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Abstract

The qth-power algorithm from Leonard [3], [4], and Leonard and Pellikaan [1] is a

recent and efficient method of computing the integral closure of a ring in its field of fractions.

Previously, the qth-power algorithm has been used to compute integral closures over finite

fields. In this dissertation, we use the qth-power algorithm to compute integral closures over

the rationals and number fields.
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Chapter 1

Introduction

Since integral closures are important in several areas of mathematics, it is not surprising

that there are many implementations of the existing integral closure algorithms.

Our main goal is to understand the mathematics necessary to apply the qth-power

algorithm to give a highly structured presentation of an integral closure of a ring, and to

extend the qth-power algorithm to the rationals and number fields.

Chapter 1 gives the basic background for our work, including several key definitions and

useful notation.

Chapter two talks about integral closures and existing algorithms. Given a type I curve,

say f , an integral closure algorithm produces an R−module basis, {fi} for 0 ≤ i ≤ m, where

m is the maximum pole order, and all functions have poles at only one point called P∞.

Let L(mP∞) be the vector space consisting of the {fi} for 0 ≤ i ≤ m. Note that L(mP∞)

has functions with all possible pole orders 0, . . . ,m except for g gaps, where g is the genus

of the curve, f . Then the generator and/or parity-check functions of a one-point AG code

come from the vector space L(mP∞). Most integral closure algorithms compute the integral

closure of a ring by repeatedly enlarging the ring until it stabilizes at the integral closure,

as in the approach used by de Jong’s algorithm, [9].

In the next chapter, we present the qth-power algorithm. Unlike many existing al-

gorithms, the qth-power algorithm uses a different approach, starting with a module that

contains the integral closure and repeatedly reducing it to a smaller module until it stabi-

lizes at the integral closure. Here we compute the integral closures of several examples of

towers of rings over finite fields.
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The qth-power algorithm is currently written for positive characteristic. Can it be ex-

tended to the other fields? The answer is yes. The fourth chapter extends the qth-power

algorithm to the rational field. This is done with the help of the extended Euclidean algo-

rithm and the Chinese remainder theorem.

Chapter five extends the qth-power algorithm to number fields, and presents some the-

orems and examples.

In chapter six we present various implementations. We discuss the outputs from various

implementations.

Chapter seven presents some speed-up techniques which we use in our computations.

Built-in commands in some of the existing computing packages such as Magma, Macaulay2

and Singular are not very efficient. They do unnecessary computations. We have been able

write thoughtful and efficient code in place of some of the built-in commands. We end this

chapter with some timing illustrations of our techniques compared to built-in commands.

The Final chapter focuses on towers. There are many towers that have very good

coding theory properties. Unfortunately, most of these towers in their given form do not

allow for evaluation at several points at which some of the variables have poles. We define

new variables and transform these towers into type I curves.

1.1 Polynomial rings and monomial orderings

A finite field of order q, where q = pt, t > 1 and p is a prime, will be denoted by Fq, F∗q

will denote the non-zero elements of Fq. Throughout, P := F[xn, . . . , x1] (written as F[x]

when convenient) will denote a polynomial ring over F in n independent variables xn, . . . , x1,

and F will be either the rational field , Q, a finite field Fq, or the algebraic closure of one of

these fields. Let xα be shorthand for the monomial xαn
n · · ·x

α1
1 , and let I denote an ideal in

F[x]. Then R := F[x]/I is a quotient ring, and S := R[y]/J is a ring extension of R. We

are interested in the integral closure ic(S) := R[z]/J of S, and wish to view it as an affine

P-algebra.
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Given a polynomial ring P , we want a presentation of ic(S) relative to a finite P -module

generating set y0 := 1, y1, . . . , ys−1, so that J has a minimal, reduced Gröbner basis with

elements of the form yiyj −
∑
k

ci,j,,kyk, ci,j,k ∈ P defining multiplication, and possibly some

elements of the form aj,iyi − ai,jyj −
∑
k 6=i,j

bi,j,,kyk, aj,i, ai,j, bi,j,k ∈ P if the P−module

generators are not independent over P . Given a polynomial ring F[x], let Monn := {xα :

α ∈ Nn} be the set of all possible monomials in P in the variable x.

A global monomial ordering satisfies the conditions that

1. it is a total ordering on Monn

2. it is a well-ordering on Monn

3. xα � xβ implies xγxα � xγxβ.

The importance of a monomial ordering on P is that any polynomial has a unique represen-

tation ( written from highest to lowest terms).

Definition 1.1. ( See Cox et al [13] page 61.) Let f =
∑
α

aαx
α a nonzero polynomial in

F[x] and let � be a monomial order:

1. The multidegree of f is multidegree(f) = max(α ∈ Zn
≥0 : aα 6= 0) (the maximum is

taken with respect to �).

2. The leading coefficient of f is LC(f) = amultideg(f) ∈ F.

3. The leading monomial of f is LM(f) = xmultideg(f).

4. The leading term of f is LT(f) = LC(f) · LM(f).

We illustrate this with the following; Let f = −5x3+7x2z2+4xy2z+4z2, and let � denote the

monomial order. Then multideg(f) = (3, 0, 0), LC(f) = −5, LM(f) = x3, LT(f) = −5x3.

Definition 1.2. [13]: Let α = (αn, . . . , α1) and β = (βn, . . . , β1) ∈ Zn
≥0. We say that

α �lex β if, in the vector difference α − β ∈ Zn, the leftmost nonzero entry is positive. We

3



will write xα �lex x
β if α �lex β. The variables xn, . . . , x1 are ordered by the lex ordering

(1, 0, . . . , 0) �lex (0, 1, 0, . . . , 0) �lex · · · �lex (0, 0, . . . , 0, 1), so xn �lex · · · �lex x1.

Lexicographic order (lex) therefore orders according to the highest power of the most signif-

icant indeterminate, using less significant indeterminates to break ties.

Definition 1.3. [13]: Let α = (αn, . . . , α1) and β = (βn, . . . , β1) ∈ Zn
≥0. We say that

α �grevlex β if, | α |=
n∑
i=1

αi >| β |=
n∑
i=1

βi or | α |=| β | and the rightmost nonzero entry

of α− β ∈ Zn is negative.

The variables xn, . . . , x1 are ordered by the lex ordering (1, 0, . . . , 0) �grevlex (0, 1, 0, . . . , 0) �grevlex

, . . . ,�grevlex (0, 0, . . . , 0, 1), so xn �grevlex, . . . ,�grevlex x1. Graded reverse lexicographic order

(grevlex) orders by total degree first, then breaks ties using reverse lexicographic order. The

most widely used monomial orderings are the lex(xn � · · · � x1) and the the grevlex(xn �

· · · � x1). We note that lex and grevlex give the same ordering on the variables xn, . . . , x1.

Let us illustrate both orderings with the following: let f = 4xy2z + 4z2 − 5x3 + 7x2z2 ∈

F[x, y, z]. Then with respect to the lex ordering, we have that f = −5x3 + 7x2z2 + 4xy2z +

4z2, and with respect to the grevlex ordering, we have that f = 4xy2z+ 7x2z2− 5x3 + 4z2.

The following is an example from Cox et al [13]. Consider the monomials xy2z, z2, x3, and

x2z2. Using the indeterminate order x � y � z, here’s how some of the monomial orders

above would order these four monomials:

Lex : x3 � x2z2 � xy2z � z2 (power of x dominates).

Grevlex : xy2z � x2z2 � x3 � z2 (total degree dominates; lower power of z broke tie).

But any global monomial ordering has at least one non-singular matrix A (with entries from

N) that defines it in the sense that

xα � xβ if and only if Aαt �lex Aβt.
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1.2 Ideals and Gröbner bases

Let I be an ideal of the ring R := P [y]. I is necessarily finitely generated by some

f1, f2, . . . , fm; so let I := 〈f1, . . . , fm〉 =
{∑

rifi : ri ∈ R
}

with f1, . . . , fm called genera-

tors of I. B := (f1, . . . , fm) is an ordered Gröbner basis for I if and only if each r in R

has a unique remainder, called the normal form of f modulo I, (written NF (f, I)), after

division by elements of B in any order.

Definition 1.4. (See page 46 of [15].) Let G denote the set of all finite elements G ⊂ R. A

map

NF : R× G −→ R, (f,G) 7→ NF (f,G),

is called a normal form on R if, for all G ∈ G:

(1) NF (0, G) = 0, and, for all f ∈ R and G ∈ G,

(2) NF (f,G) 6= 0 ⇒ LM(NF (f,G)) /∈ L(G) := 〈LM(g)| g ∈ G \ {0}〉,

(3) If G = {g1, . . . , gs}, then r := f − NF (f,G) has a standard representation with respect

to G, that is, either r = 0, or r =
s∑
i=1

aigi, ai ∈ R, satisfying LM(f) � LM(aigi) for all i

such that aigi 6= 0. NF(f,G) is called a reduced normal form, if, moreover, NF(f,G) is

reduced with respect to G.

Let L(I) := {LM(f) : f ∈ I} be the ideal of leading monomials of I. Any monomial

not in L(I) is called a standard monomial, the set of such is often referred to as the

footprint or ∆-set, a (vector space) basis for the set of all normal forms NF (f, I). [ One

of our speed-up techniques involves efficient computation of NF (f q, G) for large primes q.

Such normal forms are used repeatedly in most of our computations.]

Definition 1.5. [15]: Let G ⊂ F[x] be any subset.

(1) G is called minimal if 0 /∈ G and LM(g) - LM(f) for any two elements f 6= g in G. We

note that G is called interreduced if LM(g) - any monomial of f .

(2) f ∈ R is called reduced with respect to G if no monomial of f is contained in the ideal,
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L(G), generated by the leading monomials of G. L(G) is called the leading ideal of G.

(3) Let I ⊂ F[x] be an ideal and let � be a monomial ordering on Mn(x). A finite set

G ⊂ F[x] is called a Gröbner basis of I if G ⊂ I, and LM(I) = LM(G). That is, G is

a Gröbner basis if the leading monomials of the elements of G generate the leading ideal of

I, or, in other words, if for any f ∈ I \ {0} there exists a g ∈ G satisfying LM(g)| LM(f).

Definition 1.6. [13]: Let f, g ∈ R \ {0} with LM(f) = xα and LM(g) = xβ, respectively.

Set γ := lcm(α, β) := (max(α1, β1), . . . ,max(αn, βn)) and let lcm(xα, xβ) := xγ be the

least common multiple of xα and xβ. We define the s-polynomial of f and g (denoted by

spoly(f, g)), to be

spoly(f, g) := xγ−αf − LC(f)

LC(g)
xγ−βg.

If LM(g) divides LM(f), say LM(g) = xβ, LM(f) = xα, then the s−polynomial is given by

spoly(f, g) := f − LC(f)

LC(g)
xα−βg,

and LM(spoly(f, g)) ≺ LM(f).

Buchberger’s algorithm, found in most literature on the subject including [13], [27], is suit-

able for computing Gröbner bases and it does the computations via s-polynomials. Many

characterization of Gröbner bases can be found in the literature.

1.3 P -algebras

Definition 1.7. [14]: A ring R is called a domain if 0 is prime. Let P be a ring. Some

authors define a P -algebra to be a commutative ring R such that P is a subring of R and

the unity of P is also the unity in R. A commutative ring R is called a reduced ring if

it has no non-zero nilpotent elements. A reduced, finitely-generated P -algebra is called an

affine P -algebra, or when it is not necessary to refer to the ring P , it is simply called an

affine ring. If the ring is a domain, then it is called an affine domain.
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This is the definition presented in [[14], page 35]. However, we shall consider the following

definitions in this study.

Definition 1.8. R := P [y]/I is called a quotient ring. If there are no zero-divisors, it

is also called an affine domain or affine P -algebra. It is always possible to adjoin new

variables so that there is a Gröbner basis in which all the relations induced are of degree at

most 2. We call call such quotient rings strictly affine P -algebras in the sense that all

the P -quadratic relations describe a P -algebra multiplication, and any P -linear relations are

called P -syzygies amongst the dependent variables.

Definition 1.9. [13]: Let K be a field, and let f1, . . . , fs be polynomials in the polynomial

ring K[x1, . . . , xn]. Then V (f1, . . . , fs) := {(a1, . . . , an) ∈ Kn : fi(a, . . . , an) = 0, 1 ≤ i ≤ s}

is called the affine variety defined by f1, . . . , fs. An affine variety V (f1, . . . , fs) ⊂ Kn is

thus the set of all solutions of the system of equations fi(a, . . . , an) = · · · = fs(a, . . . , an) = 0.

An algebraic variety is the set of solutions of a system of polynomial equations.

1.4 Order functions and order domains

Definition 1.10. (see Geil and Pellikan, [6].) Let (Γ,≺) be a well-order, with its minimal

element denoted by 0. An order function on an P -algebra R is a surjective function

ρ : R −→ Γ ∪ {−∞},

such that the following conditions hold:

1. ρ(f) = −∞ if and only if f = 0;

2. ρ(af) = ρ(f) for all nonzero a ∈ F;

3. ρ(f + g) � max{ρ(f), ρ(g)};

4. if ρ(f) ≺ ρ(g) and h 6= 0, then ρ(fh) ≺ ρ(gh);

5. if f and g are nonzero and ρ(f) = ρ(g), then there exists a nonzero a ∈ F such that

ρ(f − ag) ≺ ρ(g) for all f, g, h ∈ R.

7



Definition 1.11. A P -affine algebra, R, on which there is defined an order function is called

an order domain over P , or simply an order domain.

Definition 1.12. [4]: Let S = R/J be an affine domain. A function

wtS := R −→ Nn
0 ∪ {−∞}

(with −∞ ≺ α for all α ∈ Nn
0) is a weight function on S iff:

1. wtS(f) = −∞ iff f ∈ J ;

2. wtS(f) = 0 iff f = c+ J, c ∈ F\{0};

3. wtS(fg) = wtS(f) + wtS(g) for all f, g /∈ J ;

4. wtS(αf + βg) � max{wtS(f), wtS(g)} for all α, β ∈ F;

5. if wtS(f) = wtS(g) � 0, then wtS(f − λg) ≺ wtS(g) for a unique λ ∈ F.

Let AP be a non-singular n x n weight-over-grevlex matrix over N0 that defines a

global monomial ordering on P , the default here being the grevlex ordering, xn � · · · � x1.

Let APk
be a submatrix of AP , consisting of the first k rows of AP , where k is the number

of the free variables in f , with J :=< f >. Then AP defines a weight function given by

wtP (xα) := (APk
) · αt, with distinct monomials obviously having distinct weights. Suppose

for example that

AR :=


7 5 3

1 1 0

1 0 0


is a weight-over-grevlex matrix that defines a monomial ordering on R := F[y]. Then

wt(yγ) = ( 7 5 3 )(γ)t. Also xα �Ap x
β if and only if Apα

t �lex Apβt.

An alternative definition of a weight function is found in [[1], page 481 ]. The conditions

of this definition can restated in terms of leading monomials (LM) of normal forms (NF )

of elements as follows:

LM(NF (λf)) = LM(NF (f)) for 0 6= λ ∈ F.
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If LM(NF (g)) � LM(NF (f)) and f 6= g, then LM(NF (f − g)) � LM(NF (f));

and if LM(NF (g)) ≺ LM(NF (f)), then LM(NF (f − g)) = LM(NF (f)).

LM(NF (fg)) = LM(NF (LM(f), LM(g))).

If LM(NF (f)) = LM(NF (g)), then

LM

(
NF (f)

LC(NF (f))
− NF (g)

LC(NF (g))

)
≺ LM(NF (f)).

A weight function, say ρ, can be extended to a function on quotients by defining ρ(f/g) :=

ρ(f)− ρ(g) ∈ Zr. The qth-power map acts on such elements and thus it is important to have

the extended definition of a weight function, see [1], page 482. Weight functions are very

essential in our integral closure computations, as they are used with the earlier-mentioned

monomial orderings to produce new monomial orderings.

1.5 Integral extensions and type I curves

There are several definitions of an integral element. We will present some of them here.

Definition 1.13. [28]: Let R be a ring and S an R-algebra containing R. An element x ∈ S

is said to be integral over R if there exists an integer n and elements r1, . . . , rn in R such

that

xn + r1x
n−1 + · · ·+ rn−1x+ rn = 0.

The above equation is called an equation of integral dependence of x over R of degree n. It is

important to note here that equations of integral dependence are not unique if the function

used to define the integral extension is reducible.

Indeed let S be the ring Z[t]/(t2 − t3), where t is a variable over Z. Let R be the subring of

S generated over Z by t2. Then t ∈ S is integral over R and it satisfies the equations

x2 − t2 = 0 and x2 − xt2 = 0 in x.

This is not surprising as the function f(t) = t2 − t3 is reducible. In our definition, we will

require f(t) to be irreducible.
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Definition 1.14. [30]: Suppose R is a subring of the commutative ring S with 1 = 1s ∈ R.

1 An element s ∈ S is integral over R if s is the root of a monic polynomial in R[x].

2 The ring S is an integral extension of R or just integral over R if every s ∈ S is

integral over R.

3 The integral closure of R in S is the set of all elements of S that are integral over R.

We will consider the integral closure of an integral domain, R, in its field of fractions, Q(R).

We shall consider the following as our definition of an integral element and integral closure.

Definition 1.15. (Integral element) [1]: Let S be a domain and R a subdomain of S. An

element y ∈ S is said to be integral over R if and only if there exists a monic polynomial

φy(T ) ∈ R[T ] such that φy(y) = 0.

Feng and Rao introduced type I curves to be curves that satisfy equations of the form

xa + yb + g(x, y) = 0, gcd(a, b) = 1, a > b > deg(g(x, y)).

We shall consider the follow as our definition of type I integral extensions.

Definition 1.16. [4]: Let f(T ) :=
d∑
i=0

fiT
i ∈ P [T ] be a monic, absolutely irreducible

polynomial of degree d. Let the affine domain S := P [y]/J be an integral extension for

J := 〈f(y)〉. To extend wtP to a weight function wtS on S, define wtS(xα) := d · wtP (xα),

and wtS(y) := max{wtS(fi)
d−i : 0 ≤ i < d}. If the max is taken on at only one value of i, the

value is i = 0, LM(f0) := xα, and gcd{d, gcd{αi : 0 ≤ i < d}} = 1, then S is said to be

a type I integral extension.

Let AP be a non-singular n x n weight-over-grevlex matrix over N0 that defines a global

monomial ordering on P , with the default here being the grevlex ordering, xn � · · · � x1.

The monomial ordering, weight-over-grevlex, on the extension S of P above, is given by

AS :=

 wtS(y)t dAP

1 0

 .
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Definition 1.17. (Integral closure) [1]: Let S be a domain and R a subdomain of S. The

integral closure of R in S is defined to be icS(R) := {s ∈ S|s is integral over R}. When

S is the field of fractions of R, we simply write ic(R) instead of icS(R). R is integrally closed

in S if and only if R = icS(R). Moreover, icS(R) is a ring if S is a ring.

Example 1.1. Let P := F2[f3] and R := P [f5]/〈f 3
5 + f 5

3 + f5f3〉. Then integral closure

of R in its field of fractions is given by ic(R) := F2[f7, f5; f3]/〈f 2
7 + f5f

3
3 + f7, f7f5 + f 4

3 +

f5, f
2
5 + f7f3〉, where f7 :=

f 2
5

f3

.

The next chapter presents some theorems about properties of integral elements and

integral closures. It also presents a version of de Jong’s algorithm that is used by some to

compute integral closures.
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Chapter 2

Integral Closures

Let x := (xn, . . . , x1). Let F be a field and let P := F[x] be a polynomial ring of free

variables. Let R := P [y]/〈f(y)〉 be a simple integral extension of P , with deg(f, y) = m,

and let Q(R) be the quotient ring of R. Let u := (ur, . . . , u1, u0 := 1), u := (ur, . . . , u1) and

let ic(R) = F[u;x]/J be the integral closure of R in Q(R), where J has a minimal, reduced

Gröbner basis consisting of P -quadratic relations defining the P -algebra multiplication and

P -linear relations if the P -module generators are not free over P .

The goal of the next theorem is to help show that the integral closure of a ring is a ring.

Theorem 2.1. [30]: Let R be a subring of the commutative ring S with 1 ∈ R and let s ∈ S.

Then the following are equivalent:

(1) s is integral over R,

(2) R[s]/ < f(s) > is a finitely-generated R-module and

(3) s ∈ T for some subring T , that is a finitely-generated R-module.

Proof: Suppose first that (1) holds and let s be a root of the monic polynomial

f(x) := xn + an−1x
n−1 + · · ·+ a0 ∈ R[x].

Then

sn = −(an−1s
n−1 + an−2s

n−2 + · · ·+ a0)

and so sn, and hence all higher powers of s, can be expressed as R-linear combinations

of sn−1, . . . , s, 1. So R[s]/ < f(s) >:= R1 + Rs + · · · + Rsn−1 is finitely generated as an

R-module, which gives (2).
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If (2) holds then (3) holds with T = R[s]/ < f(s) > .

Suppose that (3) holds and let v1, v2, . . . , vn be a finite generating set for T. Then for i =

1, 2, . . . , n the element svi is an element of T since T is a ring, and so can be written as an

R-linear combination of v1, . . . , vn : svi =
n∑
j=1

aijvj, for 1 ≤ i ≤ n. So 0 =
n∑
j=1

(δijs−aij)vj,

where δij is the Kronecker delta. If B is the n× n matrix whose i, j entry is δijs− aij, and

v is the n× 1 column vector whose entries are v1, . . . , vn, then these equations are simply of

the form Bv = 0. It follows from Cramer’s Rule that det(B)vi = 0 for all i. But B = sI−A,

where A is the matrix (aij). Thus s is a root of the monic polynomial det(xI −A) ∈ R[x] (

the characteristic polynomial of A), and so s is a root of a monic polynomial with coefficients

in R, which gives (1), completing the proof. �

Corollary 2.1. Let R ⊆ S be as in Theorem 2.1 above and let s, t ∈ S

(1) if s and t are integral over R then so are s± t and st.

(2) The integral closure of R in S is a subring of S containing R.

(3) Integrality is transitive: let S be a subring of T ; if T is integral over S and S is integral

over R, then T is integral over R.

Proof: Let s and t be integral over R. By Theorem 2.1 both R[s] and R[t] are finitely-

generated R-modules, say

R[s]/ < f(s) >:= (Rs1 +Rs2 + · · ·+Rsn)

R[t]/ < f(t) >:= (Rt1 +Rt2 + · · ·+Rtm).

Then

R[s, t]/ < f(s, t) >:= (Rs1t1 + · · ·+Rsitj + · · ·+Rsntm)

is a ring containing s± t and st that is also a finitely-generated R−module. Hence s± t and

st are also integral over R, which proves (1) and also (2).
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To prove (3), let t ∈ T . Since t is integral over S, it is the root of some monic polynomial

p(x) = xn + an−1x
n−1 + · · · + a0 ∈ S[x]. Since ai ∈ S is integral over R, each ring R[ai]/ <

f(ai) > is a finitely-generated R-module and so the ring R1 := R[a0, a1, . . . , an−1]/ <

f(a0, a1, . . . , an−1) > is also a finitely-generated R-module. Since the monic polynomial p(x)

has its coefficients in R1, t is integral over R1 and it follows that the ring R1[t]/ < f(t) >:=

R[a0, a1, . . . , an−1, t] is a finitely-generated R-module. By Theorem 2.1, this means that t is

integral over R, which gives (3).�

2.1 de Jong’s algorithm

de Jong’s algorithm has been implemented in Magma, Singular and Macaulay2

to compute integral closures. The approach is to produce a nested sequence of rings R :=

R0 ⊂ · · · ⊂ RL = RL+1 = ic(R) with a presentation that is based on elements of the field of

fractions, Q(R), used to define the rings involved. Below is a version of de Jong’s algorithm:

Algorithm: ( See page 275, [9] for details.)

