Built-In Self Test for Digital Signal Processor Cores in Virtex-4 and Virtex-5 Field
Programmable Gate Arrays

by

Mary Deepti Pulukuri

A thesis submitted to the graduate faculty of
Auburn University
in partial fulfillment of the
requirements for the Degree of
Master of Science

Auburn, Alabama
August 9th, 2010

Keywords: Built-In Self-Test, FPGA, DSP,
Adder, Multiplier

Copyright 2010 by Mary Deepti Pulukuri

Approved by

Charles Stroud, Chair, Professor of Electrical and Computer Engineering
Adit Singh, Professor of Electrical and Computer Engineering
Victor Nelson, Professor of Electrical and Computer Engineering
Vishwani Agrawal, Professor of Electrical and Computer Engineering

 ii
Abstract

Current Field Programmable Gate Arrays (FPGAs) incorporate special cores, apart from
logic, such as digital signal processor (DSP) cores. The DSP cores can be cascaded to implement
complex functions. An effective test approach for testing the logic and configuration memory
associated with these embedded cores is essential. The thesis presents an effective approach for
testing digital signal processor cores embedded in Virtex-4 and Virtex-5 FPGAs using Built-In
Self-Test (BIST) methodology. Since the BIST circuitry can be programmed in the logic present
inside the FPGA that is not being tested at the time, there is no area overhead or performance
penalty.
 The implementation and verification of the developed BIST configurations was done on
various families and sizes of Virtex-4 and Virtex-5 FPGAs. The developed BIST configurations
also detected manufacturing faults in some of the Virtex-4 engineering sample parts.

 iii
Acknowledgements

 I would like to thank Dr. Stroud for his guidance and support throughout my research for
my thesis. I am grateful for his teaching that trained me to be a better engineer. I would like to
thank Dr. Singh, Dr. Nelson and Dr. Agrawal for serving on my committee and for their helpful
suggestions in improving my thesis. I would like to thank my colleagues Brad, Joey, Jie and
Alex for their valuable advice and support.

 iv
Table of Contents

Abstract??????????????????????????????? ???. ..ii
Acknowledgements???????? ??? ??????????????????? iii
List of Tables????????????? ??... ????????????????. vii
List of Figures??? ??????????? ??? ??????????????... .ix
1 Introduction???????????? ??? ??????????????? ??.. 1
 1.1 Overview of FPGAs????? ???? ???. ???...........1
 1.2 Overview of Built-In Self-Test??...?????.????????????... 4
 1.3 Overview of FPGA BIST??????????????????????... 5
 1.4 Thesis Statement?????????????????????????? 6
2 Background Information??????? ??? ????????????? ????.. 8
 2.1 Configurable Logic Blocks in Virtex-4 and Virtex-5 FPGAs?????????8
 2.2 Architecture of DSP cores in Virtex-4 and Virtex-5 FPGAs????????...10
 2.3 Carry Look Ahead (CLA) Adders???????????????????16
 2.4 Booth Multipliers?????????????????????????.. 18
 2.5 Prior Work Done in Testing CLA Adders????????????? ??? 19
 2.6 Prior Work Done in Testing Booth and Booth/Wallace Multipliers??? ???.20
 2.7 Restatement of Thesis??????????????????? ??. ??.. .24
3 BIST for DSP Cores in Virtex-4 FPGAS????????? ????? ?....................... 26
 v
3.1 BIST Approach for DSPs in Virtex-4 FPGA???????????? ???.. 26
3.1.1 Adder Test????????????? ?.. ???????.........27
 3.1.2 Multiplier Test??????????????????? ?...29
 3.2 BIST Architecture??????????????????????? ?? ...30
 3.3 BIST Architecture and Test Sequences??????????? ??... ????34
 3.4 BIST Generation?????????????????????? ??... ?.. .39
 3.5 Detection of Faulty DSPs and Fault Coverage??? ????????????41
 3.6 BIST Timing Analysis??? ????????????????????.....43
 3.7 Summary??? ? ? ? ??????????????????????......51
4 BIST for DSP Cores in Virtex-5 FPGAS?????? ??????????????...53
 4.1 BIST Approach for DSPs in Virtex-5 FPGAs??? ????????????.53
 4.1.1 Adder and Multiplier Tests.??????? ?? ????????...53
 4.1.2 Pattern Detector Test?? ??????? ? ??????????.55
 4.1.3 ALU Logic Mode Test?? ?????????????????..62
 4.1.4 Cascade Mode Test?? ?????????????????.......64
 4.1.5 SIMD Mode Test?? ?????????????? ?????...65
 4.1.6 MACC Extend Mode Test?? ??????????????.........66
 4.2 BIST Architecture??? ?????????????????????........66
 4.3 BIST Configurations and Sequences??? ??????????????..?.70
 4.4 BIST Generation??? ? ????????????????????..........74
 4.5 Timing Analysis of BIST.??? ????????????????????74
 4.6 Fault Inject Analysis and Fault Coverage.??... ??????????????79
4.7 Summary.?????????????????????????? ???. 80
5 Summary and Conclusion...??????.. ???????????????????..81
 vi
 5.1 Summary of Virtex-4 DSP BIST.??.. ? ??????????????.........81
 5.2 Summary of Virtex-5 DSP BIST??... ???????????????.........82
 5.3 Application to Other FPGAs and Architectures??... ?????????..........82
References..??? ??? ??????????????????????????...84
 vii
List of Tables

2.1 OPMODE Values for Virtex-4 and Virtex-5 FPGAs [9] [10]??... ?????????. 13
2.2 ALUMODE Values Determining the Adder/Subtractor Operation [10]??... ?????. 14
2.3 Control Values for Logic Functions in Virtex-5 FPGAs [10]??.. ?????????... 15
2.4 Test Sequence for a 2-bit CLA [15]??.. ???????????????????.. 20
2.5 Test Sequence for a 4-bit CLA [15]??.. ??????????????? ????.. 20
2.6 Test Patterns for an 8-bit Multiplier Using 4?4 Test Algorithm??... ????????..21
2.7 Test Patterns for an 8-bit Multiplier Using 5?3 Test Algorithm??... ????????. .22
3.1 Stuck-at Fault Simulation Results for 48-bit Adders... .?????? ??... ?????..28
3.2 Control Register values for TPG control??... ????????????????? ..30
3.3 BIST Sequences??... ??????????????????????????.... 35
3.4 Weighted Pseudorandom Patterns??... ????????????????????3 7
3.5 Initially developed BIST Configurations.??.. ?????????? ??????...... 39
3.6 Improvement in Download Time using Partial Reconfiguration??... ????????.. 39
3.7 Faulty DSP Slices in Virtex-4 SX35 and LX60 Engineering Sample Parts??.. ????.. 42
3.8 Configuration File Size and Test Time Increase for Same Edge Clock??.. ??????50
3.9 Download File Sizes (in Bits) for an SX55 Device??.. ?????????????...51
3.10 BIST Configurations for Virtex-4 DSP BIST??... ?????????????....... 51
4.1 Multiplier and Adder Test Sequences??... ??????????????????.. 55
 viii
4.2 Test Vectors for Testing the 4-bit Patterndetect Logic??? ???????????.. 56
4.3 Test Vectors for Testing the 4-bit Patternbdetect Logic??? ??????????? 58
4.4 BIST Configurations for the Pattern Detector??? ?? ????????????.... 62
4.5 Values for A and B pipeline registers [10]??.. .????????????????.. 64
4.6 Control Register Values for TPG Control??... ????????????????... 68
4.7 BIST Configurations for Patterndetect Logic??? ???????????????. 71
4.8 BIST Configurations for Virtex-5 DSPs ??? ????????????????.... 71
4.9 BIST Sequences for Virtex-5 DSP ??? ??????????????????.... 73
4.10 Variables in Table 4.8??? ???????????????????????... 73
 ix
List of Figures

1.1 General Architecture of an FPGA???...??????????????????? ..3
1.2 BIST Architecture [1]???.. ????????????????????????..5
1.3 FPGA BIST Architecture [13]???.. ?????????????????????.6
2.1 Simplified Architecture of a Virtex-4 CLB [6]???.. ???????????????9
2.2 Simplified Architecture of a Virtex-5 CLB [7]???. ??????????????...10
2.3 DSP Tile in Virtex-4 Devices [9]???. ???????????? ???????....11
2.4 DSP Slice in Virtex-5 FPGAs [10]???. ???????????????????.16
2.5 Basic Structure of a 4-bit CLA???. ????????????????????...17
2.6 Adder Test Algorithm using Twisted Ring Counter [15]??? ????????? .?... 20
2.7 4?4 Multiplier Test Algorithm [16]? ??. ???????????????????22
2.8 5?3 Multiplier Test Algorithm [17]??. ? ???????????????????23
2.9 ORA Design for Multiplier BIST in Virtex- II Pro FPGAs [21]...24
3.1 Modified Adder Test Algorithm???. ???? ????????????????.29
3.2 2-stage CLA adder.???.????????????????????????? .29
3.3 Multiplier BIST approach???.??????????????????????.. .30
3.4 DSP BIST Architecture???. ???????????????????????.. .32
3.5 ORA Architecture???. ?????????????????????????...33
 x
3.6 ORA map for a DSP tile?......... ???????????????????????.33
3.7 TPG Architecture???. ?????????????????????????....34
3.8 Architecture of the 9-bit LFSRA???. ????????????????????36
3.9 BIST Template as Seen in FPGA Editor???. ?????????????????41
3.10 Maximum BIST Clock Frequency for an SX35 Device when DSPs in???. ????...45
 Configurations #3 and #5 are Clocked on Falling Edge of the Clock
3.11 Maximum BIST Clock Frequency for an SX35 Device when DSPs in ???.. ????.45
 Configuration #3 are Clocked on Falling Edge of the Clock
3.12 Maximum BIST Clock Frequency???.. ??????????????????.. 46
3.13 Maximum Clock Frequency for Sub-Arrays....??. ??????????????....47
3.14 Routing Paths for the Sub-Arrays with TPG at the Middle of the Array???. ?? ??.47
3.15 TPG Position for the Bottom Sub-Array??.? ????????????????..48
3.16 Timing Analysis Based on Clock Edge for Configuration #3.???. ????????.48
3.17 Timing Analysis for DSP BIST Configurations #2 through #5.???.. ???????.. 49
4.1 Architecture for a 4-bit Patterndetect Logic???.. ???????????????..56
4.2 Architecture for a 4-bit Patternbdetect Logic???.. ??????????????....57
4.3 TPG for the Pattern Detector???.. ?????????????????????.59
4.4 Multiplexer Architecture for Selecting the Pattern and the Mask [10]???... ?????.60
4.5 Detailed Multiplexer Architecture for Selecting Mask???... ???????????.60
4.6 Auto Reset Logic [10]???... ???????????????????????... 61
4.7 Overflow and Underflow Logic [10]???.. ??????????????????.61
4.8 Multiplexer Architecture that Selects Between Direct and Cascade Paths???... ???...65
 of A and B Ports [10]
 xi
4.9 ORA Architecture [24]??.. ????????????????????????..68
4.10 I/O of a Virtex-5 DSP Slice??.. ??????????????????????.69
4.11 DSP ORA Orientation in Virtex-5 FPGAs??. ????????????? ???..69
4.12 TPG Architecture??. ??????????????????????????.70
4.13 Clock Frequency Based on the Position of the TPGs and the ORAs??. ??????..75
4.14 Clock Frequency for the Sub-Arrays Based on the Position of the TPGs??. ???? ...76
4.15 Clock Frequency for Quarter ?Arrays Based on the Position of the TPGs??. ????.77
4.16 Quarter Arrays for LXT330 device??. ???????????????????.78
4.17 Clock Frequencies for all Arrays of the SXT95 Device Based on Positions??.. ???.78
 of the TPGs and ORAs
4.18 Fault Inject Results for Virtex-5 DSP BIST??. ????????????????79
 1
Chapter 1

Introduction
With the advancement of semiconductor manufacturing technology and the reduction of
feature size from 4 microns to 45 nanometers, logic design is becoming denser with the
integration of billions of transistors on a single integrated circuit. An example of such a dense
logic circuit is the field programmable gate array (FPGA)[1].
As the complexity of integrated circuits increases, the challenges in testing also increase
[2]. Testing such complex integrated circuits by the user is a challenging problem since the
manufactures of FPGAs provide limited information about the internal circuitry. Hence the
challenge lies in figuring out the architecture of the logic resources and then applying accurate
tests to ensure complete testing of the FPGA.
1.1 Overview of FPGAs
FPGAs have been popular since the mid 1980s for implementing any complex digital
logic design. The ability of the FPGA to be reprogrammed easily and quickly without changing
the fabrication or the wiring makes the use of the FPGA very flexible [3]. Over the years the
FPGA architecture has increased in size and complexity. The number of transistors in the largest
FPGA now is over a billion [1].
Figure 1.1 shows the general architecture of an FPGA. The FPGA is a two dimensional
array of logic blocks. The logic blocks can be programmed to implement any arbitrary digital
logic circuit [4]. The basic element of the FPGA is the configurable logic block (CLB) [5]. The
CLBs consists of look up tables (LUTs), multiplexers and flip-flops. They can be configured to
 2
perform any desired combinational or sequential logic function [6]. Combinational logic is
implemented using LUTs and multiplexers. Sequential logic is implemented using flip-flops [8].
The number of inputs to the LUT is fixed for a given FPGA but varies with different FPGAs and
ranges from three to six [1]. Some of the LUTs can be programmed to function as small random
access memory (RAM) units. The Input/Output blocks (IOB) located on the extreme and center
columns [6] [7] of the device provide access to the logic blocks integrated inside the FPGA. The
number of CLBs and IOBs differs based on the family and how big the device is. The number of
CLBs in Xilinx Virtex-4 FPGAs varies from 1,536 to 22,272 [6] and the number of CLBs in
Xilinx Virtex-5 FPGAs varies from 2,400 to 25,920 [7]. The memory modules in Xilinx Virtex-4
FPGAs are 18KB dual port RAMs [6] and 36KB dual port RAMs in Xilinx Virtex-5 FPGAs [7].
These memory modules, called block RAMs (BRAMS), can be combined to provide larger
memory blocks.
 The Xilinx Virtex-4 and Xilinx Virtex-5 FPGAs also have digital signal processor (DSP)
cores incorporated in their structures [6] [7]. The DSP cores are used to implement DSP
applications in a faster and more efficient manner compared to the DSP implementation in the
earlier family of Xilinx Virtex-2 FPGAs [9]. The DSP core architecture mainly consists of a 2-
port multiplier, a 3-port adder/subtractor unit and a 48-bit accumulator register [9] [10]. The
multiplier in Xilinx Virtex-4 FPGA is an 18x18-bit two?s complement multiplier [9] and Xilinx
Virtex-5 FPGAs incorporate a 25x18-bit two?s complement multiplier [10]. A common function
of the DSP core is the multiply and accumulate (MAC) operation. Besides the multiplier and the
adder, the DSP cores in Xilinx Virtex-5 FPGAs also have a 48-bit comparator unit and an
Arithmetic & Logic Unit (ALU) mode of operation that is used to implement 48-bit boolean
logic functions [10]. Multiplexers select different input/output paths within the DSP core. The
 3
DSP cores can also be cascaded to facilitate the implementation of larger input/output functions
[9] [10]. The number of DSP slices in Virtex-4 FPGAs ranges between 32 and 512 and the
number of DSP slices in Virtex-5 FPGAs ranges between 32 and 1,056.

The logic blocks are interconnected by a series of horizontal and vertical routing lines
[11]. The routing lines differ in lengths based on the number of logic blocks they span [1]. The
routing channel between the logic blocks is determined by a matrix of programmable switches
called programmable interconnect points (PIPs) [1] [11]. The logic blocks and the
interconnection between them can be easily reprogrammed by changing the configuration data
that is downloaded to the FPGA [4].

IOBs CLBs BRAM
s
Interconnect
network Embedded cores like DSPs
Figure 1.1 General Architecture of an FPGA
 4
1.2 Overview of Built-In Self-Test
Because of the increased use of very large scale integrated (VLSI) circuits in digital
systems, the reliability of these circuits is crucial. Hence the need for test methods at lower costs.
But the increased complexity of the digital systems makes testing expensive [12]. There are
different ways of testing the FPGA. In external testing the circuit that generates test patterns for
the circuit under test and the circuit that observes the response of the circuit under test are
external to the circuit under test. In built-in self-test (BIST) the test pattern generation circuit and
the circuit that analyzes the output response of the circuit under test are internal to the circuit
under test. In offline testing [1], the FPGA is tested while the system is not in its usual mode of
operation. In application-dependent testing [1] the FPGA is tested for the specific system
function that is being implemented. In this case, the design for testability (DFT) circuitry is
implemented in the digital system that is being implemented in the FPGA. This increases the
area occupied by the digital system circuit that is being implemented.
BIST is a DFT technique where test circuitry is implemented in the FPGA itself. Figure
1.2 shows the general BIST architecture [1]. The test pattern generator (TPG) generates test
patterns for completely testing the device under test. The output response analyzer (ORA)
observes the output response of the device under test for the input test patterns and reports any
failures due to faults in the device under test. The test controller coordinates the operation and
execution of the TPG, ORA, and device under test.
 5

1.3 Overview of FPGA BIST
The regularity in the structure of the FPGA makes pseudo-exhaustive testing possible
without the need for expensive fault simulation [13]. In BIST, the FPGA is tested using a series
of test configurations. The test configurations are repeatedly programmed into the FPGA to
ensure that all the operational modes of the FPGA are thoroughly tested and the device functions
fault-free irrespective of the system function that will be implemented [1] [13].
Some of the logic blocks in the FPGA that are not under test are configured as TPGs and
ORAs [13]. Sometimes faults can go undetected if there are faults in a logic block that is
configured as part of the TPG. Faults can also go undetected if faults exist in the interconnection
between the TPG and the block under test (BUT). Faulty logic blocks in the TPG or faults in the
interconnection between the TPG and BUT fail to generate the desired test patterns to completely
test the BUT. To avoid missing the detection of any fault due to a faulty TPG, two or more TPGs
are used [1]. Two ORAs observe the output response of every BUT which is also compared to
the output responses of two other BUTs. As shown Figure 1.3 each BUT is observed by the ORA
beside it and the ORA below. The bottom BUT in the array is observed by the ORA beside it and
the ORA at the top of the array which also observes the output response of the top BUT of the
array. This comparison of output responses is called circular comparison and is done to help
Figure 1.2 BIST Architecture [1]
Test
Controller
Test Pattern
Generator
Device
Under Test
Output Response
Analyzer
 6
locate the faulty BUT [1]. At the end of the BIST sequence, the ORA contents, the BIST results,
can be retrieved to detect and determine individual BUT failures using diagnostic procedures. [1]
[13].

