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Thesis Abstract
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An overview of some past and modern applications of system identification techniques

to aircraft is presented in this thesis, which traces progress and accomplishments in the

field of system identification - especially application to aircraft. The thesis also includes

the definition, meaning, importance, applications and necessity of the same. The funda-

mental parts of system identification, including model postulation, experimental design,

data analysis, parameter estimation, and model validation are explained. The filter error

technique of data analysis is detailed, for both linear and nonlinear systems. Techniques to

predict aircraft stability and control derivatives theoretically and analytically are explained

in some details. Two successfully investigated experiments of system identification using

flight data with results and comparison of the estimated parameters with published data

are demonstrated with details. The thesis is completed by some remarks made on possible

future advancement and concluding notes.
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Chapter 1

Introduction

The thesis describes the system identification technique and its applications related

only to aircraft, but the system identification has been successfully applied to many diverse

fields. The system identification is basically related to modeling from experimental data and

can be applied to many different fields such as: economics, biology, materials, engineering,

automobiles, medicine and aerospace engineering.

1.1 System Identification - A Definition

System identification is a discipline of science which attempts to answer the inverse

problem. It tries to characterize a system in a suitable form based on observations of

the system’s behavior. The process of system identification involves certain fundamental

assumptions [1]:

1. The true state of the dynamic system is deterministic.

2. Physical principles underlying the dynamic process can be modeled.

3. It is possible to carry out specific experiments.

4. Measurements of system inputs and outputs are available.

In the year 1962, Zadeh [2] gave a technical definition for system identification as: “System

identification is the determination, on the basis of observation of input and output, of a
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system within a specified class of systems to which the system under test is equivalent.”

Several important features of system identification are highlighted by this description: the

necessity of obtaining input and output data, model characterization and selecting the best

model from the selected class. Iliff [3] provided a philosophical definition in contrast with

the above technical definition as: “Given the answer, what are the questions, that is, look

at the results and try to figure out what situation caused those results.” This definition

points out the prime approach behind the model building process, namely that system

identification is an inverse problem.

1.1.1 Significance and Necessity of System Identification

The system identification tries to determine the best parameters for an assumed math-

ematical model, which is made up of differential equations. The unknown parameters are

determined indirectly from measured data. Considering the aircraft system identification

problem, assume Φ is an unknown parameter vector, which contains unknown stability and

control parameters of the dynamics equations, which are to be estimated. As a first part

of system identification, a parameter estimation technique is used to estimate the unknown

parameter vector Φ, such that the system response y fits the measured system response

z adequately. In aircraft system identification the measured system response is typically

flight test data. After the parameter estimation is performed, a second and more important

part, known as model validation needs to follow. It evaluates model reliability. If it seems

that the identified model does not agree with the specific system standards and also the
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statistical properties of the estimated parameters do not agree with the standards, then the

postulated model structure needs to be changed. Generally both steps must be repeated

again and again until the model is validated.

If the experimental model is already validated, then only the first part, parameter

estimation, is dealt with. If the model structure is not known and adequate information

about the system structure is not available, the system identification technique is dealt with

as a whole, which includes both parameter estimation and model validation.

After mentioning the definition, meaning and significance of system identification and

parameter estimation, the next question is, what is the necessity of system identification.

Why and where is system identification needed? This question must be answered due to

the two following examples of questions that have been raised about the utility of system

identification.

1. During one of the early American Institute of Aeronautics and Astronautics (AIAA)

conferences, someone raised a question: “When the aircraft is past the design and pro-

duction stage, and already flying, why and where do you need system identification?”[4]

2. An anonymous paper reviewers comment: “After perhaps 30 years of journal articles

and conferences on system identification, hardly any results have been of engineering

utility. Or if they are in use, the fact is not widely published.”[4]

In flight vehicle development, system identification is a necessary step because it leads to

adequately accurate and validated mathematical models of flight vehicles, which are required

to [1],
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1. understand the cause-effect relationship that underlines a physical phenomenon,

2. investigate system performance and characteristics,

3. verify wind-tunnel and analytical predictions,

4. develop high-fidelity aerodynamic databases for flight simulators meeting FAA fidelity

requirements,

5. support flight envelope expansion during prototype testing,

6. derive high-fidelity and high-bandwidth models for in-flight simulators,

7. design flight control laws including stability augmentation systems,

8. reconstruct the flight path trajectory, including wind estimation and incidence anal-

ysis,

9. perform fault-diagnosis and adaptive control or reconfiguration, and

10. analyze handling qualities specification compliance.

Due to the advantages and the uses given above the system identification is made an essential

part of aerospace system design and development.

1.1.2 Objectives of Research

The aim of this thesis and research work, is to contribute to the field of system iden-

tification of aircraft which has advanced over the recent decades, concentrating specifically

4



on nonlinear systems and time domain methodologies. Efficient and effective system iden-

tification of aircraft is only possible if the applied approach is well coordinated and follows

specific research guidelines. The thesis uses the filter error approach for all three examples

and tries to accommodate full details of such an efficient approach, summarizing the gen-

eral important concepts, techniques, computational procedures and three selected examples,

which were investigated based on the method.

1.2 Problem Description

The objective of system identification is to estimate the values of some unknown pa-

rameters in the system equations, which best represent the actual aircraft response, given a

set of flight time histories of an aircraft’s response variables. Here, the unknown parameters

are stability and control parameters.

The typical mathematical approach to this problem is to minimize the difference be-

tween the flight response and the response computed from the system equations. This

difference can be defined for each response variable as the integral of the error squared.

Then the signal errors can be multiplied by weighting factors and summed to obtain the

response error which defines an integral squared error criterion.

A mathematically more precise formulation can be made in probabilistic terms. A

probability that the estimated aircraft response time histories take on the values actually

observed can be defined for each possible estimate of unknown parameters. These parameter

5



estimates should be chosen so that this probability is maximized. This is known as a

maximum likelihood formulation of the problem.

To describe the maximum likelihood estimator mathematically, it is necessary to define

the equations of motion for the aircraft system. The following steps should be followed.

1. Derive the dynamical equations of motion.

2. Predict the unknown stability and control parameters.

3. Define the control inputs.

4. Express integral squared error criterion (to find a vector of unknowns), which mini-

mizes the cost function (performance index) J.

5. Estimate the state error covariance matrix to construct the likelihood function.

6. Minimize the cost function. The modified Newton-Raphson method seems most suit-

able for aircraft derivative determination, both in terms of computer time and con-

vergence properties.

7. Include prior information. Information from wind tunnel tests, previous real-time

flight tests and simulated flight test results are often available with the values of

some of the aircraft derivatives. It may be desirable to include this information in

the algorithm. The use of this information is particularly important when there is a

linear dependence between the response and the unknown parameters.

6



1.3 Progress of Aircraft System identification

A brief survey of the various contributions to the system identification field is presented

in this section, starting with applications in many fields. Applications to aircraft will follow.

Finally, the most modern techniques are briefed.

1.3.1 System Identification in General

The evolution from older system identification methods to statistically more accurate

approaches has been gradual. References can be found going back to the 18th century,

when Gauss [5] and Bernoulli [6] approached the system identification problem. The oldest

reference was found in the year 1777, when Bernoulli arrived at a solution by differentiating

the likelihood function [6]. Bernoulli used the concepts of maximum likelihood and least-

squares solution, though he did not introduce these terms. In the year 1809, Gauss [5]

used the maximum likelihood principle. In the reference mentioned, he discussed the least-

squares method for orbit determination of the earth from astronomical measurements.

Following the fundamental methods of Bernoulli and Gauss during the 18th century,

the maximum likelihood estimator was first discussed by Fisher [7] in the year 1912, as a

general statistical parameter estimator. Douglas [8] discussed “Inverse Problem Theorems”

in 1940. Feldbaum [9] considered the identification and control of the system as a single

problem in the “dual-control” theory; which was a little different than others, but still his

work was one of the most significant and also aimed at the present direction of investigation.
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Research work in system identification theory prior to 1970, has been briefed in outstanding

research survey papers [10-13].

There are two kinds of system identification problems: deterministic (without state

noise) and non-deterministic (with state noise). Until the early forties, work on system

identification focus on the deterministic problem. But, succeeding the initial work in 1941-

1942 of Kolmogorov [14] and Wiener [15] the focus gradually shifted from deterministic

estimation to stochastic estimation. It was in the year 1960, when Kalman [16] followed basic

theories of Wiener and formulated a recursive solution to a filtering problem. This recursive

solution was directly executable through digital computations. Therefore, the Kalman filter

became popular quickly. Today it is the most widely used method for stochastic estimation.

The first experimentation of the maximum likelihood estimator on a digital computer and

application to parameters estimation in an industrial plant was done by Astrom and Bohlin

in 1965 [17]. This was the beginning of the modern era of system identification methods.

1.3.2 System Identification of Aircraft

The aerodynamic modeling, which obtains relationships between the three forces X,

Y and Z along the three cartesian coordinates, and the moments L, M and N about these

axes as functions of linear translational motion variables u, v, w and rotational rates p, q,

r was introduced in the early 20th century [18, 19]. This was the initiation of the evolution

of aircraft system identification. After the pioneering work of Bryan [18], numerical, sta-

tistical and experimental research was started in the field of real-time dynamics stability
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and control. Glauert [20] initiated analyzing the phugoid motion of an aircraft in 1919 and

Norton [21, 22] presented papers in 1923 on estimation of stability and control derivatives.

The developments over the last nine decades have led to three different, but complementary

techniques for determining aerodynamic coefficients: 1) analytical methods, 2) wind-tunnel

methods, and 3) flight test methods [19].

The analytical methods and the wind-tunnel methods are performed to generate basic

information about the aerodynamic flight coefficients. Research in the computational fluid

dynamics field in recent years has positively affected the analytical approaches by providing

numerical solutions of complete configurations via sophisticated and advanced Euler and

Navier-Stokes flow solvers [19, 23, 24]. Experimental methods are important to validate the

analytical estimations. Wind-tunnel techniques, have in the past provided a huge amount

of data on innumerable flight vehicle configurations and are, as a rule, a basis for any new

flight vehicle design [19]. These techniques are, however, often associated with certain lim-

itations of validity arising out of, for example, model scaling, Reynolds number, dynamic

derivatives, cross coupling, and aero servo elasticity effects [19]. Determination of aerody-

namic derivatives from flight measurements is, therefore, important and necessary to reduce

limitations and uncertainties of the aforementioned two methods [19] and [25].

While detailing the chronological survey of research which led to the development and

universal acceptance of the maximum-likelihood estimation technique for aircraft stability

and control derivatives estimation, the more straightforward deterministic analysis will be

discussed first, which will be followed by non-deterministic analysis. References [26] and [27]
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discuss some of the investigations in estimation of unknown stability and control derivatives

of an aircraft from aircraft dynamic response data.

