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Abstract

In this thesis, the development of an FPGA-based software GPS receiver with a special
focus on advanced tracking algorithms is developed. The particular algorithms of note in this
thesis are in a class known as vector tracking algorithms. Vector tracking GPS algorithms
boast an increased immunity to interference and jamming and the ability to perform at low
signal-to-noise (C'/Ny) ratios. Addition of an inertial device to the vector tracking algorithm
is known as deep integration and further boosts these benefits.

A trade study is presented that compares different hardware platforms for an embedded
real-time system. An FPGA is chosen based on its ability to combine all of the necessary
functions on a single device and its ability to seque a FPGA logic design to an application-
specific integrated circuit (ASIC). Implementation details of each different component that
constitutes a GPS receiver are given. In the single system, three soft-core microprocessors
are synthesized on the FPGA to compute various components of the GPS algorithm, and
their interfacing to other custom logic and to each other is described. The operation of each
of the custom GPS logic modules is outlined in detail. Hardware resource utilization and
computational timing results are also given. This thesis shows that a preliminary design of
a real-time embedded GPS receiver capable of vector tracking is feasible, but there are more

improvements to be made before deep integration is successful in real time.
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Chapter 1

Introduction

1.1 Motivation

Since its inception, the Global Positioning System (GPS) has continued to become
more and more ubiquitous. Applications in the commercial sector such as car and marine
navigation devices, handheld hiking units, and running watches are commonly used by a
number of different people to meet many different needs. Military uses include battlefield
logistics, target tracking, and missile guidance. Research is currently being conducted that
even uses GPS to guide unmanned vehicles through dangerous territory.

In most of these military applications, there is an undeniable need for a GPS receiver to
supply precise, uninterrupted measurements that are immune to jamming. Relaying ground
troop position coordinates and precise missile navigation are two notable instances that must
be accounted for. GPS is a notably weak signal and is easily occluded by urban canyons and
dense foliage. For these reasons and many others, it is important to have a GPS receiver in

the field that can withstand these challenging scenarios.

1.2 Vector Tracking and Deep Integration

One method to deal with these difficulties is found in vector tracking algorithms. Vec-
tor tracking algorithms have been studied for the past two and a half decades [43]. The
main advantages of vector tracking include an increased immunity to jamming, an ability
to function in low signal-to-noise ratios, and, with inertial aiding, good performance in high
dynamics. A GPS receiver that combines a vector tracking algorithm with an inertial mea-

surement unit (IMU) is known as ultra-tight coupling or a deeply integrated (DI) system.



The inertial measurements used in DI systems increase the immunity to receiver dynamics
and jamming even further. There has been a good deal of progress in the area of DI systems
in the past few decades, but much of this success has been limited to post-processed data or
non-embeddable real-time solutions. In order to use these very beneficial algorithms in the
field, an embedded GPS receiver that supports vector tracking and deep integration must

be designed.

1.3 Software Receivers

Since the late 1990s, researchers have studied the power and usefulness of a software-
defined GPS receiver [3]. A software-defined GPS receiver, like any other software defined
radio, is useful as a testing platform because it can be reconfigured any number of times in
any number of ways. Defining the receiver implementation in software also allows explicit
control over almost every signal passing through the system. A software platform like this
opens up many opportunities to explore new algorithms and to test existing algorithms
with little extra effort. Software receivers are normally run on a PC, DSP, or maybe a
combination of both. In the past few years, there has been an increased interest in using the
field-programmable gate array (FPGA) technology as a real-time software receiver platform

(9, 29, 34].

1.4 Field-Programmable Gate Array

A field-programmable gate array (FPGA) contains many inherent qualities that make
it an ideal platform for achieving this real-time performance. It offers the possibility of high
parallelism, speed comparable to an application specific integrated circuit (ASIC), a large
number of inputs/outputs (I/0), reprogrammability, and a great deal of design flexibility.
An FPGA consists of programmable logic blocks (PLBs), input/output, and interconnects.
At any time, an FPGA can be configured to have a specific system function. The system

function is determined by activating some or all of the I/O pins, assigning certain logic



functions to the PLBs, and using the interconnects to route information to/from the I/0
and PLBs.

An FPGA was chosen as the implementation device for this software receiver because
of its practicality as both a testing device and a final product. The main advantage of
having an FPGA during testing is the fact that it is reconfigurable. Normally, one or many
application-specific integrated circuits (ASICs) are used to build a commercial GPS receiver,
but creating an ASIC for a design that needs to be reconfigured and verified multiple times
is unrealistic and very costly. In fact, FPGAs are often used as a prototyping platform for
designing ASICs. As a practical implementation device, an FPGA is a good choice due to
its parallel processing capability, speed, and lack of need for a host PC or separate DSP for

co-processing.

1.5 Contributions and Outline

Research in the general area related to this thesis has been mostly limited to seveal
different categories. Some work describes the vector tracking and deep integration algo-
rithms themselves [43]. Other research has been performed to compare the validity and
performance gain of these algorithms [28, 35, 37]. A few different formulations of the deep
integration techniques have been published along with their supposed performance benefits
[5, 12|. Software receivers with their application to GPS began to be studied in the late
1990’s [3|. There have since been numerous publications describing different GPS software
receivers that are used for many different applications [7, 23, 25, 32, 22|. A few researchers
have used an FPGA as a standalone hardware platform for a software receiver |34, 39, 13|,
and some have also used the model-based tools discussed later in this thesis [38, 8]. A very
recent paper describes a real-time implementation of a deeply integrated GPS/INS device
on a personal computer platform [26].

Besides the published works of the author [16, 17], there are currently no documented at-

tempts of achieving real-time performance of these algorithms on an embedded platform. The



goal of this thesis is to discuss the implementation details of a preliminary hardware /software
architecture that uses a single FPGA to implement these advanced tracking algorithms.
Hardware and software details of a hardware description language-based design will be pre-
sented. Timing performance and resource utilization will also be examined. This research
is important because real systems which use vector tracking or deep integration are likely
to be power, size, and cost-limited. A low-power, small-footprint, and cost-efficient receiver
must be designed in order to meet these needs. However, designing embedded devices that
meet these needs is complicated in themself, especially when these devices are constrained
to real-time performance.

Specific contributions detailed in this thesis are a trade study of different hardware
platforms to implement a real-time embedded GPS receiver, a prototype system built using
an FPGA, and some preliminary timing and resource utilization results of the prototype
system. Chapter 2 provides an overview of the GPS signal structure. Because of the nature
of the vector tracking algorithm, the designer cannot take only the position and velocity
output of a commercial GPS receiver. Instead, the designer must access the GPS signal
immediately after it is sampled by a hardware front end’s analog to digital converter (i.e.
the bit-level). Chapter 3 describes the hardware and software processes of a typical GPS
receiver. Each part of the receiver is duplicated in the proposed hardware platform, so
it is important to have an understanding of these functions. Chapter 4 is a trade study
of different potential hardware platforms that can be used to implement this embedded
real-time receiver with a focus on the chosen platform (FPGA). Chapter 5 describes the
prototype system which uses hardware description languages to model its fundamental GPS
functions. The prototype uses a 32-bit microprocessor that is synthesized into the FPGA
fabric to perform the receiver’s baseband functions. This microprocessor is programmed
using C and C++. Chapter 6 gives some preliminary timing results and a report of the
resource utilization for the prototype. This chapter also summarizes the contributions of

this thesis and makes suggestions for future work regarding this research.



Chapter 2
GPS Signal Structure

In order to design a full-fledged software GPS receiver, it is necessary to understand
the GPS signal structure sent from each satellite vehicle (SV) and received by the user

equipment.

2.1 Modulation Techniques

The GPS signal employs a modulation technique called Binary Phase Shift Keying
(BPSK), which takes an RF carrier and either leaves it unmodified or reverses the phase of
the signal by 180° based on a bipolar signal (£1) [24]. This effectively means that wherever
the bipolar signal changes from a +1 to a -1 or vice versa, the RF carrier reverses its
direction. Figure 2.1 shows an example of BPSK modulation with two bipolar signals, PRN

code (defined later) and navigation data.

Cartiel

AVAVAVAVAVAVAVAVAVAV

FPEN Code

Navigation Data

Broadcast Signal

Figure 2.1: BPSK Modulation



In actuality, the GPS signal uses this same idea in a modulation technique called Quadra-
ture Phase Shift Keying (QPSK). The 180° phase shift modulation is the same, but the
difference lies in the fact that QPSK gives two separate outputs - the original modulated
carrier (known as the in-phase component) plus another modulated carrier that is 90° out of
phase from the first signal (quadra-phase) [24|. These can be thought of as sine and cosine

outputs of a waveform generator. Figure 2.2 shows an example of QPSK modulation.

Inphase Carner

Quadeaphase Carien

PEN Code

Navieation Data

Inphase Broadcagt Sienal

Quadeaphase Broadcast Signal

Figure 2.2: QPSK Modulation

The GPS signal structure relies heavily on a modulation technique known as Direct
Sequence Spread Spectrum (DSSS). This extends the idea of BPSK by using a high-rate
spreading signal known as a Pseudo-random noise (PRN) waveform to spread the signal
over a wider bandwidth [30, 24]. Generation and properties of this PRN waveform will be
discussed later, but it is important to note that the PRN sequence is periodic and must be
known a prior: in order to use. Each bit in the PRN sequence is called a chip, and the rate
that the code is transmitted is known as the chipping rate . The purpose of DSSS is twofold
[24]:

1. To make precise ranging possible

2. To allow multiple satellites to broadcast on the same frequency using a technique known

as code division multiple access (CDMA)

6



CDMA is especially important to GPS because it allows the receiver to distinguish between

the different satellites in view at any particular time [24].

2.2 Transmitted and Received Signals

Equation (2.1) gives the signal received by an antenna in a receiver (neglecting trans-

mitted signal power).

s(t) = C(t)D(t)cos(2mfrit + ¢r1) + P(Y (t))D(t)sin(2w frit + ¢r1) (2.1)

+P(Y(t)D(t)sin(2m fraot + ¢r2)

Frequencies fr; and fro represent the L1 and L2 carrier frequencies (1575.42MHz and
1227.60MHz, respectively) that are in the dedicated GPS band frequency range [7]. Sig-
nals C(t) (coarse acquisition) and P(Y (t)) (precise encrypted) are the aforementioned code
spreading waveforms for the civilian and military signals, respectively. Because the GPS
receiver designed in this thesis uses only the civilian band signal, the high frequency P(Y)
code and L2 bands are filtered out and are no longer considered. After filtering, the data is
converted into some intermediate frequency (IF). This process will be discussed in Section
3.1, but it is enough for now to understand that the incoming signal to the software receiver

is in the form of Equation (2.2) (again, neglecting signal power) [30].

$i(t) = C(t + 6;)D(t + 6;)cos(2m(f1r + [faopp: )t + ¢i) (2.2)

where 7 represents the ith satellite that is currently in view of the receiver.

The received signal looks very similar to the transmitted signal from each satellite with
a few exceptions. The signal is still BPSK-modulated by the C/A code and data bit signals,
but the carrier frequency has been downconverted to some intermediate frequency (f;r) and

is offset by a Doppler frequency that is unique for each satellite. This Doppler frequency



offset is a function of the relative motion between the user and the particular satellite vehicle
in question. This effect is well documented in many communications textbooks and is a very
important concept for GPS for determining user velocity [11]. The term ¢; is the phase
offset between the transmitted and received signal frequencies. The phase of the signal (and
therefore the frequency) is usually tracked by a phase-locked loop (PLL) in the receiver
hardware [7]. The term ¢; is the code phase of the C/A code. This quantifies the time-
alignment of the received C/A code and is used for determining precision ranges to each

satellite [24].

2.3 C/A Code Details

The coarse acquisition (C/A) code is a critical aspect of the GPS signal and must be
explored in further detail. It is transmitted only on the L1 frequency at a "chipping rate” of
1.023MHz (each bit in the sequence is called a chip). The C/A code sequence repeats every
1023 chips, which corresponds to a sequence period of 1ms. The purpose of the C/A code is
twofold [24]:

1. To allow multiple satellites to broadcast on the same carrier frequency
2. To acquire precise ranging information to each satellite

As discussed previously, the C/A code BPSK-modulates the GPS signal and is used as a
direct sequence spread spectrum (DSSS) signal; that is, one of its purposes is to widen the
bandwidth of the received signal. The C/A codes were carefully chosen from a family of
pseudo-random noise (PRN) sequences known as Gold codes [19] because of the following

two properties:

1. Autocorrelation with identical signal only when time-aligned (Figure 2.3) 7|

1022

rri(m) = ch(b)ck<b +m)~0 for |m|#0
b=0
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Figure 2.3: Autocorrelation of PRN 1 with no time shift (left) and 500-chip shift (right)

Normalized Correlation

2. Cross-correlation with other Gold codes ~ 0 (Figure 2.4) [7]
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Figure 2.4: Cross-correlation of PRN 1 and PRN 2



This is very important for both of the C/A code purposes mentioned above. First, each of the
satellites broadcasts a unique C/A code which is orthogonal to every other satellite’s C/A
code. Due to this orthogonality, a GPS receiver can determine which satellites are in view
of the receiver with near certainty. This process, called signal acquisition, will be outlined
in Section 3.2. These Gold code properties (along with DSSS) help to fulfill the second
purpose of the C/A code: precise ranging. “De-spreading” the C/A code is accomplished by
multiplying the incoming signal by the C/A code in a process called signal tracking that will
be described in Section 3.3. When "de-spreading" the C/A code to read off the data bits,
the code must be perfectly time aligned; that is, the code phase must be correct between the
received signal and the generated replica code [24]. Once the code phase is known, it can be
compared to every other visible satellite’s code phase to see which satellite is closest to the
receiver and compute a position accordingly. This process will be outlined in the position

calculation section (Section 3.4).

