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Abstract

We give a new proof of a result of Tam on the convexity of the generalized numerical
range associated with the classical Lie groups SO(n). We also provide a connection between

the result and the convexity of the classical numerical range.
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Chapter 1

Introduction

A subset Q2 C C is said to be convex if (1 — N)x + Ay € Q whenever z,y € Q and
0<A<L
Let H be a Hilbert space over C and let B(H) denotes the algebra of all bounded linear

operators on H. The classical numerical range of T' € B(H) is

W(T):={(Tz,z):x€ H,(z,z) =1}.

Toeplitz-Hausdorff theorem [16], (6] asserts that W (A) is a convex set. See [11] for a simple
proof.
The finite dimensional case may be phrased as the following. If C,,,, denotes the set of

n X n complex matrices, then

W(A) ={z"Az: 2 € C"||z|| =1} CC

is a compact convex set, where A € C,,»,, and ||z||* = x*z. It is the image of the (compact)
unit sphere S*~! C C" under the nonlinear map = — z*Az. It is truly remarkable since the
unit sphere is very “hallow” but its image under the quadratic map is convex.

When n =2, W(A) is an elliptical disk (possibly degenerate) [8], known as the elliptical

range theorem.

Theorem 1.1. [8] Let A € Cayo with eigenvalues A\, As. Then W (A) is an elliptical disk

with Ay, A2 as foci and minor axis of length \/tr(A*A4) — |A1[2 — [Ae|?.



Indeed the convexity of the numerical range of T' can be reduced to the 2-dimensional
case, i.e., even the most general version of the theorem is equivalent to a statement about 2-
dimensional spaces. That is the reason why almost every approach ends up with a quadratic
computation that has no merit except correctness.

Let & = x{Ax; and & = x3Axs be two points in W(A) where z1,z5 € H are unit
vectors. We may assume that x;,zo are linearly independent, otherwise, §; = &. Consider
the compression A:C — C where C := span {x1, x5} defined by Az = PAz, z € C,

A~

where P : H — C'is the orthogonal projection onto C. Clearly &;,& € W(A) and thus the

line segment [£1,&] C W(A) if the theorem holds for the 2-dimensional case. Notice that

W (A) c W(A) since for each unit vector z € C,
1*Ax = 2*PAx = *PAPx = (Px)"A(Pz) = z*Ax

as P* = P.

The classical numerical range of A € C,,«,, may be written as
W(A) ={(U*AU)y; : U € U(n)},

since each unit vector = can be extended to a U € U(n) of the form (z U;) where U; €
Chx(n—1)- Here U(n) denotes the group of n x n unitary matrices. The Lie algebra u(n) of
U(n) is the set of n x n skew Hermitian matrices and gl,(C) = C,,«,, is the complexification
of u(n).

Similar to the classical numerical range, a different range emerges if one replaces the
unitary group U(n) by the special orthogonal group SO(n). The Lie algebra of SO(n) is the
set of n x n real skew symmetric matrices, whose complexification is the algebra of n x n

complex skew symmetric matrices. When n > 3, the numerical range of a skew symmetric



A € C,,xp associated with SO(n) is defined to be the set

S(A) = {(OTAO),5 : 0 € SO(n)} C C

and is known to be a compact convex set according to a result of Tam [14] (see [10, [15] for
related results). Indeed the result in [14] is more general and is in the context of compact
connected Lie group. The method of Tam is the usage of a lemma of Atiyah on symplectic
manifold since the adjoint orbit of a Lie algebra element has a natural symplectic structure.

From now on we denote by s0,,(C) the algebra of nxn complex skew symmetric matrices.
Theorem 1.2. (Tam [I4]) If A € s0,,(C), where n > 2, then S(A) is a compact convex set.

The main goal of this thesis is to provide an elementary proof of Theorem [1.2 and point

out some relation between S(A) and W(A) and the k-numerical range when n is small.

a
When n = 2, S(A) is the set {a}, where A = . From now on we assume

—a 0

that n > 3 to avoid the trivial case. Rewrite

S(A) = {aT Azy : 21, 2 are the two columns of some O € SO(n)}.

In particular,

S(A4) = {(0"A0)5:0 € O(n)}
= {27 Axy : 21, 75 are the two columns of some O € O(n)}

= {27 Az, : 21, 25 are orthonormal in R"}.

Clearly 27 Ay = —yT Az for all 2,y € R™, because A is skew symmetric. So £ € S(A) if and
only if —¢ € S(A), i.e., S(A) is symmetric about the origin. We remark in general that such

symmetry property is not present in W(A), e.g., Theorem [1.1.



