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Abstract 
 
 Today’s data storage and collection abilities have allowed the accumulation of enormous 

amounts of data. Data mining can be a useful tool in transforming these large amounts of raw 

data into useful information. Predictive modeling is a very popular area in data mining. The 

results of these type tasks can contain helpful information that can be used in decision making.  

Problems arise when the data sets that are used to build these models are not as complete (e.g. 

erroneous/missing values) as the data used to evaluate the model. Rule based classifiers are 

widely used and accepted type of predictive model. We present a method to reduce the severity 

of the effects of missing data on the performance of rule base classifiers using divisive data 

clustering. The Clustering Rule based Approach (CRA) clusters the original training data and 

builds a separate rule based model on the cluster wise data. The individual models are combined 

into a larger model and evaluated against test data. We evaluate the effects of the missing 

attribute information for ordered and unordered rule sets. We experimentally show that the 

collective model is less affected by missing attribute information when the test data has missing 

attribute values.

 

  



 

iii 
 

Acknowledgements 

 
 First and foremost, I would like to thank God for he is my strength and through him I can 

do a1l things.  I would like to thank Dr. Juan Gilbert for all his support, encouragement, and 

patience.  The many times when I did not know how I was going to make it, or didn’t think I 

could do it, he was there to guide me.  Thank you to my family for their love, support, and 

encouragement. They have been very supportive an encouraging throughout my academic tenure 

here at Auburn. Last but not least I would like to say thank you to all of the members of the 

Human Centered Computing Lab.  There support, encouragement, and just being there will 

forever be appreciated!!

 

  



 

iv 
 

Table of Contents 

Abstract ........................................................................................................................................... ii 

Acknowledgements ........................................................................................................................ iii 

List of Tables ................................................................................................................................ vii 

List of Figures ................................................................................................................................. x 

Chapter 1 ......................................................................................................................................... 1 

Introduction ..................................................................................................................................... 1 

1.1 Motivation ............................................................................................................................. 1 

1.2 Problem Description and Background .................................................................................. 2 

1.3 Organization .......................................................................................................................... 5 

Chapter 2 ......................................................................................................................................... 6 

Literature Review............................................................................................................................ 6 

2.1 Data Mining Overview ......................................................................................................... 6 

2.2 Predictive Modeling .......................................................................................................... 8 

2.3 Association Analysis ....................................................................................................... 20 

2.4 Cluster Analysis .............................................................................................................. 25 

2.5 Anomaly Detection ......................................................................................................... 29

2.6 Ensemble Methods .......................................................................................................... 30 



 

v 
 

2.7 Other Related Information and Work ............................................................................. 34 

2.8 Data Mining Tools .......................................................................................................... 37 

Chapter 3 ....................................................................................................................................... 39 

Research Details............................................................................................................................ 39 

3.1 Conceptual Overview.......................................................................................................... 39 

Chapter 4 ....................................................................................................................................... 42 

Experiment Design........................................................................................................................ 42 

4.1 Data ..................................................................................................................................... 42 

4.2 Materials and Tools............................................................................................................. 42 

4.2.1 PRISM.......................................................................................................................... 43 

4.2.2 Applications Quest™ ................................................................................................... 43 

4.3 Procedure ............................................................................................................................ 47

4.4 Expected Outcomes ............................................................................................................ 48 

Chapter 5 ....................................................................................................................................... 49 

Research Findings ......................................................................................................................... 49 

5.1 Results ................................................................................................................................. 49

Chapter 6 ................................................................................................................................... 96 

Summary ....................................................................................................................................... 96 

6.1 Summary and Conclusion ................................................................................................... 96 

6.2 Future Work ........................................................................................................................ 97 



 

vi 
 

References ..................................................................................................................................... 98 

 

 



 

vii 
 

List of Tables 

 
Table 1Tennis Training Data .......................................................................................................... 3 

Table 2 Vertebrate Unlabeled/Unseen Data ................................................................................. 11 

Table 3 Data Sets .......................................................................................................................... 42 

Table 4 Similarity Matrix with Difference Measures Example .................................................... 45 

Table 5 Example Nominal Population Matrix .............................................................................. 45 

Table 6 Nominal Population Matrix Example .............................................................................. 46 

Table 7 Example Nominal Population Matrix .............................................................................. 46 

Table 8 Example Nominal Population Matrix Adjusted............................................................... 46 

Table 9 Congressional Voting Results for Complete Data (No Missing Attributes) ................... 50 

Table 10 Congressional Voting 1 Missing Attribute .................................................................... 51 

Table 11 Congressional Data Results 2 Missing Attributes ......................................................... 51 

Table 12 Congressional Voting Data Results 3 Missing Attributes ............................................. 51 

Table 13 Congressional Voting Results 4 Missing Attributes ...................................................... 52 

Table 14 Congressional Voting Example Traditional Rule Set .................................................... 55 

Table 15 Congressional Voting Example Collective Rule Set ..................................................... 56 

Table 16 Anneal Results Complete Data (No Missing Attributes)............................................... 57 

Table 17 Anneal Results 1 Missing Attribute ............................................................................... 57 

Table 18 Anneal Results 2 Missing Attributes ............................................................................. 58 

Table 19 Anneal Results 3 Missing Attributes ............................................................................. 58



 

viii 
 

Table 20 Anneal Results 4 Missing Attributes ............................................................................. 58 

Table 21 Example Anneal Traditional Rule Set ........................................................................... 61 

Table 22 Example Anneal Collective Rule Set ............................................................................. 63 

Table 23 Thyroid Results Complete Data (No Missing Attributes) ............................................. 64 

Table 24 Thyroid Results 1 Missing Attribute ............................................................................. 64 

Table 25 Thyroid Results 2 Missing Attributes ............................................................................ 65 

Table 26 Thyroid Results 3 Missing Attributes ............................................................................ 65 

Table 27 Thyroid Results 4 Missing Attributes ............................................................................ 65 

Table 28 Thyroid Example Traditional Model ............................................................................. 70 

Table 29 Thyroid Example Collective Model .............................................................................. 72 

Table 30 Mushroom Results Complete Data (No Missing Attributes) ........................................ 73 

Table 31 Mushroom Results 1 Missing Attribute ......................................................................... 73 

Table 32 Mushroom Results 2 Missing Attributes ....................................................................... 74 

Table 33 Mushroom Results 3 Missing Attributes ....................................................................... 74 

Table 34 Mushroom Results 4 Missing Attributes ....................................................................... 74 

Table 35 Mushroom Example Traditional Model ........................................................................ 77 

Table 36 Mushroom Example Collective Model .......................................................................... 78 

Table 37 Tic-Tac-Toe Results Complete Data (No Missing Attributes) ...................................... 79

Table 38 Tic-Tac-Toe Results 1 Missing Attribute ...................................................................... 80 

Table 39 Tic-Tac-Toe Results 2 Missing Attributes..................................................................... 80 

Table 40 Tic-Tac-Toe Results 3 Missing Attributes..................................................................... 80 

Table 41 Tic-Tac-Toe Results 4 Missing Attributes..................................................................... 81 

Table 42 Tic-Tac-Toe Example Traditional Model ...................................................................... 86 



 

ix 
 

Table 43 Tic-Tac-Toe Example Collective Model ....................................................................... 91 

Table 44 Best Performance for Best and Worst Conditions Ordered Models .............................. 91 

Table 45 Best Performance for Best and Worst Conditions Unordered Models .......................... 92 

Table 46 Results of Welch Two Sample t-test (Ordered Models) ................................................ 94 

Table 47 Results Two Sample Welch t-test (Unordered Models) ................................................ 94

 



 

x 
 

List of Figures 

 
Figure 1 ID3 Decision Tree ............................................................................................................ 3 

Figure 2 Data mining's relationship to other disciplines ................................................................. 6 

Figure 3 CRISP-DM Model ............................................................................................................ 7 

Figure 4 Four Core Data Mining Tasks .......................................................................................... 8 

Figure 5 Vertebrate Training Data (Labeled/Known Outcomes) ................................................. 10 

Figure 6 Vertebrate Rule Set/Model ............................................................................................. 10 

Figure 7 Simple Decision Tree ..................................................................................................... 12 

Figure 8 Basic Sequential Covering Algorithm ............................................................................ 16 

Figure 9 Rule Growing Strategies................................................................................................. 17 

Figure 10 Simple Neural Network ................................................................................................ 19 

Figure 11 Lattice Structure ........................................................................................................... 22 

Figure 12 Apriori Principle ........................................................................................................... 23 

Figure 13 Support Based Pruning ................................................................................................. 24 

Figure 14 Records to be clustered ................................................................................................. 26 

Figure 15 Cluster Hierarchy .......................................................................................................... 26 

Figure 16 Linkage Examples ........................................................................................................ 28 

Figure 17 K-means Algorithm ...................................................................................................... 28 

Figure 18 Ensemble Method Process ............................................................................................ 31 

Figure 19 Bagging and Boosting Example ................................................................................... 33



 

xi 
 

Figure 20 CRA Flow ..................................................................................................................... 41 

Figure 21 PRISM Pseudocode ...................................................................................................... 43 

Figure 22 Congressional Voting Accuracies Unordered Model ................................................... 52 

Figure 23 Congressional Voting Accuracies Ordered Model ....................................................... 53 

Figure 24 Congressional Voting Average Rule Lengths .............................................................. 53 

Figure 25 Anneal Accuracies Unordered Model .......................................................................... 59 

Figure 26 Anneal Accuracies Ordered Model .............................................................................. 59 

Figure 27 Anneal Average Rule Lengths ...................................................................................... 60 

Figure 28 Thyroid Accuracies Unordered Models ....................................................................... 66 

Figure 29 Thyroid Accuracies Ordered Models ........................................................................... 66 

Figure 30 Thyroid Average Rule Lengths .................................................................................... 67 

Figure 31Mushroom Accuracies Unordered Models .................................................................... 75 

Figure 32 Mushroom Accuracies Ordered Models ....................................................................... 76 

Figure 33 Mushroom Average Rule Lengths................................................................................ 76 

Figure 34 Tic-Tac-Toe Accuracies Unordered Models ................................................................ 81 

Figure 35 Tic-Tac-Toe Accuracies Ordered Models .................................................................... 82 

Figure 36 Tic-Tac-Toe Average Rule Lengths ............................................................................. 82 

Figure 37 Percentage Drop in Accuracy Ordered Models ............................................................ 92

Figure 38 Percentage Drop in Accuracy Unordered Models ........................................................ 93 

Figure 39 Ordered vs. Unordered Accuracies Overall .................................................................. 95

 



 

1 
 

Chapter 1 

 Introduction 

 

1.1 Motivation 

 
Advances in data collection and storage capabilities have enabled organizations, 

companies, institutions, etc to collect immense amounts of data. The challenge lies in trying to 

turn all of that raw data into useful information. One way to address this problem is with the use 

of data mining.  

Data Mining can be defined as “sorting through data to identify patterns and establish 

relationships” (TechTarget, 2008).  Data mining blends traditional data analysis methods with 

sophisticated algorithms for processing large amounts of data. These algorithms search large data 

repositories in order to find new and useful patterns that might have otherwise been unidentified. 

Data mining methods can and are being used in many domains to address a variety of tasks.  

One of the more popular uses of data mining techniques is predictive modeling or 

classification. Certain types (i.e. decision trees, neural networks, etc.) of data mining algorithms 

have the ability to predict future outcomes using the attributes in the data set. For example, let’s 

assume that a long distance company wants to promote its new long distance plan. The company 

can apply predictive modeling algorithms to specifically target customers who are more likely to 

sign up for the plan based on their past behavior. 
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 As one could imagine, the accuracy of predictive modeling algorithms is very important. 

Their results contain information that can be very valuable and have the ability to help make 

decisions and drive change.  Rule based algorithms are widely used and accepted to perform 

classification of tasks due to their ease of interpretability and understanding. These classifiers 

build a model or rule set from training data as a set of high-quality rules, which can be used to 

predict the class labels of unlabeled instances (Wang & Karypis, 2003).  There have been many 

rule based classification systems studied and proposed which yield adequate classification 

accuracy in a variety of applications such as RIPPER (Cohen, 1995), FOIL (Quinlan & Gaetz, 

1993), and CPAR (Yin & Han, 2003) . However, if the test data used to evaluate the model is not 

as complete as the training data used to build the model the classification accuracy suffers as the 

model tends to follow the training data too closely. This is problematic as in most real world 

applications data is often incorrect and or missing parts. Thus, it is advantageous to have a rule 

set or model that is robust and can make reasonably accurate predictions when the test data is 

incomplete. This research explores the notion of adding robustness to rule based classifiers via 

divisive clustering. 

1.2 Problem Description and Background 
 
 Rule based classifiers are used widely because of the ease of interpretability of the 

models or set of rules they generate. These classifiers perform exceptionally well on complete 

data sets. Meaning, the data is clean, correct, and does not have missing attribute values. To 

generate the model or train the classifier the training data uses attribute and values relative to 

each other to segregate the data to generate a rule relative to a particular class. This poses a 

problem as real world data sets are not clean, correct and often have missing attribute values.  

The models produced by traditional rule based classifiers are sensitive to missing attribute values 



 

 

in new/unseen data. For example, Table 1 and Figure 1

decision tree (Quinlan J. , 1993).

3 

For example, Table 1 and Figure 1 depict a popular data set 

. 

Table 1Tennis Training Data 

Figure 1 ID3 Decision Tree 

 

depict a popular data set and the resulting 
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The rules derived from this tree are: 

If outlook is sunny and humidity is high, then do not play tennis. 

If outlook is sunny and humidity is normal, then play tennis. 

If outlook is overcast, then play tennis. 

If outlook is rain and wind is strong, then do not play tennis. 

If outlook is rain and wind is weak, then play tennis. 
 
Notice that all of the rules derived contain the outlook attribute. Suppose there is some test data 

in which the outlook information is missing. This model is not robust as none of the rules 

generated would be able to make predictions. In fact, as the number of attributes within a data set 

that have missing data increases the classifiers performance/accuracy decreases. The model that 

the classifier generates is unable to classify all of the instances new/unseen test data. For the 

purposes of this research we call this a hard classification problem.   

 This research proposes a new method for adding robustness to rule based classifiers using 

divisive clustering for hard classification problems.  With this approach the training data set is 

broken into clusters based on holistic similarities such that items within a particular cluster are 

more alike than those outside of the cluster. Each cluster generates a model trained with smaller 

homogeneous data sets. Multiple models are created using the clustered data and then combined 

into a single model (the experiment). The hypothesis for this research is that the resulting 

combined rule base will be more resilient against missing attribute information. Resiliency refers 

to minimizing any decreases in classification accuracy as the number of missing attributes 

increases versus the traditional (the control) model. It is believed that the collective model is 

more resilient than the traditional model because it will have an added level of robustness and 

ability to classify new/unseen data instances that would not have been classified with a 

traditional classifier. The collective model contains rules that otherwise would not have been 
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created because of the alternate views of the data set used to train the multiple individual 

classifiers. 

 

1.3 Organization  
  

 In the following chapters the research agenda will be examined.  Chapter 2 provides an 

overview of data mining techniques and practices, more specifically, predictive 

modeling/classification and data clustering, and discusses any work pertinent to this research. 

Chapter 3 provides conceptual view of the approach studied in this research. Chapters 4 and 5 

describe the design of the experiment conducted to study the validity of the approach and the 

results of that experiment respectively.  Finally, Chapter 6 provides a summary and conclusions 

and discusses areas of future work. 
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Chapter 2  

Literature Review 

 

2.1 Data Mining Overview 

 
 Data Mining is the process of discovering useful information in large amounts of 

data. It is fundamentally built on the principles of algorithms used in statistics, artificial 

intelligence, pattern recognition, and machine learning.  From statistics, data mining incorporates 

characteristics such as sampling, estimation, and hypothesis testing. From artificial intelligence, 

pattern recognition, and machine learning, data mining incorporates the following: search 

algorithms, modeling techniques, and learning theories. Figure 2 conveys data mining’s 

relationship to other areas (Tan, Steinbach, & Kumar, 2006) 

 

 
Figure 2 Data mining's relationship to other disciplines



 

 

 Data mining is being used in many domains in a variety of ways.  Due to this, a CRross 

Industry Standard for Data Mining Projects 

industry, and application neutral. The life cycle according to the standard has six phases: 

Business/Research Understanding, Data Understanding, Data Preparation, Modeling, Evaluation, 

and Deployment. Figure 3 depicts CRIS

 

 

Most data mining tasks are usually either predictive or descriptive in nature. Predictive 

tasks are ones in which the goal is to predi

values of other attributes. The attribute that is being predicted is frequently referred to as the 

target or dependent variable. The other attributes that are used for making the prediction are 
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Data mining is being used in many domains in a variety of ways.  Due to this, a CRross 

Industry Standard for Data Mining Projects (CRISP-DM) was developed. This standard is tool, 

industry, and application neutral. The life cycle according to the standard has six phases: 

Business/Research Understanding, Data Understanding, Data Preparation, Modeling, Evaluation, 

e 3 depicts CRISP-DM (CRISP-DM, 2000). 

Figure 3 CRISP-DM Model 

Most data mining tasks are usually either predictive or descriptive in nature. Predictive 

tasks are ones in which the goal is to predict the value of a particular attribute based on the 

values of other attributes. The attribute that is being predicted is frequently referred to as the 

target or dependent variable. The other attributes that are used for making the prediction are 

Data mining is being used in many domains in a variety of ways.  Due to this, a CRross 

DM) was developed. This standard is tool, 

industry, and application neutral. The life cycle according to the standard has six phases: 

Business/Research Understanding, Data Understanding, Data Preparation, Modeling, Evaluation, 

 

Most data mining tasks are usually either predictive or descriptive in nature. Predictive 

ct the value of a particular attribute based on the 

values of other attributes. The attribute that is being predicted is frequently referred to as the 

target or dependent variable. The other attributes that are used for making the prediction are 
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referred to as the explanatory or independent variables. Descriptive tasks are ones in which the 

goal is to derive patterns (i.e. correlations, clusters, trends) that will provide a summary of the 

underlying relationships in the data. These tasks are usually exploratory and often require some 

post-processing to confirm as well as explain the results.  

There are four tasks that are at the heart of data mining. They are Predictive Modeling, 

Cluster Analysis, Association Analysis, and Anomaly Detection (see Figure 4) (Tan, Steinbach, 

& Kumar, 2006) 

 

 
Figure 4 Four Core Data Mining Tasks 

 

 

 

2.2 Predictive Modeling 

 

Predictive modeling is one of the most popular subfields in data mining. It is the process 

of using the patterns found in the data set to predict future outcomes. Algorithms used for 
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predictive modeling build a model for the dependent variable as a function of the independent 

variables (Berson, Smith, & Thearling, 1999). There are two types of predictive modeling tasks: 

classification and regression. Classification tasks are used when the target or dependent variable 

is discrete. Regression tasks are used when the target variable is continuous (Tan, Steinbach, & 

Kumar, 2006)  

Predictive modeling problems are comprised of four things: a dependent variable, 

independent variables, a learning/training data set, and a test data set (Lewis, 2000). The 

learning/training data set contains values for both the dependent and independent variables, and 

is used to build the model. This model is then applied to the test set for evaluation. The test set is 

a subset of the training/learning data set. The performance of the model is based on the counts of 

the test records that are correctly or incorrectly predicted or classified. 

There are several predictive modeling techniques. The next section provides an overview 

of some of them. 

2.2.1 Rule based Classifiers 

 

A rule-based classifier is a method used for classification using a set of “if…then” rules. 

A rule can be expressed as ri: (Condition) � yi. The left hand side of the rule is the antecedent or 

condition. The right hand side is the consequent.  A rule covers an instance if the condition 

matches the attributes of that instance. An example of classification using a rule based method is 

depicted below. Figure 5 shows the training data, Figure 6 displays the rule set (model) 

generated and Table 2 contains the unlabeled instances for the vertebrate classification problem. 

The goal of this model is to determine what type of vertebrate the instance will be classified as. 