1.4 Thesis Statement
Although some research has been done on BIST for DSP cores in general [14], there is
little literature on BIST for DSP cores in FPGAs. However, prior research has been done in
designing BIST algorithms for adders and multipliers. An adder BIST approach is presented in
[15] and multiplier BIST approaches are presented in [16], [17] and [18]. The challenge in
testing the DSP cores in the FPGA lies in testing the adder and the multiplier circuitry, as the
remaining components in the DSP core, such as multiplexers and flip-flops, can be easily tested.
The research work presented in this thesis discusses the development, architecture and
operation of BIST implementations for DSPs in Xilinx Virtex-4 and Virtex-5 FPGAs. This is
achieved by making improvements on the previous work done for adders and multipliers to
generate more effective test patterns and to keep the test time as low as possible independent of
the specific adder and multiplier architectures. BIST configurations for testing the DSP cores in
 TPG #1
 TPG #2
Figure 1.3 FPGA BIST Architecture [13]
BUT
BUT
BUT
BUT
BUT
ORA
ORA
ORA
ORA
ORA
Pass/Fail
BIST start
 7
Xilinx Virtex-4 and Xilinx Virtex-5 FPGA devices are generated based on the architecture
presented in the data-sheets provided by the manufacture. The resulting BIST configurations are
downloaded and executed in the FPGA. Effectiveness of the BIST configurations is established
via fault injection in the configuration memory of actual hardware. [29]
The remaining chapters in the thesis are organized as follows: Chapter 2 presents an
overview of the architecture of Virtex-4 and Virtex-5 FPGAs as well as their embedded DSP
cores. It also presents prior work done in testing DSPs, multipliers and adders. Chapter 3
presents the architecture and operation of BIST designed for testing the DSP cores in Virtex-4
and Virtex-5 FPGAs. Chapter 4 presents the actual implementation of this BIST architecture in
Virtex-4 and Virtex-5 FPGAs. It also presents the results and fault coverage of the BIST.
Chapter 5 summarizes and concludes the thesis with suggestions for future work.
 8
Chapter 2
Background Information
 The ease of reprogramming an FPGA makes it attractive for the implementation of any
complex logic system. With the incorporation of embedded memories and specialized cores for
signal processing, FPGAs can be used for almost any application [25]. This chapter presents the
architecture of the logic resources used to implement the TPGs and ORAs for BIST for DSP
cores in Virtex-4 and Virtex-5 FPGAs and explains the architecture of the DSPs cores. This
chapter also presents prior work done in testing multiplier and adder logic functions which are
also used in DSPs.
2.1 Configurable Logic Blocks in Virtex-4 and Virtex-5 FPGAs
 The TPGs and ORAs for BIST for DSP cores in Virtex-4 and Virtex-5 FPGAs are
implemented in CLBs. The Virtex-4 CLB comprises four slices. Each slice is connected to a
switch matrix through which it accesses the global routing resources. Figure 2.1 shows the
simplified architecture of a Virtex-4 CLB. Each pair of CLB slices are arranged in two separate
columns. The two slices in the left column are called SLICEMs because they also function as
small memories and the two slices in the right column are called SLICELs since they function as
logic only [6].
 Each slice has two 4-input look up tables (LUTs), two memory elements, a carry chain
and multiplexers. The memory elements can function as edge-triggered D flip-flops or as level-
sensitive latches. The D flip-flops can either be driven by the output of the LUT or can be driven
by the inputs to the slice [6]. The multiplexers in the CLB slices are used to combine the LUTs
 9
within a CLB or in different CLBs to be able to implement higher input logic functions. The
carry chain in the slices enables faster addition and subtraction [6].

The Virtex-5 CLB comprises only two slices. Like the Virtex-4 CLB, the Virtex-5 CLB
slices are connected to the switch matrix through which the global routing resources can be
accessed. Figure 2.2 shows the simplified architecture of a Virtex-5 CLB. Each slice arranged in
a separate column, is independent from the other, and has separate carry chains [7]. Each slice
has four 6-input LUTs, four memory elements, multiplexers, and a carry-chain. Each slice has
three multiplexers which can be used to combine up to four LUTs to be able to implement logic
functions of up to eight inputs. Higher input logic functions can be implemented by using more
slices. The carry chain with its dedicated carry logic enables fast addition and subtraction [7].
The memory elements in Virtex-5 CLBs are similar to the memory elements in Virtex-4 CLBs.
They can be configured as edge-triggered D flip-flops or as level sensitive latches by user
controlled configuration memory bits. They can be driven by the output of the LUTs or by the
slice inputs [7].
Figure 2.1 Simplified Architecture of a Virtex-4 CLB [6]
Cout
Switch
Matrix
SLICEL
Slice 3
SLICEL
Slice 1
SLICEM
Slice 0
SLICEM
Slice 2
Cin
Cout
Cin
CLB
 10

2.2 Architecture of DSP cores in Virtex-4 and Virtex-5 FPGAs.
Virtex-4 and Virtex-5 FPGAs incorporate DSP cores in their architectures and can be
used for implementing large math functions, DSP applications such as finite impulse response
(FIR) filters or to perform complex arithmetic computation without the need of using the general
FPGA logic [9]. The architecture of a DSP tile in Virtex-4 FPGAs is shown in Figure 2.3 where
two DSP slices form a DSP tile. Each DSP slice has an 18?18-bit two?s complement multiplier
that generates two 36-bit partial products. The A and B input ports in the DSP slice provide 18-
bit access to each port of the multiplier. The final stage adder of the multiplier is separated from
the multiplier and is incorporated in a separate three-port 48-bit adder/subtractor. The C input
port is shared by both the DSP slices in the DSP tile and provides 48-bit access to the
adder/subtractor through the 48-bit Y and Z multiplexer busses [9]. The partial products from the
multiplication process are sign-extended to 48-bits and summed in the adder/subtractor. The
partial products are fed to the adder/subtractor via the 48-bit X and Y multiplexer busses. The
accumulator register, denoted by P in Figure 2.3, provides the only other 48-bit access to the
Switch
Matrix
Slice 0
Slice 1
Cin
Cout
Cin
Cout
CLB
Figure 2.2 Simplified Architecture of a Virtex-5 CLB [7]
 11
adder/subtractor through the X and Z multiplexer busses. Seven OPMODE signals dynamically
control the select inputs to the X, Y and Z multiplexers [9].

Figure 2.3 DSP Tile in Virtex-4 Devices [9]
The adder/subtractor performs P=Z?(X+Y+Cin) and produces a 48-bit two?s complement
result [9]. Here P is the output port, Cin is the carry-in input, and X, Y and Z are 48-bit
multiplexer busses. The subtract input to the adder/subtractor shown in Figure 2.3 chooses
between add or subtract operation of the adder/subtractor. A logic 1 on the subtract input chooses
the subtract operation and a logic 0 on the subtract input chooses the add operation [9].
 12
The data input paths, the control signal input paths and the output paths of the DSP slice
have optional pipeline registers. Each pipeline register introduces a delay of one clock cycle in
the path. The number of pipeline registers in the path can be controlled by user-defined
configuration memory bits that control the select inputs to the shaded multiplexers in Figure 2.3
[9]. Maximum clock frequency is achieved when all pipeline registers are included in the I/O
paths of the DSP slice. The A and B input ports can have up to two pipeline registers in their
paths. The C and P ports can have up to one pipeline register. The input control signals paths that
select the input paths to the adder/subtractor can have up to one pipeline register in their paths.
The output of the multiplier also has a pipeline register (Mreg) as shown in Figure 2.3 (next to
note 3) [9]. The Mreg introduces a clock cycle delay before the partial products are summed in
the adder/subtractor.
The DSP slices in a column of DSPs can be cascaded to form larger DSPs. The B and P
ports in a slice can be cascaded to the slice above. A user-defined configuration memory bit
selects the B-input source to be direct or cascaded from the slice below. OPMODE values
dynamically select cascading of the P port at the input to the Z multiplexer [9]. Table 2.1
illustrates all possible OPMODE values that control the inputs the X, Y and Z multiplexers in
Virtex-4 and Virtex-5 FPGAs.
The DSP slice in Virtex-5 FPGA has the same functionality as the DSP slice in Virtex-4
FPGA with some additional features. The simplified architecture of a single Virtex-5 DSP slice
is shown in Figure 2.4. The DSPs in Virtex-5 FPGAs incorporate a larger 25?18-bit multiplier.
The A input port of the Virtex-5 DSP slice is 30-bits wide and the least significant 25 bits of the
A port provide 25-bit access to the multiplier [10]. The C port is independent to both the DSP
 13
slices where each slice has its own 48-bit C port. The A and B ports can be concatenated to
provide another 48-bit access to the adder/subtractor [10].
Table 2.1 OPMODE Values for Virtex-4 and Virtex-5 FPGAs [9] [10]
Opmode values for the X-multiplexer outputs
Z
Opmode[6:4]
Y
Opmode[3:2]
X
Opmode[1:0] X output Comments
xxx xx 00 0 default
xxx 01 01 M When the multiplier is used
xxx xx 10 P
xxx xx 11 A:B
Opmode values for the Y-multiplexer outputs
Z
Opmode[6:4]
Y
Opmode[3:2]
X
Opmode[1:0] Y output Comments
xxx 00 xx 0 default
xxx 01 01 M When the multiplier is used
xxx 10 xx 48?ffffffffffff
Used for the logic unit bitwise
operations (Illegal selection for
Virtex-4)
xxx 11 xx C
Opmode values for the Z-multiplexer outputs
Z
Opmode[6:4]
Y
Opmode[3:2]
X
Opmode[1:0] Z output Comments
000 xx xx 0 default
001 xx xx PCIN
010 xx xx P
011 xx xx C
100 10 00 P Used for MACC extend (Illegal selection for Virtex-4)
101 xx xx 17-bit shift PCIN
110 xx xx 17-bit shift P
111 xx xx xx Illegal selection for Virtex-4 and Virtex-5
The adder/subtractor in Virtex-5 DSPs has been extended to function as a two-input 48-
bit logic unit but the architecture of the basic adder/subtractor in DSPs of Virtex-5 FPGAs is
same as the architecture of the adder/subtractor in DSPs of Virtex-4 FPGAs. ALUMODE control
signals select between the adder/subtractor/logic unit operation [10]. The subtract signal does not
exist as a unique input in DSP slices of Virtex-5 FPGAs. Instead, an ALUMODE value of
 14
?0000? selects the add operation defined by the equation P=Z+X+Y+Carryin, where X, Y and Z
are 48-bit multiplexer buses. An ALUMODE value of ?0011? selects the subtract operation
defined by the equation P=Z?(X+Y+Carryin) [10]. Table 2.2 illustrates the ALUMODE values
for all the adder/subtractor logic equations that can be implemented.
Table 2.2 ALUMODE Values Determining the Adder/Subtractor Operation [10]
ALUMODE[3:0] DSP operation
0000 Z + X + Y + CARRYIN
0011 Z ? (X + Y + CARRYIN)
0001 -Z + (X + Y + CARRYIN) - 1
0010 Not (Z + X + Y + CARRYIN)
The bitwise logic operations performed by the logic unit include bitwise logical AND,
OR, NOT, NAND, NOR, XOR and XNOR operations. ALUMODE inputs along with
OPMODE[3:2] select the type of logical function as summarized in Table 2.3 [10]. Like the
DSPs in Virtex-4 devices, the DSPs in Virtex-5 devices also have pipeline registers in their I/O
paths and control signal paths. The A and B ports can have up to two pipeline registers, the C
and P ports can have one pipeline register, the control signal paths can have one pipeline register
and the Mreg pipeline register at the output of the multiplier, can be included by the user based
on the performance desired. Higher performance is achieved when all the pipeline registers are
included. Multiplexers that are controlled by configuration bits select the number of pipeline
registers in these paths [10].
A 48-bit pattern detector is incorporated for comparison of two 48-bit patterns and is used
for applications such as convergent rounding, overflow/underflow detection for saturation
arithmetic, and auto resetting counters/accumulators [10]. The output of the DSP slice can be
compared with a 48-bit pattern specified by the user. The pattern to the DSP slice can be
provided through the C port or can be specified in the configuration memory bits. The output
 15
Patterndetect goes to a logic ?1? if the output of the DSP slice matches the pattern, and the output
Patternbdetect goes to logic ?1? if the output of the DSP slice matches the complement of the
pattern [10]. A mask can be used to hide certain bits in the pattern detector. The bits hidden by
the mask are not considered during comparison. Like the pattern, the mask can be provided
through the C port or can be specified in the configuration memory bits [10]. The overflow and
underflow flags are set by the DSP slice when the output of the adder/subtractor goes beyond a
range of patterns determined by the number of 1s in the mask. If N is the number of 1s in the
mask, the pattern values range from positive 2N to negative 2N-1. When addition goes beyond 2N,
the Patterndetect output switches from logic ?1? to logic ?0?, which causes the overflow flag to be
set. When subtraction goes beyond 2N-1, the Patternbdetect output switches from logic ?1? to
logic ?0?, which causes the underflow flag to be set [10].
Table 2.3 Control Values for Logic Functions in Virtex-5 FPGAs [10]
OPMODE[3:2] ALUMODE[3:0] Logic function
00 0100 X XOR Z
00 0101 X XNOR Z
00 0110 X XNOR Z
00 0111 X XOR Z
00 1100 X AND Z
00 1101 X AND (NOT Z)
00 1110 X NAND Z
00 1111 (NOT X) OR Z
10 0100 X XNOR Z
10 0101 X XOR Z
10 0110 X XOR Z
10 0111 X XNOR Z
10 1100 X OR Z
10 1101 X OR (NOT Z)
10 1110 X NOR Z
10 1111 (NOT X) AND Z
The SIMD (Single Instruction Multiple Data) mode is used to split the
addition/subtraction/logic unit into two 24-bit (two24) or four 12-bit (four12)
adder/subtracter/logic units. The adder/subtracter unit has two independent carryout signals and
 16
four independent carryout signals in the two24 and four12 modes respectively. When used as in
single 48-bit adder/subtractor unit mode, there is only one carryout signal [10].
The A port, along with the B and P ports, can be cascaded in DSPs of Virtex-5 FPGAs
[10]. Cascade signals CARRYCASCIN and CARRYCASCOUT are used to implement 96-bit
adders, subtractors or logic units. The cascade signals such as MULTSIGNIN and
MULTSIGNOUT are used to extend the multiply and accumulate (MACC) function to create
96-bit accumulators. The most significant bit of the output of the multiplier is cascaded through
its MULTSIGNOUT port to the MULTSIGNIN port of the DSP slice above. The OPMODE
value for the ?MACC extension? feature is given in Table 2.1 [10].

Figure 2.4 DSP Slice in Virtex-5 FPGAs [10]
2.3 Carry Look Ahead (CLA) Adders
 Carry look ahead (CLA) adders are widely used in most applications where high speed
addition is performed. The basic structure of a CLA adder is summarized in Figure 2.5. Each
adder cell receives a pair of inputs (Ai and Bi) and a carry-in (Ci) to generate sum (Si), propagate
(Pi), and generate (Gi) signals. The Pi and Gi signals along with the carry-in signals produce
 17
carry-out signals in the look ahead carry unit (LCU) for the subsequent adders. The equations
shown in Figure 2.5 summarize the logic functions of the CLA adder. The propagate signal can
be generated by using an OR gate as summarized in the adder equations using the ?POR?
implementation in Figure 2.5. Another way of generating the propagate signal is by using the
XOR gate used for the sum as summarized in the adder equations using the ?PXOR?
implementation in Figure 2.5.
Larger CLA adders can be constructed by connecting the carry-out of one 4-bit LCU unit
to the carry-in of the next 4-bit CLA unit [19]. This type of CLA adder is called the ripple CLA
adder. Another approach feeds the propagate (PG) and generate (GG) signals produced in the
LCU to a second stage LCU to construct a 16-bit CLA adders. Larger CLA adders of 48-bits like
the adder used in DSP cores in Virtex-4 and Virtex-5 FPGAs can be constructed either by
rippling the carry outputs of the second stage LCU or by adding an additional stage of LCUs.
Additional LCUs reduce delay at the expense of additional area overhead.
 Figure 2.5 Basic Structure of a 4-bit CLA
Adder
A3 B3
S3
Adder
A2 B2
S2
Adder
A1 B1
S1
Adder
A0 B0
S0
 P3 G3 C3 P2 G2 C2 P1 G1 C1 P0 G0
 4-bit Look Ahead Carry Unit PG GG
C0
C4
Look Ahead Carry Unit Logic Equations
PG=P0?P1?P2?P3
GG=G3+G2?P3+G1?P2?P3+G0?P1?P2?P3
C1=G0+P0?C0
C2=G1+G0?P1+P1?P0?C0
C3=G2+G1?P2+G0?P1?P2+P2?P1?P0?C0
C4=G3+G2?P3+G1?P2?P3+G0?P1?P2?P3+P3?P2?P1?P0?C0
Adder Logic Equations
POR: PXOR:
S = A?B?Cin S = P?Cin
P = A+B P = A?B
G = A?B G = A?B
 18
2.4 Booth Multipliers
 An m?n array multiplier performs multiplication be generating n partial products for each
of the m-bits of the multiplicand. These partial products are summed using an array of adders to
generate the final result. Booth multipliers reduce the number of partial products to be summed
by ?recoding?, meaning grouping together some bits of either one of the operands, thereby
speeding up the multiplication process [16].
The architecture of the multiplier is divided into three groups of cells. They are named as
the ?recoding cells (r cells)?, the ?partial product cells (pp cells)? that calculate the partial
products and the ?adder cells? that sum the partial products. One of the two operands of the
multiplier is recoded [16]. If the Booth multiplier has a 2-bit recoding then the recoded operand
is divided into groups where each group has 2 bits. If X is the recoded operand, the bits in the
group would be X2j, X2j+1 where j varies from 0 to Nx/2 and Nx is the number of bits in the
operand X [16]. These two bits and the most significant bit (MSB) of the previous group, X2j-1,
are fed to the recoding cells. The recoding cells produce signals which determine the functions
that must be performed on the second operand in order to generate the partial products that will
be calculated by the partial product cells. The partial products are then summed by the adder
cells [16].
Wallace-tree multipliers with ?Booth encoding? speed up the multiplication process
further [17]. The Booth encoding feature halves the number of partial products, and Wallace-tree
addition with the output CLA adder to sum the final stage partial products result in the fastest
addition [17]. This Wallace/Booth multiplier in [17] is divided into three parts: the Booth
encoder for generating the partial products, the Wallace-tree unit that adds the partial products
and generates a sum and carry vector and a final stage CLA adder that adds the sum and carry
 19
vectors to generate the final result. The Wallace-tree unit consists of half adder and full adder
units [17].
2.5 Prior Work Done in Testing CLA Adders
 For a 4-bit CLA adder implementation that uses an OR gate to produce the propagate
signal, a minimum set of ten vectors was proposed in [19] to detect all single stuck-at faults. For
larger ripple CLA adders, a set of eleven vectors was proposed in [19] to detect all single stuck-
at faults. For the ripple CLA adder that uses an XOR gate for calculating the propagate signal, a
minimum set of twelve vectors was proposed in [19] to detect all single stuck-at faults. But these
sets of vectors apply only to ripple CLA adder implementations [19].
 Another test algorithm that tests any n-bit CLA adder implementation is proposed in [15].
The CLA adder in [15] is divided into three units: the top level structure of the n-bit CLA, which
is referred to as the ?MCLA? unit, the ?MPGX? unit that calculates the propagate and generate
signals (in this test algorithm, the propagate signal is calculated using an OR gate) and the
?MCLG? unit that calculates all the carry signals [15]. The sum is calculated using the XOR
operation. The faults in the MCLG unit are difficult to test and hence tests are generated for a set
of faults that cover all single stuck-at faults on the input paths of the MCLG unit [15]. The known
tests for the MCLG unit are traced via the MPGX unit to the primary input paths of the MCLA unit to
obtain a test sequence to detect all the single stuck-at faults in the CLA. Table 2.4 shows the test
sequence for a 2-bit CLA. This test sequence can be extended to a 4-bit CLA as shown in Table
2.5 [15].
The input patterns for an n-bit CLA can be generated using a twisted ring counter
approach as shown in Figure 2.6. This TPG can be implemented using n XOR gates, n XNOR
 20
gates and an (n+1) bit shift register with an inverter to form a twisted ring counter [15].
Reference [15] claims 100% single stuck-at gate level fault coverage.
Table 2.4 Test Sequence for a 2-bit CLA [15]
Test # A1B1 A0B0 C0
1 10 10 1
2 10 00 1
3 00 11 1
4 01 01 0
5 01 11 0
6 11 00 0
Table 2.5 Test Sequence for a 4-bit CLA [15]
Test # A3B3 A2B2 A1B1 A0B0 C0
1 10 10 10 10 1
2 10 10 10 00 1
3 10 10 00 11 1
4 10 00 11 11 1
5 00 11 11 11 1
6 01 01 01 01 0
7 01 01 01 11 0
8 01 01 11 00 0
9 01 11 00 00 0
10 11 00 00 00 0

