G) = πf (G).
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Figure 4.1: G

It then becomes a simple exercise to find γf (G) for a graph G such as Figure 4.1, which

is a copy of the C5 with a chord, that was represented in Figure 1.2 in Chapter 1. Recall

the function f1 : V (G) → [0, 1] from Chapter 1 such that f1(v) = 0, f1(z) = f1(w) = 1
2
,

and f1(y) = f1(x) = 1
4

which is clearly fractional dominating. In Chapter 1, the claim was

made that f1 was minimum and therefore that γf (G) =
∑

u∈V (G) f1(u) = 3
2
. To now verify

this, consider the fractional closed neighborhood packing of G, h : V (G)→ [0, 1], defined by

h(v) = h(z) = h(x) = 1
2

and h(w) = h(y) = 0. Since
∑

u∈V (G) h(u) = 3
2

as well, γf (G) does

indeed equal 3
2
.
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Figure 4.2: f1, a fractional dominating functions and h, a fractional closed neighborhood
packing
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4.2 The Fractional Total Domination Number and the Fractional Open Neigh-

borhood Packing Number

For a graph G with no isolated vertices, the problem of finding the total domination

number, γt(G), also has an integer dual, and it is the problem of finding the open neigh-

borhood packing number, π0(G). And, just as in the previous section, the problem of find-

ing their fractional analogues (γt)f (G) and π0
f (G) are dual linear programs. Therefore the

problem of finding (γt)f (G) for a graph G with no isolates simplifies into finding functions

g, h : V (G) → [0, 1] such that g is a fractional total dominating function, h is a fractional

open neighborhood packing, and
∑

v∈V (G) g(v) =
∑

v∈V (G) h(v). This sum is then the frac-

tional total domination number and the fractional open neighborhood packing number.

To see an example, consider the cycle on 5 vertices, C5. In Chapter 1, the claim was

made that g : V (C5) → [0, 1] defined by g(u) = 1
2

for all u ∈ C5 is a minimum fractional

total dominating function. This becomes obvious when one notices that g is also a fractional

open neighborhood packing of C5. In fact, it will be seen in Chapter 5 that g is the only

fractional total dominating function and the only fractional open neighborhood packing for

C5. Thus clearly (γt)f (C5) = π0
f (C5) = 5

2
.

1
2

1
2

1
2

1
2

1
2

g

Figure 4.3: g, a fractional total dominating function and a fractional open neighborhood
packing for C5

The example in Figure 4.3 helps to illustrate the following theorem.

Theorem 4.2 For n ≥ 3, (γt)f (Cn) = n
2
.

Proof The function g : V (Cn) → [0, 1] defined by g(u) = 1
2

for all u ∈ Cn is both a min-

imum fractional total dominating function and a fractional open neighborhood packing of
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Cn. Thus, by the principle of strong duality, since
∑

u∈V (Cn) g(u) = n
2
, (γt)f (Cn) = n

2
.

This next theorem makes use of the principle of strong duality to find (γt)f (Pn) for

n ≥ 2.

Theorem 4.3 For n ≥ 2

(γt)f (Pn) =



n
2

if n ≡ 0(mod 4)

dn
2
e if n ≡ 1(mod 4)

n
2

+ 1 if n ≡ 2(mod 4)

dn
2
e if n ≡ 3(mod 4).

Proof For simplicity, label the vertices of Pn sequentially along the path starting at one end

as follows: {x1, x2, . . . , xn}. This proof now divides into four cases.

Case 1: n ≡ 0(mod 4)

Let g : V (Pn)→ [0, 1] such that g(xi) =

 1 if i ≡ 2, 3(mod 4)

0 if i ≡ 0, 1(mod 4).

g is both a fractional total dominating function and a fractional open neighborhood packing

of Pn. Thus, by the principle of strong duality, since
∑

u∈V (Pn) g(u) = n
2
, (γt)f (Pn) = n

2
.

Case 2: n ≡ 1(mod 4)

Let g : V (Pn)→ [0, 1] such that g(xi) =

 1 if i ≡ 2, 3(mod 4), or if i = n− 1

0 if i ≡ 0, 1(mod 4), i 6= n− 1.