2.3.1 C/A Code Generation

As mentioned before, each satellite’s C/A code is unique. However, because they all
belong to the same family of Gold codes, they use the same generation scheme. The C/A
code generator employs two linear feedback shift registers (LESRs) called G1 and G2. Each
of these shift registers is 10-bits wide and generates a repeating 1023-chip long pattern. The
linear feedback portion of G1 and G2 is characterized by the polynomials in Equations (2.3)

and (2.4) which correspond to the "tap settings" for that shift register [7].

for(x) =1+ 2 + 210 (2.3)

foa(z) =1+ 2?2 + 23 + 2% + 2% + 27 + 210 (2.4)

10



Each of these "taps" is fed into an exclusive-or (XOR) gate which is then fed back into the

first position of the shift register. This concept is illustrated for G1 in Figure 2.5.

Me A
\L/" N1/
F 3 F 3
1 2 3 2 5 6 7 8 9 10
> — G1

Figure 2.5: Shift register generator for G1 (G1 =1 + 23 + 2'9)

Test pattern generation for built-in self test (BIST) platforms use this same technique
to generate pseudo-random test patterns [1].

G1 and G2 both output their respective 1023-chip sequences repeatedly, so in order to
create unique sequences for each satellite, G2 is shifted by a unique number of chips and then
modulo-2 added (using an XOR operation) to G1. This can be done one of two different
ways. First, the full 1023-chip G1 and G2 sequences can be generated and then modulo-2
added together, or second, a selection of two different registers called the phase selection can
be applied to G2 and then modulo-2 added to G1 [7]. The first option can be chosen when
hardware resources can be sacrificed to enjoy simplicity. The second option can be employed
when logic space (or program memory) must be conserved, but it comes with a higher degree
of complexity. A third option is to generate all of the C/A sequences a priori; this uses the
largest amount of resources but requires the least amount of algorithmic complexity. The

second option is most commonly done to save resources, and is depicted in Figure 2.6.

2.4 Data Bits

As mentioned before, data bits transmitted by each satellite BPSK-modulate the out-
going signal. The purpose of these data bits is to give clock corrections and precise orbital
information called ephemeris data which allow a receiver to calculate the satellite’s position

and velocity at any given time [30, 7, 24]. These data bits are transmitted every 20ms (50Hz)
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Figure 2.6: Entire C/A code generator

and each bit begins exactly at the start of a C/A code sequence. A data bit is 20 times
longer than the 1ms C/A code sequence.

The data structure is organized into fifty frames with five subframes each. Each of the
subframes contains 300 bits organized in ten 30-bit words. Since the data rate is 50Hz,
the entire data structure takes 12.5 minutes to complete before cycling through again |7].
Subframes 1, 2, and 3 repeat the same information for all 50 frames. A single frame of the
GPS data structure is pictured in Figure 2.7.

Subframe 1 contains satellite clock correction terms (to correct for relativistic effects)
and satellite health information [24]. Subframes 2 and 3 contain information regarding that
particular satellite’s orbital parameters. This is known as the ephemerides or ephemeris
data. This includes harmonic data and other orbital parameters that, when processed, yield
a very accurate solution of the satellite’s position and velocity. Knowing this data with
high precision will, in turn, yield a high precision user position. The other two subframes

contain information known as almanac data [24]. This holds information about the entire
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1| TLM |HOW [SV Health/Accuracy and Clock Corrections

2| TLM |HOW| Ephemeris Data (Orbital Information)

3| TLM |HOW| Ephemeris Data (Orbital Information)

4| TLM [HOW| Almanac, lonospheric Model, UTC Info

5| TLM |HOW Almanac

Figure 2.7: Navigation Data Message

constellation of satellites and rough estimates of where each of them are at a given point in
time. This knowledge is often used by GPS receivers to facilitate a warm start, whereby the
receiver begins with some knowledge of which satellites will be in view and their approximate
locations when the receiver is initially powered on, making it possible to obtain a solution
more quickly. This is one method of reducing the time to first fix, or TTFF.

Each subframe begins with a telemetry (TLM) and handover word (HOW). The TLM
contains a known 8-bit sequence called the preamble that is used to synchronize the frame
data and also to determine which satellite is closest in distance to the receiver [7]. It is
because the TLM is repeated every subframe that the GPS receiver does not take 12.5
minutes to initialize. The HOW contains a truncated version of the time of week (TOW)
and a few other flags. The time of week is used to measure when particular data frames were

sent from the satellite.
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2.5 Utilization of the GPS Signal

Many of the concepts about the GPS signal structure have been discussed in this chapter.
The main purpose of a GPS receiver is to give accurate position and velocity of the user.
In order to do this, the GPS signal must be properly processed by the user equipment. In
order to demodulate the data bits in each signal, three important signal elements must be

known [3, 24].
1. Satellites currently in view at the receiver antenna
2. Code phase of each C/A code for satellites in view
3. Doppler frequencies of each satellite in view

If, for a particular satellite in view, the code phase and Doppler frequencies are tracked
perfectly, the data bits in the signal become accessible. Once these data bits are accessible
for at least four satellites, a position solution can be calculated. The next chapter outlines
the detailed hardware and processing modules of a typical GPS receiver that accomplish the

above tasks.
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Chapter 3

Overview of a Typical GPS Receiver

3.1 RF Front End

As mentioned in Section 2.2, the L1 (civilian band) GPS signal is transmitted at a carrier
frequency of 1.57542 GHz, but signal processing at such a high frequency is very difficult with
current technology [7, 3]. For this reason, a hardware device known as a GPS front end is
used to shift the L1 frequency signal down to a more manageable rate. This is accomplished
in the front end with a series of filters, downconverters, and an analog-to-digital converter
(ADC). The purpose of filtering is to attempt to eliminate all of the unusable portions of
the incoming signal. That is, since the usable portion of the signal lies within a particular
bandwidth and the antenna is not ideal, the filter selects only that part of the signal that
contains GPS data and attenuates the rest [7]. The goal of downconversion is to take the
aforementioned high frequency L1 signal and shift it into an intermediate frequency (IF)
that can be handled by the ADC. The ADC takes digital samples of the analog signal that
will be used by a subsequent processing unit.

The hardware front end provides data and clock signals to whatever component that
interfaces it. The clock that is provided is the sampling clock at which the data bits are
sampled. The data signals are the digital bits on the output of the ADC, and the width
of the data depends on how many bits are used to quantize the data. For this research,
2-bit quantization is used and follows a standard sign and magnitude convention as shown
in Table 3.1[40].

Due to the nature of the GPS signal, it is often advantageous to only use one-bit
quantization (outputs 1) [46]. Even with the signal downconverted to some intermediate

frequency, a large amount of signal processing is still required. Using only one bit reduces

15



Table 3.1: Observed output values on hardware front end
] Sign \ Magnitude \ Output Value ‘

0 0 +1
0 1 +3
1 0 -1
1 1 -3

the incoming data rate by 100%, requires smaller memories, and uses less resources when
executing arithmetic operations. However, two-bit quantization gives a higher degree of
accuracy for reconstructing the original signal (an effective 1.41dB gain) [42|. This can
potentially lead to higher signal integrity and therefore more accurate results.

There are two main hardware front end chips which are popular in the software GPS
receiver community. The first and older of the two is the Zarlink GP2010/2015 chip family.
This uses 2-bit quantization (sign/magnitude) with an intermediate frequency of 4.309 MHz
and a sampling clock of 5.714 MHz [52, 53]. This particular front end is useful for digital
signal processors and software receivers that require a low sampling rate. In contrast, one
of the more modern front end chips is the SiGe 4110L/4120L. This chip employs 2-bit
quantization at an IF of 4.092 MHz and a sampling frequency of 16.3676 MHz, although
these values are configurable to suit different applications [40]. The 4110L is touted as a
high sensitivity GPS-only device while the 41201 claims to be the world’s first GPS/Galileo
ready receiver [40]. This research uses the SiGe 4110L as the hardware front end.

It can be noted that any front end chip that uses more than one data bit, such as the
SiGe 41101 used in this research, can reduce the signal bandwidth by taking only the sign
bit of the quantized data. This effectively reduces the signal from a multi-bit ADC to a
one-bit ADC.
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3.2 Acquisition

Once the high frequency signal has been converted to digital samples by the front
end, the software receiver begins the next stage of the process; this stage is called signal

acquisition. The purpose of signal acquisition is three-fold [30]:
1. Find which satellites are in view from the current GPS antenna position
2. Obtain a rough estimate of code phase for observed satellites
3. Obtain a rough estimate of Doppler frequency for observed satellites

These rough estimates are used in the subsequent stage of signal processing (tracking). There
are many different approaches to finding these rough estimates [7]. First, a serial search over
all possible code phases and Dopplers can be performed. This can take the longest amount
of time, but has a very low complexity. A second method called a parallel frequency space
search acquisition method is also available. This searches all of the frequencies simultaneously
(using a Fourier transform) and searches each code phase serially. Because of the Fourier
transform, implementation is more complex than the purely serial approach. The third
and final option is called parallel code phase search acquisition. This method searches all
of the code phases simultaneously by using multiple Fourier transforms, while the Doppler
frequencies are searched serially. This approach is much more complicated than the other
two, but is the most time-efficient. Due to the resource intensity of this method, much
research has been done to mitigate the complexity of these algorithms [15, 39].The first and
third acquisition options will be discussed in this thesis. The second option is not discussed
because this method is not typically seen in software receivers; this is perhaps because the
frequency resolution is poor compared to the other two methods [7].

The acquisition search space consists of at least 1023 code phases (one for each chip)
and several kHz of Doppler offset. For an illustrative purpose, half-chip code phase spacing

(totaling 2046 possibilities) and a Doppler bin that spans £5000 Hz from the center (IF)
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frequency in increments of 200 Hz is used (for a total of 51 different total Doppler frequency
bins) on data collected from a front-end data recorder. Figure 3.1 shows a plot of the entire
search space for satellite 31 using the serial search. An obvious peak at a Doppler of +800Hz
and code phase of about 820 chips can be seen. The z-axis is the output value of the integrate

and dump operation for 1ms of data.

Acquisition - PRN 31

05

0.
5000

500

Doppler (Hz) -3000 0 Code Phase (chips)

Figure 3.1: 3D plot of acquisition results

3.2.1 Serial Search Acquisition

The first acquisition method is known as serial search acquisition [24|. The reason it is
called a serial search is because, given no additional information, each possible code phase
and Doppler must be independently searched. The code phase is typically searched in half-
chip intervals (totaling 1023*2 = 2046 total code phase bins). The Doppler frequency must
be searched in predefined increments around the intermediate frequency. The Doppler search
increment spacing is based on expected signal to noise ratio (C'/Ny, a measure of how much
a signal is corrupted by noise); the worse the expected C'/Ny, the smaller the frequency
increments that must be searched [24|. Also, the range on either side of the IF that must

be searched depends on the expected user dynamics. The higher the receiver dynamics, the
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higher the potential Doppler effect [11]. In high dynamic situations, a typical Doppler search
increment is about 10kHz around the center frequency. However, for this example, a normal
dynamic situation is assumed, and therefore a range of £5 kHz will be used with a 200Hz
increment. This corresponds to 51 total Doppler bins (2589 + 1). Therefore, in order to
search every code phase and Doppler possibility sequentially, a total of 2046*51—104,346
different correlations must be performed.

