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Abstract

With the rapid growth of the production and storage of large scale data sets

it is important to investigate methods to drive the cost of storage systems down.

We are currently in the midst of an information explosion and large scale storage

centers are increasingly used to help store generated data. There are several methods

to bring the cost of large scale storage centers down and we investigate a technique

that focuses on transitioning storage disks into lower power states. To achieve this

goal this dissertation introduces a model of disk systems that leverages disk access

patterns to prefetch popular sets of data to produce energy saving opportunities.

Using our model, we have developed a simulator that allows us to quickly change

various parameters to investigate the relationship that file access patterns, disk energy

parameters, and simulation parameters have on the overall energy efficiency of disk

systems. To help improve the validity of our simulation results we leveraged the

validated disk simulator, DiskSim, and added disk power models to DiskSim. This

allowed us to test our energy efficient strategies with a validated storage system

simulator.

The last part of this dissertation focuses on implementing a large scale storage

system virtual file system. We introduce the Energy Efficient Virtual File System, or

EEVFS, to manage the data placement and disk states in a cluster storage system.

Our modeling and simulation results indicated that large data sizes and knowledge

about the disk access pattern are valuable for storage system energy savings tech-

niques. Storage servers that support applications that stream media is one key area

that would benefit from our strategies. The last chapter of the dissertation introduces
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the concept of parallel striping groups, which attempt to improve the performance of

EEVFS while maintaining energy savings.
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Chapter 1

Introduction

Due to current trends in computing we are facing the so called data explosion.

As the use of computers to help day-to-day tasks has increased, we also face a side

effect of generating large amounts of data. This data must be stored on some sort

of medium and currently hard disk drives have become the most common storage

medium. Large scale storage systems are being developed and installed routinely

and there is a significant amount of energy that must be consumed to operate these

storage systems. There are many different methods to conserve energy and we have

identified that hard disk drives consume a significant amount of the energy in a large

scale storage system. To help alleviate the energy burden of hard disk drives we

propose a strategy to manage to states of the hard disk drives.

This chapter continues by developing the problem statement clearly in Section

1.1. Section 1.2 presents the scope of the research Section 1.3 summarizes the main

contributions of the dissertation. Finally Section 1.4 outlines the organization of the

dissertation.

1.1 Problem Statement

The number of large-scale parallel I/O systems is increasing in today’s high-

performance data-intensive computing systems due to the storage space required to

contain the massive amount of data. Typical examples of data-intensive applications

requiring large-scale parallel I/O systems include; long running simulations [9], remote

sensing applications [33] and biological sequence analysis [12]. As the size of a parallel

I/O system grows, the energy consumed by the I/O system often becomes a large part

1



of the total cost of ownership [26][35][37]. Reducing the energy costs of operating

these large-scale disk I/O systems often becomes one of the most important design

issues. It is known that disk systems can account for nearly 27% of the total energy

consumption in a data center [15]. Even worse, the push for disk I/O systems to have

larger capacities and speedier response times have driven energy consumption rates

upward.

Reducing energy consumption of computing platforms has become an increas-

ingly hot research field. Green computing has recently been targeted by government

agencies; efficiency requirements have been outlined in [8]. Large-scale parallel disks

inevitably lead to high energy requirements of data-intensive computing systems due

to scaling issues. Data centers typically consume anywhere between 75 W/ft2 to 200

W/ft2 and this may increase to 200-300 W/ft2 in the near future [1][43] These large-

scale computing systems not only have a large economical impact on companies and

research institutes, but also produce a negative environmental impact. Data from the

US Environmental Protection Agency indicates that generating 1 kWh of electricity

in the United States results in an average of 1.55 pounds (lb) of carbon dioxide (CO2)

emissions. With large-scale clusters requiring up to 40TWh of energy per year at a

cost of over $ 4B it is easy to conclude that energy-efficient clusters can have huge

economical and environmental impacts [4].

Figure 1.1 presents the future energy use predictions of server and data centers. It

presents several trend lines each corresponding to a scenario. According to historical

trends the energy usage is going to increase at a greater than linear rate. There

are also several trend lines that can improve the energy efficiency of server and data

centers. Our goal is to help drive the server and data center usage down using new

techniques, which will bring us closer to the state of the art scenario trend line.

2



Figure 1.1: EPA Report to Congress on Server and Data Center Efficiency, 2007

1.2 Research Scope

Our research focuses on methods to lower the disk energy consumption in storage

systems. The main goal of our research is to try and place many disks into the standby

state to conserve energy. To place disks into the standby state they must have large

periods of inactivity. To help produce periods of inactivity for a disk we propose

prefetching popular data and move this data into a buffer disk. We are attempting

to skew the workload to a subset of disks, which will allow us to place lightly loaded

disks into the standby state.

This work is accomplished through the use of models and simulations. We present

two models to help us model the energy efficiency of disk systems. We model the disk

serving requests and also the state transition changes and their impact on the perfor-

mance of the disk system. Using these models we developed our own simulator which

we used to test many parameters of the model quickly. Our simulator was augmented

by making changes to the DiskSim simulation environment and also developing a file
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system simulator. Finally we develop a prototype implementation of a virtual file

system that supports our energy efficiency strategies and also develop a data layout

technique that improves performance and also energy efficiency.

1.3 Contributions

The major contributions of the research presented in this dissertation follows:

1. A motivational example is presented along with the development of a disk model

that is used to gather preliminary simulation results.

2. An advanced disk system model is developed along with two algorithms that

aid in conserving energy while maintaining acceptable response times.

3. The DiskSim simulation environment is extended to support disk energy models

and a simulated file system is developed to interact with DiskSim.

4. A virtual file system prototype, EAVFS, is developed to put our modeling and

simulation results into practice.

5. An energy efficient data layout, striping groups, is presented and implemented.

1.4 Dissertation Organization

This dissertation is organized in the following manner:

Chapter 2 introduces related work that is briefly reviewed and contrasted against

the contributions of this dissertation.

Chapter 3 provides the motivational work for the rest of the dissertation. An

example scenario is presented where the use of prefetching and buffer disks is high-

lighted. Also a simple mathematical model is presented and simulation results based

on the model are presented.

4



Chapter 4 introduces advanced models for the modeling of disk requests and

energy states of disks. We also introduce advanced algorithms that take into account

the response time to prevent major delays. Thorough simulation results are also

presented in this chapter.

Chapter 5 details how improvements were made to our simulation framework to

improve simulation results. Changes were made to the DiskSim simulator to support

disk energy states and a simple file system simulator is used to collect simulation

results.

Chapter 6 introduces the Energy Aware Virtual File System (EAVFS), which is

a prototype virtual file system that I developed to implement some of the ideas that

were developed using models and simulation techniques.

Chapter 7 presents parallel striping groups that are implemented in EAVFS.

These groups are introduced to help maintain performance while still providing energy

savings.

Chapter 8 summarizes the main contributions of this dissertation and presents a

couple of future research directions based on the ideas contained in the dissertation.
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Chapter 2

Literature Review

2.1 Energy Efficient Disk Systems Related Work

2.1.1 Strengths and Limitations of Related Work

Almost all energy efficient strategies rely on DPM techniques [2]. These tech-

niques assume a disk will have several power states. Lower power states have lower

performance, so the goal is to place a disk in a lower power state if there are large

idle times. There are several different approaches to generate larger idle times for

individual disks. There are also several approaches to prefetch data, although many

techniques have focused on low power disks.

1. Memory cache techniques - Energy efficient prefetching was explored by Pap-

athanasiou and Scott [24]. Their techniques relied on changing prefetching and

caching strategies within the Linux kernel. PB-LRU is another energy efficient

cache management strategy [41]. This strategy focused on providing more op-

portunities for underlying disk power strategies to save energy. Flash drives

have also been proposed for use as buffers for disk systems [5]. Energy efficient

caching and prefetching in the context of mobile distributed systems has been

studied [30] [42]. These three research papers focus on mobile disk systems,

whereas we focus on large scale parallel disk systems. All the previously men-

tioned techniques are limited in the fact that caches, memory, and flash disk

capacities are typically smaller than disk capacities. We propose strategies that

use a disk as a cache to prefetch data into. The break-even times of disk drives

6



are usually very high and prefetch data accuracy and size become a critical

factor in energy conservation.

2. Multi-speed/low power disks - Many researchers have recognized the fact that

large break-even times limit the effectiveness of energy efficient power manage-

ment strategies. One approach to overcome large break-even times is to use

multi-speed disks [31] [39]. Energy efficient techniques have also relied on re-

placing high performance disks with low energy disks [4]. Mobile computing

systems have also been recognized as platforms where disk energy should be

conserved [5][17]. The mobile computing platforms use low power disks with

smaller break-even times. The weakness of using multi-speed disks is that there

are no commercial multi-speed disks currently available. Low power disk sys-

tems are an ideal candidate for energy savings, but they may not always be a

feasible alternative. Our strategies will work with existing disk arrays and do

not require any changes in the hardware.

3. Disk as cache - MAID was the original paper to propose using a subset of

disk drives as cache for a larger disk system [6]. MAID designed mass storage

systems with the performance goal of matching tape-drive systems. PDC was

proposed to migrate sets of data to different disk locations [26]. The goal is

to load the first disk with the most popular data, the second disk with the

second most popular data, and continue this process for the remaining disks.

The main difference between our work and MAID is that our caching policies

are significantly different. MAID caches blocks that are stored in a LRU order.

Our strategy attempts to analyze the request look-ahead window and prefetch

any blocks that will be capable of reducing the total energy consumption of the

disk system. PDC is a migratory strategy and can cause large energy overheads

when a large amount of data must be moved within the disk system. PDC also
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requires the overhead of managing metadata for all of the blocks in the disk

system, whereas our strategy only needs metadata for the blocks in the buffer

disk.

2.1.2 Observations

With the previously mentioned limitations of energy efficient research we propose

a novel prefetching strategy. Our research differs from the previous research on the

following key points.

1. We develop a mathematical model to analyze the energy efficiency of our prefetch-

ing strategy. This mathematical model allows us to produce simulations that

offer insights into the key disk parameters that effect energy-efficiency.

2. We develop a prefetching strategy that tries to move popular data into a set of

buffer disks without affecting the data layout of any of the data disks. We also

perform simulations with parallel I/O intensive applications, which previous

researchers have avoided.

Our strategies also have the added benefit of not requiring any changes to be

made to the overall architecture of an existing disk system. Previous work has focused

on redesigning a disk system or replacing existing disks to produce energy savings.

Our strategy will either add extra disks or use the current disk system to produce

energy savings under certain conditions.

2.2 DiskSim Related Work

The DiskSim simulator is a powerful tool for the modeling and simulation of

disk systems and is used frequently for storage systems research [3]. Recent research

projects based on the DiskSim simulation environment include reducing disk I/O

performance sensitivity and conserving energy in disk systems [23][34]. Although
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DiskSim is a powerful simulation tool research, projects have recognized the lack of

power models as a limitation of DiskSim.

The Sensitivity-Based Optimization of Disk Architecture introduced accurate

power models into the DiskSim environment, but there work was based on DiskSim

2.0 [29]. The other major paper to publish research related to DiskSim and power

models is the Dempsey paper, which we were unable to obtain a copy of the source

code [38]. Due to these limitations of previous research projects implementing power

models it was decided to develop our own power models for the DiskSim 4.0 simulation

environment.

2.3 Virtual File Systems and Striping Related Work

Cluster file systems are fast becoming a necessity due to the growth of cluster

computing for high performance computing and web applications. Lustre is a popular

clustering file system that has been designed for high performance [13]. The Parallel

Virtual File System, PVFS, is an alternative high performance cluster file system

that resides entirely in user space [20]. The two preceding file systems are designed

for high performance applications and were designed with no energy efficient consid-

erations. BlueFS is a distributed file system that was designed with energy efficiency

considerations, but it focuses on mobile computing systems [22].

Due to the limitations of previous research we intend to develop an energy effi-

cient cluster file system, EEVFS which is presented in Chapter 6. EEVFS manages

disk states and data placement to reduce the energy consumption of disk system.

EEVFS also uses striping groups to help to improve the performance of the storage

system and the striping concept is outlined in [25]. Striping groups for EEVFS are

explained in detail in Chapter 7.
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Chapter 3

Preliminary Prefetching Scheme for Energy Conservation in Parallel Disk Systems

The objective of this study is to use the novel parallel disk architecture with

buffer disks (see [43] and Figure 3.1) to aid in the reduction of the power consumption

of large-scale parallel disk systems. To fully utilize buffer disks while aggressively

placing data disks into low-power modes, we investigate an energy-aware prefetching

mechanism (PRE-BUD for short) to dynamically fetch the most popular data into

buffer disks. PRE-BUD attempts to prefetch data into the buffer disk with the

desired consequence of reducing the total energy consumption of the parallel disk

system. This work aims at designing two prefetching strategies using the PRE-BUD

mechanism. Specifically, the first approach using PRE-BUD adds an extra disk, which

performs as a buffer disk. The second approach uses an existing disk in the system

as a buffer disk. The design of these two strategies relies on the fact that in a wide

variety of data-intensive applications (e.g., web applications) a small percentage of

the data is frequently accessed [18]. The goal of this research is to move this small

amount of frequently accessed data from data disks into buffer disks, thereby allowing

data disks to switch into low-power modes. Apart from energy efficiency, this work is

focused on improving the reliability of parallel disk systems using traditional dynamic

power management policies. We conduct experiments to confirm that the reliability

of parallel disks can be enhanced through the buffer disk mechanism by reducing the

number of state transitions. This research offers the following contributions. First,

we create a mathematical model for large-scale parallel disk systems with buffer disks.

Second, we develop two energy-efficient prefetching strategies in the context of the

buffer disk architecture. Third, we quantitatively compare both of our prefetching

10



RAM Buffer 

m buffer disks n data disks 

Buffer Disk 
Controller 

 Data Partitioning 

    Data Placement 

Data Movement 

Power Management 

Prefetching 

Disk Requests 

  Energy-Related Reliability Model

Figure 3.1: The buffer-disk architecture for parallel disk systems

approaches against two existing schemes including a dynamic power management

technique and a non-energy-aware strategy. Fourth, we implement a simulator based

on the mathematical model. Fifth, we use the simulator to quantitatively show that

adding an extra buffer disk can substantially improve the reliability and energy savings

of parallel disk systems without compromising storage capacity. Finally, we observed

from experimental results that using an existing disk as a buffer disk compromises

the storage space, but there is not the extra energy consumption and cost penalty

associated with adding an extra disk i.e., the buffer disk. The rest of the chapter

is organized as follows. Section 3.1 presents a motivational example and describes

the mathematical model used for the purposes of this research. Section 3.2 describes

our pre-fetching algorithm PRE-BUD. Section 3.3 presents simulation results and

provides a discussion of the results. Section 3.4 is the conclusion of the chapter and

future research directions are discussed.

11



3.1 Motivational Example

Our motivational example is based on the synthetic disk trace presented in Table

3.1. The requests all have the size of 275MB. This means each request will take

approximately 5s to complete. This length was chosen, so seek and rotational delays

would be negligible. There are N=4 disks used in this example, where each disk is

given a unique letter. Each disk has two different data sections requested multiple

times throughout the example. Each disk is modeled after the IBM 36Z15 using the

parameters shown in Table 3.2 [4]. The example demonstrates only large sequential

reads, which is a case that emphasises the benefits of our energy efficient strategies.

This was also chosen to simplify our example to allow us to demonstrate the potential

benefits of our approach. We also assume that all the data can be buffered which

causes a small percentage of data to be accessed 100% of the time. This is only

used for our motivational example and our simulation results vary this parameter to

model real-world conditions. We also assume these strategies can be handled off-line

meaning we have prior knowledge of the complete disk request pattern.

Time 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
Block A1 A2 B1 B2 D1 D2 C1 C2 B2 B1 A1 A2 C1 C2 D1 D2 B2
Time 85 90 95
Block B1 A1 A2

Table 3.1: Synthetic Trace

X = Transfer Rate = 55 MB\s PAct = Power Active = 13.5 W
PIdle = Power Idle = 10.2 W PStdby = Power Standby = 2.5 W
EAS = Energy Active to Sleep = 13.0 J ESA = Energy Sleep to Active = 135 J
TAS = Time Active to Sleep = 1.5 s TSA = Time Sleep to Active = 10.9 s

Table 3.2: Disk Parameters (IBM36Z15)

For a base line comparison we use a non-energy aware approach. This approach

puts a disk in the active state if a request for this particular disk is received. If the
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disk is not serving a request it remains in the idle state. We also compare our two

approaches against an energy aware approach. The energy aware approach puts a

disk into the standby state if the energy savings achievable is greater than the energy

required to complete the state transition. The two different approaches we present

are adding a buffer disk to the disk system or the use of an existing disk as the buffer

disk. Following is an explanation of the mathematical model used to produce the

results for our motivational example.

TE(Y ) = (TAct(Y ) ∗ PAct) + (TIdle(Y ) ∗ PIdle) + (TSleep(Y ) ∗ PStdby) + ETrans(Y ) (3.1)

TE(Y ) is the total energy Disk Y consumes serving the trace.

TAct(Y ) =
k∑

i=j

(len(Req[i]))/X) (3.2)

where TAct(Y ) is the total time that DiskY is active. It is a summation over all

the requests involving DiskY . It starts with the first request for DiskY (j) and ends

with the last request for DiskY (k). For the motivational example all requests are of

the same size, so the length of each request is 275MB. The transfer rate X is fixed at

55MB/s, so we know all requests take approximately 5s to process. When using the

buffer disk a request for a buffered block only causes the buffer disk to be active.

TIdle(Y ) =
k∑

i=j

(len(Req[i]))/X) (3.3)

where TIdle(Y ) is the total amount of time DiskY is idle. The non-energy aware

strategy places disks in the idle state if they are not serving a request. This ends

up being a summation over all requests that are not for DiskY . This will start at

the first request that is not for DiskY (j) and end at the last request for DiskY (k).
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The following equation determines if a disk will be idle between requests in all other

approaches.

BEIdle = (EAS + ESA)/PIdle = 14.5s (3.4)

where BEIdle is the energy break even period. If there is an idle time that is

larger than BEIdle energy conservation can be achieved by putting the disk to sleep.

If the idle time is less than BEIdle than the energy penalty to transition between

the idle state and standby is greater than the energy savings possible by putting the

disk to sleep. TSleep(Y ) = The time that DiskY is sleeping (in the standby state).

In the non-energy aware strategy a disk is never put into the standby state. The

energy efficient strategy we compare against forces a disk to go to sleep whenever

TIdle(Y ) > BEIdle. The disk will stay sleeping until the next request is for a block on

that disk. It will wake up the disk with enough time to make TSA in time for the

request, which is 10.9 s. The approaches using a buffer disk also use this strategy.

The only exception to this rule is when a request for DiskY is contained in the buffer

DiskY is allowed to sleep longer times.

ETrans(Y ) =
m∑
i=1

EAS[i] +
n∑

i=1

ESA[i] (3.5)

where ETrans(Y ) is the total energy consumed for all state transitions for DiskY .

In the non-energy aware approach this will be zero for all of the disks. In the energy

aggressive approaches it is the summation over all active/sleep transitions added to

the summation over all sleep/active state transitions for DiskY .

BDEPre =
k∑

i=j

(len(Req[i]))/X) ∗ PACT (3.6)
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where BDEPre is the total amount of energy consumed by the buffer disk pre-

fetching data. It is a summation over all of the requests that are put into the buffer

disk. This value is zero whenever a buffer disk is not used.

BDETot =
k∑

i=j

((len(Req[i]))/X) ∗ PACT ) +BDE Pr e (3.7)

where BDETot is the total amount of energy the buffer disk consumes for the

entire trace. It is the summation over all requests that are in the buffer disk and

the addition of the energy consumed in the pre-fetch phase. This is also zero when a

buffer disk is not used.