Let h : V (Pn)→ [0, 1] such that h(xi) =

 1 if i ≡ 1, 2(mod 4)

0 if i ≡ 0, 3(mod 4).

g is a fractional total dominating function of Pn, and h is a fractional open neighborhood

packing of Pn. Thus, by the principle of strong duality, since
∑

u∈V (Pn) g(u) = dn
2
e =∑

u∈V (Pn) h(u), (γt)f (Pn) = dn
2
e.

Case 3: n ≡ 2(mod 4)

Let g : V (Pn)→ [0, 1] such that g(xi) =

 1 if i ≡ 1, 2(mod 4)

0 if i ≡ 0, 3(mod 4).
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g is both a fractional total dominating function and a fractional open neighborhood packing

of Pn. Thus, by the principle of strong duality, since
∑

u∈V (Pn) g(u) = n
2
+1, (γt)f (Pn) = n

2
+1.

Case 4: n ≡ 3(mod 4)

Let g : V (Pn)→ [0, 1] such that g(xi) =

 1 if i ≡ 1, 2(mod 4)

0 if i ≡ 0, 3(mod 4).

g is both a fractional total dominating function and a fractional open neighborhood packing

of Pn. Thus, by the principle of strong duality, since
∑

u∈V (Pn) g(u) = dn
2
e, (γt)f (Pn) = dn

2
e.

4.3 The Fractional Independence Number, the Fractional Clique-Independence

Number, and their Dual Linear Programs

The problem of finding the independence number, α(G), of a graph G also has an integer

dual, and it is the problem of finding the edge covering number, c(G). An edge covering of

the graph G is a set of edges E ⊆ E(G) such every vertex of G is incident to at least one edge

of E; c(G) is then the least number of edges in an edge covering. Note that c(G) is defined

only if G has no isolated vertices. The fractional analogue to this is cf (G), the fractional

edge covering number. A fractional edge covering is a function ψ : E(G) → [0, 1] such that

for each v ∈ v(G), the sum of the weightings of the edges incident with v is ≥ 1. Thus

cf (G) = min{
∑

e∈E(G) ψ(e) : ψ is a fractional edge covering on G}. The problem of finding

αf (G) and the problem of finding cf (G) are dual linear programs, and hence αf (G) = cf (G).

Thus the problem of finding αf (G)
(

= cf (G)
)

simplifies into finding a fractional inde-

pendent function φ and a fractional edge covering ψ such that
∑

v∈V (G) φ(v) =
∑

e∈E(G) ψ(e).

To see an example, consider once again the graph G in Figure 4.1. In Chapter 1, the claim

was made that the function φ : V (G) → [0, 1] such that φ(u) = 1
2

for all u ∈ V (G) is

a maximum fractional independent function. In order to see this, consider the function

ψ : E(G)→ [0, 1] such that ψ(e)) =

 0 if e is zw

1
2

otherwise
.
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ψ is clearly a fractional edge covering with
∑

e∈E(G) ψ(e) =
∑

v∈V (G) φ(v) = 5
2
. Therefore

αf (G) is indeed 5
2
.
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Figure 4.4: φ a fractional independent function and ψ a fractional edge covering for G

The problem of finding the fractional clique-independence number, α̂f , has the dual

linear program of the problem of finding the fractional clique covering number, ĉf . Before

we can define ĉf , we must first define a fractional clique covering on G. Let K be the set

of all cliques of G. A fractional clique covering on G is then a function ψ̂ : K → [0, 1] such

that
∑

K:v∈K ψ̂(K) ≥ 1 for all v ∈ V (G). ĉf is defined to be the min{
∑

K∈K ψ̂(K) : ψ̂ is a

fractional clique covering on G}.

In Chapter 1, the claim was made that the function φ̂ : V (G) → [0, 1] such that

φ̂(x) = φ̂(y) = 1
2

and φ̂(z) = φ̂(v) = φ̂(w) = 1
3

was a maximum clique-independent function

on the graph G in Figure 4.1. In order to show that φ̂ is maximum, we need only find a

fractional clique covering of G, ψ̂, such that the sum of the weights on the cliques is equal

to 2. Thus consider the following function. Let ψ̂ =

 1 if K is {v, w, z} or {y, x}

0 otherwise
. ψ̂ is

certainly a fractional clique covering since every vertex of G is in a clique that has weight

equal to 1. And, since the sum of all the weights on the cliques of G is 2, α̂f = 2.