Chapter 2

Three simple proofs of the convexity of W (A)

We first provide three proofs of the convexity of classical numerical range, namely,
Raghavendran’s proof [I1], Gustafson’s proof [3] and the proof of Davis [1].

1. Raghavendran’s proof:

Proof. We need to consider only the case where W(A) contains at least two points. Let xy
(k =1,2) be any two elements of H with ||| = 1 such that z} Az = wy are two distinct
points of W(A). As x1 + zzo = 0 for z € C will imply that zz = 1 and then that w; = w,,
we see that ||z, + zz3|| # 0 for all z € C. So the theorem will be proved if we show that, for
any given real number t with 0 < ¢ < 1, there exists at least z = x + iy € C (with z,y real)

which satisfies the equation

(21 + 222)* A(my + 229) = (twy + (1 — t)ws)||zy + 21|

The equation may be rewritten in the form

plzP+qz+rz+s5=0, (2.1)

where p = t(wy —wy), s = (1 — t)(wy —wy) and ¢,r € C. Dividing this equation by p, and
then separating the real and imaginary parts, we get the two equations
1—t

v+ +ax + by — (T) = 0, (2.2)

cx +dy =0, (2.3)



where a, b, ¢, d are some well-defined real numbers such that this pair of equations is equiv-
alent to the single equation (2.1)).

Equation (2.2) represents a real circle with a positive radius having the origin in its
interior (because the constant term in this equation is negative); and when ¢, d are not both
zero, the straight line represented by the equation (2.3) meets this circle in two real and
distinct points. We can, therefore, always find (at least) two distinct complex numbers zj
such that z = z; satisfy the equation (2.1). This completes the proof. O

We remark that the above proof is actually revealing that the general statement is
reduced to the n = 2 case.

2. Gustafson’s proof:

Proof. Since W(uA + ) = pW(A) + ~, for any scalars p,y € C, it suffices to consider the
situation

(Ax1,$1) = 0, (Axg,xg) = 1, Hle = 1, x; € H, 1= 1,2

Let x = axq + Bxo,  and [ real, and require

|z]|* = o® + 8° + 2a8Re (21, 22) = 1, (2.4)

and desire (for each 0 < A < 1)

(Az,x) == B% + af{(Axy, 23) + (Azy, 1)} = \. (2.5)

Let B := (Axy,x2) + (Azy, x1). If B is real, then the system (2.4) and (2.5) describe an
ellipse (intercepts +1, £1) and a hyperbola (intercepts +1'/2) clearly possesses four solutions
since ||Re (z1,x2)|| < 1 by Schwartz’s inequality. But B can always be guaranteed real by
using an appropriate (scalar multiple of) xy, i.e., explicitly, use 1 = px;, where yu = a + ib
satisfies

> =a*+ v =1 (2.6)



and

Im B(#) = alm B(xy) + bRe {(Azy,29) — (Axg, 1)} =0, (2.7)

a system clearly possessing (two) solutions. O

3. Davis’s idea:

Proof. Accordingly, let us assume without loss of generality that dim H = 2. Notice that
x* Az = tr (Azz*) which the key to Davis’ proof. Consider the mapping ® which takes the

arbitrary hermitian operator X on H to

B(X) = tr (AX).

It is plainly real-linear. Its domain is a real 4-dimensional space, i.e., the space M of matrices

The range of ® is a real 2-dimensional space, namely, the complex numbers. The conclusion
which is to be proved is that ® takes the set of one-dimensional orthoprojectors zz* onto a
convex set.

In the matrix representation of M, these orthoprojectors zz* may be parametrized as

follows. It is enough to consider

cos
x = , 0,6 e R

e sin @

because any other unit vector is a scalar multiple of one of these. These matrices comprise a

1
s 0

2-sphere centered at | ° and lying in a 3-flat in M (the set of H having trace 1). But
o &

2
the image of a 2-sphere, under a linear map with range in real 2-space, is either an ellipse

with interior, or a segment, or a point — in any case it is convex. O



Chapter 3

Basic Lie Theory

A (real) Lie group is a group which is also a finite-dimensional real smooth manifold,
and in which the group operations of multiplication and inversion are smooth maps. For
example SU(n), SO(n), Sp(n) are compact Lie groups.

A real vector space L with an operation L x L — L, denoted (x,y) — [z,y] and called

the bracket or commutator of z and y, is called a Lie algebra if
(L1) The bracket operation is bilinear.

(L2) [z,z] =0 for all z € L.

(L3) [z, [y, 2] + [y, [z, x]] + [z, [z,y]] = 0 for all z,y,z € L.