1.3.3 Deterministic and Non-Deterministic Analysis

1. Deterministic Analysis: System identification methods have become more ele-

gant and complex since Kalman’s contribution. The steady-state oscillator excitation

analysis by Breuhaus [28] and Milliken [29, 30] and also the pulse input method uti-

lizing Fourier analysis [31] are examples of the frequency response method, which

increased in popularity for aircraft analysis during the 1940s and 1950s. These meth-

ods produced the frequency response of the vehicle, but not the stability and control

derivatives of the differential equations. Greenberg [32] and Shinbrot [33] attempted

to extract those parameters by defining the values of the aircraft parameters that re-

sulted in the best fit of the frequency response. Weighted least-square [33] and linear

least-squares [34] techniques were also applied to flight data in the 1960s. But these

techniques give poor results in the presence of measurement noise and yield biased

estimates. Also, they are time consuming and singularities are a serious problem with

them. The response curve-fitting technique [35] was formulated in 1951, which is

equivalent to the output error technique. But due to the lack of efficient and faster

computational means it did not work at that time.

In the 1950s and 1960s, time-vector methods [36-40] were commonly applied graph-

ical procedures to determine aircraft parameters from flight data. However, those
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methods give an incomplete set of parameters and only the responses of fairly simple

motion can be analyzed. In the early 1960s, before the invention of digital computers,

analog matching techniques [40, 41] which are time consuming and somewhat tedious,

were applied to flight data. Resulting estimates differed depending on the skill and

knowledge of the person. Discussion of these past techniques concluded that a more

complete method of identification was needed, which can be faster and gives better

results.

Two separate articles [42, 43] on output error methods for obtaining aerodynamic

coefficients were published in the 1968. Taylor, Lawrence and Iliff [42] discussed the

maximum-likelihood estimator for obtaining a complete set of aerodynamic parame-

ters from flight data. Larson and Fleck [43] described a quasi-linearization method for

parameter identification of an aircraft. This research had produced an excellent model

which sufficiently described the resulting motion of the aircraft; which is the reason

for the success of these two methods. Due to these two studies on aircraft identifi-

cation using nonlinear minimization techniques, the interest in analysis of flight data

was increased. After only a year in the 1969, Taylor and Iliff [44] modified these two

techniques to include prior information. Minimization of this modified cost function

does not result in a maximum-likelihood estimator because it was based on the joint

probability distribution rather than the conditional probability [45]. Some excellent

and very successful computer algorithms on system identification have been published
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[46-50]. The maximum likelihood estimator method was found very useful for flight

dynamic response [47-55].

Mehra [51] applied the Kalman filter to estimate aircraft aerodynamic parameters,

which produced poor results, because the state estimation and parameter estimation

were both biased. Hence, they did not converge to good results. Taylor, Powell and

Mehra [56] obtained better results after addition of the derivative of the state. In

the Netherlands, two successful applications of the Kalman filter, providing the state

estimation and aircraft parameters identification were obtained [57, 58].

2. Non-Deterministic Analysis: There are two types of techniques applied for pa-

rameter estimation with measurement and state noise: the Kalman filter technique

[51, 56-62] and maximum-likelihood estimator technique [52, 53, 63-65]. In the case of

non-deterministic analysis, the maximum likelihood estimator technique is normally

known as the filter error method. It was after 1965 that Astrom [59] and Kashyap

[60] described general applications of the extended Kalman filter. During 1970, for

the discrete-time system Taylor, Powell and Mehra [56] applied the extended Kalman

filter to simulated aircraft data with a state noise input. Chen and Eulrich [61] ex-

perimented with an application to that of Taylor, Powell and Mehra in 1971, but

it produced inconclusive results, as the state noise input was small, and also due to

nonlinearity of the system. Yazawa [62] produced very good results, when he applied

a simplified extended Kalman filter.
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Iliff [65] applied the maximum-likelihood technique to output data of an aircraft flying

in atmospheric turbulence. The results were similar for the same aircraft flying in

smooth air, which is without state noise.

1.3.4 Latest Techniques of System Identification

The maximum likelihood estimator technique is used in most of the latest techniques

of system identification. One of these methods, the filter error technique is completely

detailed in Chapter 3. The digital computers of the modern era have the speed to imple-

ment self-regulating and self-governing data processing capability, which has changed the

concentration of flight test data analysis utilizing methods based on frequency domain to

methods based on time domain. Using modern computers, relatively larger numbers of

aircraft stability and control derivatives can be estimated from only a single aircraft test.

A coordinated approach based on flight test instrumentation, flight test techniques, and

methods of data analysis gradually evolved for system identification as applied to aircraft

[19, 46]:

1. Instrumentation and filters, which cover the entire flight data acquisition process

including adequate instrumentation and airborne or ground-based digital recording

equipment. Effects of all kinds of data quality should be accounted.

2. Flight test techniques, which are related to the selected flight vehicle maneuvering

procedures. The input signals should be optimized in their spectral composition to

excite all response modes from which parameters are to be estimated.
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Figure 1.1: Block Diagram for System Identification to aircraft [1]

3. Analysis of flight data, which includes the mathematical model of the flight vehicle

and an estimation criterion that devises a suitable computational algorithm to adjust

starting values or a priori estimates of the unknown parameters until a set of best

parameter estimates is obtained that minimizes the response error.

Synchronizing these interdependent subjects, four important aspects (Fig. 1.1) of the art

and science of system identification have to be carefully treated:

1. design of the control input shape to excite all modes of the vehicle dynamic motion

2. selection of instrumentation and filters for high accuracy measurements

3. type of flight vehicle under investigation to define the structure of a possible mathe-

matical model
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4. the quality of data analysis by selecting the most suitable time or frequency domain

identification method

The above four points must be followed carefully while investigating each aircraft. If they

are followed, modern system identification methods for aircraft can generally be expected

to provide good results. The modern techniques of data analysis for parameter estimation

are classified as: 1) Equation error technique, 2) Output error technique, 3) Filter error

technique. The last technique has been chosen for this study and is discussed in Chapter 3.

System identification is a multidisciplinary technique, which covers the fields of control

theory, numerical techniques, theories of statistics, sensors and instrumentation, flight test

techniques, signal processing, and flight dynamics. Basic knowledge of each of these fields

enables the user to generate efficient results.
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Chapter 2

Background and Theoretical Development

Dynamical systems can generally be characterized by differential equations, whose or-

der is dependent on the complexity of the whole process. The system identification process

starts with postulating a model, so that it becomes possible to estimate the parameters of

state through simulation. Usually this is done by solving an initial value problem utilizing

numerical integration techniques. For system identification of aircraft, state space dynam-

ical models characterizing the aircraft motion are usually used. These models are derived

from Newtonian mechanics; which gives well formulated kinematic equations of aircraft

motion with translational and rotational degrees of freedom [66].

2.1 Dynamical Model Description

As stated earlier, the system identification process for aircraft starts with postulating

a dynamical model and governing equations of aircraft motion. The equations of motion

also include the output and measurement equations. The complete set of equations is then

[66]:

ẋ=f [x(t),u(t),ζ]+F (ϑ)w(t), x(t0)=x0

y=g[x(t),u(t),ζ]

z(tk)=y(tk)+Gv(tk) (2.1)
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where x is the (n×1) state vector, u is the (s×1) input vector, y is the (m×1) observation

vector and z is the (m×1) measurement vector. The unknown parameter vector Φ is given

as:

Φ=[ζT ϑT x0
T ]T (2.2)

In this specific case of system identification to aircraft, the system parameter vector ζ is

made up of aircraft stability and control derivatives. The above nonlinear dynamical model

can be linearized if required, using numerical approximation.

2.2 Cost Function (Performance Index) J

Using the measurement vector z(t), observation vector y(t), measurement noise covari-

ance matrix R (m×m), for ny observation variables and N data points, a cost function, or

performance index, J can be defined as follows [67].

J(Φ, R) =
1
2

∫ N

1
[z(t)− y(t)]T R−1 [z(t)− y(t)] dt+

N

2
ln [det(R)] +

Nny
2

ln det(2π) (2.3)

where Φ is a column vector of parameters, which are to be estimated.

2.3 Essentials of Cost Function Minimization

For any experiment, the number of observations ny and number of data points N shall

be fixed. So, the last term in the above equation is a constant and hence can be neglected
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without affecting the results [1]. Now for the measurement noise covariance matrix R, there

are only two possibilities.

1. Known Measurement Noise Covariance Matrix R: Based on previous flight tests or

using wind tunnel data, the measurement noise covariance matrix R can be assumed

for this experiment. In this case, the second term in the above equation is constant.

Then the cost function is simplified as [68].

J(Φ) =
1
2

∫ N

1
[z(t)− y(t)]T R−1 [z(t)− y(t)] dt (2.4)

Therefore, the cost function is easy to calculate and also quadratic in nature. It can

be reduced using modern optimization methods given in the next section.

2. Unknown Measurement Noise Covariance Matrix R: Jategaonkar [1] used a relaxation

strategy in which optimization of the likelihood function, Eq. 2.3 was carried out in

two steps. In the first step, differentiate Eq. 2.3 partially with respect to R, set it

equal to zero and derive

R =
1
N

∫ N

1
[z(t)− y(t)] [z(t)− y(t)]T dt (2.5)

Substituting the value of R, obtained in Eq. 2.5 in Eq. 2.3 will give the result:

J(Φ) =
1
2
nyN +

N

2
ln [det(R)] +

Nny
2

ln det(2π) (2.6)
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The first term and the last term on the right side of the above equation are con-

stant because N and ny are fixed for any model. Therefore, with out affecting the

minimization results the cost function reduces to [1]:

J(Φ) = det(R) (2.7)

Now, the value of parameter vector Φ is be determined, which should minimize det(R), that

is the cost function. The elements of Φ may be determined as per the requirement by a

variety of optimization techniques. A relaxation strategy will be followed in this thesis, as

outlined below.

1. Assume parameter vector Φ with suitable initial values.

2. Determine system observation (or output) matrix Y . Compute the innovation vector

(Z - Y ). Determine measurement noise covariance matrix R.

3. Calculate cost function J .

4. Apply any of the optimization techniques to reduce Cost function J .

5. Repeat the algorithm from step 2 to step 4 until the cost function reduces satisfactorily

and also, the estimates converge to a specific and constant values.
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Numerous optimization techniques have been developed for linear and nonlinear optimiza-

tion. Direct search techniques, accelerated gradient based techniques and modified Newton-

Raphson techniques [69] are few of them. In this thesis the modified Newton-Raphson

technique is utilized.