TES =
N∑
i=1

TE[i] +BDETot (3.8)

where TES is the total energy consumed by all disks used to serve the synthetic

trace. This also includes buffer disk energy if a buffer disk is used.

TIdle(A) 70s TIdle(B) 70s
TIdle(C) 80s TIdle(D) 80s
TAct(A) 30s TAct(B) 30s
TAct(C) 20s TAct(D) 20s
ETrans(A) 0J ETrans(B) 0J
ETrans(C) 0J ETrans(D) 0J
TE(A) 1119J TE(B) 1119J
TE(C) 1086J TE(D) 1086J
TES 4410J

Table 3.3: Non-Energy Aware Results

The results presented in Tables (3.3-3.6) gave us some promising initial results.

The two approaches using a buffer disk provided significant energy savings over the

non-energy aware parallel disk storage system. Table 3.5 presents the results using

our approach that adds an extra disk to the system. This has the benefit of not

impacting the capacity of the large-scale parallel disk system. The other main benefit
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TIdle(A) 0s TIdle(B) 10s
TIdle(C) 0s TIdle(D) 0s
TAct(A) 30s TAct(B) 30s
TAct(C) 20s TAct(D) 20s
TSleep(A) 45.2s TSleep(B) 33.7s
TSleep(C) 53.7s TSleep(D) 53.7s
ETrans(A) 296J ETrans(B) 309J
ETrans(C) 309J ETrans(D) 309J
TE(A) 814J TE(B) 900.25J
TE(C) 713.25J TE(D) 713.25J
TES 3140.75J

Table 3.4: Energy Aware Results

TIdle(A) 0s TIdle(B) 0s
TIdle(C) 0s TIdle(D) 0s
TAct(A) 10s TAct(B) 10s
TAct(C) 10s TAct(D) 10s
TSleep(A) 100s TSleep(B) 100s
TSleep(C) 100s TSleep(D) 100s
ETrans(A) 13J ETrans(B) 13J
ETrans(C) 13J ETrans(D) 13J
TE(A) 398J TE(B) 398J
TE(C) 398J TE(D) 398J
BDEPre 540J BDETot 1350J
TES 3140.75J

Table 3.5: PRE-BUD Approach 1

of our first approach is the fact that state transitions are lowered as compared to the

energy aware baseline.

The problem is that this approach consumes more energy than the energy aware

disk management scheme. This is due to the extra energy associated with adding a

disk. This extra disk must first pre-fetch all of the data into the buffer, and then

serve all the buffered requests. In our strategy we are able to buffer all of the data

causing the buffer disk to be active the entire trace. The buffer disk is also active

pre-fetching data before the trace begins. Adding an extra disk also costs money and

could introduce pricing concerns when this strategy is scaled to accommodate larger
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TIdle(A) 0s TIdle(B) 0s
TIdle(C) 0s TIdle(D) 0s
TAct(A) 140s TAct(B) 10s
TAct(C) 10s TAct(D) 10s
TSleep(A) 0s TSleep(B) 100s
TSleep(C) 100s TSleep(D) 100s
ETrans(A) 0J ETrans(B) 13J
ETrans(C) 13J ETrans(D) 13J
TE(A) 1890J TE(B) 398J
TE(C) 398J TE(D) 398J
BDEPre 540J BDETot 1350J
TES 3084J

Table 3.6: PRE-BUD Approach 2

Repeats 1 2 3 4 5
Non-energy Aware 4410 8820 13230 17640 22050
Energy Aggresive Approach 3141 6294 9447 12600 15753
PRE-BUD 1 3482 5832 8182 10532 12882
PRE-BUD 2 3084 5184 7284 9384 11484
Repeats 6 7 8 9 10
Non-energy Aware 26460 30870 35280 39690 44100
Energy Aggresive Approach 18906 22059 25212 28365 31518
PRE-BUD 1 15232 17582 19932 22282 24632
PRE-BUD 2 13584 15684 17784 19884 21984

Table 3.7: Trace Repeat Results (J)

systems. This is what led us to try a second approach, which uses an existing disk

as a buffer disk. For this experiment it was assumed DiskA could be the buffer disk.

This had the desired effect of bringing the energy consumption total below the energy

aware strategy. The major negative of using an existing disk as the buffer disk is that

the capacity of your disk storage system is decreased.

The potential energy savings gains are realized once the sample trace used for our

motivational example is repeated. This results in huge energy savings for both of our

approaches over the non-energy aware and energy aware approaches. When the trace

is repeated 10 times adding a buffer disk to your parallel disk system could potentially
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save 44% of the energy cost of a non-energy aware approach. Similarly using an

existing disk for a buffer disk saves 50% of the energy cost. When comparing against

the energy aware approach our first approach is able to save 22% and the second

approach is able to save 30% of the energy. The energy savings of the energy aware

approach is already considerable when compared to the non-energy aware strategy.

Our approaches are able to produce a significant amount of extra energy savings

over the energy aware approaches. This is due to the fact that using a buffer disk

allows each disk the ability to be in the standby state for longer periods of time. The

standby times a disk experiences between requests becomes cumulative if the requests

are contained in the buffer disk. This is due to the fact that the request can be served

from the buffer disk, so the requested disk does not have to transition to the active

state.

It is important to note that this is the ideal case for our buffer disk framework.

This represents a situation where we are able to buffer all of the data requested and

all requests are large reads. These assumptions were only used to come up with some

upper bound estimates for the potential energy savings. In our simulation results we

tried to choose parameters that would more closely model real-world applications and

settings.

For reliability concerns, we also decided to document the number of state tran-

sitions each disk experiences using a disk management scheme. Figure 3.2 represents

the state transitions for each disk using the energy aware disk management scheme.

The non-energy aware scheme has zero state transitions, since it never tries to put a

disk in the standby state. The buffered disk approaches only needs one state tran-

sition per disk. This state transition is experienced after the disk is put into the

standby state after being active delivering data to the buffer. After this the data

transfer is complete and the disk is put into the standby state.
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Figure 3.2: Disk State Transitions Energy Aware

Reliability is assumed to be a factor of state transitions. As the number of state

transitions increases the reliability of the disk system goes down. This is due to the

demands that changing states places on a hard drive. Figure 3.2 shows the state

transitions for each disk using the energy aware approach. This approach does not

consider the reliability of the disk as a factor and schedules a state transition when-

ever the disk has idle times greater than a threshold. The buffered disk approaches

improves reliability by moving frequently accessed data into a single point. This can

save a sleeping disk from having to be placed in the active state causing a state tran-

sition. In the case that all the data needed for an application can be placed in the

buffer disk, all the other disks can sleep the entire life of the application. They only

need to be active to move the requested data into the buffer before the application is

executed.

3.2 Energy-Efficient Prefetching Strategy

Figure 3.3 outlines the algorithm used to pre-fetch blocks and how the pre-

fetched blocks are used using the PRE-BUD strategy. The pre-fetch algorithm uses

the frequency that a block is requested as a heuristic. The first step of the algorithm
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1. request[] ;            /*  request[]  holds all of the requests in the trace */ 
2. i=0; 
3. while(not all requests have been processed)  /* Iterate over all requests */ 
4. if(request[i].block  has been seen before)  /* Requested block has been seen */ 
5.         list.inc_ref(request[i].block)       /* Add one to the count for this block */  
6.         i++; 
7. elseif(request has not been seen before)   /*Requested block has not been seen before*/ 
8.         list.add(request[i].block) /*Add the request to a list and increment its reference */ 
9.         i++; 
10.
11. buffer[];  /* Buffer to hold requested blocks  
12. Buffer Size=N;         
13. i=0; 
14. list.sort() /* Sort the requests by their reference counts */ 
15. while(i<N) 
16.     buffer[i]=list(i)  /* Move the frequently requested data into the buffer */ 
17.
18. i=0; 
19. distance=0; /* Distance between two requests on the same disk */ 
20. while(not all requests have been processed) 
21.      if(request[i].block is in Buffer) 
22.          buffer_Disk(request[i]); 
23.         distance+=request[i].time + calc_distance(request[i]); 
24. elseif(request[i].block is not in Buffer) 
25.         distance+=calc_distance(request[i]); 
26.          process(request[i]); 
27.          can_sleep(distance); 
28.          distance=0; 
29.   can_sleep(distance) 

Figure 3.3: The energy-efficient prefetching strategy or PRE-BUD
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iterates over all of the requests and counts the references for each unique block. Then

it sorts the list of unique blocks by the number of references to each block. At this

point the algorithm puts the highly requested blocks into the buffer until it is full.

The last part of the algorithm also iterates over all requests trying to figure out how

long each disk can sleep. If a block requested for a disk is in the buffer the disk can

sleep longer. The buffer disk handles the request and the distance between requests

on the same disk becomes cumulative. If a requested block is not in the buffer the disk

must be woken up to serve the request, this is handled by the process function. The

distance is then set to zero since the disk had to be woken up. Using the frequently

accessed heuristic the PRE-BUD strategy should have a small performance impact

on the system. Almost all steps of the algorithm run linearly with respect to the

number of requests. The only step that is not linear is the phase that sorts the list of

requests according to their frequency. Sorting is a common procedure and is known

to have a best-case run-time of nlogn. The PRE-BUD strategy is able to have a run

time of n+nlogn using an efficient sorting algorithm. The PRE-BUD strategy is not

assumed to be optimal, since the requested blocks are sorted using their frequency.

The frequency is used as a heuristic to select blocks to be placed in the buffer. An

optimal strategies goal would be to select the requests to be placed in the buffer that

produce the largest impact on the standby time of disks. The largest increases in

standby times for disks result in the largest energy savings gains.

3.3 Simulation Results

For our simulation results it was decided to increase the synthetic trance length

to 200 requests. This would increase the total time of that the simulation was ran

and give our buffered disk strategies room to increase idle times for disks. The first

parameter tested is the hit rate of the buffer disk. For our motivational example 100%

of the data requested was placed into the buffer. This results in a hit rate of 100%.
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To more accurately model applications that access 20% of the data available 80% of

the time we lowered the buffer disk hit rate. This was implemented by increasing the

number of requests not in the buffer by 5 until the hit rate was lowered past 80%. We

are assuming that the buffer disk will be able to hold all of the frequently accessed

data. All energy results are in Joules.

Number of Disks Value
Number of Disks 4,5,6,7,8,9,10
Block Size 275,225,175,125,75,25,10,5 MB
Hit Rate 100,97,5,92.5,90,87.5,85,82.5,80,77.5,75%
Transfer Rate 55 MB/s
Number of Requests 200

Table 3.8: Simulation Parameters

The results displayed Figure 3.4 held the number of disks to 4 and also kept the

data size of each request at 275MB. We have omitted the results of the non-energy

aware approach, since they are constant and higher than the energy aware strategy.

As expected the performance of both of our strategies were lowered when the hit rate

was decreased. This is expected since our motivational example demonstrated a best

case scenario. Disk sleep times are lowered once a miss is encountered. This is due to

the fact that a disk has to wake up to serve the request. This will increase the energy

consumption of disks that have to serve the missed requests. This leads to an increase

in the total energy consumption of the entire system. Our buffered large-scale parallel

disk system is still able to consume less energy than the energy aware approach. The

energy aware and non-energy aware disk systems are not affected by buffer disk miss

rates.

The first buffer disk approach begins to approach the same level of performance

as the energy aware strategy. It is only able to save 10% energy over the energy aware

strategy when the hit rate is 75%. This is because adding the extra disk puts extra

energy requirements on the system, and lowering the hit rate further impacts the
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Figure 3.4: Impact of buffer disk hit rate

energy benefits of the first strategy. The second buffered disk approach is still able

perform 25% better than the energy aware approach. This is because there is not the

extra energy penalty of adding an extra disk. The capacity of your disk system will

be lowered using this approach.

The hit rate becomes a very important factor in the performance of our ap-

proaches. If the buffer disk is constantly missing requests then both strategies will

eventually downgrade to the energy aware approach. Fortunately applications have

been documented to request 20% of the data available 80% of the time. Our heuristic

based approach would work considerably well in this case. This is modeled by the

80% hit rate. The buffered disk approach one and two are able to save 12% and

26% energy over the energy aware strategy when the hit rate is 80%. Similarly, they

are able to save 37% and 47% of the total energy compared to the non-energy aware

approach.

The first buffer disk approach downgrades more quickly than the second approach

as the hit rate is decreased as compared to the energy aware approach. This is not
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Figure 3.5: Impact of the Number of Disks

that great of a concern since the first strategy is still able to have a positive impact

on the reliability of the disk system as compared to the energy aware approach. The

first buffer disk approach is still able to produce significant energy savings over the

non-energy aware approach without compromising the reliability of the system. The

energy savings performance of the second approach does not diminish as quickly as

the first approach, but there will be an impact on the capacity of the system. The

second approach is also able to reduce the number of state transitions.

For the next set of experiments we increased the number of disks contained in

the disk system. This was done to show the effect that scaling the amount of disks

up would have on our system. We kept the size of the buffer constant. This had the

effect of increasing the miss rate as disks were added to the system. If a disk is added

to the system it demands more blocks to be placed into the buffer. Not all of these

blocks can be placed into the buffer disk. As a consequence of this, the hit rate is

lowered.
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From Figure 3.5 we are able to see that the non-energy aware approach wastes

a considerably larger amount of energy as compared to all of the energy aware ap-

proaches. This is expected since the non-energy aware approach is not able to place

disks in the standby mode. Buffer strategy 1 was able to produce a 12% increase in

energy savings over the energy aware strategy when 10 disks were simulated. Simi-

larly, buffer strategy 2 performed even better with an 18% increase. This is expected

again because of the energy overhead adding an extra disk buffer strategy 1 requires.

Our approach produces promising results as the number of disks is increased. This

is an important observation, since our target system is a large-scale parallel system.

This leads us to believe our system will produce energy benefits regardless of the

number of disks in a system. The number of buffer disks may be scaled with the size

of the system. This work does not try to figure out a way to decide on the number

of buffer disks needed for a large scale parallel disk system and leaves this for future

research.

The last parameter varied to produce our simulation results was the data size of

the requested blocks and is presented in Figure 3.6. One of the assumptions made in

our motivational example included the disk system would only conduct large reads.

This assumption was relaxed by lowering the data size of the requests. All data sizes

are in MB and the energy outputs are in Joules. We kept the number of disks at four

and the number of requests at 200. This meant that low data sizes would produce

low amounts of energy because they would be processed quickly.

It was expected that the data size would have a greater impact on the perfor-

mance of our buffer disk approach. This assumption was based on the fact that

smaller data sizes decrease the time frames in which a disk is able to sleep. This is

evident by looking at the results of the energy aware approach against the non-energy

aware strategy. As the data size is lowered the energy aware strategy is no longer
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Figure 3.6: Impact of data size

able to save energy by putting a disk into the sleep state. It turns back into the non-

energy aware strategy once the data size becomes 10MB or less. The buffered disk

approaches were still able to perform better than the non-energy aware approach.

This is achieved by the fact that the buffer disk increased the time frames that a

disk can sleep. By pre-fetching the frequently accessed data for a disk it increased the

odds that the current request will be in the buffer disk allowing the disk corresponding

to the request to increase its sleep time window. This window must be larger than

BEIdle or the energy penalty associated with the state transition will be greater

than the energy that can be saved by sleeping the disk. These results become very

promising since one of our original assumptions is that requests would be large reads.

These results show that our approaches may also work for small reads.
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3.4 Chapter Summary

The use of large-scale parallel disk systems continues to rise as the demand for

information systems with large capacities grows. Large-scale parallel disk systems

allow someone to combine smaller disks to achieve large capacities. The problem is

that these large- scale disk systems can be extremely energy efficient. Disk systems

can account for nearly 27% of the energy demands of a large-scale computing platform.

The energy consumption rates are rising as disks become faster and disk systems are

scaled up. Our goal was to increase the energy efficiency of a large-scale disk system

using a buffer disk that would pre-fetch frequently accessed data. This had the effect

of increasing idle periods for disks facilitating long sleep times. As sleep times are

increased the disk is able to save energy over being in the idle state.

We proposed two different methods of using a buffer disk. The first strategy

added an extra disk to the system and the second approach used an existing disk as

the buffer disk. The first strategy consumes more energy because an extra disk is

added, but does not compromise the capacity of the disk system. We compared our

approaches against non-energy aware and energy aware approaches. The buffered disk

approaches were both able to produce energy savings as compared to the non-energy

aware and energy aware strategies. The energy savings was larger when compared

against the non-energy aware strategy. Although our approaches did not save as much

energy as the energy aware approach, they were both able to positively impact the

reliability of the disk system. Both approaches were able to lower the number of state

transitions as compared to the energy aware approach.

For the future research work we would like to work on adding more than one

buffer disk to the system. The number of buffer disks will have to be increased

as the scale of the disk system is increased. This will add the extra requirements

parallel applications demand and our strategies will have to be modified to reflect

these changes. Our work also used only synthetic traces for our simulation results.
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We need to incorporate traces from real-world applications to improve the feasibility of

our approaches. The reliability impacts of using the buffer disk can also be researched

more heavily. We demonstrated the reduction in state transitions, but need to come

up with a model that relates state transitions and reliability.
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Chapter 4

Prefetching Models and Simulation

4.1 Motivational Example

For a simple motivational example that demonstrates the utility of the buffer disk

architecture, we present a scenario that is depicted in Figure 4.1. Each horizontal

bar represents the time a particular disk is busy or idle. Figure 4.1 presents requests

for individual disks that are represented by the specific colors and patterns presented

in the legend. Idle periods for all of the disks are represented with the orange color.

If we are using the IBM 36Z15 disk for disks A, B, and C DPM techniques will not

be able to save any energy. DPM requires a disk to have an idle period greater than

the break-even time. For the IBM 36Z15 disk the break-even time is 14.5 seconds.

The largest idle-period for any of the disks presented in Figure 4.1 is 8 seconds. This

means that DPM is unable to save any energy is this example, even though there are

idle periods of 8 seconds. The total energy consumed by all of the disks to serve all of

the requests is approximately 949.2 Joules. Each disk must remain in the idle state,

which consumes 10.2 W, when they are not serving a request.

Figure 4.1: Sample Disk Trace
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Figure 4.2: Buffer Disk Added to Architecture

If we were able to prefetch the requested data from all three disks into a single

disk, which is represented by Figure 4.2, we could have one single disk do the work

of the three disks. Disks A, B, and C will be put into the sleep state and remain in

the sleep state for the entire length of the trace.

Using a buffer disk allows one to trade many lightly loaded disks, for a smaller

number of heavily loaded disks. The key to energy savings using a buffer disk is to

accurately place frequently requested data into the buffer disk. This allows non-buffer

disks to have larger idle-window sizes as compared to not using a buffer disk. If a

request can be served from a buffer disk, the corresponding data disk for this particular

request treats the time for the buffer disk to serve the disk request as an extra idle

window. The key to energy savings with the buffer disk strategy is to have consecutive

hits from the perspective of a single disk, so the disk can see a long continuous idle

window. Adding an extra buffer disk represents one of our approaches, PRE-BUD1,

to conserving energy in parallel storage systems. This approach will consume 804 J,

including the energy required to prefetch the data from all three disks. Similarly, if

you used Disk A to prefetch requested data from Disk B and Disk C, Disk A would

now become a buffer disk. Disk A would remain active for 28 s, while Disk B and

Disk C would sleep for 28 s. This preceding approach, PRE-BUD2, will consume 680

J. PRE-BUD1 is able to save 15.3% and PRE-BUD2 is able to save 28.4% energy
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over the DPM strategy. These numbers will go up if the trace presented in Figure 4.1

is repeated. This is because the requested blocks are already in the buffer disk and

sleeping a disk is 4 times more energy efficient than leaving it in the idle state.

