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Abstract

Interest in digital control systems has been on the rise over recent decades with the ever

decreasing cost and increasing performance of microprocessors and the academic advance-

ments in control theory. Although there are many benefits to digital control, there are many

challenges. This study explores one obstacle presented by finite word-length microproces-

sors: the limited range of numbers that can be represented. The goal is to compare its effects

using two different discrete operators—the shift operator and the delta operator.

The experiment is designed in order to accommodate a second challenge in digital con-

trols: most engineers and technicians are far more experienced with continuous controller

design. Therefore, this analysis’s control design takes place in continuous-time. Both shift

and delta-operator-based difference equations are derived from the continuous transfer func-

tion. The ability of each competing model to perform under finite word-length conditions is

evaluated through mathematical analysis, simulation, and experimentation. These demon-

strations are made using a PID controller to compensate a DC-DC buck converter. It is

concluded that the delta operator representation is less susceptible to the numerical limita-

tions and shows greater performance resemblance to the original continuous compensator.
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Chapter 1

Topic Introduction and Background

1.1 Digital Control

Academia’s interest in digital control has been increasing proportionally to the increase

in digital technologies. The combination of ever faster and lower-cost processors secures a

place in future digital control approaches in control system applications. The implementation

of complex algorithms with a single processor rather than a multitude of integrated circuits

is also increasingly attractive. The ease of modification and superior imperviousness to aging

add additional credibility to the overall value of digital control systems. However, the world

that engineers desire to control is inherently analog and continuous, so transforming a system

from a continuous, closed-loop control system (Figure 1.1) to a discrete, closed-loop control

system (Figure 1.2) does not come without challenges.

The implementation of the digital control system shown in Figure 1.2 can be described

more specifically for this thesis by Figure 1.3, which points out some of the main weaknesses

of digital systems. Time delays are caused by the analog-to-digital converter and the com-

putation of the new control signal. An n-bit processor’s resolution is limited to increments

of (x2− x1)/2n, where x1 and x2 are the maximum and minimum values of the range that is

desired to be represented. Also, the processor itself can only work with numbers from 0 to

2n − 1. This last limitation is the main focus of this thesis.

The benefits and trade-offs associated with digital control systems versus analog control

systems are well recorded and documented at the beginning of nearly every paper on the sub-

ject. There is extensive modern research attempting to improve digital control performance

through complex control algorithms [1] [2], advanced digital control theory approaches [3]

1



Figure 1.1: Block diagram of generic, continuous control system

Figure 1.2: Block diagram of generic, digital control system

Figure 1.3: Some digital control system weaknesses
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[4], reducing effects of numerical limitations [5], and overcoming analog-to-digital, digital-

to-analog, and computational delays [6].

This research is rightly placed. However, it is not simply overcoming the various math-

ematical and physical challenges that will be necessary for the progress in digital control to

be utilized. Experienced engineers and academics are far more adept at and comfortable

with traditional analog control theory. There are advancements being made, though, that

have potential to reduce performance and pedagogical difficulties at the same time.

1.2 The Delta Operator

The incremental difference operator (or delta operator) has been proposed as an alter-

native to the shift operator when representing discrete functions. A very notable work on

the delta operator (and delta transform) has been produced by Richard Middleton and Gra-

ham Goodwin [7]. Their work thoroughly introduces all the major areas of digital control

theory through the use of the delta operator, proposing that the study of both continuous

and discrete controls can be accomplished simultaneously since there is a narrow distinction

between the two when considering the delta operator for discrete parameterizations. This

thesis introduces some of these basic concepts of the delta operator in Chapter 2, but for a

thorough understanding, Middleton and Goodwin’s textbook should be referenced [7].

Others have explored the potential benefits of the delta operator over the shift operator,

especially when considering the effects of finite word-length. Chen, Wu, Istepanian and Chu

have shown that the closed-loop stability margin of delta operator parameterizations are

better than the shift operator approach [8] [9]. Li and Gevers demonstrated that the delta

operator representations of state-variable models are less sensitive to coefficient errors in the

state-space matrices due to finite word-length [10]. Before these, Middleton and Goodwin

argued for the delta operator’s ability to:

1. better represent controller coefficients,

3



2. reduce rounding error, and

3. facilitate more straightforward design by pole assignment [11].

The delta operator significantly closes the gap between continuous and discrete control

theory. In addition to potential performance improvement over the z-Transform, the con-

ceptual and mathematical similarities between the δ-Domain and the s-Domain can make

understanding discrete controls far easier—especially for someone already familiar with ana-

log controls. Some examples of these connections are introduced later in this text, but the

main focus will be on the delta and shift operators’ coefficient representation restrictions

presented by finite word-length.

1.3 The Focus of this Thesis

The proposed performance benefit of the delta operator over the shift operator under

finite word-length situations could have many advantages in industry. For instance, con-

sider that most of today’s control engineers and technicians are experienced with continuous

control design. Also, even though the use of floating-point processors is on the rise, many

applications still prefer fixed-point implementations due to their reduced cost and power

consumption and increased speed and simplicity. There are similar benefits associated with

reduced word-length. Combining these realities reveals a benefit in having delta-operator-

based control algorithms.

This is, of course, dependent on the improved effectiveness of the delta operator’s per-

formance and continuous-like behavior in practice over the shift operator when transforming

from an analog to a digital controller representation. This thesis explores one facet of the

proposed benefits: the numerical characteristics of the controller coefficients due to finite

word-length. An investigation of the mathematical traits of a shift-operator-based (q-based)

difference equation and a delta-operator-based (δ-based) difference equation, both having
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been derived from the same s-Domain transfer function, is conducted. The results are sim-

ulated and tested using an 8-bit programmable interface controller (PICTM) to implement

a proportional, integral, derivative (PID) compensator to control a DC-DC buck converter.

Other digital control weaknesses are minimized and/or held constant so as to explore the

finite word-length characteristics.

Chapter 2 provides an overview of the delta operator. Chapter 3 conducts the mathe-

matical analysis of the shift and delta operators’ resultant difference equations and derives

the corresponding PID difference equations. Chapter 4 explains the hardware and software

utilized to implement an experiment of the results from Chapter 3. The basic concepts of

the representative plant, a buck converter, are introduced, as well as the appropriateness of

an 18F series PICTM as the microprocessor for this experiment. Chapter 4 concludes with

an explanation of the software algorithms. The system modeling and simulation designs are

discussed in Chapter 5, and the simulation and experimental results are recorded in Chapter

6. Chapter 7 presents the thesis conclusions and provides recommendations for future work.
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Chapter 2

Overview of the Delta Operator

Because the equivalent continuous-time operator is d/dt, one might suspect that it

would not bear much resemblance to the discrete shift operator, q. This is exactly what has

been observed by academia and industry for decades. However, if a discrete-time operator

equivalent to a derivative is used, an increased correspondence would be expected. This

premise is the historic motivation behind the development of the delta operator.

2.1 Definition of Delta Operator

The incremental difference operator (or delta operator) is typically defined as:

δ =
q − 1

Ts

where Ts is the sampling period and q is the classic forward-shift operator, defined as:

qxk = xk+1

making

δxk =
xk+1 − xk

Ts

where xk is a state at the k-th sample. This expression demonstrates the correlation the delta

operator makes between discrete and continuous time. Notice that the delta operator acts

like an approximation of a derivative as Ts approaches 0 (the sampling rate, fs, approaches

∞). So, at an infinite sampling rate, δ operating on xk would be identical to d/dt operating

on xk!
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Now, for most practical purposes, it is necessary to write the delta operator in a causal

form. The causal (backward) delta operator is defined as:

δ−1 =
1− q−1

Ts
(2.1.1)

where q−1 is the causal (backward) shift operator:

q−1xk = xk−1

Therefore,

δ−1xk =
xk − xk−1

Ts
(2.1.2)

2.2 Higher-Order Representations

In most applications, higher-order operators are necessary to implement a control sys-

tem.

