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Abstract

For this thesis we consider Directed Diffusion routing protocol. It manages paths in a

data-centric way. A sink node publicizes its interest in some events. Such an interest will

be disseminated within the network and received by nodes that have data on those events.

During this process, gradients that record two-way information along all possible paths are

established. Afterward, a mechanism called path reinforcement is used to select high-quality

routes. Directed Diffusion also provides two sets of application programming interface (API).

One set is network routing API, which enables upper-layer entities in sources and sinks to

communicate through the network. This API takes the form of publish/subscribe paradigm.

A sink node can subscribe to interesting events. Also, sources will publish their sensed

events. The Directed Diffusion platform takes care of the underlying implementation. To

allow processing in intermediate nodes, Directed Diffusion also offers another API called

filters. Application-specific operations can be implemented as filters to manipulate data

packets as they pass through the network. Filters are provided through an interface to

specify interest in particular events. For each filter, a priority is associated. Although

directed diffusion is a widely used in sensor networks, it has several weaknesses. It only

considers delay as the routing metric to select best path. As a result, high throughput

may not be achieved. Its failure to consider deadline during the route selection lowers

the percentage of packets which can meet the deadline of real-time traffic. Its reliance on

flooding gives rise to differences in interference levels during the exploratory data phase and

the actually data transmission phase, which makes the route decision even more inaccurate.

It does not consider path interference which worsens it performance during high rate data

transmission. We propose a routing protocol to augment and extend directed diffusion to

handle these issues. First, we propose an algorithm which considers throughput, delay and
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intra-flow interference metric for a path. ETX (Expected Transmission Count) is used as the

metric for measuring link quality. We improve on QoS-based routing by limiting interference

in lossy links. We use an improved method for computing aggregate ETX for a path that

increases end-to-end throughput. We compute multiple paths between source-sink pair. We

choose best two paths based on the aggregate ETX metric and delay. The main goal of

our protocol design is to use these routes to achieve high throughput and less delay. We

monitor the data transmission over a period of time. We measure maximum queue length

over the active path, we measure the rate of increase in queue length, and in addition we

keep track of ETX which can give us an idea of interference over links on active path. We

have setup inter-node queues, and intra node queues to handle data flowing through nodes.

We maintain a threshold value for all the queues. We check the current queue state after an

interval of δ. Depending on the increase in queue length we estimate if the queue might be

over the threshold value in time frame δ. We also measure the ETX value to see if it shows

sign of interference. If these metrics show sign of congestion on the active route, then sink

will signal the source to switch data transfer to an alternate path. This switching of path

is done by sending an explicit control message called SWITCH PATH MESSAGE to source

across the network from sink to source. The control message is sent using an alternate path

which should be used for data transfer. This makes our protocol end-to-end. If switching of

path does not help to control congestion, we use multiple paths to cope with high data rates.

As a last option, if even this does not mitigate congestion, then we limit source sending rate.
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Chapter 1

Introduction

In September 1999, networked micro sensors technology was heralded as one of the 21

most important technologies for the 21st century by Business Week [1]. In recent years,

due to advances in low-power circuit and radio technologies, Wireless sensor networks have

emerged as a new information-gathering paradigm based on the collaborative effort of a

large number of sensing nodes [2]. The recent advancements in MEMS technology, processor

design, and wireless communication have enabled a wide range of monitoring applications

using networks of sensor nodes. There is a considerable amount of research in the area of

wireless sensor networks ranging from real-time tracking to ubiquitous computing, where

users interact with potentially large numbers of embedded devices [3]. A typical sensor

network is formed by a large amount of nodes. Each sensor consists of small individual

microcontroller fitted with sensors and some means of communication such as radios. The

main components of sensors consist of a sensing unit, a processing unit, a transceiver, and a

power unit. A typical sensor is shown in Figure 1.1 [40]:

• Sensing Unit:

The main functionality of the sensing unit is to sense or measure physical data from

the target area. The analog voltage which is generated by the sensor corresponding to

an event is then digitized by an analog-to digital converter (ADC) and then delivered

to the processing unit for more analysis

• Processing Unit:

The processing unit plays a major role in managing collaboration with other sensors to

achieve the predefined tasks. There are currently several families of this unit including
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Figure 1.1: Sensor Structure

microcontrollers, microprocessors, and field-programmable gate arrays (FPGAs). The

Non-volatile memory and interfaces such as ADCs can be integrated onto a single inte-

grated circuit [41] [42]. The processing unit needs storage for tasking and to minimize

the size of transmitted messages by local processing and data aggregation [43]. Flash

memory is widely used due to its cost and storage capacity.

• Transceiver:

There are three deploying communication schemes in sensors including optical com-

munication (laser), infrared, and radiofrequency (RF). RF is the most easy to use but

requires antenna.

• Power Unit:

Power consumption is a major weakness (problem) of sensor networks.. Batteries

used in sensors can be categorized into two groups; rechargeable and non-rechargeable.

Often in harsh environments, it is impossible to recharge or change a battery.

• Transport Protocol in Sensor Networks:

Depending on the type of application, each sensor node may be required to perform

some local (in - network) computations and data aggregation. Applying TCP to wire-

less sensor networks is expensive because of its three-way handshake mechanisms and
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packet header size. UDP is considered to be more suitable for sensors although it was

designed to provide unreliable data transport.

Usually there is no pre-determined topology for a sensor network. Instead, these sensor

nodes construct and dynamically maintain the structure of the network through wireless

communication. They are expected to be deployed over wide areas and transmit gathered

data to one or several central nodes, which is also called the base stations / sink. Since the

distance between a node and a base station may exceed the range of the radio, relaying by

intermediate nodes needs to be performed so that the data can ultimately reach the base

station. Unlike routers in the Internet, the relaying devices are themselves sensor nodes that

are simultaneously gathering and transmitting data. Hence, each node serves as a router

and a host. They forward packets to other nodes if they are for different nodes. This makes

it easy to achieve ubiquitous computing. As many nodes serve as routers, they will be

forwarding packets to multiple nodes. So this means that they will be acting as junctions.

This results in congestion at those nodes. Currently, there are many ways of efficiently

getting at specific information from the network. [4] proposes data centric storage in order

to efficiently retrieve, for instance, the highest temperature reading in the network. As the

main task of WSN [14] is to gather information from the physical world, all the data flows

go towards a common sink. In [8], certain attributes such as the total number of nodes in

the networks can be processed within the network before reaching the base station / sink.

However, certain applications of sensor networks require information to be gathered from all

or a subset of nodes, information that cannot be aggregated within the network and that a

minimum level of fidelity is required of.