4.2 PRE-BUD Energy-Efficient Prefetching Strategy

In this section, we describe our energy-efficient prefetching strategy for parallel

storage systems with buffer disks. Energy consumption in parallel disk systems can

be reduced by placing idle disks into the standby state, which causes the idle disks to

stop spinning completely. The fundamental goal of PRE-BUD is to improve energy

efficiency of parallel disks through the following two energy saving principles. First, by

reducing the number of power state transitions one can decrease the energy overhead

of spinning down the disks. Second, increasing the number and lengths of standby

intervals can foster new opportunities to aggressively turn disks into the standby

state. PRE-BUD implements these two energy saving principles using the concept of

buffer disks, which contain frequently accessed data blocks that are prefetched and

buffered. There are two buffer disk architectures: (1) adding buffer disks to the disk

system, PRE-BUD1, and (2) using existing disks as the buffer disk(s), PRE-BUD2.

The energy-efficient prefetching strategy, PRE-BUD, described in this chapter can

be successfully applied to deal with the two approaches to the architecture. In this

study, let us first focus on parallel disk systems with a single buffer disk. Then, in

Section 4.5 we briefly discuss how to extend PRE-BUD to conserve energy in parallel

disk systems with multiple buffer disks.

The PRE-BUD strategy is a greedy algorithm in the sense that blocks fetched

into a buffer disk in each prefetching phase (see Steps 8-11 in Figure 4.3) are the

ones that have the highest energy savings, which in turn attempts to maximize the

energy efficiency of the parallel disk system. PRE-BUD has two key components:

the prefetching module and the energy-saving calculation module. Given a parallel
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disk system with a buffer disk, the prefetching module determines which blocks to

fetch from any of the parallel disks to improve the energy efficiency of the entire disk

system. If the buffer disk is full while more blocks have to be fetched, the prefetching

module is tasked with deciding which blocks need to be evicted. The prefetching

module relies on the second module to calculate and update the energy savings of

referenced blocks in the current look-ahead window and blocks present in the buffer

disk. The energy savings estimate of a block in a data disk quantifies the energy

consumption reduction produced by fetching the block into a buffer disk. On the

other hand, the energy savings estimate of a block in the buffer disk reflects the

energy savings value of caching the block instead of evicting it from the buffer disk.

The prefetching and energy-saving calculation modules are detailed in Sections 4.2.1

and 4.2.2, respectively.

4.2.1 Prefetching Module

Before presenting the prefetching module of PRE-BUD, we first summarize the

notation for the description of the prefetcher in Table 4.1.

Notation Description
R Current lookahead. r ∈ R is a reference in the lookahead

block(r) Block accessed in reference r ∈ R
disk(r) Disk in which block(r) is residing

A
Subset of the lookahead R; for any r in A,
disk(r) is active, i.e., ∀r ∈ A: disk(r) is active

G A set of blocks present in the buffer disk
Es(b) Energy saving contributed by prefetching block b

A+ For any b ∈ A+, we have disk(b) ∈ A,
Es(b) > 0, b /∈ G, and∃r ∈ R : block(r) = b

G+ The set of blocks with the highest energy savings in A+ ∪G

Table 4.1: Notation for the description of the prefetching module

Figure 4.3 outlines the prefetching module in PRE-BUD. PRE-BUD is energy-

efficient in nature, because a request for data in a disk currently in the standby mode
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will not have to be spun up to serve the request if the requested block is present

in the buffer disk (see Step 4). Buffer-disk resident blocks allow standby data disks

to stay in the low-power state for an increased period of time, as long as accessed

blocks are present in the buffer disk. There is a side effect of making the buffer

disk perform I/O operations while placing data disks in standby longer; that is, the

buffer disk is likely to become a performance bottleneck. To properly address the

bottleneck issue, we design the prefetcher in such a way that the load between the

buffer and data disks is balanced, if the active data disk can achieve a shorter response

time than the buffer disk we don’t rely on the buffer disk (see step 2). In addition

to load balancing, utilization control is introduced to prevent disk requests from

experiencing unacceptably long response times. In light of the utilization control, the

prefetching module ensures that the aggregated required I/O bandwidth is lower than

the maximum bandwidth provided by the buffer disk (see Line 11.a in Figure 4.3).

To improve the energy efficiency of PRE-BUD, we force PRE-BUD to fetch blocks

from data disks into the buffer disk on a demand basis (see Line 5 in Figure 4.3).

Thus, block b is prefetched in Step 10 only when the following four conditions are met.

First, a request r in the look-ahead is accessing the block, i.e.,∃r ∈ R : block(r) = b.

Second, the block is not present in the buffer disk, i.e., b /∈ G. Third, fetching

the blocks and caching them into the buffer disk can improve energy efficiency, i.e.,

Es(b) > 0. Lastly, the block is residing in an active data disk, i.e., disk(b) ∈ A. Note

that set A+ (see Table 1) contains all the blocks that satisfy the above four criteria.

To maximize energy efficiency, we have to identify data-disk-resident blocks with

the highest energy savings potential. This step is implemented by maintaining a set,

G+, of blocks with the highest energy saving in A+∪G. Thus, blocks in A+ ∩G+ are

the candidate blocks to be prefetched in the prefetching phase. A tie of energy savings

between a buffer-disk-resident block and a data-disk-resident block can be broken in

favor of the buffer-disk-resident block. If two data-disk-resident blocks have the same
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Input: a request r, parallel disk system with m disks 
1  if block(r) is present in the buffer disk { 
2     if disk(r) is active and TDisk(r)  T0(r), where TDisk(r) and T0(r) are response time of r when  
             serviced by disk(r) and the buffer disk, respectively 
3       The request r is serviced by disk(r); 
4   else the request r is serviced by the buffer disk; 
    } 
5 else { /* block(r) is not present in the buffer disk */ 
    /* Initiate the prefetching phase */ 
6      if disk(r) is in the standby state /* spin up disk(r) when it is standby */ 
7        spin up disk(r); 
8    Compute the energy savings of references in A  R,  
          where A is a subset of the lookahead R, and  r’ A: disk(r’) is active; 
9    Update the energy savings of blocks in the buffer disk; 

 10   Fetch blocks in A+  G+; 
 11   Evicting the blocks in G – G+ with the lowest energy savings as necessary,  
            where G is the set of blocks present in the buffer disk; 

             A+ is the set of blocks, such that if block b  A+, then b is referenced by  
                 a request in the lookahead, b is not present in the buffer disk, disk(b) is active 
                 (i.e., disk(b)  A), and the energy saving Es(b) of b is larger than 0;  

               G+ is the set of blocks with the highest energy saving in A+  G,  
11.a                     such that  0

'

)'()'( Brtr
Gr

 /* Bandwidth constraint must be satisfied */  

11.b                                      0
'

)'( Crs
Gr

/* Capacity constraint must be satisfied */ 

         /* The request r is then serviced */ 
12     if block(r) has not been prefetched  
13         The request r is serviced by disk(r); 
14     else return block(r); /* block(r) was recently retrieved; no extra I/O is necessary */ 
 }  

Figure 4.3: Algorithm PRE-BUD: the prefetching module
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energy saving, the tie is broken in favor of the block accessed earlier by a request in

the look-ahead.

In the case that the buffer disk is full, blocks in G − G+ must be evicted from

the buffer disk (see Step 11 in Figure 4.3). This is because G − G+ contains the

blocks with the lowest energy savings. We assign zero to the energy savings of buffer-

disk-resident blocks that will not be accessed by any requests in the look-ahead. The

buffer-disk-resident blocks without any contribution to energy conservation will be

among the first to be evicted from the buffer disk, if a disk-resident block with high

energy saving must be fetched when the buffer disk is full. Blocks that will not be

accessed in the look-ahead are evicted in the least-recently-used order.

PRE-BUD can conserve more energy by the virtue of its on-demand manner,

which defers prefetching decisions till the last possible moment when the above two

criteria are satisfied. Deferring the prefetching phase is beneficial, because (1) this

phase needs to spin up a corresponding disk if it is in the standby state, and (2) late

prefetching leads to a larger look-ahead for better energy-aware prefetching decisions.

The prefetching module can be readily integrated with a disk scheduling mech-

anism, which is employed to independently optimize low-level disk access times in

each individual disk. This integration is implemented by batching disk requests and

offering each disk an opportunity to reschedule the requests to optimize low-level disk

access performance.

4.2.2 Energy-Saving Calculation Module

We develop an energy-saving prediction model, based on which we implement

the energy-saving calculation module invoked in Steps 8 and 9 in the prefetching

module (see Figure 4.3). The prediction model along with the calculation module is

indispensable for the prefetcher, because the energy savings of a block represents the

importance and priority of placing the block in the buffer disk to reduce the energy
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consumption of the disk system. The energy-saving calculation module can illustrate

the amount of energy conserved by fetching a block from a data disk into a buffer

disk. It also calculates the utility of caching a buffer-disk-resident block rather than

evicting it from the buffer disk. Table 4.2 summarizes the notation for the description

of the energy-saving calculation module.

To analyze circumstances under which prefetching blocks can yield energy sav-

ings, we focus on a single referenced block stored in a data disk. Let Rj ⊆ R be a

set of references accessing blocks in the jth data disk. Thus, Rj is a subset of the

lookahead R and can be defined as

Rj = {r |r ∈ R ∧ disk(r) = jthdatadisk ∧ block(r) = bk,j ∧ bk,j /∈ G}.
Given a set Rkj ⊆ R of references accessing the kth block bkj in the jth data disk,

let us derive the energy saving Es(bkj) achieved by fetching bkj from the data disk

into the buffer disk. Rkj is comprised of all the requests referencing a common block

bkj that is not present in the buffer disk; therefore, Rkj can be formally expressed as

Rk,j = {r |r ∈ R ∧ block(r) = bk,j ∧ bk,j /∈ G}. Intuitively, energy savings Es(bkj) can

be computed by considering the energy consumption incurred by each disk request in

Rkj.

Given a reference list Rj and a block bkj, in what follows we identify four cases

where a reference in Rj can contribute to positive energy savings by the virtue of

prefetching block bkj . First, we introduce two energy saving principles utilized by

PRE-BUD.

Energy Saving Principle 1: To increase the length and number of idle periods

larger than the disk break-even time TBE , which is the minimum disk standby time

required to offset the cost of entering the standby state. This principle can be realized

by combining two adjacent idle periods to form a single idle period that is larger than

TBE . PRE-BUD fetches, in advance, a block accessed between two adjacent idle
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Notation Description
Rj A set of references accessing blocks in the jth data disk

Rk,j ⊆ R A set of references accessing the kth block bk,j in the jth data disk
bk,j The kth block in the jth data disk

TBE
Break-even time. Minimum idle time required to compensate
the cost of entering the standby state

Tij
Active time period serving the ith request issued to
the jth data disk

tij Time spent serving the ith request issued to the jth data disk

αij
Time spent in the idle period prior to the
ith request accessing a block in disk j

Iij
An idle period prior to the ith request accessing
a block in the jth data disk

nj
The total number of requests (in the lookahead) issued to
the jth disk

Φj A set of disk access activities for references in Rj

time(bkj) Active time period to serve a request accessing block bkj
block(Tij) A block accessed during the active period Tij

TD Time to transition from active/idle to standby
TU Time to transition from standy to active mode
ED Energy overhead of transitioning from active/idle to standby
EU Energy overhead of transitioning from standby to active mode

PA, PI , PS Disk power in the active, idle, and standby mode

Table 4.2: Notation for the description of the energy-saving calculation module

periods, thereby possibly forming a larger inactivity time that allows the disk to

enter the standby state to conserve energy.

Energy Saving Principle 2: To reduce the number of power-state transitions.

The energy efficiency of a disk can be further improved by minimizing the energy

cost of spinning up and down disks. Disk vendors can provide high quality disks with

low spin-up/down energy over-heads; PRE-BUD aims to reduce the number of disk

spin-up and spin-down while enlarging disk idle times. We implement this principle

in PRE-BUD by combining two adjacent standby periods to eliminate unnecessary

state transitions between the two standby periods.

Now we investigate cases which exploit the above energy saving principles to

conserve energy in disks. Let Φj = {I1j, T1j , I2j , T2j, . . . Iij , Tij, . . . Inj,j, Tnj,j} be a
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set of disk accesses for references in Rj, where for an active period Tij, tij is the time

spent serving the ith request issued to data disk j; for idle period Iij, αij is the time

spent in the idle period prior to the ith request accessing a block in the jth data disk,

and nj is the total number of requests issued to the jth disk. We denote block(Tij) as

a block accessed during the active period Tij .

The following three cases demonstrate scenarios that apply energy saving princi-

ple 1 to generate longer idle periods (i.e., longer than TBE) by prefetching block(Tij)

to combine the ith and (i+ 1)th idle periods. Let us pay attention to the ith active

period Tij and the two periods Iij and I(i+1)j (i.e., the ones adjacent to Tij). Cases

1-3 share two common conditions - (1) both Iij and I(i+1)j are larger than zero and

(2) the summation of tij , αij , and α(i+1)j is larger than the break-even time TBE .

Case 1: Both the ith and (i + 1)th idle periods are equal to or smaller than

the break-even time TBE . Thus, we have 0 < αij ≤ TBE , 0 < α(i+1)j ≤ TBE , and

αij + tij + α(i+1)j > TBE .

Case 2: The ith idle period is equal to or smaller than the break-even time TBE ;

the (i+1)th idle period is larger than TBE . Formally, we have 0 < αij ≤ TBE ,α(i+1)j >

TBE ,and αij + tij + α(i+1)j > TBE .

Case 3: The ith idle period is larger than TBE ; the (i+ 1)th idle period is equal

to or smaller than TBE . The conditions for case 3 can be expressed as: αij > TBE ,0 <

α(i+1)j ≤ TBE , and αij + tij + α(i+1)j > TBE .

Now we calculate, in the above three cases, the energy savings produced by

fetching block(Tij) from the jth data disk to the buffer disk. The calculation makes

use of the following definitions:

• Let PA, PI , and PS represent the disk power consumption in the active, idle,

and standby modes. Let TD and TU be times to transition to the standby and

active mode; let ED and EU be energy overhead to transition to standby and

active.
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• EWOP denotes energy consumption of the periods tij , αij , and α(i+1)j when

PRE-BUD is not applied.

• In case of having block(Tij) prefetched, EWPF denotes energy consumption of

the jth disk in the periods tij , αij, and α(i+1)j .

• EBUD represents energy consumption of the buffer disk accessing the prefetched

block(T ij).

• For block(bkj), active time spent serving a request accessing the block is denoted

by time(bk,j).

Energy savings, ES(block(Tij)), contributed by prefetching block(Tij) can be writ-

ten as:

ES(block(Tij)) = EWOP − (EWPF + EBUD) (4.1)

Energy savings, ES(block(Tij), in case 1: For case 1, Iij and I(i+1)j are equal to or

smaller than TBE . This condition implies that the jth disk is in the idle mode during

Iij and I(i+1)j . Energy consumption experienced by the disk in active period Tij is

PA · tij . Hence, EWOP in case 1 can be expressed as:

EWOP = PI · (αij + α(i+1)j) + PA · tij (4.2)

When block(Tij) is prefetched, a large (i.e., larger than TBE) idle period can be formed

by combining the periods Tij, Iij, and I(i+1)j. Therefore, EWPF can be computed as

the energy consumption of the jth disk in the standby mode during Tij , Iij , and I(i+1)j .

Taking into account energy overhead of power state transitions, we can calculate

EWPF using the equation below:

EWPF = PS · (αij + tij + α(i+1)j − TD − TU) + ED + EU (4.3)
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We assume that the buffer disk and data disks are identical; therefore, energy con-

sumption EBUD of the buffer disk accessing the prefetched block(Tij) is

EBUD = PA · tij (4.4)

ES(block(Tij)) in case 1 can be determined by substituting Eqs. (4.2)-(4.4) into Eq.

(4.1). Hence, we have:

ES(block(Tij)) = PI ·(αij+α(i+1)j)−PS ·(αij+tij+α(i+1)−TU−TD)−ED−EU (4.5)

Energy saving ES(block(Tij)) in case 2: The jth disk in this case is transitioned into

standby during I(i+1)j , since I(i+1)j is larger than TBE . The energy consumption of

the disk in I(i+1)j is expressed as (see the third term on the right hand side of Eq. 4.6

below). Thus, the energy consumption EWOP of the disk in Tij , Iij, and I(i+1)j is:

EWOP = PI · αij + PA · tij + (PS · (α(i+1)j − TD − TU ) + ED + EU) (4.6)

We derive ES(block(Tij)) in case 2 by substituting Eqs. (4.6), (4.3), and (4.4) for for

EWOP , EWPF , and EBUD. Thus, we have

ES(block(Tij)) = PI · αij − PS · (αij + tij) (4.7)

Energy savings, ES(block(Tij)), in case 3: The Energy saving ES(block(Tij)) in this

case is very similar to that in case 2 except that the jth disk is transitioned into

standby during Iij rather than I(i+1)j . Consequently, the energy saving ES(block(Tij))

in case 3 can be written as:

ES(block(Tij)) = PI · α(i+1)j − PS · (α(i+1)j + Tij) (4.8)
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Case 4: The case described here shows a scenario that applies energy saving principle

2 to reduce power-state transitions by prefetching block(Tij) to combine two adjacent

standby periods Iij and I(i+1)j .

Energy saving ES(block(Tij)) in case 4: In this case, both αij and α(i+1)j are larger

than TBE , meaning that the jth disk can be standby in these two time intervals to

conserve energy. Formally, we have αij > TBE ,α(i+1)j > TBE , and αij + tij +α(i+1)j >

TBE . Thus, energy consumption EWOP of the jth disk without a buffer disk is:

EWOP = PA · tij + (PS · (αij − TD − TU ) + ED + EU)

+
(
PS · (α(i+1)j − TD − TU ) + ED + EU

) (4.9)

where the second and third term on the right hand side of Eq. (4.9) are the energy

consumed by the disk in standby periods Iij and I(i+1)j , respectively. With a buffer

disk in place, the energy consumption EWPF and EBUD in this case are the same as

in case 1 (see Eqs. 4.3 and 4.4). Therefore, the energy savings, ES(block(Tij)), in

this case is derived from EWOP (see Eq. 4.9), EWPF , and EBUD as:

ES(block(Tij)) = ED + EU − PS · (TD + TU + tij) (4.10)

Case 5 below summarizes scenarios where prefetching a block may have negative

impacts on the energy efficiency.

Case 5: If the summation of tij, αij , and α(i+1)j is smaller than or equal to TBE ,

i.e., αij + tij + α(i+1)j ≤ TBE , then prefetching block bkj causes an negative impact

on energy conservation.