There are five possible outcomes: mammal, reptile, fishes, amphibians, and birds. (Tan, 

Steinbach, & Kumar, 2006) 



 

 

R1 covers the hawk instance.  A hawk does not give birth and can fly and will be 

classified as a bird. R3 covers the grizzly bear instance. A grizzly bear gives birth and is warm 

blooded and will be classified as a mammal.

Figure 5 Vertebrate Training Data

 

Figure 

Name Blood Type

human warm
python cold
salmon cold
whale warm
frog cold
komodo cold
bat warm
pigeon warm
cat warm
leopard shark cold
turtle cold
penguin warm
porcupine warm
eel cold
salamander cold
gila monster cold
platypus warm
owl warm
dolphin warm
eagle warm

10 

1 covers the hawk instance.  A hawk does not give birth and can fly and will be 

classified as a bird. R3 covers the grizzly bear instance. A grizzly bear gives birth and is warm 

blooded and will be classified as a mammal. 

Vertebrate Training Data (Labeled/Known Outcomes)

Figure 6 Vertebrate Rule Set/Model 

 
 

Blood Type Give Birth Can Fly Live in Water

yes no no mammals
no no no reptiles
no no yes fishes
yes no yes mammals
no no sometimes amphibians
no no no reptiles
yes yes no mammals
no yes no birds
yes no no mammals
yes no yes fishes
no no sometimes reptiles
no no sometimes birds
yes no no mammals
no no yes fishes
no no sometimes amphibians
no no no reptiles
no no no mammals
no yes no birds
yes no yes mammals
no yes no birds

1 covers the hawk instance.  A hawk does not give birth and can fly and will be 

classified as a bird. R3 covers the grizzly bear instance. A grizzly bear gives birth and is warm 

 
(Labeled/Known Outcomes) 

 

 
 

Class

mammals
reptiles
fishes
mammals
amphibians
reptiles
mammals
birds
mammals
fishes
reptiles
birds
mammals
fishes
amphibians
reptiles
mammals
birds
mammals
birds
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Table 2 Vertebrate Unlabeled/Unseen Data 

 Rule based classification algorithms tend to fall into the two categories: decision trees and 

covering algorithms (Li, Topor, & Shen, 2002) (Hu & Li, 2005) (Tan, Steinbach, & Kumar, 

2006) (Witten & Frank, 2005). 

 

2.2.1.1 Decision Trees 
 
 A decision tree is a predictive model in which the results are displayed as a tree type 

structure (Berson, Smith, & Thearling, 1999).  A decision tree consists of a collection of decision 

nodes, which are connected by branches, descending from the root node until coming to an end 

at the leaf nodes. Each branch of the tree is a classification question and the leaves are the 

partitions or segments of the dataset with the classification or decision (Larose, 2005) (Quinlan J. 

R., 1986). 

The first step in the decision tree building process is to “grow” the tree. The goal is to 

create a tree that works as close to perfect as possible with the data provided.  When growing the 

tree, the main task is to find the best question to ask at each branch or split point in the tree. This 

task is repeated until there is either only one record in the segment, each of the records in the 

segment are the same, or there is not any significant gain in making a split. When one of these 

conditions are met the tree stops growing (Berson, Smith, & Thearling, 1999).  Figure 7 conveys 

a simple decision tree example (DMS, 2008). 

Name Blood Type Give Birth Can Fly Live in Water Class

hawk warm no yes no ?
grizzly bear warm yes no no ?
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Figure 7 Simple Decision Tree 

 

There are certain requirements that must be adhered to in order to apply a decision tree 

algorithm. A training data set must be provided. This training data should be varied in nature and 

provide the algorithm with a robust sampling of the types of records that will need classification 

in the future. This is very important as decision trees learn by example. If the algorithm is 

provided bad data then the ability to correctly classify future data will greatly diminish. Also, the 

target variable must be discrete (Larose, 2005). 

Decision trees are a part of data mining technology that has existed in some form for 

decades. Originally, these techniques were created for statisticians to automate the process of 

determining which attributes were useful or in correlation with the problem they were attempting 



 

13 
 

to solve or understand. They are also particularly adept at handling raw data with little or no pre-

processing (Berson, Smith, & Thearling, 1999). 

Perhaps the most appealing aspect of decision trees is how easy they are to interpret. This 

is especially evident when deriving decision rules. Rules can be derived by simply traversing the 

tree from the root to any leaf node and come in the form of if antecedent, then consequent. The 

antecedent contains the attribute values from the branches taken by a particular path throughout 

the tree. The consequent contains the classification value for the dependent variable given by that 

particular leaf node (Larose, 2005) (Tan, Steinbach, & Kumar, 2006) (Witten & Frank, 2005).  

Using the simple decision tree in Figure 7 an example of a decision rule would be if A = red and 

B < 4.5 then K = y. There are several algorithms that are used to produce decision trees. These 

include:  ID3, C4.5, Classification and Regression Trees (CART), and Chi-Square Automatic 

Interaction Detector (CHAID). The next sections describe each. 

ID3 

 
Developed in the 1970’s, ID3 was one of the first decision tree algorithms. Initially, the 

algorithm was used for things like learning good game play strategies for chess end games. In 

chess, the end game is the portion of the game where there are only a few pieces left on the board 

(Quinlan & Gaetz, 1993) (Chess Endgame, 2008).  However, ID3 has been used for a variety of 

tasks in various domains and has been modified and improved many times.  

ID3 works by choosing the predictors and their corresponding split values based on the 

gain in information that the split(s) will make available.  Gain is the difference in the amount of 

information that will be needed to properly make an accurate prediction before and after a 

split(s) is made (Berson, Smith, & Thearling, 1999). 
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C4.5 

C4.5 is an enhancement of the ID3 algorithm. It improved ID3 algorithm by allowing predictors 

with missing or continuous values to be used, introducing tree pruning, and enabling rule 

derivation. The trees produced by this algorithm are also not restricted to binary splits.  These 

trees are more variable in shape (Berson, Smith, & Thearling, 1999) (Larose, 2005) (Quinlan J. , 

1993). 

Classification and Regression Trees  

 
Classification and Regression Trees (CART) was developed in 1984 by Leo Breiman, 

Jerome Friedman, Richard Olshen and Charles Stone (Breiman, Freidman, Olshen, & Stone, 

1984).  Many of the C4.5 techniques appear in CART. The trees that are produced by the CART 

algorithm are strictly binary. This means that each node in the tree can only have two branches. 

CART analysis is a form of recursive partitioning. The algorithm recursively partitions the data 

in the training set into subsets of records with similar values for the target or dependent variable.  

To grow the tree, CART performs an exhaustive search of available variables to pick the best or 

most optimal split variable. The fully grown tree that is initially produced will yield the lowest 

error rate when compared against the training data. However, this model may be too complex 

and usually results in overfitting.  An overfit model is one that too closely follows all of the traits 

of the training data and is not general enough to represent the overall population (Berson, Smith, 

& Thearling, 1999) (Larose, 2005) (Lewis, 2000). 

CART uses a cross validation approach and pruning to combat overfitting. Cross 

validation, also known as leave-one-out training, is a method for confirming a procedure for 

building a model that is computationally intensive (Lewis, 2000). In cross-validation, the training 

data is divided randomly into N segments, stratified by the variable of interest. One of the 
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segments is set aside for use as an independent test data set. The other (N-1) segments are 

combined for use as the training data set.  The entire model building process is repeated N times, 

using a different segment of data as the test data each time. N different models are produced, 

each of which that can be tested against the independent test data.  Based on the results of the 

cross-validation the initial complex tree is pruned to produce the most optimal general tree. The 

most complex tree rarely performs best on the test data. By using cross validation, the tree that is 

most likely to perform well on new data is produced (Lewis, 2000). 

Chi-Square Automatic Interaction Detector  

 
 Chi-Square Automatic Interaction Detector (CHAID) was published in 1980 by Gordon 

V. Kass (Kass, 1980 ). CHAID is very similar to CART but differs in the way splits are 

determined.  The algorithm uses the chi square test to choose the best split. The chi square test is 

used in contingency tables to determine which categorical predictor is the furthest from 

independence with the prediction values. All predictors must either be categorical or forced into 

a categorical form, because of CHAID’s reliance on contingency tables, to shape its test of 

significance for each predictor (Berson, Smith, & Thearling, 1999) (CHAID). 

 

2.2.1.2 Covering Algorithms 

 

 Rules can be extracted directly from the training data using a sequential covering 

algorithm.  These algorithms learn a set of classification rules one rule at a time and use a 

sequential covering method to remove instances in the training data that are covered by each new 

rule found (Wang & Karypis, 2003) (Han & Kamber, 2006). This process repeats until there are 

no instances left in the training data set.  There are many types of covering algorithms such as 

AQ15 (Michalski, Mozetic, Hong, & Lavrac, 1986), CN2 (Clark & Niblett, 1989), PRISM 

(Witten & Frank, 2005) and RIPPER (Cohen, 1995). A basic sequential covering algorithm is 
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depicted in Figure 8.  The algorithm begins with an empty rule list. The best rule for class y that 

will cover the training records is mined. During this process all the training records that are 

covered by class y are deemed positive examples while those belonging to other classes are 

negative. A rule is of interest if it covers the majority of the positive and none or a minute few of 

the negative examples. The newly found rule is added to the bottom of the rule list and the 

training instances it covers are removed. This process repeats until some stopping criteria is met 

and proceeds to generate rules for the remaining classes (Tan, Steinbach, & Kumar, 2006). 

 
Let E be the training records and A be the set of attribute-value pairs, {(Aj, vj)}. 
Let Yo be an ordered set of classes {y1, y2,…yk}. 
Let R ={} be the initial rule list. 
for each class y ∈ Yo – {yk} do 

 while stopping condition is not met do 

  r ← Learn-One-Rule (E, A, y). 
  Remove training records from E that are covered by r. 

  Add r to the bottom of the rule list: R → R ˅ r. 
 end while 

end for 

Insert the default rule, {} → yk, to the bottom of the rule list R. 

 
Figure 8 Basic Sequential Covering Algorithm 

 

   There are two commonly used methods to “grow” a rule: general to specific or specific to 

general. The general to specific strategy starts by creating a rule r: {} → y. The left side of the 

rule is an empty set and the right side contains the target classification. This initial rule has poor 

quality as it covers all of the instances in the training data for that class.  New conditions or 

conjuncts are added to improve the quality of the rule.  For example, Figure 9 (a) depicts the 

general to specific rule growing method. The condition (conjunct), Body Temperature=warm-

blooded is added initially to the rule. The algorithm will then explore all possibilities and 

greedily chooses the next condition to add.  The specific to general method one of the positive 

examples is chosen at random as the seed to grow the rule.  There is a refinement step in which 
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the rule is generalized by removing a condition (conjunct) to allow it to cover more positive 

examples. Figure 9(b) depicts this process (Tan, Steinbach, & Kumar, 2006). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Some evaluation metric (i.e. accuracy, coverage, etc.) is used to determine which conjuncts to 

add or remove to improve rule quality during the process of growing a rule. 

2.2.1.3 Ordered and Unordered Rule Sets 

 
         Rule based-classifier rule sets are either ordered or unordered. The rules within an ordered 

rule set are arranged in an order based on some metric (i.e. accuracy) in decreasing order of 

Figure 9 Rule Growing Strategies 
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priority.  When there is a new unlabeled instance, the first rule that matches makes the 

prediction. An ordered rule set is also known as a decision list. These classifiers usually have a 

“default class” which is used when no classification can be made (no rule matches) (Tan, 

Steinbach, & Kumar, 2006) (Hu & Li, 2005). C4.5rules (Quinlan J. , 1993) and CBA (Liu, Hsu, 

& Ma, 1998) both use this method.  

         Un-ordered models do not arrange the rules in any type of sequence or order. All of the 

rules that match are used to make the prediction (i.e. voting). The class that receives the most 

votes wins and is used as the prediction.  The vote for each class may be weighted by the rules 

accuracy in some instances. There are both advantages and disadvantages when using an 

unordered rule base. Unordered rule sets are not as vulnerable to misclassifications as a result of 

choosing the wrong rule. Building the model is also less expensive as the rules do not have to be 

kept in any particular order. However, classifying a new test instance can be expensive as the all 

of the attributes of that instance must be compared against every rule in the model. (Tan, 

Steinbach, & Kumar, 2006) (Witten & Frank, 2005) 

2.2.1 Other Classifiers 
 
Naïve Bayesian Classifiers  

 Bayesian classifiers are based on the Bayes theorem. This theorem is a simple 

mathematical formula that is used for calculating conditional probabilities.  The naïve Bayes 

classifier learns the conditional probability for each attribute given a particular class label. For 

example, if A and B are two random events then P (A|B) is the conditional probability of A 

occurring given B.  Classification is performed by using the Bayes theorem to calculate the 

probability of a class given a particular instance. The class with the highest posterior probability 

is then used as the prediction. Using the previous example, P (A|B) is the posterior probability. 
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(Friedman & Goldszmidt, Building classifiers using Bayesian networks, 1996) (Langley & Sage, 

1994) (Friedman, Geiger, & Goldszmidt, Bayesian Network Classifiers, 1997) 

 

Neural Networks  

 

An example of an authentic neural network would be the human brain. The brain can 

recognize patterns, make predictions, and learn. Artificial neural networks seek to emulate these 

capabilities.  Neural networks in data mining are essentially computer programs applying pattern 

recognition and machine learning algorithms to build predictive models (Berson, Smith, & 

Thearling, 1999). 

There are two main structures in a neural network: nodes and links. Nodes are artificial 

neurons and links are the connections between them. To make a prediction, the neural network 

accepts values for the independent variables or predictors at the input nodes. The values of these 

nodes are then multiplied by values stored in the links. These values are added together at the 

output node, after which some threshold function is used and the resulting number is the 

prediction. Figure 10 (Berson, Smith, & Thearling, 1999) is an example of a simple neural 

network. In this example Age and Income are the input nodes and Default is the output node and 

predicts if a person will default on a bank loan. 

 
Figure 10 Simple Neural Network 

 



 

20 
 

Most neural networks are not as simple as depicted above. There is usually hidden layer 

of nodes between the input and output nodes. They are deemed “hidden” because their contents 

are not made known to the end user. It is also possible to have more than one hidden layer, thus 

making the network very complex. 

2.3 Association Analysis 
 

Association analysis is useful for finding interesting relationships that are hidden in large 

data sets. The goal of this type of analysis is to uncover rules (or associations) for quantifying the 

relationship between two or more attributes (Larose, 2005).  These relationships are displayed in 

the form of an association rule. An association rule is an implication expression of the form:

Y

X

Y

X confYX ,sup:→ , where X and Y are disjoint itemsets (i.e., Ø=∩YX ), Y

Xsup  is the 

support, and Y

Xconf  is the confidence. 

  The strength or goodness a rule is measured by its support and confidence. Support 

defines how many times a rule is pertinent to a particular data set. Confidence defines how often 

item in Y appear in instances that contain X. For example, a store may find that out of 100 

customers shopping on a Tuesday night, 20 bought diapers, and of the 20 who bought diapers, 5 

bought beer. The association rule for this example would be if buy diapers then buy beer. This 

rule would have a support of 5/100 = 5% and a confidence of 5/20 = 25% (diapers � beer: 0.05, 

0.25) (Tan, Steinbach, & Kumar, 2006)  

Mining association rules from large data repositories involves a two step process: 

frequent itemset generation and rule generation. First, all of the frequent itemsets must be found.  

Frequent itemsets are those that satisfy some minimum support threshold. Then, from the 

frequent item sets found in the first step, association rules are generated that satisfy the minimum 
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support and confidence conditions. In association analysis an itemset is a collection of zero or 

more items. 

Frequent itemset generation is generally more expensive than rule generation. A dataset 

that has k items could produce up to 2k -1 itemsets. Because k can be quite large, the search space 

of itemsets that needs to be investigated is exponentially large. To enumerate the list of all 

possible itemsets a lattice structure can be used (Figure 11). The brute force method of finding 

frequent itemsets involves determining the support count for each candidate itemset in the lattice 

structure. There are ways of reducing the computational complexity of frequent itemset 

generation.  One of these is to reduce the number of candidate itemsets using the Apriori 

principle. The Apriori principle states that if an itemset is frequent, then all of its subsets must 

also be frequent (Figure 12). On the other hand, if an itemset is infrequent then all of its supersets 

must be infrequent too. For example in Figure 13, because {a, b} is an infrequent itemset the 

entire sub graph containing the supersets {a, b} can be pruned. This method of reducing the 

exponential search space based on the support measure is known as support-based pruning. 

Apriori was the first rule mining algorithm which pioneered the use of support based pruning 

(Tan, Steinbach, & Kumar, 2006). This algorithm uses support based pruning to control the 

exponential growth of candidate itemsets. Apriori uses a bottom up technique in which the 

frequent item sets are extended one at a time. This is known as candidate itemset generation. 

This process continues until no further successful extensions are found (Larose, 2005). 
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Figure 11 Lattice Structure 
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Figure 12 Apriori Principle 

 
 
 
 
 
 
 
 
 
 
 



 

 

 

Figure 
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Figure 13 Support Based Pruning 
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2.4 Cluster Analysis 
 

Clustering can be defined as “a division of data into groups of similar objects (Berkhin, 

2002)”.  Instances within these groups or clusters are more similar to each other than instances 

belonging to other clusters.  Clustering and classification are different from one another in that 

there is no target or dependent variable in clustering. Clustering does not attempt to classify or 

predict the value of the target variable. These algorithms attempt to segment the whole data set 

into homogenous clusters. The more similarity within a cluster and the bigger the difference 

between clusters the better the clustering.  For the best possible performance, clustering 

algorithms require that the data be normalized so that any one attribute or variable will not 

control the analysis. (Jain, Murty, & Flynn) (Anderberg, 1973) There are two main types of 

clustering algorithms: hierarchical and partitional. The next section describes each. 

2.4.1 Hierarchical Clustering 
 

Hierarchical clustering creates a tree of clusters known as a dendrogram. With this type 

of clustering, the smallest clusters in the tree join together to create the next level of clusters. At 

this level, the clusters then join together to create the next level of clusters.  The top or root of 

this tree is the cluster that contains all the records. There are two types of hierarchical clustering: 

agglomerative and divisive (Berkhin, 2002) (Berson, Smith, & Thearling, 1999). 

Agglomerative clustering algorithms begin with having as many clusters as there are 

records. Each cluster will contain one record. Then the clusters that are closest to one another, 

based on some distance, are joined together to create the next largest cluster. This process is 

continued until the hierarchy is built with a single cluster, which contains all records, at the top. 

Figures 14 and 15 describe the agglomerative clustering process (Cluster Analysis, 2008).  
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Figure 14 contains a set of records that will be clustered.  Figure 15 shows the cluster hierarchy 

after the agglomerative approach has been applied.  

 
Figure 14 Records to be clustered 

 
 
 
 

 
Figure 15 Cluster Hierarchy 
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Divisive clustering algorithms apply an opposite approach. These types of algorithms 

start will all of the records in one cluster and then recursively splits the most suitable cluster. 

This process continues until some stopping criteria are met.  

How appropriate a cluster or clusters for merging or splitting depends on how similar or 

dissimilar items in each cluster are. The distance between individual records has to be 

generalized to the distance between clusters in order for splitting or merging to occur. This 

proximity measure is called a linkage metric.  The major linkage metrics include: Single 

Linkage, Complete Linkage, and Average Linkage (see Figure 16) (Tan, Steinbach, & Kumar, 

2006). 

Single linkage (nearest neighbor) is based on the minimum distance between any record 

in one cluster and any record in another cluster. Cluster similarity is based on the similarity of 

the most similar members from each cluster.  

Complete linkage (farthest neighbor) is based on the maximum distance of any record in 

one cluster and any record in another cluster.  Cluster similarity is based on the similarity of the 

most dissimilar members from each cluster.  

Average linkage was designed to decrease the dependence of the cluster linkage criteria 

on extreme values. The criteria here is the average distance of all the records in one cluster from 

all of the records in another cluster. 