2.2.1 Second-Order, Causal Delta Operator

The second-order operator is:

δ−2xk = δ−1(δ−1xk)

= δ−1(
xk − xk−1

Ts
)

The second-order delta operator can be viewed as the difference of differences, or the ap-

proximation of a second-order derivative as Ts approaches 0, in the following form:

δ−2xk =

xk − xk−1
Ts

−
xk−1 − xk−2

Ts
Ts

(2.2.1)
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For implementing in a real-time program, the following form can be derived from observing

equations (2.1.2) and (2.2.1):

δ−2xk =
δ−1xk − δ−1xk−1

Ts
(2.2.2)

2.2.2 Third-Order, Causal Delta Operator

Applying a third delta operator will help reveal a pattern for the causal delta operator,

as shown by the following:

δ−3xk = δ−1(δ−2xk)

= δ−1

( xk − xk−1
Ts

−
xk−1 − xk−2

Ts
Ts

)

The third-order derivative approximation for the delta operator is seen here:

δ−3xk =

(xk − xk−1
Ts

)
−
(xk−1 − xk−2

Ts

)
Ts

−

(xk−1 − xk−2
Ts

)
−
(xk−2 − xk−3

Ts

)
Ts

Ts
(2.2.3)

If equations (2.1.2), (2.2.2) and (2.2.3) are examined closely, more programmable-friendly

forms can be found, such as:

δ−3xk =

(δ−1xk − δ−1xk−1
Ts

)
−
(δ−1xk−1 − δ−1xk−2

Ts

)
Ts

(2.2.4)

or

δ−3xk =
δ−2xk − δ−2xk−1

Ts
(2.2.5)
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2.2.3 In General

From examining equations (2.1.2), (2.2.2), and (2.2.5), a general pattern is observed so

that the following definition can be made:

δ−nxk =
δ−(n−1)xk − δ−(n−1)xk−1

Ts
(2.2.6)

where n represents any integer. This result is conceptually consistent as the delta operator is

thought of as a derivative approximation. Higher-order derivatives simply represent changes

in changes (e.g., acceleration being the change in velocity, which is the change in position).

2.3 Stability Region Parallels

One additional illustration will serve to introduce the shared relationship and benefit

the delta operator provides in relation to continuous control systems. The stability regions

of their root locus plots will be examined. These facts are simply recorded; the reader can

investigate [7] for further explanation.

All the poles of the Laplace transform model of stable continuous-time systems lie

strictly in the left-half of the s-plane (Figure 2.1). The eigenvalues of a system matrix in

linear state variable form are found in the same region.

The shift operator’s stability region is significantly different, consisting of only the unit

circle (Figure 2.2).

When the stability region of the delta operator (Figure 2.3) is observed, an interesting

relationship with the continuous-time diagram is seen. The circle’s origin is shifted to the

point −1/Ts + j0. The radius of the stability region circle is also 1/Ts. As Ts approaches 0,

the stability region of δ and d/dt become identical!

9



Figure 2.1: Stability region of d/dt operator

Figure 2.2: Stability region of shift operator
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Figure 2.3: Stability region of delta operator
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Chapter 3

Mathematical Demonstration of Coefficient Constraints on Discrete Models

In order to implement a digital controller in software, the transfer function must be

written as a causal difference equation. The first section of this chapter finds the general

difference equations from a generic continuous-time transfer function. Although the solutions

are somewhat complex, one can clearly see the numeric benefits of the delta operator.

In the second section, two difference equations are obtained for a classic PID controller.

The observed numeric benefits in general are realized in this specific example.

3.1 General Mathematical Analysis

3.1.1 General Transfer Function Conversion to Shift Operator Representation

A transfer function, G(s), is defined as the relation between the input and output of a

general system:

G(s) =
Y (s)

X(s)

and its general form is:

G(s) =
aks

k + ak−1s
k−1 + ...+ a1s+ a0

bjsj + bj−1sj−1 + ...+ b1s+ b0

In order to discretize the transfer function, most advanced controls engineers would use

the bilinear (or Tustin or Trapezoidal) approximation. In order to reduce the complexity of

the math, Euler’s backward difference approximation is utilized:

s ≈ 1− z−1

Ts

12



where Ts is the sampling period. Making the above substitution yields:

G(z) =

ak
Tk
s

(1− z−1)k + ak−1

Tk−1
s

(1− z−1)k−1 + ...+ a1
Ts

(1− z−1) + a0
bj

T j
s
(1− z−1)j +

bj−1

T j−1
s

(1− z−1)j−1 + ...+ b1
Ts

(1− z−1) + b0

and after finding common denominators of the numerator and denominator the result can

be written as:

G(z) =
(T js
T ks

)ak(1− z−1)k + ak−1Ts(1− z−1)k−1 + ...+ a1T
k−1
s (1− z−1) + a0T

k
s

bj(1− z−1)j + bj−1Ts(1− z−1)j−1 + ...+ b1T
j−1
s (1− z−1) + b0T

j
s

Since this thesis’s experiment is controlling a buck converter, it will be helpful to define

the discrete transfer function as:

G(z) =
D(z)

E(z)

where d[n] and e[n] represent the duty cycle and the error signal at time nTs, respectively,

where n = 1, 2, 3.... So, the difference equation can be found by cross multiplying:

D(z)[bj(1− z−1)j + bj−1Ts(1− z−1)j−1 + ...+ b1T
j−1
s (1− z−1) + b0T

j
s ] =

E(z)
(T js
T ks

)
[ak(1− z−1)k + ak−1Ts(1− z−1)k−1 + ...+ a1T

k−1
s (1− z−1) + a0T

k
s ]

and substituting in the equivalent time-domain components:

d[n][bj(1− q−1)j + bj−1Ts(1− q−1)j−1 + ...+ b1T
j−1
s (1− q−1) + b0T

j
s ] =

e[n]
(T js
T ks

)
[ak(1− q−1)k + ak−1Ts(1− q−1)k−1 + ...+ a1T

k−1
s (1− q−1) + a0T

k
s ]

(3.1.1)

This can be written more concisely by utilizing the binomial theorem:

(x+ y)k =
k∑
i=0

(
k

i

)
xk−iyi
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where (
k

i

)
=

k!

i!(k − i)!

A general expression emerges such that

(x+ y)k + (x+ y)k−1 + ...(x+ y) + 1 =
k∑

m=0

[k−m∑
i=0

(
k −m
i

)
x(k−m)−iyi

]
(3.1.2)

By applying equation (3.1.2) to equation (3.1.1), the difference equation becomes:

d[n]

j∑
m=0

[
bj−mT

m
s

j−m∑
i=0

(
j −m
i

)
(−q)−i

]
=

e[n]
(T js
T ks

) k∑
m=0

[
ak−mT

m
s

k−m∑
i=0

(
k −m
i

)
(−q)−i

] (3.1.3)

The final, causal difference equation for d[n] based on the shift operator can be written as:

d[n] =

( j∑
m=0

bj−mT
m
s

)−1[
−d[n]

j∑
m=0

[
bj−mT

m
s

j−m∑
i=1

(
j −m
i

)
(−q)−i

]
+

e[n]
(T js
T ks

) k∑
m=0

[
ak−mT

m
s

k−m∑
i=0

(
k −m
i

)
(−q)−i

]] (3.1.4)

Although this result is complex, what is important to understand is not. Observe in

particular the scaling term T js /T
k
s . Unless k = j, every coefficient in the difference equation

multiplied by every shifted version of e[n] will have a term scaled by some power of Ts. This

same possibility exists for many of the coefficients even if k = j. Because a sampling period

is typically in ranges of 10−5 to 10−6 seconds, the coefficients will vary over many orders of

magnitude.

