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Abstract 
 

 
Development of electronics that can withstand temperatures ranging from 200oC 

up to 600oC is a growing research area.  More electronic aircraft, space exploration and in 

engine automotive electronics are some examples of these research areas.  As these 

operating temperatures rise so does the need for electronics packages that can handle 

these temperature ranges.  A major aspect of this packaging is die attachment.  There are 

currently two main metallurgy options proposed for high temperature die attachment.  

One is silver based metallurgies and the other is gold based metallurgies.    

Silver at high temperatures in the presence of an electric field will migrate 

between electrodes.  This presents a major risk when using silver as a die attachment 

material for high temperature electronics.  Part of the work presented here looks at 

silver’s migration characteristics and highlights the potential risks involved when using 

silver as a die attach material. 

Gold does not suffer from the same problem of migration as silver and therefore is 

a better choice for high temperature die attachment.  Several gold based metallurgies 

have been used for die attachment.  One other very useful feature of gold is that gold will 

self diffuse at elevated temperature and pressure.  The other work presented here 

investigates the use gold-gold diffusion to form an acceptable die attachment for high 

temperature devices. 
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Chapter 1 

INTRODUCTION 
	

 High temperature electronics is a continually growing field and are used in many 

different areas.  Oil and gas industries are interested in deep well monitoring, which will 

require electronics that operate at up to 325oC.  These electronics will provide 

information on present temperature, pressure, direction, and angle of the drill head as 

well as information on the material encountered by the drill head [1]. Exploration of the 

surface of Venus by NASA will require electronics capable of operation in high 

temperature environments up to 485oC [2].  SiC operational amplifiers have been 

produced for operation at 350oC as well as some power electronic devices that have 

extended operating temperature of 600oC [3].  Table 1.1 shows some of the application 

areas and corresponding temperature requirements. 
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mechanism.  Au based metallurgies, though more expensive, do not suffer from this 

potential failure mechanism and are a better choice for high temperature die attachment.    

 The work presented here is divided into two parts.  The first part examines Ag 

migration characteristics of several forms of Ag to verify the possible failure mechanism 

of silver in high temperature applications.  The second part of this work is to develop an 

Au die attachment method using thermocompressive bonding. 

 The next chapter of this thesis reviews bonding mechanism for high temperature 

die attachment and failure mechanism for die attachment.  Also it examines current silver 

based metallurgies for die attachment and previous work on Ag migration.  Lastly it 

reviews Au based die attachment metallurgies and some of the work on die attachment 

using Au thermocompressive bonding.  

The third chapter presents the results of the Ag migration study. A detailed 

description of the experiment performed is given, followed by the data gained from the 

experimentation.  The analysis of the data includes a qualitative analysis and then a 

statistical analysis.   

The fourth chapter will explain the Au thermocompressive die attachment 

process.   A detailed description of the samples, methods and verification techniques used 

is given, followed by an analysis of the experimental results.   

The fifth chapter will be a summary of the work presented and a brief discussion 

of the implications of this work.   

The last chapter will discuss the directions for future work.   
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Chapter 2 

LITERATURE REVIEW 

2.1 Background 

 The work presented here focused on die attachment metallurgies for 

applications above 200oC.  Die attachment for high temperature electronics is done with 

metallic systems and uses several methods; Transient Liquid Phase (TLP) bonding, solid 

state diffusion, and sintering which is based on solid state diffusion.  The metals used can 

be either a single metal such as silver or a metallic system such as Ag-In.  Metallurgies 

for die attachment are highly varied, since the work presented here focuses on Ag and Au 

die attachment, die attachment with those metals will be reviewed.   

TLP bonding is the joining of a metal system, usually a two or three metal system, 

where one metal has a much lower melting temperature than the others.  Bonds form 

when one material melts and diffusion between the liquid and solid begins leaving an 

intermetallic alloy of the two metals with a higher melting temperature than the original 

low melting temperature material.  The bond is completely formed when all the liquid 

material is absorbed in the new intermetallic.  This process can take between a few 

minutes to a few hours [6].  Table 2.1 presents some common TLP bonding systems and 

bonding time and temperatures.   
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printed on a substrate the solvents are baked off and the spheres that are in contact begin 

to diffuse together forming a solid material.   