This is a straightforward approach to the signal acquisition problem illustrated in the
block diagram found in Figure 3.2. The incoming signal is multiplied by the generated
C/A code which is then multiplied by the in-phase and quadra-phase portions of the local
oscillator. Over a predetermined period (called the predetection time), the generated signal
is integrated by both phases of the oscillator. In order to get an accurate picture of signal
strength, both sides are squared and then summed together |7]. At this point, the output is

compared to some threshold that determines whether or not a satellite is detected at that

code phase and Doppler [24].
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—
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Figure 3.2: Serial search acquisition block diagram
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If only one of these serial search modules is used, it can take a considerable amount
of time to find the correct code phase and Doppler combination. One potential technique
to improve acquisition time is to use multiple signal correlators. For example, instead of
multiplying a single code phase by a particular Doppler frequency, three different code phases
can be used, potentially improving the acquisition speed by three times. Many modern
receivers are cited to use thousands of correlators in order to improve signal acquisition time
[18]. Another technique that can improve the complexity of the correlators is to use only
the sign bit of the incoming signal (1-bit ADC). This requires far fewer hardware resources
than a 2-bit multiplier.

Serial search acquisition is mainly used by application-specific integrated circuit (ASIC)
or field-programmable gate array (FPGA) GPS devices. This is because the parallel process-
ing capabilities of these types of hardware can easily implement a large array of correlators
at relatively little hardware cost. The more advanced parallel code phase search acquisition

algorithm is usually done on microcontroller-driven software receivers.

3.2.2 Parallel Code Phase Search Acquisition

The parallel code phase search acquisition approach reduces the total search space and
computation time as compared to the serial search method, but this comes at the cost of
overall complexity [7]. In the serial search, every half-chip must be searched separately,
resulting in 2046 total separate code phase bins. As the name suggests, the parallel code
phase search acquisition approach searches all of the code phases simultaneously. This effec-
tively means that the number of search iterations is reduced by a factor of 2046, which is a
drastic improvement. In the example above, the code phases are completely searched every
iteration, and only the 51 Doppler bins must be independently checked. This amounts to a
maximum total of 51 different combinations.

This functionality is made possible by computing this cross-correlation in the frequency

domain [7]. Figure 3.3 is a block diagram of this functionality. A fast Fourier transform
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(FFT) is used to convert time-domain signals to the frequency domain. This method takes
the discrete fast Fourier transform of both the carrier-wiped input (the incoming raw signal
modulated by the carrier replica) and the C/A code, conjugates the C/A code branch, and
then multiplies the two together. An inverse fast Fourier transform is used to shift the entire
system back to the time domain. This method of cross-correlation in the frequency domain
is well understood in digital signal processing [31]. Once the system is back to the time
domain, the absolute value of the output is squared to get an accurate estimate of signal
power. This signal power is compared to a threshold in order to determine if a signal is
present at the Doppler being search [24]. The output will peak at the proper code phase

that the signal lies within.

>® |

2
Incoming Signal FFT i IFFT b | . | g Output
Q FFT*
90° T
I PRN
Carrier Generator
Generator

Figure 3.3: Parallel code phase search acquisition

Because the fast Fourier transform is a discrete signal processing technique, the size of
the FFT is based on the number of samples in the predetection time. In a system with a
sample clock of 16.3676 MHz, there are about 16,368 samples per millisecond. In ASIC or
FPGA design, the ability to perform a fast Fourier transform on a single 16,368-sample input

is very hardware-demanding because there needs to be a large number of hardware multipliers
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[31]. This acquisition method requires two fast Fourier transforms, one inverse fast Fourier
transform, and other control hardware; therefore it is a very resource intensive approach in
these types of hardware. In contrast, this method is very well suited for software receivers
that are run on microprocessors. The ability to store large amounts of data in memory and

then operate on them sequentially is very beneficial for these types of systems.

3.3 Signal Tracking

The purpose of the tracking stage of the GPS receiver is to fine-tune the Doppler fre-
quency and code phase of the incoming signal for a particular satellite [7]. In doing this,
the C/A code modulation is removed, the carrier is wiped off, and the data bits become
accessible. This information is all that is needed to determine the pseudorange (discussed in

Section 3.4) and therefore the user position.

3.3.1 Basics of a Phase-Locked Loop

reference

carrier phase
signal error .
—="" | Phase Detector > Loop Filter

Synchronized
Oscillator
(VCO/NCO)

replica
signal

frequency
change

Figure 3.4: Basic PLL block diagram

The phase-locked loop (PLL) shown in Figure 3.4 is the foundation of a tracking loop
and includes three basic parts [6]. The first part of the PLL is a synchronized oscillator. This
oscillator generates a replica of the system’s carrier (or intermediate) frequency based on its

inputs. In practice, this oscillator is usually voltage-controlled (taking an analog voltage
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as its input) or numerically-controlled (using discrete data points as the input). The next
part of the phase-locked loop is the phase detector. This component compares the reference
signal with the output coming from the synchronized oscillator. Comparing the two involves
multiplying the replica and reference signals together. If the phase and frequency match, the
carrier wave is essentially "wiped off" except for a high frequency component (which will be
filtered out). This can be seen from the trigonometric product-to-sum identity in Equation

(3.1).

cos(0)cos(1)) = %[005(9 — ¢) + cos(0 + ¢)] (3.1)

At this point, the phase error in the signal has been detected and the high frequency
duplicate must be filtered out. This is usually a low-pass filter, taking multiple error signals
from the phase discriminator as its input and filtering out the high frequency noise to give
a more accurate picture of the error [7]. In practice, this is accomplished by integrating
the signal over a certain period of time, amounting to a series of multiply and accumulate
operations. Once the signal has been filtered, the outputs are sent to the loop filter. The
loop filter, as previously mentioned, converts this error into a form that the synchronized
oscillator understands. Based on the phase error, the synchronized oscillator will increase
or decrease its frequency to better match the reference. This closes the loop and provides

precise frequency information to the navigation processor.

3.3.2 Costas Loop

Recall from Section 2.1 that both the ranging codes and the data message use QPSK
modulation. This means that anytime the bit changes from a 1 to a 0 (or a 0 to a 1),
both sinusoidal signals shift in phase by 180°. If a normal phase-locked loop were used,
the synchronized oscillator would suddenly receive information that the signal that it is
attempting to replicate suddenly changed by 180°[30]. This would cause very erratic behavior

when trying to match the phase.
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Figure 3.5: Costas loop block diagram

Because of this potential 180° shift, a modified PLL called a Costas loop is used as
shown in Figure 3.5. The Costas loop splits the incoming signal into two branches (spaced
90° apart) [6]. The two branches are called the I (in-phase) and Q (quadrature) branches.
Each branch contains independent components of a PLL, but they are joined together at
the phase discriminator. The carrier replica is multiplied by the reference and then low-pass
filtered in both branches. The outputs of each of the low-pass filters in each branch are sent
into an advanced loop filter known as the phase discriminator. This part is responsible for
calculating the error in phase between the replica and real signal using both branches of the
Costas loop. There are a number of different phase discriminators that could be used (see
Table 3.2), and each of them has advantages and disadvantages in terms of complexity and
accuracy. In practice, the most commonly used discriminator is the 2-quadrant arctangent
function [24].

For GPS, a predetection integration period of 1ms to 20ms is used. This means that data
is collected and integrated for that length of time. Choosing the integration period depends

on how well the signal is currently being tracked. Loosely-locked signals favor the shorter
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Table 3.2: Common Costas loop discriminators [24]

‘ Name ‘ Discriminator ‘ Output Error ‘
Classic Analog Qplp sin(2¢)
Decision-directed Qpsign(Ip) sing
Q
Tangent I—If tang
2-Quadrant Arctangent atan(?—;) o)

predetection integration times so that the filter can react to sharp changes, while tightly
tracked signals favor the longer predetection integration times. Once the integration takes
place, both branches of the Costas loop send the final result to the arctangent discriminator
that was discussed above. The output of the carrier phase discriminator must be converted
into a form that the synchronized oscillator understands. This depends on the discriminator

output and the type of oscillator that is being used.

3.3.3 Basics of a DLL
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Code Oscillator
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Figure 3.6: Basic delay-locked loop block diagram

A delay-locked loop, or DLL, is a modified version of a PLL and is used to track the
code phase of the C/A code. A picture of a DLL that is used in GPS code tracking loops
can be found in Figure 3.6. The DLL operates as follows. First, the received Gold code is

split up into three branches - prompt, early, and late. The prompt branch provides the best
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estimate of the phase/delay of the Gold code in the received signal. The early branch is
spaced 0 chips in front of the prompt branch, and the late branch is spaced ¢ chips behind
the prompt branch. The variable § is called the correlator spacing and carries a typical value
of 1/2 chip. These three replicas are created for both the in-phase (I) and quadrature (Q)
branches, resulting in a total of six replicas.

Recall from Section 2.3 that the autocorrelation of the Gold codes is at its maximum
when the reference and replica Gold codes are time-aligned. From that center point, the
correlation reduces linearly in magnitude until it reaches almost pure noise. This triangular-
shaped correlation is illustrated in Figure 3.7. The early, prompt, and late outputs of the

DLL are also shown in the figure for purposes of illustration.

Prompt

Early

Late

-1 -05 0 0.5 1
Chips

Figure 3.7: Triangular autocorrelation function with early, prompt, and late outputs

The DLL, using the six replicas, nominally spaced 1/2 chip apart, serve to track the
maximum peak of that triangular-shaped correlation. Because of this triangular shape, the
early and late replica must essentially be equal in order for the prompt replica to match up
with the correlation peak [7]. There are a number of different types of code phase discrim-

inators that perform this function, and they each have their advantages and disadvantages
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in terms of complexity and accuracy. Table 3.3 outlines several of the most commonly used

code phase discriminators used in GPS.

Table 3.3: Common Code Phase Discriminators [7]

’ Name ‘ Type ‘ Discriminator ‘
Early-Late Coherent Ig — Iy,
Early-Late Power Non-Coherent (I + Q%) — (I7 + QF)
Normalized Early-Late Power | Non-Coherent (T,+Qp) (1 +Q)
rmaliz rly- wer n- ren Ao (E )
Dot Product Non-Coherent | Ip(Ig — I1) + Qp(Qr — Q1)

The output of these discriminators must usually be normalized and then converted to
a form that controls the rate of the Gold code generator. This rate is controlled by a local
oscillator (either NCO or VCO). The DLL follows the same predetection time parameters

as discussed in Section 3.3.2.

3.3.4 Entire Tracking Loop

For GPS, the carrier-tracking PLL (Costas loop) and code-tracking DLL must be com-
bined into a single structure. This structure has the form of Figure 3.8. Combined, the
carrier frequency of the system is tracked in conjunction with the code phase [7]. Keeping a
lock on each of these enables the GPS receiver to obtain the data bits needed to calculate

GPS position.

3.4 Position Solution

After first finding a rough estimate of the Doppler frequency and code phase, the tracking
stage makes fine adjustments to those estimates and the final output is the data bits in the
signal. Using these data bits and the properties of how they are sent allows a receiver to

determine its position and velocity.
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Figure 3.8: Combined tracking loop with carrier [blue| and code [green| feedback
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3.4.1 Calculating Pseudoranges

A pseudorange is the line of sight vector from a satellite to the receiver. The reason
that it is known as a "pseudo" range is because a clock bias term is also found in the range
measurement [43].

Only a few items within the data message need to be found in order to calculate a correct
pseudorange from each satellite. At the beginning of each subframe in the telemetry (TLM)
word is what is called a preamble [7]. The preamble is 10001011 (or 01110100 depending
on how the data bit polarity is defined). At the rising edge of the first bit of the preamble,
the clock reading is captured in a variable called z-count [43]. Each satellite is synchronized
with each other to a common GPS time, so the data messages are being transmitted almost
simultaneously. This means that the time it takes the signal to reach the user depends on
how far away each satellite is from the user. These times can be compared by analyzing the
z-count of each satellite [43]. This distance is the pseudorange measurement. A nominal
transit time for a signal to reach a user from a satellite is about 68ms (0.068 seconds) [7].
Assume 4 is the time that the closest satellite has logged its z-count, 75 is the corresponding
time to the next closest SV, and so on. The raw pseudoranges can therefore be calculated
by the formulas in Equation (3.2). Note that fg is the sampling frequency of the hardware
front end (16.3676MHz for the front-end used in this thesis).

P1raw = 0.068¢

P2raw = (0068 + %)C (32)

PN raw = (0.068 + =21 )e
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There is also a clock correction factor that comes from the information found in subframe
1. Using this clock correction factor T,,., the raw pseudoranges can be corrected by Equation

(3.3) and then used to compute the user position.

Pi,corrected = Pi,raw + Cﬂ,corr (33)

3.4.2 Calculating User Position from Pseudoranges

As mentioned, a pseudorange is the estimated geometric range from a user to the satellite

plus a clock bias. The pseudorange is represented by Equation (3.4).

pi = (@i — )2+ (Yi — yu)? + (2 — 22 + cty + v (3.4)

In this equation, p; is the pseudorange from the satellite to the user; z;, y;, and z; are
the satellite ¢’s geometric locations; x,, v,, and z, is the user’s geometric position, t, is the
receiver clock bias, and v is noise.