INPUT: A reduced Noetherian ring R.

OUTPUT: The normalization R̃ of R.

STEP 1: Determine a non-zero ideal I with NNL ⊂ V (I).

STEP 2: Take a non-zero element f ∈ I, and compute J := Ann(f). If J = 0, GOTO STEP

4.

STEP 3: Put R := R/Ann(J)⊕R/J and GOTO STEP 1.

STEP 4: Compute the radical
√
I of I. Put I :=

√
I.

STEP 5: Compute HomR(I, I). If R = HomR(I, I) then put R̃ := R and STOP.

STEP 6: Set R := HomR(I, I) and GOTO STEP 1.

In Singular ([15] page 224), the idea to compute ic(R) is to enlarge the ring R to the

endomorphism ring R′ = HomR(J, J) for a suitable ideal J such that R′ ⊂ ic(R), and repeat

the process until it stabilizes at the integral closure ic(R).

14



We now present the theory that is used in Singular to produce the increasing sequence

of rings that contains the initial ring and is also contained in the integral closure.

Theorem 2.2. (See [15], page 192 for details.) Let A,B be rings.

(1) If ϕ : A −→ B is a finite extension, then it is integral. More generally, if I ⊂ A is

an ideal and M a finitely-generated B-module then any b ∈ B with bM ⊂ IM satisfies a

relation

bp + a1b
p−1 + · · ·+ ap = 0, with ai ∈ A.

(2) If B is a finitely-generated A-algebra of the form B = A[b1, . . . , bn] with bi ∈ B integral

over A then B is finite over A.

Theorem 2.3. (See Lemma 3.6.1 of [15].) Let R be a reduced Noetherian ring and J ⊂ A

an ideal containing a non-zerodivisor x of R. Then there are natural inclusions of rings

R ⊂ HomR(J, J) ∼=
1

x
· (xJ : J) ⊂ ic(R)

Proof: For a ∈ R, let ma : J −→ J denote the multiplication by a. If ma = 0, then

ma(x) = ax = 0 and, hence, a = 0, since x is a non-zerodivisor. Thus a 7→ ma defines an

inclusion R ⊂ HomR(J, J).

It is easy to see that ϕ ∈ HomR(J, J) the element ϕ(x)/x ∈ Q(R) is independent of x:

for any a ∈ J we have ϕ(a) = (1/x) · ϕ(xa) = a · ϕ(x)/x, since ϕ is R-linear.

Hence ϕ 7→ ϕ(x)/x defines an inclusion HomR(J, J) ⊂ Q(R) mapping x · HomR(J, J)

into xJ : J = {b ∈ R | bJ ⊂ xJ}. The latter map is also surjective, since any b ∈ xJ : J

defines, via multiplication by b/x, an element ϕ ∈ HomR(J, J) with ϕ(x) = b. Since x is a

non-zerodivisor, we obtain the isomorphism HomR(J : J) ∼= (1/x) · (xJ : J).

It follows from [Theorem 2.2] that any b ∈ xJ : J satisfies an integral relation bp +

a1b
p−1 + · · ·+ a0 = 0 with ai ∈< xi >. Hence, b/x is integral over R, showing 1

x
· (xJ : J) ⊂

ic(R).�
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Example 2.1. ( See example 3.6.8 of [15].) Let R := F[x, y]/〈x2 − y3〉 and J := 〈x, y〉.

Then x ∈ J is a non-zerodivisor in R with xJ : J = x〈x, y〉 : 〈x, y〉 = 〈x, y2〉, therefore,

HomR(J, J) = 〈1, y2/x〉. Thus we have R ⊂ 〈1, y2/x〉 ∼=
1

x
· (xJ : J) ⊂ ic(R).
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Chapter 3

The qth-power algorithm in positive characteristic

In this chapter, we present the qth-power algorithm to compute the integral closure of

rings over the finite fields. Most of our rings in this section will be from towers.

3.1 qth-power algorithm

The qth-power algorithm approach is to begin with a dual module M (0) := ∆−1R and

produce a sequence of P -modules ∆−1R := M (0) ⊃ · · · ⊃M (L) = M (L+1) = ic(R) where

M (L+1) :=
{

∆−1f ∈M (L) : (∆−1f)q ∈M (L)
}

qth-power algorithm:

Let f(y, x) be a polynomial of degree m in F[y, x], with y being the dependent variable, x

the independent variable, weight(y) = r and weight(x) = s. Let I = ideal< f >.

(1) (∆ and weights):

(a) Compute the conductor element, ∆, (via computing a Gröbner basis of the ideal gen-

erated by minors of the Jacobian matrix of a Gröbner basis of I). [There are other ways to

compute ∆.]

(b) β := (qn)·Totaldegree(LT(∆)) + 1

(c) maxweight :=
m−1∑
i=0

wt(yi)(q − 1) + β

(2) (Initialization):

Let G be a list from 0 to maxweight with entries all zeros. set nextG := G. Set G[0] := 1 ∈

F[x, y], F [0] := 1 ∈ F[x, y] and H[0] := 0 ∈ F[x, y].

For i = 1 to m− 1, G[i · r] := G[(i− 1) · r] · y, F [i · r] := NormalForm(F [(i− 1) · r] · yq, I),

17



H[i · r] := NormalForm(H[(i− 1) · r] · yq, I). StartG := G

While StartG 6= nextG

(3) ( Reduction):

From smallest weight j = 1 to maxweight, do (a) (Element of nextG): If F [j] = 0 then

nextG[j] := G[j].

(b) (F [j]/(StartG[i] · LT (∆)), i < j): If F [j] divides (StartG[i] · LT (∆)) with quotient

say, quo, then

G[j + s] := G[j] · x, F [j + s] := F [j] · xq − (∆ · StartG[i] · quo), H[j + s] := H[j] · xq +

(StartG[i] · quo).

(c) (LM(F [j]) already exist): If LM(F [i]) = LM(F [j]), i < j, then

α := LC(F [j])/LC(F [i]), G[j+s] := G[j]·x−α ·G[j], F [j+s] := F [j]·xq−α ·F [j], H[j+

s] := H[j] · xq − α ·H[j].

(d) (If (a) − (c) fail): If (a) − (c) fail, then

G[j + s] := G[j] · x, F [j + s] := F [j] · xq, H[j + s] := H[j] · xq.

(4) (Next pass ):

StartG := nextG and nextG := G, F := H ·D, H := 0, G := 0, and repeat steps (a) −

(d) in (3) above.

Until StartG = nextG

Definition 3.1. [1]: Let R = Rr := F[xr, . . . , x1] be a ring with field of fractions Fr :=

F(xr, . . . , x1) := {a/b | a, b ∈ R, b 6= 0}. For r < j ≤ n, recursively define simple field

extensions Fj := Fj−1(xj) with φj(xj) = 0 for φj(T ) ∈ Fj−1[T ] irreducible; and subdomains

Rj := icFj
(Rj−1). Let Fj := ideal〈Fj−1, φj(xj)〉. This sequence of domains (Rj)

n
j=r ( with

each Rj integrally closed in the corresponding field of fractions Fj) is called an integral tower

(of rank r) if and only if

1.

φj(xj) := x
mj

j + uj

j−1∏
i=1

x
αi,j

i + gj(xj, . . . , x1) ∈ Rj−1[xj],
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is (monic) irreducible, with 0 6= uj ∈ Fq;

2. gcd(φj(xj), φ
′
j(xj)) ∈ R := Rr;

3. The weight functions, given recursively by Wr := Jr, and Wj :=
(
αjWj−1

mjWj−1

)
, with αj :=

(αj−1,j, . . . , α1,j) satisfy

wt(gj(xj, . . . , x1)), wt(x
mj

j ) = wt

(
j−1∏
i=1

x
αi,j

i

)
;

4. gcd{mj, gcdi{(αj,Wj−1)i}} = 1.

Definition 3.2. Let P, R be rings as above, and ic(R) be the integral closure of R in its field

of fractions, Q(R). A conductor element, ∆, is an element that satisfies ∆ · ic(R) ⊆ R.

It is important to remark here that while we require the conductor element to be an

element of P , others (see [2], [15], [7], [11], [10], [12], [8], and [9]) allow the conductor

element to be an element of R. It is important to note that Magma’s IntegralClosure

produces a module presentation over a function field, while its Normalisation gives a quotient

ring. Singular’s Normal produces an R-module presentation, while its NormalP command

produces a quotient ring. Macaulay2 ’s integralClosure gives an extension of R while its

icFracR command does not give a presentation. Unlike some authors who are interested in

a generating set of the integral closure we are interested in a P -module generating set of

the integral closure, ic(R), with ic(R) considered as an P -module. Let us look at a common

simple example.

Example 3.1. Let P := F2[f3] and R := P [f5]/〈f 3
5 + f 5

3 + f5f3〉. Then qth-power integral

closure computations give us the integral closure of R as

ic(R) := F2[f7, f5; f3]/〈f 2
7 + f5f

3
3 + f7, f7f5 + f 4

3 + f5, f
2
5 + f7f3〉, where f7 :=

f 2
5

f3

.

The integral closure, ic(R), has R-module generating set {1, f7}, meaning, ic(R) = R ·1+R ·

f7. But ic(R) has P -module generating set {1, f5, f7}, meaning, ic(R) = P ·1+P ·f5 +P ·f7.
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In light of the above remark, we will state a corresponding version of a theorem on page

298 from [14]. The proof of this theorem is omitted here but can be found in [14].

Theorem 3.1. Let P, R, and ic(R) be as above. Then ic(R) is a finitely generated P -

module and ic(R) =
m−1∑
i=0

Pui, with the ui’s having a common denominator, ∆ ∈ P . That

is, ui =
vi
∆

, with vi ∈ R.

Corollary 3.1. Let P and R be as in the above theorem. There exists a conductor element,

∆, ∈ P such that R ⊆ ic(R) ⊆ ∆−1R.

Proof: We know that R ⊆ ic(R) and from the above theorem, we have that

ic(R) =
m−1∑
i=0

Pui =
m−1∑
i=0

P
vi
∆

=
1

∆

m−1∑
i=0

Pvi ⊆
1

∆
R. �

3.2 Examples of integral closures of tower extensions over finite fields via the

qth-power algorithm

Example 3.2.

xqi+1 + xi+1 =
xqi

xq−1
i + 1

, 1 ≤ i ≤ n. (3.1)

We compute the integral closure of the above tower of rings. (Details of this tower are

found in [16]). Our MAGMA code also computes the corresponding weights. Many useful

curves are not usually written as a recursive sequence of integral type I extensions. However,

the following change of variables

zqm−qi+1+qi := xm−i

m−1∏
j=1

(xq−1
m−i−j + 1), (3.2)

puts this into type I form. Let us now consider some values of q and n for the above examples.

20



Example 3.3. Take q = 2 and n = 2 in equation 3.3.

x1(x1 + 1)(x2 + 1)− x2
2 = 0

x2(x2 + 1)(x4 + 1)− x2
4 = 0

Define x6 and x7 respectively by x6 := x2(x4 + 1) and x7 := x1(x2 + 1)(x4 + 1). Let

= := 〈y2
6 + y6y4 + y6 − y2

4 − y3
4, y2

7 + y7y6 + y7y4 + y7 − y6y
2
4〉 be the ideal generated by

y2
6 + y6y4 + y6− y2

4 − y3
4 and y2

7 + y7y6 + y7y4 + y7− y6y
2
4. Let R := F2[y4]〈1, y6, y7, y7y6〉/=

and M0 := R/∆ The algorithm gives the following edited MAGMA output below;

weights and bases for next pass : [ -4, 2, 3, 5 ]

[ y4,

y6*y4,

y7*y4,

y7*y6 ]

weights and bases for the next pass : [ 0, 5, 6, 7 ]

[ y4^2,

y7*y6 + y6*y4,

y6*y4^2,

y7*y4^2 ]

Thus from the qth-power algorithm, we get

∆M0 = F2[y4]〈1, y6, y7, y7y6〉/=

∆M1 = F2[y4]〈y4, y6y4, y7y4, y7y6〉/=

∆M2 = F2[y4]〈y2
4, y7y6 + y6y4, y6y

2
4, y7y

2
4〉/=

∆M3 = F2[y4]〈y2
4, y7y6 + y6y4, y6y

2
4, y7y

2
4〉/=,

It follows that ic(R) = M2.
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Example 3.4. Take q = 2 and n = 3 in equation 3.3.

x1(x1 + 1)(x2 + 1) + x2
2 = 0

x2(x2 + 1)(x4 + 1) + x2
4 = 0

x4(x4 + 1)(x8 + 1) + x2
8 = 0

Define x12 := x4(x8+1), x14 := x2(x4+1)(x8+1) and x15 := x1(x2+1)(x4+1)(x8+1).

Let = := 〈 y2
12 + y12y8 + y12 + y2

8 + y3
8, y2

14 + y14y12 + y14y8 + y14 + y12y
2
8, y2

15 + y15y14 +

y15y12 + y15y8 + y15 + y14y12 + y14y
2
8〉

Our edited MAGMA output for this example is:

weights and bases for the next pass :[ -16, -4, -2, -1, 2, 5, 9, 11 ]

M_1

g_{-16} := y8^2,

g_{-4} := y12*y8^2,

g_{-2} := y14*y8^2,

g_{-1} := y15*y8^2,

g_2 := y14*y12*y8,

g_5 := y15*y14*y8,

g_9 := y15*y14*y12 + y15*y14,

g_{11} := y15*y12*y8^2

weights and bases for the next pass : [ -8, 4, 6, 7, 9, 10, 11, 13 ]

M_2

g_{-8} := y8^3,

g_4 := y12*y8^3,

g_6 := y14*y8^3,

g_7 := y15*y8^3,

g_9 := y15*y14*y12 + y15*y14*y8 + y14*y8^2 + y15*y14,
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g_{10} := y14*y12*y8^2 + y14*y8^3,

g_{11} := y15*y12*y8^2 + y15*y14*y8,

g_{13} := y15*y14*y8^2 + y15*y8^3

weights and bases for the next pass :[ 0, 9, 10, 12, 13, 14, 15, 19 ]

M_3

g_0 := y8^4,

g_9 := y15*y14*y12 + y14*y8^3 + y15*y14*y8 + y12*y8^3 + y14*y8^2 + y15*y14,

g_{10} := y14*y12*y8^2 + y12*y8^3,

g_{12} := y12*y8^4,

g_{13} := y15*y14*y8^2,

g_{14} := y14*y8^4,

g_{15} := y15*y8^4,

g_{19} := y15*y12*y8^3 + y15*y14*y8^2

weights and bases for the next pass :[ 0, 10, 12, 13, 14, 15, 17, 19 ]

M_4

g_0 := y8^4,

g_{10} := y14*y12*y8^2 + y12*y8^3,

g_{12} := y12*y8^4,

g_{13} := y15*y14*y8^2 + y15*y14*y12 + y14*y8^3 + y15*y14*y8

+ y12*y8^3 + y14*y8^2 + y15*y14,

g_{14} := y14*y8^4,

g_{15} := y15*y8^4,

g_{17} := y15*y14*y12*y8 + y14*y8^4 + y15*y14*y8^2 + y12*y8^4

+ y14*y8^3 + y15*y14*y8,

g_{19} := y15*y12*y8^3 + y15*y14*y8^2
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thus giving

∆M0 = F2[y8]〈1, y12, y14, y15, y12y14, y12y15, y14y15, y12y14y15〉/=

∆M1 = F2[y8]〈g−16, g−4, g−2, g−1, g2, g5, g9, g11〉/=

∆M2 = F2[y8]〈g−8, g4, g6, g7, g9, g10, g11, g13〉/=

∆M3 = F2[y8]〈g0, g9, g10, g12, g13, g14, g15, g19〉/=,

∆M4 = F2[y8]〈g0, g10, g12, g13, g14, g15, g17, g19〉/=,

∆M5 = F2[y8]〈g0, g10, g12, g13, g14, g15, g17, g19〉/=

and it follows that ic(R) = M4.

Example 3.5. Take q = 3 and n = 2 in equation 3.3.

x1(x
2
1 + 1)(x2

3 + 1)− x3
3 = 0

x3(x
2
3 + 1)(x2

9 + 1)− x3
9 = 0

By defining x21 := x3(x
2
9 + 1), and x25 := x1(x

2
3 + 1)(x2

9 + 1), we get the following

edited MAGMA output:

weights and GB for pass number 1 new index is [ -18,

-15, -8, 6, 7, 8, 13, 20, 23 ]

and base is [

y9^6 + y9^4,

y21*y9^4,

y25*y21*y9^2,

y21^2*y9^4,

y25*y9^6 + y25*y9^4,

y25^2*y21*y9,

y25*y21^2*y9^2 + 2*y25*y9^6 + 2*y25*y9^4,
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y25^2*y21^2,

y25^2*y9^5 + y25^2*y9^3 + 2*y25^2*y21 ]

weights and GB for pass number 2 new index is

[ 0, 10, 15, 20, 21, 22, 23, 25, 26 ]

and base is [

y9^8 + y9^6,

y25*y21*y9^4,

y21^2*y9^5 + y25*y21*y9^3,

y25^2*y21^2 + 2*y25*y9^7 + 2*y21^2*y9^4 + 2*y25*y9^5 + y25*y21*y9^2,

y21*y9^8 + 2*y9^9 + y21*y9^6 + 2*y9^7,

y25*y21^2*y9^3 + 2*y21*y9^7 + y25*y21*y9^4 + y9^8 + 2*y21*y9^5 + y9^6,

y25^2*y9^5 + 2*y25^2*y21*y9^2 + y25*y21^2*y9^2

+ y25^2*y9^3 + y21*y9^6 + 2*y25^2*y21 + y21*y9^4,

y25*y9^8 + y25*y9^6,

y25^2*y21*y9^3 ]

weights and GB for pass number 3 new index is

[ 0, 19, 20, 21, 22, 23, 24, 25, 26 ]

and base is [

y9^8 + y9^6,

y25*y21*y9^5 + y21^2*y9^5 + y25*y21*y9^3,

y25^2*y21^2 + 2*y25*y9^7 + y25*y21*y9^4 + 2*y21^2*y9^4

+ 2*y25*y9^5 + y25*y21*y9^2,

y21*y9^8 + 2*y9^9 + y21*y9^6 + 2*y9^7,

y25*y21^2*y9^3 + 2*y21*y9^7 + y9^8 + 2*y21*y9^5 + y9^6,

y25^2*y9^5 + 2*y25^2*y21*y9^2 + y25*y21^2*y9^2

+ y25^2*y9^3 + y21*y9^6 + 2*y25^2*y21 + y21*y9^4,

y21^2*y9^6,
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y25*y9^8 + y25*y9^6,

y25^2*y21*y9^3 ]

weights and GB for pass number 4 new index is

[ 0, 19, 20, 21, 22, 23, 24, 25, 26 ]

and base is [

y9^8 + y9^6,

y25*y21*y9^5 + y21^2*y9^5 + y25*y21*y9^3,

y25^2*y21^2 + 2*y25*y9^7 + y25*y21*y9^4 + 2*y21^2*y9^4

+ 2*y25*y9^5 + y25*y21*y9^2,

y21*y9^8 + 2*y9^9 + y21*y9^6 + 2*y9^7,

y25*y21^2*y9^3 + 2*y21*y9^7 + y9^8 + 2*y21*y9^5 + y9^6,

y25^2*y9^5 + 2*y25^2*y21*y9^2 + y25*y21^2*y9^2 + y25^2*y9^3

+ y21*y9^6 + 2*y25^2*y21 + y21*y9^4,

y21^2*y9^6,

y25*y9^8 + y25*y9^6,

y25^2*y21*y9^3 ]

Thus it follows that ic(R) = M3.

Example 3.6. Consider the tower

zqn+1 + zn+1 = xq+1
n with xn =

zn
xn−1

, 1 ≤ n ≤ m. (3.3)

We compute the integral closure of the above tower of rings. (Details of this tower are

found in [21]). The following change of variables

x2qm+
∑m

j=n q
j−1 = x2

m

m∏
j=n

xj
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puts the curve into type-I form. We will compute the integral closure of the above ring for

some values of q and n.

Take q = 2 and n = 2. We show the weights and the fractions produced during each pass of

the qth-power algorithm.

y2
1y2 + y1 + y2

2 = 0

y2
2y4 + y2 + y2

4 = 0

Define y11 := y1y2y
2
4, y6 := y2y4

The computed delta is y4^6 + y4^3

and your initial weights are [ 1, 12, 23, 34 ]

weights for pass number 1 are [ -4, 2, 7, 9 ]

and the fractions are [ y4^5 + y4^2,

y11^2*y4 + y11*y4^3 + y4^2,

y11*y4^5 + y11*y4^2,

y11^3 + y11*y4^4 + y11*y4 + y4^3]

weights for pass number 2 are [ 0, 6, 7, 9 ]

and the fractions are [ y4^6 + y4^3,

y11^2*y4^2 + y11*y4^4 + y4^3,

y11*y4^5 + y11*y4^2,

y11^3 + y11*y4^4 + y11*y4 + y4^3]

weights for pass number 3 are [ 0, 6, 9, 11 ]

and the fractions are [ y4^6 + y4^3,

y11^2*y4^2 + y11*y4^4 + y4^3,

y11^3 + y11*y4^4 + y11*y4 + y4^3,

y11*y4^6 + y11*y4^3 ]
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weights for pass number 4 are [ 0, 6, 9, 11 ]

and the fractions are [ y4^6 + y4^3,

y11^2*y4^2 + y11*y4^4 + y4^3,

y11^3 + y11*y4^4 + y11*y4 + y4^3,

y11*y4^6 + y11*y4^3 ]

Thus it follows that ic(R) = M3.

Take q = 2 and n = 3, to get

y2
1y2 + y1 + y2

2 = 0

y2
2y4 + y2 + y2

4 = 0

y2
4y8 + y4 + y2

8 = 0

Define y43 := y1y2y
2
4y

4
8, y22 := y2y4y

2
8, y12 := y4y8

We note that the fractions produced during each pass of the qth-power algorithm are messy,

and will thus be omitted here. However, we will show the weights produced during each pass

of the qth-power algorithm.