There are important implications for this scaling characteristic in finite word-length

mircocontrollers. Specifically, the maximum value a microcontroller can represent is 2ν − 1,

where ν is the number of bits. For example, an 8-bit microcontroller can only represent

values up to 255. The max value due to this hardware-related constraint has the potential

14



to be orders of magnitude smaller than the values required if the sampling period is in a

range typical for digital control systems.

3.1.2 Shift Operator Representation to Delta Operator Representation

By rearranging equation (2.1.1), one obtains

q−1 = 1− Tsδ−1

and equation (3.1.1) can be rewritten as:

d[n][bj(Tsδ
−1)j + bj−1Ts(Tsδ

−1)j−1 + ...+ b1T
j−1
s (Tsδ

−1) + b0T
j
s ] =

e[n]
(T js
T ks

)
[ak(Tsδ

−1)k + ak−1Ts(Tsδ
−1)k−1 + ...+ a1T

k−1
s (Tsδ

−1) + a0T
k
s ]

Therefore,

d[n]

j∑
m=0

bmT
j−m
s Tms δ

−m = e[n]
(T js
T ks

) k∑
m=0

amT
k−m
s Tms δ

−m

Combining the Ts’s and moving them in front of the summations yields:

d[n]T js

j∑
m=0

bmδ
−m = e[n]

(T js
T ks

)
T ks

k∑
m=0

amδ
−m

This result shows that the sampling periods can be canceled from the equations:

d[n]

j∑
m=0

bmδ
−m = e[n]

k∑
m=0

amδ
−m

If b0 6= 0, the final, causal difference equation for d[n] based on the delta operator can be

written as:

d[n] = b−10

[
−d[n]

j∑
m=1

bmδ
−m + e[n]

k∑
m=0

amδ
−m
]

(3.1.5)
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Because the sampling periods canceled, the scaling issue associated with the coefficients

of the shift-operator-based difference equations is no longer as severe!

Each delta operator term, though, factors in dividing by the sampling period. So, even

though the coefficients of the delta-operator-based difference equation are not affected by

the sampling period in the same way as the shift operator difference equation, the sampling

period cannot be ignored altogether.

Also, if b0 = 0, some change in the duty cycle will have to be solved for, rather than

the new duty cycle itself, and this will introduce the sampling period into the coefficients.

This will be seen with the PID controller’s difference equation. However, by using the

delta operator approach, the sampling period will be easily absorbed into the design of the

coefficients as will be demonstrated later.

3.2 Discrete Representations of a PID Controller

To demonstrate the superior numerical aspects of the delta operator, an experiment is

conducted to compare shift operator and delta operator control of a buck converter. A PID

compensator is designed in its analog form, then mathematically represented by two different

difference equations—one shift-operator-based and the other delta-operator-based. In this

section, the two competing difference equations are derived.

3.2.1 Z-Transforming the PID

The PID controller is one of the most common controllers used in industry process

system applications. A standard academic practice is to use the PID or compare to the PID

when testing new control techniques or aspects; see examples in [12, 13, 14, 15]. The Laplace

Transform form of the classical PID compensator is defined as:

D(s)

E(s)
= KP + sKD +

KI

s
(3.2.1)
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As before, Euler’s backward difference approximation is utilized to discretize the PID transfer

function:

s ≈ 1− z−1

Ts

Therefore,

D(z)

E(z)
= KP +

KD(1− z−1)
Ts

+
KITs

1− z−1

This simplifies to

D(z)

E(z)
=
KPTs(1− z−1) +KD(1− 2z−1 + z−2) +KIT

2
s

Ts(1− z−1)

and

D(z)

E(z)
=

(KD

Ts
)z−2 + (−Kp − 2KD

Ts
)z−1 + (KP + KD

Ts
+ TSKI)

(1− z−1)
(3.2.2)

3.2.2 The Shift Operator Difference Equation

To find a difference equation, cross multiply both sides of equation (3.2.2):

D(z)(1− z−1) = E(z)(
KD

Ts
)z−2 + (−Kp −

2KD

Ts
)z−1 + (KP +

KD

Ts
+ TSKI)

Then replace z−1 with q−1 as follows:

dn(1− q−1) = en[(
KD

Ts
)q−2 + (−Kp −

2KD

Ts
)q−1 + (KP +

KD

Ts
+ TSKI)]

A causal difference equation is obtained to calculate the change in duty cycle. The resultant

equation for ∆d is:

∆d = (
KD

Ts
)enq

−2 + (−Kp −
2KD

Ts
)enq

−1 + (KP +
KD

Ts
+ TsKI)en (3.2.3)
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which is equivalent to:

∆d = (
KD

Ts
)en−2 + (−Kp −

2KD

Ts
)en−1 + (KP +

KD

Ts
+ TsKI)en (3.2.4)

Finally, equation (3.2.4) will be written as:

∆d = α2en−2 + α1en−1 + α0en (3.2.5)

where

α2 = (
KD

Ts
) (3.2.6)

α1 = (−Kp −
2KD

Ts
) (3.2.7)

α0 = (KP +
KD

Ts
+ TsKI) (3.2.8)

Equations (3.2.5) through (3.2.8) are the ones that will be used for programming the shift

operator’s difference equation algorithm in this experiment. After the continuous coefficients,

KP , KD, and KI , have been determined, the α coefficients will be calculated.

Notice, however, that all three of these coefficients are substantially larger than the

continuous coefficients because of the additions and, more importantly, the scaling by 1/Ts

on the KD term. For a ν-bit microcontroller, if

KD

Ts
> 2ν − 1

the coefficients cannot be properly represented without truncation (or overflow), much less

the results of the multiplications! Although truncation historically refers to removing LSBs,

this thesis will use it to refer to removing MSBs (e.g., in an 8-bit microcontroller, the

value 290 will have to be truncated to 255). The plot in Figure 3.1 illustrates the possible
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Figure 3.1: Continuous PID coefficients that will not result in truncation using shift operator
parameterization

combinations of continuous PID gains that can be selected that will not result in the shift

operator’s difference equation coefficients being truncated (or overflowing).

3.2.3 The Delta Operator Difference Equation

A different representation of the difference equation presented by equation (3.2.3) can

be obtained by making the following substitutions:

q−1 = 1− Tsδ−1
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and

q−2 = 1− 2Tsδ
−1 + T 2

s δ
−2

The result is as follows:

∆d = (
KD

Ts
)T 2

s enδ
−2 + (Kp +

2KD

Ts
− 2KD

Ts
)Tsenδ

−1+

(KP −
2KD

Ts
+ TsKI −KP +

KD

Ts
+
KD

Ts
)en

which simplifies to

∆d = (KDTs)enδ
−2 + (KpTs)enδ

−1 + (KITs)en (3.2.9)

As concluded from Section 3.1.2, because there is no constant in the denominator of the

original continuous transfer function (i.e., b0 = 0 in (3.1.5)), the sampling period appeared

in the coefficients of the delta-operator-based difference equation. However, since it is not

possible to divide by Ts in the microcontroller chosen for the experiment (explained in detail

later), the sampling period will need to be absorbed into the coefficients. If the definition of

the delta operator is substituted into equation (3.2.9),

∆d = (KDTs)

(
en−en−1

Ts

)
−
(
en−1−en−2

Ts

)
Ts

+ (KpTs)
(en − en−1

Ts

)
+ (KITs)en

This can be rewritten as

∆d = D[(en − en−1)− (en−1 − en−2)] + P [en − en−1] + Ien (3.2.10)
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where

D =
KD

Ts
(3.2.11)

P = KP (3.2.12)

I = TsKI (3.2.13)

Equations (3.2.10) through (3.2.13) are used in the delta-operator-based algorithm. In

this form, the “division” will occur at the same time as the coefficient multiplication. Also,

notice that now only one term contains KD/Ts. This way, if KD is designed so that it must

be truncated after being scaled by 1/Ts, only one coefficient will be thrown off, as opposed

to all three coefficients used in equation (3.2.4). The possible continuous PID coefficients

that can be used without truncation occurring on the delta-operator-based coefficients are

shown in Figure 3.2. These are compared with the shift operator’s limitations in Figures 3.3

and 3.4.