The satellite vehicle’s x, y, and z positions can be determined by processing the ephemeris
in the satellite’s data message. Since the receiver does not know its position, an estimated
pseudorange (or prediction of the pseudorange, denoted by p) must be calculated as seen in
Equation (3.5). In this equation, Zy, ¥, 2., and t, denote the predicted position and clock

bias states of the receiver.

pi = Fi+ chy = /(2 — 20)2 + (i — §u)? + (2 — 20) + ¢ty (3.5)

A well-known curve-fitting algorithm called least squares is used to determine the user’s
position [30]. Typically, if no additional information is known, a receiver would begin by
guessing a user position, such as {x, y, z} = {0, 0, 0} in an earth-centered, earth-fixed
(ECEF) coordinate frame - the center of the earth. The least squares algorithm uses this

initial position and then identifies the error in the initial guess. This error correction is
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applied to the initial guess, and the algorithm is repeated until a very small correction is

required. The typical least squares setup holds the form of Equation (3.6):

error = H % unknowns (3.6)

In the case of GPS, there are four unknowns: x, y, z, and the clock bias, ¢. In order to
solve for a position, at least four satellites must be tracked. In any case where more than four
satellites are being tracked, the system becomes overdetermined and least squares is used to
solve for user position and clock bias. The H matrix is the system of linearized pseudorange
equations to each satellite, where a, y denotes the line of sight unit vector from satellite 4
to the user in the p direction. The unknowns and H matrix are combined more clearly in

Equation (3.7) and the least squares solution is solved in Equation (3.8).

52 - ) 52
/01 _ pl R xlfzxu ylflyu 217:1311, _1 X
0w 0
—H | : : S - (3.7)
Zu Zu
,5]\[ — PN R Qg i Qy 5 Qi —1 ~
0ty 0ty
0y,
50 p1— p1
yu
N = (H'H)'H" : (3.8)
Zu
5i pi — pi

Each new pseudorange measurement allows for further user position accuracy and also
tracks position and velocity changes for dynamic receivers. Equation (3.9) shows the re-
cursive least squares equation that is run to obtain a new measurement, updating the old

measurement with the most current set of data.
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Other more complex methods such as weighted least squares and Kalman filters are
used to compute user position instead of least squares, but they shall not be discussed in

this thesis.

3.4.3 Determining User Velocity

User velocity cannot be determined by taking Z_’? (where du is the change in user position)
because the noise in the position measurements is amplified far too much [43|. Instead, user

velocity is determined by measuring the Doppler shift on the carrier signal for each satellite

dé

77). Equations (3.10) and (3.11) give the user velocity.

or the change in phase with time (

ax,i
di — c(fdo;}il—le) + |: V;m‘ V;J,z‘ ‘/371_ :| a/yﬂ‘ (310)
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0Ly
0 o
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where d; is the effect of the Doppler with respect to user position and V,; is the satellite
velocity in the p-direction. The satellite velocities are obtained from the data message
(Section 2.4) by processing the satellite ephemeris data. A pseudorange-rate is directly

related to the user velocity and satellite velocities. A pseudorange-rate is the rate of change
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of the pseudorange with respect to time. Therefore, there exists a pseudorange-rate for each
satellite that is being tracked by the receiver. The pseudorange-rate is the line of sight

velocity (including clock terms) of the satellite relative to the user.

3.5 Vector Tracking and Deep Integration Algorithms

Vector tracking algorithms designed for use with the global positioning system (GPS)
have been studied by the navigation community for the past two and a half decades [5, 12,
20, 26, 28, 33, 35, 43|. The goal of this research is to exploit the advantages that vector
tracking offers such as increased immunity to interference and jamming and the ability to
perform at low signal-to-noise (C'/Ny) ratios [36]. These advantages increase the reliabil-
ity and robustness of a normal GPS receiver and have many practical applications in an
environment that is typically challenging for normal GPS receivers.

Vector tracking functions by exploiting the general principle by which GPS receivers
operate. Typical GPS receivers determine position and velocity by tracking the phases and
frequencies of the received signals from available satellites individually [24]. Vector tracking
combines the position and velocity determination with the signal tracking for all available
satellites into a single step [36]. This combination is usually accomplished with an extended
Kalman filter (EKF). Using the estimates from the filter, the phase and frequency of each
visible satellite can be predicted for the next iteration of the EKF. Vector tracking loops
generally have a greater immunity to receiver dynamics than typical scalar loops, and the
additional aiding of inertial sensors bolsters this immunity even further. The fusion of the
vector tracking algorithm with inertial sensors is known as Ultra Tightly Coupled (UTC) or
Deeply Integrated (DI) systems [33].

In order to give an accurate description of how vector tracking differs from traditional
methods, a traditional GPS receiver must first be discussed. A typical GPS receiver consists
of four mostly independent parts as discussed in previous sections. The first part is the

radio frequency (RF) front end which mixes the very high frequency satellite signal down
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to an intermediate frequency (IF) that can be handled by modern hardware. Second, an
acquisition module uses a search algorithm to find which satellites are currently in view and
get a rough estimate of their code phase and Doppler frequency. The next step is called
tracking, where the estimates of code phase and Doppler frequency for each visible satellite
are determined at a much finer resolution. The final step is to take the outputs of each of the
tracking loops and compute a position, velocity, and time (PVT) solution. Vector tracking
receiver architectures differ from traditional architectures in the tracking and navigation

solution steps [36].

3.5.1 Traditional Receiver Operation

Traditional GPS receivers utilize scalar tracking loops to track each satellite in view
as described in Section 3.3. Scalar loops, as the name implies, treat each loop as a single,
independent entity. There is no feedback or sharing of information between any of the
scalar tracking loops and no statistical correlation between channels. The outputs of these
tracking loops are the pseudorange and pseudorange-rates for each of the satellites. These
outputs are used as the input to the navigation solution stage, and using each of these
individual measurements, the receiver computes a position. Figure 3.9 is a block diagram of

the traditional receiver architecture using scalar tracking loops.
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Figure 3.9: Block diagram of the traditional receiver scalar tracking loop architecture
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3.5.2 Vector Tracking Receiver Operation

Vector tracking receivers take a different approach than traditional receivers. In the
vector tracking algorithm, the tracking and navigation solution steps are combined in a
single step, usually accomplished by an extended Kalman filter (EKF). Vector tracking, as
its name implies, considers all of the satellites in aggregate to obtain a navigation solution
[36]. The vector tracking approach that will be considered in this research is a vector delay
frequency locked loop (VDFLL) in an unfederated (centralized) architecture. This means
that there is one central EKF that predicts both the code phase (pseudorange) and frequency
(pseudorange-rate) for each satellite in view. Figure 3.10 is a block diagram of the vector

tracking (VDFLL) architecture that is used in this system.
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Figure 3.10: Block diagram of the vector tracking receiver loop architecture

Notice that instead of separate tracking loops, the only operation that is done indepen-
dently is the signal correlation. The outputs of these correlators, after being passed through
a discriminator, are the pseudorange and pseudorange-rate residuals. These residuals are the

measurements used for the centralized filter. The EKF used in the position state VDFLL
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are the errors in the receiver’s position, velocity, and time (PVT) rather than the PVT itself,
so the actual PVT is managed separately. The error states of the EKF used in this thesis

are:

ot

3.5.3 Vector Tracking Algorithm Details

This section outlines some implementation details of the vector tracking implementation
used in this thesis. This implementation was originally outlined by Robert Crane from L3
Interstate Communications [12]|. It utilizes an extended bank of signal correlators that are
positioned around the nulls in the power density function of the C/A code to get an accurate
picture of noise power.

Because the vector tracking architecture for this research has been chosen as a VDFLL,
where both the code phase and carrier Doppler frequency are predicted, the carrier phase is
not locked. Because the carrier phase is not locked, no data bits can be backed out, so the
vector tracking receiver must be initialized with a PVT solution, ephemeris data, GPS time,
Doppler frequencies, and code phase information.

There are two sets of processes that are performed in the vector tracking algorithm. The
first is the extended Kalman filter loop that completes at a rate of 50Hz (20ms period), and

the second set of processes yields the data and measurements for each individual satellite.
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The second set of processes is mostly unique to vector tracking (denoted by *) and many
are unique to this particular vector tracking formulation by Crane (denoted by *) [12]|. For

each satellite, the following operations are performed:
e update satellite position
e get pseudorange and transit time
e populate pertinent rows in C matrix with line of sight unit vectors to current satellite
e predict Doppler frequency™
e predict code phase*
e calculate noise variance®
e get signal amplitude, noise power, and C/N,y®
e calculate measurement covariance matrix R®

e use discriminators to calculate measurements®

Specifics for implementation of the Crane method can be found in [12].

3.5.4 Predicting Doppler Frequency and Code Phase

Calculating the Doppler frequency for each satellite is based on the definition of the
Doppler effect. First, the velocity of the satellite relative to the receiver is measured using
Equation (3.12).

LOSvel = Qgy,z " (vael - JA}) (312)

Then, the definition of the Doppler effect is used. It is adjusted by the measurement

of the receiver clock drift (¢,4) and then shifted from the L1 transmit frequency (f71) to the
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intermediate frequency (f;r), as shown in Equation (3.13).

1 — LOS,e

p—y froi— fui+ fir (3.13)

fif+dopp =

The code phase is predicted by using the fact that all satellites broadcast the preamble
of the data message simultaneously. After pseudoranges to the satellites are initially found
based on the scalar tracking solution, this range can be converted into a time by multiplying
by the sampling period. This is the time difference between the satellite sending the preamble
and it being received by the user. Once this time is found, it is compared to the elapsed time
that the system actually took based on the previous pseudorange. The difference between
these two times is used to adjust the NCO of the PRN generator, and thus the code phase

is predicted.

3.5.5 Deep Integration

Most of the research that has been done in the vector tracking field has included mea-
surements from some inertial sensor such as an IMU [35]. A system that combines both
vector tracking and an inertial sensor is called ultra-tight coupling or deep integration. The
addition of an inertial device increases the receiver’s immunity to dynamics by being able
to track changes in position and velocity between vector tracking filter updates. Since the
vector tracking formulation uses an extended Kalman filter, many of the Doppler and code
phase predictions are performed using the time-propagated position. If there is a significant
outage in the GPS signal (and thus no measurement update), the predicted position, ve-
locity, and time is propagated forward in time using the designated motion model until it
comes back into view. The effects of aiding a receiver with an inertial device to help bridge
these outage gaps is well documented [24].

Adding an inertial sensor is not without its complications. If an inertial measurement

unit (IMU) is added to the system, there must be several additional states in the navigation
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filter which track the error dynamics of the IMU. Because the update rate of the IMU is
typically very fast (750-800Hz), tracking these parameters can become burdensome on an
embedded system. The IMU measurements must also be synchronized in time with the GPS
data, as unmodeled errors can be introduced if the two are not synchronized [24]. This
synchronization usually involves a one-second timing pulse from the GPS (known as the
pulse per second, PPS) and a fairly large amount of memory space to buffer several samples
of IMU data so that it can be lined up correctly with the GPS clock.

As mentioned, the addition of an IMU adds numerous states to the central Kalman
filter. The 17 states include position, velocity, attitude (roll, pitch, and yaw), gyro biases,

accelerator biases, clock bias, and clock drift.
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Chapter 4

Software Receiver Platform Trade Study

The concept of extending the software defined radio to the GPS industry began in
the late 1990’s [3]. Software receivers provide several advantages over hardware-only imple-
mentations. First and most importantly, software receivers are reconfigurable. They can
theoretically be reprogrammed any number of times in any number of ways. This is ex-
tremely important in the navigation research community, where developing and testing new
algorithms is paramount. The ability to reconfigure a working GPS receiver to incorporate
some research interest advances the field far more rapidly than being constrained to third
party hardware or software.

A second benefit to software receivers is the fact that any part of the GPS process
is configurable. For example, in a hardware-only receiver, a dedicated chip might perform
signal acquisition, but it functions as a black box. Only the inputs and outputs are visible.
In contrast, a software receiver might be responsible for performing the entire signal acqui-
sition process, so any point within the algorithm can be viewed or potentially modified for
improvements.

Software receivers also provide the potential for increased portability and modularity.
Since the implementation is in software, there might be a considerable number of choices
for a hardware platform to run the receiver. This means that the development of a software
receiver might be done on a desktop computer, but subsequent iterations of the same software
might be able to be extended to a hand-held personal digital assistant (PDA) device. In this
context, modularity can be imagined by assuming that there are more advanced processing
techniques that require the processing power of the desktop but can easily be removed for

the PDA implementation.
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Recent developments in the GPS community have shown that there are three main
hardware platforms that are typically used in designing software receivers: the micropro-
cessor, digital signal processor (DSP), and field-programmable gate array (FPGA). Software

receivers can also sometimes use different combinations of these platforms in a single receiver.