2.4 Modified Newton-Raphson Algorithm

The Newton-Raphson technique is an iterative method, which finds a zero of the gra-

dient of a cost function, that is

∂J(Φ)
∂Φ

= 0 (2.8)

∂J
∂Φ is expanded using two-term Taylor’s series about the ith value of the parameter vector

Φ: (
∂J(Φ)
∂Φ

)
i+1

≈
(
∂J(Φ)
∂Φ

)
i

+

(
∂2J(Φ)
∂Φ2

)
i

∆Φ (2.9)

where ∆Φ = Φi+1−Φi is the parameter change and (∂
2J(Φ)
∂Φ2 )i is the second derivative of the

cost function with respect to Φ at the ith iteration [68]. The change in Φ can be written

∆Φ = −
[(

∂2J

∂Φ2

)
i

]−1 (
∂J

∂Φ

)
i

(2.10)

The Newton-Raphson algorithm described above, is more efficient than the gradient method

because it attempts to predict where the local minimum point is quadratically convergent

[69, 70]. To compute the first gradient of the cost function, Eq. 2.3 can be partially
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differentiated with respect to Φ and the result is:

∂J

∂Φ
= −

∫ N

1

[
∂y(t)
∂Φ

]T
R−1 [z(t)− y(t)] dt (2.11)

Differentiating the above equation with respect to Φ, the second gradient matrix can be

formed as [68]:

∂2J

∂Φ2
=

∫ N

1

[
∂y(t)
∂Φ

]T
R−1

[
∂y(t)
∂Φ

dt

]
+

∫ N

1

[
∂2y(t)
∂Φ2

]T
R−1 [z(t)− y(t)] dt (2.12)

The first gradient of the cost function can be calculated easily but computation of the

second gradient is complicated and time consuming. The prime reason for this complexity

is the computation of the second gradient of the response ∂2y
∂Φ2 , which is found in the second

integral of Eq. 2.12. Balakrishnan [71] suggested a simplification as follows. The second

term of Eq. 2.12 goes to zero as the process converges. Hence, it can be neglected and the

second gradient can be approximated as:

∂2J

∂Φ2
=

∫ N

1

[
∂y(t)
∂Φ

]T
R−1

[
∂y(t)
∂Φ

dt

]
(2.13)

This yields a more flexible technique called the modified Newton-Raphson method. This

technique is also referred to as the Newton-Balakrishnan method or Gauss-Newton method.
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This leads to a system of linear equations that can be summarized as follow [68]:

Denote P1 = −
[(

∂2J

∂Φ2

)
i

]−1

and P2 =
(
∂J

∂Φ

)
i

(2.14)

From Eq. 2.11 and Eq. 2.13:

P1 =
∫ N

1

[
∂y(t)
∂Φ

]T
R−1

[
∂y(t)
∂Φ

dt

]
(2.15)

P2 = −
∫ N

1

[
∂y(t)
∂Φ

]T
R−1 [z(t)− y(t)] dt (2.16)

Then,

Φi+1 = Φi + ∆Φ, where ∆Φ = −P1−1P2 (2.17)
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Chapter 3

System Identification of General Aviation Aircraft

The various aircraft parameter estimation techniques are:

1. The equation error technique

2. The output error technique

3. The filter error techniques

4. The frequency domain techniques

5. The recursive parameter estimation technique

6. The artificial neural network based techniques

A filter error technique is used in this thesis. The filter error techniques represent the general

stochastic approach to aircraft system identification introduced by Balakrishnan [63]. Iliff

[65] and Mehra [51, 56, 72] utilized these techniques in the 1970s. These techniques are

highly efficient while working with measurement and process noise.

3.1 Filter Error Technique for Linear Systems

A block diagram of the filter error technique is shown in Fig. 3.1. In this section, the

filter error technique for linear systems will be discussed with theoretical advancements and

computational aspects.
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Figure 3.1: Block Diagram for Filter Error Technique [68]

A dynamic system can be described by the following stochastic linear mathematical

model [1].

ẋ(t) = Ax(t) +Bu(t) + Fw(t) + bx, x(t0) = 0 (3.1)

y(t) = Cx(t) +Du(t) + by (3.2)

z(tk) = y(tk) +Gvk, k = 1, 2, ...N (3.3)

where x is a state vector (n×1), u is a control input vector (s×1), y is an output vector

(m×1), and z is a measurement vector (m×1) sampled at N discrete time points. Matrices A

(n×n), and C (m×n), contain unknown stability derivatives and matrices B (n×s), and D

(m×s), contain unknown control derivatives. Matrices F (n×n), and G (m×m), represent
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the process and measurement noise distribution matrices, respectively. In the state and

observation equations, bx and by are bias terms. In the most general case all of the elements

of the matrices A, B, C, D and bias terms, bx and by form the parameter vector Φ, which

is to be estimated.

From the Eqs. 2.3-2.4, output vector, y, is required now, to calculate the cost function

J and the measurement noise covariance matrix, R. A Kalman filter is used to estimate the

output vector given the observed data, Ztk . Parameter estimates for Φ and R are obtained

by minimizing the cost function.

Though it can be assumed that the process and measurement noises are additive, the

estimation process is still complicated because the nature of the system is non-deterministic

[67]. Because of the process and measurement noise, it is not possible to integrate the state

equations. Instead, a standard Kalman filter is utilized as an optimal state estimator for

the linear system [73, 74].

3.1.1 Kalman Filter

The Kalman filter consists of two steps, a prediction and a correction step.

1. Prediction step: For the linear model postulated in Eqs. 3.1-3.2, the prediction step

is given by [1]:

x̃(tk+1) = Θx̂(tk) + ΛBu(tk) + Λbx (3.4)

y(tk) = Cx̃(tk) +Du(tk) + bx (3.5)
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2. Correction step

x̂(tk) = x̃(tk) +K[z(tk)− y(tk)] (3.6)

Here, x̃ is a predicted state vector, x̂ is a corrected state vector, u is an average of the

control input at two successive discrete time steps, ỹ is a predicted observation vector and

[z(tk)− ỹ(tk)] is the residual (or innovation). Θ and Λ are the state transition matrix and

integral of state transition matrix (derived in appendix A). K is the Kalman gain (n×m)

and is dependent on the observation matrix C, state prediction error covariance matrix P

(n×n), and measurement error covariance matrix R (m×m), and given as [67]:

K = PCTR−1 (3.7)

The measurement noise covariance matrix R can be found using Eq. 2.5 and the state

prediction error covariance matrix P is calculated by solving the Riccati equation.

3.1.2 Solution of Riccati Equation

The Riccati equation is solved to compute the state prediction error covariance matrix,

P . A steady-state form of the continuous-time Riccati equation is used here because it is

easier than the discrete-time equation [1, 67, 75]. The first order projection of the Riccati

equation is given below.

AP + PAT − 1
∆t

PCTR−1CP + FF T = 0 (3.8)
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Eq. 3.8 can be solved using Potter’s method [1, 76] based on eigenvector decomposition.

Only the necessary details are provided here. Solution of the Riccati equation follows three

steps and is very straightforward.

1. Start with formulation of the Hamiltonian matrix, H, as [67]:

H =

[
A | − FF T

− 1
∆tC

TR−1C | −AT

]
(3.9)

2. Compute the eigenvalues and eigenvector of the Hamiltonian matrix, H. Divide the

eigenvector matrix into four equal size matrices such that the eigenvectors related to

eigenvalues with positive real parts remain on the left side. Controllability due to

process noise and observability ensure that exactly one half of the eigenvectors will

have positive real parts (i.e., unstable eigenvalues). Suppose M is the eigenvector

matrix of H, then it can be divided and arranged as [67]:

M =
[
M11|M12

M21|M22

]
(3.10)

3. The solution of the steady-state, continuous-time Riccati equation is as follows [67]:

P = −M11M21
−1 (3.11)

The state prediction error covariance matrix, P , is a steady-state matrix and is not depen-

dent on time [1].
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3.1.3 Formulations for Process Noise

Three principle formulations have been used to account for both the process and mea-

surement noises based on the way the measurement noise covariance matrix, R; Kalman

gain matrix, K; and the noise distribution matrices, F and G, are estimated [54, 67, 68].

1. Natural Formulation

The natural formulation [67, 68] utilizes the unknown parameter vector Φ in the best

possible optimization method and minimizes the cost function. The elements of parameter

vector Φ are all or some elements of matrices the A, B, C, D, F , G. This formulation is

very easy to define and theoretically a possible and perfect technique. But, if the problem

considered has process and measurement noises, this formulation is not a practical one.

Mainly because this formulation does not have an explicit solution to estimate the noises.

There are three primary disadvantages of this formulation, primarily due to the complica-

tions in the estimation of F and G matrices. The drawbacks are convergence, singularity

and computational burden. Therefore, this technique is not used extensively these days.

2. Innovation Formulation

The innovation formulation was suggested to overcome the difficulties of the natural

formulation. It is very similar to the formulation which was followed in the output error

method [51, 62, 67]. As it was mentioned in the previous section, the prime difficulty

of the natural formulation is estimation of the F and G matrices. From the definitions

of the cost function, J, in Eq. 2.3 and measurement noise covariance matrix, R, in Eq.

2.5, it is clear that they are dependent on the F and G matrices indirectly through the
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Kalman gain. Therefore, if the Kalman gain is directly estimated, then the complications

due to the natural formulation would be solved. In this case, the elements of the parameter

vector Φ are all or some elements of the matrices A, B, C, D, K. This formulation

works well with process and measurement noises and also for linear and nonlinear systems.

The straightforward solution of the cost function, J, from Eq. 2.6 and measurement noise

covariance matrix, R, in Eq. 2.5 solves the convergence problems.

Because the innovation formulation estimates the Kalman gain K directly (in place

of deriving the same from Eq. 3.7, it solves the remaining parameter estimation problem

utilizing only three equations (3.4-3.6). The best part of this formulation is it excludes

the need to compute the most complex part of the algorithm, that is the solution of the

Riccati equation. Thus, this technique looks more appealing computationally, however, it

has a few disadvantages [67]. The size of matrix K is larger than that of matrix F . The

parameter vector Φ is larger here, which takes more computational time. The elements

of K do not have direct physical meaning [68]. Moreover, the Kalman gain, K as well as

system parameters and measurement noise covariance matrix, R, are computed separately,

which may give unsuitable estimates for R and K.

3. Combined Formulation

Maine and Iliff [55, 67] proposed a Combined Formulation in 1981, which takes the best

features from both of the previous formulations. The combined formulation estimates the

process noise matrix, F , and it calculates the measurement noise covariance matrix, R, from

Eq. 2.5. Hence, the parameter vector, Φ, consists of all or some elements of the matrices A,
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B, C, D, F , and a two-step relaxation strategy is applied. Here the first step is to estimate

the measurement noise covariance matrix, R, which is relatively simpler. The Parameter

vector, Φ, is estimated in the second step utilizing the modified Newton-Raphson technique.

The primary advantage of this method is that the process noise matrix, F , has a physical

meaning. To estimate the state prediction error covariance matrix, P , the solution of the

Riccati equation is necessary. Although this solution is tedious, it is worthwhile because

the results of this formulation are more practical with respect to convergence, singularities,

parameter estimates and computation burden [1].

3.1.4 The Filter Error Algorithm for Linear Systems

After comparing the three formulations, only the combined formulation is followed in

this thesis due to its inherent efficiency. The filter error algorithm for linear systems is

outlined in Fig. 3.2. In this technique the following tasks are important.