Care must be taken when designing KI because fixed-point processors do not handle

decimals. If division is required, it must be by powers of 2. This consideration is described

in detail in the hardware section of the experimental implementation chapter.

For now, it is important to note that the continuous PID compensator gains, KD,

KP , and KI , are designed so that conveniently-programmable and untruncated difference

equation coefficients are much easier and less limited with the delta-operator-based difference

equations.
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Figure 3.2: Continuous PID coefficients that will not result in truncation using delta operator
parameterization
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Figure 3.3: Comparison of possible continuous PID coefficients without truncation occurring
in the shift and delta operators difference equations, View 1

Figure 3.4: Comparison of possible continuous PID coefficients without truncation occurring
in the shift and delta operators difference equations, View 2
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Chapter 4

Experiment Implementation

In order to test the results from the mathematical demonstration, an experiment is

designed and implemented to compare the performance of a shift-operator-based controller

with a delta-operator-based controller. Both are implemented based on a continuously-

designed PID controller. Most of the schematics and simulation diagrams (Chapter 5) include

the capabilities of performing step-changes in load. These are not performed in this thesis;

only the initial transients will be observed.

4.1 Hardware and System Configuration

A DC-DC buck converter is provided to serve as a plant process, and an 18F1220 PICTM

microcontroller is selected as the equipment to create the compensated, closed-loop system.

The buck converter and controller are configured as shown in Figure 4.1. The performance

characteristics are described in the following subsections.

4.1.1 The Plant: DC-DC Buck Converter

DC-DC converters are electronic devices used to regulate one DC voltage to another.

Buck converters are DC-DC converters specifically designed to step down an input voltage

and are common control problems. A helpful way to introduce these devices is to derive

their ideal gain and efficiency. A typical schematic of an ideal buck converter is illustrated

in Figure 4.2.

Although buck converters can operate in a discontinuous conduction mode, this thesis

analysis and experiment will be limited to operation in continuous conduction mode only

(i.e., the inductor current is assumed to always be > 0). Therefore, for this thesis’s purposes,
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Figure 4.1: Schematic for digitally controlled buck converter

Figure 4.2: An ideal buck converter
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Figure 4.3: Equivalent ideal buck converter with switch closed

the buck converter will be operating in only two states: switch closed (“ON”) and switch

opened (“OFF”). The signal q is a pulse-width modulated (PWM) signal that varies the

power transistor between saturation mode (switch closed or “ON”) and cutoff mode (switch

open or “OFF”). The switching period of q is denoted by TSW , and the ratio of its “ON”

time verses its switching period is defined as the duty cycle, D:

D =
TON
TSW

(4.1.1)

Notice that 0 ≤ D ≤ 1.

When the power transistor is conducting, 0 ≤ t ≤ TON , the buck converter is modeled

by Figure 4.3. In this case, the transistor acts as a closed switch (a short circuit), and the

diode is blocking, acting as an open circuit. When the power transistor enters cutoff mode,

TON < t ≤ TSW , it begins to act as an open circuit, and the diode begins to conduct. This

is represented by Figure 4.4.

To easily analyze the relationship between the input and output voltage, the equal-area

criterion is utilized with respect to the inductor voltage, vL [16]. Using Kirchhoff’s Voltage

Law around the outer loop in Figure 4.3 reveals that while the transistor switch is conducting,
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Figure 4.4: Equivalent ideal buck converter with switch open

vL = Vin − Vout. Likewise, from Figure 4.4, during the remainder of the switching period

when the transistor switch is open, vL = −Vout. Therefore,

TON(Vin − Vout) + (TSW − TON)(−Vout) = 0

Multiplying through yields:

VinTON − VoutTON − VoutTSW + VoutTON = 0

which simplifies to:

Vout =
TON
TSW

Vin

Recalling equation (4.1.1) reveals that the duty cycle acts as the voltage gain for the

buck converter; therefore:

Vout = DVin
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Figure 4.5: A simple voltage divider schematic

Another reason for selecting a buck converter is based on typical performance specifi-

cations. Regulating a source voltage to a lower voltage can be done using a simple linear

regulator, such as a voltage divider network. However, many electronic circuit applications

require performance characteristics that typical voltage dividers cannot provide. Under-

standing this additional benefit of buck converters will complete a basic introduction.

The circuit shown in Figure 4.5 represents a simple voltage divider circuit whose output

voltage is described by:

Vout =
VinR

R1 +R

This equation shows that the output voltage is a function of both the input voltage and

the load resistance. Since a constant output voltage is usually the desired effect, using a

voltage divider to regulate the output voltage is not an option in any circumstance where

the input voltage or load resistance may vary. However, a closed-loop control system can be

implemented with a buck converter to vary the duty cycle so that a desired output voltage

can be maintained despite variations in the source voltage or load resistance.
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Note also a voltage divider’s efficiency:

η =
Pout
Pin

=
I2R

I2R1 + I2R

=
R

R1 +R

In this study’s experiments, it is desired to regulate 5 V to 2.5 V. This case would require

setting R1 = R, making η = 50%!

A buck converter’s efficiency can be approximated by only considering the conduction

loses (loses while the power transistor is in saturation mode). First, the input power is

calculated as follows:

Pin = VinIavg

=
Vin
TSW

∫ TSW

0

i(t) dx

=
Vin
TSW

Vin
R
TON

= D
V 2
in

R

And the output power is calculated as follows:

Pout = RI2RMS

= R
1

TSW

∫ TSW

0

i2(t) dx

= R
Ton
TSW

(
Vin
R

)2

= D
V 2
in

R
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Given the calculated input and output power results, the buck converter efficiency is

determined as follows:

η =
Pout
Pin

= 1

The efficiency is 100%! However, this calculation for the conduction losses does not factor in

losses in the transistor, inductor, etc. More significantly, this completely ignores switching

losses. Even though the buck converter’s efficiency will not really be 100%, the efficiency is

significantly improved over a voltage divider.

4.1.2 The Microcontroller: 18F PICTM

There are a few aspects of the 18F1220 PICTM microcontroller that make its selection

appropriate for this experiment. The 18F1220’s processor can run up to 40 MHz by enabling

the controller’s internal phase-locked-loop and adding an external 10 MHz crystal oscillator.

The controller also has a hardware multiplier, allowing for multiplications to be performed in

one instruction cycle. Together, these features increase computational speed and, therefore,

minimize the effects of computational delay in the digital controller.

The hardware multiplication capability also increases the number of possible compen-

sator coefficients from which to select. The typical method of rotating bits to the left

only allows for multiplication by powers of two. With the 18F1220’s built-in multiplication

instruction, one can multiply by any integer between 0 and 255. As a reminder, the micro-

controller does not have a hardware divide, so any type of division has to be implemented

in software. This issue is addressed in Section 4.2.

Additionally, the 18F1220 PICTM has built-in a 10-bit analog-to-digital converter (ADC)

and a 10-bit pulse-width modulator (PWM), which are both necessary for a digitally-

controlled, closed-loop buck converter. Although these modules are 10-bit and the result

of the multiply function is 16-bit, calculations and number representations are held constant

at 8 bits to reduce algorithm complexity and to clearly demonstrate the effects of finite

word-lengths.
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The ADC is used to feedback the analog output voltage and represent it as a value

between 0 to 255. The PWM is loaded with values between 0 and 255, indicating minimum

and maximum duty cycles, respectively.