 



 

 

2.4.2 Partional Clustering 

 
Partitional clustering is dividing the data set in such a way that each record belongs to 

one and only one cluster. These algorithms don’t produce dendrogram as in hierarchical 

clustering. A single partition of the data is produ

a randomly picked or user defined number of clusters. The algorithms then optimize each cluster 

based on some validity measure. There are several partitioning clustering approaches. The next 

section discusses two of these: K

K-Means 

 
K-means is one of the oldest and most widely used clustering techniques.  The name K

means comes from how each of the 

that cluster. This point is called the centroid. The basic K

straight forward. Figure 17 describes this algorithm 
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Figure 16 Linkage Examples 

Partitional clustering is dividing the data set in such a way that each record belongs to 

one and only one cluster. These algorithms don’t produce dendrogram as in hierarchical 

clustering. A single partition of the data is produced.  Partitional clustering algorithms begin with 

a randomly picked or user defined number of clusters. The algorithms then optimize each cluster 

based on some validity measure. There are several partitioning clustering approaches. The next 

ses two of these: K-Means and Expectation Maximization (EM) (Berkhin, 2002)

means is one of the oldest and most widely used clustering techniques.  The name K

means comes from how each of the K clusters is represented by the mean of the points within 

that cluster. This point is called the centroid. The basic K-means algorithm is very simple and 

straight forward. Figure 17 describes this algorithm (Tan, Steinbach, & Kumar, 2006)

Figure 17 K-means Algorithm 

 

Partitional clustering is dividing the data set in such a way that each record belongs to 

one and only one cluster. These algorithms don’t produce dendrogram as in hierarchical 

ced.  Partitional clustering algorithms begin with 

a randomly picked or user defined number of clusters. The algorithms then optimize each cluster 

based on some validity measure. There are several partitioning clustering approaches. The next 

(Berkhin, 2002). 

means is one of the oldest and most widely used clustering techniques.  The name K-

ed by the mean of the points within 

means algorithm is very simple and 

(Tan, Steinbach, & Kumar, 2006). 
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The first step is to pick K initial centroids. K is the number of clusters wanted and is a 

user specified parameter. Next each data instance or point is assigned to the centroid it is closest 

to.  This collection of points is a cluster. The centroid of each of these clusters is updated based 

on the points assigned to the cluster. These steps are repeated until there is no change in the 

centroids. 

Instances are assigned to a centroid based on a proximity measure that quantifies 

closeness for a particular data set. There are several types of proximity measures such as 

Euclidean distance and Cosine similarity (Berkhin, 2002). 

Expectation Maximization (EM) 

 
The EM technique is very similar to the k-means approach. They are both iterative in 

nature and start with a random guess. The difference lies in the idea of hard versus soft cluster 

membership. In k-means a hard membership approach is adopted. This means that an instance 

belongs to one and only one cluster. In EM a soft membership approach is used, which means 

that membership of an instance can be spread amongst many clusters.  

The EM algorithm is a two step process: Expectation and Maximization. The expectation 

portion is the first step and involves calculating cluster probabilities (the expected class values). 

The maximization step involves calculating the distribution parameters. This step is the 

maximization of the possibilities of the distribution given the data. These steps are repeated until 

a “log-likelihood convergence is achieved.” (Berkhin, 2002) (Witten & Frank, 2005). 

2.5 Anomaly Detection 
 

The main objective in anomaly detection is to locate instances that are different from 

most of the other instances. These abnormal objects are known as outliers and have attribute 

values that deviate considerably from the norm or expected values.  Some areas where this type 
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of analysis is very important are fraud detection, intrusion detection, public health and medicine. 

Some common causes of anomalies are things such as data from different types, natural variation 

and data measurement or collection errors (Tan, Steinbach, & Kumar, 2006) 

There are three fundamental approaches to anomaly detection: supervised, unsupervised, 

and semi-supervised. The difference in these techniques is the degree to which known outcomes 

or classifications (class labels) are available for at least some portion of the data (Tan, Steinbach, 

& Kumar, 2006) 

The supervised anomaly detection approach requires a training set that contains both 

normal and abnormal instances. Unsupervised anomaly detection techniques seek to assign a 

score to each instance that reflects how abnormal that instance is. With semi-supervised anomaly 

detection techniques the goal is to find an anomaly score (label) for a set or group of instances 

using information from labeled normal instances.  

2.6 Ensemble Methods 
 

As one could imagine the accuracy of predictive modeling algorithms is quite important. 

Ensemble methods seek to improve the accuracy of classifiers (such as decision trees) by 

combining the predictions of multiple classifiers (Figure 18). These methods construct a set of 

base classifiers using the training data and make classifications for new instances by voting on 

the prediction each base classifier makes. (Tan, Steinbach, &Kumar, 2006) Research has shown 

that ensembles have a tendency to perform better than single classifiers in the ensemble (Opitz & 

Macline, 1999) (Quinlan J. , 2006) (Freund & Schapire, 1999) (Berk, 2004). Bagging, boosting, 

and stacking are well known ensemble techniques.  
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Figure 18 Ensemble Method Process 

 

2.6.1 Bagging 
 

Bagging or bootstrap aggregation trains each base classifier with a random redistribution 

of the training (Opitz & Macline, 1999). Each of the training sets for the base classifiers are 

generated by randomly selecting, with replacement, N examples, where N is the size of the 

original training set. Since sampling is done with replacement, some of the instances may 

possibly appear many times within the same training set. Likewise, some instances may be 

omitted from the training set (see Figure 19). 

As previously stated, bagging involves combining multiple models (for example decision 

trees). These models can be combined by having each model vote on each new instance. The 

class that receives the most votes is deemed to be the correct one.  When the target variable is 

numeric the average is used. The predictions or classifications made by voting become more 
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dependable as more votes are considered. Researchers have determined that bagging is effective 

on the learning algorithms of which small changes in the training data can produce big changes 

in predictions (Tan, Steinbach, & Kumar, 2006) (Witten & Frank, 2005) (Opitz & Macline, 

1999). 

2.6.2 Boosting 
 

This ensemble method technique gets its name from its capacity to take a “weak learning 

algorithm” and “boosting” it into a “strong” learning algorithm (Freund & Schapire, 1999).  A 

weak learning algorithm is one that performs slightly better than random guessing. Like bagging, 

boosting uses voting to combine the output of multiple models of the same type (for example 

decision trees). Boosting, however, is iterative, unlike bagging in which each base classifier is 

built separately; each new model is influenced by the performance of the models built before it. 

New models are pushed to become experts for instances mishandled by earlier models. Boosting 

weights a model’s contribution by its performance instead of giving equal weight to all as in 

bagging (Witten & Frank, 2005). For example in Figure 19 (Opitz & Macline, 1999), assume 

instance 1 is an outlier and hard to classify correctly. This instance appears more in later training 

sets because boosting will focus (increase its weight) more on correctly classifying it. 
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Figure 19 Bagging and Boosting Example 

 
 

2.6.3 Stacking 

 
Stacking or Stacked Generalization differs from bagging and boosting in that it involves 

combining classifiers of different types (e.g., decision trees and neural networks). It is less 

commonly used because it can be difficult to analyze and there is no standard or accepted best 

practice. Stacking eliminates voting by introducing the idea of a metalearner. Stacking attempts 

to “learn” which base classifiers are the most reliable by using the metalearner to determine how 

best to combine the output of the base classifiers (Witten & Frank, 2005). 

The inputs to the metalearner (level 1 model) are the predictions of the base classifiers 

(level 0 model). Each level 1 instance will have as many attributes as there are level 0 learners. 
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 When classifying, the new instance is given to each of the level 0 learners and those 

results are given to the level 1 learner. The level 1 learner then “learns” the best way to combine 

the predictions to make the final prediction (Witten & Frank, 2005). 

2.7 Other Related Information and Work 
 
Discretization 

  
 Many data of the data mining algorithms used for classification tasks can’t tolerate 

numeric data. For these algorithms the data must be transformed into a categorical format. This 

transformation is known as discretization. Discretization has two steps: 

• Decide how many categories to create 

• Determine how to map the values to the categories 

 There are many ways to discretize continuous attributes (Dougherty, Kohavi, & Sahami, 

1995). One of the simplest ways is to make use of the standard deviation to create categories.  

For example, suppose attribute A is a nominal attribute. First obtain the minimum, maximum and 

standard deviation values for A. Let min=1, max=5 and stddev=0.25. The initial category would 

be 1 –1.25 (min <= A < (min + stddev)). Any values greater than or equal to 1 and less than 1.25 

would be updated to reflect this category in the dataset. The next category would be 1.25 – 1.50 

((min + stddev) <= A < (min + stddev + stddev)). Again, any values that fall within this range 

would be reflected in the dataset. This process continues until the range is less than or equal the 

max value. 

Association Based Classification 

  
 There have been efforts made to combine association and traditional rule mining 

techniques.  (Liu, Hsu, & Ma, 1998), showed that this integration could be performed efficiently 

without loss in classification accuracy. The combination focuses on the association rules where 
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the right side contains the target class attribute. These rules are identified as class association 

rules. Data mining with this associative classification framework has 3 basic steps: 

• Discretize any continuous attributes 

• Generate all class association rules 

• Build classifier bases on the rules generated 

All association based algorithms e.g. Apriori (Agrawal & Srikant, 1994), can be adapted to use 

for classification purposes. CBA (Liu, Hsu, & Ma, 1998) , CMAR (Li, Han, & Pei, 2001), and 

HARMONY (Wang & Karypis, 2003) are examples of applications that utilize some form of this 

technique. (Hu & Li, 2005)  

Data Clustering and Predictive Modeling  

 
  For some classification or regression problems it is often advantageous to divide the data 

into relatively homogenous groups or clusters and build a model for each group. The advantages 

of building multiple models in this manner are improved accuracy, reliability and interpretability.  

(Baumann & Germond, 1993), (Djukanovic, Babic, Sobajic, & Pao, 1993), (Oh & Han, 2001) 

and (Lokmic & Smith, 2000) all explored this two step method in their research. 

  (Deodhar & Ghosh, 2007), investigated notion of infusing data clustering process with 

the creation of predictive models.  Their work focused on problems in which the independent 

variables could be naturally sectioned into two or more groups and makes use of co-clustering. 

The authors partitioned the independent variables into groups with respect to their modes then 

instantaneously clustered along each mode and built a predictive model for each co-cluster. Co-

clustering is a method that simultaneously clusters data along multiple axes. (Cheng & Church, 

2000) (Cho, Dhillon, Guan, & Sra, 2004) This technique is usually applied to a matrix of data 

points and takes advantage of the duality between two axes to improve upon traditional single 

sided clustering. The rows in the matrix are data points and the columns are features.   
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 The aforementioned approaches are all methods that have successfully combined some 

aspect of data clustering and predictive modeling/classification. However, none of them address 

the issue of attempting to make classifications when the data that is used to evaluate the model is 

not as complete as the data used to build the model. 

 
Robust Rule based Classification 

 
 (Hu & Li, 2005) and (Li, Topor, & Shen, 2002) focus on building a more robust 

classifier.  The authors proposed using association rules as a way to make rule base classifiers 

more robust. The idea is that a traditional rule based classifier can be improved by adding a 

certain level of redundancy to the rule set. This robust classifier contains more rules than the 

generalized model and combats possible classification error due to missing and/or incomplete 

data in the new/unseen instances.  In terms of missing values, robustness involves the following: 

• Ability to tolerate missing values in test data 

• Ability to tolerate missing values in training data 

Missing data is a well known issue in the field of data mining. There has been research 

performed in regards to handling missing values in training data such as work presented by 

(Clark & Niblett, 1989), (Mingers, 1989) and (Batista & Monard, 2003 ). General methods for 

managing missing values involve pre-process substitution via estimations utilizing an approach 

such as nearest neighbors. The work presented by (Hu & Li, 2005) and (Li, Topor, & Shen, 

2002) differs from these existing methods in that no estimations or substitutions are made for any 

missing values. This research employs a larger rule set to make the classifier more resilient 

against missing test data.  The authors designed, implemented and evaluated a practical robust 

rule based classifier for 0, 1, 2, 3 and 4 missing attributes using an ordered rule set using 

association classification rules. The rules were ordered by rule accuracy in descending order. A 
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rule set was generated using the training data and evaluated against test data with added missing 

values.  The missing values were added by randomly omitting some values in the test data. Each 

test record in the test data had the same number of missing attributes on average. The results of 

the experiment were positive and proved that their proposed method of adding redundancy via 

association rules was indeed more resilient against missing attributes in the test data.  

 The work by (Hu & Li, 2005) is similar to the research presented in this dissertation as 

both are focused on creating models that are a resilient against missing attribute information. 

However, this research differs in that we present a method to add resiliency via divisive 

clustering and rule based models created using a sequential covering algorithm.  Multiple rule 

sets are generated, combined and used as a collective model. The creation of multiple models on 

different segments of the data allows for the creation of rules that may not have been created 

using a more traditional approach which aids in adding resiliency against missing data.  

2.8 Data Mining Tools 
 

There are many data mining tools available. This section gives a brief description of 

some of them. 

Microsoft SQL Server 

 
Microsoft SQL Server is a “comprehensive, integrated data management and analysis 

software that enables organizations to reliably manage mission-critical information and 

confidently run today’s increasingly complex business applications (Microsoft, 2007)”. SQL 

Server 2005 is the platform leader in a variety of areas including business intelligence and 

database management systems.  
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 Rapid Miner 

 

“Rapid Miner (formerly YALE) is the world-leading open-source system for knowledge 

discovery and data mining (Rapid-i, 2008)”. This tool is not only available as a stand-alone 

application for data analysis but also as a data mining engine that can be integrated into your 

own products.  

 Weka 

Weka (Waikato Environment for Knowledge Analysis) is a popular suite of machine 

learning software that is written in Java. The software was developed at the University of 

Waikato and is free under the GNU General Public License (Witten & Frank, 2005). 

 

ORACLE Data Mining 

Oracle Data Mining (ODM) is an option of Oracle Database 10g Enterprise Edition. This 

tool provides the ability to “produce actionable predictive information and build integrated 

business intelligence applications (ORACLE, 2007)”. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

39 
 

Chapter 3  

Research Details 

3.1 Conceptual Overview 

 
 This section describes the approach taken to test the hypothesis discussed in section 1.2.  

The objective of this research is to develop a new method for classification problems in which 

the test data may not be as complete as data used to build a model that is still able to achieve 

fairly accurate results.  The problem is more formally expressed here. 

 Let A = {a1, a2,…, am} be a set of distinct attributes found in a table, D, where D = 

{d1,d2,…,dn} indicates a set of all instances within a table. Attributes capture the basic 

characteristics of an instance. Each attribute ai contains a set of distinct values Vi= {v1, v2,…, vn}.   

A pattern is a set of one or more attribute value equivalent constraints that are conjunctively 

joined (ai=vij and at=vtk...).  A rule, r, is an implication in the form P → c, where P is a pattern 

(the condition) and c (the consequence), such that c is a member of A where c = ak and c is not a 

member of P. A traditional rule based classifier would build a rule set R={r1, r2,…, rn}.Given a 

test instance T, a rule r covers T if condition(r) ⊆ T. A rule can make predictions on the instances 

it covers, r(T) → consequence(r). If the consequence(r) is the actual class of T then the rule has 

made the correct prediction.  If the class is not the actual class it is an incorrect prediction.  

Given a test instance T′, with one or more missing attribute values from A, where V′ (unknown 

attribute values) is not a subset of V (known attribute values), denoted V′⊄  V; r cannot make 

predictions for T′. Therefore T′ is unclassifiable by R. 
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 Using the proposed approach, multiple rule sets would be generated via divisive data 

clustering.  A cluster, clustj ( kj ≤≤1 ), where clustj  ⊆  D, such that each instance is a member 

of one and only one cluster, Clust = {clust1, clust2,…,clustk},where k is the designated number of 

initial clusters. An instance is assigned to a cluster, clustj, based on holistic similarities such that 

instances within a cluster are more similar than those outside the cluster. A rule set, Rj, is 

generated for each cluster. The multiple rule sets are combined into a super rule set, R′ = {R1 ∪

R2…∪  Rk}. R′ is more resilient against missing attribute information as there exists a k of which 

the attributes in R′ are sufficiently diverse. Meaning, that there exists two or more rule sets within 

R
′ that are not proper subsets with respect to their individual As, where ( kj ≤≤1  and ki ≤≤1  

and ji ≠ ) of other rule sets within R′. 

 
Clustering Rule Based Approach  

 
 As previously mentioned the premise of this research is to add robustness and resiliency 

to rule based classification via divisive clustering. The idea is that there exists a k that will create 

a model that will be more resilient against missing attributes. We present the Clustering Rule 

based Approach (CRA) for classification. In CRA, the data is first clustered into k clusters using 

divisive clustering. The clustered data is then used to train individual rule base classifiers using a 

sequential covering algorithm. The rules are then merged into a combined rule set. Finally, each 

test instances is evaluated against the combined rule set, predicting its output. Figure 20 depicts 

this process. It is important to note that prior to the cluster creation any continuous attributes are 

discretized. 
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Figure 20 CRA Flow 

 



 

42 
 

Chapter 4  

Experiment Design 

 
  We conducted an experiment to test the validity of the CRA process. This section 

describes the design of that experiment. 

4.1 Data 

 
 The data for this experiment was obtained from the UCI Repository (Blake & Merz, 

1998). These data sets varied in size, attributes, and attribute value data types (e.g. continuous, 

nominal). Table 3 gives a description of each data set used.  

 

Data Set 
Number of 

Records 
Number of 
Attributes 

Number of 
Classifications 

Annealing 898 38 5 
Thyroid 3,164 25 2 

Mushroom 8,124 22 2 

Tic-Tac-Toe 958 9 2 

Congressional 
Voting 435 16 2 

Table 3 Data Sets 

4.2 Materials and Tools 

 
 All of the coding used to create and test the CRA process was completed utilizing Java. 

All data was stored and manipulated using MYSQL database tables and Microsoft Excel. The 

sequential covering algorithm used in this experiment was the PRISM algorithm. The divisive 

clustering algorithm used is the approach employed by Applications Quest (AppsQuest). 
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4.2.1 PRISM 
 
 PRISM is a simple sequential covering algorithm introduced by (Witten & Frank, 2005). 

The algorithm follows the process of the basic covering algorithm presented in chapter 2.  The 

pseudocode for the PRISM algorithm is shown in figure 21. PRISM generates only correct or 

perfect rules. The success of a rule is measured by the accuracy formula p/t, where t is all of the 

instances covered by the new rule of which p are positive examples of the class.  Rules with less 

than 100% accuracy are incorrect, meaning cases are assigned to the class that are not do not 

actually belong to the class in question. PRISM continues to add conjuncts (conditions) to the 

rule until it is perfect or there are no more attributes available for use.  

 
For each class C 

 Initialize E to the instance set 
 While E contains instances in class C 
  Create a rule R with an empty left-hand side that predicts class C 
  Until R is perfect (or there are no more attributes to use) do 
   For each attribute A not mentioned in R, and each value v, 
   Consider adding the condition A=v to the left-hand side of R 
   Select A and v to maximize the accuracy p/t 
   (break ties by choosing the condition with the largest p) 
  Add A=v to R 
 Remove the instances covered by R from E. 

 
Figure 21 PRISM Pseudocode 

 
 

4.2.2 Applications Quest™ 

  
 Applications Quest™ (AppsQuest) is a data mining tool developed by Juan E. Gilbert to 

aid institutions, agencies and businesses in the admissions/hiring process using data clustering. 

(Gilbert J. E., Applications Quest: A Case Study on Holistic Admissions, 2008) (Gilbert J. E., 

Applications Quest: Computing Diversity, 2006) The goal of the system is to recommend either 
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the most diverse or most similar group of applicants depending upon the needs of the 

organization by comparing applicants in a holistic way.  There are many elements of an 

application that can be easily compared. Take GPA (grade point average), for example. If one 

student has a GPA of 3.5 and another has 2.7 the GPA of 3.5 is clearly higher. This comparison 

is not as straightforward when there are non numeric elements of the application to consider. 