1. Select suitable initial values for the unknown parameter vector, Φ, the Kalman gain,

K, the state prediction error covariance matrix, P, and states x. Load the available

flight data (from real time flight or from a simulator).

2. Apply the Kalman filter and calculate the observation vector, Y; innovation matrix,

initial measurement noise covariance matrix, R; and based on that the initial cost

function, J.

3. Solve the Riccati equation and find the new Kalman gain. Calculate the new mea-

surement noise covariance matrix, R, and based on that the new cost function, J.
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Figure 3.2: Algorithm of Filter Error Technique for Linear Systems [1]
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4. Apply the modified Newton-Raphson technique to minimize the cost function.

5. Update the parameter vector Φ.

6. Repeat the steps 3 - 5 until all parameters converge to specific and constant values.

3.1.5 Parameter Update

The modified Newton-Raphson method is applied in this section to update the param-

eter vector, Φ, such that it minimizes the cost function after each iteration. The following

equations were derived in section 2.4 [1].

Φi+1 = Φi + ∆Φ, where ∆Φ = −P1−1P2 (3.12)

P1 =
∫ N

1

[
∂y(tk)
∂Φ

]T
R−1

[
∂y(tk)
∂Φ

dt

]
(3.13)

P2 = −
∫ N

1

[
∂y(tk)
∂Φ

]T
R−1 [z(tk)− y(tk)] dt (3.14)

In the above equations, everything is readily available to use, except the sensitivity matrix

or the gradient matrix of response, given below [1]:

(
∂y

∂Φ

)
ij

=
∂yi
∂Φj

(3.15)

The sensitivity matrix ( ∂y∂Φ) can be solved using several ways. However, the classical method

is used in this thesis by solving the sensitivity equations [69]. The finite difference method

is also an excellent method, which is usually applied for nonlinear system. The required
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sensitivity equations are obtained by differentiating the system equations with respect to

elements of the parameter matrix, Φ. Partial differentiation of Eq. 3.4 results in the

following equation [1].

∂x̃(tk+1)
∂Φ

= Θ
∂x̂(tk)
∂Φ

+
∂Θ
∂Φ

x̂(tk) + Λ
∂B

∂Φ
u(tk) +

∂Λ
∂Φ

Bu(tk) + Λ
∂bx
∂Φ

+
∂Λ
∂Φ

bx (3.16)

The above equation is the exact gradient of Eq. 3.4 and is necessary to compute ∂Θ
∂Φ and

∂Λ
∂Φ . Maine and Iliff [67] eliminated this computation burden by approximating the gradient

computation significantly, explained below:

∂x̃(tk+1)
∂Φ

≈ Θ
∂x̂(tk)
∂Φ

+ Λ
∂A

∂Φ
x(tk) + Λ

∂B

∂Φ
u(tk) + Λ

∂bx
∂Φ

,
∂x̃(1)
∂Φ

= 0 (3.17)

Two new terms are introduced in the above equations. An average of two consecutive

inputs is shown as u and x is an average of states at two successive time steps. Partial

differentiation of Eq. 3.5 and Eq. 3.6 result in the following equation [67].

∂y(tk)
∂Φ

= C
∂x̃(tk)
∂Φ

+
∂C

∂Φ
x̃(tk) +

∂D

∂Φ
u(t) +

∂by
∂Φ

(3.18)

∂x̂(tk)
∂Φ

=
∂x̃(tk)
∂Φ

−K∂y(tk)
∂Φ

+
∂K

∂Φ
[z(tk)− y(tk)] (3.19)

Eqs. 3.17-3.19 represent a set of sensitivity equations. Except for the ∂K
∂Φ all terms are

available at this point. Therefore, the gradient of the Kalman gain matrix is computed to

complete this optimization problem. Differentiate Eq. 3.7 to derive the following result
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[67].

∂K

∂Φ
=
∂P

∂Φ
CTR−1 + P

∂CT

∂Φ
R−1 (3.20)

For each specific time step and at this stage in the algorithm measurement noise covariance

matrix R, system matrix C and state prediction error covariance matrix P are fixed and

constant. Partial differentiation of each element matrix C with respect to related parameters

is one and elsewhere it is zero. Thus, only ∂P
∂Φ needs to be calculated to compute the gradient

of K. Note that ∂P
∂Φ is a three dimensional matrix and hence ∂K

∂Φ is also a three dimensional

matrix. ∂P
∂Φ is derived by differentiating the steady-state Riccati equation 3.8 [67].

A
∂P

∂Φ
+
∂A

∂Φ
P + P

∂AT

∂Φ
+
∂P

∂Φ
AT − 1

∆t
∂P

∂Φ
CTR−1CP − 1

∆t
P
∂CT

∂Φ
R−1CP

− 1
∆t

PCTR−1∂C

∂Φ
− 1

∆t
PCTR−1C

∂P

∂Φ
+ F

∂F T

∂Φ
+
∂F

∂Φ
F T = 0 (3.21)

Arrange the left-hand side terms and simplify mathematically using matrix properties like

(A+B)T = AT +BT and (AB)T = BTAT . The result is shown here [67].

A
∂P

∂Φ
+
∂P

∂Φ
A
T = C + C

T (3.22)

where

A = A− 1
∆t

PCTR−1C = A− 1
∆t

KC (3.23)

and

C = −∂A
∂Φ

P +
1

∆t
PCTR−1∂C

∂Φ
P − ∂F

∂Φ
F T (3.24)
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There is one equation like Eq. 3.22 for each element of the system parameter vector Φ.

This leads to a set of Lyapunov equations of the form AX + XAT = B [1, 67]. Since the

A matrix remains similar for the entire set, the Lyapunov equations are solved efficiently

utilizing the following transformation [67].

A
′

= T−1AT (3.25)

and

(C + C
T )

′
= T−1(C + C

T )T ∗−1 (3.26)

Here, T is the matrix of the eigenvectors of A. Due to this alteration A′ is now diagonal

and thus Eq. 3.22 is left as [67]:

A
′
(
∂P

∂Φ

)′

+
(
∂P

∂Φ

)′

A
′∗ = (C + C

T )
′

(3.27)

As the A′ is diagonal, the above equation can be solved for
(
∂P
∂Φ

)′

easily. Generally for a

diagonal matrix A, AX +XAT = B can be solved by [67]

Xij =
Bij

(Aii +Ajj)
(3.28)

The gradient of the state prediction error covariance matrix P is calculated using back

transformation [67].

∂P

∂Φ
= T

(
∂P

∂Φ

)′

T ∗ (3.29)
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Now, Eqs. 3.12-3.14 can be solved easily. As stated earlier, this technique leads to an

unconditional minimum of the cost function. All system parameters are treated separately.

The results obtained using this technique will be provided and discussed in the next chapter.

3.2 Filter Error Technique for Non-linear Systems

The general mathematical model of a non-linear system is given below:

ẋ(t) = f [x(t), u(t), β] + Fw(t), x(t0) = x0 (3.30)

y(t) = g[x(t), u(t), β] (3.31)

z(tk) = y(t) +Gv(tk) (3.32)

Here f and g are nonlinear functions, x(t) is a state vector and u(t) is an input vector. F

and G are time-invariant noise distribution matrices.

The filter error technique for nonlinear systems is illustrated in Fig. 3.3. For non-linear

systems, response gradients are calculated based on finite difference approximations. An

extended Kalman filter [77, 78] dependent on the first-order approximation of the dynamical

equations is used for non-linear filtering.
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Figure 3.3: Algorithm of Filter Error Technique for Nonlinear Systems [1]
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3.2.1 Steady State Filter

The combined formulation is followed, for the nonlinear case just as was done for the

linear case. The two-step relation strategy, discussed in section 2.4 is applied to estimate

R. While doing this, the following tasks are important.

1. Select some suitable initial values for the unknown parameter vector Φ. Load the

available flight data (from real time flight or from simulator).

2. Apply the extended Kalman filter and calculate the observation vector, Y; innovation

matrix; initial measurement noise covariance matrix, R; and the initial cost function,

J. Numerically integrate the state equations. For numerical integration, a fourth order

Runge-Kutta method was used. A description of this method is given in appendix B.

3. Solve the Riccati equation and find the new Kalman gain. Calculate a new measure-

ment noise covariance matrix, R, and new cost function, J.

4. Apply the modified Newton-Raphson technique to minimize the cost function.

5. Update the parameter vector, Φ.

6. Repeat steps 3 - 5 until all parameters converge to constant values.

The optimal filters are practically impossible for non-linear systems. Hence, an extended

Kalman filter is used here. A two-step, non-linear, constant-gain filter is formulated as [1].
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Prediction step

x̃(tk+1) = x̂(tk) +
∫ tk+1

tk

f [x(t), u(t), β]dt, x̂(t0) = x0 (3.33)

y(tk) = g[x̃(t), u(t), β] (3.34)

Correction step

x̂(tk) = x̃(tk) +K[z(tk)− y(tk)] (3.35)

The Kalman gain K is dependent on the measurement noise covariance matrix, R, state

prediction error covariance matrix, P; and system matrix, C. It is expressed as [1]:

K = PCTR−1 (3.36)

where

C =
[
∂g[x(t), u(t), β]

∂x

]
t=t0

(3.37)

A steady-state, continuous-time, Riccati equation is solved here to calculate P . The lin-

earized matrices A and C are used, and solved using a finite difference method which is

explained below.

Finite Difference Technique:
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If each of the state variables is perturbed by δxj , the elements of the matrices A and

C can be approximated using a central difference formula as [1]:

Aij ≈
(
fi[x+ δxj , u, β]− fi[x− δxj , u, β]

2δxj

)
x=x0

(3.38)

Cij ≈
(
gi[x+ δxj , u, β]− gi[x− δxj , u, β]

2δxj

)
x=x0

(3.39)

For the non-linear system, the response gradients are approximated using the finite differ-

ence approximation. For a small perturbation δΦj in each variable of the unknown param-

eter vector Φ, the perturbed response variable yp for each of the unperturbed variable yi is

computed. The sensitivity response gradient is approximated as

[
∂y(tk)
∂Φ

]
=
yp(tk)− yi(tk)

δΦ
(3.40)

For each element of the unknown parameter vector, Φ, the state and observation vari-

ables are calculated utilizing a two step non-linear steady-state filter as given below [1].

Prediction step

x̃p−j(tk+1) = x̂p−j(tk) +
∫ tk+1

tk

f [xp−j(tk+1), u(tk+1), β + δβje
j ]dt (3.41)

yp−j(tk) = g[x̃p−j(tk+1), u(tk+1), β + δβje
j ] (3.42)
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Correction step

x̂p−j(tk) = x̃p−j(tk) +Kp−j [z(tk)− yp−j(tk)] (3.43)

The predicted state variables x̃ in Eq. 3.41 are computed by numerical integration. To

compute Eq. 3.43 the perturbed Kalman gain matrix Kp−j needs to be calculated, which

is given by [1]

Kp−j = Pp−jC
T
p−jR

−1 (3.44)

here, the perturbed system matrices Ap−j and Cp−j need to be calculated to use them to

solve the Riccati equation, which are approximated using a central difference method.