Sensor networks come in a wide variety of forms, covering different geographical areas,

being sparsely or densely deployed, using devices with a variety of energy constraints, and

implementing an assortment of sensing applications. One application driving the develop-

ment of sensor networks is the reporting of conditions within a region where the environment

abruptly changes due to an observed event, such as in habitat monitoring, target detection,
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earthquakes, floods, or fires. The research of sensor networks was initially driven by mili-

tary applications like battlefield surveillance and enemy tracking. During the Cold War, the

Sound Surveillance System (SOSUS), a system of acoustic sensors on the ocean bottom, was

deployed at strategic locations to detect and track quiet Soviet submarines. Modern research

on sensor networks started around 1980 with the Distributed Sensor Networks (DSN) pro-

gram at the Defense Advanced Research Projects Agency (DARPA). Researchers at Carnegie

Mellon University (CMU), Pittsburgh, PA, Massachusetts Institute of Technology (MIT),

Cambridge, University of Massachusetts, Amherst were working on different sensor network

test beds. To name just a few examples, one can deploy a sensor network to study the behav-

ior of an endangered species, to report fires in a forest, to monitor the health of a building,

or to collect the traffic information on a busy highway, etc. These networks will usually

be left unattended, with each individual node sensing the physical environment, perform-

ing processing if necessary, and reporting the data to the sinks through multi-hop wireless

communication. In order to conserve energy which is the rarest resource, a sensor network

requires low reporting rates from the source nodes during the periods when the specific events

are not observed. However, a much higher rate will be needed as soon as these events occur

such that necessary actions can be taken promptly. For example, a temperature sensor as

part of the fire detection application only needs to report 1 packet every 5 minutes when its

reading is below 50 degree, but it must report more than 100 packets per minute once its

readings exceed 100 degree [5]. As a result, sensor networks experience traffic alternating

between periods with a very low traffic volume (referred to as dormant state) and periods

with a high traffic volume - referred to as crisis state [6]. Once in a crisis state, the sudden

traffic increase may lead to congestion in the network. When congestion occurs, the network

will enter into an unstable state and packets will be randomly dropped. This is particularly

undesirable because the data generated during the crisis state are of great importance, often

critical, to the applications [7].
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The Wireless Sensor Network is an event driven paradigm that relies on the collective

effort of numerous micro sensor nodes. This has several advantages over traditional sensing

including greater accuracy, larger coverage area and extraction of localized features. In

order to realize these potential gains, it is imperative that desired event features are reliably

communicated to the sink. To accomplish this, a reliable transport mechanism is required

in addition to robust modulation and media access, link error control and fault tolerant

routing. The WSN paradigm necessitates a collective event-to-sink reliability notion rather

than the traditional end-to-end notion. Sensor networks are being increasingly deployed for

surveillance and monitoring applications. These networks will suffer from severe congestion

as soon as the target events occur. During congestion, important data packets may be

dropped, which can essentially nullify the purpose of sensor networks. There is a critical

need for new thinking regarding overload traffic management in sensor networks. It has now

become clear that experimental sensor networks (e.g., mote networks) and their applications

commonly experience periods of persistent congestion and high packet loss, and in some

cases even congestion collapse [9]. This significantly impacts application fidelity measured

at the physical sinks, even under light to moderate traffic loads, and is a direct product

of the funneling effect; that is, the many-to-one multi-hop traffic pattern that characterizes

sensor network communications.

Sensor networks typically operate under light load and then suddenly become active in

response to a detected or monitored event. Depending on the application this can result in

the generation of large, sudden, and correlated impulses of data that must be delivered to

a small number of sinks without significantly disrupting the performance (i.e., fidelity) of

the sensing application. Although a sensor network may spend only a small fraction of time

dealing with impulses, it is during this time that the information it delivers is of greatest

importance. The flow of events has similarities to the flow of people from a large arena after

a sporting event completes. A major limitation in the design of existing sensor networks is

that they are ill-equipped to deal the funneling of events and increasing traffic demands [9].
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This leads to increased transit traffic intensity [10], congestion [6], and large packet loss [11]

(which translates into wasted energy and bandwidth). As a result, the sensors nearest the

sink will use energy at the fastest rate, shortening the operational lifetime of the network.

Many packets may be accumulated at congested nodes and discarded finally. This will

increase delay, high overhead of retransmission, low throughput in Adhoc network. If node

is congested but the channel quality is high the node will still transmit the data packets at

a high rate. Due to this congestion the results will be worse. Congestion in Wireless Sensor

Networks (WSNs) has following negative impact on performance:

• A drastic decrease in throughput and

• Increased per-packet energy consumption.

The congestion problem in WSNs is quite different from traditional networks. All the data

flows go towards a common sink. Due to this centralized traffic pattern, just bypassing the

hot-spots is ineffective to eliminate the congestion because it will reappear near the sink.

Most congestion control in WSNs has only focused on traffic control (including end-to-end

and hop-by-hop). i.e. they basically try to throttle the incoming traffic into the network once

congestion is detected. Although traffic control strategies are effective to alleviate congestion

in traditional networks, and are also suggested in some wireless sensor network scenarios,

they are restricted or even unsuitable for special purposes for the following reasons.

1. Reducing source traffic during a crisis state [6] is undesirable since it will significantly

violate fidelity requirements. It may be a better option to increase capacity by turning

on more resources to accommodate excessive incoming traffic during the crisis state.

The wireless sensor network can provide elastic resource availability because of its

dense deployment, unlike its wired or other wireless counterparts. This distinct ad-

vantage enables WSN to employ adaptive capacity planning schemes to avoid possible

congestion and satisfy fidelity requirements at the same time.
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2. It is highly likely that the congestion caused by burst traffic is often transient by na-

ture. For example, the sensor nodes will generate transient bursts of traffic when the

abnormal events occur. It could be inefficient to cope with these transient congestions

by the traffic control based on feedback, and they may be alleviated through quickly

adjusting the network resource provisioning. Conventional end-to-end reliability def-

initions and solutions are inapplicable in the WSN regime and would only lead to a

waste of scarce sensor resources.

3. There is usually an abundance of resources in sensor networks (unlike its wired or other

wireless counterparts) because these networks are usually densely deployed in order to

achieve a reasonable network lifetime.

The transport of event impulses is likely to lead to varying degrees of congestion in sensor

networks. There are many different types of routing protocols in wireless sensor networks.

Routing protocols that require location information, such as LAR [17], GPSR [18], and

DREAM [19], do not need to flood routing requests. Others, such as DSR [20], AODV [21],

ZRP [22], and TORA [23], suffer from the effects of flooding, even with some optimizations,

since nodes do not know their locations. As pointed out by Gupta and Kumar [15], the

fundamental reason leading to the degradation of the performance as number of nodes in-

creases is the fact that each node has to share the radio channel with its neighbors. In order

to illustrate the congestion problem consider the following simple but realistic simulation

scenario.