2.2 Die attachment 

 The material used to attach a die to a substrate or package provides a path for 

thermal conduction and electrical conduction as well as mechanical support for the die in 

the package.  For applications requiring thermal and electrical conduction, such as power 

devices, metallic die attachments are the best choices because of their superior 

performance in both of these areas.    

 Failure of a die attachment generally results in a crack forming in the die 

attachment material.  This is due to stresses caused by the coefficient of thermal 

expansion (CTE) mismatch between the die, the die attachment materials, and the 

substrate.  Stresses also form in the die attach during processing and can accelerate 

failures. During the die attachment process, sections of the die attach may not bond 

leaving voids.  These voids can also cause areas of increased stress during the life of the 

device [8, 9]. Stresses are proportional to the diagonal dimension of the die; this means 

the larger the die that is to be attached, the larger the stress will be on the die [10].  These 

stresses increase as the radial distance from center increases, so highest stresses are found 

at the corners of the die attachment.   

2.2.1 Silver based die attachment 

Silver die attachments are mainly divided into two categories; TLP bonding, and 

sintered nanoparticles.  Silver is an excellent electrical and thermal conductor, which is 

one of the main attributes that make silver so attractive for electronics and die attachment 
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Sintered nanoparticle Ag die attach begins with Ag nanoparticles in a paste with 

an average silver particle size of 30 nm [15].  After dispensing and die placement, the 

assembly is heated to drive off the volatiles from the paste and the Ag nanoparticles 

sinter forming a continuous structure with low void content. Pressures of up to 5 MPa are 

used to ensure contact and improve sintering [7]. The sintering temperature is 

significantly depressed for nanoparticle Ag due to the large surface area-to-volume ratio 

of the nanoparticles [15].   Sintering can be done at 285oC and the resulting die 

attachment is expected to withstand 400oC [5].  Another advantage of sintered nano silver 

die attachment is that this would be a single metal system.  This fact precludes it from 

intermetallic formation which is a potential failure mechanism for multiple metal systems 

[7]. 

However, Ag potentially presents a significant disadvantage when used as a die 

attach material.  Nano Ag and Ag in a Pd-Ag film in the presence of an electric field will 

migrate with an exponential dependence on temperature [16, 17, 18, 19, 20,].  Ag 

migration occurs by two major mechanisms [21]. 1) Electrochemical migration occurs 

when Ag ions migrate through an absorbed water layer from anode to cathode and then 

deposit themselves on the cathode.  The reaction starts with Ag at the anode dissolving 

forming Ag+; Ag → Ag+  + e-.  The Ag+ ion combine with OH- to form AgOH; this 

compound is unstable and forms Ag2O plus water.  This compound is dispersed in a 

colloided form and undergoes a hydration reaction producing Ag ions.  These ions drift 

under a electric field to the cathode where they are deposited: 2AgOH → Ag2O + H2O→ 

2Ag+ +2 OH- [22]. 2) Dry migration occurs in the absence of humidity and is much more 

apparent at higher temperatures (>120⁰C).   It is thought this reaction starts with Ag2O 
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that dissociates into Ag ions: Ag2O→2 Ag+ + O2-.  These ions drift under the electric 

field to the cathode.  The O2- anions provide charge neutrality and the depletion of Ag 

cations continues to drive the oxidation and dissociation reactions [16]. Both types of 

migration result in a buildup of Ag at the cathode in the form of dendrites that eventually 

reach the anode causing catastrophic failure of the device.   

The majority of the research in this area has examined migration of Ag in Pd-Ag 

film through glass dams at temperatures between 150⁰C and 375⁰C [17, 18, 19]. The 

phenomenon of dry silver migration in open air at 300oC with thick film PdAg has been 

reported [20].  The high temperature migration of Ag from Nano-Ag paste in open air and 

with O2 partial pressure controlled has also been studied [16].  This study showed dry Ag 

migration is dependent on O2 partial pressure.  Figure 2.3 show the leakage current across 

a Al2O3 gap with nano-Ag electrodes at 400oC with a 20V/mm bias.  The “life time” of a 

sample increased 25 times by lowering the O2 partial pressure from 0.4 atm to 0.03 atm. 