3.2.2 Parameter Update

Referring to section 3.1.5 and Eqs. 3.13-3.14, all quantities can be derived for non-

linear systems. The parameter vector Φ will be updated using Eq. 3.12. This technique

also leads to an unconditional minimum of the cost function. The results obtained using

this technique will be provided and discussed in the next chapter.
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Chapter 4

Prediction of Aircraft Stability and Control Derivatives

Techniques to calculate the stability and control derivatives analytically, are presented

in this chapter. These derivatives are an important part of the experiment because they

are required as an input to determine dynamic stability and control behavior [79]. These

methods are referred from [79-83]. Only preliminary information is presented here. Details

should be found from [79-83]. Stability and control derivatives given in Eqs. 5.1-5.5 are

predicted using the following methods. Initial values derived using these methods were used

in the experimental aircraft Trainer.

The important notes while using these methods are [79]:

1. The methods presented in this chapter apply only to rigid aircraft.

2. The methods presented in this chapter apply only to subsonic speed regimes.

3. All derivatives are in rad−1.

4. All coefficients and derivatives are defined in the stability axes system.

5. The drag prediction methods apply only in the flight cases where the boundary layer

is turbulent.

6. The drag prediction methods apply only to smooth surfaces.
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4.1 Steady State Coefficients

The definitions of steady state coefficients CD, CL and Cm0 are given below. They

were used to determine the lift, drag and pitching moment steady state coefficients [79].

CL is the aircraft’s steady-state lift coefficient, given as [79]:

CL = W/(qS) (4.1)

CD is the aircraft’s steady-state drag coefficient. It is calculated using the following

method. As shown in Fig. 4.1, it is related to a specific value of steady-state lift coefficient

CL. The steady-state aircraft drag coefficient is given as follows [79]:

CD = CDw + CDfus (4.2)

The wing drag coefficient is predicted from [79]:

CDw = CD0w
+ CDLw

where CD0w
= (Rwf )(RLS)(Rfw){1 + L′(t/c) + 100(t/c)4}(Swet/S)

and CDLw = (CLw)2/πAe+ 2πCLwηtv + 4π2(ηt)2w (4.3)
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Figure 4.1: Determination of Drag Coefficient from a known Lift Coefficient

The fuselage drag coefficient is predicted from [79]:

CDfus = CD0fus
+ CDLfus

where CD0fus
= (Rwf )(Cffus){1 + 60(lf/df )3 + 0.0025(lf/df )}(Swet/S) + CDbfus

and CDLfus = 2α2(Sb/S) + ηcdcα
3(Splffus/S) (4.4)

Cm0 is the aircraft zero lift pitching moment coefficient and can be predicted using the

following equation [79]:

Cm0 = Cm0wf
+ Cm0h

(4.5)
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Cm0wf
is the zero lift pitching moment coefficient due to wing-fuselage combination. It is

predicted from [79]:

Cm0wf
= {(Cm0w

)+(Cm0f
)}{(Cm0)M+(Cm0)M=0}

where Cm0w
= {(Acos2Λc/4)/(A+2cosΛc/4)}(cm0r

+cm0t
)/2

+(∆Cm0/εt)εt

and Cm0f
= {(k2−k1)/36.5Sc}[

∑
{(wfi

2)(iw+α0Lw+iclf )∆xi}] (4.6)

Cm0h
is the zero lift pitching moment coefficient because of the horizontal tail. It is predicted

from [79]:

Cm0h
= −(xach−xref )CL0h

(4.7)

4.2 Stability Derivatives

The techniques for calculating the following stability derivatives are addressed in this

section:

1. Aircraft speed derivatives.

2. Angle of attack derivatives.

3. Angle of sideslip derivatives.

4. Roll rate derivatives.
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5. Pitch rate derivatives.

6. Yaw rate derivatives.

As it was stated before, only preliminary equations are addressed here. Complete analysis

can be found in [79-83].

4.2.1 Aircraft Speed Derivatives

The aerodynamic speed derivative CLV , lift with respect to aircraft speed is determined

using the following equation [79].

CLV = {M2(cosΛc/4)2CL}/{1−M2(cosΛc/4)2} (4.8)

The aerodynamic speed derivative CDV , drag with respect to aircraft speed is deter-

mined using the following equation [79].

CDV = M(∂CD/∂M) (4.9)

The aerodynamic speed derivative CmV , pitching moment with respect to aircraft speed

is determined using the following equation [79].

CmV = −CL(∂XacA/∂M) (4.10)
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4.2.2 Angle of Attack Derivatives

The derivative of the aerodynamic lift with respect to aircraft angle of attack (also

called as the aircraft lift curve slope) can be determined from [79]:

CLα = CLαwf + CLαhηh(Sh/S)(1− dε/dα) (4.11)

CLαwf is the wing-fuselage lift curve slope, determined as [79]:

CLαwf = KwfCLαw (4.12)

where CLαw is the wing lift curve slope and is given by [79]:

CLαw = 2πA/[2 + {(A2β2/k2)(1 + tan2Λc/2/β
2) + 4}1/2] (4.13)

CLαh is the horizontal tail lift curve slope. It can be calculated using the above equation

with suitable substitution of horizontal tail parameters for the wing parameters. All other

quantities in Eqs. 4.11-4.13 are defined in [79].

The derivative of the aerodynamic drag with respect to aircraft angle of attack can be

computed as follows [79].

CDα = (∂CD/∂CL)CLα (4.14)
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The derivative of the aerodynamic pitching moment with respect to aircraft angle of

attack can be calculated as follows [79].

Cmα = (∂Cm/∂CL)CLα (4.15)

4.2.3 Angle of Sideslip Derivatives

The aircraft equations of motion contain the aerodynamic pitch velocity derivatives

Lv, Nv, Yv. They are derivatives of rolling moment, yawing moment and side force with

respect to pitch velocity. If the angle of sideslip is very small then it is given by:

β = v/u (4.16)

From the above equation:

Lβ = Lvu

Nβ = Nvu

Yβ = Yvu (4.17)
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Lβ, Nβ and Yβ are calculated first to predict Lv, Nv and Yv and given as [83],

Lβ =
qSbClβ
Ix

Nβ =
qSbCnβ
Iz

Yβ =
qSCyβ
m

(4.18)

The theoretical methods to predict the coefficients given in the above equations are

described in this section.

The coefficient of the rolling moment derivative with respect to the sideslip, Clβ (also

called the dihedral effect) can be calculated from [79]:

Clβ = Clβwf + Clβh + Clβv (4.19)

The wing-fuselage contribution is given by [79]:

Clβwf =
180
π

[CLwf {(Clβ/CL)Λc/2(KMΛ
)(Kf )+(Clβ/CL)A}

+Γ{(Clβ/Γ)KMΓ
+(∆Clβ/Γ)}+(∆Clβ )zw

+(εttanΛc/4){(∆Clβ )/(εttanΛc/4)}] (4.20)

The horizontal and vertical tail contributions are given by [79]:

Clβh = (Clβhf )(Shbh/Sb)
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Clβv = (Cyβv ){(zvcosα−lvsinα)/b} (4.21)

The coefficient of the yawing moment derivative with respect to the sideslip, Cnβ (also

called static dihedral stability) is computed from [79]:

Cnβ = Cnβw + Cnβf + Cnβv (4.22)

The wing, fuselage and vertical tail contributions are given in order as [79]:

Cnβw = 0

Cnβf =
−180
pi

KNKR1(Sfsbf/Sb)

Cnβv = −(Cyβv ){(lvcosα+zvsinα)/b} (4.23)

The coefficient of the side force derivative with respect to the sideslip, Cyβ is calculated

from [79]:

Cyβ = Cyβw + Cyβf + Cyβv (4.24)

The wing, fuselage and vertical tail contributions are given in order as [79]:

Cyβw = −0.00573(|Γ|)

Cyβf = −2Ki(Scs/S)
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Cyβv = −kv(CLαv )(1+dσ/dβ)ηv(Sv/S) (4.25)

4.2.4 Roll Rate Derivatives

The rolling moment with respect to the roll rate is [83],

Lp =
qSb2Clp
2Ixu0

The coefficient of the rolling moment with respect to the roll rate Clp , also called the

damping derivative, is found from [79]:

Clp = Clpw+Clph+Clpv (4.26)

The wing, horizontal and vertical tail contributions are given in order as [79]:

Clpw = (βClp/k)CL=0(k/β){(CLαw )CL/(CLαw )CL=0}∗

∗{(Clp)Γ/(Clp)Γ=0}+ (∆Clp)drag

Clph = 0.5(Clp)h(Sh/S)(bh/b)2

Clpv = 2(zv/b)2Yβv (4.27)

The derivative of the yawing moment with respect to the roll rate is [83],

Np =
qSb2Cnp

2Izu0
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The derivative of the coefficient of the yawing moment with respect to the roll rate, Cnp , is

found from [79]:

Cnp = Cnpw+Cnpv (4.28)

The wing and vertical tail contributions are given in order as [79]:

Cnpw = {(Cnp/CL)CL=0}CL+(Cnp/εt)εt

+[∆Cnp/{(αδf )(δf )}](αδf )(δf )

Cnpv = −(2/b2)(lvcosα+zvsinα)(zvcosα−lvsinα−zv)Cyβv (4.29)

The derivative of the side force with respect to the roll rate is [83],

Yp =
qSbCnp
2mu0

The derivative of the coefficient of the side force with respect to the roll rate Cyp can be

found from [79]:

Cyp = 2(Cyβv ){(zvcosα−lvsinα)/b} (4.30)
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4.2.5 Pitch Rate Derivatives

The pitching moment with respect to pitch rate derivative, also called pitch damping

derivative is calculated from [79]:

Cmq = Cmqw + Cmqh (4.31)

The wing contribution is given by [79]:

Cmqw = Cmqw/at M=0
{
A3tan2Λc/4
AB+6cosΛc/4

+
3
B
}/{

A3tan2Λc/4
A+6cosΛc/4

+3}

where Cmqw/at M=0
= −kwClαw cosΛc/4[

A{2(xw/c)2+0.5(xw/c)}
(A+2cosΛc/4)

+
A3tan2Λc/4

24(A+6cosΛc/4)
+

1
8

]

The horizontal tail contribution is given by [79]:

Cmqh = −2(CLαh )ηhV h(xach−xcg) (4.32)

4.2.6 Yaw Rate Derivatives

The derivative of the rolling moment with respect to the yaw rate is [83],

Lr =
qSb2Clr
2Ixu0
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The coefficient of the rolling moment with respect to the yaw rate Clr is determined

from [79]:

Clr = Clrw+Clrv (4.33)

The wing and vertical tail contributions are given in order as [79]:

Clrw = (CLw)(Clr/CL)CL=0+(∆Clr/Γ)Γ+(∆Clr/εt)εt

+[∆Clr/{(αδf )(δf )}](αδf )(δf )

Clrv = −(2/b2)(lvcosα+zvsinα)(zvcosα−lvsinα)Cyβv (4.34)

The yawing moment with respect to the yaw rate is [83],

Nr =
qSb2Cnr

2Izu0

The coefficient of the yawing moment with respect to the yaw rate Cnr , also called the

yaw damping is found from [79]:

Cnr = Cnrw+Cnrv (4.35)

The wing and vertical tail contributions are given in order as [79]:

Cnrw = (Cnr/CL
2)(CLw)2+(Cnr/CD0)CD0w
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Cnrv = (2/b2)(lvcosα+zvsinα)2Cyβv (4.36)

The side force with respect to the yaw rate is [83],

Yr =
qSbCyr
2mu0

The coefficient of the side force with respect to the yaw rate Cyr , is found from [79]:

Cyr = −2(Cyβv ){(lvcosα+zvsinα)/b} (4.37)

4.3 Control Derivatives

The techniques to calculate the following control derivatives are addressed in this sec-

tion:

1. Aileron control derivatives.

2. Elevator control derivatives.

3. Rudder control derivatives.

As it was stated before, only preliminary equations are addressed here. Complete analysis

can be found from [79-83].
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4.3.1 Aileron Control Derivatives

The rolling moment with respect to the aileron deflection is given as [83]

Lδa =
qSbClδa
Ix

The coefficient of the rolling moment with respect to the aileron deflection, Clδa , also

called the roll control power, is calculated from [83]:

Clδa =
2CLαw τ
Sb

∫ y2

y1

cy dy (4.38)

The yawing moment with respect to the aileron deflection is given as [83]

Nδa =
qSbCnδa

Iz

The coefficient of the yawing moment with respect to the aileron deflection, Cnδa , also

called the adverse aileron yaw, is predicted from [83]:

Cnδa = KaCLwClδa (4.39)

The side force with respect to the aileron deflection is given as [83]

Yδa =
qSCyδa
m
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The coefficient of the side force with respect to the aileron deflection, Cyδa is negligible

for most of the conventional aileron arrangements [80]:

Cyδa = 0 (4.40)

4.3.2 Elevator Control Derivatives

The pitching moment with respect to elevator derivative, Cmδe , also called the elevator

control power, can be found from [79]:

Cmδe = (αδe)Cmih

(αδe) = kb{clδ/(clδ)theory}(clδ)theory(k
′/clαh )[(αδ)CL/(αδ)cl ]

Cmih = −(CLαh )ηhV h (4.41)

4.3.3 Rudder Control Derivatives

The rolling moment with respect to the rudder deflection is given as [83]

Lδr =
qSbClδr
Ix

The coefficient of the rolling moment with respect to the aileron deflection, Clδr , also

called the roll control power, is calculated from [83]:

Clδr = {(zvcosα−lvsinα)/b}Cyβv (4.42)
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The yawing moment with respect to the rudder deflection is given as [83]

Nδr =
qSbCnδr

Iz

The coefficient of the yawing moment with respect to the aileron deflection, Cnδr , also

called the rudder control power, can be found from [79]:

Cnδr = −Cyβv {(lvcosα+zvsinα)/b} (4.43)

The side force with respect to the rudder deflection is given as [83]

Yδr =
qSCyδr
m

The coefficient of the side force with respect to the rudder deflection, Cyδr is given as

[79]:

Cyδr = (CLαv )(k′Kb){(αδ)CL/(αδ)Cl}(αδ)Cl(Sv/S) (4.44)
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Chapter 5

Investigated Examples of System Identification Using Flight Test Data

Two separate experiments were performed to investigate the System Identification the-

ory, which was detailed in Chapters 2 and 3. The filter error technique was used in both

experiments.

Sections 5.1-5.2 provide experimental details, which were originally carried out at

DFVLR, Institute of Flight Mechanics, Braunschweig, Federal Republic of Germany [68].

The first experiment of this thesis utilized the same flight parameters and flight test data,

which were used in the original experiments. The results of the experiments and compar-

ison with the earlier experiments [1, 68] are also presented. The second experiment was

performed on a radio controlled, glow-powered aircraft trainer, the Hanger 9 Extra Easy.

The flight test data were acquired at Auburn University, Auburn, AL, USA.

5.1 Estimation of Lateral Motion Derivatives using the Simulated Flight Data

This experiment was performed to estimate the lateral motion derivatives of an aircraft

using a linear model and simulated aircraft response. The aircraft response was generated

incorporating moderate to high level of turbulence [1]. Nominal values of the lateral motion

aerodynamic derivatives used correspond to those obtained by parameter estimation from

flight data recorded during the tests in a steady atmosphere with the research aircraft de

Havilland DHC-2, shown in Fig. 5.1 [68]. Classical equations of aircraft motion including
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Figure 5.1: The DLR de Havilland DHC − II Research Aircraft [84]

additional state and measurement noise were used to generate aircraft response time histo-

ries. The rudder and aileron excitations are applied in the experiment to provide realistic

control inputs [68].

An aircraft model for lateral directional motion is given below, which was used to

estimate the derivatives [68, 85, 86].

State equations:

ṗ = Lpp+ Lrr + Lδaδa + Lδrδr + Lvv + bxṗ

ṙ = Npp+Nrr +Nδaδa +Nδrδr +Nvv + bxṙ (5.1)
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Observation equations:

ṗm = Lpp+ Lrr + Lδaδa + Lδrδr + Lvv + byṗ

ṙm = Npp+Nrr +Nδaδa +Nδrδr +Nvv + byṙ

ȧym = Ypp+ Yrr + Yδaδa + Yδrδr + Yvv + byay

pm = p+ byp

rm = r + byr (5.2)

The unknown parameter vector Φ for the considered model has dimensional derivatives and

bias terms. It is given as [68]:

ΦT = [Lp Lr Lδa Lδr Lv Np Nr Nδa Nδr Nv Yp Yr

Yδa Yδr Yv bxṗ bxṙ byṗ byṙ byay byp byr fpp frr] (5.3)

Each element of the parameter vector Φ is defined in the above equations except fpp and

frr. They form diagonal process noise distribution matrix F. The initial values were kept

the same as they were in the original experiment [68].

5.1.1 Comparison of the Results with the Original Experiment

The estimated results for the lateral motion derivatives, applying the system identifi-

cation techniques discussed in Chapters 2 and 3, are summarized in Table 5.1. Initial and

nominal values of the derivatives [1] are also given in the table. The results obtained from
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Table 5.1: Estimated dimensional derivatives of lateral motion of aircraft
Parameter Initial Value Nominal Value Estimated Value Estimated Value

from this from the original
experiment experiment [68]

Lp -6.700 -5.820 -5.818 (0.33) -5.718 (6.6)
Lr 1.830 1.782 1.781 (0.42) 1.720 (9.1)
Lδa -18.300 -16.434 -16.431 (0.53) -14.925 (11.1)
Lδr 0.430 0.434 0.444 (4.80) 0.200 (216)
Lv -0.114 -0.097 -0.097 (0.59) -0.0883 (12.8)
Np -0.906 -0.665 -0.667 (1.23) -0.621 (9.4)
Nr -0.665 -0.712 -0.711 (0.45) -0.722 (3.4)
Nδa -0.660 -0.428 -0.427 (8.61) -0.427 (58.9)
Nδr -2.820 -2.824 -2.825 (0.32) -2.828 (2.4)
Nv 0.0069 0.0084 0.0084 (2.88) 0.0092 (19.0)
Yp -0.640 -0.278 -0.272 (8.79) -0.297 (27.7)
Yr 1.300 1.410 1.408 (0.66) 1.415 (2.5)
Yδa -1.400 -0.447 -0.449 (23.91) -0.514 (72.9)
Yδr 2.790 2.657 2.659 (1.02) 2.688 (3.7)
Yv -0.193 -0.180 -0.180 (0.39) -0.180 (1.5)
Iterations 6 10
Cost Function 6.406×10−32 2.146×10−12

The values in parenthesis indicate percent standard deviation

this experiment are compared with the results of the original experiment [68]. The com-

parison of the estimated values shows that the results from the present work are as close

to the nominal values as the results from the original experiment. The filter error method

converged within 6 iterations. Neither singularity nor convergence problems were found to

occur.

After utilizing the statistical estimation techniques, the first and the most question

is asked about the statistical accuracy of the estimates which are obtained in these ex-

periments. The maximum likelihood estimator is asymptotically more efficient [1] in the

sense of achieving smaller standard deviations which can be computed by σΦi=P1−1. The
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asymptotic efficiency is an important property with practical importance. It implies that

the maximum likelihood estimator makes efficient use of the available data and that the

smaller standard deviation indicates theoretically maximum achievable accuracy of the es-

timates [1]. Tables 5.1-5.5 indicate that the standard deviation of all estimated derivatives

are smaller, which means the estimates are very accurate.

5.1.2 Responses and Results

The comparison of the estimated model response with the measured data and the time

history plots of the control inputs are shown in Fig. 5.2. As it was stated before, the control

inputs and flight data used in this experiment are same as the original experiment [68]. The

estimated data are shown in green while the measured data are shown as blue. Fig. 5.3

shows the convergence plots of the estimated parameters, which suggest all parameters are

converging to a specific constant value within 6 iterations.

Reduction of the cost function appears in Fig. 5.4, which shows how rapidly the cost

function reduces. This is due to the modified Newton-Raphson technique, which finds zero

for the gradient of the cost function at the local minimum point. Also, the theoretically

predicted parameters are very close to the estimated parameters using the algorithm. This

is the prime reason the cost function is very small. Recalling the formulations for process

noise discussed in Section 3.1.2, the combined formulation was used in this experiment.

From Table 5.1 and Figs. 5.2-5.4 the following points are observed.

1. The measured response and the estimated response are in agreement with each other.
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Figure 5.2: Comparison of Estimated(green) and Measured(blue) Responses for the Lateral
Directional Motion of Aircraft
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Figure 5.3: Convergence Plots of Dimensional Derivatives for Lateral Directional Motion of
Aircraft
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Figure 5.4: Cost Function Reduction for Lateral Directional Motion of Aircraft

2. All derivatives converged smoothly within only 4 iterations in comparison with the

original experiment [68], where they converged in 10 iterations. Also, the estimated

derivatives of this experiment are very close to the nominal values in comparison with

the original one [68].

3. The cost function was reduced to a very low value, which was approximately zero.

The observations showed the combined formulation works well with process and measure-

ment noise.
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Figure 5.5: The DLR HFB − 320 Research Aircraft [87]

5.2 Estimation of Longitudinal Motion Derivatives of HFB-320 Aircraft

This experiment was performed to estimate the non dimensional derivatives of another

aircraft. A non-linear model of a fixed wing research aircraft, the HFB-320, shown in Fig.