Figure 1.2 shows the impact of congestion on data dissemination in a sensor network

for a moderate number of active sources with varying reporting rates. The ns-2 simulation

[16] results are for the well-known directed diffusion [14] scheme operating in a moderately

sized 30-node sensor network using a 2 Mbps IEEE 802.11 MAC with 6 active sources and

3 sinks. The 6 sources are randomly selected among the 30 nodes in the network and the

3 sinks are uniformly scattered across the sensor field. Each source generates data event

packets at a common fixed rate while the sinks subscribe (i.e., broadcast corresponding
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Figure 1.2: Congestion effect in WSN

interest) to different sources at random times within the first 20 seconds of the 50-second

simulation scenario. Event and interest packets are 64 and 36 bytes in size, respectively.

The plot illustrates that as the source rate increases beyond a certain network capacity

threshold (10 events/sec in this network), congestion occurs more frequently and the total

number of packets dropped per received data packet at the sink increases rapidly. The plot

shows that even with low to moderate source event rates there is a large drop rate observed

across the sensor network. For example, with a source event rate of 20 events/sec in the

network, one packet is dropped across the sensor field for every data event packet received

at the sink. Dropped packets can include MAC signaling, data event packets themselves,

and the diffusion messaging packets. The drop rates shown in figure represent not only

significant packet losses in the sensor network, but more importantly, the energy wasted by

the sensing application. Directed diffusion, though regarded as an epidemic algorithm in

[31] since it avoids broadcast storm, does not perform well with interest flooding. No matter

what metrics are used in selecting a route (basic directed diffusion uses delay), the route

which performs best during route discovery phase may not perform well during the actual
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data transmission phase due to differences in interference levels caused by the different traffic

patterns and changes in data rates at source. Interest flooding increases traffic in the network

and causes maximum level of interference. Exploratory data are flooded to determine the

best path, which follows gradients established in the interest propagation phase. Actual

application traffic only flows through the reinforced path, which is not affected by inter-path

traffic at all, assuming there is no other data transmission at that time. Every node has an

interference range. Interference set [32] and conflict graph [33] are used to schedule network

traffic or theoretically analyze the impact of interference on wireless networks. However, no

routing protocol could have the prior knowledge about which path the actual data traffic

will go through and what the traffic pattern will be like before the route is determined.

Our goal is to design solutions which make more accurate routing decisions by reducing the

interference level and hence packet loss, delay and congestion, during the route discovery

phase and making it more similar to that during the actual data transmission phase. If due

to changes in network topology and source data rate, there is congestion in the network, we

try to overcome this congestion by choosing an alternate path which is unused and does not

have congested nodes on it. This M.S. thesis aims to study the problem of congestion in

WSNs and identify causes and symptoms strictly related with the philosophy and design of

WSNs. The main objective is to examine the behavior of several network parameters and

their impact to congestion in WSNs and address a framework for congestion control and

avoidance that is different from existing traditional schemes that are based on rate control

to alleviate congestion. The simulation scenarios were implemented and tested with the use

of the NS-2 simulator.

The thesis is organized as follows. In Chapter 2 we give background information of

congestion in computer Networks, and also describe pertinent WSNs features. We cover the

congestion techniques used by other researchers in this chapter. In Chapter 3 we analyse

congestion in WSNs and its design philosophy impact on congestion problem. We state

objective of this thesis, and define the problem statement. We also discuss the techniques
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we will be using to solve the problem. In Chapter 4 we get an overview of overall protocol

design and the congestion control mechanism that we will implement in the protocol. In

Chapter 5 we present all the implementation details of the protocol and scenarios which will

give an overall idea of the working of protocol. In Chapter 6 we discuss the simulation setup

and details of the parameters we use in simulation. We also go through the simulation results

and see how the protocol performs under different circumstances. Finally in Chapter 7 we

present the contributions of the thesis and conclusions that evolve from the Thesis Chapters

and some suggestions are introduced for future work.
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Chapter 2

Related Work

2.1 Routing and Congestion

The problem of congestion control stems from the fact that the route selected in route

discovery phase is not the best one, or cannot support the application needs. In this thesis we

trace back the congestion problem to routing techniques. Our aim is to select the best route

which will support high throughput with lowest possible delays. As our congestion protocol

is end to end, we try to minimize the delay for routes which will help us reduce the round trip

time (RTT) for a given network topology. Routing metrics in wireless ad hoc networks are

important considerations due to the unpredictability and heterogeneity of link qualities [57].

Existing wireless ad hoc routing protocols typically select routes using minimum hop count,

e.g. DSR [20] and DSDV [58]. Directed diffusion [14] selects routes in sensor networks with

the least delay. Recently, many new link quality metrics have been proposed. [59] compares

the performance of the following three metrics. Adya et al. [59] measures the round trip

delay of unicast probes between neighboring nodes and proposes Per-hop Round Trip Time

(RTT). Per-hop Packet Pair Delay (PktPair) measures the delay between a pair of back-to-

back probes to a neighbor node [59]. Expected Transmission Count (ETX) [57] measures

the loss rate of broadcast packets between pairs of neighboring nodes and estimates the

number of retransmissions required to send unicast packets. Weighted Cumulative Expected

Transmission Time (WCETT) [60] is used for selecting channel-diverse paths and accounts

for the loss rate and bandwidth of individual links. Park et al. [61] presented a new metric,

Expected Data Rate (EDR), for accurately finding high-throughput paths in multi-hop ad

hoc wireless networks based on a new model for transmission interference. Unfortunately,

none of these metrics can be directly applied to wireless sensor network that simultaneously
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take into account delay, throughput and interference. Furthermore, none of previous papers

proposed a combined metric for sensor networks with all those considerations. In [62], ETX

was incorporated into DSR and DSDV to improve throughput with little consideration of

delay or interference. WCETT [60] is more suitable in multi radio wireless mesh networks.