2.6 Prior Work Done in Testing Booth and Booth/Wallace Multipliers
A multiplier test algorithm for Booth multipliers is proposed in [16] and claims high fault
coverage of over 99%. The number of test vectors is 256 and is independent of the size of the
Figure 2.6 Adder Test Algorithm using Twisted
Ring Counter [15]
Ci to adder carry-in

SRegi

SRegi+1

to adder inputs
N+1-bit Serial Shift Register
reset

Ai

 Bi

 21
multiplier. The BIST TPG can easily be implemented using an 8-bit counter [16]. This test
algorithm claims to pseudo-exhaustively test all the multiplier cells described in Section 2.4.
Figure 2.7 shows the BIST architecture used by the test algorithm [16]. The test patterns are
generated by an 8-bit counter [16]. The 8-bit counter applies all 256 patterns to the inputs of the
multiplier [16]. This algorithm will be referred to in this thesis as the 4?4 test algorithm. Here
the four MSB bits of the counter are applied to one input of the multiplier and the four LSB bits
of the counter are applied to the other input of the multiplier. Starting from the LSB of the
multiplier operands, the two sets of counter bits are replicated and repeated for each group of
four bits of the multiplier operands [16]. For an 8-bit multiplier the 4?4 test algorithm will apply
the test patterns illustrated in Table 2.6, where A[7:0] and B[7:0] are the inputs of the two ports
of the multiplier and C[7:0] indicate the outputs of the 8-bit counter.
Table 2.6 Test Patterns for an 8-bit Multiplier Using 4?4 Test Algorithm
Multiplier
Inputs A7 A6 A5 A4 A3 A2 A1 A0 B7 B6 B5 B4 B3 B2 B1 B0
Counter
Outputs C7 C6 C5 C4 C7 C6 C5 C4 C3 C2 C1 C0 C3 C2 C1 C0

 Another multiplier test algorithm was proposed in [17]. Figure 2.8 shows the BIST
architecture for the test algorithm [17]. This test algorithm targets Wallace-tree multipliers with
Booth encoding. The CLA adder used to sum the final partial products in this algorithm is a
multi-stage LCU CLA adder [17].
Like the 4?4 test algorithm, the test algorithm in [17] also does not modify the structure
of the multiplier and an 8-bit counter is used to generate the test patterns for any size multiplier.
X and Y are the input operands, where the X operand has Booth encoding. In this algorithm, for
the multiplier input port which has the Booth encoding, the five MSB bits of the counter are
replicated and repeatedly applied to each group of five bits starting from the LSB of the
 22
multiplier operand with Booth encoding [17]. For the other input of the multiplier, the remaining
three LSB bits of the counter are replicated and applied to each group of three bits starting from
the LSB of the other multiplier operand. This algorithm is referred to in this thesis as the 5?3 test
algorithm. In the proposed BIST approach, the output response is compacted by an accumulator
and compared with the fault-free signature to detect faults [17]. For an 8-bit multiplier the 4?4
test algorithm will apply the test patterns illustrated in Table 2.7 where A[7:0] and B[7:0] are the
inputs of the two ports of the multiplier and port A has the booth encoding. C[7:0] indicate the
outputs of the 8-bit counter.

Table 2.7 Test Patterns for an 8-bit Multiplier Using 5?3 Test Algorithm
Multiplier
Inputs A7 A6 A5 A4 A3 A2 A1 A0 B7 B6 B5 B4 B3 B2 B1 B0
Counter
Outputs C5 C4 C3 C7 C6 C5 C4 C3 C1 C0 C2 C1 C0 C2 C1 C0

Compacted data
Multiplexers
Mul
tiplexe
rs
Multiplier
Accumulator
Nx + Ny
8-bit counter Nx
Ny
4 4 4 4 4
4 4
4
4
4
4
X input operand
Y input
operand
Figure 2.7 4?4 Multiplier Test Algorithm [16]
 23

The authors in [20] mention that the DSPs in Virtex-4 devices can be tested by applying
pseudo-random patterns, generated by linear feedback shift registers (LFSRs) to the input ports
of the DSP slice, but the authors do not provide specific test algorithms or test sequences for
testing the logic in the DSP cores. Reference [20] also does not mention the fault coverage
obtained. Furthermore, to apply an exhaustive set of pseudo-random patterns would require a 84-
bit LFSR and 284 ? 1 clock cycles of test application time.
A BIST approach for the 18?18-bit multipliers embedded in Virtex-II Pro FPGAs was
proposed and implemented in [21]. This BIST approach was the first BIST approach
implemented for multipliers in FPGAs. The 4?4 test algorithm proposed in [16] was used to test
the multipliers embedded in Virtex-II Pro FPGAs. A 10-bit counter was used for the test pattern
generator, where the eight LSB bits of the counter were used to apply the 4?4 test algorithm to
Multiplexers
Mul
tiplexe
rs
Multiplier
Accumulator
Nx + Ny
8-bit counter Nx
Ny
Compacted data
5 5 5 5 5
5 3
3
3
3
3
X input operand with
Booth Encoding
Y input
operand
Figure 2.8 5?3 Multiplier Test Algorithm [17]
 24
the two 18-bit inputs of the multiplier and the two MSB bits of the counter are used to test the
clock enable and reset control inputs to the multiplier in registered modes of operation [21]. A
minimum set of three BIST configurations were developed to test the multipliers in all modes of
operation. The three BIST configurations include BIST for one ?combinational mode? and two
?registered modes? of the multiplier. The BIST configuration for the ?combinational mode? is
used only to test the logic in the multiplier without any registers [21]. The two BIST
configurations for the registered modes are used to test the programmable active levels of the
clock enable and reset control inputs of the registers and the active edge of the clock to the
registers. The BIST configurations were developed in VHDL models and require a complete
download of each of the three BIST configurations [21].
The comparison based ORA shown in Figure 2.9 compares the outputs of the multiplier
blocks under test (BUTs) and produces a pass/fail result for each BIST configuration [21]. This
ORA design is easy to implement and can be implemented in two LUTs of a CLB slice since the
contents of each ORA have to be shifted out to obtain the pass/fail result of each ORA since the
ORAs were connected to form a scan chain to shift out the BIST results [21].

2.7 Restatement of Thesis:
 Although no prior work has been done on testing DSP cores in FPGAs, the adder test
algorithm proposed in [15] and the multiplier test algorithm proposed in [17] can be modified for
Figure 2.9 ORA Design for Multiplier BIST in Virtex- II Pro FPGAs [21]
ORA
Pass/Fail
BUTi outputk

BUTj outputk
Shift data
Shift mode
LUT
DFF
 25
better fault coverage and can be applied to completely test the adder and the multiplier in DSP
cores of Virtex-4 and Virtex-5 FPGAs.
 The TPG for the adder test algorithm proposed in [15] can be easily implemented in the
CLBs of Virtex-4 and Virtex-5 FPGAs. Although the number of test vectors increases with the
size of the adder, the adder in DSP cores of Virtex-4 and Virtex-5 FPGAs can be completely
tested with a reasonably small set of test vectors.
 The TPG for the multiplier test algorithm proposed in [17] can also be easily
implemented and applied to multipliers in DSP cores of Virtex-4 and Virtex-5 FPGAs. The TPG
can be implemented in the CLBs of the FPGAs. The test vectors for the multiplier test algorithm
are a small set of finite test vectors. These 256 test vectors can be applied to multipliers of any
size. Besides the adder and the multiplier, the rest of the DSP logic must also be tested. This
thesis seeks to develop a minimum set of BIST configurations to completely test the DSPs in
Virtex-4 and Virtex-5 devices.
 26
Chapter 3
BIST for DSP Cores in Virtex-4 FPGAS
This chapter begins by proposing improvements to the previously proposed multiplier
and adder test algorithms for higher fault coverage and describes the development of BIST for
DSP cores in Virtex-4 FPGAs through the application of the improved multiplier and adder test
algorithms to test the logic in these DSP cores. The BIST architecture along with the BIST
configurations and test sequences for the DSP cores are discussed. The chapter also discusses the
retrieval of BIST results and explains how the maximum clock frequency of the BIST
configurations can be improved. The chapter concludes by summarizing the experimental BIST
results and the fault coverage obtained on actual Virtex-4 FPGAs.
3.1 BIST Approach for DSPs in Virtex-4 FPGAs
 The DSP cores in Virtex-4 FPGAs mainly consist of the adder and the multiplier units.
Besides the adder and the multiplier the DSP cores include multiplexers and flip-flops used as
pipeline registers. Since the multiplexers and the flip-flops can be easily tested, the challenge lies
in testing the adder and the multiplier units in the DSP cores. The data sheets for the DSP cores
incorporated in Virtex-4 FPGAs do not describe the architecture of the adder and the multiplier
explicitly. However, one of the Spartan-3 application notes mentions that the architecture of the
multiplier is based on a modified Booth architecture [22]. From the data sheets [9] it is
understood that sequential logic is not used since there is no specification of clock cycle latency.
Of the various combinational logic multipliers such as array, Booth, modified
 27
Booth, Wallace-tree, and modified Booth/Wallace-tree multipliers, the modified Booth/Wallace-
tree multiplier seems to be the most likely option because of its higher performance.
From the data sheets it is clear that the adder that is used to sum the final partial products
of the multiplication is separated from the multiplier. Of the various combinational logic adders
such as ripple carry, carry select, carry skip, carry save and carry look ahead (CLA) adders, the
CLA adder seems to be the most likely option because of its higher performance [23] and also
because CLA adders are typically used to sum the final partial products in modified
Booth/Wallace-tree multipliers [17].
3.1.1 Adder Test
 The adder test algorithm described in [15] can be used to test the adder in the DSP cores.
However, fault simulation for the adder test algorithm in [15] revealed that two test patterns that
were required to achieve 100% fault coverage were missing. Modifying the BIST architecture in
[15] by replacing the inverter with a D flip-flop and using the Qbar output to drive the input of
the shift register as illustrated in Figure 3.1 produces the two missing patterns. The modified
architecture includes an N+1 bit shift register, N XOR gates, N XNOR gates and a D flip-flop,
where N is the number of bits in the adder. This BIST architecture generates a total of 2?(N+2)
test vectors for completely testing the CLA adders in the DSP cores. Since the adder in the DSP
cores is 48-bits wide, a 50-bit shift register (49-bit shift register plus the D flip-flop) is used to
generate 100 test vectors that completely test the adder, as verified through fault simulation. The
test patterns generated by the modified architecture are also illustrated in Figure 3.1 for a 4-bit
adder and the generated missing test patterns are denoted as ?new?. Table 3.1 gives a comparison
of fault coverage achieved for the adder test algorithms described in Section 2.5 of Chapter 2.
From Table 3.1 it is observed that the adder test vectors described in [19] effectively test only
 28
ripple CLA adders but the adder test algorithm described in [15] effectively tests all
implementations of the CLA adder but failed to give 100% fault coverage because of the missing
vectors. The ?Modified BIST? indicates the modification made to the adder test algorithm that
generated the missing test vectors described in this section.
Table 3.1 Stuck-at Fault Simulation Results for 48-bit Adders
Adder
Implementation
Gate
Delays
Number
of Faults
Test Algorithm Vector Set
vector set [19] BIST [15] Modified BIST
Ripple Carry Adder 96 1296 100% 99.9% 100%
Ripple CLA 28 1392 100% 99.9% 100%
Ripple LCU 12 1542 95.7% 99.9% 100%
Multi-stage LCU 10 1506 95.9% 99.9% 100%
The adder/subtractor equation P=Z?(X+Y+Cin) [9] indicates that the adder in the DSP
slice is a two-stage adder as shown in Figure 3.2. The C-port provides the only 48-bit access to
the adder. The accumulator register, P, is the only other 48-bit access to the adder. Hence two
clock cycles are required to apply a single test vector to the adder. During the first clock cycle a
part of the test vector (48-bits of the 97-bit test vector) is loaded into the accumulator register
from the C-port through the Y or the Z multiplexers while applying 0s to the other two
multiplexer ports, the CIN and the SUBTRACT signals. During the second clock cycle, the 48-
bit test vector in the accumulator register is applied to one of the ports of the adder through the X
or the Z multiplexers. Also during the second clock cycle the remaining 48-bits of the test vector
are applied to the other port of the adder through the Z or the Y multiplexers (based on the stage
of the adder being tested) and the test vector bit for the CIN or SUBTRACT signals (based on
the stage of the adder that is being tested) is applied. For cases during which the overall test
vector applies a logic ?1? to the SUBTRACT signal, the first part of the vector that is loaded to
the accumulator register is inverted so that when the SUBTRACT signal inverts this part of the
 29
vector while its being applied to the adder port during the second clock cycle, the correct set of
vectors is still applied to the second stage adder. The two clock cycle test vector application also
provides complete testing of the accumulator register. Each stage of the adder is tested
independently and completely in a total of 200 clock cycles.

3.1.2 Multiplier Test
 Fault simulation was performed on gate level models of various 8?8 bit multipliers.
Based on the fault simulation results it is determined that applying both the 5?3 and the 3?5 test
algorithms is the most effective way of testing the multiplier cores in Virtex-4 DSPs. Hence the
multiplier is tested in two sessions of 256 clock cycles each. During the first session, the five
MSBs of the 8-bit counter are applied to port A of the multiplier and the three LSBs of the 8-bit
counter are applied to port B of the multiplier. During the second test session, the five MSBs are
Figure 3.2 2-stage CLA adder
48-bit
CLA
48-bit
CLA
(X MUX) (Y MUX)
(Z MUX) CIN
Subtract
48
48 48
48
Qi
Qi+1

Ci to adder carry-in
Ai
to adder inputs
Bi
N+1-bit Serial Shift Register
reset
AAAABBBBC
32103210i
new -> 111100000
111100001
111000001
110100011
101100111
011101111
new -> 000011111
000011110
000111110
001011100
010011000
100010000 Figure 3.1 Modified Adder Test Algorithm
 30
applied to port B of the multiplier and the three LSBs are applied port A of the multiplier. Figure
3.3 summarizes the multiplier BIST approach.

3.2 BIST Architecture
Figure 3.4 illustrates the DSP BIST architecture for any given Virtex-4 FPGA. Two
TPGs drive alternate rows of DSP tiles that have the same configuration. The two TPGs generate
identical test patterns to test all the DSP tiles. The control register that controls the TPG is four
bits wide. Of the four bits the two LSBs (called MODE1 and MODE0) control the test algorithm
generated by the TPG. The second MSB (called INVCS) controls the active levels of control
signals such as the OPMODE bits and the active level of the carryin input to the adder unit. The
MSB provides a global reset to the TPG. The control register is implemented in a CLB and the
values for the control register are shifted in through Boundary Scan interface while shifting the
LSB first. The control register values for resetting the TPG and for the various test modes are
summarized in Table 3.2. The ?X? in Table 3.2 indicates a don?t care bit.
Table 3.2 Control Register Values for TPG control
Control Register Values <3:0>
RESET INVCS MODE1 MODE0 Operation
 1 X X X Resets TPG
 0 1 X X Inverts active level of control signals
 0 X 0 0 Sets the multiplier test algorithm
 0 X 0 1 Sets the adder test algorithm
 0 X 1 0 Sets the cascade test algorithm
Figure 3.3 Multiplier BIST approach
?
n (3/5) n (5/3)
2n
8-bit counter
MSB LSB
B port A port
 31
 Values to the control register can also be given through a system pins interface when the
Boundary Scan interface is not used. For the system pins interface, the clock and the control
inputs to the TPG, such as the TPG reset, the INVCS control and the MODE1 and MODE0
control signals, are input pins to the device.
Multiple TPGs are used so that faults in any of the TPGs can not escape detection. Each
TPG drives both the slices in a tile for the individual control of both slices in the tile during
cascade modes of operation. The DSP slices are configured in cascade mode of operation in pairs
instead of cascading all the DSP slices in a column, so that the maximum BIST clock frequency
is not slowed down. This approach of cascading DSP slices in pairs also ensures that all the DSP
slices do not fail the test due to the unconnected cascade inputs on the bottom-most DSP slice in
a column of DSPs and circular comparison can still be used effectively to analyze the outputs of
the DSPs, disagreeing with the authors? claim in [20]. The bottom slice in a DSP tile is denoted
by s0 and the top slice in a DSP tile is denoted by s1. Each DSP slice is monitored by two sets of
ORAs and compared with the outputs of two like DSP slices. Each set of ORAs monitors two
similar DSP slices, implying a set of ORAs that monitor slice 0 in a DSP tile also monitor slice 0
in the DSP tile below. The two bottom-most sets of ORAs (one each for slice 0 and slice 1) in a
column of ORAs monitor the top-most and the bottom-most DSP tiles in the column of DSP
tiles, forming two circular comparison chains where one chain monitors slice 0 in all the DSP
tiles and the other chain monitors slice 1 in all the DSP tiles.
The set of ORAs that monitor slice 0 of the bottom-most DSP tile have clock enables so
that these ORAs can be disabled at specific times during the cascade mode BIST sequence to
avoid ORA failure indications due to unconnected cascade inputs on slice 0 of the bottom-most
DSP tile. The architecture of the ORA is illustrated in Figure 3.5. Each ORA comprises a look-
 32
up table and a flip flop. The ORAs are synthesized into CLBs where eight ORAs fit into a single
CLB. The dedicated carry logic in the CLBs, as illustrated in Figure 3.5, can be used to create an
iterative OR chain of ORAs where the Test Data In (TDI) line is connected to the carry-in of the
first CLB in the column of ORAs and the carry-out of the last CLB in the last column of ORAs
[24], which is also the response of the last ORA in the chip array, is connected to the Test Data
Out (TDO) line. This provides a single bit pass/fail result for the entire test. The TDO line goes
to logic ?1? when any one ORA in the iterative OR chain detects a mismatch due to faults. This
reduces the total test time for the fault-free tests since the ORA contents can be obtained via
partial configuration memory read-back for only those tests that fail. Each DSP slice is observed
by 48 ORAs in two rows and three columns of CLBs. Figure 3.6 illustrates the mapping of the
individual output bits from a single DSP slice to the ORAs. Figure 3.6 helps in determining the
faulty DSPs in a column of DSPs and the individual faulty DSP outputs when partial
configuration memory read-back is done. All the DSPs are tested concurrently so the length of
the test sequence is independent of the size of the chip array.