Energy savings, ES(block(Tij)) in case 5: Since αij + tij + α(i+1)j ≤ TBE , the

disk j stays in the idle mode during periods Tij , Iij , and I(i+1)j . If the block bkj is

prefetched to the buffer disk, the energy consumption EWPF of disk j in the three
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periods is:

EWPF = PI · (αij + tij + α(i+1)j) (4.11)

The values of EWOP and EBUD are the same as those of case 1 (see Eq. 4.2). Applying

EWOP , EWPF and EBUD to Eq. (1), we estimate the negative energy-saving impact

ES(block(Tij)) as:

ES(block(Tij)) = −PI · tij (4.12)

In light of the above four cases, the set Φkj of disk activities for references accessing

block bkj in disk j can be partitioned into the following four disjoint subsets,

Φk,j = Φk,j,1 ∪ Φk,j,2 ∪ Φk,j,3 ∪ Φk,j,4 ∪ Φk,j,5 (4.13)

where Φk,j,1, Φk,j,2, Φk,j,3, Φk,j,4 and Φk,j,5 contain active time periods that respectively

satisfy the conditions of the four energy-saving cases. The four subsets can be defined

as:

Φk,j,1 = Tij|block(Tij) = bk,j ∧ 0 < αij ≤ TBE ∧ 0 < α(i+1)j

≤ TBE ∧ αij + tij + α(i+1)j > TBE

for case 1;

Φk,j,2 = Tij|block(Tij) = bk,j ∧ 0 < αij ≤ TBE ∧ α(i+1)j

> TBE ∧ αij + tij + α(i+1)j > TBE

for case 2;
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Input: block bk,j, disk j, a set j  of disk access activities; Output: ES(bk,j)  
1  Initialize ES(bk,j) to 0; 
2     for (i = 1 to nj) { 
3       if ( BEjiijij Tt )1( ) {  /* Cases 1-4 */ 

4           if ( BEij T0 ) { 

5 if ( BEji T)1(0 )  /* Case 1, see Eq. (4.5) */     

6    UDDUiijijSjiijIijSijS EETTtPPbEbE )()()()( )1()1( ; 

7 else )()()( ijijSijIijSijS tPPbEbE ;/* Case 2, see Eq. (4.7) */  
8 } 
9 else { 
10     if  ( BEji T)1(0 ) /* Case 3, see Eq. (4.8) */ 

11          )()()( )1()1( ijjiSjiIijSijS TPPbEbE ; 

12      else ).()()( ijUDSUDijSijS tTTPEEbEbE  /* Case 4, see Eq. (4.10) */ 
13 } 
14  } /* end Cases 1-4 */ 
15 else ijIijSijS tPbEbE )()( ; /* Negative energy saving. Case 5, see Eq. (4.12) */ 
16 } /* end for */ 
17 return )time()( , jkAijS bPbE  

8

Figure 4.4: Algorithm PRE-BUD: the energy-saving calculation module

Φk,j,3 = Tij |block(Tij) = bk,j ∧ αij > TBE ∧ 0 < α(i+1)j

≤ TBE ∧ αij + tij + α(i+1)j > TBE

for case 3;

Φk,j,4 = Tij |block(Tij) = bk,j ∧ αij > TBE ∧ α(i+1)j

> TBE ∧ αij + tij + α(i+1)j > TBE

for case 4; and Φk,j,5 =
{
Tij |block(Tij) = bk,j ∧ αij + tij + α(i+1)j ≤ TBE

}
for case 5.

Now we are positioned to show the derivation of energy savings, ES(bkj), yielded

by fetching block bkj from disk j to the buffer disk. Thus, ES(bkj) can be derived
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from Eqs. (4.5), (4.7), (4.8), (4.10), (4.11) and Eq. (4.12), where the last item on the

right hand side is the energy overhead of fetching bkj from disk j to the buffer disk.

ES(bk,j) =
∑

Tij∈Φk,j

(ES(block(Tij)))

=
∑

Tij∈Φk,j,1

(
PI · (αij + α(i+1)j)− PS · (αij + tij + α(i+1) − TU − TD)− ED − EU

)

+
∑

Tij∈Φk,j,2

(PI · αij − PS · (αij + tij)) +
∑

Tij∈Φk,j,3

(
PI · α(i+1)j − PS · (α(i+1)j + tij)

)

+
∑

Tij∈Φk,j,4

(ED + EU − PS · (TD + TU + tij).)− PI · ∑
Tij∈Φk,j,5

tij − PA · time(bk,j)

(4.14)

Given the kth block bkj residing in disk j, the algorithm used to compute the energy

savings of prefetching block bkj from the data disk to the buffer disk is described

in Figure 4.4. All of the energy saving cases are handled explicitly from Steps 3

through 14; whereas Step 15 addresses the issue of negative energy savings. The

time complexity of the energy-saving calculation module is low, because the time

complexity of this routine for each block is O(nj), where nj is the number of requests

in the look-ahead corresponding to the jth disk. After the block bkj is fetched to the

buffer disk, = {I1j , T1j, I2j , T2j, ...Iij , T ij, ...Inj,jTnj,j} the set j of disk access activities

for references in Rj must be updated by deleting any Tij ∈ Φj accessing bkj, i.e.,

block(Tij) = bkj .

4.3 Analysis of PRE-BUD

In this section, we analyze the energy efficiency and performance of PRE-BUD.

We start the analysis by showing the energy consumption of a full-power baseline

system without turning any disks into the standby state. Next, we analyze the energy

consumption of a parallel disk system with the dynamic power management (DPM)

technique. Last, our analysis will be focused on the energy consumption and response

time of parallel disk systems with PRE-BUD.
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4.3.1 A Full-Power Baseline System

In this section we describe an energy consumption model, which is built to quan-

titatively calculate energy consumption of a modeled parallel disk systems. We model

the power of a parallel disk system with m disks as a vector P = (P1, P2, ..., Pm). The

power Pi of the ith disk is represented by three parameters, i.e., Pi = (PA,i, PI,i, PS,i),

where PA,i, PI,i, and PS,i are the power of the ith disk when it is in the active, idle,

and standby state, respectively. Let ej,i be the energy consumption to serve the jth

request served by the ith disk. We denote the energy consumption rate of the disk

when it is active by PA,i and the energy consumption ej,i can be written as

ej,i = xj,i · PA,i · tj,i = xj,i · PA,i ·
(
tSK,j,i + tRT,j,i +

sj
Bi

)
(4.15)

where tj,i is the service time of request j on disk i. tj,i is the summation of tSK,j,i,

tRT,j,i, and sj/Bi, which are the seek time and rotational latency of the request, and

the data transfer time depending on the data size sj and the transfer rate Bi of the

disk. Element xj,i is ”1” if request j is responded by the ith disk and is ”0”, otherwise.

Since each request can be served by only one disk, we have
∑m

i=1 xj,i = 1.

Given a reference string R, we can compute the energy EA consumed by serving

all requests as

EA (P,R) =
m∑
i=1

n∑
j=1

ej,i =
m∑
i=1

n∑
j=1

(xj,i · PA,i · tj,i)

=
m∑
i=1

n∑
j=1

(
xj,i · PA,i ·

(
tSK,j,i + tRT,j,i +

sj
Bi

)) (4.16)

We define fj as the completion time of request ri. in the reference string. Then, we

obtain the analytical formula for the energy consumed when disks are idle:

EI (P,R) =
m∑
i=1

(PI,i · TI,i) (4.17)
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where TI,i is the time interval when the ith disk is idle. TI,i can be derived from the

total disk I/O processing time and completion time of the last request served by the

disk. Thus, we have

TI,i =
n

max
j=1

(xj,i · fj)−
n∑

j=1

(
xj,i ·

(
tSK,j,i + tRT,j,i +

sj
Bi

))
(4.18)

where the first term on the right-hand side of Eq. (4.18) is the summation of I/O

processing times and disk idle times, and the second term is the total I/O time. The

total energy consumption ENEC of a parallel disk system without placing any disk

into the standby state is derived from Eqs. (4.16) and (4.17) as

ENEC (P,R) = EA (P,R) + EI (P,R)

=
m∑
i=1

n∑
j=1

ej,i +
m∑
i=1

(PI,i · TI,i)
(4.19)

4.3.2 Dynamic Power Management

Energy in disks systems can be efficiently reduced by employing the dynamic

power management (DPM) strategy, which places disks into standby when they are

idle. To analyze the energy efficiency of PRE-BUD, it is important and intriguing

to model energy consumption in a DPM-based parallel disk system. If there is an

idle time of the ith disk that is larger than the break-even time TBE,i, then energy

conservation can be achieved by putting the disk into the standby state. Otherwise,

the energy penalty to transition between the high-power and low-power state is unable

to be offset by the energy conserved. Let PTR,i be the power of state transitions in

the ith disk. Let PAS,i and PSA,i denote additional power introduced by transitions

from active to standby, and vice versa. PTR,i can be derived from PAS,i and PSA,i as

PTR,i = PAS,i + PSA,i =
TAS,i · PAS,i + TSA,i · PSA,i

TAS,i + TSA,i
(4.20)
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where the numerator is the energy consumption caused by a pair of transitions and

the denominator is the transition time. In light of Eq. (4.20), one can calculate the

break-even time TBE,i as

TBE,i =

⎧⎪⎪⎨
⎪⎪⎩

(TAS,i + TSA,i) ·
(
1 +

PTR,i−PA,i

PA,i−PS,i

)
TAS,i + TSA,i otherwise

ifPTR,i > PA,i (4.21)

In what follows, we make use of TBE,i to quantify the energy consumption of a parallel

disk system when the DPM technique is employed. Suppose the number of idle time

intervals in a disk i is Ni; a sequence of idle periods in the disk can be expressed as

(tI,i,1, tI,i,2,..., tI,i,Ni), where tI,i,k represents the length of the kth idle period in the

sequence. Let
�

EI(P,R) be the energy consumed when disks are idle. The expression

of
�

EI(P,R) is given as

ÊI (P,R) =
m∑
i=1

(
PI,i · T̂I,i

)

=
m∑
i=1

(
PI,i ·

Ni∑
k=1

(yk,i · tI,i,k)
) (4.22)

where T̂I,i is the summation of small idle time intervals that are unable to compensate

the cost of transitioning to the standby state. T̂I,i can be derived from a step function

yk,i, where yk,i is ”1” if the idle interval is smaller than or equal to the break-even

time. Otherwise, yk,i is ”0”. Using the step function yk,i, we can express T̂I,i in Eq.

(4.22) as T̂I,i =
Ni∑
k=1

(yk,i · tI,i,k).
The energy consumption of the parallel disk system when the disks are in the

standby state can be expressed as

ES (P,R) =
m∑
i=1

(PS,i · TS,i)

=
m∑
i=1

(
PS,i ·

Ni∑
k=1

(ȳk,i · (tI,i,k − TBE,i))

) (4.23)
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where TS,i is the time period when disk i is in the standby state. Similar as T̂I,i, TS,i

is derived from a step function ȳk,i, where ȳk,i is ”1” if the idle interval is larger than

TBE,i, and is ”0”, otherwise. With the step function ȳk,i, we can model TS,i in Eq.

(4.23) as TS,i =
Ni∑
k=1

(ȳk,i · (tI,i,k − TBE,i)).

Similarly, below we obtain the formula for the energy consumption of disk power-

state transitions

ETR (P,R) =
m∑
i=1

(PTR,i · TTR,i) (4.24)

where PTR,i is determined by Eq. (4.20). TTR,i is the time interval when disk i is

transitioning from one power state into another. TTR,i can be derived from TBE,i.

Hence, we obtain TTR,i =
Ni∑
k=1

(ȳk,i · TBE,i).

The energy consumption EDPM of the parallel disk system with the DPM tech-

nique is the summation of the energy incurred by the disks when they are in the

active, idle, standby, and transition states. Thus, EDPM can be derived from Eqs.

(4.16), (4.22), (4.23), and (4.24) as

EDPM (P,R) = EA (P,R) + ÊI (P,R) + ES (P,R) + ETR (P,R) (4.25)

4.3.3 Derivation of Energy Efficiency for PRE-BUD

Now we analyze the energy efficiency of the PRE-BUD strategy. We only analyze

the energy consumption of a parallel I/O system with PRE-BUD where an extra disk

is added to the system as a buffer disk. PRE-BUD using an existing disk can be

modeled similarly and can be derived from the models presented in this section.

First of all, we analyze the energy overhead EPF introduced by prefetching the

popular data blocks from data disks to the buffer disk. Let D = (D1, D2, ..., Dq)

be a set of data blocks retrieved by reference string R. We make use of a predicate

αj,i,k, which asserts that request ri is accessing data block k on disk i, to partition

the reference string in a way that requests accessing the same kth block on disk i can
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be grouped into the one set Rk,i. Thus, we have

Rk,i = { rj ∈ R |xj,i = 1 ∧ αj,i,k = TRUE } (4.26)

The sizes of all the requests in Rk,i are identical. For simplicity, we denote the size

of requests in Rk,i as sk,i. The following property must be satisfied:

∀1 ≤ j ≤ n, 1 ≤ k ≤ q, rj ∈ Rk,i : sj = sk,i (4.27)

In most cases, it is impossible for a buffer disk to cache all the popular data sets.

Therefore, we introduce the following step function to distinguish data blocks prefetched

from data disks to the buffer disk.

zk,i =

⎧⎪⎪⎨
⎪⎪⎩

1 if block k on disk i is prefetched,

0 otherwise.
(4.28)

Energy consumption EPF caused by prefetching contains two components: energy

consumption ER,PF of reading frequently accessed data blocks from the data disks

and energy consumption EW,PF of placing the data blocks to the buffer disk. Thus,

EPF is quantified below

EPF (P,D) = ER,PF (P,D) + EW,PF (P,D)

=
m∑
i=1

q∑
k=1

(
zk,i · PA,i ·

(
tSK,k,i + tRT,k,i +

sk,i
BR,i

))

+
m∑
i=1

q∑
k=1

(
zk,i · PA,0 ·

(
tSK,k,0 + tRT,k,0 +

sk,i
BW,0

)) (4.29)

where PA,0 is the power of the buffer disk in the active state, BR,i is the read transfer

rate of data disk i, and BW,0 is the write transfer rate of the buffer disk. Next, let us

derive expressions to calculate the energy consumption E0 in the buffer disk. E0 is

the summation of active, idle, and sleep state energy consumption totals of the buffer
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disk, and power state transition overheads. Thus,

E0 = EA,0 + EI,0 + ES,0 + ETR,0 (4.30)

where EA,0, EI,0, and ES,0 are the active, idle, and sleep state energy consumption

totals of the buffer disk. ETR,0 is the energy overhead for power state transitions.

In what follows, we direct our attention to the analytical formulas of EA,0, EI,0, and

ES,0. Given a set D of accessed data blocks, we model energy EA,0 of the buffer disk

when it is active as

EA,0 (D) =
m∑
i=1

q∑
k=1

(zk,i · PA,0 · TA,0)

=
m∑
i=1

q∑
k=1

(
zk,i · PA,0 · ∑

rj∈Rk,i

(
tSK,j,0 + tRT,j,0 +

sk,i
BR,0

)) (4.31)

where TA,0 is the time period when the buffer disk is in the active state. TA,0 is the

accumulated service times of requests processed by the buffer disk.

Let IS = (tI,1, tI,2, ..., tI,N0) be a sequence of idle periods in the buffer disk. Eq.

(4.32) quantifies energy consumption EI,0 of the buffer disk when it is sitting idle.

EI,0 (IS) = PI,0 · T̂I,0 = PI,0 ·
∑

tI,k∈IS
(yk,0 · tI,k) (4.32)

where T̂I,0 is the summation of small idle time intervals that are unable to compensate

the cost of transitioning to the sleep state. yk,i is a step function used in Eq. (4.22).

Energy consumption ES,0 in Eq. (4.30) is expressed as

ES,0 (IS) = PS,0 · TS,0

= PS,0 · ∑
tI,k∈IS

(ȳk,0 · (tI,k − TBE,0))
(4.33)

where TS,0 is the total time when the buffer disk is in the sleep mode. TS,0 is derived

from the break-even time given by Eq. (4.21) and the step function is used in Eq.
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(4.23). The energy overhead ETR,0 for power state transitions is expressed as follows

ETR,0 (IS) = PTR,0 · TTR,0

= PTR,0 · ∑
tI,k∈IS

(ȳk,0 · TBE,i)
(4.34)

Energy consumption ED of the data disks with the dynamic power management

technique can be determined by applying Eq. (4.25).

Now we are in a position to obtain the energy consumption total of the parallel

I/O system, EPRE−BUD, with an extra buffer disk from Eqs. (4.25), (4.29), and (4.30).

Thus,

EPRE−BUD = EPF (P,D) + E0 (D, IS) + ED (P,R) (4.35)

4.3.4 Derivation of Response Time for PRE-BUD

Now we are in a position to derive the response time approximation of the PRE-

BUD architecture. By definition, the response time of a disk request is the interval

between its arrival time and finish time. The response time can be calculated as a sum

of a disk request’s wait time and I/O service time. Let D0 = {d1, · · · , dk, · · · , dl0} be a

set of data blocks prefetched to a buffer disk. Throughout this section, the subscript

0 is used to represent the buffer disk. Let λk and tk represent the access rate and

I/O service time of the kth data block in D0. Let ρ0 and Λ0 be the utilization and

aggregate utilization of the buffer disk. Thus, we have

ρ0 =
∑

dk∈D0

(λk · tk) and Λ0 =
∑

dk∈D0

λk (4.36)

The mean service time S̄0 and mean-square service time S̄2
0 of disk accesses to the

buffer disk are given as

S̄0 =
∑

d0∈D0

(
λk

Λ0
· tk
)
=

1

Λ0
· ∑
d0∈D0

(λk · tk) (4.37)
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S̄2
0 =

∑
d0∈D0

(
λk

Λ0
· t2k
)
=

1

Λ0
· ∑
d0∈D0

(
λk · t2k

)
(4.38)

where λk/Λ0 is the probability of access to data block dk in the buffer disk.

We model each disk in a parallel disk system as a single M/G/1 queue, which has

exponentially distributed inter-arrival times and an arbitrary distribution for service

times of disk requests. Consequently, we can obtain the mean response time T̄0 of

accesses to the buffer disk from Eqs. (4.36), (4.37) and (4.38) as

T̄0 = S̄0 +
Λ0 · S̄2

0

2 · (1− ρ0)
(4.39)

In what follows, let us derive mean response time T̄j of accesses to disk j. We

denote Dj(1 ≤ j ≤ m) as a set of data blocks stored in the jth disk. Let DPF
j ⊆

Dj(1 ≤ j ≤ m) be a set of data blocks in Dj prefetched to a buffer disk. Similarly,

let D′
j ⊆ Dj(1 ≤ j ≤ m) be a set of data blocks that has not been prefetched. For

the jth disk, we have Dj = DPF
j ∪ D′

j. Let ρj and Λj represent the utilization and

aggregate utilization of the buffer disk. ρj and Λj can be expressed as:

ρj =
∑

dk∈D′
j

(λk · tk)andΛj =
∑

dk∈D′
j

λk (4.40)

The mean and mean-square service times (i.e., S̄j and S̄2
j) of disk accesses to disk j

are given as

S̄j =
∑

d0∈D′
j

(
λk

Λj
· tk
)
=

1

Λj
· ∑
d0∈D′

j

(λk · tk) (4.41)

S̄2
j =

∑
d0∈D′

j

(
λk

Λj

· t2k
)
=

1

Λj

· ∑
d0∈D′

j

(
λk · t2k

)
(4.42)

We can derive the mean response time T̄j of accesses to data disk j from the above

equations as

T̄j = S̄j +
Λj · S̄2

j

2 · (1− ρj)
(4.43)
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Therefore, the overall mean response time of a parallel disk system with a buffer disk

is written as below, where Λ =
∑m

j=0Λj is the aggregate access rate of the parallel

disk system.

T̄ =
1

Λ
·

m∑
j=0

(
Λj · T̄j

)
(4.44)

4.4 Experimental Results

In this section we present our experimental results for the proposed PRE-BUD

energy efficient prefetching approach for parallel disk systems. First we provide in-

formation about our simulation environment and parameters that were varied for our

experiments. Next, we compare PRE-BUD with PDC and DPM - two well known

energy conservation techniques for parallel disks [21]. Then, we study the impacts of

various system parameters on energy efficiency and the performance of parallel disks.

4.4.1 Experiment Setup

Extensive experiments were conducted with a disk simulator based on the math-

ematical models presented in Sections 4.2 and 4.3. Our disk model (see Table 4.3)

is based on the IBM Ultrastar 36Z15, which has been widely used in data-intensive

environments [18]. Our simulator was implemented in JAVA, allowing us to quickly

and easily change various system parameters. Both synthetic and real-world traces

are used to evaluate PRE-BUD.

For comparison purposes, we consider a parallel I/O system (referred to as Non-

Energy Aware) where disks are operating in a standard mode without employing any

energy-saving techniques. In other words, disks are in the busy state while serving

requests, and are in the idle state when not serving a request. Two PRE-BUD

configurations are evaluated; the first configuration PRE-BUD1 adds an extra disk to

be used as the buffer disk and the second configuration called PRE-BUD2 designates

an existing disk as the buffer disk. Note that the term ”hit rate” used throughout this
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section is defined as the percentage of requests that can be served by the buffer disk.