[16]  
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surface contact area and therefore the bond strength. This is highlighted by looking at Y 

from equation 2.1 as a function of local strain [37].  Though bare Au will not form an 

oxide layer on the surface it is found to have a contamination layer of C and other 

materials that prevents bonding just as oxide does in other metals.    

                                                 ܻ ൌ
ሺ஺ି஺೚ሻ

஺
ൌ 	 ఌ

ሺఌାଵሻ
                                                    [2.1] 

Y = increase in bond strength 
A = initial surface contract area 
Ao= new surface contract area 
ε = local strain 
 

TC bonding of Au has been used in electronics extensively for many years.  It has 

been used for wire bonding and wafer bonding for MEMS fabrication.  Wafer bonding is 

used to produce multilayer micromachined devices such as pressure sensors [39, 40].  

Drost et. al looked at TC bonding on a die level, testing bonding forces between 0.06 

N/mm2 and 2.2 N/mm2 and temperature ranges from 350oC to 450oC.  His conclusion 

was the amount of pressure used for the bond is not the most important factor; rather 

uniformity of the pressure across the surface is the most important factor.  He claims 

forces of up to 0.13 N/mm2 produced the highest bond yield and that bonding time 

greater than 1 min improved the bond [41].  Tsau et. al disagree with this last statement 

reporting that bonding time did not produce a significant difference in bond strength [39]. 

A TC bonding based technique has been presented before [2, 42, 43].  This 

technique used gold balls in a similar fashion to flip chip die, but used only as a die attach 

and not for individual connections.   In Johnson’s work the die attachment was done with 

multiple gold bumps on a substrate then themocompressively bonded to the die.   This 

method yielded shear strengths of 1.5 kg to 2.5 kg with 8 bumps per die, and 2 kg to 4 kg 
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The data was analyzed using SAS.  Median time to failure was determined by 

fitting each group to a lognormal distribution as used by Hornung and Gagne [17, 19].  

Unfailed samples were treated as censored data unless mentioned below.  All data 

collected was used in the analysis except half of the 300oC 100V thin film data, which 

showed a significant difference between the two substrates tested. The 100 V thin film 

data when plotted (Figure 3.6) on a lognormal plot showed evidence of two different 

failure mechanisms.   Data from the substrate with the fastest failure rate was used in the 

analysis.  
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3.6:	Lognormal	plot	of	300oC	thin	film	Ag	samples	at	100V	bias	

The	300	V	thin	film	data	is	presented	in	Figure	3.7.		Four	of	the	samples	

biased	at	25	V	did	not	fail	before	the	test	was	stopped	so	median	time	to	failure	was	

taken	by	two	methods	for	these	samples.		The	failure	times	were	fit	to	a	lognormal	

distribution	using	the	four	unfailed	samples	as	censored	data	at	the	time	the	test	

was	stopped	which	was	3931	hours,	resulting	in	a	median	time	to	failure	of	2812	
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hours.		The	green	line	in	the	plot	shows	the	median	failure	times	with	this	method.		

The	censor	time	is	over	1000	hours	beyond	the	longest	actual	failure	time	(2864	

hours),	so	the	median	failure	time	was	also	calculated	with	the	censored	time	

removed.	The	red	line	shows	this	data,	and	this	is	much	more	consistent	with	the	

expected	direct	inverse	relationship	between	bias	voltage	and	failure	time.			The	

blue	points	represent	censored	data	points;	there	are	four	censored	points	at	25	V	

and	one	at	100	V.			

The 300oC Nano-Ag silver data is presented in Figure 3.8.  The red line in the 

graph shows the median time to failure at each bias voltage.  As with the thin film data 

the expected inverse relationship between bias voltage and failure time is shown.  The 25 

V data contains two censored data points, shown by the blue point on the graph.  The 

PdAg data is presented in Figure 3.9.  There is only data from 100 V and 50 V samples 

because the 25 V samples did not fail, the reason for this is not clear.  Both bias voltages 

have censored data points represented in blue (one for each voltage).	
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3.9: 300oC PdAg data  

Figure 3.10 shows the 375oC thin film data.  The same expected inverse 

relationship between bias voltage and failure time is shown here.  There are no censored 

data points within this data set.   Figure 3.11 show the 375oC Nano-Ag data.  This data 

set shows a slight decrease in median time to failure between 25 V and 50 V tests.  This 

is not the expected result and it is not clear why the samples failed in this manner.  There 

is one censored sample at 50 V shown in blue on the graph.  As with the 300oC thin data, 

the median time to failure was calculated with and without the censored data point 

because the censored point was over 1400 hours beyond the last failure it was ignored.  