The condition (L3) is called the Jacobi identity.

There is a Lie algebra g associated with GG. The following is the description of g.

1. Let M be areal smooth manifold and denote by C*°(M) the ring of all smooth functions
f:M — R Amapov:C®M)— Ris called a tangent vector at p € M if for all
frgeCx(M), peM

(i) v(f +g) = v(f) +v(g) and

(i) v(fg) =v(f)g(p) + f(p)v(g)-

Each tangent vector can be thought as a derivative. The set T,(M) of all tangent

vectors at p is a finite dimensional vector space.

2. Denote by T(M) = UyenT,(M) the tangent bundle of M. A vector field on any
smooth manifold M, X : M — T(M), is a smooth map such that X (p) € T,,(M). The

7



extension of X is the map X : C®(M) — C*®(M) defined by X (f)(0) = X(p)(f). It
is known that X = Y if and only if X = Y. Now the bracket [X, Y] of two vector fields
is defined by

X YI(0)(f) = XY () =Y () (X(f))

3. The left translations L, : G — G, g € G is given by L,(h) = gh, h € G. The left
invariant vector fields (vector fields satisfying dL,(X) = X o L, for every g € G, where
dL, denotes the differential of L,) on a Lie group is a Lie algebra under the Lie bracket

of vector fields, i.e., the bracket of two left invariant vector field is also left invariant.

4. The map X — X (1) defines a one to one correspondence between the left invariant
vector fields and the tangent space T.(G) at the identity e and therefore makes the
tangent space at the identity into a Lie algebra, called the Lie algebra of G, usually

denoted by g.

For example:

1. The special unitary group

SU(n) ={g € GL,(C):g"'g=1,detg =1}

has Lie algebra
su(n) ={A € Cpxpn: A" =—-A, tr A=0}
which is a real subspace of C,,,,.

2. The complex special linear group

SL,(C)={g € GL,(C) : detg =1}

has Lie algebra
s, (C) ={A € Cpxp: trA=0}

8



3. The complex orthogonal group

SO,(C) = {g € GL,(C): g'g =1,det g = 1}

has Lie algebra
50,(C) = {A € Cp : AT = —A}.

We now recall some basic notions about adjoint representation Ad : G — Autg. Let G be
a Lie group and let g be its Lie algebra (which we identify with T.G, the tangent space to

the identity element in ). Define a map

U:G — AutG

by the equation V(g) = ¥, for all g € G, where Aut G is the automorphism group of G and

the automorphism W, is defined by

‘ljg(h) = ghg_1

for all h € G. It follows that the derivative of ¥, at the identity is an automorphism of the

Lie algebra g. We denote this map by Ad g:

Ad,:g—g.

The map
Ad : G — Autg



which sends g to Ad g is called the adjoint representation of G. This is indeed a representation
of G since Autg is a Lie subgroup of GL(g) and the above adjoint map is a Lie group
homomorphism. The dimension of the adjoint representation is the same as the dimension
of the group G.

One may always pass from a representation of a Lie group G to a representation of its

Lie algebra by taking the derivative at the identity. Taking the derivative of the adjoint map

Ad : G — Autg

gives the adjoint representation of the Lie algebra g:

ad : g — Autg.

The adjoint representation of a Lie algebra is related in a fundamental way to the structure

of that algebra. In particular, one can show that

ad X (Y) = [X,Y]

for all X,Y € g.
The adjoint group Int g is the analytic group of ad g, which is contained in GL (g). It is
known that if G is connected, then Ad G = Int g [7, p.129].

A Lie algebra homomorphism ¢ : g — b is a vector space isomorphism that respects

bracket: ¢[X,Y] = [pX, pY].

Lemma 3.1. The map sl(C) — so03(C) given by

0 —2ia i(b+ c)
= 2ia 0 c—b

—i(b+c¢) b—c 0
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is a Lie algebra isomorphism.

Proof. One can directly verify that it is a Lie algebra isomorphism. Here we establish the
result via a double covering ¢ : SU(2) — SO(3).

As we know SU(2) is connected. Thus the image of SU(2) by ¢ is connected as well,
hence contained in the connected component SO(3) of O(3). Let dy, : s1(2) — s0(3) be the
differential of ¢ at the identity e. Since ¢ = Ad, and dy. = ad, the kernel of dp. consists
of the X € su(2) satisfying XY — Y X = 0 for all skew Hermitian Y € Cyyy of zero trace,
hence for all skew Hermitian Y € Cayo, hence for all Y € Cyy.o (as one sees by writing
Y =1iY] + Y2 with Y] and Y, skew Hermitian). Thus X is a scalar and therefore equals 0,
because tr X = 0. Since the kernel of dip, is {0}, dy. is an isomorphism. It follows that ¢ is

L =Y for all skew Hermitian

a covering. Its kernel consists of all a € SU(2) satisfying aYa~
Y, hence are scalar and thus equal to £1.