5.5, was used and the drag, lift and pitching moment coefficients of this research aircraft

were estimated [87]. The longitudinal motion of the aircraft was excited through flight tests

[88]. A multi-step elevator input was used in the flight test, which resulted in a short period

motion, as well as a pulse input, that lead to a phugoid motion [89]. The inputs are shown

in Fig. 5.8.

A non-linear model of longitudinal motion of aircraft was utilized in the experiment

because the non-linear model was found to provide excellent estimation results [88-90]. The

postulated non-linear model to estimate the non-dimensional aerodynamic derivatives is
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described below [1]. This model is in terms of non-dimensional derivatives (the drag, lift

and pitching moment coefficients), which are functions of variables in the wind axes (V, α,

q, etc.) [68].

State equations:

V̇ = −qS
m
CD + gsin (α− θ) +

Fe
m

sin (α+ σT )

α̇ = − qS

mV
CL + q +

g

V
cos (α− θ)− Fe

mV
sin (α+ σT )

θ̇ = q

q̇ =
qSc

Iy
Cm +

Fe
Iy

(ltxsinαT + ltzcosσT ) (5.4)

where the lift, drag and pitching moment coefficients are given as:

CD = CD0 + CDV
V

V0
+ CDαα

CL = CL0 + CLV
V

V0
+ CLαα

Cm = Cm0 + CmV
V

V0
+ Cmαα+ Cmq

qc

2V0
+ Cmδeδe (5.5)

Observation equations:

Vm = V

αm = α

θm = θ
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Table 5.2: Estimated non-dimensional derivatives of longitudinal motion of aircraft
Parameter Initial Value Estimated Value from Estimated Value from the

this experiment original experiment [68]
CD0 0.0057 0.12374 (9.37) 0.1227 (2.4)
CDV 0.0077 -0.0654 (9.88) -0.0645 (3.9)
CDα 0.6742 0.31952 (11.41) 0.3201 (2.2)
CL0 -0.3183 -0.09548 (13.18) -0.0952 (20)
CLV 0.2603 0.15600 (8.78) 0.1500 (10)
CLα 5.3758 4.27838 (4.92) 4.3386 (1.1)
Cm0 0.0498 0.09319 (11.47) 0.1141 (3.3)
CmV 0.0189 0.01488 (14.07) 0.0022 (152)
Cmα -0.4986 -0.89514 (3.24) -0.9705 (1.1)
Cmq -25.844 -38.24428 (5.93) -34.021 (2.3)
Cmδe -0.9907 -1.49040 (3.66) -1.5228 (1.3)
V0 104.67 104.36 106.024
α0 0.1971 0.1085 0.1117
θ0 0.1317 0.1543 0.1049
q0 0.0469 -0.00468 -0.00333
Iterations 6 12
Cost Function 8.514×10−30 3.1256×10−31

Values in parenthesis indicate percent standard deviation

qm = q

q̇m =
qSc

Iy
Cm +

Fe
Iy

(ltxsinαT + ltzcosσT )

axm =
qS

m
CX +

Fe
m

cosσT

azm =
qS

m
CZ −

Fe
m

sinσT (5.6)

where the longitudinal and vertical force coefficients CX and CZ are modeled as

CX = CLsinα− CDcosα

CZ = CLcosα− CDsinα (5.7)
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The above mentioned non-linear aircraft model of Eqs. 5.4-5.6, contains non-linearities due

to trigonometric terms, q and also on account of the transformation in Eq. 5.7.

The unknown parameter vector Φ for the considered model has non-dimensional deriva-

tives, and is given below as [1]:

ΦT = [CD0 CDV CDα CL0 CLV CLα Cm0 CmV Cmα Cmq Cmδe ] (5.8)

5.2.1 Comparison of the Results with the Original Experiment

The estimated results from the longitudinal motion derivatives, applying the system

identification technique discussed in Chapters 2 and 3, are summarized in the Table 5.2.

Initial values of the non-dimensional derivatives [1] are also given in the table. The results

obtained from this experiment are compared with the results of the original experiment

[68]. Neither singularity nor convergence problems were found to occur in this experiment.

5.2.2 Responses and Results

The comparison of the estimated model response with the measured data and the time

history plots of the control inputs are shown in Fig. 5.6. The estimated data are shown

in green while the measured data are shown in blue. Fig. 5.7 shows the convergence plots

of the estimated parameters, which suggest all derivatives converged smoothly within only

4 iterations in comparison with the original experiment [68], where they converged in 12
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Figure 5.6: Comparison of Estimated(green) and Measured(blue) Responses for the Longi-
tudinal Directional Motion of Aircraft

iterations. Also, the estimated derivatives of this experiment are very close to the nominal

values [68].

Reduction of the cost function appears in Fig. 5.9, which shows how rapidly the cost

function was reduced.
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Figure 5.7: Convergence Plots of Non-Dimensional Derivatives for Longitudinal Directional
Motion of Aircraft

Figure 5.8: Inputs for Longitudinal Motion
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Figure 5.9: Cost Function Reduction for Longitudinal Motion

5.3 System Identification Applied to Model Aircraft Trainer

The experiments discussed in sections 5.1-5.2 were successfully completed. As a final

part of the exercise, the system identification technique was applied to model aircraft trainer.

The filter error technique for linear and nonlinear systems discussed in Chapter 3 were

applied here, as well as the modified Newton-Raphson algorithm to reduce the cost function.

The experiment and results are discussed in the following subsections.

5.3.1 The Investigated Aircraft Trainer - Hanger 9 Extra Easy

An unmanned aerial aircraft trainer, Hanger 9 Extra Easy which is made by Hobby

Outlet (shown in Fig. 5.10), was investigated in the third experiment. The Hanger 9 Extra
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Figure 5.10: Aircraft Trainer - Hanger 9 Extra Easy [91]

Easy is a radio controlled glow powered aircraft. Both, lateral and longitudinal motion

derivatives were estimated for this aircraft. For lateral directional motion, a linear model

was used and the state and observation equations of Eqs. 5.1-5.2 were utilized. The unknown

parameter vector Φ of Eq. 5.3 was estimated. For longitudinal directional motion, a non-

linear model was used and the state and observation equations of Eqs. 5.4-5.7 were utilized.

The unknown parameter vector Φ of Eq. 5.8 was estimated. The aerodynamic, geometric

and mass details of the trainer aircraft [91] are given in the following Table 5.3. Geometric

details were provided by the manufacturer and the remaining details were measured from

the aircraft.

5.3.2 Responses and Results

The stability and control derivatives of the aircraft trainer, given in Eq. 5.3 and

Eq. 5.8 were estimated in this part of experiment. The initial value of each derivative
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Table 5.3: Aerodynamic, geometric and mass data for the aircraft trainer
Parameter Detail Data Parameter Detail Data
Wing Area, S, ft2 4.8472 Horizontal tail Area, St, ft2 1.0938
Mach number, M 0.2 Vertical tail Area, St, ft2 0.9375
Aircraft side Area, Sside, ft2 1.4637 Aircraft planform Area, Splf , ft2 1.0664
Aircraft cross sectional Area, 0.167 Aircraft wetted Area, Swet, ft2 4.3005
Scs, ft2

Wing Span, ft 5.167 Horizontal tail Span, bt, ft
Wing mean aerodynamic 0.9375 Horizontal tail mean 0.6035
chord, c, ft aerodynamic chord, ct, ft
Wing aspect ratio, A 5.5072 Horizontal tail aspect ratio, At 0.9142
Location of the wing 1/4 root 0.2614 Aircraft center of 0.2919
chord on the fuselage, fraction arm, lt, gravity, Xcg,
of the fuselage length, lf Back from the leading

edge of the wing, percent
Wing lift curve slop 4.8 Horizontal tail lift curve 3.5
CLαw , rad−1 slope, CLαt , rad

−1

Span efficiency factor, e 0.75 Ambient air density, ρ, slug/ft3 0.002377
Fuselage length, lf , ft 4.2917 Fuselage width, wf , ft 0.2817
Horizontal distance between 2.33 Horizontal distance between 2.52
vertical tail a.c. and vertical tail a.c. and
aircraft wing a.c., lp, ft aircraft c.g. lv, ft
Vertical distance between 0.145 Vertical distance between 0.4292
vertical tail a.c. and vertical tail a.c. and
aircraft wing a.c., zp, ft aircraft c.g., zv, ft
Aircraft weight, W , lbs 8.64 Aircraft speed V0, ft/s 58.67
Center of gravity location, 31 Compressible Sweep 1
percent of c, Correction Factor, B
measured from leading edge
Position of a.c. on wing 0.1781 Position of horizontal tail a.c. 2.7552
m.g.c., Xac, ft on wing m.g.c., Xach , ft
Aircraft mass moment of 0.2712 Sweep angle at leading 0
inertia, Iyy, slug − ft2 edge, ΛLE , deg
Angle of attack, α, deg 5 sideslip angle, β, deg 0
Dynamic pressure, q, lb/ft2 4.1 Taper ratio, λ 1
Wing dihedral angle, Γ, deg 3 Wing twist angle, εt, deg 0
Semi chord Sweep angle, Λc/2 0 Quarter chord Sweep angle, Λc/2 0
Coefficient of viscosity 0.374e-6 Thickness ratio at mean 0.12
of air, µ, slug/ft3, deg geometric chord, t/c, deg
Reynolds number of wing, 0.807e6 Reynolds number of fuselage, 3.7e6
RNwing RNfuse
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Table 5.4: Comparison between the predicted values and the estimated values of the
dimensional derivatives for the lateral motion of the aircraft trainer

Parameter Predicted Values Estimated Values
Lp -8.9091 -9.5691 (5.68)
Lr 3.8293 ———
Lδa 25.3741 30.6561 (5.28)
Lδr -3.8108 ———
Lv 0.6043 2.6734 (8.65)
Np 1.0091 1.3091 (8.12)
Nr -0.4112 ———
Nδa -2.0027 -2.9756 (11.88)
Nδr -5.7743 ———
Nv 0.1953 0.3232 (18.9)
Yp -0.1964 -0.2967 (6.11)
Yr -0.0564 ———
Yδa 0.0000 ———
Yδr -0.3438 ———
Yv 0.5251 0.1203 (10.09)

Values in parenthesis indicate percent standard deviation

was determined using the techniques detailed in Chapter 4. The comparison between the

predicted initial values and the estimated values, of the lateral dimensional derivatives

are summarized in the Tables 5.4-5.5. The comparison between the predicted values and

the estimated values of the longitudinal non-dimensional derivatives are summarized in

the Table 5.6. The figures showing responses use the metric units for the length related

parameters and the degree units for the angle related parameters.