One of the goals of our experiments is to identify the parameters that are crucial to

energy efficient disk storage systems.

Parameter Value Parameter Value
Transfer Rate 55 MB/S Spin Down Time:TD 1.5 s

Active Power:PA 13.5 W Spin Up Time:TU 10.9 s
Idle Power:PI 10.2 W Spin Down Energy:ED 13.0 J

Standby Power:PS 2.5 W Spin Up Energy:EU 135 J

Table 4.3: Disk Parameters (IBM Ultrastar 36Z15)

4.4.2 Comparison of PRE-BUD and PDC

Figure 4.5 shows the energy efficiency comparison results of our PRE-BUD strat-

egy and the PDC [26] energy saving technique. PDC attempts to move popular data

across the disks, such that the first disk has the most popular data, while the second

disk has the second most popular set of data and so forth. We fixed the data size to

be 275 MB and the hit rate is 95% for PRE-BUD. Since the data could potentially

be anywhere in the disk system, the PDC strategy causes data to be moved within

the disk system.

Figure 4.5 shows that PRE-BUD is more energy efficient than PDC if PDC has

to move a large amount of data within the storage system. PDC may have a much

higher initial energy penalty when a large amount of data must be moved within

the storage system. PRE-BUD has a fixed amount of buffer disk space; for this

example, it is fixed at 10% of the total data in the storage system. PRE-BUD can

be adaptively tuned to find the particular amount of buffer disk capacity that will

yield the largest amount of savings. PRE-BUD only needs to move blocks that can

provide energy savings. In contrast, PDC makes no guarantees about the energy

impact of moving data within the storage system. PDC does not adapt as quickly as

our PRE-BUD strategy to changing workload conditions. The look-ahead window we
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Figure 4.5: PDC and PRE-BUD Comparison

employ can amortize the expense of moving frequently accessed data into the buffer

disk. PDC attempts to move frequently accessed data at one time, which can cause

large over-heads when the workload of the parallel disk system changes frequently.

4.4.3 Impact of Data Size

The second set of experiments focused on evaluating the impact that the data

size of the requests has on the energy savings of DPM and PRE-BUD. For these set

of experiments we fixed the number of disks at 12. The hit rate of the buffer disk is

varied from 85% to 100%. Figure 4.6 reveals that the data size has a huge impact on

the energy efficiency of DPM and our PRE-BUD strategy when the hit rate is lower

than 100%. If the hit rate is 100% for the buffer disk, data disks can sleep for a long

period of time regardless of the data size.
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The results depicted in Figure 4.6 indicate that our PRE-BUD strategy performs

best with data-intensive applications that request large files. Thus, multimedia stor-

age systems would be a perfect candidate for the PRE-BUD energy saving strategy.

The data size has such a large impact on energy savings because of the break even

time, TBE, which is 14.5 seconds for the chosen disk model. Large data sizes take a

longer time to serve; consecutive buffer hits for a large data size meet the break even

time. Conversely, small data sizes produce little or no energy efficiency gains. These

experimental results confirm that the data size together with the hit rate combine to

produce a probability of meeting TBE, which is the break-even time, with higher hit

rates and large data sizes being the ideal combination for energy savings. PRE-BUD1

consumes more energy than DPM when the data size is 1MB or smaller. This is be-

cause PRE-BUD1 adds an extra disk to the disk system, and with a small data size

energy efficient opportunities to put a disk to sleep are rare. This set of experiments

leads us to the conclusion that large data sizes are conducive to energy efficiency in

PRE-BUD.

4.4.4 Impact of Number of Data Disks

Now we evaluate the impact of varying the ratio of data disks to buffer disks.

The number of buffer disks is fixed at 1; the number of data disks is set to 4, 8, and

12. The hit rate is fixed at 95% and the data size is varied from 1MB to 25MB.

Not surprisingly, we discover from Figure 4.7 that as we increase the number of data

disks per buffer disk, the energy savings becomes more pronounced for PRE-BUD.

This energy efficiency trend is expected because increasing the number of disks makes

each individual disk less heavily loaded.

The buffer disk simply prefetches blocks that can produce energy savings; lightly

loaded disks are more likely to be switched into the standby mode to conserve energy.

PRE-BUD, of course, has to prefetch a smaller amount of data from each disk to
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                                       (a)                                                                 (b) 

        

                                       (c)                                                                                                              (d) 

Figure 4.6: Total Energy Consumption of Disk System while Data Size is varied for
four different values of the hit rate: (a) 85 %, (b) 90 %, (c) 95 %, and (d) 100%
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                                      (a)                                                                     (b) 

        

                                     (c)                                                                                                                       (d) 

Figure 4.7: Total Energy Consumption of Disk System while the number of data disks
is varied. Data size is fixed at: (a) 1MB, (b) 5MB, (c) 10MB, and (d) 25MB
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achieve this high energy efficiency. If the number of data disks is increased, we must

be sure that the performance is not negatively impacted. When more data disks

are added into a parallel disk system, the buffer disk is more likely to become the

performance bottleneck. Moreover, Figure 4.7 shows that a large data size makes

PRE-BUD more energy efficient. This result is consistent with that plotted in Figure

4.6.

4.4.5 Impact of Hit Rate

In this set of experiments we chose to investigate the impact the buffer disk hit

rate has on the energy efficiency of the parallel disk system. Again, the data size is

varied from 1 to 25 MB. The number of data disks is set to 12. We observe from

Figure 4.8 that higher hit rates enable PRE-BUD to save more energy in the parallel

disk system. This is expected because with a high hit rate, we heavily load the buffer

disk while allowing data disks to be transitioned to the standby state. A low hit rate

means a data disk must be frequently spun up to serve requests, incurring energy

penalties. The longer a disk can stay in the standby state, the more energy efficient a

parallel disk will be. Note that hit rates of 100% are not realistically achievable if the

disk requests require all disks to be active. A 100% hit rate can only be accomplished

if the overall load on the entire disk system is fairly light. It has been documented

that some parallel workloads are heavily skewed towards a small percentage of the

workload, thereby making 80% hit rates feasible. With the varying data sizes, we

notice that the energy savings becomes more significant for larger data sizes. Having

a larger data size is similar to increasing the hit rate of buffer disks operating on

smaller data sizes.
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                                      (a)                                                                    (b) 

       
                                     (c)                                                                     (d) 

Figure 4.8: Total Energy Consumption for different hit rate values where the data
size is fixed at: (a) 1MB, (b) 5MB, (c) 10MB, and (d) 25 MB
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4.4.6 Impact of Inter-Arrival Delays

In these experiments, we study the impact that the inter-arrival rates of the

requests have on the energy savings of PRE-BUD. Figure 4.9 shows the energy con-

sumption totals of the disk system with four different values of the inter-arrival delay.

The number of disks was fixed at 12, the data size was fixed at 1MB, and the hit

rate was varied from 85% to 100%. When there is no inter-arrival delay, DPM will

not yield any energy savings. This is because there are no idle-windows large enough

for disks to spin down. PRE-BUD1 ends up consuming more energy than DPM in

this case, because PRE-BUD1 adds the over-head of an extra disk and the energy

required to prefetch the data. PRE-BUD2 is the most energy efficient, since there is

no need to add an extra disk. If the inter-arrival delay is 100 ms, we have a similar

situation, except that PRE-BUD1 is now able to produce a small amount of energy

savings.

When the inter-arrival delay becomes 500 ms, DPM begins to produce energy

savings. However, such energy savings pales in comparison to PRE-BUD. When the

delay is increased to 1 Sec., the results look similar to the results for a 500 ms delay.

Although DPM in this case can result in more energy savings, PRE-BUD1 and PRE-

BUD2 significantly outperform DPM in terms of energy efficiency. These results fit

our intuition about the behavior of the PRE-BUD approach. DPM needs large idle

times between consecutive requests to achieve energy savings, heavily depending on

the break even time of a particular hard drive. PRE-BUD is more energy efficient than

DPM, because PRE-BUD proactively provides data disks with larger idle windows

by redirecting requests to the buffer disk.

4.4.7 Power State Transitions

In this section of our study, we investigate the relationship between the number

of power state transitions and energy efficiency. Figure 4.10 depicts the number of
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                                       (a)                                                              (b) 

           
                                    (c)                                                                     (d) 

Figure 4.9: Total Energy Consumption for different delay values where the hit rate
is (a) 85%, (b) 90%, (c) 95%, and (d) 100%.
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                                   (a)                                                               (b) 

  

                                   (c)                                                                 (d) 

Figure 4.10: Total disk state transitions for different data sizes where the hit rate is:
(a) 85%, (b) 90%, (c) 95%, and (b) 100%

power state transitions triggered by DPM, PRE-BUD1, and PRE-BUD2 when the

data size and hit rate are varied. The number of state transitions caused by DPM is

zero when the data size is smaller than or equal to 25MB. There is no power state

transitions for small data sizes, because no idle time periods of data disks are long

enough for DPM to justify transitioning to the standby state. When the data size is

larger than 25MB, the number of power state transitions quickly rises with increasing

data sizes. If DPM triggers transitions, it is able to improve the energy efficiency of

the disk system.

Interestingly, the number of transitions for PRE-BUD slowly increases at first

and then starts dropping when the data size is larger than 125MB. The transition

number increases when data size is small because many small idle periods in data

disks are merged by PRE-BUD creating new opportunities for data disks to sleep.
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Since the small idle intervals tend to be spread out data disks experience many power

state transitions. The buffer disk reduces the number of transitions for data disks

when the data size is large, because a buffer disk generates larger and fewer idle time

periods in data disks. A few very large idle time periods lead to a small number of

transitions.

One of the problems with DPM is that it will transition a disk many times, which

may decrease the reliability of the disk. Unlike DPM, PRE-BUD can improve the

reliability of the disk system by lowering the number of transitions when data sizes of

requests are very large. As such, PRE-BUD is conducive to improving both energy

efficiency and reliability for data-intensive applications with large data requests.

4.4.8 Impact of Disk Power characteristics

To examine the effect that manipulating disk power characteristics has on PRE-

BUD, we varied the active power, idle power, and standby power, for three separate

experiments respectively. The number of data disks is fixed at 4 and the data size is

25MB.

Figure 4.11(a) shows that for all the four schemes, increasing the active power of

a disk results in a continuous increase of energy consumption across the four different

strategies. Results plotted in Figure 4.11(a) indicate that PRE-BUD is more energy

efficient for parallel disks with low active power. For example, if the active power

is 9.5W, PRE-BUD2 saves 15.1% of the energy consumption total over DPM. If the

active power is increased to 17.5W, then PRE-BUD2 improves energy efficiency over

DPM by only 13.0%. Figure 4.11(b) shows the impact of varying the idle power

parameter of a disk has on the energy efficiency of PRE-BUD. Compared with active

power, idle power has a greater impact on the energy savings achieved by PRE-BUD.

If the idle power is very low, PRE-BUD2 has a negative impact. If the idle power is

increased to 14.2 W, PRE-BUD2 can save energy over DPM by 25%. Figure 4.11(c)

64



  

                                      (a)                                                              (b) 

 

           (c) 

Figure 4.11: Total Energy consumption for various values of the following disk pa-
rameters: (a) power active, (b) power idle, and (c) power standby
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shows that standby power also has a significant impact on PRE-BUD. Specifically,

the energy savings starts at 16.3% and drops to 11.7% with increasing standby power.

These results illustrated in Figure 4.11 indicate that parallel disks with low active

power, high idle power, and low standby power can produce the best energy-saving

benefit. This is because PRE-BUD allows disks to be spun down in standby dur-

ing times they would be idle using DPM. The greater the discrepancy between idle

and standby power, the more beneficial PRE-BUD becomes. Lowering active power

also makes PRE-BUD more energy efficient because the amount of energy consumed

prefetching and serving requests can be reduced.

Throughout our experiments it was realized that the main factor limiting the

energy savings potential of PRE-BUD is the large break-even times of disks. A large

break-even time of a disk reduces opportunities for DPM to conserve energy if there

are a large number of idle periods that are smaller than the break-even time. PRE-

BUD alleviates this problem of DPM by combining idle periods to form large idle

windows. Unfortunately, PRE-BUD inevitably reaches a critical point where energy

savings are no longer possible. To further improve energy efficiency of PRE-BUD, we

have to rely on disks that are able to quickly transition among power states - one of

the dominating factors in energy savings for disks.

4.4.9 Real World Applications

To validate our results based on synthetic traces, we evaluated eight real-world

application traces. The applications are parallel in nature; thus, all of the applications

used eight disks, with the Titan and HTTP application being the exceptions and only

used seven disks. Note that results plotted in Figure 4.12 generally represented the

worst case for PRE-BUD. Figure 4.12 shows that PRE-BUD1 consumes more energy

than DPM for most applications except for the Cholesky and LU Decomposition

applications. When applications are very I/O-intensive, adding an extra disk leaves
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Figure 4.12: Total Energy Consumed for Real World Traces
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no opportunity to conserve energy. Figure 4.12 also shows PRE-BUD2 noticeably

improves energy efficiency over DPM for most applications. The results confirm

that PRE-BUD can generally produce energy savings under both low and high disk

workloads, even though the energy savings is relatively small for high workloads.

A surprising exception is the Titan application, because DPM is more energy

efficient than PRE-BUD. In the Titan trace, there is one large gap between all of the

consecutive requests, allowing DPM an opportunity to put all of the disks into the

standby state for a long period of time. PRE-BUD, on the other hand, keeps the

buffer disk active all the time to minimize the negative impact on performance. In

this special case, the active buffer disk makes PRE-BUD less energy efficient than

DPM. The energy efficiency of PRE-BUD can be further improved by aggressively

transitioning the buffer disk to the standby state if it is sitting idle.

PRE-BUD Response Time Degradation 5 Disks 10 Disks 15 Disks 20 Disks
10% of Data Accessed in 90% of Trace 6 ms 16 ms 26 ms 36 ms
20% of Data Accessed in 80% of Trace 6 ms 16 ms 26 ms 36 ms
30% of Data Accessed in 70% of Trace 6 ms 16 ms 26 ms 36 ms
40% of Data Accessed in 60% of Trace 32 ms 47 ms 62 ms 79 ms

Table 4.4: Response Time Analysis

4.4.10 Response Time Analysis

In Table 4.4 we present our response time analysis results for the PRE-BUD

strategy. We used four different traces, which had a designated set of popular data

that varied in size and overall percentage of the entire trace. We also varied the

number of data disks that each buffer disk is responsible for prefetching data from.

From the table we see that the first three traces have similar response time results

for each number of data disks used for the experiments. This tells us that our PRE-

BUD strategy is capable of balancing the load and producing energy savings with a

minimal impact on the response time of the parallel disk system. For the last trace,
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in which 40% of the data is accessed 60% in the trace, we see that our response time

degradation is significantly higher when compared to the other traces. This result is

expected because the workload does not have an easily identifiable subset of data that

can be prefetched to produce energy savings. PRE-BUD relies on the fact that some

parallel application I/O operations are heavily skewed towards a small subset of data.

From all of the results presented in Table 4.4 we realize that the PRE-BUD strategy

produces relatively small response time degradations. This means our strategy will

work for applications that can tolerate response degradations and is not suitable for

real time applications.

4.5 Chapter Summary

The use of large-scale parallel I/O systems continues to rise as the demand for

information systems with large capacities grows. Parallel disk I/O systems combine

smaller disks to achieve large capacities. A challenging problem is that large-scale

disk systems can be extremely energy inefficient. The energy consumption rates are

rising as disks become faster and disk systems are scaled up. The goal of this study is

to improve the energy efficiency of a parallel I/O system using a buffer disk to which

frequently accessed data are prefetched.

In this chapter, we develop an energy-efficient prefetching algorithm (PRE-BUD)

for parallel I/O systems with buffer disks. Two buffer disk configurations considered in

our study are (1) adding an extra buffer disk to accommodate prefetched data and (2)

utilizing an existing disk as the buffer disk. Prefetching data blocks in the buffer disk

provides ample opportunities to increase idle periods in data disks, thereby facilitating

long standby times of disks. Although the first buffer disk configuration may consume

more energy due to the energy overhead introduced by an extra disk, it does not

compromise the capacity of the disk system. The second buffer disk configuration
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lowers the capacity of the parallel disk system, but it is more cost-effective and energy-

efficient than the first one. Compared with existing energy saving strategies for

parallel I/O systems, PRE-BUD exhibits the following appealing features: (1) it

is conducive to achieving substantial energy savings for both large and small read

requests, (2) it is able to positively impact the reliability of parallel disk systems by

the virtue of reducing the number of power state transitions, (3) it prefetches data

into a buffer disk without affecting the data layout of any data disks, (4) it does not

require any changes to be made to the overall architecture of an existing parallel I/O

system, and (5) it does not involve complicated metadata management for large-scale

parallel I/O systems.

There are three possible future research directions for extending PRE-BUD.

First, we will improve the scalability of PRE-BUD by adding more than one buffer

disk to the parallel I/O system. This can be implemented by considering a buffer disk

controller which manages various buffer disks each responsible for a set of data disks.

In this work we investigate the relationship between buffer disks and data disks, to

improve the parallelism of PRE-BUD we need to investigate the relationship between

a buffer disk controller and the buffer disks. The number of buffer disks will have to

be increased as the scale of the disk system is increased. Second, PRE-BUD will be

integrated with the dynamic speed control or DRPM [9] for parallel disks. Last but

not least, we will quantitatively study the reliability impacts of PRE-BUD on parallel

I/O systems.

70



Chapter 5

DiskSim Power Models

5.1 Introduction

The previous chapter explored some powerful simulation models and we imple-

mented these models in a simulator that we have developed. It is important to validate

the simulator that one has developed and this can be a lengthy process, so we have

decided to leverage DiskSim to continue our research. DiskSim is a validated disk

system simulator developed by the parallel data lab of Carnegie Mellon University

[3]. If we make any changes we would only need to validate the changes that were

made to the simulator and not worry about the disk simulation details because they

have been detailed by the DiskSim project. DiskSim also collects a large amount

of information about disk usage that was not developed for our simulator and this

information can be leveraged to further improve the quality of the research.

5.2 Simulation Framework

In order to complete the work for our project we have two main components in

our system. The DiskSim simulator, which is responsible for simulating the operation

of all the disks and the movement of data blocks in the system, and a block to file

translator that is responsible for mapping data blocks to files in our storage system.

It is important for us to investigate data movement at the file system for several key

reasons. The first reason that we want to develop a storage system simulator at the

file system level is that a disk must see a large idle period before it can be placed

into the standby state to conserve energy. Data blocks are typically small and it
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Figure 5.1: File System Simulator and Disk System Interaction

would require us to prefetch a large number of data blocks that could potentially

be changed using writes. Secondly, due to the observations made in the previous

chapters we have decided that our work is most suited for web applications and the

cluster storage systems that support large volumes of data. Data blocks are typically

managed within a single computer and we need a higher level mechanism to manage

data across cluster storage nodes.

The interaction of our file to block level translator and a modified version of

DiskSim is outlined in Figure 5.1. The modifications made to DiskSim are outlined

in Section 5.4. The process begins with the use of a file-system level trace, generated

using our trace generator, or from a real-world application trace. We then use our file

to block level translator to generate a block level trace for DiskSim. The file to block

level translator keeps tracks of all the files in the storage system and which node they

are located on and simulates the movement of files across nodes. Once the block level

trace is produced it is used by DiskSim to collect power and response time statistics.

The movement of files between disks and nodes in the storage system is important to

support our energy-efficient pre-fetching strategies, which rely on data movement.
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5.3 DiskSim Limitations

DiskSim is a powerful tool for simulating the operation of disks in large scale

storage systems, but it has one fundamental flaw that limits its use for our research

purposes, there are no energy models for disk systems. There have been two research

papers that have implemented power models within Diskim[29] [38]. We were fortu-

nate that the authors of the SODA paper were able to provided us with source code

of power models developed for and older version (version 2.0) of DiskSim. This got us

closer to our goal of implementing power models into DiskSim, but we had to adapt

the energy models in SODA to a newer version, 4.0, of DiskSim and we also had to

simulate Disk state transitions which are critical to our disk energy savings strategies.