To compute the Lie algebra isomorphism explicitly let

il‘g -1 + 129 Zyg -y + Zy2
X = , Y = € su(2).
1 + 179 —iTs Y1+ 1y —1Y3
Then
ad (X)Y
= XY -YX
_ 2i(z2y1 — 1Y) —2(w3y2 — 2y3) + 2i(—x3y1 + T1Y3)
2(x3y2 — ways3) + 2i(—x3y1 + T1Y3) —2i(x2yh — T1Y2)
2(z3y2 — x2y3) 0 205  —214 m
- 2(—z3y1 +21y3) | = | 223 O 21y Y2
2(I2y1 — Ilyg) 21’2 —22['1 0 Ys

11



which gives us the desired isomorphism

0 2273 —2372
’iﬂ?g —x1 + ixg
= —21’3 0 2[E1
xr| + i[L‘Q —ixg
2ZE2 —21’1 0
Then extend it to sly(C) — s03(C). O
Lemma 3.2. The map sl3(C) @ sl5(C) — s04(C)
a b d e
+
c —a f —d
0 i(a —d) Hc=b—f+e)
—i(a —d) 0 tib+ct+e+f)
'_)
Ste—b—f+e) Filb+ct+e+f) 0
Sib+c—e—f) 2c—b+[f—e) —i(a+d)

is a Lie algebra isomorphism.

lib+c—e—f)
SHe—b+f—e)
i(a+ d)
0

Proof. One can directly verify that it is a Lie algebra isomorphism. However it is good to

see how one can get it from the double covering ¢ : SU(2) x SU(2) — SO(4) [12, p.42]. The

differential at the identity dp, : sus @ suy — s0(4) is the desired Lie algebra isomorphism.

Let ¢ : SU(2) x SU(2) — SO(4) be the map acting on the quaternions

p1 -+ 1p2
H={Q= |
P3 — P4

as follows:

—p3 — P4 —
3P17P2>P37P4€R}< ’{Q:
p1— 1p2

12

P1

P2
L p1, P2, P3, P2 € R}

P3

P4



—_ E——
(U, V)Q = UQV ™! where Q € H and (U,V) € SU(2) x SU(2). The corresponding
Lie map is
— _
dpe : sus(C) @ suy(C) — s0(4) defined by dp.((X,Y))Q = —XQ + QY.
Using the same idea we used above it can be verified that dy, is a Lie algebra isomor-

phism. To compute this Lie algebra isomorphism explicitly. Let

’L.IL‘g —T + Z'CCQ Zyg —U + Zyg
X — . Y= € su(2)
A A —1iT3 Y1+ iy2 —1Y3
and
p1+1ip2 —p3 —ipy
Q= € H.
p3s—1ps  p1—1p2
Direct computation yields
0 T3—Y3 T1—Yy1  —T2t+ Y2 p1
. —x3+ Y3 0 —To— Y2 —T1— Y1 P2
de.((X,Y))Q = —XQ+ QY =
—x1+ Y1 T2+ Yo 0 3+ Y3 P3
To—Y2 X1ty —T3— Y3 0 2
which gives us the Lie algebra isomorphism
1T3 —x1 + 129 N 1Y3 —y1 + 1Yo
T + il’g —i173 U1 + Zyg —Zy3
0 T3—Ys T1—Y1 —T2+ Yo
—r3+ Y3 0 —Ty— Y2 —T1— Y
—
—X1+ Yy T2+ Yo 0 T3+ Y3
To—Y2 T1+Y1 —T3— Y3 0

Then extend it to sly(C) @ sl (C) — s04(C) in order to get the desired isomorphism. O

13



Lemma 3.3. ([9, p.162]) The map sl,(C) — s04(C)

i(agqt+a1ztazit+aq2) \
2

i(agg—ajg—agitagg)
2

—i(a22+a33)

@11 Q12 Q13 Q14
G21 Q22 (23 24
—
Ga31 G32 ass 34
(41 Q42 Q43 —0A11 — G292 — 433
0 (023+014;a41—032) (a24—a1342-a31—a42) i(a11-+az2) l(a23—a142—a41+032)
,(a23+a14ga41*a32> 0 '134+a12;121*a43 Z(¢12:«'Hr'1142+a41+a32) i(a11+ass)
_(u24*a13;a31*a42) _(a34+a12ga21*a43) 0 'i(a24*a132*a31+<142) ’i(a34+a12;ra21+a43>
—i(a11+as22) _Z(a23+a14;a41+a32) _1(a24—a132—a31+a42) 0 (023—a14;a41—a32)
,i(a23*a14;a41+a32) —i(a11+ass) 7i('134+a122+a21+a43) _(ag3—ajgtay; —a3g) 0

_ilaggtaiztagitagn) _ i(agg—ajo—agi+aq3)
2 2

is a Lie algebra isomorphism.