Figure 3.12 shows the 375oC PdAg data.  There are 3 censored data points at 50 V 

represented in blue but these are difficult to see because there is a failure very close to 

this censor point. 
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3.12: 375oC PdAg data 

The median failure time are presented in Table 3.1 along with the 95% confidence 

intervals.  The 300oC, 25 V thin film and 375oC, 50 V nano-Ag median time to failure 

values calculated without the censored values are used. 
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Table 3.1: Ag test condition and median values 

Nano Silver

Temperature 
Bias 
Voltage

Median 
Failure 
Time(hrs)

Confidence 
Interval +/‐ Failures/Total 

300  25 V 2677.40 909.89 8/10 
300  50 V 1928.10 87.34 10/10 
300  100 V 579.34 21.49 10/10 
375  25 V 479.00 50.72 10/10 
375  50 V 489.20 44.62 9/9

375  100 V 225.99 43.82 10/10 
Thin Film

Temperature 
Bias 
Voltage

Median 
Failure 
Time(hrs)

Confidence 
Interval +/‐ Failures/Total 

300  25 V 2812.56 273.30 6/10 
300  50 V 1009.61 154.41 10/10 
300  100 V 358.64 55.06 5/5

375  25 V 736.42 104.33 10/10 
375  50 V 367.13 18.03 10/10 
375  100 V 90.15 14.98 10/10 

Palladium Silver

Temperature 
Bias 
Voltage

Median 
Failure 
Time(hrs)

Confidence 
Interval +/‐ Failures/Total 

300  50 V 2575.78 212.74 9/10 
300  100 V 1715.37 297.38 9/10 
375  50V 1932.17 112.125 7/10 
375  100V 1103.90 101.73 10/10 

 

3.3 Silver Migration Experimental Analysis 

Hornung fit silver migration failure to an equation: Later Gagne rearranged that 

equation to solve for median time to failure.  Equation 3.1 is Gagne’s rearrangement of 

Hornung’s equations. How these coefficients are determined will be discussed later, but 

when first looking at the data this equation will be used to highlights the trends that 

should be expected.  Specifically there should be a direct inverse relationship between 
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median time to failure and bias voltage; also median failure time should have an 

exponential relation to temperature. 

ହ଴ݐ																																																															 ൌ
ఈீ

௏
exp ቀ∆ு

௞்
ቁ                                                   [3.1] 

α = proportionality constant 
V = applied voltage 
t50 = median time to failure 
G = gap distance between electrodes 
ΔH = activation energy  
T = temperature in Kelvin 
k = Boltzmann’s constant in eV 

 

Figure 3.13 shows the median failure times for the nano Ag samples at each 

temperature. Although the exponential contribution of temperature cannot be proven, it is 

supported.  It also can be seen that as bias voltage increases, the effect of temperature 

becomes much smaller.  According to equation 3.1, when the natural log of bias voltage 

becomes larger than the activation energy over k*T, the bias voltage effects will 

dominate over the temperature effects.  The thin film data presented in Figure 3.14 also 

supports these conclusions showing the same trends as the nano Ag. 
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3.13 Comparison of 300oC and 375oC Data for Nano Ag.  

 

3.14 Comparison of 300oC and 375oC Data for Thin Film Ag. 
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3.4 Statistical Analysis of Data 

The data is not sufficient to produce a predictive model with any level of 

confidence, but the techniques are presented that should be followed to make that 

predictive model (all analysis is on the actual data).  Gagne first rearranged Hornung’s 

equation to solve for median time to failure, then taking the natural log of each side 

solved for the proportionality constant and activation energy using linear regression 

techniques.  The regression was performed on the median lifetime of each voltage and 

temperature condition, for each material.  The proportionality constant was described as a 

function of geometry and processing condition by Hornung, so it was solved for each 

material separately [17].  Equation 3.2 shows the fitted equation, this is the exact 

equation described used by Gagne [19]. 