5.4 DiskSim Modifications

Parameter Description
dm power active Power Consumption in the Active State
dm power idle Power Consumption in the Idle State
dm power standby Power Consumption in the Standby State
dm spin down time Time to transition from Actve/Idle to Standby
dm spin up time Time to transition from Standby to Active/Idle
dm spin down penalty Energy required to transition from Actve/Idle to Standby
dm spin up penalty Energy required to transition from Standby to Actve/Idle

Table 5.1: Key Model Variables Added To DiskSim

The first area where we had to make changes was in the disk model code of

DiskSim. The major changes are included in the Appendix A. The current disk

models did not support our energy efficiency models so we had to add seven key

parameters into the disk model to support our power requirements. The parameters

added are summarized in Table 5.1. The first parameter that we have added is the

power active, dm power active, and this is how much power is consumed once the disk

is busy working on a request. The second is the idle power, dm power idle, which is

73



how much energy the disk consumes when the platters are spinning but the disk is not

serving a request. The next parameter, dm power standby, is how much energy the

disk consumes when disk is transitioned into the standby state and the platters are

now stopped. The fourth parameter and fifth parameters, dm spin down time and

dm spin up time, are the amount of time it takes to spin down and spin up the disk

respectively. Spinning down the disk takes it from the active/idle state to the standby

state and spinning up the disk takes it from the standby state to the active/idle state.

The last parameters are, dm spin down penalty and dm spin up penalty, which are

the energy requirements to spin down and spin up the disk respectively.

DiskSim is a discrete event based simulator, so modifications had to be made to

support disk state transitions. The first area that we had to modify was to implement

a timer to check to see if the disks have been idle for a certain period of time. This was

implemented by adding a TIMER EXPIRED event to the event queue of DiskSim

and this code is outlined in the Appendix A with the disksim power.c code that I

wrote. This timer runs every 500ms and then runs the disk update idle function

which is used to check all of the disks that are currently being simulated and check

how long they have been idle. If the disks have been idle longer than an idle threshold

value then the disks are transitioned into the standby state if they are currently in

the active/idle state. To make the state transition complete I implemented another

event type in DiskSim named the SPIN DOWN COMP event which is executed after

the spin down time penalty is complete. Once this event is pulled off of the DiskSim

event queue then the disk is placed into the standby state.

To wake up a disk I had to modify code in the disksim diskctlr.c file. This

file manages the disk and controls the disk when a read or write request makes it

to the disk. If a request comes in for a disk that is currently in the standby state

the wakeup disk sleep function is called in the disk sim power.c file. This function

calculates how much time it will take to wake up a disk using the spin up penalty
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and schedules a wake up complete event, SPIN UP COMP, that is similar to the

SPIN DOWN COMP code described in the previous paragraph. There are also two

special cases to check, the first if the disk is currently being spun up, and second if

the disk is being spun down. The first case adds the difference of the current time

and the spin up complete event as delay and keeps moving through the rest of the

code. The second case requires letting the spin down complete and then scheduling

a spin up complete event, and adding the delay for the spin down and spin up to

complete. All of this code is detailed in the disksim power.c file in the appendix.

The last area that had to be modified was to keep track of the energy consumed

in the various states that the disk could be in. The disk would be active as its seeking,

rotating, and transferring the data, the code for this is contained in disksim disk.c,

and these times were passed into the activeEnergyStat function in disksim power.c.

The idle time must also be accounted for and the idle time is gathered before a

seek is found in disksim diskctlr.c and passed to the idleEnergyStat function which

is contained in disksim power.c. The last place to check the idle time is when the

simulation has finished we check the difference between the end of the simulation and

the last I/O request for a disk in disksim disk.c and calculate the idle energy using

idleEnergyStat. The last thing to note is that we must also take care to measure the

amount of time that the disk has spent in the standby state and this is controlled

by the wakeup disk functions in the disksim power.c. After the trace is finished the

total standby time is multiplied by the standby state energy to produce a total energy

consumption number in Joules. Similar calculations are made for the idle and active

times and these numbers are combined to produce the overall energy output of the

disk system.
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Figure 5.2: Energy Consumption Results of Modified DiskSim

Response Times (ms)
Trace Energy Aware Non-Energy Aware
Atlas10k 3.97 3.97
IAD200 2.65 2.65
IAD1000 2.66 2.66
IAD5000 4461 2.59

Table 5.2: DiskSim Response Time Results

5.5 Generated Results

Figure 5.2 presents the results we collected when running our modified version of

DiskSim and Table 5.2 presents the response times we collected. The first trace that

we used was the Atlas10K trace which is used for validating the DiskSim simulation

environment. We made our changes to the disk model for the Atlas10K trace and

ran the trace with the modified and unmodified versions of the code. The energy

consumption and response time results were exactly the same for the Energy and

Non-Energy aware approaches. This result was expected because we noticed from

the simulation results that the disk was not being transitioned into the standby state
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because the inter-arrival delay of requests in the trace was very low. Since the disk

was not being transitioned to the idle state this validated that our changes made no

negative impact to Disksim when no energy savings opportunities were available.

The disk will transition to the idle state only after the idle threshold is reached,

which is 5 seconds for our experiments, and the IAD200 and IAD1000 experiments

produced no state transitions. IAD200 and IAD1000 are tested with synthetically

generated traces with the inter-arrival delay set at 200 and 1000 ms, respectively.

These traces produced results that are similar to the case for the Atlas10K trace and

we are able to validate the operation of our modified version of DiskSim in the case

that energy savings is not possible. The last results that we produced were using an

inter-arrival delay of up to 5000 ms, which was able to produce 147 state transitions.

Unfortunately the traces we were working with are at the block level and the data

size of requests is relatively small, from 1 to 50 blocks. This caused the disks to be

transitioned with a high probability that a request would arrive while the disk was

transitioning to the standby state, which caused an enormous jump in the response

time of the energy-aware approach. Using the disk parameters from Table 3.2 the time

to spin down and then immediately spin up takes 12.4 seconds and incurs an energy

penalty of 148 Joules. Since the disk spent relatively little time in the standby state

the energy consumption of the energy aware approach is higher than the non-energy

aware approach.

5.6 Conclusion

This chapter introduced an improved simulation framework that can be used

to simulate energy aware disk systems. The framework that we have introduced in

this chapter is valuable because DiskSim allows one to test a large number of disks

in a quick manner. Along with our source modifications this allows us to quickly

prototype large scale energy-aware storage systems. The disks must be spun down to
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conserve energy and the currently used disk model has a high state transition penalty

in terms of energy and time. If the disks are not managed carefully energy-aware

approaches can quickly degrade response times and also consume more energy than

non-energy aware approaches. DiskSim focuses on block level requests which are

generally small and through our experimental results we have concluded that large

data sizes are conducive to energy savings approaches that place a disk in the stanby

state for energy savings.

To remedy these deficiencies we decided to move away from modeling and simu-

lation and produce a prototype energy aware virtual file system. This will eliminate

any errors that are introduced by disk power models and any disk simulators that

have to be modified to support disk power models. Our goal was to develop a system

that would be capable of producing energy savings and it was time to move towards

a real-world implementation. A virtual file system will allow us to work with larger

data sizes, place data across multiple storage nodes, and implement energy efficient

strategies across all of the storage nodes.
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Chapter 6

Energy Efficient Virtual File System

6.1 Introduction

Large-scale cluster storage systems are becoming ubiquitous because of the large

amount of data required for search engines, multimedia websites, and data-intensive

high-performance computing [10] [9]. These large-scale cluster storage systems typ-

ically are extremely inefficient concerning energy consumption. With data centers

quickly growing in scale, it is important to develop energy-efficient tools to keep the

cost of operating cluster storage systems down. Improving the energy efficiency of

cluster storage systems is important because storage systems can account for 27%

of the total cost to operate a data center [16]. The demands for increased per-

formance and storage capacities of large-scale storage systems exacerbate the high

energy consumption problems associated with cluster storage systems.

A handful of novel techniques developed to conserve energy in storage systems

include dynamic power management schemes [6][19], power-aware cache management

strategies [40], power-aware prefetching schemes [31], software-directed power man-

agement techniques [32], redundancy techniques [27] and multi-speed settings [11][14].

These energy-saving techniques can significantly enhance the energy efficiency of disk

drives under workload conditions where idle periods between groups of disk accesses

are substantial.

One fundamental drawback of cluster storage systems is that large data sets are

partitioned and distributed across multiple storage nodes in a cluster; it is difficult

for the storage nodes to energy-efficiently coordinate and handle parallel data man-

agement. A promising approach to improving the energy efficiency of cluster storage
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systems is to implement energy-saving techniques in file systems. In the absence of

an energy-efficient cluster file system, energy conservation is commonly achieved in

individual storage nodes in a non-collaborative manner. Relying on low-power storage

components to save energy in clusters not only limits I/O performance, but also loses

opportunities to conserve energy by considering file accesses across multiple storage

nodes.

The goal of our research is to develop an energy-efficient virtual file system -

called EEVFS - for large computing clusters. EEVFS is a cluster file system that

energy-efficiently processes file accesses across multiple storage nodes in a computing

cluster. The salient features of EEVFS lie in its high energy efficiency, fast I/O

processing, and scalability potential. In other words, EEVFS can provide significant

energy savings for cluster storage systems while achieving high I/O performance.

EEVFS achieves high energy efficiency through a BUD disk architecture [21][28].

In the BUD architecture, each storage node contains m buffer disks and n data disks.

We choose to use log disks as buffer disks in each storage node, because data can

be written onto the log disks in a sequential manner to improve performance of the

buffer disk. In most cases, the number of buffer disks m is smaller than the number

of data disks n.

To fully utilize buffer disks, we have investigated an energy-aware prefetching

strategy (see [21] for details on the prefetching algorithm called PRE-BUD) to dy-

namically fetch the most popular data into buffer disks, thereby making data disks

stay in the standby mode for long period of time to conserve energy. We evalu-

ated the impact the PRE-BUD algorithm on the overall energy efficiency of parallel

disks within a storage node. The research on PRE-BUD has led us to discover that

file access patterns, data size, inter-arrival delays, and disk drive energy parameters

combine to produce opportunities to transition hard drives into lower energy con-

suming states. There is energy, performance, and reliability penalties associated with
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transitioning disks into the various power states and; therefore, it is imperative to in-

vestigate techniques that are able to offset these penalties. It is desirable to minimize

the amount of state transitions to provide a balance between the energy efficiency,

performance, and reliability of parallel disks.

In our previous studies on PRE-BUD, we have conducted extensive simulations

to estimate performance and energy-efficiency of our prefetching schemes. Simulation

results show that PRE-BUD is conducive to conserving energy in parallel disks. These

findings motivate us to build the EEVFS file system, in which an energy-efficient

prefetching mechanism is implemented for cluster storage systems. EEVFS keeps

track of file locations and disk states of all the storage nodes in the file system. The

system architecture for the EEVFS file system contains two different components

- storage servers and storage nodes. The EEVFS architecture details are further

outlined in Section 6.2.1.

Apart from high energy efficiency, EEVFS has high scalability. This extreme

scalability is possible, because EEVFS coordinates a large number of storage nodes,

each of which is managing an array of disk drives (see Fig. 1). The EEVFS file system

is running on storage nodes connected over a switching fabric. EEVFS is responsible

for balancing the I/O load across storage nodes. The I/O load of individual disks

within a storage node is balanced by storage node component of EEVFS.

The rest of the chapter is organized as follows: We discuss in Section 6.2 the

design issues of EEVFS. Section 6.3 discusses the implementation decisions of EEVFS.

Before discussing the performance evaluation, we present in Section 6.4 a testbed,

metrics, and important parameters. Then, Section 6.5 shows experimental results.

Finally, Section 6.6 concludes the chapter and presents our future research directions.
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6.2 Design

We outline in this section the design issues of the Energy-Efficient Virtual File

System (EEVFS). In this study, we paid particular attention to the implementation

of energy-efficient prefetching with buffer disks in EEVFS.

6.2.1 System Architecture

Like PVFS, EEVFS was designed to improve the performance of cost-effective

cluster storage systems. In addition to achieving high performance, reducing energy

consumption in cluster storage systems is a primary design goal of EEVFS.

Fig. 6.1 illustrates the architecture of EEVFS, where nodes are divided into

three main groups - compute nodes (clients), storage nodes, and a storage server.

The storage server is responsible for handling incoming file requests for data reads or

writes from the compute nodes. The storage server needs to determine the storage

node that contains the data that is requested by a client. When the number of

storage nodes scales up, the storage server might become a performance bottleneck,

we address this issue by simplifying the functionality of the storage server. Thus,

the storage server only has to manage metadata such as data location and file size.

To achieve high scalability of cluster storage systems, we allow each storage node to

manage (1) multiple data disks (see Section 6.2.2 below) and (2) metadata for the

multiple local disks (see Section 6.3.4).

6.2.2 Data Placement

If the storage server is given previous knowledge about the popularity and access

patterns of the data blocks, the server distributes the data blocks to storage nodes in a

round-robin fashion based on file popularity. After the storage server has distributed

the data across the storage nodes, it splits the file access patterns based on the data
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distribution. The server then forwards the corresponding access patterns to each

storage node.

A storage node manages the states of multiple hard drives and also performs load

balancing based on the file popularities determined by the storage server. As data is

placed on each storage node by the storage server, the storage node places the data

on its N disks in a round-robin order. Since the first data placement request contains

the most popular data, the second request contains the second most popular data,

and so forth, the storage node load balances the data placement request on its local

data disks. The storage node receives file access pattern information from the storage

server about each file that is stored within the storage node.

6.2.3 Power Management

The storage node uses the file access pattern to predict periods when each of its

data disks will be idle for long periods of time. If there are any periods of time larger

than a threshold value, the storage node will transition a data disk into the standby

period. The storage node uses an energy prediction model that takes into account

the number of files to prefetch and the file access pattern. If there are consecutive

requests for data in the predicted prefetch area then the storage node marks points

in time when the data disks should be transitioned to the standby state to conserve

energy.

Within each storage node the disks are separated into two groups, namely, buffer

disks and data disks. The buffer disks are responsible for holding copies of popular

data from the data disks. Our goal is to keep the buffer disk active and keep the data

disks as lightly loaded as possible, thereby allowing EEVFS to transition data disks

into the standby state to produce energy savings. The buffer disk used in the current

incarnation of EEVFS relies on the local file system to manage buffers residing on

the buffer disk. The buffer disk, of course, must constantly be available for the Linux
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operating system running in the storage node. It is worth noting that placing the

buffer disk into the standby state is not feasible under heavy loads, because power

state transitions in the buffer disk can adversely affect the performance of the storage

node. If the buffer disk has any available space, the free space should be used as a

write buffer area for the other data disks contained in the storage node.

6.3 Implementation

We implemented a prototype of EEVFS on a cluster storage system. The imple-

mentation uses an append-only log of requests to keep track of file access patterns,

which assists the storage server in determining the needs for prefetching popular files

or data blocks from data disks to buffer disks. This section discusses several important

implementation issues.

6.3.1 Process Flow

The process flow of EEVFS is presented in Fig. 2. The first step of the process

is the initialization phase, which consists of the storage server connecting to all of the

storage nodes in the system. The server creates a separate thread for each storage

node and then establishes a TCP/IP connection to each storage node. The second

step is that the storage server gets popularity information from a log of file access

patterns. The prototype implementation uses a trace to replay file access patterns

and bases the file popularity on information gathered from traces.

In step 3 files are created on the storage nodes and the server informs the storage

nodes if they should perform prefetching, which is explained further in 6.3.2. The

storage server attempts to load balance the files among the storage nodes based on

the popularity information gained from step 2. The most popular data is placed on

storage node 1 and the second most popular data is placed on storage node 2 and

so on. The storage node also tries to load balance among the attached data disks.
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This is achieved because the first create file request a storage node sees contains a

file that is guaranteed to be more popular than the file contained in the second file

create request. The first file a storage node creates is then placed on the first storage

disk and the second file a storage node creates is placed on the second storage disk.

In step 4 the server passes application hints to the storage nodes which is elaborated

on in 6.3.3.

In step 5 the client requests information from a file and sends a request to the

storage server node. The client can not access any of the content in the storage node

without first going through the storage server node. The storage server node contains

the storage node location of a file, but does not know which data disk the file is

located on or if the file has been prefetched. The storage node passes information

about the client to the storage node that contains the file and the storage node then

establishes a connection with the client and passes the data to the client which is

outlined in step 6.

6.3.2 Prefetching

Prefetching is an important part of the EEVFS architecture because it allows the

data disk an opportunity to see large idle windows. If a buffer disk can serve a disk

request then the corresponding data disk sees an idle window increase as opposed

to the disk serving the request and resetting the idle window timer that each disk

keeps. Our current version of prefetching is based on file access patterns and we

derive a popularity based on the number of accesses over a given period of time. This

information is passed to storage nodes and if they are instructed to prefetch then

they will place a copy of popular data into the buffer disk. The current version of

EEVFS uses the hard drive that also runs the operating system as the buffer disk,

which allows us to use an existing disk as the buffer disk. If this is not possible due

to space limitations it may be possible to add another extra disk to be used as the
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buffer disk, but our experiments and previous simulation results indicate you would

need many data disks to amortize the energy cost of adding an extra disk.

6.3.3 Application Hints

Assuming that the programmer of an application using EEVFS or the creator of

files in the EEVFS system can pass information about the application that is going

to be run on EEVFS we can further improve the energy efficiency of EEVFS. The

application hints are used to predict idle windows to increase the energy efficiency of

EEVFS while providing minimal delays to response time. The application hints can

be extremely useful because they allow us to predict if there are any opportunities to

save energy and if there are none then EEVFS will not place disks into the standby

state. It allows EEVFS to operate in a more conservative manner as opposed to not

knowing application hints and relying solely on the idle window timers. EEVFS can

operate without the application hints, but there may be situations where a request

comes in immediately after the idle window threshold is reached, causing a negative

impact to energy savings and response time.

6.3.4 Distributed Metadata Management

To alleviate the metadata management burden of the storage server, we effec-

tively distribute metadata across storage nodes in a cluster. The storage server simply

manages metadata that provides hints as to which storage nodes contain files that

can handle requests submitted from clients. Each storage node maintains metadata

that can locate files on local disks in the node to respond requests forwarded from

the storage server.

The goal of the distributed metadata management is to balance the metadata

management load among the storage nodes. The storage server is unaware of the

individual disks in each storage node, primarily acting as a load balancer and access

86



point for all of the storage nodes. The storage server does not need to know any

information about the exact disk location of the data within each storage node. The

implementation of our metadata management subsystem can be further improved in

our future studies. For example, Miller et al. developed a scalable metadata man-

agement strategy for large-scale file systems [36]. We plan to integrate their dynamic

metadata management scheme in our energy-efficient cluster storage system.

6.4 Evaluation Methodology

Parameter Storage Server Node Storage Node
CPU Type and Clock Speed Celeron 2.2 GHz Celeron 2.2 GHz
Memory (MB) 2000 2000
Network Interconnect (Mb/s) 1000 1000
Disk Type SATA SATA
Disk Capacity 160 Gbyes 480 Gbyes
Disk Bandwidth 126 MB/s 126 MB/s

Table 6.1: Configuration of the Testbed Nodes.

6.4.1 Testbed

We built a cluster storage system serving as a testbed to evaluate the energy

efficiency and performance of the energy-efficient prefetching mechanism implemented

in EEVFS. This cluster storage system was configured as follows at the time when

we conducted the experiments (see Table 6.1 for details on the configuration of the

testbed). In our storage cluster system, there is one server node and five storage

nodes. The server node has a 2.2 GHz Celeron processor, 2 Gbytes of RAM, a 1

Gbits/sec Intel EtherExpress Pro Fast-Ethernet network card, and a 160 GB SATA

disk. Each storage node has a 2.2 GHz Celeron 4 processor, 2 Gbytes of RAM, a 1

Gbits/sec Fast-Ethernet network card, and three 160 GB SATA disks. One disk is

used as the operating system host and as the buffer disk while the other two disks

are used as data disks. All the nodes were running Linux 2.4.20 rather than Linux
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2.6, because we experienced disk transition inconsistencies running recent Linux 2.6

kernels.