4.4 The Principle of Complementary Slackness

The Principle of Complementary Slackness is an extremely important corollary to the

proof of the Principle of Strong Duality, and similarly is a powerful tool in fractional graph

theory. Again, a thorough explanation of this topic can be found in [11].
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Figure 4.5: φ̂ a fractional clique-independent function and ψ̂ a fractional clique covering for
G

Theorem 4.4 The Principle of Complementary Slackness

Let x∗ be any optimal solution to the bounded, feasible linear program, maximize ctx

subject to Ax≤ b, x≥ 0, and let y∗ be any optimal solution to the dual, minimize bty subject

to Aty≥ c, y ≥ 0. Then

x∗ · (Aty∗ − c) = y∗ · (Ax∗ − b) = 0.

It is useful to rewrite this theorem in the contexts in which is will be applied in this

thesis. In these restatements, it is important to notice that since x∗ and (Aty∗ - c) are

both nonnegative, if some coordinate of x∗ or (Aty∗ - c) is nonzero, then the corresponding

coordinate of the other must be zero
(

similarly for y∗ and (Ax∗ - b)
)

. It is also important

to note that in all of the cases discussed in this paper, the constraint vector for these linear

programs, either b or c, is the vector where 1 is the entry in every component. Thus we

have the following corollaries to the Principle of Complementary Slackness.

Corollary 4.1 The Principle of Complementary Slackness applied to fractional

dominating functions and fractional closed neighborhood packings.

Let G be a graph with v ∈ V (G). If g(v) > 0 for some minimum fractional dominating

function on G, then h(N [v]) = 1 for every maximum fractional closed neighborhood packing

h of G; and, if h(v) > 0 for some maximum fractional closed neighborhood packing of G,

then g(N [v]) = 1 for every minimum fractional dominating function on G.

Corollary 4.1 implies the following two facts:
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(i) If there exists a maximum fractional closed neighborhood packing h such that h(N [v]) <

1, then g(v) = 0 for every minimum fractional dominating function g of G.

(ii) If there exists a minimum fractional dominating function g such that g(N [v]) > 1, then

h(v) = 0 for every maximum fractional closed neighborhood packing h of G.

Corollary 4.2 is almost identical to that of 4.1 and has very similar implications.

Corollary 4.2 The Principle of Complementary Slackness applied to fractional

total dominating functions and fractional open neighborhood packings.

Let G be a graph with v ∈ V (G). If g(v) > 0 for some minimum fractional total dominating

function on G, then h(N(v)) = 1 for every maximum fractional open neighborhood packing

h of G; and, if h(v) > 0 for some maximum fractional open neighborhood packing of G, then

g(N(v)) = 1 for every minimum fractional total dominating function on G.

As in Corollary 4.1, Corollary 4.2 implies the following two facts:

(i) If there exists a maximum fractional open neighborhood packing h such that h(N(v)) <

1, then g(v) = 0 for every minimum fractional total dominating function g of G.

(ii) If there exists a minimum fractional total dominating function g such that g(N(v)) > 1,

then h(v) = 0 for every maximum fractional open neighborhood packing h of G.

Corollary 4.2 is very useful in the characterization of minimum fractional total domi-

nating functions and maximum fractional open neighborhood packings which is much of the

aim of Chapter 5.

It is worth mentioning that the Principle of Complementary Slackness is applicable

to maximum fractional independent functions and maximum fractional clique-independent

functions along with their dual linear programs. This topic, however, is not explored in

depth in this thesis.
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Chapter 5

Total Domination Null and Open Neighborhood Packing Null Vertices

5.1 Fractional Total Domination

As explained in Chapter 1, a function g : V (G) → [0, 1] is total dominating on G if∑
v∈N(u) g(v) ≥ 1 for all u ∈ V (G). The fractional total domination number is defined

by (γt)f (G) = min{
∑

v∈V (G) g(v): g is a fractional total dominating function on G}. As

mentioned in Chapter 4, the problem of finding π0
f (G) is a dual linear program to that of

finding (γt)f (G).

In [7] the following definitions of domination null and packing null vertices were given

as follows: A vertex v ∈ V (G) is domination null if and only if g(v) = 0 for every minimum

fractional dominating function g on G. A vertex v ∈ V (G) is packing null if and only if

h(v) = 0 for every maximum fractional packing h of G. Continuing the work started in this

paper, I define two analogous terms corresponding to fractional total dominating functions

and fractional open neighborhood packings.