																																																	݈݊ሺݐହ଴ሻ ൌ lnሺܩߙሻ ൅	 lnሺܸሻ ൅ ∆ு

௞்
                                        [3.2] 

Gagne was determining an acceleration factor based on the test voltage used to 

monitor the migration gaps, so he tested for a coefficient for V, but in our case we are 

only interested in the proportionality constant and the activation energy resulting from 

equation 3.3 which was used for the linear regression. 

ߤ																																																											 െ ln ቀଵ
௏
ቁ ൌ ଴ܤ ൅ ଵܤ ቀ

ଵ

்
ቁ                                          [3.3] 

μ = ln(t50); which is the location term for the distribution 
B0 = ln(α*G) 
B1 = ΔH/k 
 

The calculated activation energies were expected to be within a confidence 

interval of each other since both materials are forms of pure silver, however this is not the 

case.  The proportionality constants are further away but have confidence limits of 2.2 for 

nano Ag and 2.1 for thin film Ag so not much can be determined from these numbers.  
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Table 3.2: The regression results 

Material B0 B2 
Adj. 
R2 

Nano Silver -0.498 6694.358 0.7859
Thin Film 1.67 5124.65 0.7305

	

௡௔௡௢	ହ଴ݐ																																																						 ൌ 649.2 ீ

௏
݌ݔ݁ ቀ଴.ହ଻േ଴.ଵଶ

௞∗்
ቁ                               [3.4] 

௧௛௜௡	ହ଴ݐ																																																							 ൌ 5329 ீ

௏
݌ݔ݁ ቀ଴.ସସേ଴.ଵଵ

௞∗்
ቁ                               [3.5]   

 This data cannot be used for estimation of the variables in the equations.  For the 

regression technique to be used there is an assumption of equal variance.   This is 

assumption is not true for the data set presented. 
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Chapter 4 

GOLD THEMOCOMPRESSIVE BONDING 
	

4.1 Experiment set up 

The	goal	of	the	experiment	was	to	develop	an	Au	based	die	attachment	

method	using	TC	bonding.		To	achieve	this,	an	Au	plated	die	surface	was	patterned	

with	3	µm,	4	µm,	5	µm	or	6	µm	tall	pyramids.		The	base	of	these	pyramids	were	

separated	by	a	~1‐2	µm	gap.		A	force	between	20	kg	and	40	kg	was	applied	at	

temperatures	between	350oC	and	400oC	to	bond	these	die	to	an	Au	plated	substrate.			

These	pyramids	will	deform	when	they	began	to	come	in	contact	with	the	substrate	

dispersing	the	thin	contamination	layer	and	allowing	bonding	to	occur.		The	high	

density	of	these	pyramids	provides	a	nearly	uniform	surface	and	therefore	a	

uniform	bond.			

4.1.1 Silicon imprint die  

 To produce this pyramid pattern, a silicon die was fabricated to be used as a 

stamp. The desired geometries were achieved using potassium hydroxide (KOH) etching 

of <100> silicon (Si).  KOH will etch <100>, <110> and <111> silicon at different rates; 

this means that anisotropic etching is possible with KOH.  The actual etching rate is 

dependent on the concentration of KOH and can vary significantly, but generally the 

etching rate in the <100> and <110> direction is at least an order of magnitude faster than 

in the <111> direction [45].    The <100> plane is at a 54.7o angle to the <111> plane and 
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 The wafer was first diced into 4 pieces because of the different heights of the 

pyramids.  KOH etching was done in a 2 L beaker placed in a water bath heated to 65oC 

to control the solution temperature.  The solution was made of 1330 ml of 45 wt. % 

KOH, 850 ml of H20 and 350 ml of IPA.  The 5 µm and 6 µm die were etched for 25 

minutes and the 3 µm and 4 µm die were etched for 15 minutes.  After etching, the Si3N4 

mask was removed using a BOE etch leaving the etched Si wafer.  The dies were then cut 

out using a dicing saw at 25000 RPM and a cutting rate of 100 mils/second.   