TPG 1
TPG 0
DSP s0
DSP s1
DSP s0
DSP s1
DSP s0
DSP s1
DSP s0
DSP s1
DSP s0
DSP s1
DSP s0
DSP s1
ORAs
ORAs
ORAs
ORAs
ORAs
ORAs
ORAs
ORAs
ORAs
ORAs
ORAs
ORAs
Figure 3.4 DSP BIST Architecture
 33

Figure 3.7 illustrates the general architecture of the TPG. The TPG for DSP BIST
comprises a 10-bit counter where the two MSB bits are used for the individual control of the four
256 clock cycle test groups during the 1024 clock cycle test sequence, a 50-bit shift register for
the adder test, a finite state machine (FSM) for control of OPMODE control signals and two 9-
bit linear feedback shift registers (LFSRs) for generating weighted pseudo random control
signals. The eight least significant bits of the counter are used to apply test patterns to the
multiplier. The TPG is modeled in VHDL in 266 lines of codes and is synthesized into 44 CLBs.

DSP
Slice 0
DS0
DSP
Slice 1
DS1
DS0 (16)
DS0 (17)
DS0 (18)
DS0 (19)
DS0 (20)
DS0 (21)
DS0 (22)
DS0 (23)
DS0 (24)
DS0 (25)
DS0 (26)
DS0 (27)
DS0 (28)
DS0 (29)
DS0 (30)
DS0 (31)
DS0 (32)
DS0 (33)
DS0 (34)
DS0 (35)
DS0 (36)
DS0 (37)
DS0 (38)
DS0 (39)
DS0 (40)
DS0 (41)
DS0 (42)
DS0 (43)
DS0 (44)
DS0 (45)
DS0 (46)
DS0 (47)
DS0 (0)
DS0 (1)
DS0 (2)
DS0 (3)
DS0 (4)
DS0 (5)
DS0 (6)
DS0 (7)
DS0 (8)
DS0 (9)
DS0 (10)
DS0 (11)
DS0 (12)
DS0 (13)
DS0 (14)
DS0 (15)
DS1 (16)
DS1 (17)
DS1 (18)
DS1 (19)
DS1 (20)
DS1 (21)
DS1 (22)
DS1 (23)
DS1 (24)
DS1 (25)
DS1 (26)
DS1 (27)
DS1 (28)
DS1 (29)
DS1 (30)
DS1 (31)
DS1 (32)
DS1 (33)
DS1 (34)
DS1 (35)
DS1 (36)
DS1 (37)
DS1 (38)
DS1 (39)
DS1 (40)
DS1 (41)
DS1 (42)
DS1 (43)
DS1 (44)
DS1 (45)
DS1 (46)
DS1 (47)
DS1 (0)
DS1 (1)
DS1 (2)
DS1 (3)
DS1 (4)
DS1 (5)
DS1 (6)
DS1 (7)
DS1 (8)
DS1 (9)
DS1 (10)
DS1 (11)
DS1 (12)
DS1 (13)
DS1 (14)
DS1 (15)
and

indicate
alternate rows of
CLBs
ORAs in the
CLB slice
that compare
DSP slice 0
outputs
ORAs in the
CLB slice
that
compare
DSP slice 1
outputs
Figure 3.6 ORA map for a DSP tile
Figure 3.5 ORA Architecture
Outi DSPj
Outi DSPk Pass
/Fail LUT
0 1
1
Carry out
Carry in
EN
ORACE
 34

3.3 BIST Configurations and Test Sequences
 The DSP cores in Virtex-4 devices are tested using three independent BIST sequences
which correspond to each of the three test modes of operation: the multiplier, adder and cascade
modes of operation. Table 3.3 summarizes the test sequences. Each BIST sequence is 1024 clock
cycles long and divided into four groups of 256 clock cycles. During each group of 256 clock
cycles, specific I/O paths through the multiplier, adder and cascade modes of operation are
tested.
The 5?3 multiplier test algorithm is applied to the multiplier in slice 1 while the 3?5
multiplier test algorithm is applied to the multiplier in slice 0 during the first group of the
multiplier test sequence. During the second group of the multiplier test sequence the 5?3
multiplier test algorithm is applied to the multiplier in slice 0 and the 3?5 multiplier test
algorithm is applied to the multiplier in slice 1. The 5?3 multiplier test algorithm is applied by
replicating the five MSBs of the vector generated by the 8-bit counter and applying the replicated
bits to the 18-bit A port while the three LSBs of the vector generated by the 8-bit counter are
replicated and applied to the 18-bit B port. During the 3?5 multiplier test algorithm the three
LSBs of the vector generated by the 8-bit counter are replicated and applied to the 18-bit A port

Count
Shift
Reg
FSM
LFSR
TPG
to
ORAs
to
ORAs
48 48
P port
A port
B port
C port
OpMode
Control
DSP slice 0
A port
B port
C port
OpMode
Control
36 36
48 48
7 7
17 17
P port
Figure 3.7 TPG Architecture
 35
while the five MSBs of the vector generated by the 8-bit counter are replicated and applied to the
18-bit B port. The application of different multiplier test algorithms to slice 0 and slice1 ensures
that the A and B ports in both the slices receive different test patterns on every clock cycle so
that the single stuck-at faults on the multiplexers that select between direct and cascade paths on
port B of the DSP slice can be tested. During the third group of 256 clock cycles of the multiplier
test sequence, the multiply and add function is tested. The multiplier is not tested in the fourth
group of the multiplier test sequence. This group only tests for the A port concatenated with the
B port (denoted as A:B in Table 3.3) bypass of the multiplier.
Each stage of the two stage adder is tested separately during the first two groups of 256
clock cycles in the adder test sequence. The first stage adder is tested during the first group of
256 clock cycles in the adder test sequence and the second stage adder is tested during the
second and third groups of 256 clock cycles in the adder test sequence. The P output of the DSP
slice that is left shifted by 17 bits can be fed back to the adder through the Z multiplexer
(denoted as Z(ShiftP) in Table 3.3). This path to the adder is tested during the fourth group of
256 clock cycles in the adder test sequence.
Table 3.3 BIST Sequences
Test Multiply Adder Cascade
First 256 ccs P = A?B P = Z(C) P = X(P)+Y(C) P1 = A:B+Z(PC) P0 = Z(C)
Second 256 ccs P = A?B P = Y(C) P = Y(C)+Z(P) P1 = A:B+Z(ShiftPC) P0 = Z(C)
Third 256 ccs P = A?B+C P = Z(C) P = Y(C)+Z(P) P1 = Z(C) P0 = A:B+Z(PC)
Fourth 256 ccs P = A:B+C P = Y(C) P = Y(C)+Z(ShiftP) P1 = Z(C) P0 = A:B+Z(ShiftPC)
During the third and fourth groups of 256 clock cycles in the adder and the multiplier test
sequences, weighted pseudorandom patterns generated by linear feedback shift registers (LFSRs)
are applied to test the various clock enables, resets and carry-in sources in the DSP. Weighted
 36
pseudorandom patterns are used so that the pipeline registers of the DSP are reset less often since
frequent resets of the pipeline registers can cause the fault detection data to be lost before it
reaches the output of the DSP. Figure 3.8 illustrates the architecture of one of the 9-bit LFSRs,
LFSRA. The second LFSR, LFSRB uses the reciprocal polynomial of LFSRA. Table 3.4
summarizes the weighted pseudorandom patterns in terms of their LFSR sources.
During the cascade mode test sequence, the two DSP slices are independently controlled
to test the cascade multiplexers and the cascade interconnect between adjacent DSPs. Slice 0 and
Slice 1 have different P equations, where P0 indicates slice 0 equation and P1 indicates slice 1
equation in Table 3.3. During the first group of 256 clock cycles in the cascade test sequence,
slice 1 receives the P output of slice 0 as its input (denoted by Z(PC) in Table 3.3) and in the
second group slice 1 receives the shifted P output of slice 0 as its input (denoted by Z(ShiftPC) in
Table 3.3). During the third group of 256 clock cycles in the cascade test sequence, slice 0
receives the P output of the previous slice 1 as its input (denoted by Z(PC) in Table 3.3) and in
the fourth group slice 0 receives the shifted P output of the previous slice 1 as its input (denoted
by Z(ShiftPC) in Table 3.3). ORA failures due to unconnected cascade inputs on the bottom-
most DSP slice occur in the third and fourth groups of the cascade test sequence. Therefore, the
ORAs that monitor the DSPs at the bottom of the array are disabled by the TPG during the third
and fourth groups of 256 clock cycles in the cascade test sequence.

LFSRA
<0>
LFSRA
<1>
LFSRA
<2>
LFSRA
<3>
Figure 3.8 Architecture of the 9-bit LFSRA
LFSRA
<4>
LFSRA
<5>
LFSRA
<6>
LFSRA
<7>
LFSRA
<8>
 37
Table 3.4 Weighted Pseudorandom Patterns
DSP Signal Pattern
CEA (clock enable for Areg) LFSRA<0>
CEB (clock enable for Breg) LFSRA<1>
CEM (clock enable for M reg) LFSRA<2>
CEP (clock enable for Preg) LFSRA<3>
CECARRYIN (clock enable when
carryin used for rounding
applications)
LFSRA<4>
CECTRL (clock enable for
CARRYINSEL, SUBTRACT and
OPMODE registers)
LFSRB<5>
CECINSUB (clock enable when
carryin is defined by the user) LFSRA<6>
CARRYINSEL<1:0> (control
register to select the carryin source) LFSRA<8:7>
CARRYIN (user defined carryin) LFSRB<0>
SUBTRACT (user defined subtract) LFSRB<1>
CEC (clock enable for C reg) LFSRB<2>
RSTA(reset for Areg) for slice 0 LFSRB<7> and LFSRB<5> and LFSRB<3>
RSTB(reset for Breg) for slice 0 LFSRB<1> and LFSRB<3> and LFSRB<5>
RSTM(reset for Mreg) for slice 0 LFSRB<6> and LFSRB<2> and LFSRB<0>
RSTP(reset for Preg) for slice 0 LFSRB<4> and LFSRB<0> and LFSRB<6>
RSTCARRYIN (reset for all sources
of carryin) for slice 0 LFSRB<5> and LFSRB<0> and LFSRB<7>
RSTCTRL (reset for
CARRYINSEL, SUBTRACT and
OPMODE registers) for slice 0
LFSRB<6> and LFSRB<7> and LFSRB<8>
RSTA(reset for Areg) for slice 1 LFSRB<6> and LFSRB<4> and LFSRB<2>
RSTB(reset for Breg) for slice 1 LFSRB<0> and LFSRB<2> and LFSRB<4>
RSTM(reset for Mreg) for slice 1 LFSRB<5> and LFSRB<1> and LFSRB<8>
RSTP(reset for Preg) for slice 1 LFSRB<3> and LFSRB<8> and LFSRB<5>
RSTCARRYIN (reset for all sources
of carryin) for slice 1 LFSRB<4> and LFSRB<8> and LFSRB<6>
RSTCTRL (reset for
CARRYINSEL, SUBTRACT and
OPMODE registers) for slice 1
LFSRB<5> and LFSRB<6> and LFSRB<7>
RSTC (reset for C reg) LFSRB<0> and LSRB<1> and LFSRB<2>
The DSP cores are tested in five BIST configurations. During these five BIST
configurations, the DSP configuration memory bits are tested in all functional modes. Table 3.5
 38
summarizes the BIST configurations developed during the initial stages of BIST development
(modifications to these BIST configurations will be explained in the later sections). In Table 3.5,
column 1 indicates the BIST configuration download number, column 2 indicates the number of
pipeline registers in the I/O paths of the DSP slice, column 3 indicates the active level of the
DSP slice control signals, column 4 indicates whether the B port of the DSP slice is in cascade or
direct mode of operation and column 5 indicates the test sequence number that is applied for
each of the BIST configurations. The multiplier is tested during the first, second and fourth test
sequences, the adder is tested during the third and fifth test sequences and the cascade modes of
operation are tested during the sixth and seventh test sequences. Instead of connecting all the
DSP slices in cascade mode at the same time alternate DSP slices are connected in cascade mode
to avoid seeing failures due to the unconnected cascade input lines of the bottom-most DSP slice
in the array. During the sixth test sequence, slice 0 is in cascade mode of operation and during
the seventh test sequence, slice 1 is in cascade mode of operation.
BIST configurations #2 and #3 are run twice since the TPG control inputs need to be
changed to run the multiplier and the adder test sequences during the same BIST configuration.
A total of seven test sequences are applied in five downloads to the FPGA thereby reducing the
number of downloads to the FPGA by two. The download time can be minimized using partial
reconfigurations, through which only the configuration memory that contain DSP configuration
memory bits are written instead writing the whole configuration memory. This can be done by
maintaining constant placement of the TPGs, the ORAs and the DSPs and by keeping the routing
constant between them. Table 3.6 illustrates the improvement in download time for the largest
devices from each of the three families of Virtex-4 FPGAs, FX140, SX55 and LX200, (thereby
representing the longest download times), when partial configuration is used and all the DSPs in
 39
the devices are tested concurrently. The download time with partial reconfiguration in column 2
of Table 3.6 illustrates the download time for all five configurations where the first download is
a compressed download and the remaining downloads are partial reconfigurations. The download
time without partial reconfiguration in Table 3.6 illustrates the download time for all five
configurations where all five downloads are compressed. The maximum clock frequency for
download using the Boundary Scan interface is 50MHz.
Table 3.5 Initially Developed BIST Configurations
BIST Config
Pipeline Registers
Signals Active
Level
B Input Source Test Modes Applied
Slice 0 Slice 1 Mult Add Casc
1 All Regs=0 High Direct Direct #1
2 All Regs=1 High Direct Direct #2 #3
3 A/Breg=2, Others=1 Low Direct Direct #4 #5
4 Preg=1, Others=0 High Direct Cascade #6
5 Preg=1, Others=0 Low Cascade Direct #7
Table 3.6 Improvement in Download Time using Partial Reconfiguration
Device Download time with partial reconfiguration (sec) Download time without partial reconfiguration (sec)
FX140 0.30128 1.47814
SX55 0.27915 1.32346
LX200 0.22468 1.11734