The computed delta is

y8^82 + y8^76 + y8^70 + y8^64 + y8^55 + y8^46 + y8^43 + y8^40 +

y8^34 + y8^28

Initial weights are [ 1, 44, 87, 130, 173, 216, 259, 302 ]

weights for pass number 1

new index is [ -160, -117, -78, -76, -74, -73, -71, -43 ]

weights for pass number 2

new index is [ -80, -37, -33, -28, -26, -22, -3, 1 ]

weights for pass number 3

new index is [ -24, -5, -4, -2, 2, 7, 9, 21 ]

weights for pass number 4
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are [ -8, 4, 6, 11, 15, 17, 18, 21 ]

weights for pass number 5

are [ 0, 11, 12, 14, 15, 18, 21, 25 ]

weights for pass number 6

are [ 0, 12, 14, 15, 18, 19, 21, 25 ]

weights for pass number 7

are [ 0, 12, 14, 15, 18, 19, 21, 33 ]

weights for pass number 8

are [ 0, 12, 14, 15, 18, 19, 21, 33 ]

The fractions are:

[ y8^82 + y8^76 + y8^70 + y8^64 + y8^55 + y8^46 + y8^43 + y8^40 +

y8^34 + y8^28,

y43^4*y8^62 + y43*y8^77 + y43^6*y8^49 + y43^4*y8^59 +

y43^3*y8^64 + y43^2*y8^69 + y43*y8^74 + y43^4*y8^56 +

y43^2*y8^66 + y43^7*y8^38 + y43^6*y8^43 + y43^3*y8^58 +

y43^6*y8^40 + y43^5*y8^45 + y43^2*y8^60 + y43^5*y8^42 +

y43^4*y8^47 + y8^67 + y43^7*y8^29 + y43^6*y8^34 +

y43^3*y8^49 + y43^2*y8^54 + y43^7*y8^26 + y43^5*y8^36 +

y43^3*y8^46 + y43*y8^56 + y43^6*y8^28 + y43^5*y8^33 +

y43^4*y8^38 + y8^58 + y43^4*y8^35 + y43^3*y8^40 +

y43^5*y8^27 + y43*y8^47 + y8^52 + y43^5*y8^24 + y43^3*y8^34

+ y43^2*y8^39 + y43^4*y8^26 + y43*y8^41 + y43^4*y8^23 +

y43^2*y8^33 + y8^40 + y8^37 + y8^31 + y8^28,

y43^2*y8^73 + y43*y8^75 + y8^80 + y43^6*y8^47 + y43^5*y8^52 +

y43^3*y8^62 + y43*y8^72 + y43^7*y8^39 + y43^5*y8^49 +

y43^4*y8^54 + y43^3*y8^59 + y43^2*y8^64 + y43*y8^69 + y8^74

+ y43^7*y8^36 + y43^3*y8^56 + y43^2*y8^61 + y43*y8^66 +
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y8^71 + y43^5*y8^43 + y43*y8^63 + y8^68 + y43^7*y8^30 +

y43^6*y8^35 + y43^4*y8^45 + y43^3*y8^50 + y8^65 +

y43^6*y8^32 + y43^3*y8^47 + y43*y8^57 + y43^7*y8^24 +

y43^5*y8^34 + y43^4*y8^39 + y43^2*y8^49 + y43*y8^54 + y8^59

+ y43^7*y8^21 + y43^6*y8^26 + y43^5*y8^31 + y43^6*y8^23 +

y43^4*y8^33 + y43*y8^48 + y8^53 + y43^6*y8^20 + y43^4*y8^30

+ y43^3*y8^35 + y43*y8^45 + y8^50 + y43^7*y8^12 +

y43^6*y8^17 + y43^5*y8^22 + y43^4*y8^27 + y43*y8^42 + y8^47

+ y43^5*y8^19 + y43^3*y8^29 + y43*y8^39 + y43^6*y8^11 +

y43^5*y8^16 + y43^3*y8^26 + y43*y8^36 + y8^41 + y43*y8^30 +

y43*y8^27 + y8^32 + y43^2*y8^19 + y43*y8^24 + y8^29 +

y43^2*y8^16 + y43*y8^21,

y43^5*y8^57 + y43^4*y8^62 + y43*y8^77 + y43^7*y8^44 +

y43^6*y8^49 + y43^5*y8^54 + y8^79 + y43^6*y8^46 +

y43^4*y8^56 + y43^2*y8^66 + y43*y8^71 + y8^76 + y43^7*y8^38

+ y43^6*y8^43 + y43^5*y8^48 + y43^4*y8^53 + y8^73 +

y43^6*y8^40 + y43^5*y8^45 + y43^3*y8^55 + y43^2*y8^60 +

y8^70 + y43^6*y8^37 + y43^2*y8^57 + y43*y8^62 + y8^67 +

y43^7*y8^29 + y43^5*y8^39 + y43^4*y8^44 + y43^2*y8^54 +

y43*y8^59 + y43^7*y8^26 + y43^6*y8^31 + y43^5*y8^36 +

y43^4*y8^41 + y43^3*y8^46 + y43^2*y8^51 + y43*y8^56 +

y43^6*y8^28 + y43^3*y8^43 + y43^7*y8^20 + y43^6*y8^25 +

y43^4*y8^35 + y43*y8^50 + y43^3*y8^37 + y43^5*y8^24 +

y43^3*y8^34 + y8^49 + y43^7*y8^11 + y43^6*y8^16 +

y43^4*y8^26 + y8^46 + y43^4*y8^23 + y43^2*y8^33 + y43*y8^38

+ y43^6*y8^10 + y43^5*y8^15 + y43^3*y8^25 + y43*y8^32 +

y8^37 + y43*y8^29 + y43^2*y8^18 + y43^2*y8^15 + y43*y8^20,
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y43^6*y8^52 + y43^4*y8^62 + y43^3*y8^67 + y43*y8^77 +

y43^7*y8^41 + y43^5*y8^51 + y43^4*y8^56 + y43^2*y8^66 +

y43*y8^71 + y8^76 + y43^7*y8^38 + y43^5*y8^48 + y43^4*y8^53

+ y43*y8^68 + y8^73 + y43^5*y8^45 + y43^4*y8^50 + y8^70 +

y43^7*y8^32 + y43^4*y8^47 + y43*y8^62 + y8^67 + y43^6*y8^34

+ y43^5*y8^39 + y43^3*y8^49 + y43*y8^59 + y43^7*y8^26 +

y43^6*y8^31 + y43^5*y8^36 + y43*y8^56 + y8^61 + y43^2*y8^48

+ y43*y8^53 + y43^7*y8^20 + y43^6*y8^25 + y43^4*y8^35 +

y43^3*y8^40 + y43*y8^50 + y43^7*y8^17 + y43^4*y8^32 +

y43^2*y8^42 + y43*y8^47 + y43^7*y8^14 + y43^4*y8^29 +

y43^3*y8^34 + y43*y8^44 + y43^7*y8^11 + y43^3*y8^31 +

y43^2*y8^36 + y8^46 + y43^6*y8^13 + y43*y8^38 + y8^43 +

y43^6*y8^10 + y43^5*y8^15 + y43^3*y8^25 + y43^2*y8^30 +

y43*y8^35 + y43^2*y8^27 + y43*y8^32 + y43^2*y8^24 +

y43*y8^29 + y8^34 + y43*y8^26 + y8^31 + y8^28 + y43^2*y8^15

+ y43*y8^20,

y43*y8^79 + y43^6*y8^51 + y43^4*y8^61 + y43^3*y8^66 +

y43^2*y8^71 + y43*y8^76 + y8^78 + y43^7*y8^40 + y43^6*y8^45

+ y43^4*y8^55 + y43^3*y8^60 + y43^2*y8^65 + y8^75 +

y43^3*y8^57 + y43^2*y8^62 + y43*y8^67 + y43^7*y8^34 +

y43^5*y8^44 + y43^4*y8^49 + y43^3*y8^54 + y43^2*y8^59 +

y43*y8^64 + y43^7*y8^31 + y43^5*y8^41 + y43^4*y8^46 +

y43*y8^61 + y43^7*y8^28 + y43^5*y8^38 + y43^4*y8^43 +

y43*y8^58 + y8^63 + y43^7*y8^25 + y43^5*y8^35 + y43^3*y8^45

+ y8^60 + y43^7*y8^22 + y43^5*y8^32 + y43^4*y8^37 +

y43*y8^52 + y8^57 + y43^5*y8^29 + y43^4*y8^34 + y43^3*y8^39

+ y43*y8^49 + y43^7*y8^16 + y43^6*y8^21 + y43^2*y8^41 +
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y8^51 + y43^7*y8^13 + y43^6*y8^18 + y43*y8^43 + y8^48 +

y43^6*y8^15 + y43^5*y8^20 + y43^4*y8^25 + y43^3*y8^30 +

y43^2*y8^35 + y43^6*y8^12 + y43^5*y8^17 + y43^3*y8^27 +

y43*y8^37 + y8^42 + y43^2*y8^29 + y8^39 + y43^2*y8^26 +

y43^2*y8^23 + y8^33 + y43*y8^25 + y43^2*y8^17 + y43*y8^22,

y43^7*y8^47 + y43^6*y8^52 + y43^5*y8^57 + y43^3*y8^67 +

y43^2*y8^72 + y43*y8^77 + y43^6*y8^49 + y43^4*y8^59 +

y43^3*y8^64 + y43^2*y8^69 + y43*y8^74 + y8^79 + y43^7*y8^41

+ y43^6*y8^46 + y43^3*y8^61 + y43^2*y8^66 + y8^76 +

y43^6*y8^43 + y43^4*y8^53 + y43^5*y8^45 + y43^2*y8^60 +

y43*y8^65 + y43^2*y8^57 + y43*y8^62 + y8^67 + y43^6*y8^34 +

y43^5*y8^39 + y43^4*y8^44 + y43^3*y8^49 + y43^2*y8^54 +

y43*y8^59 + y8^64 + y43^7*y8^26 + y43^5*y8^36 + y43^4*y8^41

+ y43^7*y8^23 + y43^6*y8^28 + y43^4*y8^38 + y43^2*y8^48 +

y43^7*y8^20 + y43^6*y8^25 + y43^5*y8^30 + y43^3*y8^40 +

y43^2*y8^45 + y43^7*y8^17 + y43^6*y8^22 + y43^5*y8^27 +

y8^52 + y43^4*y8^29 + y43^2*y8^39 + y43*y8^44 + y43^7*y8^8 +

y43^6*y8^13 + y43^5*y8^18 + y43^4*y8^23 + y43^3*y8^28 +

y43^2*y8^33 + y8^43 + y43^7*y8^5 + y43^6*y8^10 + y43^2*y8^30

+ y43*y8^35 + y8^40 + y43^5*y8^12 + y43^2*y8^27 + y8^37 +

y43^3*y8^19 + y8^34 + y43^4*y8^11 + y43^2*y8^21 + y43*y8^23

+ y8^28 + y43^3*y8^10 + y43^2*y8^15,

y43^3*y8^70 + y43^2*y8^75 + y43^6*y8^52 + y43^5*y8^57 +

y43^3*y8^67 + y43*y8^77 + y8^82 + y43*y8^74 + y8^79 +

y43^6*y8^46 + y43^4*y8^56 + y43^3*y8^61 + y43^2*y8^66 +

y8^76 + y43^7*y8^38 + y43^6*y8^43 + y43^5*y8^48 +

y43^3*y8^58 + y8^73 + y43^7*y8^35 + y43^6*y8^40 + y8^70 +
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y43^5*y8^42 + y43^3*y8^52 + y43^2*y8^57 + y43*y8^62 +

y43^4*y8^44 + y43^3*y8^49 + y43^4*y8^41 + y43^3*y8^46 +

y43*y8^56 + y43^4*y8^38 + y43^7*y8^20 + y43^6*y8^25 +

y43^2*y8^45 + y43^4*y8^32 + y43^2*y8^42 + y8^52 +

y43^4*y8^29 + y43^6*y8^16 + y43^4*y8^26 + y43^3*y8^31 +

y43*y8^41 + y43^7*y8^8 + y43^4*y8^23 + y43^3*y8^28 +

y43^2*y8^33 + y43^5*y8^15 + y43^3*y8^25 + y43*y8^35 +

y43^4*y8^17 + y43^2*y8^27 + y43^4*y8^14 + y43*y8^29 +

y43^3*y8^16 + y43^2*y8^21 + y43^3*y8^13 + y43*y8^23 ]

Example 3.7. Consider the tower

y − 1

yq
=
xq − 1

x
(3.4)

(See [16], page 61, for more details about this tower).

The following change of variables

x2qm−(q−1)q(i−1) = xi(xm − 1)2

m−1∏
j=i+1

(xj − 1), 1 ≤ i ≤ m. (3.5)

puts equation ( 8.19) into type I form. We will compute the integral closure for some values

of q and n.

Take q = 2, and m = 2, to get

y2
1y

2
2 + y2

1 + y1y2 + y2 = 0

y2
2y

2
4 + y2

2 + y2y4 + y4 = 0

Define y4 := x0 + 1, y6 := y2y
2
4 + y2, y7 := y1y2y

2
4 + y1y2 + y1y

2
4 + y1, The qth-power

algorithm then produces:
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The computed delta is x^6 + x^5 + x^4

and the initial weights are [ 1, 8, 15, 22 ]

weights and GB for pass number 1

are [ -8, -1, 2, 5 ]

and the fractions are

[ y4^4 + y4^3 + y4^2,

y7*y4^4 + y7*y4^3 + y7*y4^2,

y7^2*y4^3 + y7^3*y4 + y7^2*y4^2 + y7^2*y4 + y4^3 + y4^2,

y7^3*y4^2 + y4^2 ]

weights and GB for pass number 2

are [ -4, 3, 5, 6 ]

and fractions are

[ y4^5 + y4^4 + y4^3,

y7*y4^5 + y7*y4^4 + y7*y4^3,

y7^3*y4^2 + y7^2*y4^3 + y7^3*y4 + y7*y4^4 + y7^2*y4^2 + y7*y4^3

+ y7^2*y4 + y7*y4^2 + y4^3,

y7^2*y4^4 + y7^3*y4^2 + y7*y4^5 + y7^2*y4^3 + y7*y4^4 +

y7^2*y4^2 + y7*y4^3 + y4^4 + y4^3 ]

weights and GB for pass number 3

are [ 0, 5, 6, 7 ]

and the fractions are

[ y4^6 + y4^5 + y4^4,

y7^3*y4^2 + y7*y4^5 + y7^2*y4^3 + y7^3*y4 + y7^2*y4^2 + y4^5 +

y7^2*y4 + y4^4 + y7*y4^2,

y7^2*y4^4 + y7^3*y4^2 + y7^2*y4^3 + y7^2*y4^2 + y4^5,

y7*y4^6 + y7*y4^5 + y7*y4^4 ]

weights and GB for pass number 4
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are [ 0, 5, 6, 7 ]

and the fractions are

[ y4^6 + y4^5 + y4^4,

y7^3*y4^2 + y7*y4^5 + y7^2*y4^3 + y7^3*y4 + y7^2*y4^2 + y4^5 +

y7^2*y4 + y4^4 + y7*y4^2,

y7^2*y4^4 + y7^3*y4^2 + y7^2*y4^3 + y7^2*y4^2 + y4^5,

y7*y4^6 + y7*y4^5 + y7*y4^4 ]

Take q = 2, and m = 3, to get

y2
1y

2
2 + y2

1 + y1y2 + y2 = 0

y2
2y

2
4 + y2

2 + y2y4 + y4 = 0

y2
4y

2
8 + y2

4 + y4y8 + y8 = 0

Define y8 := x0 + 1, y12 := y4y
2
8 + y4, y14 := y2y4y

2
8 + y2y4 + y2y

2
8 + y2, y15 :=

y1y2y4y
2
8 + y1y2y4 + y1y2y

2
8 + y1y2 + y1y4y

2
8 + y1y4 + y1y

2
8 + y1. The qth-power algorithm then

produces:

The computed delta is x^22 + x^21 + x^20 + x^18 + x^17 + x^16 +

x^14 + x^13 + x^12

The initial weights are [ 1, 16, 31, 46, 61, 76, 91, 106 ]

weights for pass number 1

are [ -80, -65, -58, -53, -43, -38, -28, -23 ]

weights for pass number 2

are [ -40, -25, -13, -12, -11, -10, -7, 2 ]

weights for pass number 3

are [ -8, 4, 6, 7, 9, 10, 11, 13 ]

weights for pass number 4
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are [ 0, 9, 10, 11, 12, 13, 14, 15 ]

weights for pass number 5

are [ 0, 10, 12, 13, 14, 15, 17, 19 ]

weights for pass number 6

are [ 0, 10, 12, 13, 14, 15, 17, 19 ]

and the fractions are [

y8^22 + y8^21 + y8^20 + y8^18 + y8^17 + y8^16 + y8^14 + y8^13 +

y8^12,

y15^6*y8^12 + y15^7*y8^10 + y15*y8^21 + y15^5*y8^13 +

y15^6*y8^11 + y15^5*y8^12 + y8^21 + y15^2*y8^17 +

y15^4*y8^13 + y15^6*y8^9 + y15*y8^18 + y15^2*y8^16 +

y15^4*y8^12 + y15^7*y8^6 + y8^19 + y15*y8^17 + y15^2*y8^15 +

y15^4*y8^11 + y15^5*y8^9 + y15^6*y8^7 + y15^2*y8^14 +

y15^4*y8^10 + y15^5*y8^8 + y15^6*y8^6 + y15^2*y8^13 +

y15^4*y8^9 + y15*y8^14 + y15^2*y8^12 + y8^15 + y15^3*y8^9 +

y8^14 + y15^2*y8^10 + y15^3*y8^8 + y8^13 + y8^12 +

y15^2*y8^8,

y15^4*y8^16 + y15^7*y8^10 + y15*y8^21 + y15^2*y8^19 +

y15^3*y8^17 + y15^4*y8^15 + y15^5*y8^13 + y15^3*y8^16 +

y15^4*y8^14 + y15^5*y8^12 + y15^2*y8^17 + y15^4*y8^13 +

y8^20 + y15*y8^18 + y15^4*y8^12 + y15^2*y8^15 + y15^4*y8^11

+ y8^18 + y15^2*y8^14 + y15^4*y8^10 + y8^17 + y8^16 + y8^15

+ y8^13 + y8^12,

y15^3*y8^18 + y15^5*y8^14 + y15^6*y8^12 + y15*y8^21 +

y15^2*y8^19 + y15^3*y8^17 + y15^7*y8^9 + y15^2*y8^18 +

y15^3*y8^16 + y15^4*y8^14 + y15^5*y8^12 + y15*y8^19 +

y15^2*y8^17 + y15^3*y8^15 + y15^5*y8^11 + y15^7*y8^7 + y8^20
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+ y15^3*y8^14 + y15^4*y8^12 + y15^6*y8^8 + y15*y8^17 +

y15^5*y8^9 + y15^7*y8^5 + y15*y8^16 + y15^3*y8^12 +

y15^5*y8^8 + y15^7*y8^4 + y15*y8^15 + y15^2*y8^13 + y8^16 +

y15*y8^14 + y15^3*y8^10 + y15^6*y8^4 + y15*y8^13 +

y15^3*y8^9 + y15*y8^12 + y15*y8^11 + y15^2*y8^9 + y15*y8^10

+ y15^2*y8^8 + y15^3*y8^6 + y15*y8^9 + y15^2*y8^7 + y15*y8^8

+ y15^2*y8^6,

y15^2*y8^20 + y15^3*y8^18 + y15^4*y8^16 + y15^7*y8^10 +

y15*y8^21 + y15^3*y8^17 + y15^5*y8^13 + y15^7*y8^9 +

y15*y8^20 + y15^2*y8^17 + y15^3*y8^15 + y15^5*y8^11 +

y15*y8^18 + y15^3*y8^14 + y15*y8^17 + y8^18 + y15^2*y8^14 +

y15^2*y8^13 + y15^4*y8^9 + y8^16 + y15^2*y8^12 + y15^3*y8^10

+ y8^15 + y15^2*y8^11 + y8^14 + y15^2*y8^10 + y8^13 + y8^12,

y15*y8^22 + y15*y8^21 + y15*y8^20 + y15*y8^18 + y15*y8^17 +

y15*y8^16 + y15*y8^14 + y15*y8^13 + y15*y8^12,

y15^7*y8^11 + y15*y8^22 + y15^6*y8^12 + y15^4*y8^15 +

y15^5*y8^13 + y15^7*y8^9 + y8^22 + y15*y8^20 + y15^6*y8^10 +

y15^7*y8^8 + y8^21 + y15*y8^19 + y15^2*y8^17 + y15^4*y8^13 +

y15^5*y8^11 + y15^6*y8^9 + y15^7*y8^7 + y15^2*y8^16 +

y15^3*y8^14 + y15^5*y8^10 + y15^6*y8^8 + y15^7*y8^6 + y8^19

+ y15^2*y8^15 + y15^5*y8^9 + y15^6*y8^7 + y15^7*y8^5 +

y15*y8^16 + y15^4*y8^10 + y8^17 + y15^2*y8^13 + y15^3*y8^11

+ y15^6*y8^5 + y15*y8^14 + y15^2*y8^11 + y15^3*y8^9 + y8^14

+ y15*y8^12 + y15^2*y8^10 + y8^13 + y15^3*y8^7 + y15*y8^10 +

y15^2*y8^8 + y15*y8^9 + y15^2*y8^7,

y15^5*y8^15 + y15^6*y8^13 + y15^7*y8^11 + y15*y8^22 +

y15^3*y8^18 + y15^5*y8^14 + y15^2*y8^19 + y15^4*y8^15 +

37



y15^6*y8^11 + y15^7*y8^9 + y8^22 + y15*y8^20 + y15^3*y8^16 +

y15^4*y8^14 + y15^6*y8^10 + y15^7*y8^8 + y15^4*y8^13 +

y15^5*y8^11 + y15^6*y8^9 + y15^7*y8^7 + y15*y8^18 +

y15^3*y8^14 + y15^4*y8^12 + y15^5*y8^10 + y15^6*y8^8 +

y15^7*y8^6 + y8^19 + y15*y8^17 + y15^2*y8^15 + y15^4*y8^11 +

y8^18 + y15*y8^16 + y15^3*y8^12 + y15^6*y8^6 + y15^2*y8^13 +

y15^3*y8^11 + y8^16 + y15*y8^13 + y15*y8^12 + y15^3*y8^8 +

y8^13 + y15^2*y8^9 + y15*y8^10 + y15^2*y8^8 ]
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Chapter 4

The qth-power algorithm over Q

In this chapter, we will represent any r ∈ Q in the form r =
a

b
with b > 0 and

gcd(a, b) = 1. For any fixed modulus M > 0, we define

QM :=
{a
b
, b > 0, gcd(a, b) = 1 : gcd(M, b) = 1

}
.

Let F[x] := F[xm, . . . , x1] and xα :=
∏
i

xαi
i . We will consider type I affine domains

S := R/I with R := F[x] being a polynomial ring, and I := 〈G〉 an ideal of R of relations

with Gröbner basis G.

Type I affine domains have the property, among others, that relative to a free polynomial

subring P := F[xn, . . . , x1], there is a weight function wt : R −→ Nn such that wt(LM(f)) =

wt(LM(NF (f, I))).

Given a presentation S := R/I and a presentation of its integral closure S := R/I, there

is a map ψ : R −→ R, necessarily with ψ(I) ⊂ I, so that ψ can be viewed as an inclusion

map ψ : S −→ S.

It is possible to use the extended Euclidean algorithm to move between fractions
a

b
∈

Q, b > 0 and representatives c ∈ ZN . The fraction reconstruction map (see [26] for details)

is

EN(c) :=
a

b
, bc+Nd = a, a2 + b2 min, b min.

The mod N map is

µN

(a
b

)
:= c, bc+Nd = a, |c| min.
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These are almost inverse operations in the sense that for −N
2
< c <

N

2
, (µN ◦EN)(c) =

c; while, for a2 + b2 < N, (EN ◦ µN)
(
a
b

)
= a

b
. Defining µN(y

(0)
j ) := y

(0)
j for 1 ≤ j ≤ m,

gives a natural extension of µN to maps from some elements of Q[y
(0)
m , . . . , y

(0)
1 ] to elements of

ZN [y
(N)
m , . . . , y

(N)
1 ]; and defining EN(Y

(N)
j ) := Y

(0)
j for 1 ≤ j ≤ M , gives a natural extension

of EN to maps from some elements of ZN [Y
(N)
M , . . . , Y

(N)
1 ] to elements of Q[Y

(0)
m , . . . , Y

(0)
1 ].