4.1.2 Test die and substrate fabrication  

 Test die were fabricated from the polished surface of a silicon wafer.  A four inch 

Si wafer was cleaned using a piranha clean for 5 min to remove any surface 

contaminates.  Then 250 Å of Ti was e-beam deposited on the wafer to aid Au adhesion, 

the 500Å of Ti:W was sputtered to provide a diffusion barrier to the 1000Å of Au that was 

e-beamed deposited on top.  Another 10 μm of Au was electroplated on the surface to 

provide a base to be imprinted with the aforementioned stamp.  This wafer was then cut 

into 5 mm x 5 mm test die.   

 Also SiC test die were fabricated using a 3 in SiC wafer.  This wafer was cleaned 

using 5 parts H2O: 1 part NH3OH: 1 part H2O2 at 70oC for 20 min then rinsed in DI water 

for 1 min and dried with N2 blown across the surface.  The wafer was baked 120oC for 20 

min right before metallization to dehydrate the wafer.  The first layer metallization was 

2000 Å e-beam deposited Cr, then 1000 Å sputtered NiCr and 1000 Å e-beam deposited 

Au.  Au (10 µm) was electroplated for imprinting.  This wafer was then cut into 3.4 mm x 

3.4 mm die. 



38 
 

 Test substrates were made from a 4 in <100> Si wafer and used the same process 

as the 5 mm by 5 mm Si test die, except the Au was plated to only 3 µm.  Unlike the die 

wafer, there were problems with the Au metallization peeling after plating, so the e-

beamed Au was patterned with 4 µm thick, 100 µm wide lanes of photoresist between 

test substrates to relieve the stress induced by plating.  The substrates were cut to 10 mm 

by 10 mm. The thin film substrates were assumed to be flat to within 2 µm since only 3 

µm of Au was electroplated on them, so there was no extra preparation steps done to 

these surfaces. 

 Other test substrates were produced using screen printed thick film gold (Figure 

4.3).  Dupont 5771 ink was printed directly on the substrate then Dupont 5063 was 

printed on top of that.  After each printing the substrate was dried at 150oC for 10 min 

then fired at 850oC using the profile in Figure 3.2.  The 5771 ink was a Au alloy that 

adheres well to the substrate.  The 5063 ink was a pure Au ink used to produce a pure 

gold bonding pad. 
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4.5: Force and temperature imprint profile 

 Imprinting was attempted on the Si die with varying success.  An imprint could be 

seen on the entire perimeter of the die but not the center of the dies.  It was thought 

possible slight bowing of the imprint or test die was the cause of this problem. Initially 

die were picked up directly by the chip arm using a small vacuum hole and it was thought 

this could be a source of the bowing. The previously described SiC piece was initially 

used to try to correct this bowing problem.  This did improve the imprint transfer but the 

force of 40 kg required to imprint caused weakening of the die.  This will be discussed in 

the results section of this chapter. 

 The thick film gold on the substrate produces a much rougher surface so before 

die attachment could be attempted the surface had to be prepared.  This was done by first 

flattening the surface with a blank polished SiC die at 375 oC and 40 kg of force.  Then 

the silicon stamp is imprinted on the flattened surface, the same difficulty with transfer of 

the pattern was experienced on the substrate as well and testing was done with and 

without the imprint pattern.  Imprinting was also done on the screen printed ink, before 
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firing.  This did slightly transfer the pattern; however it also caused bubbles to form 

between the first and second ink layers. 

4.1.4 Bonding 

	 Bonding	was	performed	with	the	same	FC	150	flip	chip	bonder	as	mention	

before.		The	bonder	was	set	up	the	same	way	as	during	die	imprinting	(Figure	4.4),	

except	the	imprint	die	was	replaced	with	the	substrate.		Again	parallelism	was	

ensured	between	the	large	SiC	plate	and	the	substrate.		Bonding	forces	of	20	kg,	30	

kg,	and	40	kg	were	tested	at	350oC	and	400oC.			Figure	4.6	shows	the	bonding	

parameters	except	the	maximum	values	change	depending	on	the	force	and	

temperature	used,	but	the	shape	was	consistent.	