There is a trade-off to note with respect to the range of values that one wants to

represent. As this range increases, the resolution of numbers that can be represented in the

microcontroller decreases since:

Vstep =
Vmax − Vmin

2n − 1

where Vstep is the smallest incremental change in voltage that can be represented, n is the

number of bits, and Vmax and Vmin are the largest and smallest voltages, respectively, that

one wants to represent. The larger the range, the larger the potential measurement error.

This can be compensated for by windowing circuits as described in [13], but this requires

extra circuity and increased algorithm complexity that will unnecessarily complicate the

experiment at hand. Therefore, the ADC’s positive voltage reference is set to the source

voltage (5 V) and the negative voltage reference to ground (0 V), and the buck converter

will regulate an input voltage of 5 V to 2.5 V. As a result, for this experiment the voltage

per step is:

Vstep =
5 V

255
= 19.61 mV per step

And, since 2.5 needs to be represented by 127.5, and decimals cannot be represented, Vref =

127 = (01111111)2.

It is important to note this ADC resolution error; i.e., there is an inherent error of

Vstep/2, or 9.8 mV, in the reference voltage. Also, the error in the ADC feedback could be

as great as 19.61 mV, which is 7.84% of the reference voltage. There is also a resolution

problem that affects the accuracy of the PWM output because the maximum resolution of

an 8-bit PWM module is 1/255 or 0.39%. The reference and ADC resolution errors are likely
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to show up in the steady-state error of the system. The PWM resolution error will effect

the overall performance (rise-time and settling-time). Since these errors will be the same

regardless of the operator used for parameterizing the PID controller’s difference equation,

the experiment’s ability to compare the two approaches is not hindered.

The 18F1220’s ADC module has one additional feature that should be discussed. There

is a programmable acquisition time that allows for a set delay before beginning the ADC

conversion. This allows the user to maintain a constant sampling rate and have sufficient

time to complete the necessary calculations in between samples since other operations can

be performed during the acquisition and ADC conversion times. This design feature is

illustrated more fully in Subsection 4.2.5.

For this experiment, the PWM’s switching frequency is set to 156.25 kHz. A PWM

switching frequency value that is a few times larger than the sampling frequency, yet low

enough to be measured by the available oscilloscope is desired. A variety of frequencies were

used ranging from 39.06 kHz to 312.50 kHz. The effect of varying the switching frequency

was unnoticeable in the experimental results.

Although many “more powerful” microcontrollers could have been selected to perform

this experiment, the practical benefit of using this design approach on a $2.50 microcontroller

[17] would have been lost. Digital Signal Processors, etc., are significantly more expensive.

For specifications on the 18F1220’s hardware modules, its datasheet should be consulted

[18].

4.2 Software

Most digital control systems are based on software-implemented algorithms. Although

the 18F series PICsTM can be programmed in C, the real-time operation of a DC-DC buck

converter requires a speed that can only be accomplished through programming in assembly

language. Therefore, the PICTM assembly language is used for the experiment algorithm.
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The following subsections outline the specific parts of the algorithm. A general overview of

the algorithm’s overall structure is provided by Figure 4.6.

After initializing the algorithm constants and variables, the input/output pins and the

ADC and PWM modules are set up. The code does not immediately begin attempting

to compensate or else the power supplies’ transients would dominate the initial transient

measured by the oscilloscope. The program waits for a push-button input and enters the

main loop. The main code logic is described simply by waiting for the ADC to complete,

calculating the new duty cycle, updating the PWM, and updating the stored “past values”

for the next time through the loop. This process continues until power to the microcontroller

is removed.

4.2.1 Practical Issues

Many of the weaknesses of digital controls are present to varying degrees in the 18F1220

PICTM. The general computational scheme of the microcontroller is based on 8-bits. Al-

though the PWM and ADC can operate with up to 10-bits and the multiply result is 16-bits,

the experiment will be restricted to 8-bit processes. Once again, increasing the bits would

increase the algorithm complexity and, therefore, amplify the effects of computational delay.

Additionally, it is easier to draw conclusions about the effects of numerical restrictions if

the same number of bits are used for all number representations and calculations. Since the

numerical range of a microcontroller is from 0 to 2n − 1, the range of numbers that can be

dealt with in this experiment is 0 to 255.

This microcontroller is fixed-point, meaning only integers can be represented. There

are techniques for addressing this issue. For instance, all numbers, n, could be represented

in the microcontroller as n scaled by some power of 10. So, if every number is represented

by 100-times its value, 1.83 would be represented as 183. But this approach would mean

that the largest number that could be represented would be 2.55! Using this method, the

range, in general, would be 0 to (2n − 1)/10x, where x = 0, 1, 2, .... This experiment will
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Figure 4.6: General overview of software algorithm

34



not attempt to handle floating-point numbers (i.e., x = 0). Numbers will be rounded to the

nearest integer.

Another weakness is the inability to divide. Because of this, the classical method of

rotating bits will be utilized. Because numbers will be represented by combinations of eight

1′s and 0′s, rotating the bits right x times, is the equivalent of dividing by 2x. Not only

does this significantly limit the number of coefficient options, but with every rotate right,

resolution in the result is lost since those bits are dropped completely. The inability to

represent decimals will be present in both the shift and delta operator representations of

the difference equations, so the analysis goals will be unaffected. It will turn out, though,

that only the delta operator will have coefficients that will require division, putting it at a

slight disadvantage for this study. However, even though the responses will be affected, the

simulation and experimental conclusions will not be distorted.

Negative numbers also cannot be inherently represented. The microcontroller is capable

of 2’s-complement arithmetic, but this would limit subtractions to only 7 bits since the MSB

serves as the sign bit. In order to keep the range of numerical representation constant, each

8-bit term has an additional variable associated with its sign. This gives the experiment

the ability to represent numbers from −2n + 1 to 2n − 1, or −255 to 255. Keeping up with

the sign increases algorithm complexity and calculation time, but it is necessary to clearly

investigate the delta and shift operators’ sensitivity to finite word-lengths.

4.2.2 Addition/Subtraction Subroutines

In order to implement signed addition and subtraction, a few subroutines must be coded.

The SimpleSubtraction subroutine is designed to subtract two numbers that are both known

to be positive; the result, however, could be positive or negative. The flowchart for this

subroutine is presented in Figure 4.7. Note that the nature of this algorithm will never

result in an overflow or underflow.
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Figure 4.7: Subtraction when both numbers are known to be positive
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Figure 4.8: Addition of two numbers that could be either positive or negative

The two signed subroutines, GeneralAddition and GeneralSubtraction, follow the flowcharts

of Figures 4.8 and 4.9. If a result’s magnitude ever causes an overflow (exceeds 255), then

the value is truncated to 255. The logic of GeneralAddition and GeneralSubtraction will

never result in an underflow.

4.2.3 Duty-Cycle Calculation: Shift Operator

The flowchart of the duty cycle calculation based on the shift operator’s PID controller,

equation (3.2.5), can be found in Figure 4.10.

The flowchart is quite self-explanatory: the new error value is calculated based on the

reference and the ADC result, the new duty cycle is calculated, the PWM is updated, and
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Figure 4.9: Subtraction of two numbers that could be either positive or negative
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Figure 4.10: Overview of duty cycle calculation based on the shift operator
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the past values of the error are updated. Every addition and subtraction that takes place

is a result of a call of the GeneralAddition or GeneralSubtraction subroutine (Figures 4.8

and 4.9, respectively), except for the “new error” subtraction. The calculation to find the

current error value calls the SimpleSubtraction subroutine (Figure 4.7) because neither the

reference value nor the ADC result will ever be negative.