A vertex v ∈ V (G) is total domination null if and only if g(v) = 0 for every minimum

fractional total dominating function g on G. A vertex v ∈ V (G) is open neighborhood packing

null if and only if h(v) = 0 for every maximum fractional open neighborhood packing h of

G.

For a simple graph G, let GG = {g : V (G) → [0, 1] | g is a minimum fractional total

dominating function of G}, and let HG = {h : V (G) → [0, 1] | h is a maximum fractional

open neighborhood packing of G}.

The following lemma is very helpful in the pursuit of characterization of minimum

fractional total dominating functions and maximum fractional open neighborhood packings

for certain graphs.
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Lemma 5.1 If there exists a graph G and a function f : V (G) → [0, 1] such that f(v) > 0

for all v ∈ V (G) and f ∈ GG ∩HG, then GG = HG.

Proof By the principle of complementary slackness, the following two statements are true.

(i) If h ∈ HG then h(N(v)) = 1 for all v ∈ V (G) since f(v) > 0 for all v ∈ V (G) and

f ∈ GG. Thus h ∈ GG.

(ii) If g ∈ GG then g(N(v)) = 1 for all v ∈ V (G) since f(v) > 0 for all v ∈ V (G) and

f ∈ HG. Thus g ∈ HG.

Corollary 5.1 If G is regular of degree k ≥ 1, then GG = HG.

Proof Let f : V (G)→ [0, 1] be such that f(v) = 1
k

for all v ∈ V (G). Clearly f ∈ GG ∩HG,

and f(v) > 0 for all v ∈ V (G).

Corollary 5.2 GKr1,r2,...,rt
= HKr1,r2,...,rt

where Kr1,r2,...,rt is the complete t-partite graph with

parts of sizes r1, r2, . . . , rt and t ≥ 2.

Proof Let f : V (G)→ [0, 1] be such that if v is in part i, then f(v) = ( 1
t−1

)( 1
ri

). As in the

previous corollary, f ∈ GG ∩HG, and f(v) > 0 for all v ∈ V (G).

A similar lemma to that of Lemma 5.1 holds for the sets ĜG := {g : V (G) → [0, 1] | g

is a minimum fractional dominating function for G} and ĤG := {h : V (G) → [0, 1] | h is a

maximum closed neighborhood packing on G}.

Lemma 5.2 If there exists a graph G and a function f : V (G) → [0, 1] such that f(v) > 0

for all v ∈ V (G) and f ∈ ĜG ∩ ĤG, then ĜG = ĤG.
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Proof The proof is identical to that of Lemma 5.1, and again comes directly from the prin-

ciple of complementary slackness.

Similarly, the following corollary comes directly from Lemma 5.2.

Corollary 5.3 If G is regular of degree k, then ĜG = ĤG. Also, ĜKr1,r2,...,rt
= ĤKr1,r2,...,rt

where Kr1,r2,...,rt is the complete t-partite graph with parts of sizes r1, r2, . . . , rt and t ≥ 2.

Proof It is not hard to verify that there exist functions that meet the criteria of Lemma

5.2 for both nontrivial graphs of regular degree and complete t-partite graphs. Also, see [7].

5.2 Cycles

When trying to characterize all functions g ∈ GCn and h ∈ HCn , Lemma 5.1 is extremely

helpful. Since Cn is regular of degree 2, GCn = HCn . For simplicity, from now on the vertices

of Cn will be labeled {x1, x2, . . . , xn} sequentially around the cycle. i.e. xnx1 ∈ E(Cn), and

xixi+1 ∈ E(Cn) for all 1 ≤ i ≤ n−1. Recall that by Theorem 4.2, (γt)f (Cn)
(

= π0
f (Cn)

)
= n

2
.

The following theorem totally answers the characterization problem for cycles.

Theorem 5.1 If g ∈ GCn and n 6≡ 0(mod 4), then g(xi) = 1
2

for all 1 ≤ i ≤ n. If g ∈ GCn

and n ≡ 0(mod 4), then

g(xi) =



s if i ≡ 0(mod 4)

1− s if i ≡ 2(mod 4)

t if i ≡ 1(mod 4)

1− t if i ≡ 3(mod 4)

where s, t ∈ [0, 1].