	

4.6:	Force and temperature bonding	profile	

 Strength of the die attachment was analyzed by die shear testing using a Dage 

PC2400 die tester.  Die shear testing is performed by pushing a flat edge attached to a 

load cell against one edge of a die.  Force against the die is increased until the die fails.  
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tester	is	not	actually	die	shear	force.		This	cracking	is	assumed	to	be	caused	by	the	

stress	experienced	by	the	die	in	imprinting	or	bonding.			

Table	4.1:	Si	die	results	

Si die on Al2O3 substrates

90 second at 375 C

   Bond Force (kg)

  30 kg 40 kg

1 19.59 43.40

2 31.79 22.31

120 seconds at 375 C

   Bond Force

  30 kg

1 42.03

90 second at 350 C

  Bond Force

  30 kg

1 36.80

 

These were the first group of tests and testing was not thorough because the shear 

strengths were much lower than desired.  Since all the test die cracked in testing, SiC die 

were tried next.  Also the screen printed substrates were not use after this because of the 

significant initial roughness. 

The results for the second material are shown in table 4.2.  Tests were performed 

at forces up to 40 kg however at 30kg and 40 kg the die had a problem with cracking.  

Every die except the first 40 kg sample showed evidence of metallization peeling.  
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Table 4.2 SiC die shear results 

SiC die on Si substrate

120 seconds at 400 C

 Bond Force (kg)

   20  30  40 

1  48.78* 31.06* >99.9

2  36.78* 22.80* 27.99*

3  40.58† 26.58* 29.30*

120 seconds at 350 C

 Bond Force (kg)

   20     

1  66.58†    

2  23.49*  

3  51.64*  
* indicate cracked die 

†indicates peeled metallization but no cracks 

On initial examination, the 20 kg, 350o C samples seem to produce the best 

average results, the next best seems to be the 20 kg at 400o C.  This is misleading; the 

>99 kg sample was the only 40 kg die that did not crack and all of the 30 kg samples 

cracked or peeled some amount of the metallization off of the SiC.  Most likely the 

cracking was caused by the high stress put on the die during imprinting or bonding.  

Figure 4.8 shows the surface of sample 1 (left) and sample 3 (right) from the 20 

kg 400oC group.  The square on sample 1 shows the outline of the die attach area on the 

substrate.  Sample 1 had the highest shear strength and it highlights several possible 

additive failure mechanisms, though shear strength is incorrect because of cracking. First, 

(A) the substrate is cracked which occurred during testing and the crack is through the die 

attachment area which could cause stresses on the die other than shear stress.  The second 

(B) source of weakening is the crack in the SiC.  This crack runs out to the bottom left 

edge of the die, not through to the surface as expected, meaning this section of the die 

was sheared off and started to break free.  The third (C) point is the peeling of the 
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 The fact that this bonding method produced up to 66 kg bond with 20 kg of force 

is promising especially since not even half of the die was actually bonded.  

Unfortunately, there are many problems this process faces, some can be overcome easily, 

however is will prove difficult to find solutions to others. The problem of the SiC 

metallization peeling could be an isolated problem with this particular wafer 

metallization because this metallization on SiC die has been proven before [13] or just a 

result of the high forces experience by the metallization.  Work is currently being 

performed at Auburn University to improve the Au to SiC adhesion which could be used 

on future tests of this process.  The problem of substrate cracking can also be solved with 

using a harder substrate material such as AlN or attaching the Si substrate to a ceramic 

substrate using high strength glue for shear testing.  The problems associated with 

planarity may be able to be overcome with an additional feature of the FC 150 not 

available on the one used here.  There is a laser leveling tool that can be added to the 

machine that may help.  The difficulty in uniform imprinting is another problem without 

an obvious solution.  One possibility is trying to fabricate imprint die out of a harder 

material that will not form a bond with Au so the imprinting temperature could be raised.  