AppsQuest differs from other divisive clustering applications in its treatment of nominal 

attributes (non-numeric). Traditionally, data clustering applications require the nominal attributes 

be assigned a value that allows them to be compared (e.g. 0 if the values are different and 1 if the 

values are the same).  City, state, race, and gender are examples of nominal attributes. To 

provide a more accurate measure to compare nominal attributes the Nominal Population Metric 

(NPM) was created. The NPM process begins by identifying the nominal attributes.  For 

clarification purposes, let’s use Race as an example. There are 20 applicants in the pool where 

Race is an attribute. This attribute has the following unique values: B-black, W-white, H-

hispanic, A-Asian, and O-other. Using the AppsQuest approach every application is compared to 

every other application in its entirety. For 20 applications compared 2 at a time there would be 

190 comparisons. These results were obtained using the formula n C r = n!/[(n-r)! r!].  The NPM 

processes the nominal attributes in the following manner (Gilbert J. E., 2008): 

1. Calculate the total number of combinations for all applications using n C r. Continuing 

the example, the total number of 190 combinations and place into matrix of combination 

and application pairs. This matrix is called the similarity matrix (see Table 4). 

 

 

Application 1 Application 2 
 

Difference Measure 

1 2 20% 

1 3 15% 
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1 4 75% 

Table 4 Similarity Matrix with Difference Measures Example 

 
2. Calculate the number of unique attributes values. For this example, the Race attribute has 

5.  

 

3. Calculate the number of combinations for the unique nominal attributes using n C r. The 

result is 10 combinations for the Race attribute. 

 

4. For the 10 combinations of the nominal attribute value pairs, compute the coverage 

percentage within the application similarity matrix.  This equates to the number of rows 

in the application similarity matrix have a value for Race pairs W-B, W-H, B-A, etc. 

These figures are placed into a nominal population matrix. (see Table 5) 

 

Race Coverage 

W-B 30% 

W-H 15% 

B-A 5% 

Table 5 Example Nominal Population Matrix 

5. The nominal population matrix contains the attribute pair coverage across all 

comparisons.  This is an accurate measure of the impact of the nominal attribute value 

pairs based on their existence within the data set. 

 

6. If necessary the Coverage values are adjusted. This is the objective when the application 

is when measuring difference vs. similarity. The W-B Race pair had the greatest coverage 

in the nominal population matrix and is therefore the most common attribute value pair. 

The B-A value pair is the least common or most novel. The B-A pair should be receive 

more “credit” as it is the most novel. The credit is calculated proportionately in relation to 

other attribute value pairs. To accomplish this, the Coverage values are subtracted from 

100% or 1.00 (see Table 6). This inverts the Coverage values such that B-A is given more 

credit compared to W-B relative to their actual coverage within application similarity 

matrix. 

Race Coverage 

W-B 70% 

W-H 85% 
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B-A 95% 

Table 6 Nominal Population Matrix Example 

 

7. The Coverage values in the nominal population matrix are now the Nominal Population 

Metrics which can be used in clustering algorithms as a method to accurately compare 

nominal attributes.  The question, “What’s the difference between a Black and Asian 

along the Race attribute?” can be answered. The NPM value is 95% in this example. 

 

 An alternative approach is to use the distribution of the values for each attribute. Using 

the previous example, Table 7 depicts the distribution of race within the data set (e.g. 70% of the 

instances have a W for race). 

 
Race Distribution 
B 10% 
W 70% 
A 15% 
H 5% 

Table 7 Example Nominal Population Matrix 

 
Race Distribution 
B 90% 
W 30% 

A 85% 
H 95% 

Table 8 Example Nominal Population Matrix Adjusted 

1. Compute the distribution for each nominal attribute. (see Table 7) 

 

2. Use the distribution value for each attribute at time of comparison. For example if 

calculating the difference between B and A along the Race attribute .1 and .15 would be 

used, respectively, in the calculation. 

 

3. Compute the Nominal difference by identifying the two smallest distribution values. In 

this example this corresponds to H and B with values .05 and .1 respectively. This 

identifies the 2 most novel attributes based on their frequency of occurrence in the data 

set.  
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4. Calculate the sum of the 2 most novel attributes to determine their combined frequency 

(.05 + .1=.15). This frequency becomes the baseline for normalization as these are the 

most novel pair-wise nominal attribute values (for Race in this example). 

 

5. Calculate the normalization by subtracting the combined frequency from 1. In this 

example, 1 - .15 = .85. This value becomes the normalization factor. All pair-wise 

comparisons are divided by this value. The H-B comparison yields a difference value of 1 

(.85/.85). The W-H comparison yields a difference of .294 ([1-(.70 + .05)]/.85 =.294). 

The difference between W-H is .294 vs. 1.00 for H-B.  

 In general, the NPM covers the use of the distribution of nominal attribute values in 

efforts to determine the similarity or difference between nominal attribute values. 

4.3 Procedure 

 
 The data was loaded into MYSQL database tables. The data was discretized using the 

standard deviation to create the corresponding categories for each continuous attribute (if any). 

The data was then split into training and test data sets. 80% of the data was used for training and 

20% of the data was used for testing purposes. Proportionate samples for each class were used. 

The training data was clustered using AppsQuest divisive clustering algorithm. PRISM was then 

run on the clustered data. The resulting rule sets were then merged into a collective model.  It is 

important to note that during the merging process any duplicate rules were removed. 

Contradictory rules were also resolved. Contradictory rules are rules in which the conditions for 

two or more rules are the same but the resulting classes are different. If this occurred the rule 

with the highest coverage was kept and the other rules removed. We examined the effects of the 

clustering rule based approach using both ordered and unordered rule sets for 0, 1, 2, 3, and 4 

missing attributes. The attributes determined to be “missing” were chosen at random and 

modified in test data prior to each iteration of the experiment. (Hu & Li, 2005) The accuracy of 

each rule was determined using the calculation p/t.  In this instance the t corresponds to the total 

number of instances covered in relation to the entire training data set instead of a particular class 
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and p is the number of instances that are positive examples of the target classification. A voting 

scheme was used in the unordered rule set using the accuracy of each rule that matched the test 

instance. The class with the highest sum of accuracies was used. The rule with the highest 

coverage was used to make the prediction if a tie occurred. In the ordered rule set the rules were 

arranged in decreasing order of accuracy. The first rule that matched was used to make the 

prediction.  The results reported are based on an average of ten runs per dataset. Meaning for 

each data set the process was executed with 10 training and 10 individual test sets.  

4.4 Expected Outcomes 
 
 It is expected that for some k, the CRA process will produce a collective model that will 

be more tolerant of missing attribute information in the new unseen test instances. The collective 

model will be larger and have shorter simpler rules which often achieve high classification 

accuracy and aid in adding robustness. (Witten & Frank, 2005) The rule length refers to the 

number of conditions (conjuncts) the rule contains. Longer rules are more specific and shorter 

rules are more general.  
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Chapter 5 

 Research Findings 

 

5.1 Results 

 
 The goal of this research is to introduce a new method for adding robustness to rule based 

classifiers using divisive clustering. The resulting model would be more resilient against missing 

attribute information in new/unseen data.  This section describes the results of the experiment 

conducted to test the validity of this method.  

k values 

 Given the number of different datasets used in the experiment, there are no guarantees 

that the best performing k on one dataset will translate to the best performing k on other datasets.  

As such, the performance of the CRA process is measured against a set of k values: 1, 3, 5, 7, 9, 

11, 13, and 15; however, it is possible to build the model using k values across a larger range, i.e. 

1, 2, 3, … N-1, but that approach was not necessary. The results for k value 1 reflect the 

performance of the model using the traditional methods (control group).  

 Results for Congressional Voting Data 

  Tables 9 through 13 display the results for the tests performed using the Congressional 

Voting dataset.  The traditional classifier performed very well on the complete data set as shown 

in Table 4 achieving an accuracy of 97% and 99% for the unordered and ordered models 

respectively.  The CRA process performed well and was able to match the performance of the 
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traditional unordered classifier with an accuracy of 97%.  For 1, 2, 3 and 4 missing attributes 

there existed a k that produced a collective model that obtained higher classification accuracy for 

either type of model. These values are highlighted in green. Instances in which the CRA process 

“tied” with the traditional model are highlighted in yellow. (Note: Highlighting scheme green 

for wins, yellow for ties will be consistent for remaining results.) Figures 22 and 23 depict a 

graphical representation of the classification accuracy for each k. As the number of missing 

attributes increased, the performance of the traditional method (k value 1 for ordered and 

unordered models) suffered while the CRA process performed more consistently. Figure 24 

depicts the rule average rule lengths for the models. The rule lengths were smaller for models 

built using the CRA method. On average, the rule lengths were 2.81 and 1.84 for the traditional 

and CRA methods respectively. Additionally, the size of the CRA generated models were larger 

(contained more rules) than the traditional models. The CRA models contained, on average, 

approximately 25 rules while the traditional model contained 22.  Also, there was a decrease in 

the number of instances not classified when the CRA method was used. 

 

 

Number 

Clusters 

Unordered 

Accuracy 

Ordered 

Accuracy 

Average 

Number 

Not 

Classified 

Average 

Number 

of Rules 

Average 

Number 

Unique 

Attributes 

Average 

Rule 

Length 

1 .97 .99 1 23.9 33.7 2.83 

3 .97 .98 0 24.4 30.2 2.22 
5 .95 .95 0 26.8 31.5 2.01 
7 .95 .96 0 26.8 30.6 1.94 

9 .93 .95 0 26 29 1.77 

11 .91 .97 0 24.8 28.3 1.69 
13 .92 .95 0 24.8 28.6 1.71 
15 .91 .94 0 24.9 28.5 1.68 

Table 9 Congressional Voting Results for Complete Data (No Missing Attributes) 
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Number 

Clusters 

Unordered 

Accuracy 

Ordered 

Accuracy 

Average 

Number 

Not 

Classified 

Average 

Number 

of Rules 

Average 

Number 

Unique 

Attributes 

Average 

Rule 

Length 

1 .92 .96 1.75 21.6 31.5 2.78 

3 .94 .97 1 22.8 29 2.17 

5 .94 .95 0 24.9 29.3 1.98 

7 .93 .95 0 24.9 28.6 1.91 
9 .91 .91 0 23.3 25.7 1.69 

11 .91 .92 0 22.7 25.6 1.63 
13 .9 .93 0 22.6 25.4 1.65 

15 .92 .93 0 23.9 25.8 1.59 

Table 10 Congressional Voting 1 Missing Attribute 

 

Number 

Clusters 

Unordered 

Accuracy 

Ordered 

Accuracy 

Average 

Number 

Not 

Classified 

Average 

Number 

of Rules 

Average 

Number 

Unique 

Attributes 

Average 

Rule 

Length 

1 .87 .89 4 21.45 30.18 2.68 
3 .89 .91 1.36 23.18 30.45 2.29 
5 .9 .92 0 25.18 31.64 2.1 

7 .89 .92 0 25.91 20.45 1.96 
9 .9 .92 0 25.91 29 1.76 

11 .87 .91 0 25.82 28.73 1.73 
13 .87 .9 0 24.36 27.36 1.68 
15 .89 .91 0 24.91 27.27 1.63 

Table 11 Congressional Data Results 2 Missing Attributes 

 

Number 

Clusters 

Unordered 

Accuracy 

Ordered 

Accuracy 

Average 

Number 

Not 

Classified 

Average 

Number 

of Rules 

Average 

Number 

Unique 

Attributes 

Average 

Rule 

Length 

1 .85 .86 6.64 21.27 32.09 2.86 

3 .92 .92 .82 24.09 29.82 2.05 
5 .92 .93 0 25.73 30.18 2.06 
7 .91 .91 0 26.27 29.45 1.96 

9 .88 .91 0 25.73 28.27 1.83 
11 .85 .89 0 24.82 26.36 1.67 

13 .87 .91 0 24.91 26.64 1.59 
15 .87 .9 0 25 25.91 1.57 

Table 12 Congressional Voting Data Results 3 Missing Attributes 



 

 

Number 

Clusters 

Unordered 

Accuracy 

Ordered 

Accuracy

1 .77 
3 .86 

5 .89 
7 .89 

9 .85 
11 .86 

13 .87 
15 .88 

Table 13 Congressional Voting Results 4 Missing Attributes

 

Figure 22 Congressional Voting 
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Ordered 

Accuracy 

Average 

Number 

Not 

Classified 

Average 

Number 

of Rules 

Average 

Number 

Unique 

Attributes 

.79 9.18 24.81 34.18 

.88 2 25.82 32.27 

.9 0 25.55 29.55 

.9 0 27.18 30.64 

.89 0 26.45 28.55 

.89 0 24.73 27.45 

.9 0 24.73 27.36 

.9 0 25.36 26.73 

Congressional Voting Results 4 Missing Attributes

Congressional Voting Accuracies Unordered Model

5 7 9 11 13 15

k value

 

Average 

Rule 

Length 

2.9 
2.3 

1.92 
1.91 

1.76 
1.75 

1.7 
1.56 

Congressional Voting Results 4 Missing Attributes 

 

Unordered Model 

0 Missing

1 Missing

2 Missing

3 Missing

4 Missing



 

 

Figure 23 Congressional Voting 

 

Figure 24 Congressional Voting Average Rule Lengths
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Congressional Voting Accuracies Ordered Model

Congressional Voting Average Rule Lengths 

5 7 9 11 13 15

k value

5 7 9 11 13 15

k value

 

Ordered Model 

 

0 Missing

1 Missing

2 Missing

3 Missing

4 Missing

0 Missing

1 Missing

2 Missing

3 Missing

4 Missing
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 Cluster Rules Accuracy Coverage 

1 0 
If phys_fee_freeze=`n` and adopt_budget_res=`y` then 
class=`democrat` 1 173 

2 0 
If phys_fee_freeze=`n` and crime=`n` then 
class=`democrat` 1 126 

3 0 

If syn_corp_cuts=`y` and immigration=`n` and 
water_proj_cost_shar=`n` and handicaped_infants=`n` 
and exp_admin_safrica=`n` then class=`democrat` 1 2 

4 0 
If phys_fee_freeze=`n` and syn_corp_cuts=`y` then 
class=`democrat` 1 94 

5 0 
If el_salvador_aid=`n` and syn_corp_cuts=`y` and 
immigration=`n` then class=`democrat` 1 35 

6 0 
If phys_fee_freeze=`?` and education_spending=`n` then 
class=`democrat` 1 6 

7 0 
If exp_admin_safrica=`?` and adopt_budget_res=`y` and 
aid_nic_contras=`n` then class=`democrat` 1 6 

8 0 
If education_spending=`n` and exp_admin_safrica=`n` 
and crime=`y` then class=`democrat` 1 5 

9 0 
If phys_fee_freeze=`n` and education_spending=`y` then 
class=`democrat` 1 23 

10 0 
If superfund_right_to_sue=`?` and syn_corp_cuts=`y` 
then class=`democrat` 1 7 

11 0 
If superfund_right_to_sue=`?` and 
exp_admin_safrica=`y` then class=`democrat` 1 7 

12 0 
If phys_fee_freeze=`n` and exp_admin_safrica=`?` then 
class=`democrat` 1 60 

13 0 
If adopt_budget_res=`?` and mx_missile=`y` then 
class=`democrat` 1 5 

14 0 
If syn_corp_cuts=`y` and superfund_right_to_sue=`n` 
and adopt_budget_res=`n` then class=`democrat` 1 8 

15 0 
If exp_admin_safrica=`?` and handicaped_infants=`y` 
and adopt_budget_res=`n` then class=`democrat` 1 3 

16 0 
If adopt_budget_res=`n` and education_spending=`y` and 
handicaped_infants=`n` then class=`republican` 0.92391 92 

17 0 
If relig_grp_schools=`y` and syn_corp_cuts=`n` then 
class=`republican` 0.75781 128 

18 0 
If adopt_budget_res=`n` and relig_grp_schools=`n` then 
class=`republican` 0.71429 14 

19 0 

If superfund_right_to_sue=`y` and 
exp_admin_safrica=`y` and syn_corp_cuts=`n` and 
immigration=`y` and mx_missile=`y` then 
class=`republican` 0.46154 13 

20 0 

If crime=`y` and handicaped_infants=`y` and 
syn_corp_cuts=`y` and relig_grp_schools=`n` then 
class=`republican` 0.25 4 
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21 0 

If el_salvador_aid=`y` and immigration=`n` and 
mx_missile=`n` and handicaped_infants=`y` and 
duty_free_exports=`n` and relig_grp_schools=`y` then 
class=`republican` 0.66667 12 

22 0 

If el_salvador_aid=`y` and water_proj_cost_shar=`n` and 
education_spending=`y` and adopt_budget_res=`y` then 
class=`republican` 0.85714 7 

23 0 

If duty_free_exports=`?` and handicaped_infants=`n` and 
exp_admin_safrica=`?` and relig_grp_schools=`y` then 
class=`republican` 0.75 4 

24 0 

If handicaped_infants=`n` and relig_grp_schools=`n` and 
immigration=`y` and water_proj_cost_shar=`n` and 
duty_free_exports=`y` and exp_admin_safrica=`y` and 
education_spending=`n` then class=`republican` 0.2 5 

25 0 If water_proj_cost_shar=`y` then class=`republican` 0.39264 163 

26 0 If exp_admin_safrica=`?` then class=`republican` 0.17284 81 

Table 14 Congressional Voting Example Traditional Rule Set  

 Table 14 displays one of the rule sets generated in the traditional manner using the 

Congressional Voting data. Table 15 displays one of rule sets generated with the CRA process. 

The rule set in Table 15 is a collective model derived from 7 individual models (7 clusters).  

 Cluster Rules Accuracy Coverage 

1 0 

If water_proj_cost_shar=`n` and duty_free_exports=`n` 
and handicaped_infants=`n` and exp_admin_safrica=`n` 
then class=`democrat` 0.125 16 

2 0 
If phys_fee_freeze=`n` and education_spending=`y` then 
class=`democrat` 1 23 

3 0 
If adopt_budget_res=`y` and duty_free_exports=`n` then 
class=`democrat` 0.85915 71 

4 0 
If education_spending=`n` and duty_free_exports=`y` 
then class=`democrat` 0.9619 105 

5 0 
If superfund_right_to_sue=`n` and anti_sat_test_ban=`n` 
then class=`democrat` 0.75 20 

6 0 
If education_spending=`n` and exp_admin_safrica=`?` 
then class=`democrat` 0.96364 55 

7 0 If el_salvador_aid=`?` then class=`democrat` 0.91667 12 

8 0 If mx_missile=`y` then class=`democrat` 0.9125 160 

9 0 
If water_proj_cost_shar=`y` and exp_admin_safrica=`y` 
and duty_free_exports=`n` then class=`republican` 0.54386 57 

10 0 
If phys_fee_freeze=`y` and adopt_budget_res=`n` and 
superfund_right_to_sue=`y` then class=`republican` 0.97143 105 

12 0 If phys_fee_freeze=`y` and adopt_budget_res=`n` then 0.95041 121 
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class=`republican` 

13 0 
If exp_admin_safrica=`y` and anti_sat_test_ban=`n` and 
education_spending=`y` then class=`republican` 0.86275 51 

15 1 If adopt_budget_res=`y` then class=`republican` 0.07576 198 

16 2 If crime=`n` then class=`democrat` 0.98485 132 

17 2 If duty_free_exports=`y` then class=`democrat` 0.91729 133 

18 2 If handicaped_infants=`n` then class=`democrat` 0.42932 191 

19 2 If immigration=`n` then class=`democrat` 0.65143 175 

20 2 
If phys_fee_freeze=`n` and adopt_budget_res=`y` then 
class=`democrat` 1 173 

21 2 

If immigration=`y` and duty_free_exports=`n` and 
superfund_right_to_sue=`n` and mx_missile=`y` and 
anti_sat_test_ban=`y` and water_proj_cost_shar=`y` and 
syn_corp_cuts=`y` then class=`republican` 0.33333 3 

22 2 

If crime=`y` and syn_corp_cuts=`n` and 
duty_free_exports=`n` and water_proj_cost_shar=`n` 
then class=`republican` 0.85417 48 

23 3 If phys_fee_freeze=`n` then class=`democrat` 0.9898 196 

24 3 If crime=`y` then class=`republican` 0.62871 202 

26 4 If aid_nic_contras=`y` then class=`democrat` 0.91935 186 

27 4 If adopt_budget_res=`?` then class=`democrat` 0.77778 9 

28 5 If superfund_right_to_sue=`y` then class=`democrat` 0.36047 172 

29 5 If adopt_budget_res=`n` then class=`democrat` 0.17021 141 

30 5 

If handicaped_infants=`n` and education_spending=`n` 
and el_salvador_aid=`y` and adopt_budget_res=`y` and 
mx_missile=`n` and relig_grp_schools=`y` and 
water_proj_cost_shar=`y` then class=`republican` 0.2 5 

31 6 If aid_nic_contras=`n` then class=`democrat` 0.26351 148 

32 6 
If aid_nic_contras=`y` and el_salvador_aid=`y` then 
class=`republican` 0.47619 21 

33 6 
If anti_sat_test_ban=`y` and education_spending=`n` and 
immigration=`y` then class=`republican` 0.125 72 

Table 15 Congressional Voting Example Collective Rule Set 

 

Results for Anneal data  

 Tables 16 through 20 contain the results for the performed using the Anneal data set. The 

traditional classifiers both performed well on the complete data set achieving a 90% and 94% for 

the unordered and ordered models respectively. The CRA process achieved a higher accuracy 
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than the traditional model for tests with 2, 3 and 4 missing attributes (highlighted in green). 