Similarly the Chinese remainder map

Cq,N(a(q), a(N)) := a(qN)(mod qN), a(qN) ≡ a(q)(mod q), a(qN) ≡ a(N)(mod N),

can be used to map some pairs of elements from Zq[Y
(q)
M , . . . , Y

(q)
1 ]× ZN [Y

(N)
M , . . . , Y

(N)
1 ], to

elements of ZqN [Y
(qN)
M , . . . , Y

(qN)
1 ].

4.1 Lifting maps from coefficient rings to polynomial rings

The mod M map µM : QM −→ ZM is defined by µM(
a

b
) := ab−1(mod M). This

map is naturally extended to the polynomial map µ∗M : QM [x] −→ ZM [x], defined by

µ∗M

(∑
α

rαx
α

)
:=
∑
α

µM(rα)xα.

If S(0) = R(0)/I(0) is type I with R(0) := Q[x(0)], and p is a prime for which R(p) :=

µp(R
(0)) = Zp[x

(p)] and I(p) := µp(I
(0)), then necessarily µp(S

(0)
) ⊂ (S

(p)
). If equality holds,

then we call p a good prime.

Choose a sequence p1 < p2 < · · · of good primes, and let Ms :=
s∏
i=1

pi. The Chinese

remainder theorem gives a map CRTMs :=
s∏
l=1

Zpl
−→ ZMs such that CRTMs((a1, . . . , as)) ≡

al (mod pl) for each l. Extend this naturally to the polynomial map CRT ∗Ms
:

s∏
l=1

Zpl
[y] −→

ZMs [y] by

CRT ∗Ms

((∑
α

r(p1)
α yα, · · · ,

∑
α

r(ps)
α yα

))
:=
∑
α

CRTMs

((
r(p1)
α , · · · , r(ps)

α

))
yα.
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The Euclidean algorithm, applied to Ms := r−1 and any r0 > 0, produces sequences (ri)

and (qi) such that ri−2 = qiri−1 + ri with 0 ≤ ri < ri−1, and rn = 0. It should be noted that

part of the extended Euclidean algorithm produces a sequence (ui) with u−1 := 0, u0 := 1,

and ui := qiui−1 + ui−2. Then for each i, (−1)iri/ui ≡ r0 (mod Ms). Of these there is

necessarily some i ≥ 0 with r2
i + u2

i minimum, choosing i minimum as well if this is not

unique. We use this i to define the map εMs : ZMs −→ Q by εMs(r0) := (−1)iri/ui for the

unique i described above.

Extend this naturally to the polynomial map ε∗Ms
: ZMs [y] −→ Q[y] defined by

ε∗Ms

(∑
α

rαy
α

)
:=
∑
α

εMs (rα) yα.

Now define the composition map

ψ(0,Ms) := ε∗Ms
◦ CRT ∗Ms

◦

(
s∏
l=1

ψ(pl)

)
◦

(
s∏
l=1

µ∗pl

)

mapping QMs
[x] −→ Q[y], for ψ(pl) the inclusion map from Rpl to R

(pl)
.

4.2 Presentations

Let y
(0)
i := f

(0)
i /δ

(0)
i denote the variables (”fractions”) in the integral closure presentation

S(0) by for f
(0)
i , δ

(0)
i R(0), and let g

(0)
j denote the Gröbner basis elements (”relations”) of I

(0)
.

Let y
(p)
i := f

(p)
i /δ

(p)
i , for f

(p)
i := µ∗p

(
f

(0)
i

)
and δ

(p)
i := µ∗p

(
δ
(0)
i

)
; and g

(p)
j := µ∗p

(
g

(0)
j

)
.

If p is a good prime, then these are variables and ( a Gröbner basis of ) relations for

S
(p)

. Here the objective is to go in the reverse direction by reconciling various S
(p)

’s and

reconstructing S
(0)

from them, using the Chinese remainder map and the extended algorithm

map.
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The candidates for S
(0)

are S
(0,Ms)

with polynomial ring R
(0,Ms)

having variables

y
(0,Ms)
i := ε∗Ms

(
CRT ∗Ms

(
s∏
l=1

y
(pl)
i

))

and ideal I
(0,Ms)

generated by the finite set of images

G
(0,Ms)

:=

{
g

(0,Ms)
j := ε∗Ms

(
CRT ∗Ms

(
s∏
l=1

g
(pl)
i

))}

We note that S
(0)

= S
(0,Ms)

, then necessarily S
(0,Ms+1) = S

(0,Ms)
also. However, as we

see from the following example below, the latter is not sufficient to guarantee the former.

Example 4.1.

S
(0)

:= Q[x2;x1]/〈x2
2 +

7

8
x3

1〉

stabilizes after p1 := 3, p2 := 5, with y2 := x2/x1, y1 := x1,

S
(0,15)

:= Q[y2; y1]/〈y2
2 − y1〉

rather than the obvious y2 := x2/x1, y1 := x1,

S
(0)

:= Q[y2; y1]/〈y2
2 +

7

8
y1〉.

Theorem 4.1. S
(0,M)

is a presentation of the integral closure of S(0) if

1. G
(0,M)

is a Gröbner basis for I
(0,M)

;

2. ψ(0,M)(I(0)) ⊆ I
(0,M)

.

Proof: S
(0,M)

is necessarily a ring. If ψ(0,M)(I(0)) ⊆ I
(0,M)

, then ψ
(0,M)

(S(0)) ⊆ S
(0,M)

.

So S(0,M) ⊆ S
(0)

, because S
(0)

is the largest ring (in the field of fractions of S(0) ) containing
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ψ
(0,M)

(S(0)). But if G
(0,M)

is a Gröbner basis for I
(0,M)

, then

µ∗p

(
LM

(
I

(0,M)
))

= LM
(
I

(p)
)

= µ∗p

(
LM

(
I

(0)
))

.

Thus S
(0,M)

= S
(0)

, which proves the theorem.�

Note that by the remark preceding the theorem, these conditions need only be checked

at the steps at which y
(0,Ms)
i = y

(0,Ms+1)
i for each i and g

(0,Ms)
j = g

(0,Ms+1)
j for each j.

4.3 Examples

In this section, we present some examples over the rationals.

Example 4.2. Let f = (y2 − y − 1
6
x)3 − yx4(y2 − y − 1

6
x)− x11

It is immediate that 2 and 3 are possibly ”bad” primes, since they both divide 6.

The first good prime is q = 5. The integral closure and its corresponding weights for

this prime are

[x5,

y2x3 + 4yx3 + 4x4,

yx5,

y4x+ 3y3x+ 3y2x2 + y2x+ 2yx2 + x3,

y3x3 + 4yx4 + 4yx3 + 4x4,

y5 + 2y4 + 3y3x+ 3y3 + 4y2x+ yx2 + 4y2 + 3yx+ 4x2], and

[0, 10, 11, 20, 21, 25].

The integral closure over the rationals for the sequence, (5), of good primes is

[x5,

y2x3 − yx3 − x4,

yx5,

y4x− 2y3x− 2y2x2 + y2x+ 2yx2 + x3,
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y3x3 − yx4 − yx3 − x4,

y5 + 2y4 − 2y3x− 2y3 − y2x+ yx2 − y2 − 2yx− x2].

The next good prime is q = 7. The integral closure and its corresponding weights for

this prime are

[x5,

y2x3 + 6yx3 + x4,

yx5,

y4x+ 5y3x+ 2y2x2 + y2x+ 5yx2 + x3,

y3x3 + yx4 + 6yx3 + x4,

y5 + 4y4 + 2y3x+ 3y3 + 3y2x+ yx2 + 6y2 + 2yx+ 6x2], and

[0, 10, 11, 20, 21, 25].

The integral closure over the rationals for the sequence, (5, 7), of good primes is

[x5,

y2x3 − yx3 + x4,

yx5,

y4x− 2y3x− 1
3
y2x2 + y2x+ 1

3
yx2 + x3,

y3x3 + yx4 − yx3 + x4,

y5 − 3y4 − 1
3
y3x+ 3y3 + 2

3
y2x+ yx2 − y2 − 1

3
yx− x2].

The next good prime is q = 11. The integral closure and its corresponding weights for

this prime are

[x5,

y2x3 + 10yx3 + 9x4,

yx5,

y4x+ 9y3x+ 7y2x2 + y2x+ 4yx2 + 4x3,

y3x3 + 9yx4 + 10yx3 + 9x4,

y5 + 8y4 + 7y3x+ 3y3 + 8y2x+ 4yx2 + 10y2 + 7yx+ 7x2], and

[0, 10, 11, 20, 21, 25].
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The integral closure over the rationals for the sequence, (5, 7, 11), of good primes is

[x5,

y2x3 − yx3 − 1
6
x4,

yx5,

y4x− 2y3x− 1
3
y2x2 + y2x+ 1

3
yx2 + x3,

y3x3 − 1
6
yx4 − yx3 − 1

6
x4,

y5 − 3y4 − 1
3
y3x+ 3y3 + 2

3
y2x+ yx2 − y2 − 1

3
yx− x2].

The next good prime is q = 13. The integral closure and its corresponding weights for

this prime are

[x5,

y2x3 + 12yx3 + 2x4,

yx5,

y4x+ 11y3x+ 4y2x2 + y2x+ 9yx2 + 4x3,

y3x3 + 2yx4 + 12yx3 + 2x4,

y5 + 10y4 + 4y3x+ 3y3 + 5y2x+ 4yx2 + 12y2 + 4yx+ 9x2], and

[0, 10, 11, 20, 21, 25].

The integral closure over the rationals for the sequence, (5, 7, 11, 13), of good primes is

[x5,

y2x3 − yx3 − 1
6
x4,

yx5,

y4x− 2y3x− 1
3
y2x2 + y2x+ 1

3
yx2 + 1

36
x3,

y3x3 − 1
6
yx4 − yx3 − 1

6
x4,

y5 − 3y4 − 1
3
y3x+ 3y3 + 2

3
y2x+ 1

36
yx2 − y2 − 1

3
yx− 1

36
x2].

The next good prime is q = 17. The integral closure and its corresponding weights for

this prime are

[x5,

y2x3 + 16yx3 + 14x4,
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yx5,

y4x+ 15y3x+ 11y2x2 + y2x+ 6yx2 + 9x3,

y3x3 + 14yx4 + 16yx3 + 14x4,

y5 + 14y4 + 11y3x+ 3y3 + 12y2x+ 9yx2 + 16y2 + 11yx+ 8x2], and

[0, 10, 11, 20, 21, 25].

The integral closure over the rationals for the sequence, (5, 7, 11, 13, 17), of good primes is

[x5,

y2x3 − yx3 − 1
6
x4,

yx5,

y4x− 2y3x− 1
3
y2x2 + y2x+ 1

3
yx2 + 1

36
x3,

y3x3 − 1
6
yx4 − yx3 − 1

6
x4,

y5 − 3y4 − 1
3
y3x+ 3y3 + 2

3
y2x+ 1

36
yx2 − y2 − 1

3
yx− 1

36
x2],

which stabilizes as the integral closure over the rationals.

We would want the integral closure produced for each prime to have corresponding

weights, [0, 10, 11, 20, 21, 25]. But some primes produce integral closures whose correspond-

ing weights are ”smaller”, and this is certainly not what we want. Examples of such primes

include those in the list, [67, 71, 3678929, 1627477603381284250244430104357], of possibly

”bad” primes. Let us consider some of these possibly ”bad” primes.

Take q = 67. The integral closure produced is

[x6 + 43x5,

y2x4 + 43y2x3 + 66yx4 + 11x5 + 24yx3 + 4x4,

yx6 + 43yx5,

y5 + 22y3x3 + 24y4x+ 64y4 + yx5 + 8y2x3 + 41y3x+ 41yx4 + 59y2x2 + 3y3 + 39x5 + 37yx3 +

47y2x+ 62x4 + 62yx2 + 66y2 + 23x3 + 22yx+ 13x2,

y4x2 + 43y4x+ 65y3x2 + 22y2x3 + 48y3x+ 9y2x2 + 45yx3 + 43y2x+ 54x4 + 59yx2 + 44x3,

y3x4 + 43y3x3 + 11yx5 + 3yx4 + 11x5 + 24yx3 + 4x4],

and the corresponding weight is [0, 10, 11, 19, 20, 21], which is ”smaller” than [0, 10, 11, 20, 21, 25].
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For q = 71, the integral closure produced is

[x6 + 11x5,

y2x4 + 11y2x3 + 70yx4 + 59x5 + 60yx3 + 10x4,

yx6 + 11yx5,

y5 +54y3x3 +63y4x+68y4 +24yx5 +40y2x3 +63y3x+62yx4 +50y2x2 +3y3 +29x5 +48yx3 +

40y2x+ 8x4 + 23yx2 + 70y2 + 55x3 + 47yx+ 69x2,

y4x2 + 11y4x+ 69y3x2 + 47y2x3 + 49y3x+ 21y2x2 + 24yx3 + 11y2x+ 2x4 + 51yx2 + 22x3,

y3x4 + 11y3x3 + 59yx5 + 9yx4 + 59x5 + 60yx3 + 10x4],

and the corresponding weight is [0, 10, 11, 19, 20, 21], which is ”smaller” than [0, 10, 11, 20, 21, 25].

Hence we will not use the primes [2, 3, 67, 71, 3678929, 1627477603381284250244430104357],

since they are possibly ”bad” primes.

Example 4.3. Let f = (y2 − 3
4
y − 15

17
x)3 − 9x4(y2 − 3

4
y − 15

17
x)− 27x11

It is immediate that 2 and 17 are possibly ”bad” primes. As we shall see, the primes

(3, 5, 7, 11) are also possibly ”bad” primes and we do not use them.

For q = 3, the integral closure produced is

[1,

y,

y2,

y3],

and the corresponding weight is [0, 11, 22, 33]. The number of weights here are fewer than we

expect. So q = 3 is not good.

For q = 5, the integral closure produced is

[x14 + 3x4,

y4x7 + y2x10 + y3x7 + 4y4x5 + 3yx10 + y2x8 + 4x11 + 4y2x7 + 4y3x5 + 2y4x3 + 3yx8 + x9 +

y2x5 + 2y3x3 + 2y4x+ y2x4 + 3x7 + 3y2x3 + 2y3x+ 3yx4 + 4y2x2 + 3x5 + 3y2x+ 2yx2,

y2x11 + 3y4x6 + 3yx11 + 3y2x9 + 3y3x6 + 2y4x4 + 4yx9 + 3y2x7 + 2x10 + 2y2x6 + 2y3x4 + y4x2 +

4yx7 + 3x8 + 3y2x4y3x2 + y4 + 3y2x3 + 4x6 + 4y2x2 + y3 + 4yx3 + 4x4 + 4y2,
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yx14 + 3yx4,

y5x7 + y3x10 + 4y5x5 + 2y2x10 + y3x8 + 4yx11 + 3y3x7 + 2y5x3 + 2yx10 + 2y2x8 + x11 + yx9 +

y2x7 + 2y3x5 + 2y5x+ 2yx8 +y3x4 + 4x9 + 3yx7 + 4y2x5 +y3x3 + 2y2x4 + 4y3x2 + 2x7 + 3yx5 +

2y2x3 + y3x+ 2yx4 + 3y2x2 + 2x5 + 2y2x+ 3yx2,

y3x11 + 3y5x6 + 3y3x9 + 4y4x6 + 2y5x4 + yx11 + 3y3x7 + 2yx10 + 3y3x6 + y4x4 + y5x2 + 3yx9 +

4x10 + 3yx8 + 4y2x6 + 2y3x4 + 3y4x2 + y5 + 3yx7 + 3y3x3 + x8 + 4yx6 + y2x4 + y3x2 + 3y4 +

3x6 +4yx4 +3y2x2 +y3 +3yx3 +3x4 +3y2], and the corresponding weight is [0, 2, 4, 11, 13, 15].

These weights turn out to be ”smaller” than what we expect.

For q = 7, the integral closure produced is

[x5 + 2x4,

y2x3 + 2y2x2 + yx3 + 2x4 + 2yx2 + 4x3,

yx5 + 2yx4,

y4x+ 2y4 + 2y3x+ 4y2x2 + 4y3 + 2y2x+ 4yx2 + 2y2 + 4x3 + yx+ x2,

y3x3 + 2y3x2 + 2yx4 + 3yx3 + 5x4 + 5yx2 + 3x3,

y5 +2y3x2 +6y4 +4y3x+2yx4 +3y2x2 +2y3 +4yx3 +6y2x+x4 +5yx2 +4y2 +2x3 +2yx+2x2],

and the corresponding weight is [0, 10, 11, 20, 21, 25]. These weights turn out to be ”smaller”

than what we expect.

For q = 11, the integral closure produced is

[x5 + 4x4,

y2x3 + 4y2x2 + 2yx3 + 3x4 + 8yx2 + x3,

yx5 + 4yx4,

y4x+ 4y4 + 4y3x+ 6y2x2 + 5y3 + 6y2x+ yx2 + 5y2 + 9x3 + 4yx+ 3x2,

y3x3 + 4y3x2 + 3yx4 + 8yx3 + 5x4 + 6yx2 + 9x3,

y5 + 4y3x2 + 5y4 + 6y3x+ 7yx4 + y2x2 + 8y3 + yx3 + 7y2x+ 7x4 + 6yx2 + 4y2 +x3 + yx+ 9x2],

and the corresponding weight is [0, 10, 11, 20, 21, 25]. These weights turn out to be ”smaller”

than what we expect.
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The first good prime is q = 13. The integral closure and its corresponding weights for

this prime are

[x4,

y2x2 + 9yx2 + 6x3,

yx4,

y4 + 5y3 + 12y2x+ 3y2 + 4yx+ 10x2,

y3x2 + 6yx3 + 10yx2 + 11x3,

y5 + 12y3x+ 4y3 + 9y2x+ 10yx2 + 11y2 + 6yx+ 2x2], and

[0, 10, 11, 20, 21, 31].

The integral closure over the rationals for the sequence, (13), of good primes is

[x4,

y2x2 + 1
3
yx2 − 1

2
x3,

yx4,

y4 − 3
2
y3 − y2x+ 3y2 − 1

3
yx− 3x2,

y3x2 − 1
2
yx3 − 3yx2 − 2x3,

y5 − y3x− 1
3
y3 + 1

3
y2x− 3yx2 − 2y2 − 1

2
yx+ 2x2].

The next good prime is q = 19. The integral closure and its corresponding weights for

this prime are

[x4,

y2x2 + 4yx2 + 17x3,

yx4,

y4 + 8y3 + 15y2x+ 16y2 + 3yx+ 4x2,

y3x2 + 17yx3 + 3yx2 + 8x3,

y5 + 15y3x+ 9y3 + 16y2x+ 4yx2 + 5y2 + 14yx+ 6x2], and

[0, 10, 11, 20, 21, 31].

The integral closure over the rationals for the sequence, (13, 19), of good primes is

[x4,
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y2x2 − 3
4
yx2 + 11

4
x3,

yx4,

y4 − 3
2
y3 + 11

2
y2x− 7

15
y2 + 2

7
yx+ 6

11
x2,

y3x2 + 11
4
yx3 + 7

15
yx2 − 1

7
x3,

y5 + 11
2
y3x+ 7

5
y3 − 2

7
y2x+ 6

11
yx2 − 7

10
y2 + 3

7
yx+ 9

11
x2].

The next good prime is q = 23. The integral closure and its corresponding weights for

this prime are

[x4,

y2x2 + 5yx2 + 14x3,

yx4,

y4 + 10y3 + 5y2x+ 2y2 + 2yx+ 12x2,

y3x2 + 14yx3 + 21yx2 + 22x3,

y5 + 5y3x+ 17y3 + 21y2x+ 12yx2 + 3y2 + 3yx+ 18x2], and

[0, 10, 11, 20, 21, 31].

The integral closure over the rationals for the sequence, (13, 19, 23), of good primes is

[x4,

y2x2 − 3
4
yx2 − 15

17
x3,

yx4,

y4 − 3
2
y3 − 30

17
y2x+ 9

16
y2 + 45

34
yx+ 29

12
x2,

y3x2 − 15
17
yx3 − 9

16
yx2 + 67

25
x3,

y5 − 30
17
y3x− 27

16
y3 − 45

34
y2x+ 29

12
yx2 + 27

32
y2 − 22

31
yx+ 29

8
x2].

The next good prime is q = 29. The integral closure and its corresponding weights for

this prime are

[x4,

y2x2 + 21yx2 + 23x3,

yx4,

y4 + 13y3 + 17y2x+ 6y2 + 9yx+ 7x2,
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y3x2 + 23yx3 + 23yx2 + 10x3,

y5 + 17y3x+ 11y3 + 20y2x+ 7yx2 + 9y2 + 28yx+ 25x2], and

[0, 10, 11, 20, 21, 31].

The integral closure over the rationals for the sequence, (13, 19, 23, 29), of good primes is

[x4,

y2x2 − 3
4
yx2 − 15

17
x3,

yx4,

y4 − 3
2
y3 − 30

17
y2x+ 9

16
y2 + 45

34
yx+ 225

289
x2,

y3x2 − 15
17
yx3 − 9

16
yx2 − 45

68
x3,

y5 − 30
17
y3x− 27

16
y3 − 45

34
y2x+ 225

289
yx2 + 27

32
y2 + 135

68
yx− 83

173
x2].

The next good prime is q = 31. The integral closure and its corresponding weights for

this prime are

[x4,

y2x2 + 7yx2 + 21x3,

yx4,

y4 + 14y3 + 11y2x+ 18y2 + 15yx+ 7x2,

y3x2 + 21yx3 + 13yx2 + 8x3,

y5 + 11y3x+ 8y3 + 16y2x+ 7yx2 + 27y2 + 7yx+ 26x2], and

[0, 10, 11, 20, 21, 31].

The integral closure over the rationals for the sequence, (13, 19, 23, 29, 31), of good primes is

[x4,

y2x2 − 3
4
yx2 − 15

17
x3,

yx4,

y4 − 3
2
y3 − 30

17
y2x+ 9

16
y2 + 45

34
yx+ 225

289
x2,

y3x2 − 15
17
yx3 − 6

16
yx2 − 45

68
x3,

y5 − 30
17
y3x− 27

16
y3 − 45

34
y2x+ 225

289
yx2 + 27

32
y2 + 135

68
yx+ 675

578
x2].
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The next good prime is q = 37. The integral closure and its corresponding weights for

this prime are

[x4,

y2x2 + 27yx2 + 10x3,

yx4,

y4 + 17y3 + 20y2x+ 26y2 + 22yx+ 26x2,

y3x2 + 10yx3 + 11yx2 + 26x3,

y5 + 20y3x+ 33y3 + 15y2x+ 26yx2 + 2y2 + 33yx+ 2x2], and

[0, 10, 11, 20, 21, 31].

The integral closure over the rationals for the sequence, (13, 19, 23, 29, 31, 37), of good primes

is

[x4,

y2x2 − 3
4
yx2 − 15

17
x3,

yx4,

y4 − 3
2
y3 − 30

17
y2x+ 9

16
y2 + 45

34
yx+ 225

289
x2,

y3x2 − 15
17
yx3 − 9

16
yx2 − 45

68
x3,

y5 − 30
17
y3x− 27

16
y3 − 45

34
y2x+ 225

289
yx2 + 27

32
y2 + 135

68
yx+ 675

578
x2].

which stabilizes as the integral closure over the rationals.

Hence we do not use the primes [2, 3, 5, 7, 11, 17, 7027, 10987, 25303, 61843, 131581,

4818577, 13647717712107898488646649543].