. agq+ayz—az1—a agzqg—aio+ag]—a
i(azz-+ass) _(agq 13_931 42) _ (a34 12491 43)

(agq+tajz—agj—aya)
2

(agg—aja+tas) —ay3)
2

0 /

Proof. Let I35 be the 6-by-6 diagonal matrix given by I35 = diag(1,—1,1,—1,1,—1) and

define g = {X € gl4(C) : XTI33 + I33X = 0}. Let S = diag (i,4,i,1,1,1). For X € g, let

Y = SXS7L. One easily sees that the map X + Y is an isomorphism of g onto s0s(C). Any

member of sly(C) acts on the 6-dimensional complex vector space of alternating tensors of

rank 2 by

M(ei/\ej) :Mei/\ej+ei/\Mej,

where {e;}1_, is the standard basis of C*.

Using the following ordered basis:

61/\62+€3/\€4,61/\63—62/\64,61/\€4+€2/\63,61/\62—63/\64,61/\€3+€2/\€4,61A€4—€2/\63

of the exterior space A2C*.

14



Let

11 a2 13 Aaiq
Q21 Q22 (A23 A4
A= € sly (C)

31 Aazz2 (33 A34

A41 Q42 A43 Q44
such that aqy = —(a11 + aga + asz). Consider the map A(e; Aej) = Ae; Ne; +e; A Ae;. We

now compute the matrix representation of A with respect the above basis.

A(61 N €3 N 64)
= A(@l A 62) + A(€3 VAN 64)

1
= 0- (61 A €9 + €3 A\ 64) + 5(@32 — Q14 — Q23 —|—CL41)(61 A\ €3 — €9 A 64)

1
+§(CZ42 + a3 — a3 — a24)(€1 AN €4 + €9 A 63) + (a11 + agz)(el A €y — €3 A 64)

1 1
+§(a32 —ayq+ass —ay)(e;r ANeg+ ey Aey) + §(a42 +aiz+az +az)(er Aeg —eg Aes)

A(@l VAN €3 — €9 VAN 64)
= A(61 A 63) - A(GQ VAN 64)
(CL23 + 14 — Qg1 — agz)(el AN €9 + €3 AN 84) + 0- (61 N €3 — €9 A 64)

1 1
5(@43 — a1 + a9 — CL34>(61 A €4 -+ €9 A 63) -+ 5((123 + a14 + aq1 + CL32)(61 A €9 — €3 A 64)

4+ o=

1
+(a11 + ass)(exr Nes +ex Aey) + 5(6143 —ajp — ag +ass)(er Aeg — ez Aeg)

15



A(61 N eg+ex N\ 63)
A(61 A 64) + A(€2 VAN 63)

1
5((124 — a13 + asy — a42)(€1 A €9 -+ €3 A 64) -+ 5(&34 + a12 — Ag1 — CL43)€1 A €3 — €9 A 64)

1
+0 . (61 A €4 1+ €9 A 63) + 5(&24 — Q13 — Aa3z1 + CL42)(CL23 + aqy4 + 41 + CL32)(61 A €9 — €3 A 64)

1
+§(G34 + a1z + a1 + agz)(ex Aes +ea Aey) — (age + ass)(er Aeg —ea Aes)

A(GQ A €3 — €3 A 64)
A(61 VAN 63) — A(GQ A 64)

1
(a11 + agg)(el N es+ ez A 64) + 5(&32 + a4 + a9z + CL41)(€1 Neg — ey A 64)
1
+§<CL4Q — 13 — a3y -+ a24)(€1 N €4 + €9 A\ 63) + 0- (61 A €9 — €3 A 64)

1 1
+§(a32 + Q14 — Qo3 — a14))(61 AN €3 + €3 A 64) -+ 5(&42 — Q13 + asy — a24)(61 A\ €4 — €9 A 63)

A(61 N es3+ ez A 64)

Aler Neg) + A(es A eyq)