Figures 25 and 26 depict a graphical representation of the classification accuracy for each k. 

There was a decrease in the number of instances not classified when the CRA method was 

utilized with the occurrence of missing attributes. 

Number 

Clusters 

Unordered 

Accuracy 

Ordered 

Accuracy 

Average 

Number 

Not 

Classified 

Average 

Number 

of Rules 

Average 

Number 

Unique 

Attributes 

Average 

Rule 

Length 

1 .9 .94 0 28 46.4 3.7 

3 .82 .9 0 46.4 52.6 2.75 

5 .78 .86 0 52.3 53.7 2.44 
7 .76 .86 0 51.4 52.9 2.54 
9 .76 .85 0 52.8 51.6 2.21 

11 .76 .86 0 53.4 52.6 2.17 
13 .76 .85 0 54.4 52.7 2.07 
15 .76 .85 0 52.5 49.8 1.93 

Table 16 Anneal Results Complete Data (No Missing Attributes) 

 

Number 

Clusters 

Unordered 

Accuracy 

Ordered 

Accuracy 

Average 

Number 

Not 

Classified 

Average 

Number 

of Rules 

Average 

Number 

Unique 

Attributes 

Average 

Rule 

Length 

1 .87 .91 .6 31 46.3 3.46 
3 .83 .9 0 44.6 51.7 2.79 
5 .77 .87 0 51.7 55.7 2.58 

7 .76 .86 0 52 53 2.38 
9 .76 .86 0 50.8 50.2 2.23 

11 .76 .84 0 49.4 50.7 2.1 

13 .77 .84 0 50.8 49.5 1.9 
15 .76 .84 0 51.6 50.2 1.86 

Table 17 Anneal Results 1 Missing Attribute 

Number 

Clusters 

Unordered 

Accuracy 

Ordered 

Accuracy 

Average 

Number 

Not 

Classified 

Average 

Number 

of Rules 

Average 

Number 

Unique 

Attributes 

Average 

Rule 

Length 

1 .85 .87 2.1 33.6 50.7 3.88 
3 .8 .88 0 49.3 55.4 3 
5 .78 .86 0 55.7 55.7 2.64 

7 .78 .86 0 54.4 54.9 2.62 

9 .77 .87 0 53.8 51.7 2.36 
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11 .76 .87 0 53.5 50 2.13 
13 .76 .85 0 52.7 48.2 1.98 

15 .76 .85 0 52.3 47.1 1.81 

Table 18 Anneal Results 2 Missing Attributes 

 

Number 

Clusters 

Unordered 

Accuracy 

Ordered 

Accuracy 

Average 

Number 

Not 

Classified 

Average 

Number 

of Rules 

Average 

Number 

Unique 

Attributes 

Average 

Rule 

Length 

1 .85 .88 2.2 30.6 47.8 3.49 
3 .82 .9 0 44.2 52.8 2.97 

5 .78 .87 0 51.7 52.6 2.48 
7 .76 .86 0 53.5 54.6 2.41 

9 .76 .86 0 53.8 53.4 2.27 
11 .76 .84 0 52.5 51.6 2.16 
13 .76 .85 0 54.9 51.3 1.98 
15 .76 .84  53 48.8 1.9 

Table 19 Anneal Results 3 Missing Attributes 

 
 

Number 

Clusters 

Unordered 

Accuracy 

Ordered 

Accuracy 

Average 

Number 

Not 

Classified 

Average 

Number 

of Rules 

Average 

Number 

Unique 

Attributes 

Average 

Rule 

Length 

1 .82 .84 4.8 33.3 48.3 3.61 
3 .81 .87 0 47.3 56.7 3.19 
5 .78 .84 0 46.6 54.7 2.76 

7 .77 .84 0 50.3 51.4 2.41 
9 .76 .83 0 52.7 51.5 2.23 

11 .76 .83 0 54 51 2.12 

13 .76 .83 0 56 51.8 2 
15 .76 .83 0 51.6 48.4 1.89 

Table 20 Anneal Results 4 Missing Attributes 
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 Figure 27 depicts the average 

set.  The CRA method produced shorter rules. 

methods were 2.32 and 3.63 on average. 
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25 Anneal Accuracies Unordered Model 

26 Anneal Accuracies Ordered Model 

Figure 27 depicts the average rule length for the models created using the Anneal data 

The CRA method produced shorter rules. The rule lengths for the collective and traditional 

methods were 2.32 and 3.63 on average. Also, the models created via the CRA method were 

5 7 9 11 13 15

k value
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k value

 

 

rule length for the models created using the Anneal data 

collective and traditional 

Also, the models created via the CRA method were 
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generally larger than those created with the traditional method. 

52 rules, on average, while the traditional model contained 31. 

examples of the traditional and collective models created. 
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 Cluster Rules 

1 0 If steel=`S` and carbon=`0

2 0 If squality=`?` and bf=`Y` and steel=`A` then class=`1`

3 0 If exptl=`Y` then class=`1`

4 0 
If squality=`?` and family=`?` and carbon=`0
strength=`0-114.95` then class=`2`

5 0 
If con=`?` and temper_rolling=`?` and carbon=`0
and family=`?` and squality=`?` then class=`2`

6 0 
If width=`810.61-
temper_rolling=`?` and con=`?` then class=`2`

7 0 If strength=`574.76

8 0 
If formal_ability=`2` and len=`0
enamelability=`?` then class=`3`

9 0 If bl=`Y` then class=`3`

10 0 If bf=`Y` then class=`3`
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er than those created with the traditional method. The collective model contained 

52 rules, on average, while the traditional model contained 31. Tables 21 and 22 

examples of the traditional and collective models created.  

Figure 27 Anneal Average Rule Lengths 

Accuracy

If steel=`S` and carbon=`0-13.72` then class=`1` 

If squality=`?` and bf=`Y` and steel=`A` then class=`1` 

If exptl=`Y` then class=`1` 

and family=`?` and carbon=`0-13.72` and 
114.95` then class=`2` 0.81481

If con=`?` and temper_rolling=`?` and carbon=`0-13.72` 
and family=`?` and squality=`?` then class=`2` 0.42857

-1215.92` and carbon=`0-13.72` and 
temper_rolling=`?` and con=`?` then class=`2` 0.71429

If strength=`574.76-689.71` then class=`2` 

If formal_ability=`2` and len=`0-1870.92` and 
enamelability=`?` then class=`3` 0.90476

If bl=`Y` then class=`3` 0.85124

If bf=`Y` then class=`3` 0.95192

5 7 9 11 13 15

k  value

The collective model contained 

 display 

 

Accuracy Coverage 

1 4 

1 1 

1 1 

0.81481 81 

0.42857 14 

0.71429 7 

1 8 

0.90476 210 

0.85124 121 

0.95192 104 

0 Missing

1 Missing

2 Missing

3 Missing

4 Missing
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11 0 If con=`S` and thick=`0.24-1.11` then class=`3` 0.91228 285 

12 0 

If family=`?` and strength=`0-114.95` and 
width=`810.61-1215.92` and hardness=`0-24.75` then 
class=`3` 0.86111 36 

13 0 

If family=`?` and width=`405.31-810.61` and 
temper_rolling=`?` and strength=`0-114.95` then 
class=`3` 0.88333 240 

14 0 
If family=`?` and width=`1215.92-1525` and oil=`?` then 
class=`3` 0.8253 166 

15 0 If steel=`R` and exptl=`?` then class=`3` 0.71362 213 

16 0 
If squality=`G` and thick=`0.24-1.11` and len=`0-
1870.92` then class=`3` 0.93548 93 

17 0 
If thick=`1.98-2.85` and blue_bright_varn_clean=`?` then 
class=`3` 0.80488 41 

18 0 
If formal_ability=`?` and bt=`?` and oil=`?` and 
width=`405.31-810.61` and bw_me=`?` then class=`3` 0.85507 69 

19 0 If width=`0-405.31` and family=`?` then class=`3` 0.82143 84 

20 0 

If ferro=`?` and chrom=`?` and hardness=`0-24.75` and 
phos=`?` and width=`405.31-810.61` and bw_me=`?` 
then class=`3` 0.84153 183 

21 0 If con=`S` then class=`3` 0.84966 439 

22 0 If hardness=`49.49-74.24` then class=`3` 1 66 

23 0 If formal_ability=`2` then class=`3` 0.86139 303 

24 0 

If con=`?` and steel=`A` and bt=`?` and width=`405.31-
810.61` and lustre=`?` and oil=`?` and bf=`?` then 
class=`5` 0.51429 35 

25 0 

If con=`?` and temper_rolling=`?` and carbon=`0-13.72` 
and bt=`?` and sfinish=`?` and bore=`0000` and bf=`?` 
then class=`5` 0.57143 70 

26 0 

If steel=`?` and squality=`?` and 
blue_bright_varn_clean=`?` and len=`0-1870.92` then 
class=`5` 0.92308 13 

27 0 If thick=`0.24-1.11` then class=`5` 0.06865 437 

28 0 

If con=`?` and squality=`G` and bt=`?` and bl=`?` and 
lustre=`?` and bore=`0000` and bw_me=`?` and bf=`?` 
then class=`U` 0.31373 51 

29 0 If bl=`?` then class=`U` 0.05369 596 

Table 21 Example Anneal Traditional Rule Set 

 
 

RuleID Cluster Rules Accuracy Coverage 

2 0 
If squality=`?` and steel=`R` and con=`S` then 
class=`2` 1 61 

3 0 If sfinish=`P` then class=`2` 1 6 
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4 0 If enamelability=`2` then class=`2` 1 5 

5 0 If shape=`COIL` then class=`3` 0.82121 330 

6 0 

If thick=`0.24-1.11` and family=`?` and 
width=`405.31-810.61` and enamelability=`?` then 
class=`3` 0.8984 187 

7 0 If family=`?` then class=`3` 0.82736 614 

8 0 If con=`S` then class=`3` 0.84966 439 

9 0 

If thick=`1.11-1.98` and bl=`?` and 
width=`1215.92-1525` and bf=`?` and 
enamelability=`?` and strength=`0-114.95` then 
class=`5` 0.31818 22 

10 0 

If non_ageing=`N` and thick=`1.11-1.98` and 
formal_ability=`3` and len=`0-1870.92` and 
shape=`SHEET` then class=`5` 0.83333 12 

11 0 If non_ageing=`N` and bw_me=`B` then class=`5` 0.53333 15 

12 0 If steel=`A` and bw_me=`?` then class=`5` 0.12075 265 

13 0 If thick=`0.24-1.11` then class=`5` 0.06865 437 

14 0 If bc=`?` then class=`U` 0.04469 716 

15 1 If steel=`S` and carbon=`0-13.72` then class=`1` 1 4 

16 1 If exptl=`Y` then class=`1` 1 1 

17 1 
If squality=`?` and carbon=`0-13.72` and family=`?` 
and width=`0-405.31` then class=`2` 0.75 12 

18 1 
If steel=`R` and squality=`?` and bt=`?` and 
shape=`COIL` then class=`2` 0.64286 14 

19 1 

If con=`?` and carbon=`0-13.72` and bore=`0000` 
and family=`?` and squality=`?` and bt=`?` and 
width=`405.31-810.61` then class=`2` 0.18182 11 

20 1 If strength=`574.76-689.71` then class=`2` 1 8 

21 1 

If family=`?` and temper_rolling=`?` and 
width=`405.31-810.61` and formal_ability=`?` then 
class=`3` 0.90625 64 

22 1 If con=`S` and thick=`0.24-1.11` then class=`3` 0.91228 285 

23 1 
If thick=`1.98-2.85` and 
blue_bright_varn_clean=`?` then class=`3` 0.80488 41 

24 1 If formal_ability=`2` then class=`3` 0.86139 303 

25 1 If strength=`459.81-574.76` then class=`3` 0.61538 13 

26 1 If family=`?` and thick=`0.24-1.11` then class=`3` 0.8973 370 

27 1 If bt=`Y` and hardness=`0-24.75` then class=`3` 0.76923 39 

28 1 If thick=`1.11-1.98` then class=`3` 0.55621 169 

29 1 If carbon=`41.15-54.86` then class=`3` 1 13 

30 1 If con=`A` then class=`5` 0.46667 30 

31 1 
If thick=`0.24-1.11` and carbon=`0-13.72` and 
strength=`0-114.95` and hardness=`0-24.75` then 0.09772 307 
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class=`5` 

32 1 
If squality=`G` and strength=`0-114.95` then 
class=`U` 0.14483 145 

33 1 If width=`1215.92-1525` then class=`U` 0.03286 213 

34 2 
If squality=`?` and steel=`A` and bf=`Y` then 
class=`1` 1 1 

35 2 

If squality=`?` and family=`?` and carbon=`0-13.72` 
and bc=`?` and bl=`?` and bore=`0000` and bt=`?` 
and bw_me=`?` and cbond=`?` and chrom=`?` and 
corr=`?` and enamelability=`?` and exptl=`?` and 
ferro=`?` and hardness=`0-24.75` and jurofm=`?` 
and lustre=`?` and marvi=`?` and non_ageing=`?` 
and oil=`?` and packing=`?` and phos=`?` and 
product_type=`C` and len=`0-1870.92` and 
blue_bright_varn_clean=`?` and sfinish=`?` and 
strength=`0-114.95` and bf=`Y` and width=`405.31-
810.61` then class=`2` 0.5 2 

36 2 If steel=`M` then class=`2` 0.5 16 

37 2 If blue_bright_varn_clean=`B` then class=`2` 1 3 

38 2 If con=`S` and shape=`SHEET` then class=`2` 0.19244 291 

39 2 
If width=`0-405.31` and ferro=`?` and hardness=`0-
24.75` then class=`3` 0.75676 74 

40 2 If thick=`0.24-1.11` and family=`?` then class=`3` 0.8973 370 

41 2 
If bt=`?` and formal_ability=`?` and oil=`?` and 
shape=`SHEET` and sfinish=`?` then class=`3` 0.98485 66 

42 2 If thick=`1.98-2.85` and con=`?` then class=`3` 0.88571 35 

43 2 
If ferro=`?` and hardness=`0-24.75` and phos=`?` 
and thick=`1.11-1.98` then class=`3` 0.60769 130 

44 2 If hardness=`49.49-74.24` then class=`3` 1 66 

45 2 

If shape=`SHEET` and strength=`0-114.95` and 
bt=`?` and len=`0-1870.92` and bw_me=`?` and 
oil=`?` and carbon=`0-13.72` then class=`5` 0.176 125 

46 2 
If shape=`COIL` and bf=`?` and lustre=`?` and 
bt=`?` then class=`5` 0.08511 235 

47 2 
If steel=`A` and bf=`?` and bore=`0000` and 
lustre=`?` then class=`U` 0.10425 259 

Table 22 Example Anneal Collective Rule Set 
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Results for Thyroid Data 

 Tables 23 through 28 display the results of the test performed using the Thyroid data set. 

The traditional models performed very well achieving accuracies of 97% and 98% for the 

unordered and ordered models respectively. A collective model was created that was able to 

match the performance of the traditional model in the presence of 0, 1, 2, and 3 missing attributes 

(highlighted in yellow).  The CRA process created a model that achieved a higher accuracy than 

the traditional method in the presence of 4 missing attributes. Figures 28 and 29 provide a 

graphical representation of the accuracies achieved for each k. 

Number 

Clusters 

Unordered 

Accuracy 

Ordered 

Accuracy 

Average 

Number 

Not 

Classified 

Average 

Number 

of Rules 

Average 

Number 

Unique 

Attributes 

Average 

Rule 

Length 

1 .97 .98 .1 52.3 59.7 2.22 
3 .96 .98 0 59 64.9 2.13 
5 .95 .97 0 51.7 51.4 2.01 

7 .95 .97 0 50.3 49 1.78 
9 .95 .96 0 48.2 46.1 1.7 

11 .95 .96 0 47.2 46 1.72 
13 .95 .96 0 47.7 45.7 1.7 
15 .95 .96 0 47.9 45.8 1.62 

Table 23 Thyroid Results Complete Data (No Missing Attributes) 

Number 

Clusters 

Unordered 

Accuracy 

Ordered 

Accuracy 

Average 

Number 

Not 

Classified 

Average 

Number 

of Rules 

Average 

Number 

Unique 

Attributes 

Average 

Rule 

Length 

1 .97 .97 1.7 53.4 60.1 2.29 
3 .95 .97 .3 58.4 64.2 2.18 

5 .95 .97 .1 50.2 49.5 1.92 
7 .95 .96 0 47.1 46.2 1.81 

9 .95 .96 0 49 46.8 1.71 
11 .95 .96 0 47.4 44.5 1.67 

13 .95 .96 0 47.4 43.8 1.66 
15 .96 .96 0 46.3 42.2 1.63 

Table 24 Thyroid Results 1 Missing Attribute 
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Number 

Clusters 

Unordered 

Accuracy 

Ordered 

Accuracy 

Average 

Number 

Not 

Classified 

Average 

Number 

of Rules 

Average 

Number 

Unique 

Attributes 

Average 

Rule 

Length 

1 .96 .97 3.4 57.9 59.8 2.3 
3 .96 .97 .8 62.7 61 2.17 

5 .95 .97 0 49.3 49.2 2.12 
7 .95 .96 0 44.7 44.2 1.72 

9 .95 .96 0 44.9 42.1 1.64 
11 .95 .96 0 43.7 40.4 1.63 

13 .95 .96 0 43.1 40 1.61 
15 .95 .96 0 41.4 38.1 1.56 

Table 25 Thyroid Results 2 Missing Attributes 

 

Number 

Clusters 

Unordered 

Accuracy 

Ordered 

Accuracy 

Average 

Number 

Not 

Classified 

Average 

Number 

of Rules 

Average 

Number 

Unique 

Attributes 

Average 

Rule 

Length 

1 .95 .97 1.9 45.6 52.8 2.34 
3 .95 .97 .8 48 54.6 2.26 
5 .95 .96 .4 56.4 55.7 2.07 

7 .95 .96 .2 52.7 50.6 1.87 
9 .95 .96 0 53.6 50.6 1.81 

11 .95 .96 0 54.5 49.9 1.77 
13 .95 .96 0 52.9 46.6 1.72 
15 .95 .96 0 49 43.8 1.65 

Table 26 Thyroid Results 3 Missing Attributes 

 

Number 

Clusters 

Unordered 

Accuracy 

Ordered 

Accuracy 

Average 

Number 

Not 

Classified 

Average 

Number 

of Rules 

Average 

Number 

Unique 

Attributes 

Average 

Rule 

Length 

1 .94 .95 11.9 55.1 59.3 2.34 
3 .95 .97 .5 61.5 63.4 2.39 

5 .95 .97 .1 56.1 53.3 1.89 
7 .95 .96 0 55 51.2 1.84 

9 .95 .96 0 52.2 48.2 1.76 
11 .95 .96 0 47.7 46.1 1.74 
13 .95 .96 0 46.4 43.2 1.67 

15 .95 .96 0 43.3 41.5 1.64 

Table 27 Thyroid Results 4 Missing Attributes 



 

 

Figure 28

 

Figure 29

 
 Figure 30 displays the average rule lengths of the models created using the

set. The rules that were generated via the CRA method were shorter. 
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28 Thyroid Accuracies Unordered Models 

29 Thyroid Accuracies Ordered Models 

Figure 30 displays the average rule lengths of the models created using the

set. The rules that were generated via the CRA method were shorter. The rule lengths were 2.3 
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Figure 30 displays the average rule lengths of the models created using the Thyroid data 

The rule lengths were 2.3 
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and 1.8, on average, for the traditional and collective models respectively. The models created by 

the traditional method were larger. On average, t

while the collective models contained 50. 

this data set via the traditional and CRA methods.