Example 4.4. Let f = (y2 − 3
4
y − 15

17
x)3 − 9yx4(y2 − 3

4
y − 15

17
x)− 27x11

It is immediate that 2 and 17 are possibly ”bad” primes. As we shall see, the primes (3, 5, 17)

are also possibly ”bad” primes and we do not use them.

For q = 3, the integral closure produced is

[1,

y,

y2,
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y3], and

the corresponding weight is [0, 11, 22, 33]. The number of weights here are fewer than we

expect. So q = 3 is not good.

For q = 5, the integral closure produced is

[x7,

y2x5 + 3yx5,

yx7,

y5 + y2x4 + 4y4 + 3yx4 + 2y3 + 2y2,

y3x4 + y2x4 + 4yx4,

y4x3 + y3x3 + 4y2x3],

and the corresponding weight is [0, 10, 11, 13, 15, 20]. These weights turn out to be ”smaller”

than what we expect.

The first good prime is q = 7. The integral closure and its corresponding weights for

this prime are

[x5,

y2x3 + yx3 + 2x4,

yx5,

y4x+ 2y3x+ 4y2x2 + y2x+ 4yx2 + 4x3,

y3x3 + 2yx4 + 6yx3 + 5x4,

y5 + 3y4 + 4y3x+ 3y3 + y2x+ 4yx2 + y2 + 4yx+ 4x2], and

[0, 10, 11, 20, 21, 31].

The integral closure over the rationals for the sequence, (7), of good primes is

[x5,

y2x3 + yx3 + 2x4,

yx5,

y4x+ 2y3x+ 1
2
y2x2 + y2x+ 1

2
yx2 + 1

2
x3,
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y3x3 + 2yx4 − yx3 − 2x4,

y5 − 1
2
y4 + 1

2
y3x− 1

2
y3 + y2x+ 1

2
yx2 + y2 + 1

2
yx+ 1

2
x2].

The next good prime is q = 11. The integral closure and its corresponding weights for

this prime are

[x5,

y2x3 + 2yx3 + 3x4,

yx5,

y4x+ 4y3x+ 6y2x2 + 4y2x+ yx2 + 9x3,

y3x3 + 3yx4 + 7yx3 + 5x4,

y5 + 6y4 + 6y3x+ y3 + 2y2x+ 9yx2 + 8y2 + 2yx+ 7x2], and

[0, 10, 11, 20, 21, 31].

The integral closure over the rationals for the sequence, (7, 11), of good primes is

[x5,

y2x3 − 3
4
yx3 + 1

4
x4,

yx5,

y4x− 3
2
y3x+ 1

2
y2x2 − 2

5
y2x+ yx2 + 5

3
x3,

y3x3 + 1
4
yx4 + 2

5
yx3 + 5x4,

y5 + 8
5
y4 + 1

2
y3x− 6

5
y3 − 3

4
y2x+ 5

3
yx2 + 8y2 − 1

5
yx− 5

4
x2].

The next good prime is q = 13. The integral closure and its corresponding weights for

this prime are

[x5,

y2x3 + 9yx3 + 6x4,

yx5,

y4x+ 5y3x+ 12y2x2 + 3y2x+ 4yx2 + 10x3,

y3x3 + 6yx4 + 10yx3 + 11x4,

y5 + y4 + 12y3x+ 9y3 + 8y2x+ 10yx2 + y2 + 10yx+ 12x2], and

[0, 10, 11, 20, 21, 31].
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The integral closure over the rationals for the sequence, (7, 11, 13), of good primes is

[x5,

y2x3 − 3
4
yx3 − 15

17
x4,

yx5,

y4x− 3
2
y3x+ 1

2
y2x2 + 9

16
y2x+ 1

23
yx2 + 16

25
x3,

y3x3 − 15
17
yx4 − 9

16
yx3 − 2x4,

y5 − 9
4
y4 + 1

2
y3x+ 27

16
y3 + 2

23
y2x+ 16

25
yx2 + y2 + 10

27
yx− 12

25
x2].

The next good prime is q = 19. The integral closure and its corresponding weights for

this prime are

[x5,

y2x3 + 4yx3 + 17x4,

yx5,

y4x+ 8y3x+ 15y2x2 + 16y2x+ 3yx2 + 4x3,

y3x3 + 17yx4 + 3yx3 + 8x4,

y5 + 12y4 + 15y3x+ 10y3 + 6y2x+ 4yx2 + 7y2 + 12yx+ 16x2], and

[0, 10, 11, 20, 21, 31].

The integral closure over the rationals for the sequence, (7, 11, 13, 19), of good primes is

[x5,

y2x3 − 3
4
yx3 − 15

17
x4,

yx5,

y4x− 3
2
y3x− 30

17
y2x2 + 9

16
y2x+ 45

34
yx2 − 67

83
x3,

y3x3 − 15
17
yx4 − 9

16
yx3 − 45

68
x4,

y5 − 9
4
y4 − 30

17
y3x+ 27

16
y3 + 45

17
y2x− 67

83
yx2 − 27

64
y2 + 17

3
yx+ 10

3
x2].

The next good prime is q = 23. The integral closure and its corresponding weights for

this prime are

[x5,

y2x3 + 5yx3 + 14x4,
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yx5,

y4x+ 10y3x+ 5y2x2 + 2y2x+ 2yx2 + 12x3,

y3x3 + 14yx4 + 21yx3 + 22x4,

y5 + 15y4 + 5y3x+ 6y3 + 4y2x+ 12yx2 + 10y2 + 10yx+ 14x2], and

[0, 10, 11, 20, 21, 31].

The integral closure over the rationals for the sequence, (7, 11, 13, 19, 23), of good primes is

[x5,

y2x3 − 3
4
yx3 − 15

17
x4,

yx5,

y4x− 3
2
y3x− 30

17
y2x2 + 9

16
y2x+ 45

34
yx2 + 225

289
x3,

y3x3 − 15
17
yx4 − 9

16
yx3 − 45

68
x4,

y5 − 9
4
y4 − 30

17
y3x+ 27

16
y3 + 45

17
y2x+ 225

289
yx2 − 27

64
y2 − 135

136
yx+ 4

43
x2].

The next good prime is q = 29. The integral closure and its corresponding weights for

this prime are

[x5,

y2x3 + 21yx3 + 23x4,

yx5,

y4x+ 13y3x+ 17y2x2 + 6y2x+ 9yx2 + 7x3,

y3x3 + 23yx4 + 23yx3 + 10x4,

y5 + 5y4 + 17y3x+ 18y3 + 18y2x+ 7yx2 + 10y2 + 15yx+ 2x2], and

[0, 10, 11, 20, 21, 31].

The integral closure over the rationals for the sequence, (7, 11, 13, 19, 23, 29), of good primes

is

[x5,

y2x3 − 3
4
yx3 − 15

17
x4,

yx5,

y4x− 3
2
y3x− 30

17
y2x2 + 9

16
y2x+ 45

34
yx2 + 225

289
x3,
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y3x3 − 15
17
yx4 − 9

16
yx3 − 45

68
x4,

y5 − 9
4
y4 − 30

17
y3x+ 27

16
y3 + 45

17
y2x+ 225

289
yx2 − 27

64
y2 − 135

136
yx− 675

1156
x2].

The next good prime is q = 31. The integral closure and its corresponding weights for

this prime are

[x5,

y2x3 + 7yx3 + 21x4,

yx5,

y4x+ 14y3x+ 11y2x2 + 18y2x+ 15y2 + 7x3,

y3x3 + 21yx4 + 13yx3 + 8x4,

y5 + 21y4 + 11y3x+ 23y3 + 30y2x+ 7yx2 + 2y2 + 12yx+ 18x2], and

[0, 10, 11, 20, 21, 31].

The integral closure over the rationals for the sequence, (7, 11, 13, 19, 23, 29, 31), of good

primes is

[x5,

y2x3 − 3
4
yx3 − 15

17
x4,

yx5,

y4x− 3
2
y3x− 30

17
y2x2 + 9

16
y2x+ 45

34
yx2 + 225

289
x3,

y3x3 − 15
17
yx4 − 9

16
yx3 − 45

68
x4,

y5 − 9
4
y4 − 30

17
y3x+ 27

16
y3 + 45

17
y2x+ 225

289
yx2 − 27

64
y2 − 135

136
yx− 675

1156
x2].

Hence we do not use the primes [2, 3, 5, 17, 521, 1663, 44371, 2290471, 21589481,

14402411026486959735107396555603].
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Chapter 5

Integral closures of maximal order of number fields

Let f(T ) ∈ Z[T ] be a monic polynomial of degree m. Let I := 〈f(x)〉 be an ideal in

Z[x]. Define the maximal order R := Z[x]/I of the number field Q[x]/I. There exists a

conductor element ∆ ∈ Z+ such that

R ⊆ ic(R) ⊆ ∆−1R.

5.1 Computation using the qth-power algorithm

M (0) := ∆−1R is a Z-module with standard basis {(∆−1xi), 0 ≤ i < m}. Recursively

define sets S(j) := {∆−1f ∈ M (j−1) : ∆−nNF (fn, I) ∈ M (j−1) for all n}, and Z-modules

M (j) := Z〈S(j)〉. Clearly M (j) ⊆ M (j−1) for all j. M (j) contains ic(R) and has a basis

{(∆−1f
(j)
i ), 0 ≤ i < m}, with degree(f

(j)
i ) = i. Indeed, as a Z-module, ic(R) has basis

{Fi : degree(Fi) = i} for all i. Hence each M (j) has basis elements of the form

f
(j)
i =

∑
k≤i

q
(j)
i,kFk,where q

(j)
i,k 6= 0, q

(j)
i,k ∈ Q, for each i.

Consider the following example.

Example 5.1. Let f(x) := x4 − 420x2 + 40000 ∈ Z[x]. Then ∆M (0) := 〈1, x, x2, x3〉.

Below is a Magma computation that produces a subset, say, S(1) ⊆ S(1) from S(0).

F:= RationalField();

P<x>:=PolynomialRing(Integers( ),1);

f1 := (x^4-420*x^2+40000);
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I:=ideal<P|f1>;

G:=GroebnerBasis(I);G;

JM:=JacobianMatrix(G);JM;

M:=Minors(JM,1);M;

J:=ideal<P|G,M>;

B:=GroebnerBasis(J);

delta:=B[#B];

"delta =",delta;

factors_of_delta:= Factorization(delta); factors_of_delta;

///=====================================================================;

Q:=Integers();

P<x,a3,a2,a1,a0>:=PolynomialRing(Q,5);

f:=x^4-420*x^2+40000;

co:=function(h,i) return Coefficient(h,x,i); end function;

n:=function(g) l:=NormalForm(g^2,[f]); return l; end function;

del:= 65600000;

Factorization(del);

///===================================================;

g0:=1;

g1:=x;

g2:=x^2;

g3:=x^3;

p:=5;

a1:=2*a1+a3;

a2:=2*a2;

a0:=2*a0; a1:=2*a1; a3:=2*a3;

a0:=2*a0; a2:=2*a2;
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a0:=2*a0; a1:=2*a1+a2+a3;

a0:=2*a0; a1:=2*a1+a3; a2:=2*a2;

a0:=2*a0; a1:=2*a1+a3;

a2:=5*a2;

a0:=5*a0+a2; a1:=5*a1+2*a3;

a0:=5*a0; a2:=5*a2;

a0:=5*a0; a1:=5*a1;

a0:=41*a0 - 5*a2; a1:=41*a1 - 5*a3;

b3:=a3; b2:=a2; b1:=a1; b0:=a0;

h3:=n(b3*g3 + b2*g2 + b1*g1 + b0*g0);

i3:=co(h3,3) div co(g3,3); 3, "i3 =",i3;

h2:=h3 - i3*g3; "h2 =",h2;

i2:=co(h2,2) div co(g2,2); 2, "i2 =",i2;

h1:=h2 - i2*g2; "h1 =",h1;

i1:=co(h1,1) div co(g1,1); 1, "i1 =",i1;

h0:=h1 - i1*g1; "h0 =",h0;

i0:=h0 div g0; 0, "i0 =",i0;

I:=[i3,i2,i1,i0];

k3:=GCD(Coefficients(i3)); 3, "k3 =",k3;

k2:=GCD(Coefficients(i2)); 2, "k2 =",k2;

k1:=GCD(Coefficients(i1)); 1, "k1 =",k1;

k0:=GCD(Coefficients(i0)); 0, "k0 =",k0;

k:=[k3,k2,k1,k0];

k:=[GCD(Coefficients(I[l])):l in [1..4]]; "k =",k;

kk:=[del div GCD(k[l],del): l in [1..4]|k[l] ne 0]; "kk =",kk;

R<a0,a1,a2,a3>:=PolynomialRing(GF(p),4);

hPR:=hom<P->R|0,a3,a2,a1,a0>;
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j:=[hPR(I[l] div k[l]): l in [1..4] | (k[l] ne 0)

and (((del div GCD(k[l],del)) mod p) eq 0)];

"j=",j;

J:=ideal<R|j, a3^p -a3, a2^p-a2, a1^p-a1,a0^p-a0>;

RR:=Radical(J);

G:=GroebnerBasis(RR); "G =",G;

h:=b3*g3 + b2*g2 + b1*g1 + b0*g0;

"h=",h; "b0 =",b0; "b1 =",b1; "b2 =",b2; "b3 =",b3;

/////////////////////////////////

give us the following outputs;

p = 41

G = [ a0 + 5*a2, // linear relation

a1 + 5*a3, // linear relation

a2^41 + 40*a2,

a3^41 + 40*a3 ]

h = x^3*a3 + x^2*a2 + x*a1 + a0

G = [ a0^41 + 40*a0,

a1^41 + 40*a1,

a2^41 + 40*a2,

a3^41 + 40*a3 ]

h = x^3*a3 + x^2*a2 - 5*x*a3 + 41*x*a1 - 5*a2 + 41*a0

p = 5

G = [ a0, // linear relation

a1^5 + 4*a1,

a2, // linear relation

a3^5 + 4*a3 ]

h = x^3*a3 + x^2*a2 - 5*x*a3 + 205*x*a1 - 5*a2 + 205*a0
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G = [ a0 + 4*a2, // linear relation

a1 + 3*a3, // linear relation

a2^5 + 4*a2,

a3^5 + 4*a3 ]

h = x^3*a3 + 5*x^2*a2 - 5*x*a3 + 205*x*a1 - 25*a2 + 1025*a0

G = [ a0^5 + 4*a0,

a0*a3,

a1^5 + 4*a1,

a2, // linear relation

a3^5 + 4*a3 ]

h = x^3*a3 + 5*x^2*a2 + 405*x*a3 + 1025*x*a1 + 1000*a2 + 5125*a0

G = [ a0^5 + 4*a0,

a0*a1,

a0*a3,

a1^2 + a1*a3,

a1*a3^4 + 4*a1,

a2^5 + 4*a2,

a3^5 + 4*a3 ]

h = x^3*a3 + 25*x^2*a2 + 405*x*a3 + 1025*x*a1 + 5000*a2 + 5125*a0

p = 2

G = [ a0, // linear relation

a1 + a3, // linear relation

a2, // linear relation

a3^2 + a3 ]

h = x^3*a3 + 25*x^2*a2 + 1430*x*a3 + 2050*x*a1 + 5000*a2 + 10250*a0

G = [ a0,

a1 + a2 + a3,
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a2^2 + a2,

a3^2 + a3 ]

h = x^3*a3 + 50*x^2*a2 + 3480*x*a3 + 4100*x*a1 + 10000*a2 + 20500*a0

G = [ a0, // linear relation

a1^2 + a1,

a2, // linear relation

a3^2 + a3 ]

h = x^3*a3 + 50*x^2*a2 + 7580*x*a3 + 4100*x*a2 + 8200*x*a1

+ 10000*a2 + 41000*a0

G = [ a0, // linear relation

a1, // linear relation

a2^2 + a2,

a3 ] // linear relation

h = x^3*a3 + 100*x^2*a2 + 7580*x*a3 + 8200*x*a2 + 8200*x*a1

+ 20000*a2 + 82000*a0

G = [ a0^2 + a0,

a1^2 + a1,

a2, // linear relation

a3^2 + a3 ]

h = 2*x^3*a3 + 100*x^2*a2 + 15160*x*a3 + 8200*x*a2

+ 16400*x*a1 + 20000*a2 + 164000*a0

G = [ a0^2 + a0,

a0*a3,

a1 + a3, // linear relation

a2^2 + a2,

a3^2 + a3 ]

h = 2*x^3*a3 + 200*x^2*a2 + 15160*x*a3 + 16400*x*a2
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+ 16400*x*a1 + 40000*a2 + 164000*a0

G = [ a0^2 + a0,

a0*a3,

a1^2 + a1,

a2^2 + a2,

a3^2 + a3 ]

h = 2*x^3*a3 + 200*x^2*a2 + 31560*x*a3 + 16400*x*a2

+ 32800*x*a1 + 40000*a2 + 164000*a0

Let S(j) and M (j) be defined as in above. Let S(j) be a subset of S(j), obtained from the

linear relations in the Gröbner basis computations generating S(j). Let M (j) := Z〈S(j)〉.

Looking at the above example and considering the linear relations in the Gröbner computa-

tions we get that

∆S(1) = {164000, 32800x, 200x2 + 16400x+ 40000, 2x3 − 1240x}, and ∆M (1) := Z〈S(1)〉.

Similarly by repeating the process we get

∆S(2) = {3280000, 3280000x, 164000x2 + 1640000x, 8200x3 − 5084000x}, and ∆M (2) :=

Z〈S(2)〉.

∆S(3) = {32800000, 6560000x, 1640000x2 +16400000x, 16400x3−10168000x}, and ∆M (3) :=

Z〈S(3)〉.

∆S(4) = {65600000, 32800000x, 1640000x2 + 16400000x, 82000x3 − 50840000x + 32800000},

and ∆M (4) := Z〈S(4)〉.

∆S(5) = {65600000, 32800000x, 1640000x2 + 16400000x, 82000x3 − 50840000x + 32800000},

and ∆M (5) := Z〈S(5)〉.

We compute M (L) until M (L+1) = M (L) for some L ∈ N. The above example illustrates

how we can get M (1) from M (0). The process is the same to get any other M (L) until

M (L+1) = M (L) for some L ∈ N.

We want to show that M (L+1) = M (L) for some L ∈ N.
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Lemma 5.1. Let R, ic(R), S(j), S(j) and M (j), M (j) be as above. Then any sequence

∆−1R = M (0) ⊇ M (1) ⊇ M (2) ⊇ · · · of Z-modules containing ic(R) is finite. That is,

M (L+1) = M (L) for some L ∈ N.

Proof: Let ∆−1f ∈ S(j) be arbitrary with, LT (f) = xi. It is very important to note here that

S(j) is not necessarily closed under linear combinations. However, given any ∆−1f ∈ S(j) then

∆−1f ∈M (j−1). But as earlier observed, M (j−1) has a Z-module basis {∆−1gk, 0 ≤ k < m}.

Hence

(∆−1f)
n ≡

m−1∑
k=0

zn,k(∆
−1gk)

for all n ∈ N, and some zn,k ∈ Z, with the above sum in M (j−1).

If the leading coefficient, LC(f), does not divide ∆, then we can add some (α ·∆)xi

to (β · LC(f))xi, with α, β ∈ Z, such that d := (α ·∆ + β · LC(f)) divides ∆. Clearly, ∆

has a finite number of factors. Thus the set, {LC(f) : ∆−1f ∈ S(j)}, is finite. Hence we can

pick a finite subset S(j) of S(j) that generates M (j), since for each monomial xi, there exists

a ∆−1f ∈ S(j) with leading monomial, LM(f) = xi.

Also, we know that M (j) ⊆ M (j−1) is a finitely generated submodule and there are a

finite number of xi’s. Thus M (j−1) has a finite number of finitely generated submodules.

Hence the process that produces M (j) from M (j−1) must terminate. Thus there exists L ∈ N

such that M (L+1) = M (L). �

Let us write M (L+1) := M (L+1) and S(L+1) := S(L+1). As a consequence of the above lemma,

we have the following corollary.

Corollary 5.1. Let S(j) and M (j) be as in lemma 5.1 above. Then M (L+n) = M (L) for all

n ∈ N.

The proof of the above corollary follows immediately by induction on n. �

Corollary 5.2. Let S(j) and M (j) be as in lemma 5.1 above. Then ∆−1f ∈ M (L) ⇒

(∆−1f)
n ∈M (L) for all n ∈ N.
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Proof:

∆−1f ∈M (L) = M (L+n)

⇒ (∆−2f 2) ∈M (L+n−1) = M (L)

⇒ · · ·

⇒ ∆−nfn ∈M (L). �

Our next major goal is to show that when M (L) = M (L+1) for some L ∈ N, then every

element in M (L) is integral. Before proving that the elements in M (L) = M (L+1) are integral,

let us show that this is the case with our last example.

Example 5.2. We saw in our last example that M (4) = M (5) and that

∆S(5+n) = ∆S(5) = {65600000, 32800000x, 1640000x2 + 16400000x, 82000x3 − 50840000x +

32800000}, for any n ∈ N. Hence

M (5) = Z〈S(5)〉 = Z〈f0 := 1, f1 :=
1

2
x, f2 :=

1

40

(
x2 + 10x

)
, f3 :=

1

800

(
x3 + 180x+ 400

)
〉.

We will show that each element in M (5) satisfies an integral equation.

x4 − 420x2 + 40000 = 0

⇒
(x

2

)4

− 420

4

(x
2

)2

+
40000

24
= 0

⇒
(x

2

)4

− 105
(x

2

)2

+ 2500 = 0

⇒ f 4
1 − 105f 2

1 + 2500 = 0

So f1 satisfies an integral equation.

We are left with showing that f2 and f3 each satisfies an integral equation.

Now consider

f2 :=
1

40
(x2 + 10x);
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Want to show that f2 is integral. That is, it satisfies an integral equation. Note

NF (f 2
2 , I) =

1

80
x3 +

13

40
x2 − 25,

NF (f 4
2 , I) =

223

80
x3 +

1977

40
x2 − 650x− 6225,

NF (f 8
2 , I) =

3911841

80
x3 +

32605377

40
x2 − 13951050x− 117026225,

NF (f 16
2 , I) =

853153602298047

80
x3 +

7062391476250257

40
x2 − 3112075095880350x

− 25764545727890225.

and so

f 2
2 = 10f3 + 13f2 − 11f1 − 30f0,

f 4
2 = 2230f3 + 1977f2 − 2642f1 − 7340f0,

f 8
2 = 39118410f3 + 32605377f2 − 47857023f1 − 136585430f0,

f 16
2 = 8531536022980470f3 + 7062391476250257f2

− 10482462044346690f1 − 30030313739380460f0.

Using row-reduction to eliminate f3 and f1, we get an integral equation

f 16
2 + 243949426459594f 8

2 − 6230102427638341369f 4
2 + 435020619858623174686f 2

2

−1292425639761414271600f2 + 641634118444033088000 = 0;

One can check that setting

y := f 16
2 + 243949426459594f 8

2 − 6230102427638341369f 4
2 + 435020619858623174686f 2

2

− 1292425639761414271600f2 + 641634118444033088000;
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we get NF(y, I) = 0. Note that y factors into the following minimum polynomials;

< f 4
2 − 21f 3

2 + 134f 2
2 − 275f2 + 125, 1 >,

< f 12
2 + 21f 11

2 + 307f 10
2 + 3908f 9

2 + 46580f 8
2

+ 536308f 7
2 + 6057073f 6

2 + 67654261f 5
2 + 243950177213493f 4

2 + 5122946254468954f 3
2

+ 74892565445027622f 2
2 + 953355366523668176f2 + 5133072947552264704, 1 >

Hence f2 satisfies an integral equation.