EDR [61], unlike ETX, cannot be computed dynamically. More space and computation are

required by EDR when it is incorporated into DSR and AODV. Interference-aware protocols

have recently been explored in multi-hop wireless networks. [67] studies routing problems in

a multihop wireless network using directional antennas with dynamic traffic and presented

new definitions of link and path interference. In their other paper [62], they present routing

algorithms to compute interference-optimal cost-bounded paths and an optimal bandwidth

allocation algorithm to allocate timeslots. We do not give detailed analysis, computation and

implementation for interference because we try to make full use of the ETX information. [69]

and [70] give the throughput bounds and capacity for interference-aware routing in wireless

networks respectively. We may use them to test our protocol by observing the throughput

performance. [71] derives an interference aware metric NAVC based on the information

collected from 802.11 MAC. In [72], an interference aware routing scheme is designed to

alleviate the near-far problem at the network level for cellular systems. EIBatt et. al. [73]

address the problem of interference aware routing by coupling the lower three layers of the

ISO Open Systems Interconnection (OSI) protocol stack. We only use ETX, the link layer

indicator, to measure the link quality as well as interference to simplify the problem. Nguyen

et. al. [74] considers radio interference and modifies OLSR routing protocol for bandwidth

reservation and interferences. Our paper modifies directed diffusion, a routing protocol

for wireless sensor networks, to take into account throughput, interference and delay. For

our purposes, we need a routing protocol which achieves maximum throughput with lowest

possible delay. This will help us to minimize retransmissions and packet losses in the network

due to interference/collisions and link quality. To have this kind of metric we will be using
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ETX which takes link quality/loss rate over a link along with a delay metric. This technique

will be explained in detail in later sections.

RMST is a transport layer paradigm designed to complement directed diffusion [12] by

adding a reliable data transport service on top of it. Its a NACK based protocol like PSFQ,

which has primarily timer driven loss detection and repair mechanisms. It does not provide

with any congestion control mechanism. TARA discusses the network hotspot problem and

presents a topology aware resource adaptation strategy to alleviate congestion in sensor

network.

2.2 MAC and Link Layer Reliability for congestion control

[45] proposes auto rate protocol at MAC layer. They use queue length to get estimate

of congestion in the network. [45] assumes that the nodes total buffer size is Q and the

current number of packets in the buffer is q. When the buffer is full, i.e., Q = q, the node is

congested completely, the packets arrived at this node will be discarded. Conversely, when

the buffer is not full, the input packet rate Rin and output packet rate Rout are monitored.

Rin is the reciprocal of ∆Tin, i.e.

Rin =
1

∆Tin

, where ∆Tin represents the packet arrival interval. (2.1)

Packet arrival interval is defined as the time interval of two consecutive packets received

at the node MAC layer. Rout is the reciprocal of ∆Tout,

i.e., Rout =
1

∆Tin

, where, ∆Tout represents the packet service time. (2.2)

Packet service time is referred as the time interval between the time that a packet

arrives at MAC layer and the time that it is transmitted successfully, ∆Tout is the sum of

the time for queue, collision, back off and transmission [46]. The basic thought of [45] is
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that the receiver measures its congestion condition and sends the congestion information

back to the sender along with the transmission rate selected based on the channel condition

and the sender transmits a limited number of back-to-back data packets at the selected rate

according to the feedback information. If the receiver is less congested, the sender transmits

as many back-to-back packets as possible at a higher rate while the channel quality is high.

If the receiver is badly congested, the sender decreases the number of back-to-back packets

and transmits them at an appropriate rate to alleviate the congestion. The drawback of this

scheme is that the frame formats of RTS, CTS, ACK and DATA should be modified. Hence,

it changes the 802.11 standard and cannot be generalized.

A traffic-aware dynamic routing (TADR) [47] algorithm is proposed to route packets

around the congestion areas and scatter the excessive packets along multiple paths consisting

of idle and under-loaded nodes. TADR algorithm is designed through constructing a mixed

potential field using depth and normalized queue length to force the packets to steer clear of

obstacles created by congestion and eventually move towards the sink. Traffic-aware dynamic

routing (TADR) algorithm to route packets around the congestion areas and scatter the

excessive packets along multiple paths where the idle or under-loaded nodes are sufficiently

utilized in response to congestion under the fidelity requirements. The cornerstone of the

TADR algorithm is to construct two independent potential fields using depth and queue

length respectively. Normally, the depth field would find the shortest paths for packets.

Once the queue length grows over a certain threshold, which always means congestion, the

packets would flow along other suboptimal paths or just be cached in areas with more buffers.

The algorithms of ESRT [5] mainly run on the sink, with minimal functionality required

at resource constrained sensor nodes. ESRT protocol operation is determined by the current

network state based on the reliability achieved and congestion condition in the network. If

the event-to-sink reliability is lower than required, ESRT adjusts the reporting frequency of

source nodes aggressively in order to reach the target reliability level as soon as possible. If
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the reliability is higher than required, then ESRT reduces the reporting frequency conser-

vatively in order to conserve energy while still maintaining reliability. This self-configuring

nature of ESRT makes it robust to random, dynamic topology in WSN. In order to deter-

mine the current network state Si in ESRT, the sink must be able to detect congestion in

the network. However the conventional ACK/NACK-based detection methods for end-to-

end congestion control purposes cannot be applied here. The reason once again lies in the

notion of event-to-sink reliability rather than end-to-end reliability. Only the sink, and not

any of the sensor nodes, can determine the reliability indicator I and act accordingly. More-

over, end-to-end retransmissions and ACK/NACK overheads are a waste of limited sensor

resources. Hence, ESRT uses a congestion detection mechanism based on local buffer level

monitoring in sensor nodes. Any sensor node whose routing buffer overflows due to excessive

incoming packets is said to be congested and it informs the sink of the same. At the same

time ESRT makes the reasonable assumption that the sink is powerful enough to reach all

source nodes by broadcast. Flows are not differentiated and sending rates of all flows are

throttled when congestion is detected. On reception of packets with congestion notification

bit high, sink node regulates the reporting rate by broadcasting a high energy control signal

so that it could reach to all sources. This high powered congestion control signal may disrupt

some other transmissions. Also the assumption of congestion notification by the sink node

is very optimistic. In ESRT, the sink is required to periodically configure the source sending

rate to avoid congestion. Once detecting congestion, all the data flows are throttled to a

lower rate. In [5], the sink uses congestion feedback from sensor nodes to broadcast a noti-

fication to reduce reporting frequency. The effectiveness of this method is dependent on the

persistence of congestion and the feedback latency. If congestion is transient, and feedback

latency is significantly large, the notification arrival may arrive when congestion is no longer

present. Feedback latency is in turn dependent on the diameter of the network, and thus

the solution may not scale to huge sensor networks experiencing transient congestion.
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Adaptive Resource Control Scheme to Alleviate Congestion in Sensor Networks [7] in-

vestigates a framework to alleviate congestion by turning on more resources as soon as the

congestion is detected. In great detail it examines a family of strategies of managing the

network resource during a crisis state. These strategies include the following features:

• Congestion alleviation:

In this paper, they investigate the approach of using adaptive resource control strategies

to alleviate congestion. [7] suggest that more routing paths need to be set up in order

to share the load after the flow level congestion is detected. Sometimes, we need to

wake up the sleeping nodes (these nodes were in sleep state to conserve energy) to form

new routing paths. It is particularly important to control the resources at different

temporal and spatial granularities.