4.1 Microprocessor

A microprocessor is a hardware platform that is generally not designed with a particular
purpose in mind [47]. Because of this, many are known as general purpose processors (GPPs).
Personal computers such as desktops and laptops are built using GPPs. Microprocessors
typically operate at much higher frequencies than the other hardware platforms that will be
discussed, and can therefore process a very large amount of instructions in a short amount
of time. Single core microprocessors sequentially execute a single instruction at a time.
Sometimes microprocessors implement a concept called threading where multiple different
software processes (threads) give the appearance of running simultaneously by constantly
switching back and forth between the processes [41]. The ability to program a microprocessor
is quite flexible, and does not typically require special training. Common programming
languages such as C and C++ can be run on a microprocessor.

Microprocessors cannot be used alone, as they have only a very small amount of memory
on the chip itself. Instead, they must use external RAM or ROM to load program instructions
and data [47]. Also, since they are widely labeled as general purpose, they do not specialize in
the heavy mathematics operations that are necessary for a software receiver. Depending on
the number of cores in the microprocessor, the high frequency data correlation can be difficult
to accomplish. Furthermore, they are potentially expensive. Unless custom hardware is
designed to include only the pieces of the design which are necessary (the microprocessor,
memory, and input/output), any additional units must be purchased at roughly the cost

of a motherboard (which can vary tremendously based on the amount of processing power

needed).
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There are many implementations of GPS software receivers that use microprocessors.
The OpenSource GPS project uses a small interfacing hardware front end to a personal
computer via USB and can perform in real time [25]. Dennis Akos and Kai Borre developed
a software receiver in MATLAB based on the seminal doctoral research of Akos [7]. Other

research is being done to identify the benefits that a multi-core processor could provide [23].

4.2 Digital Signal Processor

A digital signal processor (DSP) is an integrated circuit which specializes in, as the
name suggests, digital signal processing applications. One of the most notable of these
specializations is the ability to perform a multiply-accumulate (MAC) operation in a single
clock cycle (usually). Current high performance DSPs operate at speeds around 1GHz, and
some contain ARM microprocessor cores inside of them for control logic and other general
purpose functions.

DSPs are designed to support some degree of parallelism, but still must execute its
software sequentially like a microprocessor. External memory is also required to store the
data and instructions. Unless they have an embedded microprocessor, they are not typically
as good at general purpose logic. Some DSPs can be programmed with common languages
such as C or C++, but others require knowledge of a specialized set of instructions (such as
SHARC) [47].

DSPs have been used in recent research efforts for L1/L2 software receivers [32]. An
even more specialized DSP known as a graphics processing unit (GPU) has also been used

in building a GPS software receiver [22].

4.3 Field-Programmable Gate Array

An FPGA is a programmable integrated circuit which consists of programmable logic
blocks (PLBs), input/output (I/O), and interconnects as shown in Figure 4.1. At any time,

an FPGA can be configured to have a specific system function. The system function is
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determined by activating some or all of the I/O pins, assigning certain logic functions to the

PLBs, and using the interconnects to route information to/from the I/O and PLBs.
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Figure 4.1: FPGA overview [44]

4.3.1 FPGA as a Real-time Platform

FPGAs have many advantages that make them a very valuable choice as a software
receiver platform. There are multiple vendors such as Altera and Xilinx, and every company
produces a wide array of different FPGAs with different capabilities and specifications. Aside
from having many different options to choose from, FPGAs are known for their speed due
to fact that an FPGA is pure hardware. Its computational performance has been found to
closely resemble (but not match) that of an ASIC of the same functionality [27].

An FPGA does not execute one statement of code after another in a sequential fashion,
but instead can perform multiple functions simultaneously. This is similar to the idea of
“threading” in computer science terms, except that where a single microprocessor handles
each thread in turn to make the functionality only seem simultaneous, the parallel opera-
tions in an FPGA actually are simultaneous. This improvement in speed, brought about

by this parallelism, makes it a very good option for handling multiple correlators, as the
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vector tracking architecture used in this research requires. An FPGA is also completely
reconfigurable; this is a very important property in reducing a project’s design time and is,
of course, a necessity for a software receiver.

The FPGA is not without its drawbacks. On the more powerful FPGAs, power con-
sumption is a concern. Many FPGA manufacturers are attempting to alleviate this problem
by releasing low-power versions of their most popular designs [2]. An FPGA footprint can
range from quite small to very large, and are often many times larger than their ASIC coun-
terparts would be. This is because of all of the extra logic that is required to make the
FPGA reprogrammable and the fact that an ASIC only includes as many gates as it needs
and no more, whereas an FPGA might have many unused gates in a design. Another draw-
back to development with FPGAs is the designer accessibility. FPGAs must be programmed
with hardware description languages (HDLs), which are generally less accessible than more
commonly known languages such as C and C++.

An FPGA is very well equipped to perform high frequency operations such as the high
frequency correlation found in a GPS receiver’s tracking loops |21]. It is not, however,
equipped to execute large amounts of matrix mathematics as GPS and vector tracking de-
mand because the sizes of the matrices are constantly changing and the FPGA hardware
must remain fixed. Arithmetic functions are also expensive in terms of hardware. Valuable
logic resources are used up to implement a multiplication that may happen only once. For
these reasons, it is almost a necessity to combine the FPGA with an embedded microproces-
sor [21]. This can potentially add a considerable amount of hardware interfacing unless the
FPGA has a microprocessor already embedded into the fabric or there is enough room to
synthesize one. The latter options are available in almost all modern FPGAs from vendors

such as Xilinx or Altera.
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4.3.2 System on Chip Design

One of the most advantageous parts of the FPGA platform is its sufficiency as a stan-
dalone device. The combination of all logic (including microprocessors), memory, I/0, tim-
ing, etc. on a single integrated circuit is known as system on chip (SoC) design. All of these
individual pieces can be synthesized into a single FPGA, yielding very tight integration be-
tween the different parts of a system. Because the parts are so tightly woven together, many
of the difficulties of interfacing external memories and processors can be avoided. Using a
single FPGA, a designer can combine I/O, memory, intermediate frequency (IF) processing,
and baseband processing on a single chip.

Recently, the system on chip approach using FPGAs has become more of a reality.
FPGA manufacturers have recognized that there are specific functions that the developers
who use their products are utilizing repeatedly. Because of this, there has been a signif-
icant increase in the number of “extra” features that an FPGA has embedded within its
programmable logic blocks (PLBs) and interconnects. These extras include block RAMs
(BRAMS), 32-bit PowerPC microprocessors, multi-gigabit Ethernet interfaces, PCI Express,
and DSP slices [49]. Each of these extras are actually embedded within the FPGA fabric
itself so no extra logic is used in achieving this functionality. If, however, there is a need
for another function that is not embedded within the FPGA, Xilinx and many other third
parties offer Intellectual Property (IP) solutions that synthesize commonly-used functions
into logic on the FPGA. One of the most important flexibilities of an FPGA is its ability to
synthesize a microprocessor using its PLBs. Many FPGA vendors offer customized, modular
32-bit soft-core microprocessors. Microprocessors supporting the ARM architecture are also
available in both hard and soft cores.

Combining the programmable logic and embedded features present in an FPGA makes
it a very appealing platform when total control is a priority. However, this flexibility is
not without some very concerning limitations. The most notable limitation is the power

and speed of the hard and soft-core processors used for baseband processing. The soft-core
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microprocessor used in this research, Xilinx’s Microblaze, runs at an effective speed of around
200 MHz. Compared to GPPs which can currently achieve speeds around 5 GHz, the speed

capability of the Microblaze is very limited.

4.3.3 Prototyping ASIC Design

The FPGA platform is also very useful when moving from a research-based software
receiver to an actual hardware platform in the field. In a high quantity design where speed,
low power, size, and cost are ideal, the use of an FPGA as a prototyping platform is very
beneficial [10]. FPGAs are programmed using hardware description languages (HDLs) such
as VHDL and Verilog. These same languages are used in the process of designing application-
specific integrated circuits (ASICs); therefore, much of the hardware design and testing has
already been completed when designing the FPGA prototype, which drastically reduces the
amount of development time when designing an ASIC.

Many FPGA vendors also offer cost-effective alternatives to developing ASICs. The
FPGA vendors take a design, strip out all portions of the FPGA which provide programma-
bility or are unused, and craft a non-programmable gate array that features ASIC-like per-
formance at a reduced price compared to a full FPGA. Two of the main vendors, Xilinx and

Altera, offer this service in the forms of EasyPath and HardCopy, respectively |50, 4].
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Chapter 5

Receiver Architecture

The goal of the research in this thesis is to develop a platform that supports both
traditional GPS (scalar tracking) and vector tracking/deep integration in real time. The
inputs to this system would be GPS data after it has been converted to some intermediate
frequency via an RF front end and inertial data from an IMU. The proposed platform has
been implemented on a Xilinx ML506 development board that contains the Virtex-5 SXT50T
FPGA, volatile/non-volatile memories, and several different I/O options [48|. The proposed
hardware solution is shown below in Figure 5.1. The system presented in this chapter is the
second revision of this prototype and was published in [17]. Details about the first prototype

were published in [16] and are given in Appendix 7.3.

GPS IF Data _:. Scalar Solution
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Inertial Data) Vector (Dl) §9Iutlon

Xilinx Virtex-5 S
Development Board

Figure 5.1: Proposed hardware solution for combining scalar and vector/deeply integrated
GPS/INS

The proposed platform takes advantage of the system on chip approach as previously

discussed. The FPGA is capable of performing both the high frequency operations and the
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low frequency operations in the same chip. The high frequency domain contains modules
that perform signal acquisition, scalar tracking, and vector tracking loops. A counter is
used to synchronize the acquisition and tracking loop blocks. Each channel is implemented
individually and can be duplicated a number of times to create a modular “N-channel”
system. The baseband operations are performed by a 32-bit soft-core microprocessor from
Xilinx called the Microblaze. There are three independent Microblaze processors which
operate on three distinct portions of the receiver. Instruction and data memory for each
Microblaze is located in the block RAM (BRAM) of the FPGA and requires no external
memory. Communication between the processors is achieved using BRAM and mailboxes.
Communication between the high-frequency and baseband domains is achieved using a high-
speed data bus using processor memory mapping techniques. Data is output to a PC for
debugging by serial (RS232) communication. The RF front end is interfaced using I/O pins
on the FPGA. Data is input from the IMU via serial (RS232) communication. Each of the
aforementioned parts of the proposed receiver are detailed in the remainder of this section.
A detailed block diagram of the different hardware functions is shown in Figure 5.2.

This thesis will not focus on the hardware architecture outside of the FPGA. It can be
assumed that a GPS front end has downconverted the GPS L1 C/A signal to an intermediate
frequency (IF) and that an inertial measurement unit with a pulse per second synchronization

input communicates with the FPGA via an RS232 connection.

5.1 Software Architecture

The proposed platform takes advantage of the FPGA’s ability to synthesize multiple
soft-core processors. Since the platform supports both scalar and vector tracking loops, a
Microblaze processor is synthesized for each of these independent functions, and another
Microblaze is synthesized to read and parse IMU data from a serial port. It is important
to note that each of the Microblaze processors can be replaced by any hard-core or external

32-bit microprocessor that supports memory mapped 1/0. Tt is even possible (and perhaps
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Figure 5.2: Block diagram of proposed system
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desirable) to replace all of the synthesized Microblazes with a single, more powerful external
microprocessor. However, since the goal of this research is to achieve real-time performance
using a system on chip approach, all three soft-core processors are used. Figure 5.3 is a
diagram of all three of the processors and the interprocessor communication mechanisms

used (as will be discussed in Section 5.1.4).

Mailbox
FIFO

Shared
BRAM

Shared
BRAM

Figure 5.3: Block diagram of all processors and their interprocessor communication mecha-
nisms

5.1.1 Scalar Processor

The scalar processor performs all of the baseband functions for a traditional GPS re-
ceiver such as signal acquisition, tracking loop feedback, bit synchronization, pseudorange
determination, and PVT calculation. For the serial search acquisition (discussed later), this
includes cycling through which PRN to search, the Doppler offset at which to search, and
determining the correlation peak to next peak ratio (CPPR) to find visible satellites. For the
scalar tracking loops, this includes the normalized early minus late discriminator, the loop
filter (adjustable for different pull-in ranges), and feeding back code and carrier NCO values
for each channel. Each of these operations is performed using fixed-point arithmetic for high
throughput. Bit synchronization is also accomplished on this processor after the initial tran-
sients of the loop filter have settled out. This processor can also determine pseudoranges,
decode ephemeris data, and solve for a user’s PVT vector.

This processor is almost entirely interrupt-driven. The acquisition module interrupts the
processor at 1ms intervals to provide the correlator outputs, the code phase, and the Doppler

frequency being searched. Also, each individual tracking loop interrupts the processor at 1ms
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intervals. The interrupting information is the tracking loop correlator values from both the
in-phase and quadrature branches which must be processed within interrupt handlers.
With regard to the vector tracking functionality of the proposed platform, the scalar
processor’s main role is to provide an initial PVT to the vector processor. The discriminators
of the vector processor force the solution to be initialized using a starting PV'T that is close
to the receiver’s true PVT. The vector processor depends on the scalar processor for this

information.