Proof First, I claim that g ∈ GCn

(
= HCn

)
if and only if g(xi)+g(xi+2) = 1 for all 1 ≤ i ≤ n

where i + 2 is treated as i + 2(mod n). To see this, first suppose that g(xi) + g(xi+2) = 1
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for all i. Then g is clearly total dominating on G, and
∑n

i=1 g(xi) = n
2
. Therefore g ∈ GCn .

Secondly, let g be any function in g ∈ GCn . Therefore 2
∑n

i=1 g(xi) =
∑n

i=1 g(xi) + g(xi+2) ≥

n = 2 · n
2

= 2
∑n

i=1 g(xi) where the inequality comes from the fact that g(xi) + g(xi+2) ≥ 1

for all 1 ≤ i ≤ n since g is total dominating on G. Thus g(xi)+g(xi+2) = 1 for all 1 ≤ i ≤ n,

and thus the claim is true.

Now if n 6≡ 0(mod 4), the only way that every pair g(xi) and g(xi+2) can sum to 1 is if

g(xi) = 1
2

for all 1 ≤ i ≤ n. If n ≡ 0(mod 4), however, this is possible only if

g(xi) =



s if i ≡ 0(mod 4)

1− s if i ≡ 2(mod 4)

t if i ≡ 1(mod 4)

1− t if i ≡ 3(mod 4)

where s, t ∈ [0, 1].

Corollary 5.4 Cn has no total domination null vertices and no open neighborhood packing

null vertices for n ≥ 3.

5.3 Paths

Let n ≥ 2. Characterizing GPn and HPn seems to be a much messier problem that it is

for cycles. However, the principle of complementary slackness again serves as a valuable tool

in this section. For simplicity, from now on, we will refer to the principle of complementary

slackness as PCS and label the vertices of Pn sequentially {x1, x2, . . . , xn} along the path.

Lemma 5.3 If v is a stem of G (i.e. v is adjacent to vertex u such that deg(u) = 1) and g

is a fractional total dominating function on G, then g(v) = 1.

Proof If g(v) < 1, then g would fail to dominate the open neighborhood of u which would

be a contradiction to g being a total dominating function on G.
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Lemma 5.4 Suppose xi is a total domination null vertex in Pn. If i+2 ≤ n then g(xi+2) = 1

for any minimum fractional dominating function g on G, and if 1 ≤ i − 2 then the same

holds for xi−2.

Proof Suppose xi is as above. Then N(xi+1) is {xi, xi+2}. Thus in order for xi+1 to be

dominated by g, g(xi+2) = 1 since g(xi) = 0. Likewise, g(xi−2) = 1 as well.

Theorem 5.2 For n ≥ 2 the following is the chart of the total domination null and the open

neighborhood packing null vertices for Pn.

i such that xi is i such that xi is open

total domination null neighborhood packing null (γt)f (Pn)

n ≡ 0(mod 4) i ≡ 0, 1(mod 4) None n
2

n ≡ 1(mod 4) i ≡ 1(mod 4) i ≡ 3(mod 4) dn
2
e

n ≡ 2(mod 4) None i ≡ 0, 3(mod 4) n
2

+ 1

n ≡ 3(mod 4) i ≡ 0(mod 4) i ≡ 0(mod 4) dn
2
e

Proof First of all, the right most column was shown in Chapter 4. It follows from Lemma

5.3 that GP2 = HP2 = {g : V (P2) → [0, 1] such that g(x1) = g(x2) = 1}, and that GP3 =

HP3 = {g : V (P3) → [0, 1] such that g(x1) = t, g(x2) = 1, and g(x3) = 1 − t for some

t ∈ [0, 1]}.

The rest of the proof will be divided into 4 parts. Let n ≥ 4.

n ≡ 0(mod 4)

If n ≡ 0(mod 4), then the constant function h(xi) = 1
2

for 1 ≤ i ≤ n is a maximum

fractional open neighborhood packing of Pn. Therefore there are no open neighborhood

packing null vertices. h also implies that for any minimum fractional total dominating

function g, g(N(xi)) = 1 for all 1 ≤ i ≤ n; this is an application of the PCS. Clearly,

g(x1) = g(xn) = 0 by the fact that h(N(xi)) = 1
2
< 1, i = 1, n. Therefore, again by the PCS
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conclusions, or using Lemma 5.4, g(x2) = 1 = g(x3), and therefore g(x4) = 0. Thus since the

weights on x1, x2, x3, x4 are 0, 1, 1, 0 respectively, the rest follows immediately from the PCS

conclusion that g(N(xi)) = 1 for all i, and the only possible member of GPn is the function

illustrated in Figure 5.1.