3.4 BIST Generation
 The TPG model written in VHDL is synthesized for an FX12 device since the FX12
device has a large area in the chip array that is occupied by the Power PC and the TPG is
carefully constrained in an area close to the DSPs that does not interfere with the location of the
Power PC. The TPG location for all other devices is offset with respect to the location of the
TPG in the FX12 device based on the number of rows and columns in individual devices. The
synthesized TPG is in NCD format that can be viewed in FPGA Editor, a Xilinx tool that gives a
 40
graphical representation of the device. The synthesized TPG in NCD format is then converted to
XDL (Xilinx Design Language) format.
Three programs written in C (developed as part of this thesis work) generate the BIST
configurations for any size or family of Virtex-4 devices. The V4DSPBIST.exe program calls
another program TPGXDLEXT.exe. The latter program extracts the TPG, from the synthesized
XDL and writes it to an output file. The V4DSPBIST.exe program reads that output file and
places and instantiates the two TPGs. It also instantiates and interconnects the remaining BIST
architecture, the DSPs under test and the ORAs, and generates a DSP BIST template in XDL
format. The DSP BIST template in XDL format is converted to NCD format for routing the
BIST architecture. The routed DSP BIST template is then converted back to XDL format to be
used by the modification program, V4DSPMOD.exe. This modification program, written in C, is
used to modify the routed DSP BIST template to generate the five BIST configurations in XDL
format. These BIST configuration files are then converted back to NCD format to generate the
download configuration bit files.
The NCD files of the DSP BIST template and the BIST configuration can be viewed in
FPGA Editor. The routed DSP BIST templates for the FX12 and SX35 devices are illustrated in
Figure 3.9a and Figure 3.9b, respectively. For DSP columns to the right of the center column, the
ORAs are located in three consecutive columns of CLBs on the right side of DSP and for the
DSP columns to the left of the center column the ORAs columns are positioned to the left of the
DSP. To avoid the PowerPC modules in FX family devices larger than FX40, the ORAs are
located to the right side of DSPs that are located left of the center column and for the DSP
column to the right of the center column, the ORAs are located on the left side of the DSPs.
 41

a)routed FX12 b)routed SX35
Figure 3.9 BIST Template as Seen in FPGA Editor
3.5 Detection of Faulty DSPs and Fault Coverage
To verify the fault detection capabilities of the DSP BIST, faults were injected into the
configuration memory bits that control the DSPs in an FX12 device. Figure 3.10 illustrates
individual fault coverage achieved for each of the seven BIST sequences (BIST sequences #2
and #3 are the same download and represent BIST configuration #2 in Table 3.5. Similarly, BIST
sequences #4 and #5 are the same download and represent BIST configuration #3 in Table 3.5.
This is because configuration downloads #2 and #3 in Table 3.5 are run twice as explained in
Section 3.3. BIST sequences #6 and #7 represent BIST configurations #4 and #5 respectively in
Table 3.5). Cumulative fault coverage of 97.4% is achieved. Of the 154 faults injected four faults
were not detected but could be detected by adding more BIST configurations to achieve 100%
fault coverage. However, these undetected faults are in non-functional modes of operation
making the additional BIST configurations impractical.
TPG0
TPG1
DSPs
ORAs
TPG0
TPG1
DSPs
ORAs
 42
The DSP BIST configurations were able to detect faulty DSPs in some of the engineering
sample parts of SX35 and LX-60 devices. Of the five SX35 and nine LX60 engineering sample
parts tested, DSP BIST detected up to five faulty DSPs in four SX35 engineering sample parts
and one faulty DSP each in two LX60 engineering sample parts. The faulty DSP slices in the
Virtex-4 SX35 and LX60 engineering sample parts are summarized in Table 3.7. The
corresponding faulty DSP output bit positions observed by the ORAs are also shown in Table
3.7. Column 2 in the table describes the position of the faulty DSP slice as named by the BIST
generation program. For example, DSP_r90c46 implies the DSP slice in the 45th DSP row and
46th column of the chip array and DSP_r52c46 implies the DSP slice in the 26th DSP row and
46th column of the chip array. Column 3 describes the test sequence number during which each
of the faulty DSP slices described in Column 2 were detected. Column 4 gives the failing DSP
output bits where P is the output port of the DSP slice. Each engineering sample part shown in
Table 3.7 was tested three times for each of the seven test sequences. The failing DSP output bit
positions differed during each of the three tests for every engineering sample part shown in Table
3.7 as illustrated for the first SX 35 device
Table 3.7 Faulty DSP Slices in Virtex-4 SX35 and LX60 Engineering Sample Parts
Device Test number Slice Description Failing DSP output bit positions
1st test 2nd test 3rd test
SX35 part#1 1 DSP_r90c46 P0-P3 P0-P10 P0-P47
 DSP_r52c46 P0?P21 P0-P47 P0-P2
 DSP_r56c19 P0,P1 P0-P20 P0-P3
 DSP_r8c35 P0-P47 P0-P47 P0-P47
 DSP_r80c8 P0-P47 P0-P47 P0-P47
 2 DSP_r90c46 P0-P10 P0-P1 P0-P1
 DSP_r52c46 P0-P27 P0-P27 P0-P37
 DSP_r56c19 P16-P29 P32-P47 P0-P11 P16-P31 P0-P5 P16-P47
 DSP_r8c35 P0-P31 P42-P47 P0-P37 P0-P37
 43
Device Test Number Slice Description Failing DSP output bit positions
1st test 2nd test 3rd test
 DSP_r80c8 P0-P5 P16-P47 P0-P37 P0-P37
 3 DSP_r90c46 P0-P18 P0-P47 P0-P18
 DSP_r52c46 P0-P27 P0 P0-P29
 DSP_r56c19 P0-P7 P16-P35 P16-P29 P32-P47 P0-P3 P16-P47
 DSP_r8c35 P0-P35 P0-P35 P0-P35
 DSP_r80c8 P0-P35 Po-P35 P0-P3 P16-P47
SX35part#3 1 DSP_r72c19 P0-P19
 2 DSP_r72c19 P0-P27
Device Test number Slice Description Failing DSP output bit positions for all three iterations
SX35part#4 1 DSP_r64c8 P0-P47
 DSP_r74c35 P0-P3
 DSP_r92c19 P0-P2
 2 DSP_r64c8 P0-P5, P16-P47
 DSP_r74c35 P0, P1
 3 DSP_r64c8 P0-P3, P16-P47
 DSP_r74c35 P0-P16
SX35part#5 2 DSP_r52c35 P0
 3 DSP_r52c35 P0-P47
LX60part#6 1 DSP_r46c15 P0-P40
 2 DSP_r46c15 P0-P12
 3 DSP_r46c15 P0-P18
LX60part#8 2 DSP_r90c15 P0-P47
 3 DSP_r90c15 P0-P47

3.6 BIST Timing Analysis
 To determine the maximum clock frequency of DSP BIST, timing analysis was done
using the Xilinx timing analysis tool TRCE.exe, for all Virtex-4 FPGAs. Figure 3.10 illustrates
the maximum BIST clock frequency (in MHz) for all five configurations for an SX35 device
when the TPG is placed at the bottom of the array. From Figure 3.10 it is observed that the BIST
clock frequency for configuration #1 is always low. Since configuration #1 has no pipeline
registers, the timing tool cannot calculate the accurate BIST clock frequency for this
 44
configuration since it assumes the possibility of a dynamic cascade of all DSPs in the device
even though the DSPs are not cascaded during this BIST configuration. Configuration #5 has the
next slowest BIST clock frequency because the DSPs are clocked on the falling edge of the clock
while the TPGs and ORAs are clocked on the rising edge of the clock in this configuration. The
cascade routing between the DSP slices in configuration #5 also decreases the maximum BIST
clock frequency. To improve the overall clock frequency of BIST, the DSPs in configuration #5
are clocked on the rising edge of the clock since configuration #3 takes care of testing DSPs
when clocked on the falling edge of the clock.
Figure 3.11 illustrates the BIST clock frequency (in MHz) for all five BIST
configurations for an SX35 device when the DSPs are clocked on the falling edge of the clock
only in configuration #3. So, now configuration #3 has the slowest BIST clock frequency. From
the timing analysis results performed on all Virtex-4 devices for the slowest BIST configuration,
configuration #3, it is observed that the position of the TPG in the array has a significant impact
on the BIST clock frequency. Figure 3.12 illustrates the maximum clock frequency (in MHz) for
the slowest BIST configuration (#3) for all Virtex-4 FPGAs with respect to the TPG position at
the bottom of the array or at the middle of the array as shown in Figure 3.8a.
From Figure 3.12 it is seen that higher BIST clock frequency is achieved when the TPG
is placed at the middle of the array when compared to the placement of the TPG at the bottom of
the array. This is because the top-most and the bottom-most DSP slices are placed at an equal
distance from the TPG when the TPG is placed at the middle of the array. This makes the routing
distance between the top-most DSP slice and the TPG shorter compared to the longer routing
distance when the TPG is placed at the bottom of the array. Therefore, the TPG is placed at the
middle of the array for all devices except the FX12 and FX20 devices that have a PowerPC
 45
module at the middle of the array. The maximum clock frequency for BIST is less than 50MHz
for some of the larger Virtex-4 FPGAs, like LX100, LX160, LX200 and FX140. Sub-array
testing can be done for these devices where each half of the array is tested separately.

Figure 3.10 Maximum BIST Clock Frequency for an SX35 Device When DSPs in
Configurations #3 and #5 are Clocked on Falling Edge of the Clock

Figure 3.11 Maximum BIST Clock Frequency for an SX35 Device when DSPs in
Configuration #3 are Clocked on Falling Edge of the Clock
 Figure 3.13 illustrates the maximum clock frequency (in MHz) for the sub-arrays as a
function of the TPG position in the array. In Figure 3.13, ?Bottom BIST Bottom TPG? refers to
BIST for the bottom half of the array when the TPG is placed at the bottom of the array, ?Top
0
20
40
60
80
100
c onfi g1 c onfi g2 c onfi g3 c onfi g4 c onfi g5
Max
imum BIST
 Clo
ck
 F
re
qu
enc
y
0
20
40
60
80
100
c onfi g1 c onfi g2 c onfi g3 c onfi g4 c onfi g5
Max
imum BIST
 Clo
ck
 F
re
qu
enc
y
 46
BIST Bottom TPG? refers to BIST for the top half of the array when the TPG is placed at the
bottom of array, ?Bottom BIST Middle TPG? refers to BIST for the bottom half of the array
when the TPG is placed at the middle of the array, and ?Top BIST Middle TPG? refers to BIST
for the top half of the array when the TPG is placed at the middle of the array. From Figure 3.13
it is seen that the maximum BIST clock frequency for the top half of the array when the TPG is
placed at the middle of the array is more than the maximum clock frequency for the bottom half
of the array. This is because when the TPG located at the middle of the array, for the top half of
the array, the TPG routes across and then up to the DSPs above whereas for the bottom half of
the array, the TPG routes down to the bottom of the array to the DSPs and then routes across and
up to the DSPs above.

Figure 3.12 Maximum BIST Clock Frequency

0
10
20
30
40
50
60
70
80
90
100
110
lx15 lx25 lx40 lx60 lx80
lx10
0
lx16
0
lx20
0
fx1
2
fx2
0
fx4
0
fx6
0
fx1
0
0
fx1
4
0
sx2
5
sx3
5
sx5
5
V ir t e x - 4 F P GA
M
a
x
 Clo
c
k
 F
req
 (M
Hz
)
B o tt o m
M idd le
 47

Figure 3.13 Maximum Clock Frequency for Sub-Arrays
Figure 3.14 illustrates the routing paths for the top and bottom halves of the array when
the TPG is placed at the middle of the array. Hence, the routing path is longer for the bottom half
of the array compared to the top half of the array which explains the slower clock frequency.
Therefore, to make the clock frequency for the bottom half of the array as fast as the top half of
the array, the TPG is placed at the bottom when testing the bottom half of the array as shown in
Figure 3.15.

a) Routing for the Top Half of the Array b) Routing for the Bottom Half of the Array
Figure 3.14 Routing Paths for the Sub-Arrays with TPG at the Middle of the Array

0
10
20
30
40
50
60
lx 1 0 0 lx 1 6 0 lx 2 0 0 fx 1 4 0
Dev ic e
M
a
x
 Clo
c
k
 F
r
e
q
 (
M
Hz)
B o tt o m B I S T
B o tt o m T P G
T o p B I S T
B o tt o m T P G
B o tt o m B I S T
M idd le T P G
T o p B I S T
M idd le T P G
V4 LX160
routed
V4 LX160
routed
 48

Figure 3.15 TPG Position for the Bottom Sub-Array
The BIST clock frequency can be further improved by inverting the clock on the CLB
slices in which the TPGs and the ORAs are implemented for BIST configuration #3 that has
inverted clock on the DSP slices. The increase in BIST clock frequency (in MHz) for BIST
configuration #3 that has inverted clock on the DSP slices as well as the TPGs and ORAs is
illustrated in Figure 3.16.

Figure 3.16 Timing Analysis Based on Clock Edge for Configuration #3
0
20
40
60
80
100
120
140
160
180
200
l x15 l x25 l x40 l x60 l x80
l x100 l x160 l x200
fx12 fx20 fx40 fx60
fx100 fx140 sx25 sx35 sx55
Max BIS
T Clo
ck Frequen
cy
c onf ig# 3 s a me e dge c loc k
c onf ig# 3 opposi te e dge c loc k
V4 LX160
Unrouted
 49
Figure 3.17 illustrates the maximum BIST clock frequency (in MHz) for BIST
configurations #2 through #5 for DSP BIST when the TPGs, ORAs and DSPs have the same
clock edge for all the configurations. BIST configuration #1 is not included in Figure 3.18 since
timing analysis does not give an accurate result for configuration #1.

Figure 3.17 Timing Analysis for DSP BIST Configurations #2 through #5
Table 3.8 illustrates the increase in download time and test time caused by inverting the
clock on the TPGs and ORAs for BIST configurations that have inverted clock on the DSP
slices. This increase in download time happens because for BIST configuration #3 where the
DSPs are clocked on the falling edge of the clock, the configuration memory of the TPGs and the
ORAs has to be rewritten in order to match the clock edge of the TPGs and the ORAs with the
falling clock edge of the DSPs, since the TPGs and ORAs are configured to clock on the rising
edge of the clock in the previous BIST configuration. The order in which the BIST
configurations are generated for the data presented in Table 3.8 is #1 through #5.
0
20
40
60
80
100
120
140
160
180
200
l x15 l x25 l x40 l x60 l x80
l x100 l x160 l x200
fx12 fx20 fx40 fx60
fx100 fx140 sx25 sx35 sx55
Max BIS
T Clo
ck Frequen
cy
co n f ig # 2
co n f ig # 3
co n f ig # 4
co n f ig # 5
 50
From Table 3.8, it is observed that using same edge clock for BIST configurations that
have falling edge clock increases the download and test time by a maximum of 7.9% when BIST
configurations are downloaded in the following order: #1, #2, #3, #4 and #5. This increase is not
significant when compared to the overall download and test time.
Table 3.8 Configuration File Size and Test Time Increase for Same Edge Clock
Device
Bits for Config #1 # Bits for Configs #2,#3,#4 & #5 Increase in Download Time (sec) Increase in Test Time (sec)
Full
download
Compress
download %
Opposite
edge
clock
Same
edge clock
Full
download
Compress
download
Full
download
Compress
download
lx15 4,765,568 2,091,808 43.8 62,720 183,808 1.02507 1.05620 1.02503 1.05598
lx25 7,819,904 3,259,552 41.6 84,736 238,848 1.01949 1.04608 1.01947 1.04596
lx40 12,259,712 4,747,072 38.7 106,752 293,888 1.01513 1.03855 1.01512 1.03848
lx60 17,717,632 5,813,376 32.8 106,752 293,888 1.01049 1.03161 1.01049 1.03156
Lx80 23,291,008 7,512,768 32.2 128,768 348,928 1.00940 1.02881 1.00939 1.02877
lx100 30,711,680 9,421,696 30.6 150,784 403,968 1.00820 1.02644 1.00820 1.02642
lx160 40,347,008 10,342,528 25.6 150,784 403,968 1.00625 1.02412 1.00625 1.02410
lx200 51,367,808 11,714,848 22.8 150,784 403,968 1.03290 1.02133 1.00491 1.02132
fx12 4,765,568 1,924,288 40.3 62,720 183,808 1.02507 1.06093 1.02503 1.06068
fx20 7,242,624 2,277,344 31.4 62,720 183,808 1.01657 1.05174 1.01655 1.05156
fx40 14,936,192 4,548,160 30.4 84,736 238,848 1.01025 1.03326 1.01025 1.03320
fx60 21,002,880 7,805,024 37.1 194,816 514,048 1.01505 1.03990 1.01505 1.03986
fx100 33,065,408 11,609,824 35.1 238,848 624,128 1.01156 1.03251 1.01156 1.03249
fx140 47,856,896 15,736,192 32.8 282,880 734,208 1.00937 1.02817 1.00937 1.02816
sx25 9,147,648 4,948,448 54 194,816 514,048 1.03417 1.06206 1.03413 1.06196
sx35 13,700,288 7,367,104 53.7 282,880 734,208 1.03227 1.05899 1.03225 1.05893
sx55 22,745,216 13,322,656 58.5 723,200 1,835,008 1.04737 1.07915 1.04735 1.07910
With the inversion of clock on the TPGs on ORAs to match the clock edge on which the
DSPs are clocked, the BIST clock frequency no longer depends on the edge of the clock used to
clock the DSPs. So, configuration # 5 can be changed to clock the DSPs on the falling edge of
the clock as this change might detect some of the undetected faults in Section 3.5. Table 3.9
illustrates the increase in the bitstream file size caused by the inversion of clock edge on the
TPGs and the ORAs to match the clock edge of the DSPs. for an SX55 device. From Table 3.9, it
is observed that the file size also depends on the order in which the BIST configurations are
generated. Table 3.10 illustrates the BIST configurations for Virtex-4 DSP BIST in the order in
which they should be generated.
 51
Table 3.9 Download File Sizes (in Bits) for an SX55 Device
Download #
DSPs in
configurations
#3 and #5 have
falling edge
clock
Clock egde on
TPGs and ORAs
is matched with
clock edge on
DSPs
Clock edge on TPGs
and ORAs is
matched with clock
edge on DSPs
BIST
13294720
BIST
13294720 BIST # 13294720
Download #1
(compressed) 1 1 3
Download #2
(partial
reconfiguration)
2 180800 2 180800 5 180800
Download #3
(partial
reconfiguration)
3 180800 3 736704 1 736704
Download #4
(partial
reconfiguration)
4 180800 4 736704 2 180800
Download #5
(partial
reconfiguration)
5 180800 5 736704 4 180800
Total 14017920 15685632 14573824
Table 3.10 BIST Configurations for Virtex-4 DSP BIST
BIST Config
Pipeline Registers
Signals Active
Level
B Input Source Test Modes Applied Clock edge of
TPGs and ORAs
Slice 0 Slice 1 Mult Add Casc
1 A/Breg=2, Others=1 Low Direct Direct #1 #2 Low
2 Preg=1, Others=0 Low Direct Cascade #3 Low
3 All Regs = 0 High Direct Direct #4 High
4 All Regs = 1 High Direct Direct #5 #6 High
5 Preg=1, Others=0 High Cascade Direct #7 High
3.7 Summary
 A minimum set of BIST configurations was developed to test the DSP cores in Virtex-4
FPGAs. Fault detection capabilities and fault diagnosis were verified by injecting faults into the
configuration memory bits controlling the DSP cores in an FX12 device. DSP BIST was also
able to detect faulty DSP cores in some of the SX35 and LX60 engineering sample parts. Fault
 52
coverage of 97.4% is achieved for the faults injected in the configuration memory of the DSP.
The functional fault coverage as determined by fault simulations is much higher. Fault coverage
for the faults injected in the configuration memory of the DSP can be improved to 100% by
adding more BIST configurations if desired. Since these undetected faults are in nonfunctional
modes of operation the value of additional BIST configurations is questionable. Maximum BIST
clock frequency was improved by changing the position of the TPG in the chip array. To further
improve the BIST frequency on larger Virtex-4 devices, where the BIST frequency is less than
50MHz, sub-array testing is done. Sub-array testing also minimizes the power dissipation caused
by testing a large number of DSPs simultaneously, as this can cause problems in the system.
When same edge clock is used on the TPGs, ORAs and DSPs for all configurations, the
maximum BIST clock frequency is well over 50 MHz. But sub-array testing may still be required
for larger devices that have large numbers of DSPs to minimize power dissipation.