The remainder of the calculations use GeneralAddition or GeneralSubtraction because

the variables can be either positive or negative. The logic, overflow handling, etc. are not

shown in Figure 4.10 and are accounted for in the addition and subtraction subroutines.

4.2.4 Duty Cycle Calculation: Delta Operator

Equation (3.2.10) lays the foundation to implement the delta-operator-based duty cycle

calculation. The flowchart of this section of the algorithm can be found in Figure 4.11.

The main point here is the new error calculation is the only one that does not use

the GeneralAddition and GeneralSubtraction subroutines, since that is the only calculation

where all the values are known to be non-negative.

Other than the different equations for calculating the new duty cycle, there is only one

difference in the delta operator algorithm as compared to the shift operator algorithm. For

the shift operator, all the past values are updated after the new duty cycle value is applied

to the PWM output. For the delta operator approach, some past values are updated at this

point and other values are updated immediately before the new duty cycle is calculated.

This design requirement is because the delta operator’s difference equation is not only based

on previous values of the error, but on previous differences in error values. These values

cannot be determined until the new error value is calculated.

In some cases, this dissimilarity may be significant, not so much because the past values

are updated at a different point or because it slightly increases algorithm complexity, but

because additional calculations must be performed to arrive at these past values. This fact

indicates that, in general, the delta operator’s difference equation algorithm will take longer
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Figure 4.11: Overview of duty cycle calculation based on the delta operator
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to execute than the shift operator algorithm. Therefore a higher maximum sampling rate

can be achieved using the shift operator’s parameterization. This will be shown in more

detail in Subsection 4.2.5. However, the emphasis of this thesis is not the length of time it

takes to perform the calculations. All experiments will be performed at constant sampling

rates.

4.2.5 Timing Diagram

The two main timing influences of a real-time digital control system are typically the

ADC conversion time and the time it takes to calculate the new control signal value. The

A/D conversion clock, TAD, is selected by the software programmer, but there is a minimum

conversion time. With the processor running at 40 MHz, a TAD of 1.6 µs is required. An

analog to digital conversion requires 11 TAD cycles to complete. For this experiment, it will

take 17.6 µs for a conversion to complete (i.e., Tconv = 17.6 µs).

A 40 MHz processor makes one clock cycle equal to 25 ns. A PICTM requires four clock

cycles to execute one instruction cycle; therefore, this program will perform one instruction

every 100 ns. At most, the current implementation of the shift operator’s algorithm executes

about 145 instruction cycles to complete the full duty cycle update loop. This equates to

a minimum requirement of about 14.5 µs. The current delta operator approach uses up

to about 217 instruction cycles, or 21.7 µs. The detailed timing diagrams for these two

algorithms are found in Figures 4.12 and 4.13. The explanations of each diagrams’ segment

are well documented in the flowcharts previously shown in Figures 4.10 and 4.11.

To provide sufficient time for all necessary calculations to complete and to maintain a

constant sampling rate, a programmable acquisition time, Tacq, will be utilized as described

earlier. One available selection option for this value is 20 TAD, or 32 µs. This value was

selected for the initial experiments, so the total sampling period, Ts, is:

Ts = Tacq + Tconv = 32 µs + 17.6 µs = 49.6 µs
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Figure 4.12: The approximate timing diagram for the shift-operator-based controller algo-
rithm

Figure 4.13: The approximate timing diagram for the delta-operator-based controller algo-
rithm
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Figure 4.14: The approximate timing diagram for the overall system

Therefore, the sampling frequency, fs, is about 20.16 kHz. The overall timing diagram at

this sampling rate can be seen in Figure 4.14
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Chapter 5

System Modeling and Simulation

Before conducting the experiments, design tools are used to design and simulate the

control system. MATLAB/Simulink were chosen for the simulation platform. Simulating

the system allows for quick verification and design of the control algorithms.

First, a model of the plant, the DC-DC buck converter, is developed that can be imple-

mented in Simulink. Then, models of the shift-based and delta-based digital PID controllers

are developed. Each controller model is implemented in Simulink.

5.1 Modeling of DC-DC Buck Converters

In order to perform designs and simulations with a DC-DC buck converter, it is necessary

to develop a mathematical model describing its characteristics. There are multiple ways to

approach model development. This thesis develops a set of state equations because of the

following:

1. State equations are developed based on common first-principle physics relationships.

2. Corresponding state diagrams are easily implemented in simulation software such as

Simulink and LabVIEW.

3. An option to account for non-linear characteristics is available.

4. Adjustments to model parameters are easily made for model updates and variation

testing.

To account for some of the non-ideal properties in buck converters, the state equations

are based on Figure 5.1.
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Figure 5.1: A typical buck converter with inductor and capacitor ESRs

The equivalent series resistances (ESRs) of the inductor and capacitor are represented

by rL and rC , respectively. The transistor will operate in saturation mode when it is “ON”

and has a drain-source resistance, rT . When the transistor switch is “OFF”, the diode will

conduct and be modeled by a DC voltage source, vD, in series with a resistance, rD.

The switching effects cause unavoidable non-linearities in buck converters; nevertheless,

these effects can be included in the state-space model. This modeling will be demonstrated

in the development of the equations. One output equation is written in addition to the

two state equations for both the “ON” and “OFF” states (or operating modes) of the buck

converter. The inductor current, iL, and the capacitor voltage, vC , will serve as the state

variables for modeling. The output current, iout, control signal, q, and the input voltage, vin,

are considered “inputs.”

By examining either the “ON” state (Figure 5.2) or the “OFF” state (Figure 5.3) of the

non-ideal buck converter, the output voltage is:

vout = vC + iCrC
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Figure 5.2: Non-ideal buck converter with transistor switch closed

Figure 5.3: Non-ideal buck converter with transistor switch open
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Writing this expression in terms of the state variables and inputs yields:

vout = vC + rC(iL − iout) (5.1.1)

To find the required state equations, the differential equations that relate capacitors’

and inductors’ currents and voltages are used. Beginning with the inductor current:

d iL
d t

= i̇L =
1

L
vL

The inductor voltage, vL, needs to be replaced with a combination of state variables and

inputs. When the transistor switch is “ON”, the change in inductor current is:

i̇L =
1

L
(vin − vo − iLrL − iLrT )

and when the transistor switch is “OFF”, the inductor current is:

i̇L =
1

L
(−vD − vout − iLrL − iLrD)

Because these are time-based signals, vin and iLrT are multiplied by q, and vD and iLrD are

multiplied by the inverse of q, q̄. This accounts for the non-linearities. Remember that q = 1

when 0 ≤ t ≤ TON , and q = 0 when TON < t ≤ (TSW − TON). This yields:

i̇L =
1

L

(
−vout − iLrL + q(vin − iLrT )− q̄(vD + iLrD)

)
(5.1.2)

The change in the capacitor voltage is:

d vC
d t

= v̇C =
1

C
iC
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Figure 5.4: State diagram for a buck converter

For both the “ON” and “OFF” states, iC = iL− iout; therefore, the second state equation is:

v̇C =
1

C
(iL − iout) (5.1.3)

A state diagram can be composed using equations (5.1.1), (5.1.2), and (5.1.3). The state

diagram model is built directly from Simulink’s default library as shown in Figure 5.4.

Table 5.1 contains the model parameters for the simulation.

The composite Simulink model of the buck converter is presented in Figure 5.5 where

the power stage is the state diagram in Figure 5.4 and the PWM generator is shown in

Figure 5.6. The PWM generator works by subtracting a sawtooth wave from the duty cycle.