. . . . . .
01 0 0 0 0 00 01 11111 1

Figure 5.1: n ≡ 0(mod 4)

n ≡ 1(mod 4)

. . . . . .
01 0 0 0 0 00 01 1111 1 11

xi
a b

Figure 5.2: i ≡ 1(mod 4), a, b ≥ 0, a+ b = n−1
4

In Figures 5.2 through 5.8, a is the number of 4 element sets of vertices that have the same

weightings as {x1, x2, x3, x4}, counting from the left, and b is the number of 4 element sets

of vertices that have the same weightings as {xn−3, xn−2, xn−1, xn}, counting from the right.

The function h ∈ HPn illustrated in Figure 5.2 is such that
∑

u∈N(xi)
h(u) = 0 < 1 so

therefore by PCS, g(xi) = 0 for all g ∈ GPn . Thus xi is total domination null for i ≡ 1(mod

4).

. . . . . .
01 0 0 0 0 00 01 11 111 11

xi
0 011

a b

Figure 5.3: i ≡ 3(mod 4), a, b ≥ 0, a+ b = n−5
4

The function g ∈ GPn illustrated in Figure 5.3 is such that
∑

u∈N(xi)
g(u) = 2 > 1 so

therefore by PCS, h(xi) = 0 for all h ∈ HPn . Thus xi is open neighborhood packing null for

i ≡ 3(mod 4).
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To see that these are these are the only sets of total domination or open neighborhood

packing null vertices consider the following functions g0, g1 ∈ GPn and h0 ∈ HPn .

g0(xi) =

 0 if i ≡ 1, 2(mod 4), i 6= 2

1 if i ≡ 0, 3(mod 4), i = 2,
g1(xi) =

 0 if i ≡ 0, 1(mod 4), i 6= n− 1

1 if i ≡ 2, 3(mod 4), i = n− 1,

h0(xi) =


0 if i ≡ 3(mod 4)

1 if i ≡ 1(mod 4)

1
2

if i ≡ 0, 2(mod 4)

n ≡ 2(mod 4)

. . . . . .
01 0 0 0 00 1 111 11

xi
0 011

a b

0 01 11

xi+1

Figure 5.4: i ≡ 3(mod 4), a, b ≥ 0, a+ b = n−6
4

The function g ∈ GPn illustrated in Figure 5.4 is such that
∑

u∈N(xi)
g(u) =

∑
u∈N(xi+1) g(u) =

2 > 1 so therefore by PCS, h(xi) = h(xi+1) = 0 for all h ∈ HPn . Thus xi is open neighbor-

hood packing null for i ≡ 0, 3(mod 4).

. . .
1 001 101 1

a

0 1

Figure 5.5: a = n−2
4

The function h ∈ HPn illustrated in Figure 5.5 is such that h(xi) = 1 > 0 for all

i ≡ 1, 2(mod 4). Thus the only open packing null vertices are xi such that i ≡ 0, 3(mod 4).

The function represented in Figure 5.4 shows that xi is not total domination null for all

i except possibly when i = 1 or when i = n. But, note that the function h ∈ HPn illustrated

in Figure 5.5 is also such that h ∈ GPn . Here, h(x1) 6= 0 and h(xn) 6= 0. Thus, it has been

shown that there are no total domination null vertices for Pn.
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n ≡ 3(mod 4)

. . . . . .
01 0 00 0 001 111 11

xi
01001 1

a b

01 1

Figure 5.6: i ≡ 0(mod 4), a, b ≥ 0, a+ b = n−7
4

The function h ∈ HPn illustrated in Figure 5.6 is such that
∑

u∈N(xi)
h(u) = 0 < 1 so

therefore by PCS, g(xi) = 0 for all g ∈ GPn . Thus xi is total domination null for i ≡ 0(mod

4).