 53
Chapter 4
BIST for DSP Cores in Virtex-5 FPGAS
This chapter describes the implementation of BIST for DSPs in Virtex-5 FPGAs. The
BIST architecture, along with the BIST configurations and test sequences for DSP cores in the
FPGAs, are discussed. The chapter also discusses the retrieval of BIST results and the timing
analysis of BIST for all Virtex-5 FPGAs. The chapter concludes by summarizing the
experimental BIST results and the fault coverage achieved.
4.1 BIST Approach for DSPs in Virtex-5 FPGAs
 Since most of the features of DSPs in Virtex-5 FPGAs are similar to the features of DSPs
in Virtex-4 FPGAs, as explained in Chapter 2, the test algorithms used to test the DSPs in
Virtex-4 FPGAs can also be applied to test DSPs in Virtex-5 FPGAs. The additional features in
DSPs of Virtex-5 FPGAs can be tested by making modifications to the TPG.
4.1.1 Adder and Multiplier Tests
The adder test algorithm described in Section 3.1.1 of Chapter 3 can be used to test the
adder in Virtex-5 FPGAs as well. Although the adder in Virtex-5 FPGAs can be accessed
through two 48-bit input ports and can be tested using a one clock cycle per vector approach, the
two-clock cycle per vector approach described in Section 3.1.1 of Chapter 3 is used to be able to
also test the accumulator register with the adder. The 5?3 and the 3?5 multiplier test algorithms
described in Section 3.1.2 of Chapter 3 can be applied to test the multiplier in Virtex-5 FPGAs.
Like the test sequences for DSPs in Virtex-4 FPGAs, the test sequences for DSPs in Virtex-5
FPGAs are also 1024 clock cycles long and are divided into four groups of 256 clock cycles
 54
each. The adder and the multiplier test sequences are illustrated in Table 4.1. During the first
group of 256 clock cycles of the adder test sequence, the first stage of the adder is tested and,
during the second group of 256 clock cycles, the second stage adder is tested. During the third
and fourth groups of 256 clock cycles in the adder test sequence, other paths to the adder are
tested. The 5?3 multiplier test algorithm is applied to the multiplier in slice 1 while the 3?5
multiplier test algorithm is applied to the multiplier in slice 0 during the first group of 256 clock
cycles in the multiplier test sequence. During the second group of 256 clock cycles in the
multiplier test sequence the 5?3 multiplier test algorithm is applied to the multiplier in slice 0
and the 3?5 multiplier test algorithm is applied to the multiplier in slice 1. The 5?3 multiplier
test algorithm is applied by replicating the five MSB bits of the vector generated by the 8-bit
counter and applying the replicated bits to the 30-bit A port while the three LSB bits of the
vector generated by the 8-bit counter are replicated and applied to the 18-bit B port. During the
3?5 multiplier test algorithm the three LSB bits of the vector generated by the 8-bit counter are
replicated and applied to the 30-bit A port while the five MSB bits of the vector generated by the
8-bit counter are replicated and applied to the 18-bit B port. The application of different
multiplier test algorithms to slice 0 and slice1 ensures that the A and B ports in both slices
receive different test patterns on every clock cycle so that the stuck-at faults on the multiplexers
that select between direct and cascade paths on A and B ports of the DSP slice can be tested.
During the third group of 256 clock cycles in the multiplier test sequence, the multiply and add
function is tested and during the fourth group of the multiplier test sequence the A port
concatenated with the B port, bypass of the multiplier, is tested.

 55
Table 4.1 Multiplier and Adder Test Sequences
Test First 256 ccs Second 256 ccs Third 256 ccs Fourth256 ccs
Multiply P = A?B P = A?B P = A?B+C P = A:B+C
Adder P = Z(C) P = X(P)+Y(C) P = Y(C) P = Y(C)+Z(P) P = Z(C) P = Y(C)+Z(P) P = Y(C) P = Y(C)+Z(ShiftP)
4.1.2 Pattern Detector Test
From the datasheet it is understood that the pattern detector mainly checks for the
equality between the output of the adder/subtractor/logic unit and a pattern given by the user.
This pattern can be given dynamically through the C port or statically through the configuration
memory bits. A mask field masks individual bits that are not considered during the comparison
process [10]. Like the pattern, the mask can be given by the user dynamically through the C port
or statically through the configuration memory bits. Multiplexers controlled by configuration
memory bits select between dynamic or static patterns and masks. The pattern detector has two
outputs, Patterndetect and Patternbdetect. The Patterndetect output goes to logic ?1? if the output
of the adder/subtractor/logic unit matches the user-defined pattern and the Patternbdetect output
goes to logic ?1? if the output of the adder/subtractor/logic unit matches the complement of the
user-defined pattern. Although the data sheet does not explicitly define the architecture of the
pattern detector, it is mentioned that the pattern detect logic performs a bitwise ((P=
=pattern)||mask) and then ANDs the results to a single bit result [10]. From this equation the
architecture for the Patterndetect logic is reasoned to be as illustrated in Figure 4.1.
Figure 4.1 illustrates a 4-bit architecture for the pattern detect logic where o[4:1] indicate
the output of the adder/subtractor/logic unit, p[4:1] indicate the user-defined pattern and m[4:1]
indicate the mask. The AND gate shown Figure 4.1 can be completely tested by walking a 0
 56
through a field of 1s and applying the all 1s pattern. Table 4.2 illustrates the test vectors to test a
4-bit pattern detect logic.

Table 4.2 Test Vectors for Testing the 4-bit Patterndetect Logic
o1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0
p1 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0
o2 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0
p2 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0
o3 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0
p3 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0
o4 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0
p4 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
m
[4:1]
0/
1
0/
1
0/
1
0/
1
0/
1
0/
1
0/
1
0/
1
0/
1
0/
1
0/
1
0/
1
0/
1
0/
1
0/
1
0/
1
x1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1
X2 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1
x3 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1
x4 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0
y1 1 0/ 1 1 1 1 1 1 1 1 0/ 1 1 1 1 1 1 1
y2 1 1 1 0/ 1 1 1 1 1 1 1 1 0/ 1 1 1 1 1
y3 1 1 1 1 1 0/ 1 1 1 1 1 1 1 1 0/ 1 1 1
y4 1 1 1 1 1 1 1 0/ 1 1 1 1 1 1 1 1 0/ 1
 From Table 4.2 it observed that all four combinations of input patterns (00, 01, 10 and
11) are applied to the XNOR gates. While applying these set of patterns the mask is set to have
patterns with alternate 0s and 1s that are applied statically through the configuration memory
o1
o2
o3
o4
p1
p2
p3
p4
m1
m2
m3
m4
patterndetect
Figure 4.1 Architecture for a 4-bit Patterndetect Logic
x1
x2
x3
x4
y1
y2
y3
y4
 57
bits. This allows the application of all four combinations of patterns (00, 01, 10 and 11) on the
inputs of the OR gates. The shaded portions in Table 4.2 illustrate all the vectors that are applied
to the Patterndetect logic.
The datasheet also mentions that the Patternbdetect logic performs the logic equation
((P= =~pattern)||mask) [10]. Although duplicating the architecture shown in Figure 4.1 with
XOR gates instead of XNOR gates would satisfy this equation, this implementation requires a lot
of logic. Hence, the architecture for the Patternbdetect logic is reasoned to be as illustrated in
Figure 4.2. In Figure 4.2, o[4:1] indicate the output of the adder/subtractor/logic unit, p[4:1]
indicate the user-defined pattern and m[4:1] indicate the mask. The NOR gate shown in Figure
4.2 can be completely tested by walking a 1 through a field of 0s and applying the all 0s pattern.
This is achieved by inverting any one of the input bits at the XNOR gates in Table 4.2. Table 4.3
illustrates the test vectors for the Patternbdetect logic.

The set of test patterns illustrated in Table 4.3 applies all possible input combinations (00,
01, 10 and 11) to the XNOR gates. The mask is set to have patterns with alternate 0s and 1s
applied statically through configuration memory bits. This ensures that the AND gates in Figure
patternbdetect
o1
p1
o2
p2
o3
p3
o4
p4
m1
m2
m3
m4
Figure 4.2 Architecture for a 4-bit Patternbdetect Logic
x1
x2
x3
x4
y1
y2
y3
y4
 58
4.2 are completely tested. The shaded portions in Table 4.3 illustrate all the vectors that are
applied to the Patternbdetect logic.
Table 4.3 Test Vectors for Testing the 4-bit Patternbdetect Logic
o1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1
p1 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0
o2 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1
p2 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0
o3 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1
p3 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0
o4 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1
p4 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
m
[4:1]
0/
1
0/
1
0/
1
0/
1
0/
1
0/
1
0/
1
0/
1
0/
1
0/
1
0/
1
0/
1
0/
1
0/
1
0/
1
0/
1
x1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
X2 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
x3 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0
x4 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
y1 0 1/ 0 0 0 0 0 0 0 0 1/ 0 0 0 0 0 0 0
y2 0 0 0 1/ 0 0 0 0 0 0 0 0 1/ 0 0 0 0 0
y3 0 0 0 0 0 1/ 0 0 0 0 0 0 0 0 1/ 0 0 0
y4 0 0 0 0 0 0 0 1/ 0 0 0 0 0 0 0 0 1/ 0
 Figure 4.3 illustrates the TPG architecture used to generate test vectors for the pattern
detector. A 49-bit shift register and a 47-bit shift register are cascaded to form a 96-bit shift
register. A transition of either logic ?1? or logic ?0? on the MSB bit of the 49-bit shift register
enables the 47-bit shift register. The 49-bit shift register starts shifting first until there is a
transition of either logic ?1? or logic ?0? on its MSB bit and from then onwards the 49-bit shift
register is enabled only when the MSB bit of the 47-bit shift register undergoes a transition from
logic ?1? or logic ?0?. The ?cs? bit in Figure 4.3 is set to ?0? to generate the test vectors illustrated
in Table 4.2 and is set to ?1? to generate the test vectors illustrated in Table 4.3. The 49-bit shift
register is the same shift register that generates test patterns for the adder test. The 47-bit shift
register is disabled during the adder test.
 59

In addition to the static and dynamic masks the pattern detector can select its mask from
two other masks, selected by user-defined attributes ?mode1? and ?mode2?. These masks used for
rounding applications are determined by the C-port input and change as the C-port input changes
[10]. The ?mode1? attribute selects the mask to be the complement of the C-port input left shifted
by 1 and the ?mode2? user attribute selects the mask to be the complement of the C-port input left
shifted by 2. Multiplexers select the final mask from four options: a dynamic mask given through
the C-port, a static mask given through configuration memory bits, and the two other masks
explained above. The multiplexers that choose the final mask and the final pattern are modeled
as illustrated in Figure 4.4 [10]. The SEL_MASK user attribute, also a configuration memory bit,
selects between the dynamic mask given through the C-port and the static mask given through
the configuration memory bits. The mask selected by the SEL_MASK user attribute is fed into a
3-input multiplexer that selects between the mask selected by the SEL_MASK attribute and the
?mode1? and ?mode2? masks [10]. The user attribute SEL_ROUNDING_MASK, the select
signal to this three input multiplexer, is a combination of two configuration memory bits, CB1
and CB2 as illustrated in Figure 4.5.
The auto-reset feature of the pattern detector is used to reset (when user attribute
AUTORESET_PATTERN_DETECT, which is also a configuration memory bit, is set to be
TRUE) the output P register of the DSP slice on the subsequent clock cycle after match is
Figure 4.3 TPG for the Pattern Detector
reset
96
cs
96 Sreg2 Sreg2i
49-bit shift
register
47-bit shift
register
reset
EN EN
A, B
and C
ports
 60
detected between the pattern and the output of the DSP slice or if a pattern was detected on the
previous clock cycle but is now not detected [10]. The auto-reset feature can also be used to not
reset (when AUTORESET_PATTERN_DETECT is set to be FALSE) the output P register if
one of the above explained conditions is met. The user attribute, AUTORESET_ PATTERN_
DETECT_ OPTINV, also a configuration memory bit, is set to MATCH to reset or not reset the
P register on the subsequent clock cycle if a pattern is detected and is set to NOT_MATCH to
reset or not reset the output P register if a pattern was detected on the previous clock cycle but is
now not detected. The architecture of the auto-reset logic is explicitly defined in the datasheet as
illustrated in Figure 4.6 [10].

Dynamic mask
through C port
Static mask
through
configuration
Sel_Mask
CB1
CB2
mode1
mode2
mask
Figure 4.5 Detailed Multiplexer Architecture for Selecting Mask
Dynamic mask
through C port
Static mask
through
configuration
SEL_MASK
Mode1
Mode2
SEL_ROUNDING
_MASK
mask
Figure 4.4 Multiplexer Architecture for Selecting the Pattern and the Mask [10]
Dynamic pattern
through C port
Static pattern through
configuration
Select pattern
 61

 The overflow and underflow logic associated with the pattern detector is used to check
for overflow or underflow beyond any particular bit position between 0 and 46. The mask
determines the threshold for overflow or underflow while the pattern is set to 000?00 <47:0>.
The value beyond which the output of the DSP slice overflows is 2N-1 where N is the number of
ones in the mask field and the value beyond which the output of the DSP slice underflows is the
twos complement form of negative 2N. The architecture of the overflow and underflow logic is
explicitly defined in the datasheet as illustrated in Figure 4.7 [10].
.
 The BIST configurations illustrated in Table 4.4 completely test the pattern detector and
its associated multiplexer paths, auto-reset, overflow and underflow logic. To apply the correct
patterndetect patterndetectpast
patternbdetect
overflow
patternbdetect patternbdetectpast
patterndetect
underflow
Figure 4.7 Overflow and Underflow Logic [10]
patterndetectpast patterndetect
AUTORESET_PATTERN_DETECT
0
1
AUTORESET_PATTERN_DETECT_OPTINV
Figure 4.6 Auto Reset Logic [10]
OR with
external
RSTP
 62
test vectors to the pattern detector, the output of the adder/subtractor/logic unit is set to be same
as the concatenated A and B ports given through the X multiplexer while applying 0s to the Y
and Z multiplexers. The pattern detector test sequence is 1024 clock cycles long and during the
entire sequence OPMODE bits <1:0> select the A concatenated with B input through the X
multiplexer port while OPMODE bits <3:2> apply 0s to the Y multiplexer port and OPMODE
bits <6:4> apply 0s to the Z multiplexer port. Static or dynamic patterns and masks are set as per
the BIST configuration. APDO and APD in Table 4.4 indicate Auto-Reset Pattern Detect Optinv
and Auto-Reset Pattern Detect user attributes, respectively.
Table 4.4 BIST Configurations for the Pattern Detector
PSTATIC
<47:0>
MSTATIC
<47:0>
SEL_PATTERN SEL_MASK CB1 CB2 APDO APD
0101..01 1111..11 static dynamic 0 0 0 1
1111..11 0101..01 dynamic static 1 0 1 1
1010..10 1111..11 static dynamic 0 0 0 0
1111..11 1010..10 dynamic static 1 0 1 0
x x dynamic dynamic 0 1 0 1
x x dynamic dynamic 1 1 0 1
An 8-bit pattern detector with its auto-reset, overflow and underflow logic along with the
multiplexers that select the mask and the pattern were written in ASL (Auburn Simulation
Language) using AUSIM (Auburn University Simulator) to determine the efficiency of the test
algorithm and the BIST configurations. Of the 568 single stuck-at gate-level faults and the 2276
bridging faults generated using AUSIM, the BIST configurations with the test vectors illustrated
in Tables 4.2 and 4.3 detect all detectable single stuck-at and bridging faults.
4.1.3 ALU Logic Mode Test
 As described in Section 2.2 of Chapter 2, the DSPs in Virtex-5 FPGAs have an ALU
logic mode of operation controlled by ALUMODE control signals and OPMODE bits <3:2>.
The ALU logic unit in the DSPs performs bitwise logical XOR, XNOR, OR, AND, NAND,
 63
NOR and NOT operations on two 48-bit inputs as described in Table 2.3 of Chapter 2 [10].
When the logic mode is used in the DSP slices, the multiplier is not used and the 30-bit A and
18-bit B input ports of the DSP slice are concatenated to form a 48-bit input to the logic unit. The
other 48-bit input is provided by the C input port of the DSP slice [10]. The ALUMODE test
sequence is 1024 clock cycles long and during the entire test sequence the OPMODE bits <1:0>
select the A concatenated with B input through the X multiplexer and the OPMODE bits <6:4>
select the C input through the Z multiplexer.
 The ALU logic mode can be tested using the same 8-bit counter that is used to test the
multiplier in the DSPs. During a 256 clock cycle period the ALUMODE is tested for all the
logical operations described in Table 2.3 of chapter 2. As described in Table 2.2 of chapter 2, the
ALUMODE values ?0000? and ?0011? correspond to the adder and subtractor functions that are
tested during the adder test sequence, the remaining adder/subtractor functions in Table 2.2 that
correspond to ALUMODE values ?0001? and ?0010? are tested during the ALUMODE test
sequence as well. Counter<0> generates test patterns for the CARRYIN input of the
adder/subtractor unit. Counter<1> generates test patterns for the A concatenate B input of the
adder/subtractor/logic unit and counter<2> generates test patterns for the C input of the
adder/subtractor/logic unit. Counter bits <6:3> generate values for the ALUMODE control bits
and counter<7> generates values for the control bit OPMODE <3> while the control bit
OPMODE<2> is held constant at logic ?0?. During the 256 clock cycle period all possible
combinations of test vectors (00, 01, 10 and 11) are applied to the two inputs of the logic unit.
Bridging faults in the logic unit can be tested by increasing the width of the counter to 10-bits
and using the additional bits to control every other bit of the two inputs to the logic unit.

 64
4.1.4 Cascade Mode Test
 The DSP slices in Virtex-5 FPGAs can be cascaded to implement larger multipliers and
adders used for extended MACC (Multiply and Accumulate) functions. Unlike the DSPs in
Virtex-4 FPGAs where the B and P ports of a DSP slice can be cascaded, the A, B and P ports of
a DSP slice can be cascaded in Virtex-5 FPGAs. The sign bit of the multiplier output can also be
cascaded in Virtex-5 FPGAs. The choice between direct and cascade paths for the A and B ports
is made by configuration memory bits [10]. The A and B ports can have up to two pipeline
registers in their direct and cascade paths. The number of pipeline registers in these paths is
determined by configuration memory bits. The user attributes A_INPUT and B_INPUT select
between direct and cascade paths of the A and B ports. The user attributes AREG, ACASREG,
BREG and BCASREG select the number of pipeline registers. The acceptable combinations of
values for the user attributes that select the number of pipeline registers are summarized in Table
4.5. The architecture of multiplexers that choose between direct and cascade paths and the
number of pipeline registers in these paths is illustrated in Figure 4.8 [10].
Table 4.5 Values for A and B Pipeline Registers [10]
Areg and Breg of DSP slice that
cascades to the slice above
Areg and Breg of DSP slice that
receives cascade inputs from slice below
0 0
1 1
2 1,2
Form Figure 4.8 it is seen that the A and B cascade paths in the DSP slice are tested when
all paths through MUX 4 are tested. This is achieved by setting the values of user attributes
AREG and BREG to ?2? while setting values of user attributes ACASREG and BCASREG to ?2?
and by setting the values of user attributes AREG and BREG to ?1? while setting values of user
attributes ACASREG and BCASREG to ?1?. The DSP slices in Virtex-5 FPGAs are cascaded in
 65
pairs. Since slice 1 and slice 0 are individually configured to operate in cascade mode, a total of
four BIST configurations are required to test the cascade mode of operation.