• Energy awareness:

While the long-term resource control scheme can reduce the congestion within the

network, it also significantly increases the energy consumption. As a result, we would

like to turn off the extra resources as soon as the source traffic decreases. Their scheme

achieves this because we can detect the congestion change within the network timely.

This papers resource control scheme has two phases:

1. To increase resource provisioning as soon as congestion occurs; and

2. To reduce the resource budget as soon as congestion subsides.

Their scheme has managed to balance the need of reliably shipping data packets to the

sink during a crisis state and the need of conserving energy consumption. The algorithm

involves three steps:

1. Congestion Detection: The upstream nodes of a flow periodically notify their con-

gestion level to downstream nodes by embedding their perceived congestion level into
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the header of data packets. After detecting the flow-level congestion exceeds a prede-

fined congestion threshold, the first node whose congestion level is below the hotspot

proximity threshold will become the initiator and start creating multiplexing paths.

2. Alternative Path Creation: Building multiplexing paths is a challenging task. If the

path is too close to the hot spot, it does not help, but it will further interfere with the

already bad congestion. On the other hand, if the path is too far from the original one,

then the packet delivery latency and the energy consumption will increase. In addition,

building multiplexing path can be made even more complicated by other factors. For

example, one may not be able to find a path from the initiator to the source; or there

may exist another hot spot within the network. In this paper, we propose to solve the

aforementioned dilemma by examining each candidate nodes congestion level.

3. Traffic Multiplexing: The node(s) where the multiplexing paths meet the original path

are referred to as traffic dispatcher. The dispatcher will evenly distribute the traffic

between multiple paths in a round robin fashion so that the congestion on the original

path can be alleviated.

In [7], the Adaptive Rate Control (ARC) scheme monitors the injection of packets into the

traffic stream as well as route-through traffic. At each mote, an estimation of the number of

downstream motes is made, and the bandwidth split proportionally between locally generated

and route through traffic, with preference given to the latter. The resulting bandwidth

allocated to each mote is thus approximately fair. Reduction in transmission rate of route-

through traffic has a backpressure effect on downstream motes, which can then reduce their

generation rates.

In CODA [6], they present a detailed study on congestion avoidance in sensor networks.

The basic idea is that as soon as congestion occurs, the source (or an intermediate nodes)

sending rates must be reduced to quickly release the congestion. In the simple case, as soon

as a node detects congestion, it broadcasts a backpressure message upstream. An upstream
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node that receives the backpressure can decide to drop packets, preventing its queue from

building up and thus controlling congestion. If multiple sources are sending packets to a sink,

CODA also provides a method of asserting congestion control over these multiple sources by

requiring constant feedback (ACKs) from the sinks. If a source does not receive the ACKs

at predefined times, it will start throttling the sending rates.

[48] Proposed hop by hop rate adjustment algorithm and local link utilization approach.

The rate adjustment algorithm is used by each sensor node. This algorithm continuously

runs in a sensor to ensure the optimal queue occupancy and scheduling rate. The hop by

hop rate adjustment based on the feedback information of immediate downstream node.

The key consideration of this algorithm is to maintain optimal queue occupancy adjusting

the scheduling rate. Scheduling rate is adjusted by an upper bound of maximal allowable

scheduling rate. Thus it ensures that scheduling rate of child nodes must not be greater than

scheduling rate of their parent. Still if any node determines that some of its parents child

nodes are idle then it readjusts scheduling rate. We make use of the queue implementation

in this paper.

Siphon - Overload Traffic Management using Multi-radio Virtual Sinks in Sensor Net-

works [9] proposes to exploit the availability of a small number of all wireless, multi-radio

virtual sinks that can be randomly distributed or selectively placed across the sensor field.

Virtual sinks are capable of siphoning of data events from regions of the sensor field that are

beginning to show signs of high traffic load. Siphon is based on a Stargate implementation

of virtual sinks that uses a separate longer-range radio network (based on IEEE 802.11 [49])

to siphon events to one or more physical sinks, and a short range mote radio to interact

with the sensor field at siphon points. [9] proposes to randomly distribute or selectively

place (as the case may be) a small number of all-wireless multi-radio virtual sinks (VSs)

that are capable of offering overload traffic management services to the existing low-power

sensor network. While such special nodes can be exploited to support a variety of applica-

tion specific (e.g., aggregation, coding, low-delay transport) and common network functions
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(e.g., storage, localized activation), we focus here on their ability to selectively siphon of

data events from regions of the sensor field that are be- ginning to show signs of overload. In

essence, virtual sinks operate as safety valves in the sensor field that can be used on-demand

to divert selected packets from areas of high load, alleviating the funneling effect, in order

to maintain the fidelity of the application signal at the physical sink.

Considering a sensor network consisting of such multi-purpose nodes, [50] proposes

Prioritized Heterogeneous Traffic-oriented Congestion Control Protocol (PHTCCP) which

ensures efficient rate control for prioritized heterogeneous traffic. Our protocol uses intra-

queue and inter-queue priorities for ensuring feasible transmission rates of heterogeneous

data. It also guarantees efficient link utilization by using dynamic transmission rate adjust-

ment. PHTCCP uses hop-by-hop rate adjustment which ensures that heterogeneous data

reach to the base station at their desired rates. The output rate of a node is controlled

by adjusting the scheduling rate. In [50], the packet service ratio reflects the congestion

level at each sensor node. When this ratio is equal to 1, the scheduling rate is equal to the

forwarding rate (i.e., average packet service rate). When this ratio is greater than 1, the

scheduling rate is less than the average packet service rate. Both of these cases indicate the

decrease of the level of congestion. When it is less than 1, it causes the queuing up of packets

at the queue. This also indicates link level collisions. Thus, the packet service ratio is an

effective measure to detect both node level and link level congestion. This might be wrong

because it might not reflect the network condition directly. There can be other reasons.

Different types of data generated from such types of motes might have different transmission

characteristics in terms of priority, transmission rate, required bandwidth, tolerable packet

loss, delay demands etc.