For the lateral motion of the aircraft trainer, two different data sections from the same

flight data were analyzed. The aileron and the rudder control inputs were applied simul-

taneously in both the data sections. First consider that data section in which the aileron

control input was applied. While analyzing this particular data section, the derivatives with

respect to the yaw velocity and the derivatives with respect to the rudder deflection, were
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Figure 5.11: Comparison of Estimated(green) and Measured(blue) Responses for the Lateral
Directional Motion of Aircraft
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Figure 5.12: Convergence Plots of Dimensional Derivatives for Lateral Directional Motion
of Aircraft
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Figure 5.13: Cost Function Reduction for Lateral Directional Motion of Aircraft

kept constant. Table 5.4 shows comparison between the predicted values and the estimated

values of the accounted derivatives. The predicted and estimated values are very close as

that can be concluded from the Table 5.4.

The Fig. 5.11 shows comparison between the estimated and the measured parameters.

It also shows the inputs utilized for this experiment. The estimated parameters are very

close to the measured parameters. Fig. 5.12 shows the convergence of the derivatives.

Now, consider that data section in which the rudder control input was applied. While

analyzing this data section the derivatives with respect to the roll velocity and the deriva-

tives with respect to the aileron deflection, were kept constant. Table 5.5 shows comparison
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Figure 5.14: Comparison of Estimated(green) and Measured(blue) Responses for the Lateral
Directional Motion of Aircraft
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Figure 5.15: Convergence Plots of Dimensional Derivatives for Lateral Directional Motion
of Aircraft
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Table 5.5: Comparison between the predicted values and the estimated values of the
dimensional derivatives for the lateral motion of the aircraft trainer

Parameter Predicted Values Estimated Values
Lp -8.9091 ———
Lr 3.8293 4.5890 (8.46)
Lδa 25.3741 ———
Lδr -3.8108 -4.7749 (19.71)
Lv 0.6043 -0.0435 (9.43)
Np 1.0091 ———
Nr -0.4112 -0.6200 (17.31)
Nδa -2.0027 ———
Nδr -5.7743 -6.5220 (7.3)
Nv 0.1953 0.0135 (25.36)
Yp -0.1964 ———
Yr -0.0564 -0.0614 (27.9)
Yδa 0.0000 ———
Yδr -0.3438 -0.4526 (25.26)
Yv 0.5251 -0.1016 (3.39)

Values in parenthesis indicate percent standard deviation

Figure 5.16: Cost Function Reduction for Lateral Directional Motion of Aircraft
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Table 5.6: Comparison between the predicted values and the estimated values of the non-
dimensional derivatives for the longitudinal motion of aircraft trainer

Parameter Predicted Values Estimated Values
CD0 0.0232 ———
CDV 0.0000 ———
CDα 0.0021 0.0893 (9.25)
CL0 0.2243 -0.0202 (4.55)
CLV 0.0000 ———
CLα 0.1543 0.1274 (7.38)
Cm0 0.0106 -0.0194 (19.72)
CmV 0.0000 ———
Cmα -0.4286 -1.2563 (10.97)
Cmq -23.7257 -30.2730 (6.36)
Cmδe 2.9213 3.3677 (5.36)

Values in parenthesis indicate percent standard deviation

between the predicted values and the estimated values of the accounted derivatives. The

predicted and estimated values are very close as that can be concluded from the Table 5.5.

The Fig. 5.14 shows comparison between the estimated and the measured parameters.

It also shows the inputs utilized for this experiment. The estimated parameters are very

close to the measured parameters. Fig. 5.15 shows the convergence of the derivatives.

To estimate the longitudinal motion of the aircraft trainer, consider that data section

where the elevator control input was given. The aircraft drag due to zero lift was found

unobservable in this experiment. Hence it was not estimated and its predicted value was

used as a constant value. Table 5.6 shows comparison between the predicted values and

the estimated values of the accounted derivatives. From Table 5.6 it can be said that the

predicted and the estimated values are very close.

The Fig. 5.17 shows comparison between the estimated and the measured parameters.

Fig. 5.19 shows the inputs utilized for this experiment.
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Figure 5.17: Comparison of Estimated(green) and Measured(blue) Responses for the Lon-
gitudinal Directional Motion of Aircraft
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Figure 5.18: Convergence Plots of Non-Dimensional Derivatives for Longitudinal Directional
Motion of Aircraft
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Figure 5.19: Input for Longitudinal Motion

Figure 5.20: Cost Function Reduction for Longitudinal Motion
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5.4 Model Validation

Model validation is the final step in the system identification process and must be

performed regardless of the accuracy of the parameter estimation techniques. The prime

reason for above statement is: estimates are not facts. The identified model must prove

that its parameters have physically acceptable values with reasonable accuracy and the best

prediction capability. Due to these arguments, the estimated parameters are compared with

the available aircraft aerodynamics data, which are obtained from wind tunnel experiments,

computational fluid dynamics or theoretical predictions. While comparing these parameters,

accuracy and precision of the estimates must be taken in to account. Model validation is

very important to gain confidence in the identified model.
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Chapter 6

Summary

6.1 Concluding Notes

The system identification technique applied to aircraft is an efficient method for aircraft

aerodynamic modeling, based on flight test data. This thesis traced several breakthroughs

and achievements in the field of system identification, especially application to aircraft.

The thesis started with the definition, meaning and significance of system identification

and also included the necessity for it. Minimization of the maximum likelihood function

was explained in detail.

Presently, this technique involves five fundamental steps: model postulation, exper-

imental design, data analysis, parameter estimation, and model validation. All of them

were explained in detail in this thesis. The filter error technique for data analysis was dis-

cussed in detail, for both linear and nonlinear dynamical systems. Theoretical techniques

for predicting aircraft stability and control derivatives were explained in some details.

The final part of the thesis included successfully investigated examples of system iden-

tification using flight test data with results and comparison of the estimated parameters

with published data. Using the efficient results derived and presented in this thesis, and

also high quality results of many other applications published recently [92-94], a conclusion

is be made that many of the application fields which were thought as growing areas few
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years before are now more or less, well established. The system identification methods are

now highly matured, efficient and sophisticated tools; not only for the research purposes,

but also to support and to satisfy the requirements of the aeronautical industry.

6.2 Expected Future Applications of System Identification to Aircraft

There are many interesting and necessary applications of system identification tech-

niques to aircraft which can be studied in the future. Correlation between computational

fluid dynamics (CFD) practitioners and system identification researchers should increase

considerably. In addition to the use of the system identification technique to validate the

wind tunnel and the CFD data, it should also be utilized in coordinated approaches with

the CFD, to gain advantages of the strengths of both the techniques or if one approach can

not be used efficiently somewhere, another technique can be used to fill in the gaps.

The test data of each individual parts of any aircraft can be measured using small

and inexpensive sensors. Using the modern computation capabilities, the aircraft can be

identified as distributed parameter models for the aircraft aerodynamics. Effects of each

individual sections can be considered as a results of that. This might not be an easy task, as

distributed models need more test data of each individual part, improved dynamical models

and the best wind tunnel and CFD data. The system identification researchers should

then progress towards controlled automated process and solve the particular problems if

encountered.
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A lot of research work can be done with the nonlinear systems and unsteady aero-

dynamic models. It includes learning the basic techniques to design related experiments.

These should also ensure the necessary and critical experiments are being performed at safe

environment and at effective cost; providing the state estimates are accurate and validated

models are appropriate. System identification techniques for the nonlinear systems and un-

steady aerodynamic modeling are very complex, so the experiments need to be performed

with high accuracy and should be repeated.

For few applications, the theoretical and analytical problems will arise in the system

identification which can not be ignored. Every new flying vehicle should be tested using the

system identification techniques to validate the model. The prime practice, known as the

system identification will continue to be an important part in the aeronautical engineering,

which involves identification of the mathematical model based on the measured data from

the experiment.
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Appendix A

Discretization of continuous-time state equation

A.1 Need of Discretization

The state equation utilized in the thesis is given below as [1]:

ẋ(t) = Ax(t) +Bu(t) + bx (A.1)

This is a continuous time equation. The Kalman filter equations are discrete in nature.

Therefore, the state equation given above must be converted from a continuous-time state

equation to a discrete-time state equation. In the discrete-time case, it is assumed that the

input vector u(t) changes only at the equally spaced sampling instants. The discrete-time

state equation will be derived, which yields the exact values at t = kT , k = 0,1,2,3...N

The continuous-time state equation is Eq. A.1. Here, kT and (k+1)T are used instead

of k and (k+1)in order to clarify the analysis. The discrete-time representation of Eq. A.1

should be as follows [95]:

x(k+1)T = Θ(t)xkT + Λ(t)ukT (A.2)

The matrices Θ and Λ depend on the sampling period t. Therefore, if the period is fixed,

Θ and Λ are constant matrices.
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A.2 Determine Θ and Λ

The general integral solution of Eq. A.1 is [95]:

x(t) = eAtx(0) + eAt
∫ t

0
e−AτBu(τ)dτ (A.3)

Therefore

x(k+1)T = eA(k+1)Tx(0) + eA(k+1)T
∫ (k+1)T

0
e−AτBu(τ)dτ (A.4)

and

xkT = eAkTx(0) + eAkT
∫ kT

0
e−AτBu(τ)dτ (A.5)

If Eq. A.5 is multiplied by eAT and subtracted from Eq. A.4, the following result will be

obtained [95].

x(k+1)T = eATxkT + eA(k+1)T
∫ (k+1)T

kT
e−AτBu(τ)dτ (A.6)

That can be simplified to [95]:

x(k+1)T = eATxkT +
∫ T

0
eAτBu(τ)dτ (A.7)

Comparing Eq. A.2 and Eq. A.7 [95].

Θ = eAT and Λ =
∫ T

0
eAτdτ (A.8)
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Θ is termed the state transition matrix, and Λ is the integral of the state transition matrix.

Θ = eAT

Λ = A−1(eAT − I) (A.9)

where I is an identity matrix.

The final discrete-time state equation is given below:

x̃(tk+1) = Θx̂(tk) + ΛBu(tk) + Λbx (A.10)
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Appendix B

Numerical Integration using Runge-Kutta method, Order 4

A Runge-Kutta algorithm was utilized in this thesis to integrate non-linear equations

numerically. Runge-Kutta algorithms use trial steps at the midpoint of each integration

interval to cancel out lower order error terms. The fourth-order formula is sometimes known

as RK44. This method is reasonably simple, robust and also a good general candidate for

numerical solution of differential equations when combined with an intelligent adaptive

step-size routine [96]. Runge-Kutta Method of order 4 used here assumes the function to

be used is continuous-time. The Runge-Kutta method uses following formulae [96]

tk+1 = tk + ∆t

xj+1 = xj +
∆t
6

(k1 + 2k2 + 2k3 + k4) (B.1)

Where k1, k2, k3, k4 are calculated as [96]:

k1 = k(x, u, β)

k2 = k(x+ k1(∆t/2), u, β)

k3 = k(x+ k1(∆t/2), u, β)

k4 = k(x+ k3∆t, u, β) (B.2)
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