This could be done with a gray scale mask to achieve the 3-D micromachining necessary, 

since KOH type etching is not possible on materials other than Si.  A simpler solution 

may be simply to anneal the sample at 400oC for an hour or more to soften the gold and 

then try to imprint.   
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Chapter 5 

CONCLUSIONS 

	 Silver	migration	presents	a	significant	concern	when	using	silver	based	

metallurgies	in	high	temperature	electronics.		Since	median	time	to	failure	has	a	

directly	inverse	relationship	to	bias	voltage,	high	voltage	(>100V)	applications	

present	significant	cause	for	concern	even	at	moderate	temperatures	(200oC).		With	

the	exponential	dependence	on	temperature,	temperature	quickly	dominates	the	

median	time	to	failure;	therefore	using	silver	metallurgy	in	open	air	for	devices	that	

have	extended	operation	conditions	above	300oC	would	cause	early	device	failures,	

not	experienced	with	other	metallurgies.		If	through	packaging,	the	partial	pressure	

of	O2	is	lowered,	Ag	metallurgies	may	be	useful.	

	 Gold	TC	bonding	has	some	very	attractive	properties	for	die	attachment	and	

it	does	not	suffer	the	risk	of	migration	in	open	air	as	Ag	does,	however	successful	die	

attachment	using	this	method	faces	many	challenges	and	more	research	is	

necessary	to	make	this	a	viable	technology.			
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Chapter 6 

FUTURE WORK 

6.1 Silver-Indium testing 

	 The	next	step	in	the	Ag	migration	testing	would	be	to	re‐run	the	previous	test	

with	higher	temperature	and	voltage	conditions	so	failures	will	occur	earlier	and	

sufficient	data	should	be	obtained	to	calculate	predictive	model	parameters.		Also	

the	addition	of	the	Ag‐In	TLP	bonding	metallurgy	mentioned	in	the	literature	review	

section	would	be	very	interesting	to	test.		Lastly	assembling	some	high	voltage	

devices	with	the	Ag	metallurgies	and	observing	the	time	it	takes	for	the	migration	of	

silver	to	cause	a	failure	would	be	interesting.	

6.2 Au TC bonding  

Another	method	of	producing	Au	TC	bonding	test	die	has	been	initiated.		This	

method	will	be	to	pattern	a	die	surface	with	plated	micro	columns	about	5	µm	tall	

and	between	4	µm	and	10	µm	square	separated	by	a	small	gap,	between	2	µm	and	

10	µm.		Again	the	goal	of	this	is	to	deform	the	columns	and	fill	some	of	the	space	

between	them,	producing	a	uniform	bonding	surface,	but	unlike	the	previous	work	

there	will	be	no	added	stress	on	the	die	during	an	imprinting	step.	

Test die will be fabricated to produce an array of 5 µm tall Au columns across the 

surface of the die.  Each column is square or round with sides of equal length across the 
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entire surface of each die.  The initial attempts to fabricate these die have been with 4 

µm, 6 µm, 8 µm, or 10 µm sides each separated by 4 µm.  	

 These test die were fabricated on a 4 inch Si wafer that was processed just like the 

previous test die with Ti/Ti:W/Au metallization the same thicknesses as before.  Also, 

another 250 Å of Ti was e-beam deposited on top of the last Au layer.  The wafer was 

then spin coated with AZ 9245 photo resist at 2250 RPMs for 60 seconds resulting in a 

photoresist layer ~6 µm.  The photoresist was exposed using a Karl Suss photo mask 

aligner for 90 seconds at 350 W.  The mask was developed for 120 seconds using AZ 400 

developer by AZ electronic materials diluted to 3:1 with H2O for 3 minutes leaving the 

opening for the columns.  A final 15 second O2 plasma clean was done to remove any 

residual photoresist.   

 Photoresist has low adhesion strength on Au and since electroplating can produce 

relatively high forces on the photoresist in such small areas the Ti layer was deposited to 

increase the adhesion of the photoresist.  To expose the gold surface for electroplating the 

Ti had to be etched off.  Etching was done with SF6 and O2 ICP plasma at 700 W for 

four, one minute intervals to completely remove the Ti layer.  Using 434 plating solution 

the Au was plated to a thickness of 5 µm.  After this the photoresist was striped using 

Acetone and O2 plasma and the remaining Ti was removed using 10:1 HF etching 

solution. 

 These test die however have not been successfully electroplated at this time.  The 

Ti layer is very difficult to distinguish from the Au layer and it is thought incomplete 

etching of the Ti is the reason from poor electroplating results.  The incomplete etching 
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could either be from insufficient removal of the photo resist or insufficient etching time.  

More testing will be needed to determine exactly what is needed.   
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