4.1.5 SIMD Mode Test
 The SIMD mode of operation in Virtex-5 FPGAs, as described in Section 2.2 of Chapter
2, splits the 48-bit adder into two 24-bit adders or four 12-bit adders. The USE_SIMD user
attribute selects between these three adder architectures [10]. Hence it can be understood that the
48-bit adder in Virtex-5 FPGAs is constructed from four 12-bit CLA adders, where each 12-bit
CLA adder is constructed from three basic CLA adder units described in Section 2.3 of Chapter
2. In the two 24-bit adder architecture mode, configuration bits block the propagation of the
carryout signal between the second and the third 12-bit adders [10]. In the four 12-bit adder
architecture mode the carryout signals are not allowed to propagate between individual 12-bit
adders and are blocked by configuration bits. In the one 48-bit adder architecture mode, the
propagation of carryout signals between individual 12-bit adders is not blocked by configuration
bits [10].
 By testing the SIMD mode of operation in the one-48 and four-12 modes, all
configuration bits that select between the three adder architectures will have been tested. The
SIMD ?one 48? mode is tested during configurations #2 and #3 as summarized in Table 4.7.
MUX1
MUX2 MUX3
MUX4
Acin/Bcin
A/B
RST
CE
RST
CE
To Mult
Figure 4.8 Multiplexer Architecture that Selects Between Direct and
Cascade Paths of A and B Ports [10]
 66
Configurations #2 and #3 also test the functionality of the adder. The SIMD four 12-bit mode is
tested during configuration #8 when the DSPs are in cascade mode of operation as summarized
in Table 4.7. Since the functionality of the adder is already tested in configurations #2 and #3,
the faults associated with the SIMD four 12-bit mode can be tested while testing the cascade
mode of operation without adding another configuration just for testing the adder in the SIMD
?four 12? mode of operation.
4.1.5 MACC Extend Mode Test
Cascade signals CARRYCASCIN, CARRYCASCOUT, MULTSIGNIN and
MULTSIGNOUT are internal to the DSP and are used to build larger adders and multipliers.
The most significant bit (MSB) of the multiplier output functions as MULTSIGNOUT and is
used in MACC extension applications to build a 96-bit MACC. The MULTSIGNOUT bit is
cascaded to the DSP slice above through its corresponding MULTSIGNIN port. The carryout
from the DSP slice below is also added along with the MULTSIGNOUT bit [10]. The test
patterns used to test the multiplier are also applied to test the MACC extend feature. The MACC
extend feature is tested during configuration #2 as summarized in Table 4.7.
4.2 BIST Architecture
 The BIST architecture used for DSPs in Virtex-5 FPGAs is same as the BIST architecture
used for DSPs in Virtex-4 FPGAs, as described in Section 3.2 of Chapter 3. Two TPGs are used
to drive alternate rows of DSP tiles so that a faulty TPG can be detected. Both slices of a DSP
tile are driven by the same TPG for individual control of slices during cascade mode of
operation. The control register that controls the TPG in Virtex-5 FPGAs is five bits. Of the five
bits, the three LSBs, called MODE2, MODE1 and MODE0, control the test mode of the TPG.
The second MSB, called INVCS, controls the active levels of control signals such as the
 67
OPMODE bits, ALUMODE bits and the active level of the carryin input to the adder unit. The
MSB provides a global reset to the TPG. The control register is implemented in a CLB and the
values for the control register are shifted in through the Boundary Scan interface, where the LSB
is shifted in first. The control register values for resetting the TPG and for the various test modes
are illustrated in Table 4.6. Each DSP slice is observed by two sets of ORAs. Similarly
configured slices of the DSP are compared using column-based circular comparison. The ORAs
that observe the bottom-most DSP slice in a column of DSPs are clock enabled so as to mask the
failure indications due to the unconnected cascade inputs on the bottom-most DSP slice in a
column of DSPs.
 The architecture of ORAs that observe DSP slices in Virtex-5 FPGAs is different from
the architecture of ORAs that observe DSP slices in Virtex-4 FPGAs. Since the CLBs in Virtex-5
FPGAs have 6-input look-up tables, each look-up table can compare two different output bits of
two individual DSP slices, unlike the CLBs in Virtex-4 FPGAs, where the look-up tables
observed only one output bit from two individual DSP slices. If any one of the two bits being
compared mismatches, the ORA outputs a logic ?0?. The ORA architecture for DSPs in Virtex-5
FPGAs is illustrated in Figure 4.9 [24]. A DSP slice in a Virtex-5 FPGA has 56 outputs. Figure
4.10 illustrates the inputs and outputs associated with a DSP slice. Since each CLB slice has four
6-input look-up tables, seven CLB slices are needed to analyze all 56 outputs. The ORAs that
analyze the DSPs under test are placed in two columns of CLBs beside the column of DSPs. The
bottom slices, slice 0s, of the DSP tiles are compared by the first column of ORAs and the top
slices, slice 1s, of the DSP tiles are compared by the second column of ORAs. The ORAs that
analyze each DSP slice under test occupy five rows in a single column of CLBs. Since only
seven CLB slices are required to analyze all the DSP outputs and each row has two CLB slices,
 68
the remaining three CLB slices are dummy ORAs and do not analyze a DSP under test but
generate the carry logic used to construct the iterative OR chain.
Table 4.6 Control Register Values for TPG Control
Control Register Values <4:0>
RESET INVCS MODE2 MODE1 MODE0 Operation
 1 X X X X Resets TPG
 0 1 X X X Inverts active level of control signals
 0 X 0 0 0 Sets the multiplier test mode
 0 X 0 0 1 Sets the adder test mode
 0 X 0 1 0 Sets the logic test mode
 0 X 0 1 1 Sets the patern detector test mode
 0 X 1 0 0 Sets cascade test mode
Figure 4.11 shows the orientation of the ORAs with respect to the DSP slices under test
in Virtex-5 FPGAs. The dedicated carry logic in the CLBs of Virtex-5 FPGAs can also be used
to create an iterative OR chain of ORAs where the Test Data In (TDI) line of the Boundary Scan
module is connected to the carry-in of the first CLB in the column of ORAs and the carry-out of
the last CLB in the last column of ORAs is connected to the Test Data Out (TDO) line of the
Boundary Scan module. This provides a single bit pass/fail result for the entire test. The TDO
line goes to logic ?1? when any one ORA in the iterative OR chain fails. Individual ORA results
can be read back to determine which ORAs have failed the test when the overall test fails.

 Figure 4.12 illustrates the general architecture of the TPG used to test DSPs in Virtex-5
FPGAs. The TPG for DSP BIST comprises a 10-bit counter where the two MSB bits are used for
Outi DSPj
Outi DSPk Pass
/Fail LUT
0 1
1
Carry out
Carry in Outk DSPj Outk DSPk
ORACE
Figure 4.9 ORA Architecture [24]
 69
the individual control of the four 256 clock cycle test groups during the 1024 clock cycle test
sequence, a 49-bit shift register for the adder test, a finite state machine (FSM) for control of
OPMODE control signals and two 10-bit linear feedback shift registers (LFSRs) for generating
pseudorandom signals for testing the resets and clock enables on the pipeline registers as well as
other control signals in the DSP slice that choose the source for the carryin input of the adder
unit. The eight least significant bits of the counter are used to apply test patterns to the multiplier
and the ALU logic mode. The 49-bit shift register, along with a 47-bit shift register, generate test
vectors for the pattern detector. The TPG is written in VHDL (580 lines of code) and is
synthesized into 99 CLB slices.

1st column
of ORAs
2nd column
of ORAs
DSP0
(Slice 0)
DSP1
(Slice 1)
DSP0(0:48)
DSP0(49:56)
Dummy ORAs
DSP1(0:48)
DSP1(49:56)
Dummy ORAs
Figure 4.11 DSP ORA Orientation in Virtex-5 FPGAs
A [0:30]
B [0:18]
C [0:48]
P [0:48] (DSP [0:48])
CARRYOUT [3:0]
PATTERNDETECT
PATTERNBDETECT
OVERFLOW
UNDERFLOW
V5 DSP SLICE
(DSP [49:52])
Figure 4.10 I/O of a Virtex-5 DSP Slice

(DSP [53])
(DSP [54])
(DSP [55])
(DSP [56])
 70

4.3 BIST Configurations and Sequences
The DSP cores are tested in eleven BIST configurations. During these eleven BIST
configurations, the DSP configuration memory bits are tested in all configurable combinations.
Table 4.7 summarizes the BIST configurations for the pattern detect logic explained in Section
4.1.2. Table 4.8 illustrates all the BIST configurations that are downloaded to test the DSP cores.
In Table 4.8, column 1 indicates the BIST configuration download number, column 2 indicates
the number of pipeline registers in the I/O paths of the DSP slice and the values for various user
attributes, column 3 indicates the active level of the DSP slice control signals, column 4 indicates
whether the A or B port of the DSP slice is in cascade or direct mode of operation and column 5
indicates the test modes that are being tested for each configuration.. BIST configurations #2 and
#3 are repeated five times to test the various modes of operation, as illustrated in Table 4.8.
Hence the DSPs are tested in 11 BIST configurations and 20 BIST sequences. The multiplier and
MACC extend tests run during configuration #3 do not functionally test the multiplier and the
MACC extend feature since the USE_MULT attribute is set to ?none? in this configuration to
detect faults associated with this attribute. However, the multiplier and the MACC extend feature
are functionally tested during configuration #2.
Figure 4.12 TPG Architecture

Count
96-bit
Shift
Reg
FSM
LFSR
TPG
to
ORAs
to
ORAs
56 56
P port
A port
B port
C port
OpMode
Control
DSP slice 0
A port
B port
C port
OpMode
Control
48 48
48 48
7 7
23 23
P port
4 4 ALUMode ALUMode
DSP slice 1
 71
Table 4.7 BIST Configurations for Pattern Detect Logic
User Attribute Values
BIST Configuration #
1 2 3 4 5 6
Sel_Mask C C Mask Mask C C
Sel_Rounding_Mask Sel_Mask Sel_Mask Sel_Mask Sel_Mask Mode1 Mode2
Sel_Pattern Pattern Pattern C C C C
Auto_Reset_Pattern_Detect False False True True True False
Autoreset_Pattern_Detect_Optinv Match Match Match Not_Match Match Not_Match
Mask <47:0> FF?FF FF?FF 55?55 AA?AA 55?55 55?55
Pattern <47:0> 55?55 AA?AA FF?FF FF?FF FF?FF FF?FF
A total of 20 test sequences are applied in eleven downloads to the FPGA. The FPGAs
are repeatedly reconfigured and tested until they have been tested in all modes of operation.
BIST Sequences for testing the DSPs in Virtex-5 devices are summarized in Table 4.9 below.
The variables used in Table 4.8 are explained in Table 4.10. The download time can be
minimized using partial configurations, through which only portions of the configuration
memory that contain DSP configuration memory bits are written instead writing the whole
configuration memory. This can be done by maintaining constant placement of the TPGs, the
ORAs and the DSPs and by keeping the routing constant between them.
Table 4.8 BIST Configurations for Virtex-5 DSPs
BIST

Pipeline registers and
Attribute values
Signal
Active
Level
A & B Input
Source Test Modes Applied
Slice0 Slice1 Mult Add ALU Pat Det Casc MACC Extend SIMD/casc
1
all regs=0
use_mult=mult
use_SIMD=one48
use_patdet=no_patdet
H D D yes no yes no no no no
2
all regs=1
use_mult=mult_s
use_SIMD=one 48
use_patdet=patdet
patdet config #1
[T4.7]
H D D yes yes yes yes no yes no

 72
BIST

Pipeline registers and
Attribute values
Signal
Active
Level
A & B Input
Source Test Modes Applied
Slice0 Slice1 Mult Add ALU Pat Det Casc MACC Extend SIMD/casc
3
all regs=1
use_mult=none
use_SIMD=one 48
use_patdet=patdet
patdet config #2
[T4.7]
L D D no yes yes yes no no no
4
all regs=1
use_mult=mult_s
use_SIMD=one 48
use_patdet=patdet
patdet config #3
[T4.7]
H D D no no no yes no no no
5
all regs=1
use_mult=mult_s
use_SIMD=one 48
use_patdet=patdet
patdet config #4
[T4.7]
H D D no no no yes no no no
6
all regs=1
use_mult=mult_s
use_SIMD=one 48
use_patdet=patdet
patdet config #5
[T4.7]
H D D no no no yes no no no
7
all regs=1
use_mult=mult_s
use_SIMD=one 48
use_patdet=patdet
patdet config #6
[T4.7]
H D D no no no yes no no no
8
Areg=2 Breg=2
Acascreg=2 Preg=1
Bcascreg=2
all other reg=0
use_mult=none
use_SIMD=four12
use_patdet=no_patdet
H D C no no no no yes no yes
9
Areg=2 Breg=2
Preg=1 Acascreg=1
Bcascreg=1
all other reg=0
use_mult=mult
use_SIMD=one 48
use_patdet=no_patdet
H D C no no no no yes no no
10
Areg=2 Breg=2
Preg=1 Acascreg=2
Bcascreg=2
all other reg=0
use_mult=mult
use_SIMD=one 48
use_patdet=no_patdet
H C D no no no no yes no no

 73
BIST

Pipeline registers and
Attribute values
Signal
Active
Level
A & B Input
Source Test Modes Applied
Slice0 Slice1 Mult Add ALU Pat Det Casc MACC Extend SIMD/casc
11
Areg=2 Breg=2
Preg=1 Acascreg=1
Bcascreg=1
all other reg=0
use_mult=mult
use_SIMD=one 48
use_patdet=no_patdet
H C D no no no no yes no no
Table 4.9 BIST Sequences for Virtex-5 DSP
Test Mode First 256 ccs Second 256 ccs Third 256 ccs Fourth 256 ccs
Multiply (000) P=A?B (5?3) P=A?B (3?5) P=A?B+C (5?3) P=A:B+C (3?5)
Adder (001) P=Z(C) P=X(P)+Y(C) P=Y(C) P=X(P)+Z(C) P=Z(C) P=Y(C)+Z(P) P=Y(C) P=Y(C)+Z(ShiftP)
ALU (010) P=X(A:B)? Z(C) (? = ?, ?, ?, etc.)
Pattern Detect
(010) P=X(A:B) == Z(C) (?==? indicates comparison)
Cascade (100) P1=A:B+Z(PC) P
0=Z(C)
P1=A:B+Z(ShiftPC)
P0=Z(C)
P1=Z(C)
P0=A:B+Z(PC)
P1=Z(C)
P0=A:B+Z(ShiftPC)
MACC extend
(101)
P0=Z(P)+Y(A?B)+X(A?B)
P1=Z(P)
(P=PC+MULTSIGNIN+CARRYCASCOUT)
P0=Z(P)
(P=PC+MULTSIGNIN+CARRYCASCOUT)
P1= Z(P)+Y(A?B)+X(A?B)
SIMD/cascade
(110)
P0=Z(C)
P1=Z(PC)+X(A:B)
P1=Z(PC)+X(A:B)
P0=Z(C)
Table 4.10 Variables in Table 4.8
Variables Explanation
A, B & C Input ports to the DSP
P Output port of the DSP
Z(C),Y(C) C input fed to the adder through the Z and Y multiplexers respectively
Z(P), X(P) P output of the DSP fed back to the adder through the Z and X multiplexers respectively
Z(ShiftP) Indicates P output shifted by 17 bits and fed back through the Z multiplexer
PC PC indicates the cascaded P output from the DSP slice below
Z(PC) Indicates the cascaded P output from the DSP slice below fed through the Z multiplexer
Z(ShiftPC) Indicates the cascaded P output from the DSP slice below shifted by 17 bits and fed through the Z multiplexer
P1 Output P corresponding to slice 1
P0 Output P corresponding to slice 0
 74
4.4 BIST Generation
 The TPG written in VHDL is synthesized for an LX30T device and the location of the
TPG in the chip array is determined. The TPG location for all other devices is offset with respect
to the location of the TPG in the LX30T device based on the number of rows and columns in
individual devices. The synthesized TPG in NCD format is converted to XDL format. Two
programs written in C generate the DSP BIST configurations for any size or family of Virtex-5
devices. The V5DSPBIST.exe program extracts the TPG from the synthesized TPG file in XDL
format (using the same TPGXDLEXT.exe program developed for Virtex-4) and instantiates the
TPGs, the ORAs and the DSPs under test and generates a DSP BIST template in XDL format.
The DSP BIST template in XDL format is converted to NCD format for routing the BIST
architecture. The routed DSP BIST template is converted back to XDL format to be used by the
modification program, V5DSPMOD.exe. This modification program, written in C, can be used to
modify the routed DSP BIST template to generate the BIST configurations in XDL format.
These BIST configuration files are converted back to NCD format to generate the download
configuration bit files. The NCD files of the DSP BIST template and the BIST configuration can
be viewed in FPGA Editor.
4.5 Timing Analysis of BIST
 Timing analysis was performed on some of the Virtex-5 devices to determine the slowest
BIST configuration. From the timing analysis it is observed that the position of the TPGs and the
ORAs has an impact on the BIST clock frequency. Figure 4.13 illustrates the maximum BIST
clock frequency for all Virtex-5 devices based on the position of the TPGs and the ORAs when
the full array of the chip was tested. Figure 4.13 shows that the clock frequency is higher when
the TPGs are placed at the middle of the chip array compared to positioning the TPGs at the
 75
bottom of the chip array and for all devices except the LXT155, LXT330, SXT50 and SXT95
devices, where the clock frequency is higher when the ORAs are placed to the right of the DSPs
compared to the position of the ORAs to the left of the DSPs. The lower clock frequency when
the ORAs are placed on the left of the DSP is because of fewer routing resources between the
TPGs and the DSPs. Moving the ORAs to the right of the DSPs reduces the routing congestion in
all devices except the LXT155, LXT220, SXT50 and the SXT95 devices. According to these
results, the BIST clock frequency is higher when the TPGs are placed at the middle of the array
and the ORAs are placed to the right of the DSPs. Hence, the TPGs are placed at the middle of
the array and the ORAs are placed to the right of the DSPs. For the bigger devices like the
LXT110, LXT155, LXT330, SXT50 and SXT95 devices, the BIST clock frequency is less than
50 MHz. For these devices sub-array testing is done, where each half of the array is tested
separately.