5.1.2 Vector Processor

The vector processor performs all of the baseband functions for a vector tracking receiver
or a deeply integrated GPS/INS receiver. (It is important to note that the vector processor
can do either GPS-only vector tracking or GPS/INS deep integration; it is not possible to
do both solutions independently on the same processor.) These baseband functions include
the discriminators for each channel, updating the extended Kalman filter (EKF) measure-
ments, and then computing the time and measurement updates for the EKF. In the current
formulation, each channel that is currently being tracked is processed asynchronously. This
is because of the arithmetic simplifications that can be made to the EKF which reduce the
size of a matrix inversion from 8x8 (vector tracking) or 17x17 (deep integration) down to
a 2x2 matrix, which is trivial. This comes, however, at the cost of generating the state
transition matrix repeatedly and subtracting out previous channels’ corrections from each
new measurement. It has yet to be determined whether or not this tradeoff is superior in
terms of computation time versus a synchronous measurement update.

The vector processor combines data from each of the active channels in a centralized
EKF to determine new NCO values that must be fed back to each individual channel. This
processor is interrupted by each channel every 20ms. The processor’s ability to meet real-
time deadlines is a function of the speed at which computing the EKF measurement update

can occur and the number of channels in the system.
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5.1.3 IMU Processor

The IMU processor has a very simple job. It is responsible for reading the IMU data
stream from a serial port, parsing the IMU data received, and supplying the measurements
of acceleration and rotation rates from the IMU to the vector processor. It can be noted
that even though it is not done here, the IMU processor can easily supply these values to

the scalar processor to potentially achieve loose, close, or tight GPS/INS coupling.

5.1.4 Interprocessor Communication

Communication between these processors is very simple. Between the scalar and vector
processors, as shown in Figure 5.3, a BRAM and a mailbox provide all of the communication
needed. The mailbox is structured as a FIFO memory and passes simple messages to the
vector processor. These messages tell the vector processor when the PV'T is initially ready,
when the scalar processor has a loss of lock, and other miscellaneous information. The
mailbox is also very useful because it can trigger interrupts on the vector processor. For
instance, when the initial PVT has been solved for, an interrupt can trigger the vector
processor to begin accepting interrupts from each of its channels. A BRAM between these
two processors contains information such as the PV'T vector and ephemeris data for each
of the visible satellites. Any other information that needs to be shared between the two
processors can be placed in this BRAM.

Between the vector and IMU processors, only a BRAM is needed. This BRAM stores
the accelerations and gyro values from the IMU. There is no need for a mailbox because no
messages need to be passed; the vector processor simply uses the values in the BRAM at
each measurement update of the deep integration EKF to update the state transition matrix

with accurate inertial information.
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5.2 Hardware Architecture

Custom GPS logic has been developed for performing all of the high frequency operations
of the GPS receiver. The subsequent sections will describe the different high frequency
components of the proposed platform in detail. Each of the following modules has been

implemented in VHDL (very-high-speed integrated circuit hardware description language).

5.2.1 Acquisition

The acquisition module that is used is a serial search acquisition. This means that
each code phase and Doppler frequency is searched independently for each satellite. This is
in contrast to many of the popular acquisition algorithms such as the parallel code phase
search acquisition. The reason for choosing the serial search algorithm is due to the fact
that it is completely scalable; as many (or as few) correlators as desired may be used in
the acquisition process. This allows the user to control the number of frequencies and code
phases to search in any given iteration. If a parallel code phase search algorithm had been
used instead, the resulting acquisition module might be many times faster, but it requires two
fast Fourier transforms (FFTs) and one inverse FFT. Depending on the sampling frequency
of the hardware front end, this could be a considerable amount of logic space required to
perform these three FFTs. Instead, using the scalable serial search acquisition allows a
designer the flexibility to determine tradeoffs in resource usage versus speed of acquisition.
If a faster acquisition time is desired, more correlators can be used (and vice versa). Figure
5.4 is a block diagram of the acquisition module.

A single BRAM is used as a ROM to store each of the 32 PRN sequences. This is because
there is no need for a code NCO, and each of the PRNs can be easily selected by setting
the number of the PRN to the topmost 5 bits of the PRN ROM address. Note that the
correlator outputs of the acquisition module are fed into a register bank. This register bank
is considered part of the memory mapped space of the scalar processor. Memory mapping

is discussed in Section 5.2.6.

o4



X
GPS Signal—»@—ﬁc\
X
N/

=&f

I T-T ]

Shift Register

Y
»( X
A .
B
()
X

\

A

Q

Carrier 4l
NCO

Figure 5.4: Block diagram of serial acquisition module

5.2.2 Scalar Tracking Channels

Each scalar tracking loop is a feedback loop. A carrier NCO is used to wipe off the
carrier [F for each channel, and a code NCO is used to drive a PRN generator. This PRN
generator generates early, prompt, and late samples which are used to wipe off the code
sequence from each signal. The PRN generator also contains the functionality to trigger an
interrupt every time it begins its sequence. Since the sequence repeats at a rate of 1kHz,
an interrupt is triggered at the scalar processor every millisecond. Each of the correlator
outputs is placed in a register bank which is read by the scalar processor as memory mapped
[/O. The scalar processor performs the code and carrier discriminators, processes the data
in a loop filter, and then feeds back the new code and carrier NCO values. Figure 5.5 is a

block diagram of a single scalar tracking channel.

5.2.3 Vector Tracking Channels

Each vector tracking loop is also a feedback loop, though the feedback term differs from
the scalar tracking loop. A carrier NCO is used to wipe off the carrier (IF) frequency for

each channel (known as carrier wipeoff), and a code NCO is used to drive a PRN generator.
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Figure 5.5: Block diagram of scalar tracking loop/channel

The PRN generator generates the typical early, prompt, and late samples and also several
other delayed samples that correspond to nulls in the autocorrelation function per the dis-
criminators used in [12]. The PRN generator also generates a signal every millisecond, but
in order to reduce the vector processor’s computational load, the vector processor is only
interrupted every 20ms (a full data bit), so a counter is used to only generate interrupts
at that rate. The correlator outputs are fed into a register bank which can be read by the
vector processor as memory mapped I/0. Figure 5.6 is a block diagram of a single vector
tracking channel.

The vector tracking/deep integration tracking channel is very similar to the scalar track-
ing channel. This might be confusing to the reader because of the inherent differences in the
scalar and vector tracking formulations. However, it is important to note that the difference
comes in the baseband processing: the scalar processor computes independent NCO feedback
based solely on that channel’s correlator outputs, whereas the vector processor determines

the feedback values based on the combination of each of the channels measurements within
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the EKF. It is also important to note that the vector tracking/deep integration solution needs
independent tracking loops only if the scalar and vector solutions will operate simultaneously.
Otherwise, the scalar tracking correlators may be used for the vector tracking solution. Since
the desired goal for this research is to have the two solutions operate independently, separate

correlators are required.

5.2.4 GPS Counter

A counter is used to synchronize the acquisition and tracking modules. This is accom-

plished by clocking the counter at the front end sampling frequency, fg, and counting up to

fs
1000

16.3676 M Hz

To50—) = 16368 for this research), the approximate number of

round(=5=) (i.e. round(
data samples in a single millisecond. When the acquisition module detects a peak, the code
phase is logged. When initializing the scalar tracking loop, the code phase value is placed

in a register. When this register matches the current GPS counter, the PRN generator is
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initialized and the tracking loop is started. A similar handoff from scalar to vector tracking

is used.

5.2.5 PPS Generator

Many IMUs allow synchronization with GPS measurements by inputting a pulse per
second (PPS) timing strobe. This pulse forces the IMU to capture and deliver measurements
that are synchronized in time with the GPS measurements and prevents a complicated time
synchronization mechanism (such as storing multiple measurements, discarding some, and
realigning on a GPS update). In the hardware platform designed in this thesis, this pulse
is generated by a hardware linear feedback shift register (LFSR) counter. This counter uses
the 100MHz reference clock to count up to 50 million and then toggle the PPS register value.

This generates a 1Hz square wave with a 50% duty cycle.

5.2.6 Memory Mappings

Memory mapped 1/0 is a very widely used I/O mechanism for modern microprocessors.
Because a 32-bit processor can index 232 bytes of data, much of that address space would
typically not be used up by instruction and data memories. Mapping peripherals into the
processor’s memory space allows the processor to use predefined memory read and write
instructions to access peripherals in the custom logic space of the FPGA. In the scalar and
vector processors described above, the instruction and data memories (including the stack
and heap memories) are physically placed in BRAMs. The processor peripherals such as the
interrupt controllers, mailboxes, shared BRAMs, etc., are located in the FPGA fabric, and
their I/O values are placed in either BRAMs or slice registers. The custom GPS peripherals
mentioned above place their correlator values into register banks and their corresponding
NCO values into registers. When designing the system, each of these different subsystems

that the processor must read from or write to are located in the processor’s memory map.
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of space to add more peripherals if desired.

Figure 5.7 shows a sample memory map for the vector processor. Note that there is plenty

GPS Custom Logic Processor Processor
Peripherals Memory Map Memory
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Channel 0 X Memory
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egister =an Instruction and Bank
-IE Data Memory (BRAM)
::E Stack, Heap
-QE
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-IL Processor
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0x8c000000 BRAM
Mailbox
Channel N 0xC 1000000
Register Bank
UART
- :E GPS Custom
B Logic Peripherals
- %E : > Debug
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-QL 0xCA000000
- Noise . Dev Board
Correlators Push Buttons
Processor
Peripherals

Figure 5.7: Memory map for the vector processor

5.2.7 System I/O and Clock Domains

Figure 5.8 highlights the system I/O and different clock domains that the proposed
platform uses. The IF data is read in from the GPS front end at a rate of fg (16.3676 MHz
for this research). The given example uses 2-bit (sign and magnitude) quantization. The

scalar and vector processors can output debug information to a PC using serial RS232
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communication, and the IMU processor also reads RS232 data from the IMU. There is
a JTAG interface on the FPGA that allows for debugging and programming. A 3-volt
PPS signal is generated in the FPGA logic and is available for the IMU to use for time
synchronization. The custom GPS logic modules are all clocked at a rate of fg, and the
baseband soft-core processors and PPS logic are clocked by an off-chip 100MHz reference
oscillator. Note that even though the Microblazes are clocked at 100MHz, their 5-stage

pipelines give an effective clock rate of around 200MHz.
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Global Counter
RF Front

End
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magnitude

Scalar Tracking
Loops

Vector Tracking
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100 MHz
Reference
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Figure 5.8: Block diagram of the FPGA 1/0 and clock domains

The hardware and software proposed in this chapter is one architecture chosen from a
multitude of options. An advantage of this architecture is that the modularity of the design
allows the proposed receiver to be scalable so that the system can be tailored to a particular
FPGA or purpose. The separate processors allow the receiver to be used for research in
scalar tracking only, scalar and vector tracking, or scalar and/or vector with inertial aiding.

The possibilities of this platform are very promising for future research goals.
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Chapter 6

Computational Results

6.1 Hardware Results

Table 6.1 is a listing of the amount of resources used for each of the different modules of
the system proposed in Chapter 5 and their maximum operating frequency. Note that the
custom GPS peripherals (acquisition module, scalar tracking channels, and vector tracking
channels) have a much higher resource usage than a standalone version of the same module
would have. This is because of the extra logic required to format and deliver their outputs
and inputs to the processors via a high-speed data bus. The total system described in Table

6.1 uses 8 tracking channels for both the scalar and vector solutions.

Table 6.1: Resource utilization for 8-channel system using Virtex-5 SXT50T FPGA

Slice Slice Maximum
Module Name Registers LUTSs BRAMs | DSP48Es Frequency
Acquisition 551 388 2 12 165 MHz
module
Scalar tracking 530 506 1 6 183 Mz
channel (single)
Vector tracking 930 722 1 24 182 Mz
channel (single)

GPS counter 68 72 0 0 310 MHz
Scalar processor 1963 2236 16 ) 177 MHz
Vector processor 2274 2571 64 5) 179 MHz

IMU processor 2063 2426 8 5 179 MHz
Total (8
channels, with all 20104 19305 111 267 N/A
peripherals)
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6.2 Software Results

The acquisition module performs very well. A serial search algorithm was employed
using MATLAB to verify the analytical results. Figure 6.1 shows a comparison of the
MATLAB and ModelSim instances of the search algorithm on the same data. This data is
searched for satellite 31 using the serial search algorithm. The correlation peak is at the
same code phase but at different correlation heights. This is due to the fixed-point nature
of the FPGA. Quantization along with truncation of the correlator decimal values results in

a slightly lower peak than the full-resolution MATLAB implementation.
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Figure 6.1: Serial search acquisition module results in MATLAB and FPGA (using Model-
Sim)

A simulation of the scalar tracking loops also performs well. Figures 6.2 through 6.4
show a particular instance of a code DLL and carrier PLL settling to zero after an initial
Doppler frequency offset and the subsequent correlator outputs. Output IP is the in-phase
prompt output, which clearly shows the incoming data bits of the system.