STCP [51] provides a generic, scalable and reliable transport layer paradigm for sensor

networks. Before transmitting packets, sensor nodes establish an association with the base

station via a Session Initiation Packet. The session initiation packet informs the base station

of the number of flows originating from the node, the type of data flow, transmission rate and
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required reliability. When the base station receives the session initiation packet, it stores all

the information, sets the timers and other parameters for each flow, and acknowledges this

packet. It is important for the sensor node to wait for the ACK to ensure that the association

is established. The nodes can now start transmitting data packets to the base station. In the

reverse path, the base station transmits an ACK or NACK depending on the type of flow.

Note that the source node will transmit packets associated with each flow independently,

since the transmission characteristics may be different. Since the base station knows the

rate of transmission from the source, the expected arrival time for the next packet can be

found. The base station maintains a timer and sends a negative acknowledgement (NACK) if

it does not receive a packet within the expected time. In event-driven flows, the base station

cannot estimate arrival times of data packets. Thus, clock synchronization is not needed.

Because of reliability requirement, positive acknowledgements (ACK) are used by source to

know if a packet has reached the base station. STCP adopts method of explicit congestion

notification with some modification. Each STCP data packet has a congestion notification

bit in its header. Every sensor node maintains two thresholds in its buffer: tlower and thigher.

When the buffer reaches tlower, the congestion bit is set with a certain probability. When

the buffer reaches thigher, the node will set the congestion notification bit in every packet it

forwards.

[52] is based transport layer of network stack. It mainly concentrates on many-to-one

routing and builds trees to balance network load and avoid congestion.

In Congestion-Aware Routing Protocol for Mobile Ad Hoc Networks, they first propose

a congestion-aware routing metric which employs the retransmission count weighted channel

delay and buffer queuing delay, with preference of less congested high throughput links to

improve channel utilization. Then, [53] propose the Congestion Aware Routing protocol

for mobile ad hoc networks. CARM is an on-demand routing protocol that aims to create

congestion-free routes by making use of information gathered from the MAC and physical

layer. The CARM route discovery packet is similar to that in DSR [20] where every packet
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carries the entire route node sequence. CARM employs the WCD metric in [20] to account

for the congestion level. In addition, CARM adopts a route effective data-rate category. The

combination of these two mechanisms enables CARM to ameliorate the effects of congestion

in multi-rate networks. CARM uses the same route maintenance approach as that in DSR.

Reliable Event Detection and Congestion Avoidance in Wireless Sensor Networks [28]

proposes source count based hierarchical medium access control (HMAC) that gives propor-

tional access, i.e. a node carrying higher amount of traffic gets more access to the medium

than others. Therefore, downstream nodes obtain higher access to the medium than the up-

stream nodes. This access pattern is controlled with local values and is made load adaptive

to cope up with various application scenarios. To avoid congestion, before transmitting a

packet each upstream node must be aware whether there is sufficient free buffer space at the

downstream node. To implement this notion, we restrict an upstream node from delivering

packets when its downstream node has not sufficient amount of free buffer space. This is

achieved by our proposed source count based weighted round robin forwarding (WRRF).

Sensing nodes must not transfer so high amount of data that can overwhelm the capacity

of downstream nodes, particularly the nodes near to sink. Hence, we propose hierarchical

medium access control (HMAC) that gives proportional access based on source count value,

i.e. a node carrying higher amount of traffic gets more accesses than others.

Pump Slowly Fetch Quickly (PSFQ) [3] is a simple, scalable, and robust transport

protocol that is customizable to meet the needs of emerging reliable data applications in

sensor networks. PSFQ represents a simple approach because it makes minimum assumptions

about the underlying routing infrastructure, it is scalable and energy efficient because it

supports minimum signaling, thereby reducing the communication cost for data reliability,

and importantly, it is robust because it is responsive to a wide range of operational error

conditions found in sensor network, allowing for the successful operation of the protocol even

under highly error-prone conditions. The key idea that underpins the design of PSFQ is to

distribute data from a source node by pacing data at a relatively slow speed (pump slowly),
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but allowing nodes that experience data loss to fetch (i.e., recover) any missing segments

from their local immediate neighbors aggressively (fetch quickly). PSFQ comprises three

protocol functions: message relaying (pump operation), relay-initiated error recovery (fetch

operation), and selective status reporting (report operation). A user injects messages into

the network and intermediate nodes buffer and relay messages with the proper schedule to

achieve loose delay bounds. A relay node maintains a data cache and uses cached information

to detect data loss, initiating error recovery operations if necessary. It is important for

the user to obtain statistics about the dissemination status in the network as a basis for

subsequent decision-making, such as the correct time to switch over to the new task in the

case of programming sensors over-the-air. Therefore, it is necessary to incorporate a feedback

and reporting mechanism into PSFQ that is flexible (i.e., adaptive to the environment) and

scalable (i.e., minimizes the overhead). PSFQ [3] is scalable and reliable transport protocol

that deals with strict data delivery guarantees rather than desired event reliability as it is

done in ESRT. However, this approach involves highly specialized parameter tuning and

accurate timing configuration that makes it unsuitable for many applications. Also PSFQ

has several disadvantages (i)It cannot detect single packet loss since they use only NACK.

(ii)It uses statically and slowly pump that result in large delay and finally, (iii)It requires

more buffer as hop-by-hop mechanism is used.

”End-to-end Reliability in wireless sensor networks: Survey and Research Challenges”

[55] and ”A Survey of Transport Protocols for Wireless Sensor Networks” [26] funded by

AT&T Labs Research are research paper which cover the challenges available in wireless

sensor networks. They talk about various limiting factors that should be dealt with and

provide new ideas for upcoming research.

Mitigating Congestion in Wireless Sensor Networks [56] was research done in MIT

to merge multiple congestion control schemes into one protocol. Their congestion control

scheme, which they call Fusion, integrates three techniques: hop-by-hop, flow control, rate

limiting, and a prioritized MAC. Hop-by-hop flow control is designed to prevent nodes from
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transmitting if their packets are only destined to be dropped due to insufficient space in

output queues at downstream nodes. Rate limiting meters traffic being admitted into the

network to prevent unfairness toward sources far from a sink. A prioritized MAC ensures

that congested nodes receive prioritized access to the channel, allowing output queues to

drain.

In [56] implementation, each sensor sets a congestion bit in the header of every out-

going packet. By taking advantage of the broadcast nature of the wireless medium, their

implementation provides congestion feedback to all nodes in a radio neighborhood with ev-

ery transmission. As a result, this implicit feedback obviates the need for explicit control

messages that could use a large fraction of available bandwidth. Hop-by-hop flow control

has two components: congestion detection and congestion mitigation.

A High-Throughput Path Metric for Multi-Hop Wireless Routing [57] defines a metric

called ETX. We will look at it in greater detail in the later part of this thesis.

In interference-minimized multipath routing with congestion control in wireless sensor

network for multimedia streaming [63], the source initiates path discovery to final destination.