1
5(6623 —ayq — ag1 +ag)(er A e+ ez Aeq) + (a1 + ass)(exr Aes —ea Aey)

1
—|—§(a43 + a9 + a9 + asq)(er Aeg +ea Aeg) + §(a23 —ayy+ aq —asz)(er Ney — ez Aey)

1
+0 . (61 A €3 + €9 A 64) + 5(@43 —+ a12 + a1 — CL34)(61 A €4 — €2 N 63)

16



A(€1 N €4 — €9 A 63)

A(61 N 64) — A(GQ A 63)

1 1
5(624 + a3+ as +ag)(er Nes +es Aey) + §(a34 — a1a — 91 + agz)(er Aeg —ea A ey)

—((122 + CL33)(61 A\ €4 + €9 A\ 63) + —(Cl24 -+ a13 — a31 — CL42)(61 A\ €9 — €3 AN 64)

2

1
+§((l34 — a9 + a9 — CL43)(61 N €3 + e9 N 64) + 0- (61 A €4 — €9 A 63)

0

ag3+ajg—ag1—a3za
2

So we get the following 6 x 6 matrix

ag3+ajg—ag1—aza
2

0

ag4—a13+a31—a42
2

ai1taz2

a24—a13+agz1 —aqg
2

ai1+a22

a23—a14—a41+ta3g
2

agqtajztazitagn
2

agqtajp—ag) —ayg
2

a34+a12—0a21—-043
2

0

ag3tajgtagy+aza
2

ag3—ajq—aq)+a3o
2

a11+a33

agz3tajgtagy+azs
2

ai1+as3
a34—0a12—a31+ta43
2

agq—ajgz—agitaqo
2

a24—a13—a31+a42
2

0

agqtajotagytayg
2

ag4+ajztagzitaqg
2

a34—ajp—az1+a43
2

—(a22+as3)

agqtajotagytayg
2

—(a22+a33)

ag3—ajqtag;—azo
2

a241a13—0a31—-042
2

a23—aj4+a41—-032
2

0
a34—a12+a21—-043
2

ag4taiz—ag)—aqo
2

a34—a12+a21—-0a43
2

0

in g which gives us the desired Lie algebra isomorphism after conjugation A — SAS~! where

S = diag (4,1,1,1,1,1). 0
Theorem 3.4. ([17, p.101])

1. Let G and H be Lie groups with Lie algebras g and h and with G simply connected.

Let v : ¢ — b be a homomorphism. Then there is a unique homomorphism ¢ : G — H

.

such that dy,

2. For each Lie algebra g, there is a simply connected Lie group G with Lie algebra g.
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Chapter 4
The connection between W (A) and S(A) for small n

We want to study S(A) and its relation to the classical numerical range when the

dimension is small, i.e., 2 < n < 6. The k-numerical range of B € C,,»,,, 1 < k < n, is
Wi(B) :=={x]Bxy + -+ + x;Bxy : x1,- -+ ,x € C" are orthonormal}.

Halmos [4] asked if W} (B) is convex and Berger [5, p.110-111] provided an affirmative answer

for any B € C,,«p,.

Theorem 4.1. (Berger) The k-numerical range of B € C, «,, is convex.

Lemma 4.2. Let ; and €25 be convex subsets of C. The sum of of €2; and €2y, denoted by

Q-+ 0= {a+biaeQbe),

is a convex subset of C.

PTOOf. Let a; + bl,ag + b2 € Ql + QQ. Then (1 — )\)(al + bl) + )\(ag + bg) = ((1 — )\)al +
/\CLQ) -+ ((1 — /\)bl + /\bg) € Ql + Qg
a

Lemma 4.3. Let Q2 be a convex subset of C, and a be a scalar (either real number or

complex number), then a2 := {aa : a € Q} is a convex subset of C.

Proof. Let aj,ay € . Then aay, aay € o), and (1—X)(aay)+A(aaz) = a((1—=N)aj+Aag)) €
af2. 0

18



Theorem 4.4. 1. If A € s03(C), then S(A) is equal to W(B) for some B € sly(C) and

thus is an elliptical disk (possibly degenerate) centered at the origin.

2. If A € 504(C), then S(A) is the sum of W(B) and W (C), where B,C € sly(C). Thus

S(A) is the sum of two elliptical disks (possibly degenerate) centered at the origin.