The vector processor performs each of the measurement updates asynchronously. Since
each tracking channel interrupts the processor every 20ms, the vector processor must be
able to perform a measurement update in 20ms / number of channels in the system. Since

the measurement updates are computed asynchronously, the amount of process time per
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Figure 6.2:

Figure 6.3:
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Figure 6.4: Scalar processing simulation - correlator outputs

channel depends on the total number of channels. Table 6.2 shows the computation time for

a 6-channel receiver.

Table 6.2: Vector processor real time feasibility analysis using 6-channel receiver baseline

Algorithm Number | Process time | Real-time?
of states | per channel
Vector tracking (GPS only) 8 1.36 ms Yes
Deep Integration (GPS + IMU) 17 28 ms No

Table 6.3 gives a more detailed description of the time requirements for vector tracking,
and a graphical representation of the same data is shown in Figure 6.5. These tables show the
process time per channel and the total time for all channels together (neglecting overhead).

Table 6.4 gives a more detailed description of the time requirements for deep integration

using asynchronous measurement updates, and a graphical representation of the same data

is shown in Figure 6.6.

In the proposed system’s current state, GPS-only vector tracking is possible in real time,

but deep integration is not. Chapter 7 will address some of the options for achieving this

desired real-time performance.
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Figure 6.5:

Table 6.3: Vector tracking (asynchronous) timing results

Number of | Process time | Process time | Real
channels per channel | (all channels) | time?
1 1.0703 ms 1.0703 ms Yes
2 1.1052 ms 2.2104 ms Yes
3 1.1593 ms 3.4781 ms Yes
4 1.2145 ms 4.8582 ms Yes
5 1.2688 ms 6.3444 ms Yes
6 1.3233 ms 7.9398 ms Yes
7 1.3766 ms 9.6364 ms Yes
8 1.4319 ms 11.4552 ms Yes
9 1.4853 ms 13.3678 ms Yes
10 1.5317 ms 15.3170 ms Yes
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Table 6.4: Deep integration (asynchronous) timing results

Number of | Process time | Process time | Real
channels | per channel | (all channels) | time?

1 9.7844 ms 9.7844 ms Yes

2 13.1740 ms 26.3481 ms No

3 16.9487 ms 50.8461 ms No

4 20.7137 ms 82.8546 ms No

5 24.4829 ms 122.4146 ms No

6 28.2501 ms 169.5004 ms No

7 32.0253 ms 224.1770 ms No

8 35.7993 ms 286.3947 ms No

9 39.5055 ms 355.5496 ms No

10 43.3255 ms 433.2550 ms No
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Figure 6.6: Graphical representation of (asynchronous) deep integration timing results
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Chapter 7

Conclusions and Future Work

The purpose of this thesis was to document the design of a preliminary real-time embed-
ded system capable of running advanced tracking algorithms. A trade study of the different
possible hardware platforms for this system was detailed in Chapter 4, and the FPGA was
chosen based on its prowess as a standalone platform (system on chip) and natural segue to
ASIC design. In Chapter 5, the detailed hardware and software architectures were outlined
for the preliminary design; this chapter highlighted the system on chip aspect of the FPGA.
Chapter 6 provides an analysis of the computational results for both the hardware and soft-
ware modules of the system proposed in this thesis. It has been shown that the design fits
with much room to spare on a Virtex-5 SXT50T FPGA, but it also shows that the sys-
tem’s performance is limited by the soft-core processor’s computational power. In Chapter
7, an outline will be given for how to address the current system’s inability to perform deep

integration in real time. In summary, the contributions of this thesis are:

e A trade study of different possible hardware platforms for a real-time embedded GPS

receiver capable of running advanced tracking algorithms in real time (Chapter 4)

e Detailed hardware and software architectures for a proposed real-time embedded GPS

receiver on an FPGA, capable of running advanced tracking algorithms (Chapter 5)

e Computational results of the preliminary design of the real-time embedded GPS re-
ceiver, where vector tracking is shown to be real-time capable but deep integration is

not (Chapter 6)

67



7.1 Conclusions based on Computational Results

Using an FPGA as a platform for a combined scalar and vector tracking solution sup-
porting deep integration is very appealing. It gives the designer control over every signal in
the entire system, and every part of the system (with the exception of the RF front end,
IMU, and reference oscillator) is on the FPGA itself. The FPGA is capable of supporting
[/O, memory, high frequency processing, and baseband processing in the same chip. How-
ever, this comes at a loss of computational power for the baseband operations. In Chapter
6, it was shown that the 8-state vector tracking formulation performs in real time but the
17-state deep integration currently does not.

There are many different options that might be useful in achieving this real-time per-
formance. Currently, all of the baseband processing is done in floating point arithmetic.
The Microblaze processors support a hardware floating point unit, but it is still about 4
times slower than fixed-point operations [51]. Also, more functions that are currently being
done sequentially in the vector processor can be offloaded onto a peripheral in the FPGA
logic. There might also be several ways to reduce the number of states in the EKF. If the
application can be constrained to two dimensions, several states can likewise be eliminated.
Finally, if all of these potential solutions still do not achieve real-time performance for deep
integration, a study might be done to explore other external chips such as a DSP or GPP to
do the baseband processing.

The ability to integrate the high frequency modules and baseband processors into the
same device does offer many advantages. It is especially useful as a prototype for ASIC
production because very accurate timing information can be obtained since everything is on
the same chip and the design tools are from the same vendor. It is also very flexible in that
many different types of microprocessors may be synthesized into the hardware to test out
the effectiveness of different platforms. However, the FPGA is often far more expensive than
some very powerful microprocessors. Since the FPGA is far more useful as a high frequency

device than as a baseband processor, interfacing the FPGA with external memories and
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external processors might be advantageous. A much smaller, cheaper, and less powerful
FPGA can be purchased and then interfaced with these external devices to obtain a very
powerful system that is less expensive than an FPGA-only option. As a research platform
and low-quantity product, this approach might be superior, but as a precursor to ASIC

design, the system on chip approach may be more advantageous.

7.2 Proposed Low-Cost, High Performance Solution

As discussed in the previous section, the potential exists to explore the option of offload-
ing the baseband operations for the scalar, vector, and IMU processing to an off-chip DSP or
GPP. This separation into different hardware pieces destroys the potential for a standalone
ASIC design, but the results of using a smaller, less powerful FPGA in conjunction with
a powerful external processor stands to gain a huge cost (and likely performance) benefit.

This section will outline a proposed solution along with cost analysis for production.

7.2.1 Separating High Frequency Operations from Baseband

In Chapter 5, each hardware piece was independently implemented and tested. The high
frequency custom GPS operations, such as most of the acquisition module, scalar tracking
loops, and vector tracking loops, are modular, and therefore many of these can be simply used
as modular blocks when implementing a larger receiver. These high frequency operations are
very well-handled by the FPGA, where high clock frequencies are natural. Communication
between the high frequency components and the baseband processors is accomplished via
memory banks and memory-mapped input/output, as discussed in Section 5.2.6. The base-
band processors are three distinct soft-core microprocessors with three separate purposes:
scalar (traditional receiver) processing, vector (and deep integration) processing, and the
inertial measurement device processing. Fach of the processors communicates with their
own high-frequency components using the aforementioned memory mapping and also passes

information among each other using shared block RAM and FIFO mailboxes.
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Because the interface between the high-frequency components and the baseband pro-
cessors is a simple memory interface, these components can be completely separated into
different pieces of hardware. The high frequency components can remain on the FPGA and
can write into either its block RAM or an external memory. The baseband processors can
become three external processors (DSPs or GPPs). More effectively, they can be placed on a
single, more powerful DSP or GPP that handles all of the baseband functions concurrently.
This processor can interface with the block RAM of the FPGA via the FPGA’s I/O pins,
or it can read from the same external memory that the FPGA writes to. Figure 7.1 shows
the logical separation discussed in this section compared to the architecture of the receiver

prototype presented in this thesis.
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Figure 7.1: Comparison of (a) fully integrated design as described in thesis versus (b) pro-
posed segregated system

7.2.2 Finding a Replacement FPGA

If the only components that are on the FPGA are the high-frequency modules, this
leaves a wealth of free space on the FPGA platform used in this work (Virtex-5 SXT).
This particular platform has a very high relative cost. At the moment of this writing, a

standalone version of this FPGA costs close to $1000 [14]. It is important to synthesize only
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the components needed onto a smaller FPGA to determine the potential cost of a system.
These components, as mentioned, are the high-frequency modules such as signal acquisition,
the scalar tracking channels, and the vector tracking channels. In order to gauge the size
of FPGA needed, these components, along with a memory controller and block RAM (if
interfacing memory is on the FPGA itself) must be synthesized on an FPGA. The method
of determining the smallest FPGA is to verify that the aformentioned components completely
fit inside the FPGA and that the maximum speed of each component is appropriate. For
example, the acquisition and tracking loop components must perform at at least the front end
sampling frequency, and the block RAM must perform at an appropriate speed to interface
with the external processor.

A top-level hierarchical model has been implemented which takes the following inputs:
GPS clock, GPS data, GPP clock, GPP address, GPP data to write, and GPP write enable.
The top layer model includes a single declaration of the acquisition module, 16 scalar chan-
nels, and 16 vector channels. The choice to have 16 channels of each might seem excessive,
but in case future work calls for the inclusion of WAAS satellites or other satellite systems,
this choice might help to prevent the potential problem of choosing an FPGA that is too
small to satisfy future research needs. The system that has been synthesized for testing is
not complete. For the moment, a temporary placeholder memory controller has been used
that will loosely mimic the behavior of a full controller. A block diagram of the model to be
synthesized is shown in Figure 7.2.

The above system will likely fit onto a Spartan-3A DSP FPGA. This FPGA costs close
to $80, which is about 92% less than the original FPGA (about $1000). This system would,

however, incur extra costs such as external memory and processor(s).

7.2.3 Replacing Microblazes with an External Processor

There are a number of options for replacing the Microblaze soft-core processors with a

powerful DSP or GPP. In Chapter 4, a number of the benefits and potential drawbacks to
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Figure 7.2: Block diagram of the proposed hardware changes

each of these platforms was discussed. Because the current system is still being used as a
research platform, it is wise to explore processor options that are available as a development
kit. There has been a considerable interest in the field of embedded applications which uses
the ARM Cortex processor architecture. This ARM architecture is avaliable as synthesizable
code that can be implemented on any logic device. ARM processors are very well documented
and can be found in a number of development kits. However, the speed of these processors
varies considerably, and it is difficult to tell whether or not a given device will supply enough
processing power for this job without further investigation. These processors do include a
floating point unit.

Recently, researchers have used the TMS320C6455 DSP from Texas Instruments to cre-
ate an L1/L2 software receiver in full, including all high-frequency operations [32]. This DSP
operates at 1.2GHz and has development software support for interfacing with FPGAs [45].
The starter kit costs $595, and the chip itself costs about $300 [14]. A lower-speed version of
the same processor can be found for under $170, which might also be suitable. A drawback
with development on this DSP is that it is fixed-point only. Floating point operations can
be accomplished with software, but much higher performance would necessitate conversion

from floating to fixed point operation.
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7.2.4 Other Potential Replacement Options

If available, a Virtex-5 FXT device can be used instead. This platform has the em-
bedded PowerPC processors which run at 550MHz, which is over twice the speed of the
Microblaze. If the processor performance has a linear relationship with the processing time,
this 550MHz platform is still potentially not fast enough. Instead, a combination of the
PowerPC processors and fixed point math could potentially achieve deep integration in real
time.

Another potential solution which would be very beneficial for this particular research
platform is to take advantage of an FPGA’s built-in “extras” such as a PCI Express controller,
Ethernet PHY, USB, or any other physical interface that can interface with a standard PC.
This way, development on a GPP can take place without specialized hardware. The Virtex-5
series of FPGAs, including the one used in this thesis, offer a PCI Express controller that
can be interface with a PCI Express-capable PC. This way, the Virtex-5 can be placed inside

of the PC and development can take place with no extra hardware costs.