Figure 

 
 

 Cluster Rules 

1 0 If TSH=`164` then class=`hypothyroid`

2 0 
If FTI=`0-60.23` and TSH=`23.9
2.99` then class=`hypothyroid`

3 0 
If FTI=`0-60.23` and age=`58.87
1.59` and tumor=`f` 

4 0 If TSH=`150` then class=`hypothyroid`

5 0 If TT4=`5.30` then class=`hypothyroid`

6 0 
If TSH=`47.79-71.69` and T3=`0
query_hypothyroid=`f` then class=`hypothyroid`

7 0 
If FTI=`0-60.23` and TSH=`23.9
then class=`hypothyroid`

8 0 
If FTI=`0-60.23` and age=`78.16
on_thyroxine=`f` then class=`hypothyroid`

9 0 
If thyroid_surgery=`t` and age=`1
1.99` then class=`hypothyroid`

0

0.5

1

1.5

2

2.5

1 3

A
v

e
ra

g
e

 R
u

le
 L

e
n

g
th

67 

for the traditional and collective models respectively. The models created by 

the traditional method were larger. On average, the traditional method models contained 52 rules 

while the collective models contained 50. Tables 28 and 29 are examples of models generated for 

this data set via the traditional and CRA methods. 

Figure 30 Thyroid Average Rule Lengths 

Accuracy

If TSH=`164` then class=`hypothyroid` 

60.23` and TSH=`23.9-47.79` and T3=`1.99-
2.99` then class=`hypothyroid` 

60.23` and age=`58.87-78.16` and T4U=`1.36-
1.59` and tumor=`f` then class=`hypothyroid` 

If TSH=`150` then class=`hypothyroid` 

If TT4=`5.30` then class=`hypothyroid` 
71.69` and T3=`0-1` and 

query_hypothyroid=`f` then class=`hypothyroid` 

60.23` and TSH=`23.9-47.79` and T3=`0-1` 
then class=`hypothyroid` 

60.23` and age=`78.16-97.45` and 
on_thyroxine=`f` then class=`hypothyroid` 

If thyroid_surgery=`t` and age=`1-20.29` and T3=`1-
1.99` then class=`hypothyroid` 
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10 0 

If query_hypothyroid=`t` and age=`78.16-97.45` and 
T3=`1.99-2.99` and FTI=`60.23-99` then 
class=`hypothyroid` 1 2 

11 0 If TSH=`235` then class=`hypothyroid` 1 1 

12 0 If TSH=`216` then class=`hypothyroid` 1 1 

13 0 
If FTI=`0-60.23` and age=`58.87-78.16` and TT4=`10-
55.48` and T3=`1-1.99` then class=`hypothyroid` 1 10 

14 0 If TSH=`213` then class=`hypothyroid` 1 1 

15 0 

If T4U=`0.91-1.13` and on_thyroxine=`f` and 
query_hypothyroid=`t` and TT4=`55.48-99` and T3=`1-
1.99` and age=`58.87-78.16` and sex=`F` then 
class=`hypothyroid` 0.5 2 

16 0 

If T4U=`0.91-1.13` and age=`39.58-58.87` and 
query_hypothyroid=`t` and TT4=`55.48-99` and 
T3=`1.99-2.99` then class=`hypothyroid` 1 1 

17 0 
If TSH=`100` and on_thyroxine=`f` then 
class=`hypothyroid` 1 3 

18 0 

If TSH=`47.79-71.69` and FTI=`0-60.23` and 
on_antithyroid_medication=`f` and 
query_hypothyroid=`f` then class=`hypothyroid` 1 20 

19 0 
If FTI=`0-60.23` and TSH=`23.9-47.79` and age=`20.29-
39.58` then class=`hypothyroid` 1 7 

20 0 If TSH=`288` then class=`hypothyroid` 1 1 

21 0 If TSH=`145` then class=`hypothyroid` 1 3 

22 0 
If TSH=`71.69-95.58` and age=`58.87-78.16` then 
class=`hypothyroid` 1 1 

23 0 If TT4=`6` then class=`hypothyroid` 1 2 

24 0 

If FTI=`0-60.23` and TSH_measured=`y` and 
age=`39.58-58.87` and T4U=`0.91-1.13` and TT4=`10-
55.48` and on_antithyroid_medication=`f` then 
class=`hypothyroid` 0.72727 11 

25 0 
If thyroid_surgery=`t` and age=`1-20.29` and 
FTI=`60.23-99` then class=`hypothyroid` 0.66667 3 

26 0 
If TT4=`230` and age=`20.29-39.58` and 
query_hypothyroid=`f` then class=`hypothyroid` 1 1 

27 0 
If TT4=`4` and age=`20.29-39.58` then 
class=`hypothyroid` 1 2 

28 0 If TSH=`95.58-96` then class=`hypothyroid` 1 1 

29 0 

If FTI=`0-60.23` and TSH_measured=`y` and 
on_thyroxine=`f` and sick=`f` and sex=`M` and 
age=`39.58-58.87` and query_hyperthyroid=`f` then 
class=`hypothyroid` 0.75 8 

30 0 If TSH=`109` then class=`hypothyroid` 1 1 

31 0 
If T4U=`1.13-1.36` and TT4=`55.48-99` and age=`58.87-
78.16` and T3=`1.99-2.99` then class=`hypothyroid` 0.5 2 
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32 0 
If TT4=`10-55.48` and T3=`0-1` and TSH=`23.9-47.79` 
then class=`hypothyroid` 1 12 

33 0 
If FTI=`0-60.23` and T4U=`0.45-0.68` and sick=`f` then 
class=`hypothyroid` 1 2 

34 0 If age=`?` then class=`hypothyroid` 0.02924 342 

35 0 If TT4=`7.50` then class=`hypothyroid` 1 1 

36 0 If TSH=`143` then class=`hypothyroid` 1 1 

37 0 
If FTI=`0-60.23` and T4U=`1.13-1.36` and sex=`M` then 
class=`hypothyroid` 1 5 

38 0 

If TT4=`10-55.48` and T3=`0-1` and sex=`F` and 
T4U=`0.68-0.91` and age=`58.87-78.16` then 
class=`hypothyroid` 0.66667 3 

39 0 
If FTI=`0-60.23` and thyroid_surgery=`t` and 
age=`20.29-39.58` then class=`hypothyroid` 1 1 

40 0 
If TT4=`10-55.48` and thyroid_surgery=`t` then 
class=`hypothyroid` 0.85714 7 

41 0 

If FTI=`60.23-99` and age=`20.29-39.58` and sex=`M` 
and T3=`1-1.99` and T4U=`0.91-1.13` then 
class=`hypothyroid` 0.14286 7 

42 0 

If goitre=`t` and TT4=`55.48-99` and T3=`?` and 
age=`39.58-58.87` and TSH=`0-23.9` then 
class=`hypothyroid` 1 1 

43 0 If TSH=`530` then class=`hypothyroid` 1 1 

44 0 
If FTI=`0-60.23` and thyroid_surgery=`t` then 
class=`hypothyroid` 0.75 8 

45 0 If TSH=`165` then class=`hypothyroid` 1 1 

46 0 

If query_hypothyroid=`t` and T4U=`0.68-0.91` and 
T3=`1.99-2.99` and age=`58.87-78.16` then 
class=`hypothyroid` 1 2 

47 0 
If TT4=`109` and TSH=`23.9-47.79` then 
class=`hypothyroid` 1 1 

48 0 If TSH=`117` then class=`hypothyroid` 1 1 

49 0 
If TSH=`71.69-95.58` and age=`1-20.29` then 
class=`hypothyroid` 1 1 

50 0 If T3=`3.99-4.98` then class=`negative` 1 43 

51 0 
If TSH=`0-23.9` and age=`?` and sex=`M` then 
class=`negative` 1 78 

52 0 If FTI=`121` then class=`negative` 1 30 

53 0 If TSH=`0-23.9` then class=`negative` 0.98279 2034 

54 0 If TSH=`?` then class=`negative` 1 371 

55 0 

If T3=`1-1.99` and TSH=`23.9-47.79` and 
query_hypothyroid=`f` and on_thyroxine=`f` and age=`?` 
then class=`negative` 1 2 
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56 0 

If T3=`1-1.99` and TSH=`23.9-47.79` and 
query_hypothyroid=`f` and age=`58.87-78.16` and 
sex=`F` then class=`negative` 0.8 5 

57 0 

If TSH=`23.9-47.79` and T3=`1-1.99` and 
query_hypothyroid=`f` and on_thyroxine=`f` and 
thyroid_surgery=`f` then class=`negative` 0.76923 13 

58 0 If query_hyperthyroid=`f` then class=`negative` 0.9503 2334 

Table 28 Thyroid Example Traditional Model 

 

 Cluster Rules Accuracy Coverage 

1 0 If TSH=`164` then class=`hypothyroid` 1 1 

2 0 
If FTI=`0-60.23` and TSH=`23.9-47.79` and T3=`1.99-
2.99` then class=`hypothyroid` 1 6 

3 0 
If FTI=`0-60.23` and age=`58.87-78.16` and T4U=`1.36-
1.59` and tumor=`f` then class=`hypothyroid` 1 4 

4 0 If TSH=`150` then class=`hypothyroid` 1 2 

5 0 If TT4=`5.30` then class=`hypothyroid` 1 1 

6 0 
If TSH=`47.79-71.69` and T3=`0-1` and 
query_hypothyroid=`f` then class=`hypothyroid` 1 13 

7 0 
If FTI=`0-60.23` and TSH=`23.9-47.79` and T3=`0-1` 
then class=`hypothyroid` 1 13 

8 0 
If FTI=`0-60.23` and age=`78.16-97.45` and 
on_thyroxine=`f` then class=`hypothyroid` 1 6 

9 0 
If thyroid_surgery=`t` and age=`1-20.29` and T3=`1-
1.99` then class=`hypothyroid` 1 3 

10 0 

If query_hypothyroid=`t` and age=`78.16-97.45` and 
T3=`1.99-2.99` and FTI=`60.23-99` then 
class=`hypothyroid` 1 2 

11 0 If TSH=`235` then class=`hypothyroid` 1 1 

12 0 If TSH=`216` then class=`hypothyroid` 1 1 

13 0 
If FTI=`0-60.23` and age=`58.87-78.16` and TT4=`10-
55.48` and T3=`1-1.99` then class=`hypothyroid` 1 10 

14 0 If TSH=`213` then class=`hypothyroid` 1 1 

15 0 

If T4U=`0.91-1.13` and on_thyroxine=`f` and 
query_hypothyroid=`t` and TT4=`55.48-99` and T3=`1-
1.99` and age=`58.87-78.16` and sex=`F` then 
class=`hypothyroid` 0.5 2 

16 0 

If T4U=`0.91-1.13` and age=`39.58-58.87` and 
query_hypothyroid=`t` and TT4=`55.48-99` and 
T3=`1.99-2.99` then class=`hypothyroid` 1 1 

17 0 
If TSH=`100` and on_thyroxine=`f` then 
class=`hypothyroid` 1 3 
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18 0 

If TSH=`47.79-71.69` and FTI=`0-60.23` and 
on_antithyroid_medication=`f` and 
query_hypothyroid=`f` then class=`hypothyroid` 1 20 

19 0 
If FTI=`0-60.23` and TSH=`23.9-47.79` and age=`20.29-
39.58` then class=`hypothyroid` 1 7 

20 0 If TSH=`288` then class=`hypothyroid` 1 1 

21 0 If TSH=`145` then class=`hypothyroid` 1 3 

22 0 
If TSH=`71.69-95.58` and age=`58.87-78.16` then 
class=`hypothyroid` 1 1 

23 0 If TT4=`6` then class=`hypothyroid` 1 2 

24 0 

If FTI=`0-60.23` and TSH_measured=`y` and 
age=`39.58-58.87` and T4U=`0.91-1.13` and TT4=`10-
55.48` and on_antithyroid_medication=`f` then 
class=`hypothyroid` 0.72727 11 

25 0 
If thyroid_surgery=`t` and age=`1-20.29` then 
class=`hypothyroid` 0.66667 6 

26 0 
If TT4=`230` and age=`20.29-39.58` and 
query_hypothyroid=`f` then class=`hypothyroid` 1 1 

27 0 
If TT4=`4` and age=`20.29-39.58` then 
class=`hypothyroid` 1 2 

28 0 If TSH=`95.58-96` then class=`hypothyroid` 1 1 

29 0 

If FTI=`0-60.23` and TSH_measured=`y` and 
on_thyroxine=`f` and sick=`f` and sex=`M` and 
age=`39.58-58.87` and query_hyperthyroid=`f` then 
class=`hypothyroid` 0.75 8 

30 0 If TSH=`109` then class=`hypothyroid` 1 1 

31 0 
If T4U=`1.13-1.36` and TT4=`55.48-99` and age=`58.87-
78.16` and T3=`1.99-2.99` then class=`hypothyroid` 0.5 2 

32 0 
If TT4=`10-55.48` and T3=`0-1` and TSH=`23.9-47.79` 
then class=`hypothyroid` 1 12 

33 0 
If FTI=`0-60.23` and T4U=`0.45-0.68` and sick=`f` then 
class=`hypothyroid` 1 2 

34 0 If age=`?` then class=`hypothyroid` 0.02924 342 

35 0 If TT4=`7.50` then class=`hypothyroid` 1 1 

36 0 If TSH=`143` then class=`hypothyroid` 1 1 

37 0 
If FTI=`0-60.23` and T4U=`1.13-1.36` and sex=`M` then 
class=`hypothyroid` 1 5 

38 0 

If TT4=`10-55.48` and T3=`0-1` and sex=`F` and 
T4U=`0.68-0.91` and age=`58.87-78.16` then 
class=`hypothyroid` 0.66667 3 

39 0 
If FTI=`0-60.23` and thyroid_surgery=`t` and 
age=`20.29-39.58` then class=`hypothyroid` 1 1 

40 0 
If TT4=`10-55.48` and thyroid_surgery=`t` then 
class=`hypothyroid` 0.85714 7 
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41 0 

If FTI=`60.23-99` and age=`20.29-39.58` and sex=`M` 
and T3=`1-1.99` and T4U=`0.91-1.13` then 
class=`hypothyroid` 0.14286 7 

42 0 
If goitre=`t` and T3=`?` and TT4=`55.48-99` and 
age=`39.58-58.87` then class=`hypothyroid` 0.5 2 

43 0 If TSH=`530` then class=`hypothyroid` 1 1 

44 0 
If FTI=`0-60.23` and thyroid_surgery=`t` then 
class=`hypothyroid` 0.75 8 

45 0 If TSH=`165` then class=`hypothyroid` 1 1 

46 0 

If query_hypothyroid=`t` and T4U=`0.68-0.91` and 
T3=`1.99-2.99` and age=`58.87-78.16` then 
class=`hypothyroid` 1 2 

47 0 
If TT4=`109` and TSH=`23.9-47.79` then 
class=`hypothyroid` 1 1 

48 0 If TSH=`117` then class=`hypothyroid` 1 1 

49 0 
If TSH=`71.69-95.58` and age=`1-20.29` then 
class=`hypothyroid` 1 1 

50 0 If FTI=`124` then class=`negative` 1 26 

51 0 If FTI=`109` then class=`negative` 1 31 

52 0 
If TSH=`0-23.9` and T4U=`0.68-0.91` and sex=`M` then 
class=`negative` 1 259 

53 0 If T3=`3.99-4.98` then class=`negative` 1 43 

54 0 
If TSH=`0-23.9` and age=`?` and sex=`M` then 
class=`negative` 1 78 

55 0 If FTI=`121` then class=`negative` 1 30 

56 0 If TSH=`0-23.9` then class=`negative` 0.98279 2034 

57 0 If TSH=`?` then class=`negative` 1 371 

58 0 

If T3=`1-1.99` and TSH=`23.9-47.79` and 
query_hypothyroid=`f` and on_thyroxine=`f` and age=`?` 
then class=`negative` 1 2 

59 0 

If T3=`1-1.99` and TSH=`23.9-47.79` and 
query_hypothyroid=`f` and age=`58.87-78.16` and 
sex=`F` then class=`negative` 0.8 5 

60 0 

If TSH=`23.9-47.79` and T3=`1-1.99` and 
query_hypothyroid=`f` and on_thyroxine=`f` and 
thyroid_surgery=`f` then class=`negative` 0.76923 13 

61 0 If query_hyperthyroid=`f` then class=`negative` 0.9503 2334 

62 1 If age=`58.87-78.16` then class=`hypothyroid` 0.06417 748 

63 1 If FTI_measured=`y` then class=`negative` 0.9482 2336 

64 2 If age=`20.29-39.58` then class=`hypothyroid` 0.03978 553 

65 2 If lithium=`f` then class=`negative` 0.95217 2530 

Table 29 Thyroid Example Collective Model 
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Results for Mushroom Data 

 Tables 30 through 34 display the results of the test performed using the Mushroom data 

set. The traditional models achieved accuracies of 89% and 100% for the unordered and ordered 

models respectively. The CRA process generated a collective model that achieved a higher 

accuracy than the traditional method with the occurrence of 2, 3, and 4 missing attributes. 

Figures 31 and 32 provide a graphical representation of the accuracies achieved for each k. 

Additionally, the CRA method matched the performance of the traditional method with the 

occurrence of 0 and 3 missing attributes. 