3.If A € 505((C then S(A) = iWy(B) for some B € sp,(C) C Cyxy, ie., B =
b where Bi, By, Bs € Cyy and By, By are symmetric.
By —Bf

4. If A € s04(C), then S(A) = iWy(B) for some B € sl,(C).

Proof. Let K be a connected Lie group with Lie algebra ¢ = so(n). Given A € g := ¢t it =

50, (C), consider the orbit of A under the adjoint action of SO(n)
AdK-A:={Ad(k)A: ke K}

So
S(A) = {trCY : YV € AdK - A}

0 —1
where C' =1 @ 0,_2. The orbit Ad K - A depends on Ad K which is the analytic
2

1 0
subgroup of the adjoint group Int ¢ C Aut# corresponding to ad € [7, p.126, p.129]. Thus

Ad K - A is independent of the choice of K. In particular we can pick the simply connected

(1) By Lemma [3.1] the following is a Lie algebra isomorphism sly(C) — so03(C)

0 —2ia i(b+ c)
= 2ia 0 c—>b

—i(b+c) b—c 0
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and thus its restriction ¢ : su(2) — s0(3) is a Lie algebra isomorphism. By Theorem [3.4
there is a Lie group isomorphism ¢ : éﬁ(?) — SO(3) so that dp. = v which naturally
extends to sly(C) — s03(C). (indeed there is a double covering SU(2) — SO(3)). So we have

the relation

dp{UAU™ : U € SU(2)}
= dp {UAU U € SU(2)}
= {o(U)(dp.(A)p(U)™": U € SU2)}

= {0(dp.(A)O™: 0 € SO(3)}.
where the second equality is due to the fact that
dpc(Ad (9)A) = Ad (p(g))dee(A), A € sl(C)

and that the adjoint action is conjugation for matrix group. The quadratic map = +—
r*Az, z € S', amounts to U AU — (U 'AU)y;, U € SU(2) and thus corresponds to

—%(cpil(U)dgoe(A)go(U))lg, ie., (z,y) — xTdp.(A)y where z,y € R? are orthonormal. Thus

0 —2ia i(b+c)
w =55 2ia 0 c¢—b
i
—i(b+c) b—c 0
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(2) By Lemma 3.2 the following is a Lie algebra isomorphism 1 : sl(C) @ sly(C) —

504(C):
a b d e
+
c —a f —=d
0 i(a —d) Ye—b—f+e) Lilb+c—e—f)
—i(a — d) 0 silb+c+e+f) F(c—b+[f—e)
Sle=b—f+e) Filbtctetf) 0 i(a + d)
Fibte—e—f) Fle—b+f-e)  —ifatd) 0

and thus its restriction v : su(2) @ su(2) — so(4) is a Lie algebra isomorphism. By Theorem
3.4 there is a Lie group isomorphism ¢ : §6(2) X §ﬁ(2) — SO(4) so that dp. = ¢ (indeed

there is a double covering map SU(2) x SU(2) — SO(4) [12, p.42]). So we have the relation

dp {UAU' : U € SU(2) x SU(2)}
= dp UAU': U € SU(2) x SU(2)}
= {p(U)(dp(A)p(U)™" : U € SU(2) x SU(2)}

= {O(dc,oe(A))O_1 : 0 €S0(4)}.
where the second equality is due to the fact that
dp.(Ad (g)A) = Ad (p(g))dwc(A), A € sly(C) @ sly(C)

and that the adjoint action is conjugation for matrix group. The map U AU — (U7LAU) 1+
(UTAU)y, U € SU(2) x SU(2) corresponds to i(o 1 (U)(dpe(A))p(U))1a, ie., (z,y) —
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2Tdp.(A)y where z,y € R* are orthonormal. So

b d e
w + W
c —a f —d
0 i(a —d) e=b—f+e) Llib+c—e—f)
15 —i(a —d) 0 sib+ct+e+f) Fe—b+f—e)
‘ SHe=b—f+e) Filb+c+e+f) 0 i(a+d)
Fib+c—e—f) s(c—b+[f—e) —i(a+d) 0
a b d e
Notice that W + W is simply the sum of two elliptical disks centered
c —a f —d

at the origin. By Lemma 4.2/ it is convex.