. . . . . .
01 0 0 0 00 01 11 11 1

xi

100 11

a b

Figure 5.7: i ≡ 0(mod 4), a, b ≥ 0, a+ b = n−3
4

The function g ∈ GPn illustrated in Figure 5.7 is such that
∑

u∈N(xi)
g(u) = 2 > 1 so

therefore by PCS, h(xi) = 0 for all h ∈ HPn . Thus xi is open neighborhood packing null for

i ≡ 0(mod 4).

The function illustrated in Figure 5.7 shows that xi is not total domination null except

when i ≡ 0(mod 4) and possibly when i = n. The function illustrated in Figure 5.8 is in

GPn , and g(xn) 6= 0. Thus the only total domination null vertices are those xi such that

i ≡ 0(mod 4).

. . .
1 0 00 1 10 11

a

0 1

xi

Figure 5.8: i = n and a = n−3
4

The function illustrated in Figure 5.6 shows that xi is not open neighborhood packing

null except when i ≡ 0(mod 4) and possibly when i ∈ {3, n}. The function illustrated in
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Figure 5.8 is also in HPn , and hence x3 and xn are not open neighborhood packing null.

Thus the only open neighborhood packing null vertices are those xi such that i ≡ 0(mod 4).

Now that it is clear which vertices of Pn are total domination null and which are open

neighborhood packing null, we can more easily characterize all functions in the sets GPn and

HPn .

Theorem 5.3 If n ≡ 0(mod 4), then there is only one function in the set GPn, and it is

g(xi) =

 0 if i ≡ 0, 1(mod 4)

1 if i ≡ 2, 3(mod 4)

Proof Let g ∈ GPn . Theorem 5.2 states that g(xi) = 0 for all i ≡ 0, 1(mod 4). Then, by

Lemma 5.4, it must be that g(xi) = 1 for all i ≡ 2, 3(mod 4).

Theorem 5.4 If n ≡ 1(mod 4), then GPn is the set of functions g : {x1, x2, . . . , xn} → [0, 1]

such that

(a) g(xi) =

 0 if i ≡ 1(mod 4)

1 if i ≡ 3(mod 4)

(b) g(x2) = g(xn−1) = 1

(c)
∑bn

2
c

k=1 g(x2k) = dn
4
e

(d) g(xi) + g(xi+2) ≥ 1 for i ≡ 0(mod 2).

Proof Suppose g ∈ GPn . Part (a) is again a direct result of Theorem 5.2 and Lemma 5.4.

Part (b) is direct result of Lemma 5.3. Part (c) is true because (γt)f = dn
2
e and, by part

(a),
∑

i≡3(mod4) g(xi) = bn
4
c and

∑
i≡1(mod4) g(xi) = 0. Part (d) is obvious since g is a total

dominating function on Pn.
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It is straightforward to see that if g : {x1, x2, . . . , xn} → [0, 1] satisfies (a) through (d),

then g ∈ GPn .

Theorem 5.5 If n ≡ 2(mod 4), then GPn is the set of functions g : {x1, x2, . . . , xn} → [0, 1]

such that

(a)
∑n

k=1 g(xk) = n
2

+ 1

(b) g(x2) = g(xn−1) = 1

(c) g(xi) + g(xi+2) ≥ 1 for 1 ≤ i ≤ n− 2.

Proof Suppose g ∈ GPn . Part (a) follows from Theorem 5.2 and the definition of (γt)f (Pn).

Part (b) is direct result of Lemma 5.3. Part (c) is obvious since g is a total dominating

function on Pn.

It is straightforward to see that any g : {x1, x2, . . . , xn} → [0, 1] satisfying (a), (b), and

(c) is a minimum fractional total dominating function on G.

Theorem 5.6 If n ≡ 3(mod 4), then GPn is the set of functions g : {x1, x2, . . . , xn} → [0, 1]

such that

(a) g(xi) =

 0 if i ≡ 0(mod 4)

1 if i ≡ 2(mod 4)

(b)
∑bn

2
c

k=0 g(x2k+1) = dn
4
e

(c) g(xi) + g(xi+2) ≥ 1 for i ≡ 0(mod 2).

Proof Suppose g ∈ GPn . Part (a) is again the direct result of Theorem 5.2 and Lemmas 5.4

and 5.3. Part (b) is true because (γt)f = dn
2
e and, by part (a),

∑
i≡2(mod4) g(xi) = dn

4
e and∑

i≡0(mod4) g(xi) = 0. Part (c) is obvious since g is a total dominating function on Pn.
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The sufficiency of (a), (b), and (c) for g : {x1, x2, . . . , xn} → [0, 1] to be a minimum

fractional total dominating function on G is straightforward.