6.4.2 System and Workload Parameters

For the collection of our experimental results we have focused on varying five key

system and workload parameters (see Table 6.2) that noticeably affect both energy

efficiency and performance of the EEVFS system. These five important parameters

are: (1) average data size, (2) file access popularity (i.e., the MU value), (3) inter-

arrival delays (i.e., arrival rate), (4) number of files to be fetched, and (5) disk idle

threshold. In what follows, let us describe these parameters summarized in Table 6.2.

• Data Size. We conducted extensive experiments using both real-world traces

(see Section 6.5.4) and synthetic file traces (see Sections 6.5.1 - 6.5.3). For

synthetic file traces, the mean data size of files is varied from 1MB to 50MB.

When it comes to real-world traces, data sizes are obtained from the traces.

• File Popularity Rate - The MU Value. The second parameter that we

have chosen to vary is the MU value for the Poisson distribution of file requests

that are fed into the storage server. This value was varied from 1 to 1000 and

with 1 skewing the file accesses patterns to a small number of files and 1000

spreading out the distribution of files accessed.

• Arrival Rate. For synthetic traces, we used the inter-arrival delay to represent

the arrival rate of file requests submitted from applications to the cluster storage

system. We used four different synthetic workload scenarios by varying the

inter-arrival delay of the file requests. We have added 0 to 1000 ms of inter-

arrival delay between requests to represent lighter to heavier loads respectively.

Note that we have also set a default inter-arrival delay at 700 ms to keep our
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queue from growing too large and our response times growing too large for the

energy and non-energy aware comparisons.

• Number of Files to Prefetch. The last parameter that we have varied is

the number of files to prefetch and we have varied this from 10 to 100. The

total number of files in our test file system is 1000 files for testing purposes.

EEVFS with the prefetching flag set is represented as PF in the figures and

NPF represents EEVFS without prefetching.

• Disk Idle Threshold. If disks are sitting idle for a certain period of time (i.e.,

Disk Idle Threshold), the disks are switched to the standby mode to conserve

energy.

Parameter Values
Data Size(MB) 1, 10, 25, 50
File Popularity Rate - The MU Value 1, 10, 100, 1000
Inter-arrival Delay(ms) 0, 350, 700, 1000
Number of Files to Prefetch 10, 40, 70, 100
Disk Idle Threshold (sec) 5

Table 6.2: System and Workload Parameters.

6.4.3 Metrics

To quantify the energy efficiency improvement and performance impacts of our

prefetching scheme, we used the following three metrics in the experimental evalua-

tion.

• Energy Savings (see Section 6.5.1). We compared the energy consumption

of the cluster storage system with the energy-efficient prefetching mechanism

against that of the same system without employing the prefetching mechanism.

• Number of Power State Transitions (see Section 6.5.2). The total num-

ber of power state transitions can closely reflect overhead incurred by switching
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the power state of the disks between the active and standby mode. We evalu-

ated the impacts of workload parameters on the overhead introduced by power

state transitions.

• Response Time (see Section 6.5.3). Our energy-efficient prefetching mech-

anism aims to improve energy efficiency of cluster storage systems while mini-

mizing performance penalties. We measured the performance penalties caused

by the prefetching mechanism in terms of the increase in response time.

6.5 Experimental Results

6.5.1 Energy Savings

From Figure 6.5.1 we discover that EEVFS with prefetching significantly im-

proves the energy efficiency of the disk system. Power measurements were collected

from the individual storage client nodes running the experiments and combined for

our results. Taking a look at Figure 6.5.1, which varies the data size used for the

experiment; we realize that larger data sizes produce larger energy efficiency gains.

If the data size is 1MB we produce an 11% energy efficiency gain and when the data

size is 50MB the energy savings produced is 15%. The other interesting thing to note

about the data size experiments is that the overall energy output of EEVFS with

PF and no PF significantly increases when the data size is 50MB. This is produced

because our default inter-arrival delay of 700 ms is too low and the queue for the

storage client nodes becomes quite large and the test runs longer than the original

trace time causing the overall energy output to increase. Even though the test ran

longer for the PF and no PF cases the energy efficiency gain produce by EEVFS

with PF was still the largest for 50 MB. For the data size experiments MU was fixed

at 1000, the number of files to prefetch was 70, and the inter-arrival delay is set at

700ms.
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Figure 6.5.1 shows the impact of popularity rate (i.e., the MU value) on the

energy efficiency of the cluster storage system. From this figure we realize that the

larger MU value produces a smaller energy efficiency gain. This is caused by the fact

that many files are requested in the trace and the probability that the data required

for the trace will be prefetched is smaller with larger values of MU. Using our default

prefetch size value of 70 files we are able to produce the same amount of energy savings

when MU is 100 or smaller. The reason for this similarity in energy consumption is

the fact that when MU is 100 or smaller EEVFS is able to prefetch all of the required

data and sleeps the disks at the beginning of the trace execution and is able to keep

the disks in the standby state for the entirety of the trace. For the MU experiments

the data size was fixed at 10 MB, the number of files to prefetch was 70, and the

inter-arrival delay is set at 700ms.

Figure 6.5.1 reveals the impact of the inter-arrival delay on energy efficiency.

The results plotted in Figure 6.5.1 indicate that we are able to produce larger energy

efficiency gains when the inter-arrival delay is increased. Intuitively this makes sense

because large inter-arrival delays produce lighter workloads. Light workloads gener-

ally produce more opportunities for the data disks to be placed into the standby state.

The interesting thing to note is that the overall energy efficiency actually seemed to

level off around the 700ms inter-arrival delay value. When the inter-arrival delay

value is increased to 1000ms we actually see a small decrease in energy efficiency.

This could likely be caused by the fact that we sleep a disk as a particular request

enters the storage client node, and if the requests are spaced further apart it will take

slightly longer for the disks to transition to the standby state. For the inter-arrival

experiments the data size was fixed at 10 MB, the number of files to prefetch was 70,

and MU is set to 1000.

Figure 6.5.1 evaluates the effect of the number of files to prefetch into a buffer

disk. In this experiment, the data size was fixed at 10 MB, the inter-arrival delay is
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700 ms, and MU is set to 1000. The results show that as the number of prefetched

files is increased, EEVFS produces larger energy savings. When the number of files

to prefetch is 10 (i.e., 1% of the total files in a storage node), our prefetching strategy

can only improve energy efficiency by 3%. This result is expected because larger

amounts of data prefetched increase the chance that EEVFS is able to serve a request

from the buffer disk. Once the number of files to be prefetched is increased to 40 and

above, the prefetching mechanism can provide significant energy savings due to the

fact that a vast majority of requests can be served by the buffer disk.

6.5.2 Power State Transitions

Figure 6.5.2 displays the total number of state transitions for the data size exper-

iment. For the data size experiments we notice that the number of state transitions

decreases as the data size is increased. This result confirms that EEVFS can place

the data disks into the standby state fewer times and for longer periods of time. This

is intuitive because increasing the data size causes each request to be served longer

and consecutive hits in the buffer disk produced large idle windows for the data disks.

Looking at Figure 6.5.2 it is interesting to note that no state transitions will pro-

duce no energy savings, so there is a balance between energy efficiency and the number

of state transitions. We aim to minimize the number of disk spin up operations while

being able to place the disks in the standby state for optimal energy savings. As

the inter-arrival delay is increased, it produces a similar pattern as compared to the

data size experiments. The number of state transitions decreases as the inter-arrival

delay is increased. Similarly, as the energy savings is increased the number of state

transitions is decreased due to the fact that larger inter-arrival delays produce lighter

loads for the data disks in the storage client node.

Figures 6.5.2 and 6.5.2 show that the number of state transitions produced by

varying MU and the number of files prefetched are very similar because they produce
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a situation where the data disks are transitioned to the standby state for the entire

trace. This occurs for small values of MU and for larger values of the number of

files to prefetch. The interesting thing to note is that when the number of prefetch

files is 10, this situation produces the largest amount of state transitions for all of

the tests, 447. This same case also produced the smallest energy savings with only

a 3% increase in energy efficiency. This small amount of energy savings may not be

worth the stress put on the hard drives from the large amount of state changes. The

idle threshold can be increased to prevent disks from transitioning frequently and

producing a small amount of energy savings.

6.5.3 Response Times

Now we analyze the performance penalties caused by the prefetching mechanism.

Figures 6.5.3 - 6.5.3 illustrate the increase in response time due to prefetching. The

results collected, concerning MU and the number of files to prefetch, represent two

special cases as indicated in the state transition results explanation. When the disks

are able to stay in the standby state the entire time there is virtually no response

time penalty. This is because the response time penalties are generally a product of

the state transitions. If the number of state transitions rises it also causes a response

time degradation. This is mainly due to the spin up operations, which average around

2 sec for the disks used in our experiments.

Figsures 6.5.3 and 6.5.3 show the effect of data size and inter-arrival delay on

response time. From these two figures we can deduce that there is a linear relationship

between the response time of the cluster storage system with prefetching and without

prefetching. This is promising due to the fact that it shows that there is a tolerable

response time penalty for producing energy efficiency gains.

The response times for the data size of 50 MB were omitted because of the fact

that they were much larger than the other values because of the large amount of
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queuing that took place on the storage server node. As the data size is increased

we produce smaller penalties in the response time degradation. For the data size of

1MB we have a 121% increase in response time, 120 ms to 265 ms, but for the largest

data size we produced only a 4% increase in response time degradation. We believe

that the number of state transitions is closely related to the response time penalty

and it is interesting to compare the results in Figures 6.5.3 - 6.5.3 with Figures 6.5.2

- 6.5.2. The inter-arrival delay response time pattern closely follows the pattern of

the data-size, which is similar to the pattern in the results in the previous sections.

As the inter-arrival delay is increased the response time decreases for the prefetching

and non-prefetching versions of EEVFS. The response time degradation is 31% for

the smallest inter-arrival delay value and 16% for the largest inter-arrival delay value.

There seems to be a response time anomaly produced when the inter-arrival delay

is 700 ms because the response time degradation is 37% at this point representing

the largest response time degradation for the inter-arrival delay experiments. This

performance degradation could be caused by the fact that the storage nodes attempt

to predict idle window periods that are as large as possible, but aren’t guaranteed to

be the optimal solution. This might have produced a situation where the wake up

transitions may have been skewed towards a disk that takes a longer time to transition

from the standby to active/idle state.

6.5.4 Berkeley Web Trace Energy Consumption

The final figure, 6.15, we have produced presents a trace that was taken from

the Berkeley file-system trace collection project [7]. The particular trace we used

was a section of the web trace collection. For this experiment we set the data size

to 10MB and kept the number of prefetch files to 70. The file access patterns were

taken directly from the web trace collection but we modified the data size and the

inter-arrival delay for requests to prevent a large amount of queuing on the storage

94



server. Based on the results In Fig. 6 we were able to produce a 17% energy efficiency

improvement when prefetching was enabled in EEVFS. This represents a number that

is near the maximum that we expect our current test bed to produce using EEVFS.

After investigating the Berkeley web trace, it was discovered that we were able to

place all of the data disks in the standby for the entirety of the Berkeley web trace.

The web trace appeared to be skewed towards a smaller subset of data, but we were

unable to find out how many files were contained in their file system.

6.6 Conclusion & Future Work

In this paper we introduced EEVFS - an energy-efficient virtual file system.

Based on our experimental results we conclude that EEVFS can boost the energy

efficiency of storage systems by more than 17%. We believe this number will increase

as more disks are added to each EEVFS storage nodes. Although we were unable

to test this theory using our existing testbed, we tested this theory using models

and simulation. We evaluated energy efficiency and performance as functions of data

size of files, popularity rate (i.e., the MU value), inter-arrival delay, and the number

of files to prefetch. The metrics used in each experiment are energy consumption,

the number of power state transitions, and response time. Our experimental results

confirm that EEVFS is conducive to saving energy with a tolerable impact to the

response time of disk requests.

For the future work we intend to develop EEVFS to be a production grade piece

of software. We have currently investigated two approaches to improving EEVFS. The

first approach involves extending PVFS to handle our energy management strategies.

The second method is to extend the source code of EEVFS to make it robust. We

also plan to investigate striping techniques within EEVFS that can help improve

the performance of EEVFS, while still maintaining energy savings. EEVFS is a
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distributed file system and we intend to investigate the performance of EEVFS in a

large-scale distributed environment.
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Figure 6.1: Architecture of EEVFS. The storage server manages metadata (e.g., data
location and file size). Each storage node manages multiple disks, which are separated
into two groups: buffer disks and data disks.Client nodes can directly access storage
servers through the network interconnect.
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file requests; Step 6: storage nodes return data to applications running on compute
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Figure 6.5: Inter-arrival Delay Varied
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Figure 6.6: # of Prefetched Files Varied
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Figure 6.8: MU Varied
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Figure 6.9: Inter-arrival Delay Varied
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Figure 6.10: # of Prefetched Files Varied
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Figure 6.11: Data Size Varied
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Figure 6.12: MU Varied
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Figure 6.13: Inter-arrival Delay Varied

109



10 20 30 40 50 60 70 80 90 100
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

R
es

po
ns

e 
T

im
e 

(s
)

# of files to prefetch

 

 
PF
NPF

Figure 6.14: # of Prefetched Files Varied
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Chapter 7

Parallel Striping Groups for Energy Efficiency

This chapter leverages the work completed in Section 6 and particularly the use

of the Energy-Efficient Virtual File system (EEVFS). To improve the performance

of EEVFS we introduce in this chapter the novel idea of parallel striping groups.

We break storage nodes into groups and stripe files across the groups. This allows

us to control the aggregated bandwidth of each group of storage nodes which can

be matched to the bottleneck of the system. Each group of disks also has buffer

disks which can achieve energy savings and the striping groups help improve the

performance of the storage system.

7.1 Parallel Striping Groups

Our first implementation of the EEVFS prototype placed a single file on a single

disk and didn’t support striping. Striping data across multiple disks is an important

idea that has helped to improve the performance of parallel disk systems. This allows

us to improve the performance of our EEVFS, while at the same time maintain

comparable energy efficiency. It is important to balance the performance and energy

efficiency of the file system because one usually comes at the expense of the other.

Figure 6.1 provides the high level architecture of the EEVFS system and details can

be found in Chapter 6

Figure 7.1 demonstrates the first level of our parallel striping architecture. Disks

are grouped into a striping group, so that a file is striped across the data disks in

one striping group. We have chosen to implement these striping groups for two main

reasons. First striping the data across multiple disks improves the performance of the
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Storage Node 3

Buffer Disk Data Disk 5 Data Disk 6

Storage Node 4
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Figure 7.1: Parallel Striping Groups

disk system. Second we split the disks into groups to try to tune the performance of

the striping group to the network performance of the particular install. One could

stripe a file across all of the data disks in the disk system, but you may find that

you encounter a bottleneck in your disk system interconnect. The striping groups are

intended to be matched to a particular disk systems interconnect which would allow

multiple striping groups to respond to requests at the same time.

Inside of each storage node we have multiple disks and they are broken into two

different groups, data disks and buffer disks as shown in Figure 7.2. Data disks are

responsible for storing the files and their associated data. They will always have a

copy of a file and this copy will only disappear if the user wants to delete the file.

When a file is created on a node, EEVFS places data on the data disks in a round

robin fashion. This is intended to load balance the load of the data disks. The second

type of disk on an EEVFS node is a buffer disk. The buffer disk is used to store a

copy of popular data from the data disks to help improve the energy efficiency of the
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Figure 7.2: Data Striping Within a Group

disk system. If a buffer disk has a copy of a particular file and a request is made for

the file, the buffer disk will serve the request. The corresponding data disk will not

see the request, allowing the data disk to sit idle for a longer period of time.

If the data disk is idle for a certain period of time, the idle-threshold, then

the data disk is transitioned into the sleep state. One has to carefully select the

idle-threshold, if it is too low than the disks will spin-down too frequently causing

performance degradation and increased energy consumption. If the idle-threshold is

too high than the data disks will never transition to the sleep state and EEVFS will

be unable to produce any energy savings.

7.2 EEVFS

To support parallel striping groups and our energy efficiency strategies we have

created an Energy Aware Virtual File System (EEVFS). We believe a virtual file

system implementation is important for several reasons. In the course of our research

we have realized that it is not practical to implement our strategies at a disk block

level because it is hard to track the popularity of blocks when they could hold different

113



data depending on how they are managed by higher levels of the operating system.

This led us to start to investigate file systems and it was quickly realized that it may

not be so feasible to develop a new file system from scratch that will work with the

Linux kernel. After investigating virtual files systems, such as the Parallel Virtual

File System (PVFS), we decided that a prototype virtual file system would be the

most effective method to implement our energy efficiency strategies.

A virtual file system has several properties that led us to choose this method of

implementation. First, the virtual file system code is independent of the kernel and

this will allow us to simplify some aspects of our implementation and also allows the

code to be more portable. Another major benefit of using a virtual-file system is that

it will be independent of the underlying file system that is used on the Linux system.

A user can determine the Linux file system type to use for the disk system and this

allows more flexibility for implementers or our strategy.

The EEVFS system is split up into two groups of nodes, server nodes and storage

nodes. The server node is in charge of presenting a user with a single point to

access the data in all of the EEVFS storage nodes. The server node handles are

operations associated with the data on the storage nodes. It is the single metadata

manager for the files in the virtual file system, and its current form represents a

single point of failure. We have recognized this shortcoming and plan to distribute

the metadata across several nodes to improve future generations of the EEVFS. Since

we are currently using a trace driven method to test the performance and energy

efficiency of parallel striping groups in the EEVFS, the server node also plays the

trace and sends requests to the EEVFS server process.

The server node is in charge of placing data among all of the storage nodes that

are connected to the server. The current incarnation of the EEVFS server attempts

to derive a popularity value for files based on information collected from traces. After

the popularity value is created the EEVFS server than begins sending out file creation

114



requests to the storage nodes. The server starts a thread for each storage node and

places a file creation request into n threads, where n is the stripe size being used in

EEVFS. EEVFS will attempt to load balance the files by placing the most popular

file on the first striping group and then placing the second most popular data on the

second striping group.

The storage nodes in EEVFS are in charge of managing the data disks that are

attached to the storage node. The storage client node manages the energy states of

the disks and attempts to place idle disks in the standby period to conserve energy.

EEVFS client nodes contain an idle threshold value that is compared against the idle

time of each disk, if the idle time becomes larger than the idle threshold than the

storage node places the disk in the standby state. Placing a disk in the standby state

is time consuming and causes energy to be consumed once the disk must be woken

up. The idle threshold must be chosen carefully because an aggressive idle threshold

will transition disks too frequently causing a significant performance degradation and

also causing the disk system to consume more energy. The storage node also attempts

to load balance file creation requests among the disks contained in the storage node.

Since the EEVFS server sends out file creation requests in order of popularity we can

guarantee that the first file creation request seen on an EEVFS storage node is as

popular as or more popular than the second file creation request. The storage node

than places the first file creation request on the first disk and second file creation

on the second disk and so on. This allows the storage node to load balance the files

among the data disks on the storage node.

All of the storage nodes also contain a buffer disk which is used to place a copy of

popular data spread among the storage disks in a particular storage node. The buffer

disk in our particular example is the same disk running the operating system and it

also happens to have space available. If space is not available it may be worthwhile

to add an extra disk to be used as the buffer disk, but the energy cost must be offset
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by the number of data disks you can place into the standby state if they are not

being used. Our test bed allows us to only use 3 data disks in each storage node,

so the buffer disk must also run the operating system for our implementation to be

practical. If the server node indicates that the storage node should prefetch popular

data then the storage node also places data on the buffer disk. This is done in order

to provide the data disks with the illusion of longer idle periods, if a data request can

be served by a buffer disk than the data disk remains idle. If the buffer disk was not

present than the data disk idle counter would be reset. The longer the idle period

that can be achieved provides the largest energy savings gains.