The three steps of path discovery for I2MR are:

1. Primary path discovery: Constructs shortest possible path from source to primary

destination that minimizes intra-path interference.

2. Interference-zone marking: Marks one- and two-hop neighbors of intermediate nodes

along primary path as interference-zone of path because interference range is assumed

to be at most twice communication range.

3. Secondary and backup path discovery: Selects secondary and backup destinations and

constructs shortest paths back to the source. Paths constructed are outside the inter-

ference zone of the primary path and minimize intra-path interference.

After successful path-discovery, the source uses the primary-secondary path-pair for load

balancing. When an intermediate node along the active paths detects long term congestions,
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it informs the source and the source attempts to reduce its loading rate to alleviate the

congestions. The source eventually settles at the highest possible loading rate that the

active paths can support.

Load Repartition for Congestion Control in Multimedia Wireless Sensor Networks with

Multipath Routing [64] defines three load repartition strategies for congestion control, from

mode 1 to mode 3. For the purpose of comparison, they define mode 0 which refers to the

no load repartition scenario in which a source uses the same path without any congestion

control concerns.

• Mode 1: The source uses all the available paths to a sink from the beginning of the

transmission. The traffic is then uniformly load-balanced on these paths. In modes

2 and 3, explicit congestion notifications are used. At every intermediary node, when

the reception queue occupancy is greater than a given threshold (80% of total buffer

space for instance) or when the collision rate is above a given threshold, a Congestion

Notification (CN) message is sent back to the sources for each path id known by the

node.

• Mode 2: The source starts initially with one path. For each CN(nid, pid) message

received, the source adds a new path (the first available path different from pid that

is non active) until all available paths are marked as active. The load is uniformly

distributed on the number of active path. It is therefore an incremental approach.

• Mode 3: The source starts initially with one path. Upon reception of a CN(nid, pid)

message the source will uniformly balance the traffic of path pid on all available paths

(including path pid). Therefore depending on the number of CNs received for each

path, the transmission rate is not the same on all the active paths as opposed to mode

2.

In the paper, Reducing Congestion Effects in Wireless Networks by Multipath Routing

[65] they propose Biased Geographical Routing (BGR), a lightweight, stateless, geographical
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forwarding algorithm, as a cost-effective complement to greedy routing. BGR routes packets

on curved trajectories, by forwarding packets along curves, instead of along the shortest path,

towards the destination. To further mitigate congestion, [65] designed two congestion control

mechanisms that leverage BGR: In-Network Packet Scatter (IPS) is a lightweight mechanism

that aims to relieve transient congestion by locally splitting the traffic along multiple paths

to avoid congested hotspots. End-to-End Packet Scatter (EPS) is an end-to-end mechanism

that aims to alleviate longer term congestion, when IPS fails. EPS works by splitting the

flow at the source, and performing independent rate control along each path in response to

congestion.

There is also some research done for sensor network deployment in coal mines. The

Research and Design of High Reliability Routing Protocol of Wireless Sensor Network in

Coal Mine [66] address this issue. In these types of routing protocols, the main focus is

on conveying the event to sink. Hence, there should be a path from sink to source which

will route events reliably. It has been suggested in [75] that the rate adjustment be that

of Additive Increase Multiplicative Decrease (AIMD) [75], which has the disadvantage of

being more biased towards sources closer to the sink (in terms of latency), resulting in

these nodes having greater sending rates. This will cause the base station to receive an

even more disproportionate number of packets from nodes close by. In general, open-loop

control is more appropriate for transient congestion, whereas closed-loop control is better for

persistent congestion [39]. All of these schemes explained here have some drawbacks. None

of the schemes perform equally well in all the scenarios. ESRT [5] allocates transmission

rate to sensors such that an application-defined number of sensor readings are received at

a base station, while ensuring the network is not congested. On reception of packets with

congestion notification bit high, sink node regulates the reporting rate by broadcasting a

high energy control signal so that it could reach to all sources. This high powered congestion

control signal may disrupt some other transmissions. Also the assumption of congestion

notification by the sink node is very optimistic. CODA [6] uses a combination of the present
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and past channel loading conditions and the current buffer occupancy, to infer accurate

detection of congestion at each receiver with low cost. As long as a node detects congestion,

it sends backpressure messages to upstream nodes for controlling sending rate hop-by-hop.

It is also capable of asserting congestion control over multiple sources from a single sink

in the event of persistent congestion. Even though it overcomes some of the limitations

of ESRT [5], it doesnt consider the event fairness and packet reliability at all. PSFQ [3] is

scalable and reliable transport protocol that deals with strict data delivery guarantees rather

than desired event reliability as it is done in ESRT. However, this approach involves highly

specialized parameter tuning and accurate timing configuration that makes it unsuitable for

many applications. Also PSFQ has several disadvantages

• It cannot detect single packet loss since they use only NACK,

• It uses statically and slowly pump that result in large delay and finally

• It requires more buffer as hop-by-hop mechanism is used.

As defined in Many-to-One Routing, event fairness is achieved when an equal number

of packets are received from each node. In this proposal, individual nodes divide its effective

available bandwidth equally amongst all upstream nodes. This, in turn ensures fairness. It

several disadvantages including:

• It provides no reliability guarantee.

• The effective throughput may decrease due to implementation of ACK in transport

layer.

2.3 Hardware Support for sensor networks

The latest series of Telos B motes [34], the ZigBee motes [35] with improved abilities,

or PC104 [36] may be used for applications in WSNs which require intensive memory and
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bandwidth. Telos is an ultra low power wireless sensor module (”mote”) for research and ex-

perimentation [30]. The latest in a line of motes developed by UC Berkeley to enable wireless

sensor network (WSN) research is called Telos. It is a new mote design built from scratch

based on experiences with previous mote generations. Its new design consists of three major

goals to enable experimentation: minimal power consumption, easy to use, and increased

software and hardware robustness. ZigBee [35] is an important standardized approach to

the control of sensor and actuator networks in home/building/industrial automation appli-

cations that use low rate wireless PAN network technology. ZigBee stack includes Network

and Application Layer proposed by ZigBee Alliance and IEEE 802.15.4 MAC and Physical

Layer for both mesh and tree based communication. PC104 [36] is a popular standardized

form-factor for small computing modules typically used in industrial control systems or ve-

hicles. It gets the name from the popular desktop personal computers initially designed by

IBM called the PC, and from the number of pins used to connect the cards together (104).