As long as the result is greater than 0, the output will be “ON”. Dnom is the nominal
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Symbol Parameter Value Units

Vin Input Voltage 5 V

R Load Resistance 5 Ω

L Series Inductor 150 µH

rL ESR of Inductor 10 mΩ

C Output Capacitor 1000 µF

rC ESR of Capacitor 30 mΩ

VD Forward Drop Across Diode 0.4 V

rD ESR of Diode when Conducting 450 mΩ

rT Drain-Source Resistance of Transistor 40 mΩ

Vref Reference Voltage 2.5 V

Table 5.1: Model parameters for experimental buck converter

duty cycle, Vref/Vin. The simulations and experiments are performed with Vref = 2.5V .

Therefore, Dnom = 0.5.

The experimental buck converter used for this experiment was used previously by Feng’s

and Guo’s theses [12] [15]. Values for L, rL, C, and rC were attained from these two theses.

Values for Vin, Vref , and R were selected to minimize external circuitry and additional code

which would be required to handle resolution and referencing issues. The value of rT was

obtained from the power transistor’s data sheet [19]. The value for the diode voltage, vD,

is a typical drop across a Schottky diode and is consistent with the instantaneous forward

current to instantaneous forward voltage curve provided on the part’s datasheet [20]. The

diode resistance, rD, was selected to give a more reasonable amount of damping to the

simulation. This effect is shown in the open-loop responses. The initial transient response

of Simulink’s open-loop model is shown in Figure 5.7.

To increase confidence in the model results, the open-loop response was plotted using

the schematic editor in Pspice; this schematic is shown in Figure 5.8. The result of the

Pspice simulation is shown in Figure 5.9.
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Figure 5.5: Open-loop buck converter Simulink model

Figure 5.6: PWM generator Simulink model
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Figure 5.7: Simulink simulation of open-loop response with Vref = 2.5V

Figure 5.8: Pspice schematic of open-loop buck converter
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Figure 5.9: Pspice simulation result of open-loop response

With the exception of some additional damping in the Pspice model, the dynamic

response of the Pspice model and the Simulink model favor each other well.

The actual open-loop response was measured and is compared to the Simulink simulation

in Figure 5.10. The Pspice simulation replicates the actual system response more accurately

than the Simulink simulation does. However, the Simulink simulation satisfactorily resembles

the actual system so that it can be used for designing the closed-loop system. The digital

modeling of the system is immensely easier to accomplish in MATLAB/Simulink rather than

Pspice. The additional damping that the actual system will experience will be factored into

the design of the closed-loop system in the simulation.
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Figure 5.10: Experimental versus simulation open-loop response

5.2 Modeling of Analog PID Controllers

Modeling a closed control loop with an analog PID controller in a graphical simulation

program is common practice. Figure 5.11 illustrates the simulation used to design the con-

troller coefficients, KP , KI , and KD, for this experiment. These coefficients correspond to

the classic PID equation given previously in equation (3.2.1).

The output voltage, Vo, is fed back and subtracted from the reference voltage, Vref . The

resultant error signal is fed into the three compensator terms. The three terms add together

to produce the control signal, or the duty cycle, D. As discussed previously, a change in D

adjusts the buck converter output voltage. The duty cycle is adjusted until the error signal

equals zero (i.e., the output voltage equals the reference voltage).

This simulation is set up to test the initial transient as well as a step change in load.

Testing the initial transient is equivalent to a reference step change from 0V to whatever
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Figure 5.11: Closed-loop buck converter with continuous-time PID controller

reference voltage is desired (2.5V in the case of this experiment). The step change in load

will not be demonstrated in this thesis.

The following section describes the models used to simulate the two digital compen-

sators.

5.3 Modeling of Non-ideal Digital Controllers in Simulink

The closed-loop system model using a digital compensator is illustrated in Figure 5.12.

Digital controller constraints are modeled in this simulation. The ADC Delay block models

the time delay due to the analog-to-digital converter (17.6 µs). This value is then scaled

to its equivalent digital value between 0-255 and any decimal is dropped due to the Zero-

Order Hold, Scale, Saturate and Quantizer blocks. Vref experiences a similar scaling and

quantization.

The output of the digital compensator is the change in duty cycle, ∆dn, so it is combined

with the previous value of the duty cycle, dn−1. (Recall that z−1 is equivalent to q−1.) The

duty cycle is truncated from 0-255 before being applied to the PWM. (The −255 to 255
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Figure 5.12: Closed-loop buck converter with discrete-time PID controller

saturation block was simply for debugging purposes.) The input of the PWM subsystem

must be a value between 0 and 1, so the duty cycle is scaled accordingly. The Calculation

Delay block is applied to model the delay in the microcontroller computations. This value

is set to 32 µs to represent the entire programmable acquisition time discussed earlier.

5.3.1 Shift-Based Digital PID Controller in Simulink

The digital PID controller simulation model for the shift operator is presented in Figure

5.13. This Simulink model represents difference equation (3.2.5) being calculated consistent

with the method used by the 8-bit microcontroller in the experiment. Each multiplication

is saturated between −255 and 255 (this restriction was described earlier), and quantized in

the case of any floating-point numbers that might arise. Two terms are summed together,

saturated, and summed to the final term, followed by one last saturation.
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Figure 5.13: Simulation model of the shift-operator-based PID difference equation

Figure 5.14: Block diagram of the delta operator

5.3.2 Delta-Based Digital PID Controller in Simulink

The closed-loop control system for this model is the same as the one shown in Figure

5.12 except the digital compensator subsystem is based on the delta operator rather than

the shift operator.

A block diagram of a delta operator is provided by Figure 5.14. The delta operator

used in this experiment is based on the definition of the causal (or backward) delta operator

given in equation (2.1.2).

The form of the delta-operator-based difference equation was derived so as to “ab-

sorb” the sampling period, Ts, into the coefficients (equation (3.2.10)). Since this is the
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Figure 5.15: Simulation model of the delta-operator-based PID difference equation

programmed form, it must be considered when designing the simulation. The gain block

in Figure 5.14, 1/Ts, is not present in the difference equation block diagram since it is al-

ready accounted for in the coefficient gain block. The final form is incorporated in the

delta-operator-based PID controller simulation model shown in Figure 5.15.

All the calculations are performed just as they are in the microcontroller’s software.

The same saturation and quantization effects are applied that have been to all the digital

models thus far.
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Chapter 6

Simulation and Experimental Results

6.1 Continuous PID Controller Designs

A variety of gains are selected for KP , KI , and KD, to illustrate a variety of responses.

No strict methodology, such a Ziegler-Nichols or Cohen-Coon, is used to tune the gains. A

handful of responses with an assortment of overshoots, oscillations, and rise-times are desired

to provide diverse scenarios to compare the performances of the two digital approaches. The

plots in Figures 6.1 → 6.8 record the simulation results of the initial transients of the model

shown in Figure 5.11 using the gains indicated in each figure description.

6.2 Discrete PID Controllers

The specific values of the continuous gain selections and their corresponding difference

equation coefficients can be found in Table 6.1.

The shift and delta coefficients are found using equations (3.2.8) and (3.2.13) with

Ts = 49.6 µs. Recall that if any of the coefficients for the two digital operators exceeds |255|,

it is truncated to either −255 or 255. Also, coefficient decimals are rounded off. If a gain is

greater than 0, but less than 1, it is approximated by its closest inverse power of 2, i.e., 2−n,

multiplied by an integer.