We want to show that f3 is integral. That is, it satisfies an integral equation. Note

NF (f 2
3 , I) = 1/800x3 + 1/2x2 + 9/20x− 97/2,

NF (f 4
3 , I) = 503/800x3 + 57x2 − 2873/20x− 15393/2,

NF (f 8
3 , I) = 9790521/800x3 + 508326x2 − 70459911/20x− 147505153/2,

and

f 2
3 = f3 + 20f2 − 10f1 − 49f0,

f 4
3 = 503f3 + 2280f2 − 1510f1 − 7948f0,

f 8
3 = 9790521f3 + 20333040f2 − 18095250f1 − 78647837f0,

Using row-reduction to eliminate f2 and f1, we get an integral equation

f 8
3 − 21429f 4

3 + 1426254f 2
3 − 437988f3 − 21783409 = 0;

One can check that setting

y := f 8
3 − 21429f 4

3 + 1426254f 2
3 − 437988f3 − 21783409;
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we get NF(y, I) = 0. Note that y factors into the following minimum polynomials

< f 4
3 − 2f 3

3 − 111f 2
3 + 112f3 + 2111, 1 >,

< f 4
3 + 2f 3

3 + 115f 2
3 + 340f3 − 10319, 1 >

Hence f3 satisfies an integral equation.

Theorem 5.1. Let M (L) be defined as above such that M (L) = M (L+n), for any n ∈ N. Then

every element in M (L) is integral.

Proof: The approach here is to show that each element in M (L) satisfies an integral equation.

Suppose ∆−nfn ∈M (L) for all n. Then any Z-linear combination is as well because M (L) is

a Z-module. We can thus produce a Z-dependency satisfied by ∆−1f and then a Z-integral

equation satisfied by ∆−1f . Consider the m-tuples LC((fi)
n). If M (i) 6= M (l), then their

m-tuples are distinct. By construction, LC((fi)
n)|∆, so there are only finitely many such

distinct m-tuples to consider.

We observed earlier that M (L) has a Z-module basis {(∆−1fi) ∈ S(L) : 0 ≤ i < m}, with

degree (fi) = i. Hence given each fi, we can write

(∆−1fi)
j ≡ ∆−jNF ((fi)

j, I) =
m−1∑
k=0

zi,j,k(∆
−1fk),

for some integers zi,j,k and for all j. Let fi, 0 ≤ i < m be a fixed basis for M (L). Let f := fi

for a particular i, and write

∆−nNF (fn, I) =
m−1∑
k=0

zn,k(∆
−1fk)

for some integers zn,k for all n. To work with polynomials, define

gn := ∆1−nNF (fn, I) =
m−1∑
k=0

zn,kfk.
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Let the leading position of gn be denoted by LP (gn). Then we can ”row-reduce” the sequence

of m-tuples whenever

LP (gn) = fk = LP (gi), n > i.

Start with n = 1. If LM(gn) = LM(gi) for some i < n, then

dn,i := gcd(LC(gn), LC(gi)) = αn,iLC(gn) + βn,iLC(gi).

Let d := dn,i. Replace gi by

gi := αn,ign + βn,igi

so that LP (gi) = fk, but LC(gi) = d; and also replace gn by

gn :=
LC(gi)

d
gn −

LC(gn)

d
gi,

so that

LP (gn) < LP (gn) and LM(gn) ≺ LM(gn).

As mentioned earlier, there are only finitely many such m-tuples. Hence it must be that for

some n,

gn −→ 0,

that is

(∆−1f)
n −

∑
k<n

cn,kgk(∆
−1f)

k ≡ 0.

Hence
(
∆−1fi

)
is a root of some polynomial,

Fi(T ) := 1 · T n −
∑
k<n

bi,n,kT
k,

which is monic of some possibly large degree n. But
(
∆−1fi

)n
, 0 ≤ n ≤ m cannot

be Z-independent. So
(
∆−1fi

)
is a root of some Gi(T ) not necessarily monic, and with
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degree(Gi) ≤ m. However,
(
∆−1fi

)
is a root of

Ei(T ) := gcd(Fi(T ), Gi(T ))

with degree(Ei) ≤ degree(Gi) ≤ m and LC(Ei)|LC(Fi) = 1. So Ei(T ) must be monic and

thus
(
∆−1fi

)
satisfies an integral equation of some degree n ≤ m. �

Remark 5.1. We see from the above that we could have defined

S(L) := {∆−1f ∈M (L−1) : ∆−nNF (fn, I) ∈M (L−1) for all 0 ≤ n ≤ m}.

Theorem 5.2. Let M (L) and ic(R) be defined as above such that M (L) = M (L+n), for any

n ∈ N. Then M (L) = ic(R).

Proof: From the previous theorem, M := M (L) consists of integral elements. That is, every

element of M is integral. Thus M ⊆ ic(R). But by construction, ic(R) ⊆ M . Hence,

M = ic(R). �

Example 5.3. Let f(x) := x6 − 200x3 + 1500 ∈ Z[x], and R := Z[x]/〈f(x)〉. Then

∆ = 765000, and ∆M (0) = {1, x, x2, x3, x4, x5}.

∆S(1) = {5100, 5100x, 5100x2, 30x3 + 2100, 6x4 + 3060x2 + 4500x, x5 + 2x4 + 10x3 + 1770x2 +

1500x+ 2400}, and ∆M (1) := Z〈S(1)〉.

∆S(2) = {153000, 153000x, 15300x2, 2550x3+10200x2+76500, 510x4+10200x2+76500x, 510x5+

5100x3 + 10200x2}, and ∆M (2) := Z〈S(2)〉.

∆S(3) = {765000, 153000x, 153000x2, 7650x3 + 382500, 7650x4 + 76500x, 510x5 + 2550x4 +

5100x3 + 76500x2 + 76500x}, and ∆M (3) := Z〈S(3)〉.

∆S(4) = {765000, 765000x, 153000x2, 38250x3 +382500, 7650x4 +382500x, 2550x5 +5100x4 +

25500x3 + 76500x2}, and ∆M (4) := Z〈S(4)〉.

M (n+4) = M (4) = Z〈S(4)〉. So ∆ · ic(R) = Z〈S(4)〉.
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5.2 Computation using Magma’s built-in function

In this section we present integral closure computations of number fields using Magma

built-in commands. The following Magma code is used.

pMaximalOverOrder := function(ord, p)

ovr := MultiplicatorRing(pRadical(ord, p));

print "index is", Index(ovr, ord);

return (Index(ovr, ord) eq 1) select ovr else $$(ovr, p);

end function;

Round2 := function(E, K)

// E should be some order of a number field K

d := Discriminant(E);

fact := Factorization(Abs(d));

print fact;

M := E;

for x in fact do

M := M+pMaximalOverOrder(E, x[1]);

end for;

print "index of equation order in maximal order is:", Index(M, E);

return M;

end function;

R<x> := PolynomialRing(Integers());

// select an example below by deletting th // at the

//beginning of the example

// K := NumberField(x^4-420*x^2+40000); // Example 1

// K := NumberField(x^6 - 200*x^3 + 1500); // Example 2

// K := NumberField(x^5 + 5*x^4 - 75*x^3 + 250*x^2 + 65625); // Example 3
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// K := NumberField(x^4 + 5*x^3 - 25*x^2 + 125*x + 625); // Example 4

K := NumberField(x^4-10*x^2+1); // Example 5

E := EquationOrder(K);

Round2(E, K);

5.2.1 Examples using Magma

Example 5.4. (Same as example 5.1 done differently). Let f(x) := x4 − 420x2 + 40000

and R := Z[x]/〈f(x)〉.

>[ <2, 18>, <5, 8>, <41, 2> ]

index is 2

index is 4

index is 8

index is 4

index is 2

index is 1

index is 5

index is 25

index is 1

index is 1

index of equation order in maximal order is: 64000

Transformation of E

Transformation Matrix:

[800 0 0 0]

[ 0 400 0 0]

[ 0 200 20 0]

[400 180 0 1]
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Denominator: 800

So ∆ := 800 and ∆ · ic(R) = Z〈800, 400x, 20x2 + 200, x3 + 180x+ 400〉.

Example 5.5. (Same as example 5.3 done differently). Let f(x) := x6− 200x3 + 1500 and

R := Z[x]/〈f(x)〉.

[ <2, 16>, <3, 8>, <5, 15>, <17, 3> ]

index is 2

index is 2

index is 2

index is 2

index is 2

index is 2

index is 1

index is 3

index is 1

index is 5

index is 25

index is 5

index is 25

index is 1

index is 1

index of equation order in maximal order is: 3000000

Transformation of E

Transformation Matrix:

[300 0 0 0 0 0]

[ 0 300 0 0 0 0]
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[ 0 0 60 0 0 0]

[150 0 0 15 0 0]

[ 0 150 0 0 3 0]

[ 0 0 30 10 2 1]

Denominator: 300

So ∆ := 300 and ∆·ic(R) = Z〈300, 300x, 60x2, 15x3+150, 3x4+150x, x5+2x4+10x3+30x2〉.

Example 5.6. Let f(x) := x5 + 5x4 − 75x3 + 250x2 + 65625 and R := Z[x]/〈f(x)〉.

[ <2, 2>, <3, 1>, <5, 20>, <7, 1>, <37, 1>, <353263, 1> ]

index is 1

index is 1

index is 5

index is 25

index is 125

index is 625

index is 1

index is 1

index is 1

index is 1

index of equation order in maximal order is: 9765625

Transformation of E

Transformation Matrix:

[625 0 0 0 0]

[ 0 125 0 0 0]

[ 0 0 25 0 0]

[ 0 0 0 5 0]

[ 0 0 0 0 1]

75



Denominator: 625

So ∆ := 625 and ∆ · ic(R) = Z〈625, 125x, 25x2, 5x3, x4〉.

Example 5.7. Let f(x) := x4 + 5x3 − 25x2 + 125x+ 625 and R := Z[x]/〈f(x)〉.

[ <3, 1>, <5, 12>, <13, 2> ]

index is 1

index is 5

index is 25

index is 125

index is 1

index is 1

index of equation order in maximal order is: 15625

Transformation of E

Transformation Matrix:

[125 0 0 0]

[ 0 25 0 0]

[ 0 0 5 0]

[ 0 0 0 1]

Denominator: 125

So ∆ := 125 and ∆ · ic(R) = Z〈125, 25x, 5x2, x3〉.

Example 5.8. Let f(x) := x4 − 10x2 + 1 and R := Z[x]/〈f(x)〉.

[ <2, 14>, <3, 2> ]

index is 2

index is 4

index is 1

index is 1
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index of equation order in maximal order is: 8

Transformation of E

Transformation Matrix:

[ 4 0 0 0]

[ 0 4 0 0]

[-2 0 2 0]

[-3 -1 -1 1]

Denominator: 4

So ∆ := 4 and ∆ · ic(R) = Z〈4, 4x, 2x2 − 2, x3 − x2 − x− 3〉.
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Chapter 6

Various implementations

In this chapter, we look at the output from various implementations in computing

integral closures. This enables us to see the uniqueness and advantages of the qth-power

algorithm approach. By example, we see that the output from other implementations have

issues with some key concepts such as weight functions, monomial orderings, and the type

of presentation produced. Throughout this chapter, our example will be the following:

Example 6.1. Let F be the finite field, GF (23). Let R := F[y;x], f := (y8−y2x3+2yx6−x9)

and I :=< f >.

We know from the qth-power algorithm that the weights of the P -module basis generating

the integral closure are [0, 4, 5, 10, 14, 15, 19], where F := GF (23) and P := F[x]. We will

present outputs from Singular, Macaulay2, Magma and the qth-power algorithm.

6.1 Output from Singular

Using the ”normal” command:

> LIB "normal.lib";

> ring r=23,(y,x),wp(9,8);

> ideal i = (y^8 - y^2*x^3 + 2*y*x^6 -x^9);

> list nor=normal(i);

> nor;

[1]:

[1]:

// characteristic : 23
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// number of vars : 7

// block 1 : ordering dp

// : names T(1) T(2) T(3) T(4) T(5)

// block 2 : ordering wp

// : names y x

// : weights 9 8

// block 3 : ordering C

[2]:

[1]:

_[1]=y5x2

_[2]=y6x

_[3]=y3x5-y4x2

_[4]=y8

_[5]=yx8-y2x5

_[6]=yx6-y2x3

> def R=nor[1][1];

> setring R;

> normap;

normap[1]=y

normap[2]=x

> norid;

norid[1]=T(1)*y-T(2)*x

norid[2]=T(4)*y-T(5)*x+y

norid[3]=-T(5)+x^2

norid[4]=-T(3)*x+y^2

norid[5]=T(2)*y^2-T(4)*x

norid[6]=T(1)*x^3-T(2)*x-T(3)*y^2
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norid[7]=T(3)*x^3-T(5)*y^2

norid[8]=T(2)*x^4-T(2)*y*x-T(3)*y^3

norid[9]=T(3)*y^5-T(4)*x^5+T(5)*x^3-T(5)*y

norid[10]=T(4)*x^8-T(5)*y^7-T(5)*x^6+T(5)*y*x^3

norid[11]=T(1)^2-x

norid[12]=T(1)*T(2)-y

norid[13]=T(2)^2-T(3)

norid[14]=T(1)*T(3)-T(2)*y

norid[15]=T(2)*T(3)-T(4)

norid[16]=T(3)^2-T(1)*x^2+T(2)

norid[17]=T(1)*T(4)-T(3)*y

norid[18]=T(2)*T(4)-T(1)*x^2+T(2)

norid[19]=T(3)*T(4)+T(3)-y*x^2

norid[20]=T(4)^2-T(1)*y^2*x+T(4)

norid[21]=T(1)*T(5)-T(1)*x^2

norid[22]=T(2)*T(5)-T(1)*y*x

norid[23]=T(3)*T(5)-y^2*x

norid[24]=T(4)*T(5)-T(1)*y^3

norid[25]=T(5)^2-x^4

norid[26]=-y^8+x^9-2*y*x^6+y^2*x^3

> option(redSB);

> ideal j=std(norid);j;

j[1]=y^8-x^9+2*y*x^6-y^2*x^3

j[2]=T(5)-x^2

j[3]=T(4)*y-x^3+y

j[4]=T(4)*x^6-y^7-x^6+y*x^3

j[5]=T(3)*x-y^2
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j[6]=T(3)*y^5-T(4)*x^5+x^5-y*x^2

j[7]=T(2)*y^2-T(4)*x

j[8]=T(2)*x^4-T(2)*y*x-T(3)*y^3

j[9]=T(1)*y-T(2)*x

j[10]=T(1)*x^3-T(2)*x-T(3)*y^2

j[11]=T(4)^2-T(2)*y*x^2+T(4)

j[12]=T(3)*T(4)+T(3)-y*x^2

j[13]=T(2)*T(4)-T(1)*x^2+T(2)

j[14]=T(1)*T(4)-T(3)*y

j[15]=T(3)^2-T(1)*x^2+T(2)

j[16]=T(2)*T(3)-T(4)

j[17]=T(1)*T(3)-T(2)*y

j[18]=T(2)^2-T(3)

j[19]=T(1)*T(2)-y

j[20]=T(1)^2-x

The normal command produces an R-module generating set, {T (1), T (2), T (3), T (4), T (5)}.

We see that nor[1][1] gives a block order, grevlex on the new variables {T (1), T (2), T (3), T (4), T (5)}

and the given order on the old variables, {y, x}. The R-module generators are given by

T (1) := (y5x2)/∆, wt(T (1)) = 4

T (2) := (y6x)/∆, wt(T (2)) = 5

T (3) := (y3x5 − y4x2)/∆, wt(T (3)) = 10

T (4) := (y8)/∆, wt(T (4)) = 15

T (5) := (yx8 − y2x5)/∆, wt(T (5)) = 16

where ∆ := yx6 − y2x3 is the conductor element used.

Looking at the ideal j above, we see that j[2] = T (5)−x2. That is T (5) = x2 and T (5) does

not show up elsewhere in j. So T (5) is an extra variable. Also, we notice that the weights

14 and 19 corresponding to T (2)y and T (3)y respectively, are missing. These variables do
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not show up in the presentation because Singular is producing an R-module presenta-

tion, instead of producing a P -module presentation. The relations, norid, in the algebra

presentation here are linear and quadratic over the input ring.

Using the ”normalP” with the ”withRing” option command:

> LIB "normal.lib";

> ring r=23,(y,x),wp(9,8);

> ideal i =(y^8-y^2*x^3+2*y*x^6-x^9);

> list norp=normalP(i,"withRing");

> norp;

[1]:

[1]:

// characteristic : 23

// number of vars : 2

// block 1 : ordering dp

// : names T(1) T(3)

// block 2 : ordering C

[2]:

[1]:

_[1]=y5x

_[2]=y6

_[3]=y3x4-y4x

_[4]=x8-y2x2

_[5]=yx5-y2x2

[3]:

[1]:

22

[2]:
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22

> def R=norp[1][1];

> setring R;

> normap;

normap[1]=T(1)^6-T(1)*T(3)^2

normap[2]=T(1)^2

> norid;

norid[1]=T(1)^17-3*T(1)^12*T(3)^2+3*T(1)^7*T(3)^4-T(1)^7*T(3)

-T(1)^2*T(3)^6+T(1)^2*T(3)^3

norid[2]=T(1)^11*T(3)-2*T(1)^6*T(3)^3+T(1)*T(3)^5-T(1)*T(3)^2

norid[3]=T(1)^10-2*T(1)^5*T(3)^2+T(3)^4-T(3)

norid[4]=T(1)^10*T(3)-2*T(1)^5*T(3)^3+T(3)^5-T(3)^2

norid[5]=T(1)^15-3*T(1)^10*T(3)^2+3*T(1)^5*T(3)^4-T(1)^5*T(3)

-T(3)^6+T(3)^3

norid[6]=T(1)^12-2*T(1)^7*T(3)^2+T(1)^2*T(3)^4-T(1)^2*T(3)

norid[7]=T(1)^12*T(3)-2*T(1)^7*T(3)^3+T(1)^2*T(3)^5-T(1)^2*T(3)^2

norid[8]=T(1)^11-2*T(1)^6*T(3)^2+T(1)*T(3)^4-T(1)*T(3)

norid[9]=T(1)^48-8*T(1)^43*T(3)^2+5*T(1)^38*T(3)^4-10*T(1)^33*T(3)^6

+T(1)^28*T(3)^8

-10*T(1)^23*T(3)^10+5*T(1)^18*T(3)^12-8*T(1)^13*T(3)^14

+T(1)^8*T(3)^16-T(1)^8*T(3)^4

> option(redSB);

> ideal j=std(norid);j;

j[1]=T(1)^10-2*T(1)^5*T(3)^2+T(3)^4-T(3)

normalP with the ”withRing” command does not produce an R-module generating set. The

fractions produced are

T (1) := (y5x)/∆, wt(T (1)) = 4
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T (2) = (y6)/∆, wt(T (2)) = 5

T (3) := (y3x4 − y4x)/∆, wt(T (3)) = 10

T (4) = (x8 − y2x2)/∆, wt(T (4)) = 15

where ∆ := yx5 − y2x2 is the conductor element used.

We see that nor[1][1] gives a block order, grevlex on the new variables {T1, T3}. The old

variables y and x are replaced with (T (1))6 − T (1)T (3) and (T (1))2 respectively.

We know the weights that are produced by the qth-power algorithm. Here we have just

wt(T (1)) := 4 and wt(T (3)) := 10. This is probably because Singular is getting rid of the

variables T (2), T (4), y and x. It thinks these variables are unnecessary. There are no y’s and

x’s and the relations do not indicate that R is a subring.

A Gröbner basis of the presentation reduces to a relation which is no longer a presenta-

tion over R at all. In fact, the relation is in terms of T (1) and T (3), which is neither linear

nor quadratic over R.

Using the ”normalP” with ”withRing” and ”noRed” command:

> LIB "normal.lib";

> ring r=23,(y,x),wp(9,8);

> ideal i = (y^8 - y^2*x^3 + 2*y*x^6 -x^9);

> list norp=normalP(i,"withRing","noRed");

> norp;

[1]:

[1]:

// characteristic : 23

// number of vars : 6

// block 1 : ordering dp

// : names T(1) T(2) T(3) T(4)

// block 2 : ordering wp

// : names y x
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// : weights 9 8

// block 3 : ordering C

[2]:

[1]:

_[1]=y5x

_[2]=y6

_[3]=y3x4-y4x

_[4]=x8-y2x2

_[5]=yx5-y2x2

[3]:

[1]:

22

[2]:

22

> def R=norp[1][1];

> setring R;

> normap;

normap[1]=y

normap[2]=x

> norid;

norid[1]=T(1)*y-T(2)*x

norid[2]=-T(3)*x+y^2

norid[3]=T(2)*y^2-T(4)*x+2*x

norid[4]=-T(4)*y+x^3+y

norid[5]=T(1)*x^3-T(2)*x-T(3)*y^2

norid[6]=T(1)^2-x

norid[7]=T(1)*T(2)-y
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norid[8]=T(2)^2-T(3)

norid[9]=T(1)*T(3)-T(2)*y

norid[10]=T(2)*T(3)-T(4)+2

norid[11]=T(3)^2-T(1)*x^2+T(2)

norid[12]=T(1)*T(4)-2*T(1)-T(3)*y

norid[13]=T(2)*T(4)-T(1)*x^2-T(2)

norid[14]=T(3)*T(4)-T(3)-y*x^2

norid[15]=T(4)^2-T(2)*y*x^2-3*T(4)+2

norid[16]=y^8-x^9+2*y*x^6-y^2*x^3

> option(redSB);

> ideal j=std(norid);j;

j[1]=y^8-x^9+2*y*x^6-y^2*x^3

j[2]=T(4)*y-x^3-y

j[3]=T(4)*x^6-y^7-3*x^6+y*x^3

j[4]=T(3)*x-y^2

j[5]=T(3)*y^5-T(4)*x^5+3*x^5-y*x^2

j[6]=T(2)*y^2-T(4)*x+2*x

j[7]=T(2)*x^4-T(2)*y*x-T(3)*y^3

j[8]=T(1)*y-T(2)*x

j[9]=T(1)*x^3-T(2)*x-T(3)*y^2

j[10]=T(4)^2-T(2)*y*x^2-3*T(4)+2

j[11]=T(3)*T(4)-T(3)-y*x^2

j[12]=T(2)*T(4)-T(1)*x^2-T(2)

j[13]=T(1)*T(4)-2*T(1)-T(3)*y

j[14]=T(3)^2-T(1)*x^2+T(2)

j[15]=T(2)*T(3)-T(4)+2

j[16]=T(1)*T(3)-T(2)*y
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j[17]=T(2)^2-T(3)

j[18]=T(1)*T(2)-y

j[19]=T(1)^2-x

normalP with ”withRing” and ”noRed” command produces an R-module generating set,

{T (1), T (2), T (3), T (4)}, with fewer variables. We see that nor[1][1] gives a block order,

grevlex on the new variables {T (1), T (2), T (3), T (4)} and the given order on the old variables,

{y, x}. The R-module generators are given by

T (1) := (y5x)/∆, wt(T (1)) = 4

T (2) := (y6)/∆, wt(T (2)) = 5

T (3) := (y3x4 − y4x)/∆, wt(T (3)) = 10

T (4) := (x8 − y2x2)/∆, wt(T (4)) = 15

where ∆ := yx5 − y2x2 is the conductor element used.