Number 

Clusters 

Unordered 

Accuracy 

Ordered 

Accuracy 

Average 

Number 

Not 

Classified 

Average 

Number 

of Rules 

Average 

Number 

Unique 

Attributes 

Average 

Rule 

Length 

1 .89 1 0 23.5 33.4 2.06 
3 .89 .9 0 28.4 32.6 1.54 
5 .88 .91 0 26.4 29.7 1.41 

7 .87 .89 0 25.8 28.2 1.36 
9 .85 .9 0 25.2 27.9 1.36 

11 .85 .91 0 24.5 27.1 1.31 
13 .8 .91 0 25.2 27.7 1.31 
15 .76 .9 0 25.8 28.1 1.35 

Table 30 Mushroom Results Complete Data (No Missing Attributes) 

 

Number 

Clusters 

Unordered 

Accuracy 

Ordered 

Accuracy 

Average 

Number 

Not 

Classified 

Average 

Number 

of Rules 

Average 

Number 

Unique 

Attributes 

Average 

Rule 

Length 

1 .89 .96 40.8 23 33.4 2.01 

3 .87 .92 .3 26.7 32.1 1.56 
5 .86 .89 .1 25.2 29.3 1.45 
7 .82 .87 0 25.3 28.7 1.41 

9 .77 .87 0 23.8 27.3 1.36 
11 .81 .9 0 23.3 25.5 1.31 

13 .81 .9 0 23.6 26.3 1.31 
15 .8 .9 0 24.4 26.9 1.35 

Table 31 Mushroom Results 1 Missing Attribute 
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Number 

Clusters 

Unordered 

Accuracy 

Ordered 

Accuracy 

Average 

Number 

Not 

Classified 

Average 

Number 

of Rules 

Average 

Number 

Unique 

Attributes 

Average 

Rule 

Length 

1 .86 .92 75.1 22.2 31.3 1.95 
3 .87 .88 2.3 28.9 36 1.73 

5 .8 .87 .2 25.4 30.2 1.47 
7 .78 .87 0 24.1 27 1.37 

9 .79 .86 0 22.8 25 1.28 
11 .77 .88 0 23.2 25.4 1.32 

13 .76 .87 0 24.8 26.7 1.32 
15 .76 .87 0 24.4 27.1 1.36 

Table 32 Mushroom Results 2 Missing Attributes 

 

Number 

Clusters 

Unordered 

Accuracy 

Ordered 

Accuracy 

Average 

Number 

Not 

Classified 

Average 

Number 

of Rules 

Average 

Number 

Unique 

Attributes 

Average 

Rule 

Length 

1 .8 .86 157 21.3 30.2 1.92 
3 .82 .85 1.7 28 34.1 1.69 
5 .8 .88 .7 25.9 29.8 1.49 

7 .76 .81 0 25.6 28.7 1.38 
9 .76 .86 0 24.6 27.1 1.28 

11 .76 .86 .2 25.2 27.4 1.29 
13 .76 .86 0 26.5 28.4 1.31 
15 .77 .86 .1 25.9 27.9 1.29 

Table 33 Mushroom Results 3 Missing Attributes 

 

Number 

Clusters 

Unordered 

Accuracy 

Ordered 

Accuracy 

Average 

Number 

Not 

Classified 

Average 

Number 

of Rules 

Average 

Number 

Unique 

Attributes 

Average 

Rule 

Length 

1 .77 .82 201.7 24.3 35.2 2.06 
3 .82 .87 2.4 25.1 29.9 1.52 

5 .8 .86 1 28.4 32.5 1.59 
7 .75 .87 .2 25.8 26.9 1.36 

9 .74 .84 .3 23.6 26.8 1.36 
11 .75 .85 .5 22.6 25.7 1.4 
13 .71 .85 .2 23.5 27 1.39 

15 .7 .85 .1 24.6 28 1.39 

Table 34 Mushroom Results 4 Missing Attributes 

 
 



 

 

Figure 31Mushroom Accuracies Unordered Models

 
 Figure 33 depicts the average rule lengths of the models generated. The collective models 

created with the CRA process contained smaller rules. 

1.4 for the traditional and collective models respectively

method were generally larger than the traditional models. The collective models contained 25 

rules while the traditional model contained 22 on average. 
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Mushroom Accuracies Unordered Models 

Figure 33 depicts the average rule lengths of the models generated. The collective models 

contained smaller rules. On average, the rule lengths were

1.4 for the traditional and collective models respectively. The models created via the CRA 

method were generally larger than the traditional models. The collective models contained 25 

hile the traditional model contained 22 on average.  Tables 35 and 36 display examples of 

the traditional and collective models created using this data set. 
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 Cluster Rules 

1 0 If odor=`a` then class=`e`

2 0 If odor=`n` and stalk_shape=`t` then class=`e`

3 0 If habitat=`w` then class=`e`
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 Mushroom Accuracies Ordered Models 

Figure 33 Mushroom Average Rule Lengths 

Accuracy

If odor=`a` then class=`e` 

If odor=`n` and stalk_shape=`t` then class=`e` 

If habitat=`w` then class=`e` 
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4 0 If odor=`l` then class=`e` 1 317 

5 0 If stalk_color_above_ring=`o` then class=`e` 1 143 

6 0 
If ring_number=`t` and spore_print_color=`w` then 
class=`e` 1 417 

7 0 
If odor=`n` and stalk_surface_below_ring=`f` then 
class=`e` 1 362 

8 0 If cap_shape=`s` then class=`e` 1 25 

9 0 If odor=`n` and habitat=`u` then class=`e` 1 72 

10 0 If cap_color=`c` and gill_size=`n` then class=`e` 1 21 

11 0 If gill_spacing=`w` and cap_color=`n` then class=`e` 1 223 

12 0 If cap_color=`y` then class=`p` 0.63392 855 

13 0 
If cap_surface=`s` and gill_spacing=`c` and 
gill_attachment=`f` and ring_number=`o` then class=`p` 0.8406 1261 

14 0 If gill_size=`n` and stalk_shape=`t` then class=`p` 0.9455 1468 

15 0 If habitat=`p` and ring_number=`o` then class=`p` 0.91551 864 

16 0 
If stalk_shape=`e` and population=`y` and habitat=`g` 
and gill_color=`p` then class=`p` 0.81081 74 

17 0 
If stalk_shape=`e` and ring_number=`o` and habitat=`g` 
then class=`p` 0.6118 729 

18 0 If habitat=`m` and gill_color=`w` then class=`p` 0.15789 57 

19 0 

If population=`v` and stalk_color_above_ring=`w` and 
ring_type=`p` and cap_shape=`x` and ring_number=`o` 
and gill_attachment=`f` and 
stalk_surface_above_ring=`s` and 
stalk_surface_below_ring=`s` and veil_color=`w` and 
veil_type=`p` and cap_surface=`f` and habitat=`d` and 
stalk_root=`b` and gill_color=`u` and 
spore_print_color=`k` then class=`p` 0.41667 12 

20 0 If stalk_root=`b` and cap_shape=`x` then class=`p` 0.50772 1554 

21 0 
If cap_color=`g` and bruises=`f` and ring_number=`o` 
then class=`p` 0.69004 813 

22 0 

If population=`v` and stalk_color_below_ring=`w` and 
stalk_color_above_ring=`w` and bruises=`t` then 
class=`p` 0.60682 440 

23 0 
If population=`s` and stalk_surface_below_ring=`s` and 
stalk_root=`e` then class=`p` 0.40892 269 

24 0 If habitat=`d` then class=`p` 0.39825 2521 

25 0 

If ring_number=`o` and gill_spacing=`w` and 
stalk_surface_below_ring=`s` and 
stalk_surface_above_ring=`s` then class=`p` 0.23939 330 

Table 35 Mushroom Example Traditional Model 
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 Cluster Rules Accuracy Coverage 

1 0 If odor=`n` and stalk_shape=`t` then class=`e` 1 2020 

2 0 If population=`y` then class=`e` 0.62127 1373 

3 0 If odor=`n` and cap_color=`g` then class=`e` 1 834 

4 0 If habitat=`w` then class=`e` 1 145 

5 0 
If stalk_color_below_ring=`n` and gill_spacing=`w` then 
class=`e` 1 39 

6 0 
If odor=`n` and stalk_surface_below_ring=`k` then 
class=`e` 1 120 

7 0 If cap_shape=`s` then class=`e` 1 25 

8 0 If odor=`l` then class=`e` 1 317 

9 0 If odor=`n` and cap_shape=`x` then class=`e` 0.99442 1255 

10 0 If odor=`a` then class=`e` 1 319 

11 0 If ring_type=`f` then class=`e` 1 39 

12 0 
If ring_number=`t` and spore_print_color=`w` then 
class=`e` 1 417 

13 0 If odor=`n` and habitat=`u` then class=`e` 1 72 

14 0 If stalk_surface_below_ring=`k` then class=`p` 0.9346 1835 

15 0 
If population=`v` and stalk_color_below_ring=`w` and 
cap_color=`e` then class=`p` 0.82641 409 

16 0 

If stalk_color_below_ring=`p` and 
stalk_color_above_ring=`p` and cap_color=`e` then 
class=`p` 0.78112 233 

17 0 
If stalk_color_above_ring=`w` and gill_spacing=`c` then 
class=`p` 0.50811 2527 

18 0 
If gill_size=`n` and bruises=`f` and cap_shape=`x` then 
class=`p` 0.91828 673 

19 0 If ring_type=`e` then class=`p` 0.63653 2234 

20 0 If gill_color=`w` then class=`p` 0.20329 974 

21 1 If ring_type=`p` then class=`e` 0.79388 3168 

22 1 If veil_color=`w` then class=`p` 0.49228 6348 

23 1 If bruises=`f` then class=`p` 0.69286 3793 

24 2 If ring_number=`o` then class=`e` 0.49175 5997 

25 2 If spore_print_color=`w` then class=`e` 0.23862 1911 

26 2 If bruises=`t` then class=`p` 0.18632 2705 

Table 36 Mushroom Example Collective Model 
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Results for Tic-Tac-Toe Data 

 

 Tables 37 through 41 display the results of the test performed using the Tic-Tac-Toe data 

set. The traditional models achieved accuracies of 82% and 99% for the unordered and ordered 

models respectively. The CRA process generated a collective model that achieved a higher 

accuracy than the traditional method with the occurrence of 1, 2, 3, and 4 missing attributes. 

Additionally, the number of instances not classified decreased when using the collective models 

created with the CRA process. Figures 34 and 35 provide a graphical representation of the 

accuracies achieved for each k while Figure 36 displays the average rule lengths. The rules 

created using the CRA method were shorter. On average the rule lengths were 3.35 and 2.38 for 

the traditional and collective models respectively. The CRA models were larger than the 

traditional models. The collective model contained 97 rules while the traditional model contained 

52 rules on average. Tables 42 and 43 provide examples of the traditional and collective models 

generated.  

Number 

Clusters 

Unordered 

Accuracy 

Ordered 

Accuracy 

Average 

Number 

Not 

Classified 

Average 

Number 

of Rules 

Average 

Number 

Unique 

Attributes 

Average 

Rule 

Length 

1 .82 .99 .1 54.6 26.8 3.4 

3 .79 .96 0 78.9 27 2.73 
5 .76 .94 0 89.7 27 2.54 

7 .78 .9 0 101.2 26.9 2.42 

9 .76 .86 0 107.5 27 2.3 
11 .75 .85 0 106.8 27 2.27 
13 .75 .84 0 104 27 2.2 

15 .74 .82 0 101.9 27 2.13 

Table 37 Tic-Tac-Toe Results Complete Data (No Missing Attributes) 

 

Number 

Clusters 

Unordered 

Accuracy 

Ordered 

Accuracy 

Average 

Number 

Not 

Classified 

Average 

Number 

of Rules 

Average 

Number 

Unique 

Attributes 

Average 

Rule 

Length 

1 .75 .84 11.5 52.1 26.6 3.33 
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3 .75 .85 .1 80.9 26.9 2.72 
5 .74 .83 0 88.3 27 2.6 

7 .74 .81 0 105 27 2.42 

9 .74 .8 0 106 27 2.32 
11 .73 .8 0 99.9 26.9 2.23 
13 .71 .78 0 98.5 26.9 2.16 

15 .71 .78 0 98.3 27 2.12 

Table 38 Tic-Tac-Toe Results 1 Missing Attribute 

 

Number 

Clusters 

Unordered 

Accuracy 

Ordered 

Accuracy 

Average 

Number 

Not 

Classified 

Average 

Number 

of Rules 

Average 

Number 

Unique 

Attributes 

Average 

Rule 

Length 

1 .68 .73 21.3 49.7 26.7 3.31 
3 .72 .79 .6 78.2 27 2.76 
5 .72 .78 0 87.9 27 2.58 
7 .72 .77 0 98.1 27 2.42 

9 .72 .75 0 106.1 27 2.34 
11 .71 .75 0 105.7 27 2.26 
13 .7 .74 0 105.1 27 2.18 
15 .69 .73 0 102.3 27 2.14 

Table 39 Tic-Tac-Toe Results 2 Missing Attributes 

 

Number 

Clusters 

Unordered 

Accuracy 

Ordered 

Accuracy 

Average 

Number 

Not 

Classified 

Average 

Number 

of Rules 

Average 

Number 

Unique 

Attributes 

Average 

Rule 

Length 

1 .57 .58 46.6 49.7 26.5 3.36 
3 .68 .72 3.7 80.9 27 2.77 
5 .7 .73 .5 86.8 27 2.62 

7 .69 .72 .2 96.6 27 2.43 

9 .69 .72 0 103.9 27 2.35 

11 .69 .72 0 104.2 27 2.28 
13 .67 .73 0 99.7 27 2.16 

15 .66 .71 0 100.8 27 2.1 

Table 40 Tic-Tac-Toe Results 3 Missing Attributes 

 

Number 

Clusters 

Unordered 

Accuracy 

Ordered 

Accuracy 

Average 

Number 

Not 

Classified 

Average 

Number 

of Rules 

Average 

Number 

Unique 

Attributes 

Average 

Rule 

Length 

1 .48 .49 67.6 52.2 26.8 3.34 
3 .66 .68 8 77 26.8 2.75 



 

 

5 .68 
7 .68 

9 .69 

11 .68 
13 .67 
15 .66 

Table 41 Tic

 

Figure 34 Tic
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Tic-Tac-Toe Accuracies Ordered Models 

36 Tic-Tac-Toe Average Rule Lengths 

Accuracy
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2 0 

If middle_middle_square=`o` and 
bottom_middle_square=`o` and top_middle_square=`o` 
then class=`negative` 1 32 

3 0 

If middle_middle_square=`o` and 
bottom_left_square=`o` and top_right_square=`o` then 
class=`negative` 1 38 

4 0 
If bottom_right_square=`o` and bottom_left_square=`o` 
and bottom_middle_square=`o` then class=`negative` 1 30 

5 0 
If top_left_square=`o` and top_right_square=`o` and 
top_middle_square=`o` then class=`negative` 1 28 

6 0 
If bottom_right_square=`o` and top_right_square=`o` and 
middle_right_square=`o` then class=`negative` 1 28 

7 0 

If bottom_right_square=`o` and 
bottom_middle_square=`x` and top_right_square=`x` and 
middle_left_square=`x` and top_middle_square=`o` and 
bottom_left_square=`o` and top_left_square=`x` then 
class=`negative` 1 2 

8 0 

If bottom_right_square=`o` and 
bottom_middle_square=`x` and middle_right_square=`x` 
and top_right_square=`x` and top_middle_square=`o` 
and top_left_square=`x` then class=`negative` 1 3 

9 0 
If middle_middle_square=`o` and top_left_square=`o` 
and bottom_right_square=`o` then class=`negative` 1 39 

10 0 

If middle_right_square=`o` and 
bottom_middle_square=`x` and top_right_square=`x` and 
bottom_right_square=`x` and middle_left_square=`x` 
then class=`negative` 1 2 

11 0 

If middle_middle_square=`o` and 
middle_right_square=`o` and middle_left_square=`o` 
then class=`negative` 1 27 

12 0 

If top_right_square=`o` and middle_left_square=`o` and 
bottom_right_square=`o` and bottom_left_square=`x` 
then class=`negative` 1 5 

13 0 

If top_right_square=`o` and bottom_middle_square=`o` 
and middle_middle_square=`o` and 
bottom_right_square=`x` then class=`negative` 1 7 

14 0 

If top_right_square=`o` and top_left_square=`o` and 
bottom_middle_square=`o` and middle_left_square=`o` 
then class=`negative` 1 1 

15 0 
If middle_middle_square=`b` and 
middle_right_square=`o` then class=`positive` 0.8 50 

16 0 

If middle_middle_square=`x` and 
bottom_left_square=`x` and bottom_middle_square=`o` 
then class=`positive` 0.93103 58 
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17 0 
If middle_middle_square=`x` and 
bottom_left_square=`b` then class=`positive` 0.84146 82 

18 0 
If bottom_middle_square=`b` and 
top_middle_square=`o` then class=`positive` 0.82432 74 

19 0 

If bottom_right_square=`x` and 
bottom_middle_square=`x` and top_middle_square=`o` 
and middle_middle_square=`o` then class=`positive` 0.80952 21 

20 0 

If middle_middle_square=`x` and 
bottom_left_square=`x` and top_left_square=`o` and 
bottom_right_square=`o` then class=`positive` 0.95652 23 

21 0 

If bottom_left_square=`x` and top_right_square=`o` and 
middle_left_square=`x` and bottom_right_square=`b` 
and middle_middle_square=`o` then class=`positive` 0.875 8 

22 0 

If middle_middle_square=`b` and 
bottom_left_square=`x` and middle_right_square=`b` 
then class=`positive` 0.89474 19 

23 0 

If middle_middle_square=`x` and 
bottom_right_square=`b` and top_right_square=`o` then 
class=`positive` 0.74074 27 

24 0 

If bottom_right_square=`x` and 
middle_middle_square=`b` and bottom_left_square=`b` 
then class=`positive` 0.76923 13 

25 0 

If bottom_right_square=`x` and 
middle_middle_square=`b` and middle_right_square=`x` 
then class=`positive` 0.84375 32 

26 0 
If middle_middle_square=`x` and top_left_square=`b` 
and middle_left_square=`o` then class=`positive` 0.96154 26 

27 0 
If middle_middle_square=`x` and top_right_square=`b` 
and middle_left_square=`x` then class=`positive` 0.91667 36 

28 0 
If top_middle_square=`x` and 
bottom_middle_square=`o` then class=`positive` 0.6383 94 

29 0 

If middle_middle_square=`x` and 
middle_left_square=`b` and top_right_square=`b` then 
class=`positive` 0.84211 19 

30 0 
If bottom_right_square=`x` and middle_left_square=`b` 
and bottom_middle_square=`x` then class=`positive` 0.79487 39 

31 0 

If bottom_right_square=`x` and top_right_square=`o` and 
bottom_middle_square=`x` and top_middle_square=`x` 
and top_left_square=`o` then class=`positive` 0.77778 9 

32 0 
If top_left_square=`x` and middle_middle_square=`b` 
then class=`positive` 0.82609 69 

33 0 
If middle_left_square=`b` and bottom_left_square=`o` 
then class=`positive` 0.67123 73 
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34 0 
If middle_middle_square=`x` and 
bottom_left_square=`x` then class=`positive` 0.85606 132 

35 0 

If middle_middle_square=`x` and top_right_square=`o` 
and middle_left_square=`x` and 
bottom_right_square=`x` then class=`positive` 0.84211 19 

36 0 If bottom_middle_square=`b` then class=`positive` 0.69697 198 

37 0 

If top_middle_square=`b` and bottom_right_square=`x` 
and middle_right_square=`x` and 
middle_middle_square=`o` and top_left_square=`o` then 
class=`positive` 0.88889 9 

38 0 
If top_right_square=`o` and bottom_left_square=`x` then 
class=`positive` 0.64655 116 

39 0 
If middle_middle_square=`x` and top_left_square=`x` 
then class=`positive` 0.82353 136 

40 0 
If top_left_square=`x` and bottom_right_square=`o` and 
top_middle_square=`x` then class=`positive` 0.64407 59 

41 0 
If top_left_square=`b` and bottom_left_square=`o` and 
bottom_right_square=`x` then class=`positive` 0.8 25 

42 0 

If middle_left_square=`x` and 
bottom_middle_square=`x` and top_left_square=`b` then 
class=`positive` 0.57895 19 

43 0 

If top_middle_square=`b` and bottom_right_square=`x` 
and middle_middle_square=`o` and 
middle_right_square=`x` and middle_left_square=`o` 
then class=`positive` 0.88889 9 

44 0 
If top_middle_square=`b` and 
bottom_middle_square=`o` then class=`positive` 0.85366 82 

45 0 

If middle_right_square=`o` and middle_left_square=`x` 
and top_left_square=`x` and bottom_middle_square=`x` 
then class=`positive` 0.52941 17 

46 0 

If bottom_middle_square=`x` and top_left_square=`o` 
and top_right_square=`x` and bottom_left_square=`o` 
and bottom_right_square=`o` and top_middle_square=`x` 
then class=`positive` 0.33333 3 

47 0 
If middle_right_square=`b` and top_right_square=`b` and 
middle_left_square=`o` then class=`positive` 0.83333 18 

48 0 If middle_middle_square=`x` then class=`positive` 0.79109 359 

49 0 

If bottom_right_square=`x` and top_left_square=`o` and 
top_right_square=`b` and bottom_middle_square=`x` 
then class=`positive` 0.81818 22 

50 0 

If bottom_middle_square=`x` and 
middle_middle_square=`o` and middle_left_square=`o` 
and top_left_square=`o` then class=`positive` 0.42857 14 
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51 0 If bottom_middle_square=`x` then class=`positive` 0.58863 299 

Table 42 Tic-Tac-Toe Example Traditional Model 

 