(4) By Lemma 3.3

a1; G2 ais A14
G21 (22 (23 24
—
31 a3z ass 34
a41 Q42 Q43 —Q11 — Q22 — 433
0 (az3+a14;a41*a32> (a24*a13J2ra31*a42) i(a11+as2) i(a23*a14;a41+a32) i(a24+a13;ra31+a42) \
ag9a+aig4—ay1—a agqtai9—a9]—a i(agg+ai1g4+aq1+a . i(agq—a19—ao1+a
_ (agg 142 41—0232) 0 34 122 21943 (ag3 142 41+a32) i(a11+ass) (a3q 122 21+a43)
— (a24*ﬂ13;a31*a42) _ (a34+a12;a21*a43) 0 i(agg—ajz—azj+ay) 1(a34+a12;ra21+a43> —i(az2+ass)
; i(agg+ajgtagitagy) _ i(agg—ajz—agy+ags) (agg—ajg+aqy—agy) (aggtajgz—agzi—aygo)
—i(a11+az2) _ 3 . 32) _ 3-93 0 3 : 3 3-93
i —ajq—agq1+ B i +ajotagy+ —ajgtag)— —ajgtagy—
_i(az3 a142 aq1tazg) —i(a11+ass) _ilagq a122 azjtagz) _ (ag3—ajgtag)—aza) 0 (azq a122a21 a43)
_i(a24+a13;ra31+a42> _i(a34*ﬂ12;a21+ﬂ43) i(aza+ass) _(a24+013;a31*a42) _(a34*a12;a21*a43) 0 ,

Then apply the same argument in (1) to have the desired result.
(3) When A € sp,(C), the fifth row and column are zero so that the map in (4) yields

an isomorphism of sp,(C) and so05(C). Then apply the argument in (1). O
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Chapter 5

Another proof of the convexity of S(A)

Remark 5.1. Alike Davis’ treatment [I] for W(A) when A € Cayya, there is a simpler and

more geometric way to see that S(A) is an elliptical disk if

0 a b
A= —a 0 cl € 503(@).
b —c 0

Direct computation yields

o' Ay = a(z1ys — Toy1) + b(21y3 — y123) + c(@2y3 — 1392) = (¢, —b,a) - (x X ).

Since {z X y : x,y € R?® are orthonormal} = S?, S(A) is the image under the linear map
2 €S* (¢,—b,a) -z € C. Thus S(A) C C is an elliptical disk using Davis’ idea. We just

establish the convexity of S(A) when n = 3.
Lemma 5.2. Let A € 50, (C) and n > 3.

1. Suppose 1,75 € R™ and y;,y2 € R"™ are orthonormal pairs, and span{z;,xs} =

span {y1, y2}. Then y5 Ay, = £a5 Az,
2. If £ € S(A), then t£ € S(A) if [t|] <1 and t € R.

Proof. (1) Notice that [y; y2] = [x1 22]O where O is a 2 x 2 orthogonal matrix, that is,

cosf sinf
[y1 y2] = [11 2]
—sinf@ cosf
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or

—cosf sinf
[y1 y2] = [21 22]
sinf  cos@
Then for the first case
ys Ay, = (sinfx; + cosOzy)" A(cos Oz, — sin Oz,)

= cos®fzd Axy — sin® 0zt Axy

= 2l Az,

and for the second case yI Ay, = —zl Ax;.

(2) Because of Remark /5.1 we may assume that n > 4. Suppose that ¢ = 27 Ay where
x,y € R™are orthonormal. Choose a unit vector z that is orthogonal to y, y; := (Re A)y € R™
and yo := (Im A)y € R™ since n > 4. Then choose p € R so that w := tx + pz is a unit
vector. Hence y and w are orthonormal and t£ = t2T Ay = wl Ay € S(A). O

A proof of the convexity of S(A):

We now provide a proof of the convexity of S(A) which is different from [14] and is
based on Theorem 4.4. The cases n = 3,4 are proved in Theorem 4.4, Consider n >
4. Let wy = x¥ Ay, and wy = zl Ay, be two distinct points in S(A), where z1,y; and
Zo, Yo are orthonormal pairs in R"™. Let A C — C be the compression of A onto C' :=
span {x1, 2, Y1, y2}. It is easy to see that the matrix of A is complex skew symmetric and
S(A) contains w; and wy. Since wy, wy are distinct, 2 < dim C < 4.

Case 1: 3 <dimC < 4. By Theorem 4.4, .S (A) is convex and hence contains the line segment
[wy, ws]. So does S(A) since S(A) C S(A).

Case 2: dimC = 2. Then span{z1,y1} = span{xs,y>} so that by Lemma 5.2(1) w; =
—wy # 0. Pick x3 € R™ such that x3 ¢ span{zi,y1} since n > 4. Apply the previous

argument on C’ := span {1, x3,y; } to have the desired result.
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Finally we remark that S(A) may not be convex if A € C,,«,,, even though S(A) is well
defined for all A € C,,«,,.

1
Example 5.3. If A = , then

S(A) = {—cosf(sinf —icosf): 6 € R}

by direct computation. So S(A) contains the points j:% + % but not their midpoint %
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