The storage node is in charge of the data placement and management of the

disks and shields the storage server from these details. The storage server only needs

to know which nodes contain which data, it is not concerned with the states of the

disks in the disk system or which disk holds a file in a storage node.

7.3 Experimental Results

Parameter Storage Server Node Storage Node
CPU Type and Clock Speed Celeron 2.2 GHz Celeron 2.2 GHz
Memory (MB) 2000 2000
Network Interconnect (Mb/s) 1000 1000
Disk Type SATA SATA
Disk Capacity 160 Gbyes 480 Gbyes
Disk Bandwidth 126 MB/s 126 MB/s

Table 7.1: Configuration of the Testbed Nodes

The experimental results were collected on 6 PC’s and their performance charac-

teristics are outlined in Table 7.1. The PC’s were all connected to the same Gigabit

switch and with one node serving as the EEVFS storage server and the other 5 nodes

are EEVFS storage nodes. The experimental results focus on varying four key param-

eters: the striping size of the data, the inter-arrival delay of the requests, the number

of files to prefetch, and the MU value of the Poisson distribution used to generate
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Figure 7.3: Energy Efficiency vs. Data Size

our synthetic traces. In addition we have also included a comparison against our

EEVFS without striping groups. Response time graphs are also included to compare

the effect that prefetching has on the performance of the disk system. Finally we

present results of our system when we use a real-world trace based on the Berkeley

web trace collection.

7.3.1 Impact of Data Size

The results in figure 7.3 allow us to make some very interesting observations.

Using previous modeling and simulation techniques, we were able to deduce that as

the data size increases it follows that our prefetching techniques will produce larger

energy efficiency gains. This is caused by the fact that if the data size is larger it

means that any particular disk will have to spend extra time reading/writing the file.

If it takes longer to process requests for a file it follows that keeping a copy of data

in the buffer disk will allow the data disk to sleep for longer periods of time. We

are able to apply this intuitive explanation to the 1 MB, 10 MB, and 50 MB data
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size results, which produce large energy efficiency gains as the data size is increased.

The interesting example takes place when we used 25 MB for the data size. In this

case our prefetching strategy actually causes the system to consume more energy as

opposed to not prefetching data. At first we thought this was an anomaly and we

re-ran our experiment to see if the results would change. We were surprised to realize

that we consistently saw that in the 25 MB experiment our prefetching approach was

expending more energy as compared to the non-prefetching approach.

We took a close look at our output results and realized that the experiment

was actually running quite longer for the 25 MB experiment. This was due to the

increased transition periods that were being caused by parameters in the EEVFS.

The idle threshold of 5 seconds was too aggressive for this particular set of exper-

imental parameters and was causing the requests to get delayed too often by spin

up operations. This is a double negative for our energy consumption total because

the longer the experiment runs the larger the energy consumption total is and also

because spin up operations consume a significant amount of energy. The 5 second

threshold worked well for the rest of our experiments and we decided to keep this

number for the rest of our experiments. If the threshold is increased we could see

smaller energy efficiency gains, but it is always the safer choice to increase the idle

threshold although you may not see any energy efficiency gains.

7.3.2 Impact of the Number of Files Prefetched

The second parameter that we decided to vary is the number of files to prefetch

and these results are presented in 7.4. Again we used previous models and simulations

and were expecting the energy efficiency to increase as the number of files prefetched

was increased. If you increase the number of files that are prefetched you also increase

the probability that the data disks will be placed into the standby state. This is caused

by the fact that the buffer disk will be more likely to hold a file for a data request if
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Figure 7.4: Energy Efficiency vs. # of Files Prefetched

it has a larger amount of files. Our experiments confirmed our hypothesis because as

the number of prefetched files was increased the energy efficiency of our disk system

was increased.

The 50 file prefetch size combined with our idle threshold of 5s caused the

prefetching approach to consume slightly more energy. Once the prefetch size was

increased beyond this number we actually saw a fairly consistent amount of energy

that was consumed. This was caused because our buffer disk was able to cache a

significant amount of files that were accessed in trace, causing the data disks to sleep

for near the entire trace. There are slight variations among the larger prefetch sizes

but this is caused by the variation in the traces that were generated.

7.3.3 Impact of the Inter-Arrival Delay

Figure 7.5 presents our simulation results collected from varying the inter-arrival

delay of requests from 0ms to 1000ms. This test was performed to demonstrate how

our system behaves as the workload of the system changes with 0ms representing a
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Figure 7.5: Energy Efficiency vs. Inter-Arrival Delay

heavy workload and 1000ms representing a light workload. Again using some results

collected from models and simulation we were able to predict that as the workload

was lightened the energy efficiency of our system would increase. This is caused

because a light load produces more opportunities for transitioning to the standby

state and also produces safer opportunities for transitioning to the standby state.

For the purposes of our experiments a safe transition is one that allows the disk to

stay in the standby state long after it is placed in the standby state. This is opposed

to a transition to the standby state that is immediately followed by a data request

which causes the disk to be immediately transitioned back to the active state. As

predicted the energy efficiency of the disk system increases as the inter-arrival delay

is increased. When the inter-arrival delay is 0 seconds the energy efficiency of the disk

system is actually decreased. The non-energy aware approach has no opportunities

to transition the disks into the standby state which causes the disks to be busy the

entire trace. In the case of prefetching the data disks have short idle windows and

our 5 second idle-window proves to be too small for the 0ms inter-arrival delay.
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Figure 7.6: Energy Efficiency vs. MU

7.3.4 Impact of MU

Figure 7.6 varies the value MU, which is a parameter for the Poisson distribution

used to generate the synthetic traces. Specifically MU is used to determine which files

are accessed with a low value of MU skewing many of the requests in the trace towards

a small group of files. If a small value of MU is used one expects the prefetching scheme

to produce significant energy efficiency gains because it will cause most of the trace

to be serviced from a buffer disk. Our experimental results confirm this trend with

the MU value of 5 producing the largest energy efficiency gain and the MU value of

5000 producing the smallest energy efficiency gain.

7.3.5 Striping vs. Non-Striping Comparison

Parameter Striping No Striping
Energy Consumption (J) 2088113 2100243
Response Time (S) 2.78 13.87

Table 7.2: Results of Striping vs. No Striping
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Figure 7.7: Berkely Web Trace Results

Table 7.2 shows that striping can significantly improve the response time of a

request and also the energy efficiency of the disk system. For these experiments

the file size was set at 250 MB, the inter-arrival delays was set at 700 ms, and the

amount of files to prefetch was set to 70 out of 5000 files. As expected the striping

groups significantly outperformed the non-striping approach. Using striping we are

able to break a file into 5 separate chunks of data that are 50 MB as opposed to

trying to read 250 MB from each node. In our experiments we had one storage

server which would read the data simultaneously from the storage nodes. This could

be improved by allowing multiple readers to connect to multiple writes to further

improve the bandwidth utilization. The results are expected because striping has

been extensively used to improve the performance of disk systems, we have added

buffer disks to improve the energy efficiency and balance the performance and energy

efficiency of the storage system.
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7.3.6 Berkely Web Trace Results

To improve the validity of our experimental results we decided to conduct ex-

periments based on the Berkeley Web Trace and the results are presented in 7.7. We

extracted all of the read operations from the trace and realized that the workload

was too light and that our energy-efficient strategy was guaranteed to produce the

largest energy efficiency gains. To make the workload heavier we took the file access

pattern from the Berkeley web trace and created two file accesses every second. This

increased the workload of the trace to help demonstrate that our strategies are able to

produce energy savings under heavier workloads. The first time we ran the trace we

realized that our prefetching strategy was causing a decrease in the energy efficiency.

There were two main factors causing this problem, our prefetch size was set to 20

files and the break-even time of 5 seconds was too aggressive. We decided to increase

the prefetch size up to 50 files and also to change the break-even time to 10 seconds,

which is a more conservative value. Once we re-ran our test we produced Figure 7.7,

which shows that our strategy is able to produce a 4.4% energy efficiency increase.

7.3.7 Chapter Conclusion

This chapter leveraged EEVFS and implemented the idea of parallel striping

groups for energy efficiency. This novel idea helps improve the energy efficiency of

the storage system, while maintaining performance. Parallel striping groups were

designed with the intent to match the performance of the nearest bottleneck focusing

on the efficient use of resources. In addition the parallel striping groups leverage the

concept of buffer data disks that have been extensively studied in this dissertation.

This requires one to coordinate the placement and striping of files across many storage

nodes and this is aided by the groundwork laid with EEVFS. Parallel striping groups

are an extension to EEVFS that helps to improve the performance of EEVFS while

maintaining energy savings. In this chapter we tested EEVFS with parallel striping
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groups against striping with no energy efficiency and were able to produce energy

savings with a minimal impact to the response times of the storage system.

For future work we need to extend EEVFS to be a production grade system.

Currently we have a limited number of storage nodes and parallel striping groups need

to be implemented in a large scale storage system to test EEVFS. This work needs to

be extended by allowing multiple EEVFS storage nodes connect to multiple clients

to move data as quickly as possible. The EEVFS storage server node is currently a

bottleneck of the system and we need to update the architecture, so that the storage

server node can connect storage clients directly to storage nodes.
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Chapter 8

Conclusions and Future Work

In this dissertation, we have investigated techniques to conserve energy in large

scale storage systems. This work was first developed using mathematical models,

which were then used to develop simulators to test many parameters. Using our

simulation results we determined that prefetching data can help conserve a significant

amount of energy in disk systems. Based on this conclusion we investigated a means

to implement our strategies in a real world system. To implement our ideas some of

our algorithms had to be modified for the implementation phase of the work. Our

implementation required a means of tracking file access patterns so we developed

an Energy Efficient Virtual File System. After this work was completed we used our

virtual file system to collect extensive experimental results. In the course of developing

EEVFS we also developed a novel striping strategy that is conducive to increased

energy efficiency and performance. This chapter is organized as follows, section 8.1

highlight the main contributions of the research presented in this dissertation. Section

8.2, concentrates on future research directions based on the work contained in this

dissertation.

8.1 Main Contributions

This dissertation introduced four main contributions that aim to achieve energy

efficient storage system while producing minimal response time degradations. The

first contribution is the introduction of a model and simulation technique that allowed

us to investigate how the data size, file access patterns, and disk parameters impact

techniques to conserve energy. To conserve energy disks must be placed in the standby
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state which can be costly both in term of time and energy and this penalty must be

offset with a long period of sleep time.

After we conducted extensive simulation results using the models that we have

developed we began investigating a method to improve the validity of our results.

Modeling and simulation of disk drives is a complex task and can be aided with the

use of an existing validated disk simulation, DiskSim. DiskSim is a useful piece of

software, but it lacked power models and state transitions that were required for our

energy saving techniques. To remedy this deficiency I wrote some extensions to the

DiskSim simulator that were able to support our energy efficient strategies. This

helped improve our simulation results and we decided to work on an implementation

of our strategies.

The third main contribution is the use of an Energy Efficient Virtual File Sys-

tem (EEVFS), which manages the location of files and the states of multiple disks

connected with a network interconnect. Using the modeling and simulation that was

conducted we decided that large file systems and predictable access patters are con-

ducive to energy savings. Prime examples that could benefit from our work include

web servers that are primarily used for reads and access patterns can be determined.

A service like YouTube fits this profile and many other web servers have the properties

that can promote the use of our energy savings principles.

The fourth main contribution of this dissertation is the concept of parallel striping

groups for energy efficiency. This work leverages the backbone of EEVFS, but adds

striping to help improve the performance of EEVFS. Striping groups can be matched

to performance bottlenecks which is physically energy efficient and the buffer disks

used also help to lower the energy efficiency through the use of data placement.
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8.2 Future Work

All of the techniques mentioned in this dissertation leverage prefetching to im-

prove the energy efficiency of disk systems. The current work focuses on static

prefetching of data and all of the techniques in this dissertation could be improved

with dynamic prefetching techniques. This is a difficult problem due to the fact that

prefetching is a costly operation that can negatively impact the energy efficiency and

the response time of storage systems.

Another area to improve the work in this dissertation is the fact that our current

implementation of EEVFS is a prototype and work must be completed to improve the

prototype to be production grade. There are two main methods to achieve this goal,

develop our prototype, or leverage an existing virtual file system, such as PVFS (Par-

allel Virtual File System). I believe using a well developed virtual file system is the

only method available to a small research group, so I have begun investigating PVFS.

During the preliminary investigation of PVFS it was realized that the open source

property of PVFS would allow us to make changes to support the ideas presented in

this dissertation.
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Appendix A

DiskSim Source Code Modifications

// This code i s was wr i t t en by Adam Manzanares , Auburn Un iver s i ty based on the code from Sriam Sankar

#inc lude <s t d i o . h>
#inc lude <s t d l i b . h>
#inc lude <math . h>
#inc lude <a s s e r t . h>
#inc lude ” d i s k s im g l oba l . h”
#inc lude ” d i sk s im ios im . h”
#inc lude ” di sks im power . h”
#inc lude ” d i s k s im s t a t . h”
#inc lude ” d i s k s im d i s k . h”

#inc lude ” in s t . h”

void in i t d i s k powe r mode l ( )
{

i n t i ;
d i sk ∗ cu r rd i s k ;

i n t numdisks=disksim−>d i s k in f o−>numdisks ;

f o r ( i =0; i<numdisks ; i++)
{

cu r rd i s k = disksim−>d i s k in f o−>d i sk s [ i ] ;
cu r rd i sk−>s t a t . act iveEnergy =0.0;
cu r rd i sk−>s t a t . activeTime =0.0;

cu r rd i sk−>s t a t . id l eEnergy =0.0;
cu r rd i sk−>s t a t . idleTime =0.0;
cu r rd i sk−>s t a t . sleepTime =0.0;
cu r rd i sk−>s t a t . s l eepEnergy =0.0;
cu r rd i sk−>s t a t . transEnergy =0.0;
cu r rd i sk−>i d l e t ime =0.0;
cu r rd i sk−>l a s t a c c e s s =0.0;
cu r rd i sk−>s t a t . transTime =0.0;
cu r rd i sk−>s t a tu s=DISK IDLE ;

}
}

void act iveEnergyStat ( d i sk ∗ cu r rd i sk , double timeVal )
{

cu r rd i sk−>s t a t . act iveEnergy+=(timeVal /1000 . 0)∗ ( cu r rd i sk−>model−>dm power active ) ;
cu r rd i sk−>s t a t . activeTime+=(timeVal /1 000 . 0 ) ;

}

// Mark beginn ing and end of each i d l e per i od
void id l eEnergyS tat ( d i sk ∗ cu r rd i sk , double timeVal , double id l eStartTime )
{

cu r rd i sk−>s t a t . idleTime+= ( timeVal /1000 . 0 ) ;
cu r rd i sk−>s t a t . id l eStartTime=id leStartTime ;

}

// I d l e Timer Check , Add another checkpoint and update a l l d i s k s i d l e time
// Current ly checked every 500ms
void t imer exp i r ed ( event ∗ curr )
{

i f ( disksim−>stop dpm check==FALSE)
{

t imer even t∗ timecheck ;

timecheck=c a l l o c (1 , s i z e o f ( t imer even t ) ) ;
timecheck−>time=curr−>time+500;
timecheck−>type=TIMER EXPIRED;

addtointq ( ( event ∗) timecheck ) ;

d i s k upda t e i d l e ( curr−>time ) ;
}
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}

void d i s k upda t e i d l e ( double time )
{

i n t i ;
d i sk ∗ cu r rd i s k ;

i n t numdisks=disksim−>d i s k in f o−>numdisks ;

f o r ( i =0; i<numdisks ; i++)
{

cu r rd i s k = disksim−>d i s k in f o−>d i sk s [ i ] ;
cu r rd i sk−>i d l e t ime=time−cu r rd i sk−>l a s t a c c e s s ;

swi tch ( cu r rd i sk−>s ta t u s )
{

case DISK IDLE :
{
i f ( cu r rd i sk−>i d l e t ime >5000) // I d l e DPM Threshold
{

event ∗ spin down ;
spin down=c a l l o c (1 , s i z e o f ( event ) ) ;
spin down−>time=time+cur rd i sk−>model−>dm spin down time ;
spin down−>type=SPIN DOWN COMP;
spin down−>temp=i ;

addtointq ( spin down ) ;

cu r rd i sk−>s ta tu s =DISK SPIN DOWN;
cu r rd i sk−>sp in down complete=spin down−>time ;
cu r rd i sk−>s t a t . transEnergy+=cur rd i sk−>model−>dm spin down penalty ;
cu r rd i sk−>s t a t . transTime+=cur rd i sk−>model−>dm spin down time ;
cu r rd i sk−>s t a t . s p i n down tr an s i t i on s++;

}

break ;
}
case DISK SPIN DOWN:
{
// Spinning down do noth ing
break ;
}
case DISK SPIN UP :
{
// Spinning up do noth ing
break ;
}
case DISK STANDBY:
{
// Do Nothing
break ;
}
de f au l t :
{

p r i n t f (”Unknown d i sk s t a t e reached in d i s k upda t e i d l e \n ” ) ;
break ;
}

}
}

}

double wakeup d i sk s l e ep ( double time , d i sk∗ cu r r d i s k )
{

event ∗ sp in up ;
d i sk∗ id ;
i n t d i s k i d =0;

sp in up=c a l l o c (1 , s i z e o f ( event ) ) ;
spin up−>time=time+cur rd i sk−>model−>dm spin up time ;
spin up−>type=SPIN UP COMP;

whi l e ( cu r rd i s k !=disksim−>d i sk in fo−>d i s k s [ d i s k i d ] )
{

d i s k i d++;
}

spin up−>temp=d i s k i d ;

addtointq ( sp in up ) ;

cu r rd i sk−>s t a tu s =DISK SPIN UP ;
cu r rd i sk−>sp in up complete=spin up−>time ;
cu r rd i sk−>s t a t . sleepTime+=time−cu r rd i sk−>sp in down complete ;
cu r rd i sk−>s t a t . transEnergy+=cur rd i sk−>model−>dm spin up penal ty ;
cu r rd i sk−>s t a t . s p i n up t r a n s i t i o n s++;
cu r rd i sk−>s t a t . transTime+=cur rd i sk−>model−>dm spin up time ;
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r e tu rn cu r rd i sk−>model−>dm spin up time ;
}

double wakeup disk spndwn ( double time , d i sk∗ cu r rd i s k )
{

event ∗ sp in up ;
d i sk∗ id ;
i n t d i s k i d =0;

sp in up=c a l l o c (1 , s i z e o f ( event ) ) ;
spin up−>time=cur rd i sk−>sp in down complete+cur rd i sk−>model−>dm spin up time ;
spin up−>type=SPIN UP COMP;

whi l e ( cu r rd i s k !=disksim−>d i sk in fo−>d i s k s [ d i s k i d ] )
{

d i s k i d++;
}

spin up−>temp=d i s k i d ;

addtointq ( sp in up ) ;

cu r rd i sk−>s t a tu s =DISK SPIN UP ;
cu r rd i sk−>sp in up complete=spin up−>time ;
cu r rd i sk−>s t a t . transEnergy+=cur rd i sk−>model−>dm spin up penal ty ;
cu r rd i sk−>s t a t . s p i n up t r a n s i t i o n s++;
cu r rd i sk−>s t a t . transTime+=cur rd i sk−>model−>dm spin up time ;

r e tu rn spin up−>time−time ;
}

double sp in up de l ay ( double time , d i sk∗ cu r r d i sk )
{

r e tu rn cu r rd i sk−>sp in up complete−time ;
}
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