RuleID Cluster Rules Accuracy Coverage 

1 0 

If top_right_square=`o` and 
bottom_right_square=`o` and 
bottom_left_square=`b` then class=`negative` 0.57895 19 

2 0 If bottom_middle_square=`o` then class=`positive` 0.69259 270 

3 0 If middle_right_square=`o` then class=`positive` 0.70722 263 

5 1 
If bottom_right_square=`o` and 
bottom_middle_square=`o` then class=`negative` 0.45977 87 

6 1 
If middle_middle_square=`o` and 
bottom_middle_square=`o` then class=`negative` 0.5974 77 

7 1 

If bottom_right_square=`o` and top_left_square=`x` 
and bottom_middle_square=`x` then 
class=`negative` 0.5 36 

8 1 
If top_left_square=`o` and top_middle_square=`o` 
and top_right_square=`o` then class=`negative` 1 28 

9 1 If middle_middle_square=`x` then class=`positive` 0.79109 359 

10 1 If bottom_right_square=`x` then class=`positive` 0.71554 341 

11 2 
If middle_left_square=`o` and 
bottom_right_square=`b` then class=`negative` 0.38182 55 

12 2 
If top_middle_square=`x` and 
middle_middle_square=`o` then class=`negative` 0.6036 111 

13 2 

If bottom_middle_square=`x` and 
top_middle_square=`b` and bottom_left_square=`o` 
and bottom_right_square=`b` then class=`negative` 0.85714 7 

14 2 
If bottom_left_square=`b` and 
bottom_middle_square=`x` then class=`negative` 0.51724 58 

15 2 
If middle_middle_square=`b` and 
bottom_right_square=`o` then class=`negative` 0.44444 45 

16 2 
If bottom_right_square=`o` and 
top_right_square=`x` then class=`negative` 0.37879 132 

17 2 
If top_left_square=`x` and top_right_square=`x` 
then class=`negative` 0.23256 129 

18 2 

If top_left_square=`x` and bottom_left_square=`o` 
and middle_middle_square=`o` then 
class=`negative` 0.71111 45 

19 2 
If bottom_right_square=`o` and 
middle_right_square=`o` then class=`negative` 0.45783 83 

20 2 
If middle_right_square=`b` and top_left_square=`o` 
then class=`negative` 0.51471 68 

21 2 If top_middle_square=`o` and 0.62963 135 
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middle_right_square=`x` then class=`positive` 

22 2 

If middle_right_square=`x` and 
top_middle_square=`b` and top_right_square=`x` 
and bottom_left_square=`o` and 
middle_middle_square=`o` then class=`positive` 0.83333 6 

23 2 
If bottom_right_square=`x` and top_left_square=`o` 
and middle_left_square=`x` then class=`positive` 0.52778 36 

24 2 
If top_left_square=`b` and middle_left_square=`b` 
and bottom_right_square=`x` then class=`positive` 0.80952 21 

25 2 
If middle_middle_square=`x` and 
bottom_left_square=`o` then class=`positive` 0.70345 145 

26 2 
If bottom_right_square=`b` and 
top_right_square=`o` then class=`positive` 0.5614 57 

27 2 
If bottom_middle_square=`b` and 
bottom_right_square=`o` then class=`positive` 0.72603 73 

28 2 
If bottom_left_square=`x` and 
top_middle_square=`o` then class=`positive` 0.72078 154 

29 2 

If bottom_left_square=`x` and 
top_middle_square=`b` and 
middle_middle_square=`o` then class=`positive` 0.70455 44 

30 3 

If middle_right_square=`o` and 
top_right_square=`o` and bottom_right_square=`o` 
then class=`negative` 1 28 

31 3 

If middle_left_square=`o` and 
bottom_left_square=`x` and 
bottom_middle_square=`x` then class=`negative` 0.24561 57 

32 3 If middle_middle_square=`b` then class=`negative` 0.28467 137 

33 3 
If bottom_middle_square=`o` and 
bottom_left_square=`o` then class=`negative` 0.45349 86 

34 3 

If middle_middle_square=`o` and 
top_left_square=`o` and bottom_right_square=`o` 
then class=`negative` 1 39 

35 3 
If bottom_right_square=`x` and 
middle_left_square=`o` then class=`negative` 0.26923 156 

36 3 If bottom_middle_square=`b` then class=`positive` 0.69697 198 

37 3 
If middle_right_square=`b` and 
bottom_left_square=`b` then class=`positive` 0.625 32 

38 3 
If top_right_square=`b` and 
bottom_middle_square=`x` then class=`positive` 0.73418 79 

39 3 
If middle_middle_square=`x` and 
middle_left_square=`b` then class=`positive` 0.80208 96 

40 3 
If middle_right_square=`b` and top_left_square=`x` 
then class=`positive` 0.79 100 

41 3 If top_right_square=`o` and 0.34568 81 
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middle_middle_square=`o` then class=`positive` 

42 3 If bottom_left_square=`x` then class=`positive` 0.727 337 

43 4 
If middle_left_square=`x` and 
middle_right_square=`b` then class=`negative` 0.49333 75 

44 4 
If top_middle_square=`o` and 
bottom_right_square=`b` then class=`negative` 0.43103 58 

45 4 
If top_left_square=`o` and middle_left_square=`o` 
and bottom_left_square=`o` then class=`negative` 1 32 

46 4 
If top_middle_square=`o` and 
bottom_left_square=`b` then class=`negative` 0.40984 61 

47 4 
If middle_left_square=`x` and top_left_square=`b` 
then class=`negative` 0.44776 67 

48 4 If top_left_square=`x` then class=`positive` 0.70088 341 

49 4 If bottom_middle_square=`x` then class=`positive` 0.58863 299 

50 4 If top_middle_square=`x` then class=`positive` 0.5914 279 

51 5 

If bottom_left_square=`o` and 
middle_middle_square=`b` and 
bottom_right_square=`o` then class=`negative` 0.75 16 

52 5 

If bottom_left_square=`o` and 
middle_right_square=`o` and 
bottom_right_square=`o` then class=`negative` 0.5 14 

53 5 
If bottom_left_square=`b` and 
middle_right_square=`o` then class=`negative` 0.41818 55 

54 5 
If bottom_left_square=`o` and top_right_square=`o` 
and bottom_right_square=`o` then class=`negative` 0.6 15 

55 5 

If bottom_left_square=`b` and 
top_middle_square=`o` and 
middle_middle_square=`o` then class=`negative` 0.77778 18 

56 5 

If bottom_left_square=`o` and 
middle_right_square=`b` and 
bottom_right_square=`o` and 
bottom_middle_square=`o` then class=`negative` 1 11 

57 5 If middle_middle_square=`o` then class=`positive` 0.43911 271 

58 5 If middle_right_square=`b` then class=`positive` 0.66834 199 

59 5 If top_right_square=`b` then class=`positive` 0.69143 175 

60 5 If top_middle_square=`o` then class=`positive` 0.68132 273 

61 5 
If middle_left_square=`x` and 
middle_middle_square=`b` then class=`positive` 0.61404 57 

62 5 If middle_right_square=`x` then class=`positive` 0.59672 305 

63 6 
If bottom_left_square=`o` and 
middle_left_square=`o` then class=`negative` 0.45783 83 

64 6 

If middle_middle_square=`o` and 
bottom_right_square=`b` and 
bottom_middle_square=`o` then class=`negative` 0.5 20 
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65 6 

If top_right_square=`o` and 
bottom_middle_square=`b` and 
bottom_right_square=`x` then class=`negative` 0.45946 37 

66 6 
If top_right_square=`o` and middle_left_square=`b` 
and top_middle_square=`o` then class=`negative` 0.58824 17 

67 6 

If middle_middle_square=`o` and 
bottom_middle_square=`o` and 
top_middle_square=`o` then class=`negative` 1 32 

68 6 
If top_middle_square=`x` and 
bottom_left_square=`o` then class=`negative` 0.46715 137 

69 6 
If top_right_square=`o` and 
middle_right_square=`o` then class=`negative` 0.45122 82 

70 6 
If middle_right_square=`o` and 
bottom_left_square=`o` then class=`negative` 0.3 60 

71 6 
If top_middle_square=`x` and top_right_square=`b` 
then class=`negative` 0.45161 62 

72 6 
If top_right_square=`o` and top_left_square=`o` and 
top_middle_square=`o` then class=`negative` 1 28 

73 6 
If top_left_square=`x` and top_middle_square=`b` 
then class=`negative` 0.33333 93 

74 6 
If bottom_right_square=`o` and 
middle_middle_square=`o` then class=`negative` 0.66667 81 

75 6 
If top_middle_square=`x` and 
middle_right_square=`o` then class=`negative` 0.34454 119 

76 6 
If bottom_left_square=`o` and 
middle_middle_square=`o` then class=`negative` 0.7013 77 

77 6 
If bottom_left_square=`o` and 
bottom_right_square=`o` then class=`negative` 0.5974 77 

78 6 

If top_middle_square=`x` and 
bottom_right_square=`x` and 
middle_left_square=`x` then class=`negative` 0.66667 12 

79 6 
If top_right_square=`x` and top_left_square=`o` and 
bottom_left_square=`x` then class=`positive` 0.79032 62 

80 6 
If middle_middle_square=`b` and 
bottom_right_square=`x` then class=`positive` 0.83582 67 

81 6 

If middle_middle_square=`x` and 
bottom_left_square=`x` and middle_left_square=`o` 
then class=`positive` 0.8871 62 

82 6 
If top_right_square=`b` and top_left_square=`o` 
then class=`positive` 0.62121 66 

83 6 
If middle_middle_square=`x` and 
middle_left_square=`x` then class=`positive` 0.784 125 

84 6 
If top_left_square=`b` and 
middle_middle_square=`x` and 0.81818 22 
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middle_left_square=`b` then class=`positive` 

85 6 

If bottom_right_square=`x` and 
middle_left_square=`o` and 
middle_right_square=`x` then class=`positive` 0.77419 62 

86 6 

If bottom_right_square=`x` and 
bottom_left_square=`b` and 
middle_right_square=`x` then class=`positive` 0.79487 39 

87 6 
If middle_right_square=`b` and 
bottom_right_square=`x` then class=`positive` 0.65476 84 

88 6 

If middle_middle_square=`b` and 
bottom_left_square=`x` and 
middle_right_square=`x` then class=`positive` 0.76923 13 

89 6 
If middle_left_square=`b` and 
middle_right_square=`x` then class=`positive` 0.5 70 

90 6 If top_right_square=`o` then class=`positive` 0.5625 256 

91 7 

If bottom_middle_square=`b` and 
middle_right_square=`o` and 
top_middle_square=`x` then class=`negative` 0.42424 33 

92 7 If bottom_left_square=`o` then class=`negative` 0.44403 268 

93 7 

If middle_middle_square=`x` and 
middle_right_square=`o` and 
bottom_right_square=`o` then class=`negative` 0.42 50 

94 7 
If middle_middle_square=`x` and 
bottom_right_square=`x` then class=`negative` 0.15 140 

95 7 
If middle_middle_square=`o` and 
bottom_right_square=`o` then class=`negative` 0.66667 81 

96 7 
If top_left_square=`o` and bottom_left_square=`x` 
and bottom_right_square=`x` then class=`positive` 0.83636 55 

97 7 
If bottom_right_square=`o` and 
middle_left_square=`x` then class=`positive` 0.5473 148 

98 8 
If bottom_left_square=`o` and top_right_square=`b` 
and top_left_square=`o` then class=`negative` 0.52381 21 

99 8 
If top_right_square=`o` and 
bottom_middle_square=`b` then class=`negative` 0.48611 72 

100 8 
If bottom_left_square=`o` and top_left_square=`o` 
and middle_left_square=`o` then class=`negative` 1 32 

101 8 
If top_left_square=`x` and 
middle_middle_square=`o` then class=`negative` 0.48529 136 

102 8 
If bottom_middle_square=`o` and 
top_right_square=`o` then class=`negative` 0.2963 54 

103 8 If bottom_left_square=`b` then class=`positive` 0.66049 162 

104 8 
If top_right_square=`x` and 
middle_right_square=`x` then class=`positive` 0.69466 131 
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105 8 
If middle_right_square=`b` and 
bottom_middle_square=`b` then class=`positive` 0.73913 46 

Table 43 Tic-Tac-Toe Example Collective Model 

 
 

 While the collective models generated using the CRA process were not able to achieve 

higher accuracies than the traditional models in all cases. As the number of missing attributes 

increased the performance of the traditional method (ordered and unordered model) suffered the 

most. The collective models were less affected by the introduction of missing attributes. Take the 

Anneal data set for example. The highest accuracies achieved by the traditional and collective 

models (ordered) were 94% and 90% respectively under the best conditions (0 missing 

attributes). These models achieved 84% and 87% accuracy under the worst conditions (4 missing 

attributes). This equates to a 10% drop in accuracy for the traditional model compared to only a 

3% drop in accuracy for the CRA model. Even though the models produced by the CRA process 

achieved lower accuracies in some instances these models were less affected by the missing 

attribute information. Table 44 provides the best performance of each data set under the best (no 

missing attributes) and worst conditions (4 missing attributes) and the drop in accuracy for each 

dataset for the ordered models. Table 45 displays this information for the unordered models. 

Figures 37 and 38 illustrate the drop in accuracy for both types of models. 

 

Data Set 
Traditional 

Best 

Collective 

Best 

Traditional 

Worst 

Collective 

Worst 

Traditional 

Drop 

Collective 

Drop 

Congressional 

Voting 
99% 98% 79% 90% 20% 8% 

Anneal 94% 90% 84% 87% 10% 3% 

Thyroid 98% 98% 95% 97% 3% 1% 

Mushroom 100% 90% 82% 87% 18% 3% 

Tic-Tac-Toe 99% 96% 49% 71% 50% 28% 

Table 44 Best Performance for Best and Worst Conditions Ordered Models 



 

 

 

Data Set 
Traditional 

Best 

Collective 

Congressional 

Voting 
97% 

Anneal 90% 

Thyroid 97% 

Mushroom 89% 

Tic-Tac-Toe 82% 

Table 45 Best Performance for Best and Worst Conditions Unordered Models

 
 
 
 

Figure 37 Percentage Drop in Accuracy Ordered Models
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Collective 

Best 

Traditional 

Worst 

Collective 

Worst 

Traditional 

Drop

97% 77% 89% 20%

82% 82% 81% 8% 

96% 94% 95% 3% 

89% 77% 82% 12%

79% 48% 69% 34%

Best Performance for Best and Worst Conditions Unordered Models

Percentage Drop in Accuracy Ordered Models 

Data Sets

Traditional 

Drop 

Collective 

Drop 

20% 8% 

 1% 

 1% 

12% 7% 

34% 10% 

Best Performance for Best and Worst Conditions Unordered Models 

 
 

CRA

Traditional



 

 

Figure 38 Percentage Drop in Accuracy Unordered Models

  

 The aforementioned results of the drop in accuracy 

Sample t-test to determine if they were statistically significant. Tables 46 and 47 (ordered and 

unordered models) display the results of this analysis for each data set. The

H0: No difference in means for Traditional vs. CRA drop in classification accuracy for this test. 

For each data set evaluated, the p

hypothesis.  Meaning, that there is evidence

created using the CRA process are more resilient against the affects of missing attribute 

information. 

 

Data Set 

Congressional Voting

Anneal 

-40

-35

-30

-25

-20

-15

-10

-5

0

93 

Percentage Drop in Accuracy Unordered Models 

aforementioned results of the drop in accuracy were evaluated using a Welch’s Two 

test to determine if they were statistically significant. Tables 46 and 47 (ordered and 

unordered models) display the results of this analysis for each data set. The null hypothesis was 

: No difference in means for Traditional vs. CRA drop in classification accuracy for this test. 

For each data set evaluated, the p-value was less than .05. Therefore we can reject the null 

that there is evidence that supports the notion that the collective models 

created using the CRA process are more resilient against the affects of missing attribute 
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Thyroid 2.5697 12.488 0.02392 

Mushroom 5.9832 16.013 0.00001 

Tic-Tac-Toe 12.6789 11.794 0.00000003 

Table 46 Results of Two Sample Welch t-test (Ordered Models) 

  

Data Set t Degrees of Freedom p-value 

Congressional Voting 5.1854 17.91 0.00006 

Anneal 3.6934 15.388 0.002087 

Thyroid 3.678 10.998 0.003640 

Mushroom 2.1514 17.916 0.04534 

Tic-Tac-Toe 9.268 13.954 0.0000002 

Table 47 Results Two Sample Welch t-test (Unordered Models) 

  

 The hypothesis of this research was that the model created with the CRA process 

would be more resilient against missing attribute information in the test data. Resiliency 

refers to minimizing any decreases in classification accuracy as the number of missing attributes 

increases. For each data set the collective models created with the CRA process suffered less of a 

drop in classification accuracy as compared to the traditional models (see Figures 37 and 38). 

These findings are statistically significant (see tables 46 and 47) and support the hypothesis as 

the collective model maintained the ability to make fairly accurate predictions when faced with 

less than desirable conditions. This resiliency is a result of the collective model being generally 

larger than the traditional model and containing shorter more general rules as described in the 

analysis for each data set.  This directly relates to the manner in which the collective models 
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were created. The CRA process of building individual models on smaller homogenous subsets of 

the data produced collective models for all data sets that contained rules that were on average 

shorter than the rules in the traditional model.  Also, the collective models created for 4 out the 5 

data sets contained more rules on average than the traditional model.   

 

Figure 39 Ordered vs. Unordered Accuracies Overall 

  

 Figure 39 displays the overall performance of the unordered and ordered models.  

As seen in the figure, the ordered models performed better than the unordered models from an 

overall aspect. However, the difference in performance was negligible in some instances
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Chapter 6  

Summary 

6.1 Summary and Conclusion 

 
 Data mining is a powerful and useful tool that can be used to extract information 

from large data repositories. These techniques are used in a variety of domains to perform an 

array of different tasks. Predictive modeling/classification is one of the most thoroughly studied 

and researched subfield in data mining. The goal of these types of tasks is to predict some future 

outcome based on historical information. Rule based classifiers are one of the most often used 

types of predictive model.   A rule based classifier builds a model from training data as a set of 

high quality rules. The models that theses algorithms generate are easy to understand and 

interpret and widely accepted. There have been many rule based classification systems designed, 

studied and implemented that perform adequately in many applications. However, problems arise 

when the data that is used to assess the predictive ability of the model is not as comprehensive as 

the data used to create the model. When faced with missing attribute information it is desirable to 

have a model that maintains the ability to make fairly accurate predictions. Missing attributes are 

a well known issue in the field of data mining. (Batista & Monard, 2003 ) (Witten & Frank, 

2005) (Tan, Steinbach, & Kumar, 2006) The majority of the research performed focuses on 

handling missing attribute information in the training data. There has been little in the way of 

studying the effects of missing information in the test data.  We present a process which results 

in a model that is more resilient against the effects of missing attribute information in the 
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new/unseen data. The clustering rule-based approach (CRA) seeks to added robustness 

using data clustering. The training data is clustered and multiple models are built using the 

cluster wise data. The models are then combined into a collective model and evaluated against 

test data modified to contain missing attribute information. The experimental results support the 

hypothesis that the collective model is more resilient against the effects of missing attribute 

information. The collective model incurred a smaller loss in classification accuracy when faced 

with missing attributes. Also, the collective model displayed the ability to classify instances 

unable to be classified using traditional methods. These findings are encouraging as most real 

world data sets are often not as complete as practitioners would like. The work presented and 

evaluated here provides a new method of ensuring the model created will have the ability to 

make fairly accurate predictions when faced with missing/incomplete data. 

6.2 Future Work 
 
 There are many paths the direction of this research can take. We evaluated two methods 

of combining the rules from the multiple models: sort in decreasing order of accuracy and a 

voting scheme.  Other approaches for combining the rules should be examined. Also, a wider 

variety of data sets should be used to evaluate the CRA process.  The effects of a different set of 

k values should also be examined. Different clustering algorithms may also be studied, as well 

as, combining this technique with other process proven to improve classification accuracy such 

as ensemble methods. 
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