As expected, the truncations experienced by the shift operator coefficients are more

severe and numerous than the delta operator coefficients.
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Figure 6.1: Initial transient; Continuous PID; KP=50, KI=140000, KD=0.0075

Figure 6.2: Initial transient; Continuous PID; KP=70, KI=60500, KD=0.0084
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Figure 6.3: Initial transient; Continuous PID; KP=40, KI=40300, KD=0.0064

Figure 6.4: Initial transient; Continuous PID; KP=6, KI=20160, KD=0.0005
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Figure 6.5: Initial transient; Continuous PID; KP=170, KI=5040, KD=0.0127

Figure 6.6: Initial transient; Continuous PID; KP=75, KI=2500, KD=0.0124
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Figure 6.7: Initial transient; Continuous PID; KP=300, KI=1260, KD=0.04

Figure 6.8: Initial transient; Continuous PID; KP=100, KI=1260, KD=0.03
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Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Set 8

Continuous Gains

KP 50 70 40 6 170 75 300 100

KI 140000 60500 40300 20160 5040 2500 1260 1260

KD 0.0075 0.0084 0.0064 0.0005 0.0127 0.0124 0.04 0.03

Shift Coefficients

α0 208 242 171 17 426 325 1107 705

α1 -352 -409 -298 -26 -682 -575 -1913 -1310

α2 151 169 129 10 256 250 806 605

Delta Coefficients

P 50 70 40 6 170 75 300 100

I 7 3 2 1 0.25 0.124 0.0625 0.0625

D 151 169 129 10 256 250 806 605

Table 6.1: Gains and coefficients used in the simulations and experiments for Ts = 49.6 µs

6.2.1 Shift Operator Performance

The shift-operator-based PID controller transient results are displayed in the following

plots (Figures 6.9→ 6.16 ). Each case is based on the the simulation model shown in Figure

5.12, using the compensator shown in Figure 5.13.

Every response based on the shift operator PID controller is marginally stable except

one (Figure 6.12)! This poor performance was expected due to the extensive truncation that

occurs on most coefficients and computations within the algorithm.

Notice the additional damping on the experimental results as compared to the simulation

results. This outcome is precisely what the open-loop comparisons in Section 5.1 suggested

would occur. The experiments also have excessive ripple characteristics. This finding is best

attributed to the 0.5% error in the measurement equipment (see its reference manuel [21]),

the nonlinear effects the buck converter will have on the measurement equipment, and the

quantization error in the ADC and internal voltage reference.

These shift operator PID controller responses are unacceptable for any plant process

application and bear no resemblance to the original analog PID controller simulations.
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Figure 6.9: Initial transient; shift operator PID; KP=50, KI=140000, KD=0.0075

Figure 6.10: Initial transient; shift operator PID; KP=70, KI=60500, KD=0.0084
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Figure 6.11: Initial transient; shift operator PID; KP=40, KI=40300, KD=0.0064

Figure 6.12: Initial transient; shift operator PID; KP=6, KI=20160, KD=0.0005
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Figure 6.13: Initial transient; shift operator PID; KP=170, KI=5040, KD=0.0127

Figure 6.14: Initial transient; shift operator PID; KP=75, KI=2500, KD=0.0124
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Figure 6.15: Initial transient; shift operator PID; KP=300, KI=1260, KD=0.04

Figure 6.16: Initial transient; shift operator PID; KP=100, KI=1260, KD=0.03
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Figure 6.17: Initial transient; delta operator PID; KP=50, KI=140000, KD=0.0075

6.2.2 Delta Operator Performance

The delta operator digital PID controller simulations used the same overall control

model as the shift operator (Figure 5.12), except the compensator model is replaced by the

one in Figure 5.15. The initial transient simulation and experimental plots follow in Figures

6.17 → 6.24.

The overall performance, especially the steady-state error and rise-time, and resem-

blance between the simulation and experiment degrade in the responses of Figures 6.21 -

6.24. Once again, this was predicted earlier during the discussion of approximating divid-

ing by powers of two with “rotate rights.” The precision lost in these cases is significant,

especially considering the reference voltage is only 2.5 V.

The delta-operator-based PID controller demonstrates general superior performance

over the shift-operator-based PID controller. The delta operator responses, in general, are
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Figure 6.18: Initial transient; delta operator PID; KP=70, KI=60500, KD=0.0084

Figure 6.19: Initial transient; delta operator PID; KP=40, KI=40300, KD=0.0064
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Figure 6.20: Initial transient; delta operator PID; KP=6, KI=20160, KD=0.0005

Figure 6.21: Initial transient; delta operator PID; KP=170, KI=5040, KD=0.0127
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Figure 6.22: Initial transient; delta operator PID; KP=75, KI=2500, KD=0.0124

Figure 6.23: Initial transient; delta operator PID; KP=300, KI=1260, KD=0.04
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Figure 6.24: Initial transient; delta operator PID; KP=100, KI=1260, KD=0.03

more stable and have less oscillation than the shift operator responses. There is also a favor-

able resemblance between the simulation and experimental responses, with some additional

damping seen in the experimental system.

The advantage of the delta operator’s difference equation is further supported if their

experimental responses are compared to the corresponding continuous-time PID simulation

responses (Figures 6.25 → 6.28). The algorithms that incorporated a division will not be

displayed because their loss of accuracy decreases this parallel.

Most of these responses coincide well with each other, especially considering the known

damping increase when operating in the “real world.” With superior performance, increased

correspondence between numerical simulations and experimental results, and prevailing re-

semblance to the continuous-time results, the delta operator proves to outperform the shift

operator in discrete PID controllers under finite word-length conditions.
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Figure 6.25: Initial transient; Continuous vs. Delta; KP=50, KI=140000, KD=0.0075

Figure 6.26: Initial transient; Continuous vs. Delta; KP=70, KI=60500, KD=0.0084
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Figure 6.27: Initial transient; Continuous vs. Delta; KP=40, KI=40300, KD=0.0064

Figure 6.28: Initial transient; Continuous vs. Delta; KP=6, KI=20160, KD=0.0005
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Chapter 7

Conclusions and Potential Future Work

The work in this thesis explored the effects of finite word-length on digital controllers

implemented using two different digital operators—the shift operator and the delta operator.

After a mathematical analysis was performed, simulations and experiments were conducted

using a common controls application: a PID-compensated buck converter.

The mathematical derivations, simulations, and experiments performed in this thesis

suggest the same conclusion: the delta operator approach to parameterizing continuous

controllers exhibits certain numerical and, therefore, performance advantages over the shift

operator under finite word-length conditions. Though there are several challenges that fall

under the category of “numerical,” this thesis focused primarily on truncation that occurs

due to the limited range of numbers that can be represented in microcontrollers. When

using the approaches employed by this thesis to derive the discrete difference equations, the

delta-operator-based coefficients are scaled less than the shift-operator-based coefficients.

The additional scale experienced by the shift operator’s difference equation makes it more

susceptible to clipping caused by finite word-length, signifying a decrease in performance

with respect to the delta operator.

The discovery of the delta operator’s superior controller performance and correlation

to continuous controllers could have benefits considering that most expertise and experience

in controller design lies in the continuous realm. The results of this thesis suggest that one

could reasonably design a digital controller using continuous techniques. A program could

easily be written that would be used to calculate discrete coefficients that would correspond

to the continuous-designed coefficients. According to this study, this approach would be far
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more likely to be successful if the digital controller were derived and implemented using the

delta operator rather than the shift operator.

There is additional work that could be done to solidify these claims. Performing these

experiments at additional sampling rates could reveal whether or not there are exceptions

to the effects of finite word-length found in this thesis. Controllers other than a PID could

be used for the simulations and experiments to determine if there are instances where the

effects of finite word-length are enlarged or lessened between the delta and shift operators.

Part of the mathematical analysis suggests that the delta operator could have an even more

noticeable improvement over the shift operator if a controller is selected where the actual

control signal could be solved, rather than the change in control signal (Subsection 3.1.2).

Another analysis could be performed using an alternative method to obtain the discrete

representations of the continuous transfer function. One could use a different emulation

technique, or derive the delta-based model directly from the continuous rather than the

shift-based model.

Lastly, the increase in time that it takes to perform the delta-based PID calculation

(Subsection 4.2.5) could point to a potential benefit of the shift operator over the delta oper-

ator if the limiting factor was sampling rate rather than word-length. Additional experiments

would have to be arranged to confirm this hypothesis.
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