7.3 Future Work

This thesis has given the details of an embedded system that can perform vector tracking
in real-time but not deep integration. This issue should be addressed by the potential solution
given in Section 7.2. Once the system is capable of closing the deep integration loop in real
time, the system should be interfaced with a the SiGe 4110L hardware front end and tested
to verify that the signal integrity is maintained. It would be particularly useful to create a
method of testing the proposed system with real data without having to use FPGA modeling
software such as ModelSim; therefore, a software add-on which allows raw GPS and IMU
data to be read from a text file and then computed in “pseudo” real time. This would ensure
algorithm integrity on actual FPGA logic instead of pure software simulation. Once the
system is completed, it can be used to test many advanced GPS algorithms such as fault

detection exclusion (FDE) and differential GPS. It would be particularly useful to study
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the effects on quantization and computational burden mitigation on these algorithms for

deployment in real systems.
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Appendix - Software Receiver using Model-based Tools

The purpose of this appendix is to outline the original attempt at a software receiver
that would perform vector tracking in real time. This first attempt was also a prototype
and was shown to be able to perform the vector tracking loop closure within the real-time
limitations [16]. This attempt used a set of software tools that are essentially a third party
blockset that is available to MATLAB’s Simulink software. This gives the software used,

and therefore the implemented approach, the nomenclature “model-based.”

Model-based Tools

In order to speed up development time for digital signal processing (DSP) applications,
Xilinx has created a software suite known as DSP Tools. This software is integrated into
The Mathworks’ MATLAB and Simulink software, so that prior knowledge of programming
hardware definition languages (HDLs) is not necessary to implement a working design. Sys-
tem Generator is part of the DSP Tools package, and it functions by simply adding a set
of blocks to the Simulink blockset library that can be used to create system models. These
system models are then synthesized into logic designs on an FPGA.

These models can be simulated in software, providing a cycle-true simulation of the given
system function. System Generator also introduces the concept of hardware co-simulation,
whereby a known input can be loaded into the MATLAB workspace and then passed to the
FPGA as an input; the FPGA executes its system function on this input data and then sends
user-selected outputs back to the MATLAB workspace. This is a very useful testing platform,
especially for DSP applications. Using Xilinx’s provided software tools, development time
can be drastically reduced. More information and some additional examples using these

model-based tools can be found in [38].
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Handling Vector Tracking Computational Burdens

All of the benefits that vector tracking boasts such as increased jamming and interference
immunity comes at a high computational cost. In this appendix, only a few of these are
discussed. First, for the particular formulation of the vector tracking architecture used in this
appendix, many additional correlators are needed. In a platform such as a microprocessor,
each operation must be performed sequentially. Therefore, adding any additional correlators
consumes a large quantity of time. Second, vector tracking architectures use an extended
Kalman filter that involves keeping track of and operating upon large matrices. Matrix

operations in an FPGA are not implicit, and therefore a different approach is needed.

PRN Generation for Multiple Correlators

There are several different formulations of the vector tracking architecture, and each of
them include computational drawbacks. The method used in this thesis uses the discrimina-
tors and noise variance determination as described by Robert Crane in [12]. The approach
by Crane involves a bank of noise correlators to obtain noise power levels. The number of
additional correlators can vary, but the authors have determined that past an additional 18
correlators, the benefit of adding any more is negligible. These additional correlators are the
early, prompt, and late outputs of the same pseudo-random noise (PRN) sequence shifted
by a value that is centered on nulls in the autocorrelation function of the PRN sequences.

There is a relatively simple solution to this problem that can be easily realized with
the model-based tools discussed above. One way that a PRN code can be generated is by
modulo-2 adding maximal-length sequence G1 with a shifted copy of another maximal-length
sequence, G2 [43]. Each of these sequences is 1023 bits long, and can fit compactly into a few
FPGA lookup tables (LUTs). One thing to notice is that it is much more efficient to place
the 1-bit values (0 and 1) of G1 and G2 into LUTs and then convert that number to 2-bit
(£ 1) using an exclusive NOR gate and concatenating a 1 to the least significant bit. A very

similar solution to this problem can be realized using two of the 36K block RAMs and the
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same addressing scheme. There are also a large amount of delays that might typically take
quite a few memory elements to implement in a DSP or PC, but using an FPGA, about half
of the lookup tables can function as 32-bit shift registers [49], so very little logic is needed
for this method. The integrate and dump operations are simply multiply and accumulate
operations, so only a single DSP48E is needed for each of the 20ms integrate and dump

operations. Figure A.1 shows this process using only a single noise correlator.

address Gl

RN M
Offset b G2 1 loconcat z ] .
z'.-"I L

Gl

(shifted)
hi En [ ..
G2 concat z
L - - Fn
(shifted) 1 —alo
¥ =1ln

Figure A.1: Block diagram of PRN generation for normal and noise correlator banks

As mentioned before, the delays listed here correspond to nulls in the autocorrelation
function. These values give a very good estimate of the noise power in the system, which
is critical for determining signal amplitude and C/Ny. The values given in Figure A.2
correspond to a 1023-bit PRN signal being indexed by a counter that counts from 0 to
16367. This number comes from using a sampling frequency f, of 16.3676MHz, so that one
millisecond of data resides in close to 16368 samples of data. The values of the delay reflects
this fs value. The ROM shift values shown in Figure A.2 are the circular shift offsets for
each 1023-bit ROM that place the “prompt” outputs on the center of the autocorrelation
nulls. Figure A.2 shows this technique done using the model-based tools from Xilinx using

three noise PRN ROMs (wrap checking not included).
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Figure A.2: PRN generation for normal and noise correlator banks using model-based tools
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Matrix Math on the FPGA

Regardless of which formulation of the vector tracking architecture is used, an extended
Kalman filter is used as the system’s state estimator. The EKF is inherently matrix-intensive.
Its equations will not be listed here, but Table A.1 shows the size of each of the matrices
used in the EKF, where M is the number of states in the system and N is the number of
satellites that are being tracked. This information gives the reader an idea of how large the

code space might be if implemented in fixed point or floating point math.

Table A.1: Functions and sizes of matrices used

‘ Matrix Name ‘ Description ‘ Size ‘
Q Process noise covariance | MxM
A State transition matrix | MxM
P Error covariance MxM
C Observation matrix 2NxM
K Kalman gain Mx2N
T State vector Mx1
y Measurement vector 2N x1
R Measurement covariance | 2N x2N

The most computationally expensive part of the EKF is the matrix inversion, and in
the case of vector tracking, the size of the inverted matrix is the same as that of R, 2N x2N,
so one of the major computational bottlenecks is the number of channels that the receiver
architecture uses. Unlike a microprocessor, an FPGA does not consider input and output
(I/O) in terms of memory mappings; this behavior must be explicitly defined within the logic
itself. Also, although hardware reconfiguration of an FPGA at runtime is possible, it is not
likely that a matrix inversion algorithm can be easily expanded in hardware from a 12x12
matrix to a 16x 16 matrix. Even if this could be done, it is not realistic in terms of resource
usage, especially when inversion is considered alongside all the other matrix arithmetic in
the EKF. A microprocessor is almost completely necessary to accomplish this.

As mentioned previously, FPGA developers have begun to place embedded 32-bit mi-

croprocessors within the FPGA fabric. Unfortunately, the Virtex-5 SXT family does not
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include any of these hard-cored processors. However, a 32-bit processor called a MicroBlaze
can be synthesized within the FPGA logic which includes the same functionality. This pro-
cessor can be programmed in assembly, C, or C++ code, so existing algorithms can be easily
ported to the FPGA platform. In this research, a custom matrix library was written in C to
perform the EKF operations with fast performance and efficient memory management.
The use of both an embedded processor and the model-based tools was anticipated by
the FPGA developers, so there is a simple interface for exchanging information between
them. In fact, because a microprocessor’s I/O is memory-mapped, any information needed
to or from the model-based tools is mapped to a memory location on the processor. Loading
or sending information is as simple as reading from or writing to a memory location. It is
important to note that the MicroBlaze can only operate at speeds up to around 200MHz.
The embedded PowerPC processors operate much faster at 550MHz, and any off-chip DSP or
microprocessor can be used here as well. The MicroBlaze was chosen because of the relative
ease in interfacing it with the rest of the FPGA logic, and might eventually be replaced when
the algorithm’s real-time requirements supersede the ability of the MicroBlaze. Figure A.3

shows a block diagram of the GPS system on the FPGA.

Model-Based Tools MicroBlaze

PVT
Correlator

it : Outputs . i .
Fotnd Acquisition —s  Signal Position Solution

Correlators EKF

Predicted Frequency and Code Phase

Figure A.3: Block diagram of FPGA GPS receiver using model-based tools
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Results

FPGA Resource Usage

One of the most important considerations when determining a suitable FPGA to use for
a particular application is the amount of resources required to perform the desired operation.
In the solution described in the previous section where the PRN sequences for the normal
and noise correlators are generated, sequences G1 and G2 and their shifted copies are packed
nicely into lookup tables (LUTs), and the delays are shown to have been implemented effi-
ciently with LUTs acting as 32-bit shift registers. Table 7.3 shows the FPGA resource usage
needed to implement this behavior. This uses the model from Figure A.2 to obtain these

results. There were no block RAMs or DSP48Es used in this design.

Used | Device Total
Slice Registers 25 32640
Slice LUTs 162 32640
LUTs used as Shift Registers 12 162

Table A.2: Resources used for PRN generation using presented technique

We shall consider a vector tracking correlation channel to be the PRN generation, nu-
merically controlled oscillators (NCOs), and integrate and dump operations. A single vector
tracking correlation channel requires the resources as displayed in Figure A.4.

Including the MicroBlaze synthesized processor as discussed above and including an
additional seven channels, an eight-channel receiver can easily fit on the hardware platform,
as shown in Figure A.5. Notice that this does not include the acquisition step or the scalar
loops. The size of these other modules will not be listed in this appendix, but they have

been presented in [38] for a similar FPGA platform.

Real-time Requirements

The data used for this research was recorded using a NordNav IF recorder with a

sampling frequency fs of 16.3676 MHz and an IF of 4.1304 MHz. One millisecond of sampled
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Figure A.4: Single vector tracking correlation channel resource usage
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Figure A.5: 8-channel vector tracking receiver resource usage (without acquisition module)
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data (16367 or 16368 samples) from the NordNav was collected at sampling frequency f
and placed in an FPGA block RAM. This block RAM is read at the FPGA system clock of
100MHz and then waits on the next millisecond of data to be placed into the RAM. Using
this method, several memory elements are saved and thus the 20 ms integrate and dump is
the total of twenty 1 ms integrate and dumps.

Each iteration of the EKF must be completed in 20 ms, so in order to perform in
real time, all calculations must be performed in that 20 ms window. Table A.3 represents
each of the tasks that must be accomplished by a 6-channel vector tracking receiver and a
comparison of the amount of time taken by the FPGA and MATLAB implementations. The
MATLAB implementation of the signal correlation uses a mex-function (written in C) for
increased speed. These tests were performed on a 2GHz dual core PC with 2GB of RAM.
The FPGA system performance here is limited by the speed of the MicroBlaze and could
be improved upon using a PowerPC processor or an external processor. This performance
could also be improved by placing the C'/N, estimation and discriminators into the FPGA
fabric instead of the MicroBlaze. However, this would save only a small amount of time, as
the most prominent sources of latency are the EKF iterations and satellite PVT calculation.
The x in Table A.3 denotes that there is some period of time that must elapse for the final
millisecond of correlation to be done on the FPGA, but there is no additional processing that
must be done on the MicroBlaze besides retrieving this data and converting it to a usable
type. Notice that even a C (MEX) implementation of the signal correlation is many times

slower than the FPGA.

Conclusions

In this appendix, a GPS vector tracking software receiver that is capable of performing
in real time is presented. Some of the computationally expensive elements of vector tracking

are considered and their potential solutions are discussed. This appendix focused on the use

87



Function

FPGA Time
Required

MATLAB Time
Required

Compute Satellite PVT (x6)

Retrieve and Convert Correlator Outputs (x6)

Predict Code Phase and Doppler (x6)

0.411 ms (x6)
1.3194 ms (x6)
00278 ms (x6)

Not Required
0.1336 ms (x6)
0.1394 ms (x6)

Signal and Noise Correlators (x6) 0.1637 ms* 115.573 ms (x6)
Discriminators and C/Ng Calculation (x6) 0.1644 ms (x6) | 0.1538 ms (x6)
EKF Iterations 3.8111 ms 0.6825 ms
Miscellaneous Setup 0.2119 ms 21.222 ms
Total 15.5722 ms 717.9035 ms

Table A.3: Comparison of time elapsed between FPGA and MATLAB/C implementation

of model-based tools to solve these problems, but these solutions can also be extended to

hardware description languages for maximum resource utilization.

A field-programmable gate array has been shown to be a very capable hardware resource
for prototyping and designing GPS software receivers because of their ability to perform
many operations in parallel and its many extra embedded components. Model-based design
tools were shown to speed up development time by providing an accessible design process to
algorithm developers and receiver designers.

The real-time requirements for vector tracking were met with a 6-channel system, but
adding many more channels will not be able to meet this requirement. The limiting factor is

the speed of the MicroBlaze microprocessor, so either an embedded PowerPC device or an

external processor must be used if more channels are required.
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