Figure 4.13 Clock Frequency Based on the Position of the TPGs and the ORAs
0
10
20
30
40
50
60
70
80
90
100
lx
t 20
lx
t 30
lx
t 50
lx
t 85
lx
t 110
lx
t 155
lx
t 220
lx
t 330
s
x
t 35
s
x
t 50
s
x
t 95
f x
t 30
f x
t 70
f x
t 100
f x
t 130
f x
t 200
Dev ice
Max BIS
T Clo
ck Freq MHz
T PGs bot t om OR A right
T PGs m iddle OR A right
T PGs m iddle OR A lef t
 76
Figure 4.14 shows the impact of the position of the TPGs, based on sub-array that is
being tested, on the BIST clock frequency. In Figure 4.14 bottom half and top half indicate the
bottom half and top half arrays of the chip. Figure 4.14 shows that moving the TPGs to the
bottom of the array while testing the bottom-half of the array improves the BIST clock frequency
and raises the BIST clock frequency to over 50MHz for the LXT110, LXT155, LXT220 and
SXT50 devices. However, the BIST clock frequency for at least one of the sub-arrays is still less
than 50MHz for the LXT330, SXT50 and SXT95 devices. So for these devices each quarter of
the array can be tested separately to improve the BIST clock frequency. The position of the TPG
is at the middle of the array while testing all quarters of the array. Figure 4.15 shows the BIST
clock frequency for each quarter of the array for the LXT330, SXT50 and the SXT95 devices.

Figure 4.14 Clock Frequency for the Sub-Arrays Based on the Position of the TPGs
Figure 4.15 shows that the BIST clock frequency is higher for the quarter-arrays that
have the TPGs located close to the arrays. Figure 4.16 shows the position of the TPGs for each of
0
10
20
30
40
50
60
lx t 110 lx t 155 lx t 220 lx t 330 s x t 50 s x t 95
D ev i ce
Max BIS
T Clo
ck Freq MHz
T PG m iddle OR A right bot t om half
T PG m iddle OR A right t op half
T PG bot t om OR A right bot t om half
 77
the quarter arrays for an LXT330 device. For the LXT330 and the SXT50 devices, the clock
frequency is well above 50MHz when the TPGs are located close to the DSPs under test. So for
these two devices, two sets of two TPGs can be used, where one set of TPGs is placed at the
middle of the array to test the middle two quarter-arrays and the other set of TPGs is placed at
the top of the array to test the top-most quarter-array or at the bottom of the array to test the
bottom-most quarter of the array.

Figure 4.15 Clock Frequency for Quarter -Arrays Based on the Position of the TPGs
Figure 4.17 shows the BIST clock frequencies for the SXT95 devices based on different
locations of the TPGs and the ORAs in the chip array for sub-arrays, quarter-arrays and
quadrants of the array. For example, in Figure 4.17, the phrase ?tpg bottom ORA right? indicates
that the TPG is located at the bottom of the array and the ORAs are located on the right side of
the DSPs. From Figure 4.17 it is seen that in all the cases the frequency is below 50MHz. So for
the SXT95 device each quadrant of the quarter-array can be tested separately and four sets of two
0
10
20
30
40
50
60
70
lx t 330 s x t 50 s x t 95
D ev i ce
Max BIS
T clo
ck Freq MHz
t pg m iddle bot t om -m os t quart er
t pg m iddle bot t om half t op quart er
t pg m iddle t op half bot t om quart er
t pg m iddle t op-m os t quart er
 78
TPGs can be used, where two sets of TPGs will be placed at the middle of the array with one set
on the left of the chip array and one set on the right of the chip array. The remaining two sets will
be placed on either side of the chip at the bottom/top of the array based on the array that is being
tested.

 a) bottomost quarter b) bottom-half c) top-half d) topmost quarter
 top quarter bottom quarter
Figure 4.16 Quarter Arrays for LXT330 device

Figure 4.17 Clock Frequencies for all Arrays of the SXT95 Device Based on Positions of the
TPGs and ORAs
T i mi n g an al y si s fo r D ev i ce sxt95
0
10
20
30
40
50
60
tp
g
 b
o
tt
o
m
 O
R
A
 ri
g
h
t
fu
ll
 ch
ip
tp
g
 mi
d
d
le
 O
RA
lef
t
fu
l l ch
ip
tp
g
 mi
d
d
le
 O
RA
ri
g
h
t f
u
ll
 ch
i p
tp
g
 mi
d
d
le
 O
RA
ri
g
h
t b
o
tt
o
m
-ha
lf
a
rr
a
y
tp
g
 mi
d
d
le
 O
RA
ri
g
h
t t
o
p
- h
a
lf a
r ra
y
tp
g
 b
o
tt
o
m
 O
R
A
 ri
g
h
t
b
o
t to
m
- h
a
lf a
r ra
y
tp
g
 mi
d
d
le
 O
RA
ri
g
h
t b
o
tt
o
m
-m
o
st
q
u
a
rte
r
tp
g
 mi
d
d
le
 O
RA
ri
g
h
t b
o
tt
o
m
-ha
lf
to
p
- q
u
a
rte
r
tp
g
 mi
d
d
le
 O
RA
ri
g
h
t t
o
p
- h
a
lf b
o
tt
o
m
- q
u
a
rte
r
tp
g
 mi
d
d
le
 O
RA
ri
g
h
t t
o
p
- m
o
st
q
u
a
rter
tp
g
 mi
d
d
le
 O
RA
ri
g
h
t t
o
p
- le
ft
 q
u
a
d
r a
n
t
tp
g
 mi
d
d
le
 O
RA
ri
g
h
t t
o
p
- ri
g
h
t
q
u
a
d
r a
n
t
tp
g
 b
o
tt
o
m
 O
R
A
 ri
g
h
t
b
o
t to
m
- le
ft
 q
u
a
d
r a
n
t
tp
g
 b
o
tt
o
m
 O
R
A
 ri
g
h
t
b
o
t to
m
- ri
g
h
t
q
u
a
d
r a
n
t
Max BIS
T clo
ck Freq MHz
 79
4.6 Fault Inject Analysis and Fault Coverage
Fault-inject analysis was done by injecting a total of 604 faults of which 564 faults were
detected. Of the 40 undetected faults, 30 faults are associated with the test circuitry that only the
manufacturer has access to. These faults are not a concern since they do not affect the
functioning of the DSP. Six of the remaining ten faults are faults associated with non-functional
configuration bits that are not mentioned in the data sheet and hence are not of concern. The
remaining four undetected faults are associated with the PATDET and NO_PATDET
configuration bits of the USE_PATTERN_DETECT attribute. The PATDET and NO_PATDET
configuration bits select between combinational paths of different speed. Hence these faults will
be detected when tested at speed. These faults are not detected because the boundary scan
interface is used for fault inject analysis, which is slow. Figure 4.18 illustrates the individual and
cumulative fault coverage for the 20 test sequences. The bar graph in the figure illustrates
individual fault coverage and the line graph illustrates the cumulative fault coverage. Cumulative
fault coverage of 99.3% is achieved.

Figure 4.18 Fault Inject Results for Virtex-5 DSP BIST
0
100
200
300
400
500
600
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
T e s t S e q u e n c e #
F
au
lts
 D
e
te
c
te
d
0
10
20
30
40
50
60
70
80
90
100
F
au
lt C
ove
r
age
 (%)I n d i vi d u al F C
C u m u l at i ve F C
 80
4.7 Summary
 A minimum set of BIST configurations was developed to test the DSP cores in Virtex-5
FPGAs. Fault detection capabilities and fault diagnosis were verified by injecting faults into the
configuration memory bits controlling the DSP cores in an LXT-30 device. Fault coverage of
99.3% is achieved for the faults injected in the configuration memory of the DSP. The functional
fault coverage, as determined by fault simulations, is much higher. Fault coverage for the faults
injected in the configuration memory of the DSP can be improved to 100% by adding more BIST
configurations if desired. Since these undetected faults are in nonfunctional modes of operation,
the value of additional BIST configurations is questionable. Timing analysis was done to
determine the maximum BIST clock frequency. Based on the timing analysis results the position
of the TPGs and the ORAs in the chip array were changed to improve the maximum BIST clock
frequency. For larger devices sub-array testing (where only half the chip is tested at a time) and
quarter-array testing (where only one quarter of the chip is tested at a time) is done.

 81
Chapter 5
Summary and Conclusion
 This chapter highlights and summarizes the work presented in the thesis. Section 5.1
summarizes DSP BIST for Virtex-4 devices. Section 5.2 summarizes DSP BIST for Virtex-5
devices. Section 5.3 describes application of DSP BIST for DSPs in other FPGAs.
5.1 Summary of Virtex-4 DSP BIST
 DSP BIST for Virtex-4 FPGAs presented in this thesis was developed by writing 8-bit
and 48-bit models of the architectures of the logic cores in the DSP: multiplier and adder in ASL.
Fault simulations were carried out using AUSIM to determine the correct set of test patterns and
configurations for completely testing the cores for single stuck-at and bridging faults. Three test
sequences were developed for the three test modes: multiplier, adder and cascade modes of
operation. Five BIST configurations were developed and the FPGA is repeatedly reconfigured to
run the three test sequences. Seven test sequences are run in five downloads to the FPGA to
completely test the FPGA in all its functional modes of operations. Fault detection for the DSP
BIST was evaluated by injecting faults in the configuration memory bits of the DSP in Virtex-4
FX12 device. Of the 154 faults injected, 150 faults were detected giving a fault coverage of
97.4%. The four undetected faults are in non-functional modes of the DSP but can be detected by
adding additional BIST configurations. Timing analysis was done on all Virtex-4 devices to
determine the maximum BIST clock frequency for each device. Based on this analysis the
position of the TPGs for achieving a BIST clock frequency of at least 50MHz was determined.
 82
Sub-array testing in larger Virtex-4 devices minimizes the power dissipation caused by
concurrently testing a large number of DSPs in the device.
5.2 Summary of Virtex-5 DSP BIST
 Since the architecture of DSPs in Virtex-5 FPGAs is similar to the architecture of DSPs
in Virtex-4 FPGAs, the test algorithms used to test DSPs in Virtex-4 FPGAs are also applied to
test the multiplier and the adder cores in DSPs of Virtex-5 FPGAs. Test patterns and BIST
configurations for the additional circuits in Virtex-5 FPGAs were developed by writing ASL
models of the circuits and doing fault simulation for these models in AUSIM. Five test sequences
were developed for the five test modes: multiplier, adder, logic, pattern detector and cascade
modes of operation. Eleven BIST configurations were developed and the FPGA is repeatedly
reconfigured to completely test the FPGA in all its functional modes of operation. 20 tests are
run in eleven downloads to the FPGA. Fault coverage for the DSP BIST developed was
evaluated by injecting faults in the configuration memory bits of the DSP in Virtex-5 LXT30
device. Timing analysis was done on all Virtex-5 devices to determine the maximum BIST clock
frequency for each device. Based on this analysis the position of the TPGs and the ORAs for
achieving a BIST clock frequency of at least 50MHz was determined. Sub-array, quadrant and
sub-quadrant testing in larger Virtex-5 devices minimizes the power dissipation caused by
concurrently testing a large number of DSPs in the device.
5.3 Application to Other FPGAs and Architectures
 The DSP BIST for Virtex-4 and Virtex-5 FPGAs presented in this thesis can be extended
and applied to test DSPs in other FPGAs like Spartan-3A, Spartan-6 and Virtex-6 FPGAs. The
architectures of DSPs in Spartan-3A and Spartan-6 FPGAs is similar to the architecture of DSPs
in Virtex-4 FPGAs [26] [27]. However, the DSPs in Spartan-3A and Spartan-6 FPGAs have a
 83
pre-adder stage in addition to the circuits present in DSPs of Virtex-4 FPGAs, but the test
algorithms used to test the adder and the multiplier in Virtex-4 FPGAs can also be used to test
the adder and multiplier cores in Spartan-3A and Spartan-6 FPGAs. The architecture of DSPs in
Virtex-6 FPGAs is similar to the architecture of DSPs in Virtex-5 FPGAs [28], but the test
algorithms used to test the logic circuits in Virtex-5 DSPs can also be used to test the logic
circuits in Virtex-6 FPGAs.
DSP BIST for Virtex-4 devices is explained in [30]. [31] gives a detailed explanation of
adder BIST and [32] gives a detailed explanation of multiplier BIST.

 84
References
[1] L. T. Wang, C. Stroud and N. A. Touba, ?System On Chip Test Architectures,? Morgan
Kaufmann Publishers, 2007.
[2] K. M. Thompson, ?Intel and the Myths of Test,? IEEE Design & Test of Computers, vol. 13,
pp. 79-81, 1996.
[3] S. Hauck, ?The roles of FPGAs in Reprogrammable Systems,? Proc. of the IEEE, vol 86,
pp. 615-638, 1998.
[4] M. B. Tahoori and S. Mitra, ?Test Compression for FPGAs,? Proc. IEEE Intl. Test Conf.,
pp. 1-9, 2006.
[5] E. Chmelar, ?Minimizing the number of test configurations for FPGAs,? IEEE/ACM Intl.
Conf. on Computer Aided Design, pp. 899-902, 2004.
[6] Xilinx Inc., ?Virtex-4 FPGA User Guide,? UG070 v2.5, 2008.
[7] Xilinx Inc., ?Virtex-5 FPGA User Guide,? UG190 v4.2, 2008.
[8] W. K. Huang, F.J Meyer and F. Lombardi, ?Array-Based Testing of FPGAs: Architecture
and Complexity,? Proc. IEEE Intl. Conf. on Innovative Systems in Silicon, pp. 249-258,
1996.
[9] Xilinx Inc., ?XtremeDSP for Virtex-4 FPGAs,? User Guide UG073 (v2.7), Xilinx Inc.,
2008.
[10] Xilinx Inc., ?Virtex-5 XtremeDSP Design Considerations,? User Guide UG193 (v3.1),
Xilinx Inc., 2008.
 85
[11] B. Dufort and G. H Chapman, ?Test Vehicle for a Wafer-Scale Field Programmable Gate
Array,? Proc. IEEE Intl. Conf. on Wafer Scale Integration, pp.33-42, 1995.
[12] A. Orailoglu, ?Microarchitectural Synthesis for Rapid BIST Testing,? IEEE Trans. on
Computer-Aided Design of Integrated Circuits and Systems, vol. 16, no. 6, pp. 573-586,
1997.
[13] M. Abramovici, C. Stroud and M. Emmert, ?Using Embedded FPGAs for SOC Yield
Improvement,? Proc. ACM/IEEE Design Automation Conference, pp. 713-724, 2002.
[14] S. Adham and S. Gupta, ?DP-BIST: A Built-In Self-Test for DSP Data Paths - A Low
Overhead and High Fault Coverage Technique,? Proc. IEEE Asian Test Symp., pp. 205-
212, 1996.
[15] H. Al-Asaad, J. Hayes, and B. Murray, ?Scalable Test Generators for High-Speed
Datapath Circuits,? J. Electronic Testing: Theory and Applications, vol. no. 12, pp. 111-
125, 1998.
[16] D. Gizopoulos, A. Paschalis and Y. Zorian, ?Effective Built-In Self-Test for Booth
Multipliers,? IEEE Design & Test of Computers, vol. 15, no. 3, pp. 105-111, 1998.
[17] A. Paschalis, N. Kranitis, M. Psarakis, D. Gizopoulus and Y. Zorian, ?An Effective BIST
Architecture for Fast Multiplier Cores?, Proc. Design, Automation and Test in Europe
Conf., pp. 117-121, 1999
[18] D. Bakalis, E. Kalligeros, D. Nikolos, H. Vergos and G. Alexiou, ?Low Power BIST for
Wallace Tree-based Fast Multipliers,? Proc. IEEE Int. Symp. on Quality of Electronic
Design, pp. 433-438, 2000.
[19] S. Kajihara and T. Sasao, ?On the Adders with Minimum Tests,? Proc. IEEE VLSI Test
Symp., pp. 10-15, 1997.
 86
[20] A. Sarvi and J. Fan, ?Automated BIST-Based Diagnostic Solution for SOPC,? Proc. Int.
Conf. on Design & Test of Integrated Systems in Nanoscale Technology, pp. 263-267,
2006.
[21] C. Stroud and S. Garimella, ?Built-In Self-Test and Diagnosis of Multiple Embedded Cores in
SOCs,? Proc. Intl Conf. on Embedded Systems and Applications, pp. 130-136, 2005.
[22] ?Using Embedded Multipliers in Spartan-3 FPGAs,? Application note XAPP467 (v1.1),
Xilinx, Inc., 2003.
[23] C. Nagendra, M-J Irwin and R-M Owens, ?Area-Time-Power Tradeoffs in Parallel
Adders,? IEEE Trans. on Circuits and Systems II, vol 43, no. 10, pp. 689-702, 1996.
[24] B.F Dutton and C. E Stroud, ?Built-In Self-Test of Configurable Logic Blocks in Virtex-5
FPGAs,? Proc. IEEE Southeastern Symp. on System Theory, pp. 230-234, 2009.
[25] P.H.W Leong, ?Recent Trend in FPGA Architectures and Applications,? Proc. IEEE
International Symp. on Electronic Design, Test and Applications, pp. 137-141, 2008
[26] Xilinx Inc., ?XtremeDSP DSP48A for Spartan-3A DSP FPGAs,? User Guide UG431
(v1.3), Xilinx Inc., 2008.
[27] Xilinx Inc., ?Spartan-6 Family Overview,? DS160 v1.0, 2009.
[28] Xilinx Inc., ?Virtex-6 Family Ovreview,? DS150 v1.0, 2009.
[29] B.F. Dutton, M. Ali, J. Sunwoo and C. E. Stroud, ?Embedded Processor Based Fault
Injection and SEU Emulation for FPGAs,? Proc. Intl Conf. on Embedded Systems and
Applications, pp. 183-189, 2009
[30] M. D. Pulukuri and C. E. Stroud, ?Built-In Self-Test of Digital Signal Processors in
Virtex-4 FPGAs,? Proc. IEEE Southeastern Symp. On System Theory, pp. 34-38, 2009
 87
[31] M. D. Pulukuri and C. E. Stroud, ?On Built-In Self-Test for Adders,? J. Electronic
Testing: Theory and Applications, vol. 25 no. 6 pp. 343-346, DOI 10.1007/s10836-009-
5114-6, 2009.
[32] M. D. Pulukuri, G. J. Starr and C. E. Stroud, ?On Built-In Self-Test for Multipliers,? Proc.
IEEE Southeast Regional Conf., pp. 25-28, 2010.