We notice that the weights 14 and 19 corresponding to T (2)y and T (3)y respectively, are

missing. These variables do not show up in the presentation because Singular is producing

an R-module presentation, instead of producing a P -module presentation. The relations,

norid, in the algebra presentation here are linear and quadratic over the input ring, R.

Looking at the outputs from Singular, the outputs gotten by using

normalP(i,”withRing”,”noRed”) and normal commands are radically different from the out-

put gotten by using the normalP(i,”withRing”) command, which produces a presentation

over F23[T (3)], instead of a presentation over F23[T (2)]. Indeed, a presentation using T(2)

instead of T(3) would have probably matched the output of MAGMA’s Normalisation.

The presentation from normalP(i,”withRing”) command, has a Gröbner basis having

only one relation j[1] = (T (1))10 − 2(T (1))5(T (3))2 + 9(T (3))4 − T (3). This presentation is

not quite type I because gcd(wt(T (1)), wt(T (3))) 6= 1.

It is important to note that the theory in the Singular book (see [15]) is that the pre-

sentation is to be a strict affine R-algebra. But the presentation from normalP(i,”withRing”)
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is contrary to this theory. In fact normalP(i,”withRing”) tries to get a minimized presen-

tation, suggesting that such an affine R- algebra presentation may not be the best. The

attempt by normalP(i,”withRing”) to get a minimized presentation is unsuccessful as T (2)

is removed instead of T (3). normalP(i,”withRing”,”noRed”) and normal produce an affine

R-algebra presentation, which matches the theory in the book.

In order the salvage the output from Singular, it is vital to process the input so as to

identify the free and independent variables in the input ring. We think that the presentation

over the input ring, R, is not a good approach. The presentation should be over the ring

of free variables, P , as in the case of the qth-power algorithm. In fact using the qth-power

algorithm, we produce a strictly P -affine algebra presentation, with only linear and quadratic

relations over the ring of free variable, P . It is also important to note the input ring is no

longer important in the output, since the integral closure always contain the input ring.

Unfortunately, Singular thinks that the input ring is more important in the output.

6.2 Output from Macaulay2

The integralClosure and icFracP commands in Macaulay2 give

i1 : load "IntegralClosure.m2";

i2 : R=ZZ/23[y,x,MonomialOrder=>{Weights=>{9,8}}];

i3 : I=ideal(y^8 - y^2*x^3 + 2*y*x^6 -x^9);

o3 : Ideal of R

i4 : S=R/I;

i5 : time P=presentation(integralClosure(S))

-- used 2.12 seconds

o5 = | w_(10,0)^3y-x3+y w_(12,0)x2-w_(10,0)^4-w_(10,0)

---------------------------------------------------------------

w_(12,0)w_(10,0)x-yx w_(12,0)y-w_(10,0)x w_(12,0)w_(10,0)-y

---------------------------------------------------------------
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w_(12,0)^2x-x2 w_(12,0)^2-x |

ZZ 1 ZZ 7

o5 : Matrix (--[w , w , y, x]) <--- (--[w , w , y, x])

23 12,0 10,0 23 12,0 10,0

i6 : time G=gens gb P

-- used 0. seconds

o6 = | x9-y8-2yx6+y2x3 w_(10,0)y3-x4+yx w_(10,0)x5-w_(10,0)yx2-y5

---------------------------------------------------------------

w_(10,0)^2x-y2 w_(10,0)^3y-x3+y w_(10,0)^5+w_(10,0)^2-yx2

---------------------------------------------------------------

w_(12,0)y-w_(10,0)x w_(12,0)x2-w_(10,0)^4-w_(10,0)

---------------------------------------------------------------

w_(12,0)w_(10,0)-y w_(12,0)^2-x |

ZZ 1 ZZ 10

o6 : Matrix (--[w , w , y, x]) <--- (--[w , w , y, x])

23 12,0 10,0 23 12,0 10,0

i7 : time F=icFracP(S)

-- used 432.23 seconds

5 2 4 2 3

x - y*x x - y*x y x - 6y

o7 = {1, ---------, --------, --, -------}

4 3 x y

y y

Macaulay2’s integralClosure command produces an R-module generating set,

{w (10, 0), w (12, 0)}, with w (10, 0) := x4−yx
y3

, having weight wt(w (10, 0)) = 5 and

w (12, 0) := w (10,0)x
y

= x5−yx2

y4
, having weight wt(w (12, 0)) = 4. Though integralClosure

produces a presentation that is not quadratic-and-linear over R, icFracP does not produce
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a presentation at all, but only fractions. Though icFracP does not produce weights, we see

that the weights of the fractions produced are [0, 4, 5, 10, 15].

Again the output here from Macaulay2, using either the integralClosure or the icFracP

command, produces fewer variables. The weights 14 and 19 corresponding to y((x4−yx)/y3)

and y((y2)/x)) respectively, are missing. These variables do not show up in the presentation

because Macaulay2 is producing an R-module presentation over the input ring,R, instead

of producing a P -module presentation.

6.3 Output from Magma

The IntegralClosure command in Magma gives a module presentation over the function

field Q(x).

Q:=GF(23);

F<x>:=FunctionField(Q);

P<y>:=PolynomialRing(F);

f:=(y^8 - y^2*x^3 + 2*y*x^6 -x^9);

Ff<Y>:=RationalExtensionRepresentation(FunctionField(f));

C<X>:=CoefficientRing(Ff);

INT:=Integers(C);

IC:=IntegralClosure(INT,Ff);

B:=Basis(IC);

for i in [1..#B] do

i,B[i];

end for;

"time for char=0 is",Cputime(t23);

==================================

[ 1 1

2 Y
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3 1/X*Y^2

4 1/X*Y^3

5 1/X^2*Y^4

6 1/X^2*Y^5

7 1/X^3*Y^6

8 1/X^13*Y^7 + 1/X^10*Y^6 + 1/X^7*Y^5 + 1/X^4*Y^4 + 18/X^10*Y + 1/X^7 ]

which is an F23[x]-module basis. Though Magma does not produce weights, we see that the

weights of the fractions are [0, 9, 10, 19, 20, 29, 30, 4].

Magma’s IntegralClosure treats the output as a subring of F23(X)[Y ], allowing for

operations to be performed on elements there, which means producing other elements of

F23(X)[Y ] not necessarily immediately recognizable in terms of the basis elements produced.

The Normalisation command in Magma gives

t:=Cputime();

F:=Rationals();

P<y,x>:=PolynomialRing(F,2,"weight",[1,0,9,8]);

f:=(y^8 - y^2*x^3 + 2*y*x^6 -x^9);

I:=ideal<P|f>;

N:=Normalisation(I);

J:=N[1][1];J;

"Normalisation time=",Cputime(t);

G:=GroebnerBasis(J);G;

"total time=",Cputime(t);

======

Ideal of Polynomial ring of rank 2 over Rational Field

Order: Lexicographical

Variables: $.1, $.2

Basis:
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[

-$.1^21 + $.1^16*$.2^4 + $.1^11*$.2^5 + $.1^6*$.2^6 + $.1^6

+ $.1*$.2^7 - $.1*$.2,

-$.1^7 + $.1^2*$.2^4 + $.1^2*$.2,

-$.1^10 + 2*$.1^5*$.2 + $.2^8 - $.2^2,

-$.1^11 + $.1^6*$.2^4 + $.1*$.2^5 + $.1*$.2^2,

-$.1^12 + 2*$.1^7*$.2 + $.1^2*$.2^8 - $.1^2*$.2^2,

-$.1^11*$.2 + 2*$.1^6*$.2^2 + $.1*$.2^9 - $.1*$.2^3,

-$.1^17 + $.1^12*$.2^4 + $.1^7*$.2^5 + $.1^2*$.2^6 +

$.1^2*$.2^3,

-$.1^10*$.2^2 + 2*$.1^5*$.2^3 + $.2^10 - $.2^4,

-$.1^6 + $.1*$.2^4 + $.1*$.2,

-$.1^12*$.2^2 + 2*$.1^7*$.2^3 + $.1^2*$.2^10 - $.1^2*$.2^4,

-$.1^11*$.2^3 + 2*$.1^6*$.2^4 + $.1*$.2^11 - $.1*$.2^5,

-$.1^7*$.2 + $.1^2*$.2^5 + $.1^2*$.2^2,

-$.1^10*$.2^4 + 2*$.1^5*$.2^5 + $.2^12 - $.2^6,

-$.1^6*$.2^2 + $.1*$.2^6 + $.1*$.2^3,

-$.1^5 + $.2^4 + $.2 ]

> "Normalisation time=",Cputime(t);

Normalisation time= 0.770

> G:=GroebnerBasis(J);G;

[ $.1^5 - $.2^4 - $.2 ]

> "total time=",Cputime(t);

A Gröbner basis of Magma’s Normalisation produces a single relation (J.1)5− (J.2)4− J.2,

which is what which is what normalP with the ”withRing” command should have produced.
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6.4 Output from the qth-power algorithm

The qth-power algorithm gives a F23[x]-module presentation with the following F23[x]-

module basis, and ∆ := x13.

1 y3x12,

2 y7x7 − yx10,

3 y6x8 + y7x5 + x11 − yx8,

4 y2x12,

5 yx13,

6 y5x8 + y6x5 + y7x2 + x8 − yx5,

7 y4x9 + y5x6 + y6x3 + y7 + x6 − yx3,

8 x13

with weights [19, 15, 14, 10, 9, 5, 4, 0]

and the following strictly F23[x]-affine algebra presentation

[ f 2
4 − f8,

f 2
5 − f10,

f5f4 − f9,

f 2
9 − f10f8,

f9f5 − f14,

f9f4 − f5f8,

f 2
10 − f4f

2
8 + f5,

f10f9 − f19,

f10f5 − f15 − 1,

f10f4 − f14,

f 2
14 − f4f

3
8 + f5f8,

f14f10 − f 3
8 + f9,

f14f9 − f15f8 − f8,

f14f5 − f19,
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f14f4 − f10f8,

f 2
15 − f14f

2
8 + 3f15 + 2,

f15f14 − f5f
3
8 + 2f14,

f15f10 − f9f
2
8 + 2f10,

f15f9 − f 3
8 + 2f9,

f15f5 − f4f
2
8 + 2f5,

f15f4 − f19 + f4,

f 2
19 − f14f

3
8 + f15f8 + f8,

f19f15 − f10f
3
8 + 2f19,

f19f14 − f9f
3
8 + f10f8,

f19f10 − f5f
3
8 + f14,

f19f9 − f4f
3
8 + f5f8,

f19f5 − f 3
8 + f9,

f19f4 − f15f8 − f8 ]

where f4 := (1/x13)y4x9, f5 := (1/x13)y5x8, f9 := y, f10 := (1/x13)y2x12, f14 := (1/x13)y6x8,

f15 := (1/x13)y7x7, f19 := (1/x13)y3x12, f8 := x.

It is important to note here that if we look at the weights, [19, 15, 14, 10, 9, 5, 4, 0], it is

possible to extract a minimized answer using f4, f5, f10, and f15, a weighted F23[f4]-module

version of what Normalisation produced, what normalP(i,”withRing”) and icFracP should

have produced.
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Chapter 7

Speed-up techniques

In this chapter, we present some approaches in doing computations that are very time

efficient. It is not standard for computer algebra systems to have code to compute NF (f q, I)

efficiently. So while computing f q in characteristic q may be easy, reducing it mod I may be

very dense and costly in terms of time and/or storage.

Therefore it is wise to write code for repeatedly squaring and reducing mod I, a well-known

strategy for dealing with exponentiating and reducing large objects in general. The following

code and examples show the computational necessity of this approach. The first technique

speeds up some necessary normal form computations in some existing computational algebra

packages.

7.1 Normal Form, NF (f q, I)

Let f be an element in a polynomial ring P . Let I be an ideal in P , and q be a prime.

We want to compute the normal form of f q modulo the ideal I . That is, we want to compute

NF (f q, I), using the built-in Magma command.

(a) Less efficient approach: An inefficient approach to compute NF (f q, I) is to mind-

lessly raise f to the q and then take its normal form modulo I. The approach is very slow

and very inefficient, since we may be taking the normal form of a polynomial of very large

degree.

(b) Efficient approach and why it works: We note that the normal form operation is

very dense and takes much time for polynomials of very large degree. A more efficient ap-

proach considered here is to start with the normal form of f modulo the ideal I and then

repeatedly square and reduce the resulting normal form modulo the ideal I. This means we
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are only taking the normal form of a polynomial of very small degree every time.

Below are two pieces of code that implement the above approaches.

Code for approach (a).

METHOD ONE

//////////// normal form function ///////////////

slow_normal_form:=function(q,f,I)

nf_time:=Cputime();

b:= NormalForm(f^q,I);

bb:= Cputime(nf_time);

return q,b,f,I, bb; /////////////

end function;

/////////////////////////////////////////////////////

Code for approach (b).

METHOD TWO

//////////////////////////////////////////////

fast_normal_form:=function(q,f,I)

nfg_time:=Cputime();

if g eq 0 then

return 0;

else

t:=q;

prd:=1;

temp:=NormalForm(f,I);

repeat

rem:=t mod 2;

t div:=2;
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if rem eq 1 then

prd *:=temp;

end if;

if t ne 0 then

temp:=NormalForm(temp^2,I);

end if;

until t eq 0;

a:= NormalForm(prd,I);

aa:=Cputime(nfg_time);

return q, a, f, I, aa;

end if;

end function;

///////////////////////////////////////////////////

Here are timings for the two different approaches over a polynomial ring Fq[y, x], y �grevlex

x, and a polynomial f = y5, for various primes q, and ideals Iq generated by the polynomial

gq(y, x) = q1y
6 + q2x

11 + q3y
3x4 + q4y

5 + q5y
4x + q6y

2x4 + q7y
4 + q8yx

5 + q9y
3x + q10y

2x2 +

q11y
3 +q12y

2x+q13yx
2 +q14x

3 with each qi ∈ Fq. The timings clearly indicate that approach

(b) is more efficient.
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Table 7.1: Timing normal forms

prime, q Method#2 Method#1

5 0.000 0.000
7 0.000 0.000
11 0.000 0.010
13 0.010 0.020
17 0.020 0.040
19 0.030 0.060
23 0.080 0.110
29 0.130 0.260
31 0.210 0.330
37 0.140 0.560
41 0.180 0.780
43 0.280 0.920
47 0.450 1.210
53 0.430 1.790
59 0.770 2.540
61 0.840 2.840
73 0.540 5.040
79 1.180 6.490
83 1.010 7.560
89 1.210 9.460
97 0.900 12.350
101 1.500 13.850
113 1.930 19.340
193 3.600 102.280
257 5.140 245.670
307 17.800 395.830
353 17.680 600.370
541 53.160 2194.400
547 39.020 2275.170

7.2 Extended Euclidean algorithm

Below is our extended Euclidean division algorithm code.

/////////////////// EXTENDED DIVISION FUNCTION ///////

//////////////////////////////////////////////////////////////

EEDXGCD:= function(F,n,P,f,g,i)
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FF:=FunctionField(F,n);

hP:=hom<P->FF|[FF.j:j in [1..n]]>;

R:=PolynomialRing(FF);

ff:=&+[Coefficient(f,P.i,j)@hP*R.1^j: j in [0..Degree(f,P.i)]];

gg:=&+[Coefficient(g,P.i,j)@hP*R.1^j: j in [0..Degree(g,P.i)]];

dd1,aa1,bb1:=XGCD(ff,gg);

C:=Lcm([Denominator(x) : x in Eltseq(aa1) cat Eltseq(bb1)]);

D:=dd1*C;A:=aa1*C;B:=bb1*C;

hR:=hom<R->P|hom<FF->P|[P.j: j in [1..n]]>, P.i>;

return D@hR,A@hR,B@hR;

end function;

///////////////////////////////////////////////////////////////////////

Some of the algebraic packages do not have a direct implementation of the extended Eu-

clidean algorithm. And those that do have one, rely on resultant computations, which often

turn out to be computationally wasteful. Also, those packages that do have the extended

Euclidean algorithm are generally written for a univariate polynomial. The above extended

Euclidean algorithm improves the mentioned deficiencies. It is a fast approach in doing

elimination of polynomial variables, similar to the Magma built-in resultant command. It

is also used for computing a special polynomial called conductor element, denoted ∆, with

∆ in the polynomial ring P of free variables. We will compute some timings below to show

how efficient this extended Euclidean algorithm function is in eliminating or inverting and

in computing ∆. We note that, the ∆ computed using the extended Euclidean function may

have higher degree than the one computed using the Magma built-in commands.

7.2.1 Inverting and eliminating

The extended Euclidean function takes as input a function field F , the number n, of

variables in a polynomial ring P , two polynomials f and g in P and the ith variable in P to
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be eliminated from g, relative to f . It is very useful in inverting polynomial ring elements.

We will show a small example by hand and by using the above code. Consider the the curve

f(y) = y3 + yx + x5 ∈ F2[y, x]. Then f
′
(y) = y2 + x. We want to write

1

f ′(y)
=

g(y)

D(x)
, for

some g(y), D(x) ∈ F2[y, x].

1

f ′(y)
=

1

y2 + x
=

y

y3 + yx
=

y

x5
.

We have thus inverted y in the denominator of
1

y2 + x
. Using the extended Euclidean

function, EEDXGCD, above we get

q := 2;

n := 2;

P < y, x >:= PolynomialRing(GF (q), 2);

f := y3 + xy + x5;

h := y2 + x;

D, b, g := EEDXGCD(GF (q), n, P, f, h, 1);

D, b, g = x5, 1, y

which is exactly what we got earlier.

Standard techniques for eliminating variables often rely on computing resultants. Consider

the above example

f := y3 + yx+ x5 ∈ F2[y, x], h := y2 + x ∈ F2[y, x]. Then standard techniques will invert y

in h := y2 + x ∈ F2[y, x] to produce

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0 x5

0 0 0 x5

1 0 x

1 0 x

1 0 x

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= x10.
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This is done by computing the resultant of f and h with respect to the variable y, denoted

Res(f, h, y). However, this is generally computationally wasteful, when a straightforward

extended Euclidean algorithm above gives a much better answer.

(y3 + yx+ x5) · 1 + (y2 + x) · y = x5

As mentioned earlier, the extended Euclidean function, EEDXCGD, can be used to eliminate

variables. Let us consider the tower example

xqi+1 + xi+1 =
xqi

xq−1
i + 1

, 1 ≤ i ≤ n. (7.1)

by Stichtenoch et al [16]. Then for q = 2 and n = 3 we get the equations

x1(x1 + 1)(x2 + 1) + x2
2 = 0

x2(x2 + 1)(x4 + 1) + x2
4 = 0

x4(x4 + 1)(x8 + 1) + x2
8 = 0

(7.2)

Now define

x12 := x4(x8 + 1),

x14 := x2(x4 + 1)(x8 + 1)

and x15 := x1(x2 + 1)(x4 + 1)(x8 + 1)

(7.3)

Using the extended Euclidean function, EEDXGCD, and ( 7.2) to eliminate the variables

x1, x2 and x4 from the equation ( 7.3) we get

x2
12 + x12x8 + x12 + x2

8 + x3
8 = 0

x2
14 + x14x12 + x14x8 + x14 + x12x

2
8 = 0

x2
15 + x15x14 + x15x12 + x15x8 + x15 + x14x12 + x14x

2
8 = 0

(7.4)
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which does not have x1, x2 and x4

Magma has built-in commands that do elimination of variables. However, these built-in

commands are very inefficient. Below are some timings of the above example 7.1, for

various q and n, using both the extended Euclidean function, EEDXGCD, and Magma

built-in commands.

Table 7.2: Timing elimination via Magma commands versus EEDXGCD command
values of q and n Timing elimination via Timing elimination

Magma commands /sec via EEDXGCD /sec
q = 2, n = 2 0.000 0.130
q = 2, n = 3 0.010 0.150
q = 2, n = 4 0.040 0.140
q = 2, n = 5 0.200 0.150
q = 2, n = 6 1.890 0.180
q = 2, n = 7 26.730 0.300
q = 2, n = 8 979.230 1.560
q = 2, n = 9 −−− 11.770
q = 3, n = 2 0.020 0.150
q = 3, n = 3 0.080 0.150
q = 3, n = 4 7.630 0.170
q = 3, n = 5 40631.220 0.310

7.2.2 n× n minors of the jacobian and conductor element computations

A typical approach to compute a suitable ∆ from the polynomial ring of free variables

will be to compute all n× n minors of the a Jacobian matrix and then compute a Gröbner

basis. This approach is good for very small prime numbers and it also produces a ∆ of

smaller degree that works faster with the qth-power algorithm. However, this approach is

best for very small primes. Our approach computes ∆ by taking products of the nonzero

leading diagonal entries of the Jacobian matrix. Our example here will be the tower above

in equation 7.1, by Stichtenoch et al [16]. (Details of this tower are found in [16]).
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Magma commands: Using Magma built-in commands to do the elimination and to compute

∆, we get the following timings.

Table 7.3: Timing Magma commands for elimination and ∆ computation
values of q and n Timing Timing Timing Computed ∆

elimination /sec ∆ /sec qth power
q = 2, n = 2 0.000 0.030 0.030 x2

4

q = 2, n = 3 0.010 0.000 0.030 x4
8

q = 2, n = 4 0.040 0.020 0.070 x8
16

q = 2, n = 5 0.200 0.150 0.340 x16
32

q = 2, n = 6 1.890 1.030 2.040 x32
64

q = 2, n = 7 26.730 8.320 13.800 x64
128

q = 2, n = 8 979.230 84.370 86.870 x128
256

q = 3, n = 2 0.020 0.000 0.090 x8
9 + x6

9

q = 3, n = 3 0.080 0.100 36.310 x20
27 + x18

27

q = 3, n = 4 7.630 8.160 131.880 x56
81 + x54

81

q = 3, n = 5 40631.220 2530.180 7141.200 x164
243 + x162

243

EEGCD function and Magma commands: Using our extended Euclidean division great-

est common divisor function (EEGCD) to do the elimination and using Magma built-in

commands to compute ∆, we get the following timings.

Table 7.4: Timing EEGCD to do elimination andMagma commands for ∆ computation
values of q and n Timing Timing Timing Computed ∆

elimination /sec ∆ /sec qth power
q = 2, n = 2 0.130 0.010 0.010 x2

4

q = 2, n = 3 0.150 0.000 0.030 x4
8

q = 2, n = 4 0.140 0.020 0.060 x8
16

q = 2, n = 5 0.150 0.150 0.350 x16
32

q = 2, n = 6 0.180 1.060 2.040 x32
64

q = 2, n = 7 0.300 8.380 12.800 x64
128

q = 2, n = 8 1.560 80.210 85.470 x128
256

q = 2, n = 9 11.770 5573.280 640.620 x265
512

q = 3, n = 2 0.150 0.000 0.090 x8
9 + x6

9

q = 3, n = 3 0.150 0.100 101.640 x20
27 + x18

27

q = 3, n = 4 0.170 8.510 133.740 x56
81 + x54

81

q = 3, n = 5 0.310 2120.570 7181.200 x164
243 + x162

243

EEGCD function: Using our extended Euclidean division greatest common divisor function

(EEGCD) to do the elimination and to compute ∆, we get the following timings.
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Table 7.5: Timing EEGCD function for elimination and ∆ computation
values of q and n Timing Timing Timing Computed ∆

elimination /sec ∆ /sec qth power
q = 2, n = 2 0.130 0.010 0.010 x3

4 + x2
4

q = 2, n = 3 0.130 0.000 0.090 x8
8 + x6

8

q = 2, n = 4 0.150 0.010 0.130 x17
16 + x16

16 + x15
16 + x14

16

q = 2, n = 5 0.140 0.010 0.880 x34
32 + x30

32

q = 2, n = 6 0.190 0.010 5.930 x67
64 + x66

64 + x63
64 + x62

64

q = 2, n = 7 0.300 0.090 40.770 x132
128 + x130

128 + x128
128 + · · ·

q = 2, n = 8 1.550 1.740 294.150 x261
256 + x260

256 + x260
256 + · · ·

q = 2, n = 9 11.860 139.470 2265.610 x518
512 + x510

512

q = 3, n = 2 0.150 0.000 0.250 x12
9 + x6

9

q = 3, n = 3 0.150 0.100 425.050 x52
27 + 2x50

27 + x48
27 + · · ·

q = 3, n = 4 0.170 0.140 481.460 x200
81 + x198

81 + 2x194
81 + · · ·

q = 3, n = 5 0.310 53.860 30226.170 x672
243 + x654

243

104



Chapter 8

Towers

In this chapter we will consider some asymptotically good towers by Stichenoth el al,

and Noam Elkies. We will transform some of the towers that are not type I form into curves

that are type I. This will be done by finding the divisors of the curves. We will also compute

a formula for the genus of some of the towers. We begin by defining what we mean by a

tower of function fields and asymptotically good towers.