Similarly, because of Theorem 5.2, it is not difficult to characterize all of the functions

in the set HPn .

Theorem 5.7 If n ≡ 0(mod 4), then HPn is the set of functions h : {x1, x2, . . . , xn} → [0, 1]

such that

(a) h(xi) + h(xi+2) = 1 for i ≡ 1, 2(mod 4)

(b) h(xi) + h(xi+2) ≤ 1 for i ≡ 0, 3(mod 2).

Proof Let h ∈ HPn . Since there are n
2

disjoint pairs {xi, xi+2}, i ≡ 1, 2(mod 4), h is

a fractional open neighborhood packing of Pn, and (γt)f (Pn) = π0
f (Pn) = n

2
, each pair

{xi, xi+2} must be such that h(xi)+h(xi+2) = 1, proving (a). Part (b) is a result of h ∈ HPn .

On the other hand, it is straightforward to see that if h : {x1, x2, . . . , xn} → [0, 1] satis-

fies (a) and (b) then h ∈ HPn .

Theorem 5.8 If n ≡ 1(mod 4), then HPn is the set of functions h : {x1, x2, . . . , xn} → [0, 1]

such that

(a) h(xi) =

 0 if i ≡ 3(mod 4)

1 if i ≡ 1(mod 4)

(b) h(xi) + h(xi+2) = 1 for i ≡ 2(mod 4)

(c) h(xi) + h(xi+2) ≤ 1 for i ≡ 0(mod 4)

Proof Let h ∈ HPn . To show (a), first it is clear by Theorem 5.2 that h(xi) = 0 for i ≡ 3(mod

4). Also, since there are n−1
4

disjoint sets of the form {xi, xi+2} such that i ≡ 2(mod 4), and

53



h ∈ HPn ,
∑

i≡0(mod2) h(xi) ≤ n−1
4

. Therefore because π0
f (Pn) =

∑n
i=1 h(xi) = dn

2
e, h(xi) = 1

for i ≡ 1(mod 4). (b) then follows immediately because π0
f (Pn) = dn

2
e. Finally (c) is a result

of the fact that h ∈ HPn .

On the other hand, it is straightforward to see that if h : {x1, x2, . . . , xn} → [0, 1] satis-

fies (a), (b), and (c) then h ∈ HPn .

Theorem 5.9 If n ≡ 2(mod 4), then HPn has only one member, and it is exactly h :

{x1, x2, . . . , xn} → [0, 1] such that h(xi) =

 0 if i ≡ 0, 3(mod 4)

1 if i ≡ 1, 2(mod 4)

Proof Let h ∈ HPn . By Theorem 5.2, it is clear that h(xi) = 0 for i ≡ 0, 3(mod 4). Since

π0
f (Pn) = dn

2
e+ 1, it is forced that h(xi) = 1 for i ≡ 1, 2(mod 4).

Theorem 5.10 If n ≡ 3(mod 4), then HPn is the set of functions h : {x1, x2, . . . , xn} →

[0, 1] such that

(a) h(xi) =

 0 if i ≡ 0(mod 4)

1 if i ≡ 2(mod 4)

(b) h(xi) + h(xi+2) = 1 for i ≡ 1(mod 4)

(c) h(xi) + h(xi+2) ≤ 1 for i ≡ 3(mod 4), i < n.

Proof Let h ∈ HPn . Again, it is clear by Theorem 5.2 that h(xi) = 0 for i ≡ 0(mod 4).

There are n+1
4

disjoint sets of the form {xi, xi+2, xi+3} such that i ≡ 1(mod 4). Certainly

h(xi) + h(xi+1) + h(xi+2) ≤ 2 for each such set. Therefore, since π0
f (Pn) = dn

2
e, it must be

that h(xi) + h(xi+2) = 1 and h(xi+1) = 1 for i ≡ 1(mod 4) proving (a) and (b). (c) is again

a result of the fact that h ∈ HPn .

On the other hand, it is straightforward to see that if h : {x1, x2, . . . , xn} → [0, 1] satis-

fies (a), (b), and (c) then h ∈ HPn .
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