Definition 8.1 ([17], page 439). A tower of function fields over Fq is an infinite sequence

F = (F0,F1,F2, . . .) of function fields Fi/Fq having the properties:

(i)F0 ⊆ F1 ⊆ F2 ⊆ . . . , and for each n ≥ 1 the extension Fn/Fn−1 is separable of degree

[Fn : Fn−1] > 1.

(ii)g(Fj) > 1 for some j ≥ 0.

Definition 8.2 ([17], page 440). The tower F = (Fi)i≥0 of functions fields over Fq is said

to be asymptotically good, if λ(F) > 0, where λ(F) := lim
i→∞

N(Fi)

g(Fi)
. Here N(Fi),

(respectively g(Fi)) is the number of Fq− rational points (respectively the genus) of Fi.

Let us now consider some towers and try to put them into type I curves.

8.1 Stichenoth towers

8.1.1 Example 1

Consider the first tower

zqn+1 + zn+1 = xq+1
n with xn :=

zn
xn−1

, 1 ≤ n ≤ m (8.1)
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(See [21] for more about this tower and see [3] for more details on the one point description

of this tower). So we have that

xqnx
q−1
n−1 + xn = xqn−1, 1 ≤ n ≤ m (8.2)

Let P0 be the unique point at which all the xqn have zeros and P∞ be the point at which all

have poles. Then from Leonard [3] page 2572, we have the divisors of xqn to be given by

(xqn) = (−qn).P∞ +
∑

1≤i≤(m+1)/2

∑
j

(−qn).Pi,j +
∑

(m+1)/2<i<(m−n+1)

∑
j

(−q2i+n−m−1).Pi,j

+
∑

(m−n+1)<i≤m

∑
j

(qm−n).Pi,j + (qm−n).P0 (8.3)

for 0 ≤ n < (m+ 1)/2 and

(xqn) = (−qn).P∞ +
∑

1≤i<m−n+1

∑
j

(−qn).Pi,j +
∑

m−n+1≤i≤(m+1)/2

∑
j

(−q2(m−i)−n+1).Pi,j

+
∑

(m+1)/2<i≤m

∑
j

(qm−n).Pi,j + (qm−n).P0 (8.4)

for (m+ 1)/2 ≤ n ≤ m.

The choices for local parameters are tP := 1/xq0 for P = P∞ or P = Pi,j with i < (m +

1)/2, and tP := xqm for P = P0 and P = Pi, j for i ≥ (m+ 1)/2. Now the following change

of variables

x2qm+
∑m

j=n q
j−1 = x2

m

m∏
j=n

xj (8.5)

puts equation ( 8.2) into type I form.

Now take q = 2, and m = 2, and with respect to the pole orders, define

y1 := x0, y2 := x1, y4 := x2, y11 := y1y2y
2
4, y6 := y2y4
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Then we get the following equations

y2
1y2 + y1 + y2

2 = 0,

y2
2y4 + y2 + y2

4 = 0,

From which we have the following type I integral equations.

y2
6 + y6 + y3

4 = 0

y2
11 + y11y

2
4 + y6y

4
4 + y6y4 + y4

4 = 0 (8.6)

Now take q = 3, and m = 2, and with respect to the pole orders, define

y1 := x0, y3 := x1, y9 := x2, y22 := y1y3y
2
9, y12 := y3y9

Then we get the following equations

y3
1y

2
3 + y1 + 2y3

3 = 0

y3
3y

2
9 + y3 + 2y3

9 = 0 (8.7)

From which we have the following type I integral equations.

y3
12 + y12 + 2y4

9 = 0

y3
22 + y22y

4
9 + y2

12y
2
9 + 2y12y

6
9 = 0. (8.8)

Now take q = 3, and m = 3, and with respect to the pole orders, define

y1 := x0, y3 := x1, y9 := x2, y27 := x3, y36 := y9y27, y66 := y3y9y
2
27, y67 := y1y3y9y

2
27.
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Then we get the following equations

y3
1y

2
3 + y1 + 2y3

3 = 0,

y3
3y

2
9 + y3 + 2y3

9 = 0,

y3
9y

2
27 + y9 + 2y3

27 = 0. (8.9)

From which we have the following type I integral equations.

y3
36 + 2y4

27 + y36 = 0,

y3
66 + 2y36y

6
27 + y66y

4
27 + y2

36y
2
27 = 0,

y6
67 + 2y2

66y
10
27 + 2y67y66y

2
36y

7
27 + 2y2

67y36y
8
27 + 2y14

27 + y67y
2
66y36y

5
27 + y67y66y

7
27

+y2
67y

2
36y

4
27 + 2y36y

10
27 + 2y67y66y36y

3
27 + 2y2

36y
6
27 + y2

66y
2
27 = 0. (8.10)

Remark 8.1. We note that the equation

y6
67 + 2y2

66y
10
27 + 2y67y66y

2
36y

7
27 + 2y2

67y36y
8
27 + 2y14

27 + y67y
2
66y36y

5
27 + y67y66y

7
27

+ y2
67y

2
36y

4
27 + 2y36y

10
27 + 2y67y66y36y

3
27 + 2y2

36y
6
27 + y2

66y
2
27 = 0

is not a cubic type I integral equation. But we know that y67 = y2
27y9y3y1. So

y3
67 = y6

27y
3
9y

3
3y

3
1

= y6
27y

3
9y3(y

3
3 − y1)

= y6
27y

3
9y

4
3 + 2y6

27y
3
9y3y1

= y6
27y9y3(y

3
9 − y3) + 2y4

27y
2
9y67

= y6
27y

4
9y3 − y6

27y9y
2
3 + 2y2

27y
2
36y67

= y4
27y9y3(y

3
27 − y9) + 2y6

27y9y
2
3 + 2y2

27y
2
36y67

= y7
27y9y3 + 2y4

27y
2
9y3 + 2y6

27y9y
2
3 + 2y2

27y
2
36y67
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Hence defining

y201 := y7
27y9y3, y129 := y4

27y
2
9y3, y177 := y6

27y9y
2
3,

we get

y3
67 + 2y201 + y177 + y129 + y67y

2
27y

2
36 = 0

which is a cubic type I integral equation. However, in order to obtain this cubic equation, we

had to define some new variables.

This observation is expressed in the following conjecture.

Conjecture 8.1. Given the tower

xqnx
q−1
n−1 + xn = xqn−1, 1 ≤ n ≤ m

and the following change of variables

x2qm+
∑m

j=n q
j−1 = x2

m

m∏
j=n

xj

we can eliminate the first m variables to get type I integral equations that may (or may not)

be qth-extensions of the previous tower. However, if the equations are are not qth-extensions

of the previous tower, we can introduce new variables, defined in terms of the initial variables

xn, 1 ≤ n ≤ m, to get qth-extensions of the previous tower that are type I integral equations.

Hence the extensions gotten this may contain additional variables.

8.1.2 Example 2

Consider the second tower

xqi+1 + xi+1 =
xqi

xq−1
i + 1

, 1 ≤ i ≤ m (8.11)
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(See [16], page 61, for more about this tower and see [3] for more details on the one point

description of this tower).

Let P0 be the unique point at which all the xqn have zeros and P∞ be the point at which

all have poles. Then from Leonard [3] page 2572, we have the divisors of xqn to be given by

(xqn) = (−qn).P∞ +
∑

1≤i≤(m+2)/2

∑
j

(−qn).Pi,j +
∑

(m+2)/2<i<(m−n+1)

∑
j

(−q2(i−1)+n−m).Pi,j

+
∑

(m−n+1)<i≤m+1

∑
j

(qm−n).Pi,j + (qm−n).P0 (8.12)

for 0 ≤ n < m/2 and

(xqn) = (−qn).P∞ +
∑

1≤i<m−n+1

∑
j

(−qn).Pi,j +
∑

m−n+1≤i≤(m+2)/2

∑
j

(−q2(m−i+1)−n).Pi,j

+
∑

(m+2)/2<i≤m+1

∑
j

(qm−n).Pi,j + (qm−n).P0 (8.13)

for m/2 ≤ n ≤ m+ 1.

The choices for local parameters are tP := 1/xq0 for P = P∞ or P = Pi,j with i <

(m + 1)/2, and tP := xqm for P = P0 and P = Pi, j for i ≥ (m + 1)/2. Now the following

change of variables

xq(i−1)+
∑m

j=i+1(q−1)qj−1 = xi

m∏
j=i+1

x
(q−1)
j + 1, 1 ≤ i ≤ m. (8.14)

puts equation ( 8.11) into type I form.

Now take q = 2, and m = 2, and with respect to the pole orders, define

y1 := x0, y2 := x1, y4 := x2, y6 := y2(y4 + 1), y7 := y1(y2 + 1)(y4 + 1)
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Then we get the following equations

y2
1y2 + y2

1 + y1y2 + y1 + y2
2 = 0

y2
2y4 + y2

2 + y2y4 + y2 + y2
4 = 0,

from which we have the following type I integral equations.

y2
6 + y6y4 + y6 + y3

4 + y2
4 = 0

y2
7 + y7y6 + y7y4 + y7 + y6y

2
4 = 0. (8.15)

Now take q = 3, and m = 2, and with respect to the pole orders, define

y1 := x0, y3 := x1, y9 := x2, y21 := y3(y
2
9 + 1), y25 := y1(y

2
3 + 1)(y2

9 + 1)

Then we get the following equations

y3
1y

2
3 + y3

1 + y1y
2
3 + y1 + 2y3

3 = 0

y3
3y

2
9 + y3

3 + y3y
2
9 + y3 + 2y3

9 = 0 (8.16)

from which we have the following type I integral equations.

y3
21 + y21y

4
9 + 2y21y

2
9 + y21 + 2y7

9 + y5
9 + 2y3

9 = 0

y3
25 + y25y

2
21 + y25y21y

3
9 + y25y

4
9 + 2y25y

2
9 + y25 + 2y21y

6
9 = 0 (8.17)

Now take q = 3, and m = 3, and with respect to the pole orders, define

y1 := x0, y3 := x1, y9 := x2, y27 := x3, y63 := y9(y
2
27 + 1),

y75 := y3(y
2
9 + 1)(y2

27 + 1), y79 := y1(y
2
3 + 1)(y2

9 + 1)(y2
27 + 1)
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Then we get the following equations

y3
1y

2
3 + y3

1 + y1y
2
3 + y1 + 2y3

3 = 0

y3
3y

2
9 + y3

3 + y3y
2
9 + y3 + 2y3

9 = 0

y3
9y

2
27 + y3

9 + y9y
2
27 + y9 + 2y3

27 = 0, (8.18)

from which we have the following type I integral equations.

y3
63 + y63y

4
27 + 2y63y

2
27 + y63 + 2y7

27 + y5
27 + 2y3

27 = 0

y3
75 + y75y

2
63 + y75y63y

3
27 + y75y

4
27 + 2y75y

2
27 + y75 + 2y63y

6
27 = 0

y3
79 + y79y

2
75 + 2y79y75y63 + y79y75y

3
27 + y79y

2
63 + y79y63y

3
27 + y79y

4
27

+2y79y
2
27 + y79 + 2y75y

2
63 + 2y75y63y

3
27 + 2y75y

6
27 = 0

8.1.3 Example 3

Consider the tower

y − 1

yq
=
xq − 1

x
(8.19)

See [16], page 61, for more about this tower. We can write the divisors for the first level of

the tower with q = 2 as follows

div(y) = −2P1 +2P2 + 0P3 + 0P4

div(y − 1) = −2P1 +0P2 + 1P3 + 1P4

div(x) = 1P1 +1P2 +−2P3 + 0P4

div(x− 1) = 0P1 +0P2 +−2P3 + 2P4
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For q = 3, and considering the first level of the tower, we get

div(y) = −3P1 +0P2 + 3P3 + 0P4

div(y − 1) = −3P1 +2P2 + 0P3 + 1P4

div(x) = 2P1 +− 3P2 + 1P3 + 0P4

div(x− 1) = 0P1 +− 3P2 + 0P3 + 3P4

In general for the first level and any q, we can write

P1 P2 P3 P4

div(y) = −q q 0 0

div(y-1) = −q 0 1 q − 1

div(x) = q − 1 1 0 −q

div(x-1) = 0 0 q −q

In general for the second level and any q, we can write

P1 P2 P3 P4 P5

div(x2) = −q2 q2 0 0 0

div(x2 − 1) = −q2 0 1 q(q − 1) q − 1

div(x1) = q(q − 1) q 0 −q2 0

div(x1 − 1) = 0 0 q −q2 q(q − 1)

div(x0) = q − 1 1 0 q(q − 1) −q2

div(x0 − 1) = 0 0 q2 0 −q2
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We now generalize the above for any level, n, of the tower and any q.

P1 P2 P3 P4 . . . Pn Pn+1 Pn+2 Pn+3

(xn) = qn −qn 0 0 . . . 0 0 0 0

(xn − 1) = 0 −qn qn−1(q − 1) qn−2(q − 1) . . . q2(q − 1) q(q − 1) (q − 1) 1

(x(n−1)) = qn−1 qn−1(q − 1) −qn 0 . . . 0 0 0 0

(x(n−1) − 1) = 0 0 −qn qn−1(q − 1) . . . q3(q − 1) q2(q − 1) q(q − 1) q

(x(n−2)) = qn−2 qn−2(q − 1) qn−1(q − 1) −qn . . . 0 0 0 0

(x(n−2) − 1) = 0 0 0 −qn . . . q4(q − 1) q3(q − 1) q2(q − 1) q2

.

.

. =

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

(x2) = q2 q2(q − 1) q3(q − 1) q4(q − 1) . . . −qn 0 0 0

(x2 − 1) = 0 0 0 0 . . . −qn qn−1(q − 1) qn−2(q − 1) qn−2

(x1) = q q(q − 1) q2(q − 1) q3(q − 1) . . . qn−1(q − 1) −qn 0 0

(x1 − 1) = 0 0 0 0 . . . 0 −qn qn−1(q − 1) qn−1

(x0) = 1 (q − 1) q(q − 1) q2(q − 1) . . . qn−2(q − 1) qn−1(q − 1) −qn 0

(x0 − 1) = 0 0 0 0 . . . 0 0 −qn qn

The following change of variables

x2qm−(q−1)q(i−1) = xi(xm − 1)2

m−1∏
j=i+1

(xj − 1), 1 ≤ i ≤ m. (8.20)

puts equation ( 8.19) into type I form.

For example take q = 2, and m = 2, and with respect to the pole orders, define

y4 := x0 + 1, y6 := x1(x0 + 1)2, y7 := x2(x1 + 1)(x0 + 1)2.

Then we have the following from ( 8.19)

y2
6 + y6y4 + y6 + y3

4 + y2
4 = 0

y2
7y6 + y2

7y
2
4 + y7y6y

2
4 + y6y

4
4 + y6y

3
4 + y6y

2
4 + y5

4 + y4
4 = 0

From which we have the following type I integral equations.

y2
6 + y6y4 + y6 + y3

4 + y2
4 = 0

y2
7 + y7y6 + y7y4 + y7 + y6y

2
4 = 0
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Take q = 2, and m = 3, and with respect to the pole orders, define

y8 := x0+1, y12 := x1(x0+1)2, y14 := x2(x1+1)(x0+1)2, y15 := x3(x2+1)(x1+1)(x0+1)2.

Then we have the following from ( 8.19)

y2
12 + y12y8 + y12 + y3

8 + y2
8 = 0

y2
14y12 + y2

14y
2
8 + y14y12y

2
8 + y12y

4
8 + y12y

3
8 + y12y

2
8 + y5

8 + y4
8 = 0

y2
15y14 + y2

15y12 + y2
15y

2
8 + y15y14y12 + y15y14y

2
8 + y14y12y

2
8 + y14y12y8 + y14y12

+y14y
4
8 + y14y

3
8 + y14y

2
8 + y12y

4
8 + y12y

3
8 + y12y

2
8 + y5

8 + y4
8 = 0

from which we get the following type I integral equations.

y2
12 + y12y8 + y12 + y3

8 + y2
8 = 0

y2
14 + y14y12 + y14y8 + y14 + y12y

2
8 = 0

y2
15 + y15y14 + y15y12 + y15y8 + y15 + y14y12 + y14y

2
8 = 0

Take q = 3, and m = 2, and with respect to the pole orders, define

y9 := x0 − 1, y12 := x1(x0 − 1)2, y16 := x2(x1 − 1)(x0 − 1)2.

Then we have the following from ( 8.19)

y3
12 + 2y12y

2
9 + 2y12y9 + y4

9 + y3
9 = 0

2y3
16y12 + y3

16y
2
9 + y16y12y

4
9 + 2y2

12y
4
9 + y12y

6
9 = 0,
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from which we get the following type I integral equations.

y3
12 + 2y12y

2
9 + 2y12y9 + y4

9 + y3
9 = 0

y3
16 + y16y

2
12 + y16y12y

2
9 + 2y16y

2
9 + 2y16y9 + 2y4

12 + y2
12y

2
9 + y2

12y9 + 2y12y
3
9 = 0.

Take q = 3, and m = 3, and with respect to the pole orders, define

y27 := x0−1, y36 := x1(x0−1)2, y48 := x2(x1−1)(x0−1)2, y52 := x3(x2−1)(x1−1)(x0−1)2.

Then we have the following from ( 8.19)

y3
36 + 2y36y

2
27 + 2y36y27 + y4

27 + y3
27 = 0

2y3
48y36 + y3

48y
2
27 + y48y36y

4
27 + 2y2

36y
4
27 + y36y

6
27 = 0

y3
52y48 + 2y3

52y36 + y3
52y

2
27 + 2y52y48y

2
36 + 2y52y48y36y

2
27 + 2y52y48y

4
27 + y2

48y
2
36

+y2
48y36y

2
27 + y2

48y
4
27 + 2y48y36y

2
27 + 2y48y36y27 + y48y

6
27 + y48y

4
27 + y48y

3
27 = 0

from which we get the following type I integral equations.

y3
36 + 2y36y

2
27 + 2y36y27 + y4

27 + y3
27 = 0

y3
48 + y48y

2
36 + y48y36y

2
27 + 2y48y

2
27 + 2y48y27 + 2y4

36 + y2
36y

2
27 + y2

36y27 + 2y36y
3
27 = 0

y3
52 + y52y

2
48 + y52y48y36 + 2y52y48y

2
27 + y52y

2
36 + y52y36y

2
27 + y52y

2
27 + 2y52y27 + 2y48y

3
36

+y48y
2
36 + 2y48y36y

2
27 + y48y36y27 + 2y48y

3
27 = 0

8.1.4 Example 4

Consider the tower

(x2
j − 1)(z2

j+1 − 1) = 1 (j = 1, . . . , n− 2), (8.21)
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where

zj :=
xj + 3

xj − 1
(8.22)

See N.D.Elkies [25], page 4, for more about this tower. From the above two equations we

get that

8(x2
j − 1)(xj+1 + 1)− (xj+1 − 1)2 = 0 (j = 1, . . . , n− 2). (8.23)

We can write the divisors for the first level of the tower over any field of positive characteristic

q > 0 as follows;

P1 P2 P3 P4

div(x2 − 1) = −2 0 1 1

div(x2 + 1) = −2 2 0 0

div(x1 − 1) = −1 −1 2 0

div(x1 + 1) = −1 −1 0 2

For the second level the divisors are

div(x3 − 1) = −4 0 2 1 1

div(x3 + 1) = −4 4 0 0 0

div(x2 − 1) = −2 −2 0 2 2

div(x2 + 1) = −2 −2 4 0 0

div(x1 − 1) = −1 −1 −2 4 0

div(x1 + 1) = −1 −2 −1 0 4
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We now generalize the above for any level, n, of the tower.

P1 P2 P3 P4 . . . Pn Pn+1 Pn+2 Pn+3

(xn+1 − 1) = −2n 0 2n−1 2n−2 . . . 4 2 1 1

(xn+1 + 1) = −2n 2n 0 0 . . . 0 0 0 0

(xn − 1) = −2n−1 −2n−1 0 2n−1 . . . 8 4 2 2

(xn + 1) = −2n−1 −2n−1 2n 0 . . . 0 0 0 0

(xn−1−1) = −2n−2 −2n−2 −2n−1 0 . . . 16 8 4 4

(xn−1 + 1) = −2n−2 −2n−2 −2n−1 2n . . . 0 0 0 0
... =

...
...

...
...

. . .
...

...
...

...

(x3 − 1) = −4 −4 −8 −16 . . . 2n 0 0 0

(x3 + 1) = −4 −4 −8 −16 . . . 0 2n−1 2n−2 2n−2

(x2 − 1) = −2 −2 −4 −8 . . . −2n−1 2n 0 0

(x2 + 1) = −2 −2 −4 −8 . . . −2n−1 0 2n−1 2n−1

(x1 − 1) = −1 −1 −2 −4 . . . −2n−2 −2n−1 2n 0

(x1 + 1) = −1 −1 −2 −4 . . . −2n−2 −2n−1 0 2n

The following change of variables

x2qm+
∑m

j=i 2(j−1) = (xm+1 + 1)
m−1∏
j=i

(xj + 1), 1 ≤ i ≤ m, (8.24)

puts equation ( 8.23) into type I form. Let GF[3] represent the finite field of characteristic

3.

Take m = 2, and with respect to the pole orders, define

y4 := x3 + 1, y6 := x2 + 1(x1 + 1), y7 := (x1 + 1)(x2 + 1)(x3 + 1).
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From equation ( 8.23) we have the following type I integral equations.

y2
6 + y6y4 + y3

4 + 2y2
4 + y4 = 0

y2
7 + y7y6 + 2y6y

2
4 + y6y4 + 2y6 + 2y3

4 + y2
4 + 2y4 = 0

Take m = 3, and with respect to the pole orders, define y8 := x4 + 1, y12 := (x3 + 1)(x4 +

1), y14 := (x2 + 1)(x3 + 1)(x4 + 1),

y15 := (x1 + 1)(x2 + 1)(x3 + 1)(x4 + 1). From equation ( 8.23) we have the following type I

integral equations.

y2
12 + y12y8 + y3

8 + 2y2
8 + y8 = 0

y2
14 + y14y12 + 2y12y

2
8 + y12y8 + 2y12 + 2y3

8 + y2
8 + 2y8 = 0

y2
15 + y15y14 + 2y14y12 + y14y

2
8 + y14y8 + y14 + y12y

2
8 + 2y12y8 + y12 + y3

8 + 2y2
8 + y8 = 0
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