PC104 cards are much smaller than ISA-bus cards found in PC’s and stack together which

eliminates the need for a motherboard, backplane, and/or card cage. Power requirements

and signal drive are reduced to meet the needs of an embedded system. Because PC104

is essentially a PC with a different form factor, most of the program development tools

used for PC’s can be used for a PC104 system. This reduces the cost of purchasing new

tools and also greatly reduces the learning curve for programmers and hardware designers.

Most of the sensors used in research for audio/video streaming are found to use embedded

microprocessors which have higher computing abilities [34].

27



Chapter 3

Objective and Motivation

Accurate and efficient congestion detection plays an important role in congestion control

of sensor networks. When congestion is detected in the network, we need to take some

measures to handle this congestion and reroute, mitigate traffic so as to maintain network

condition. Congestion taking place at a single node may diffuse to the whole network and

degrade its performance drastically.

3.1 Motivation

3.1.1 The Congestion Problem

In computer networks, mismatch of incoming and outgoing data rates results in conges-

tion. For wired networks like INTERNET, there are mixed links with different bandwidths.

The node with the lowest bandwidth along a path from the source to the destination is called

the bottleneck. Usually, congestion occurs in the bottleneck since it receives more data than

it is capable of sending out. In this situation, packets will be queued and sometimes get

dropped. As a consequence, response time will increase and throughput will also degrade.

Figure 3.1 illustrates network performance as a function of the load. When the load is

light, throughput is linearly proportional to the load and response time is almost unchanged.

After the load reaches the network capacity (the knee point), throughput won’t increase much

with the load. Instead, packets will be queued and the response time will become longer

in this period. The throughput may suddenly drop if packets get discarded due to buffer

overflow, which is called the cliff point as shown in Figure 3.1. Congestion can be realized in

many ways, but in simple terms one may say that, if, for any time interval, the total sum of
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Figure 3.1: Effect of congestion on throughput

demands on a source is more than its available capacity, the source is said to be congested

for that interval. Mathematically speaking:

∑
Demand > Available Resources (3.1)

Congestion in wireless networks is different from that of wired networks. Due to the

memory restrictions of the sensor nodes and limited capacity of shared wireless medium,

network congestion may be experienced during the network operation. In wireless networks

congestion happens due to contention caused by concurrent transmissions, buffer overflows

and dynamically time varying wireless channel condition [24][25][26].

3.1.2 Effects of Congestion

As WSN is a multi-hop network, congestion taking place at a single node may diffuse

to the whole network and degrade its performance drastically [27]. Congestion causes many

folds of drawbacks:

1. Increases energy dissipation rates of sensor nodes,

2. Causes a lot of packet loss, which in turn diminish the network throughput and
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3. Hinders fair event detections and reliable data transmission.

4. Large queuing delays are experienced as the packet arrival rate nears the link capacity.

5. The sender must perform retransmissions in order to compensate for dropped packets

due to buffer overflow.

6. Unneeded retransmissions by the sender in the face of large delays may cause a router

to use its link bandwidth to forward unneeded copies of a packet.

7. When a packet is dropped along the path to destination, the transmission capacity

that was used at each of the upstream links to forward that packet to the point that

it is dropped end up having been wasted.

Therefore, congestion control or congestion avoidance has become very crucial to achieve

reliable event detection for the practical realization of WSN based envisioned applications.

We find that one of the key reasons of congestion in WSN is allowing sensing nodes to

transfer as many packets as they can. This is due to the use of opportunistic media access

control. The high amount of data transferred by sensing nodes can overwhelm the capacity

of downstream nodes, particularly the nodes near to sink [28]. Congestion due to buffer

overflow is also not insignificant [29] [30].

3.2 Objective

Our objective in this thesis is to provide efficient data rate throughout the network

operation, handling varying traffic rates. Congestion is main factor in degrading network

throughput. To satisfy this objective we propose techniques to detect congestion, and take

action to maintain a constant traffic rate. Our aim is to try and maintain network in an ideal

state in which it will deliver maximum packets allowed by network bandwidth consistently.

Initial step towards achieving this goal is to categorize packet loss and congestion types in

wireless networks.
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3.2.1 Packet Loss Categorization

In this section we list the various ways in which packets can be lost in a multi-hop

wireless network. According to literature [39] packet losses are classified into four types:

Type I

If the transmitting mote is far from the receiving mote, the signal will attenuate signif-

icantly by the time it reaches the receiver. The signal attenuation is difficult to model since

the radio signal strength is not uniform at the same distance from the mote in all directions.

Type II

If more than one sensor mote in the sensor network is transmitting simultaneously,

interference will occur at the listening mote that is within range of the transmitting motes.

In general, motes can be too far away to be considered neighbors, but still be close enough

to interfere with reception. This type of interference is difficult to model also due to the

same reason given for Type I loss.

Type III

The third cause of loss is due to self-interference, that is, a mote’s transmission interferes

with itself at the receiver, due to multi-path-effects, Rayleigh fading etc.

Type VI

The type of loss occurs when a packet is successfully received by a mote but has to be

dropped due to queue overflow.

Of the causes listed, types I and III are dependent on the exact location and environment

in which the motes are deployed, as well as the radio technology implemented in the motes.

For instance, sensor motes placed less than 3 feet apart on a wall may not be able to hear

each other due to reactions of the wall. We therefore cannot assume to have any control
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over these losses. Type IV losses are due to congestion within the network. Clearly, the

correct implementation of congestion control will minimize this type of losses. In this thesis

we focus on type II and IV losses.

3.2.2 Types Of Congestion

We group congestion into two types according the reasoning of the problem appearance:

Type A

In a particular area, many motes within range of one another attempt to transmit

simultaneously, resulting in type II losses and thereby reducing throughput of all motes in the

area. This definition of congestion has been used in [25] as well. We note that explicit local

synchronization among neighboring motes can reduce type II loss in this regard, but cannot

eliminate it completely because non-neighboring motes can still interfere with transmission.

Type B

Within a particular mote, the queue, or buffer used to hold packets to be transmitted,

overflows. This is the conventional definition of congestion, widely used in wired networks.

This is also the cause of type IV losses. It is possible to have both types of congestion

occurring at the same time. Also there is different approach for naming congestion types.

According to the place in the network where congestion happens and the kind of sensor

reporting traffic, three type of congestion are defined in [6] & [44].

3.2.3 The Ideal Case

After the load reaches the network capacity (the knee point), the number of packets

delivered will not show a significant increase with the increase in offered load. Congestion

control is necessary in avoiding congestion and/or improving performance after congestion.
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Figure 3.2: Network condition with congestion control

It aims to make the network operate around the knee point. Hence it tries to keep the

throughput to maximum without affecting reliability. The ideal case is shown in Figure 3.2.

Congestion control is necessary in avoiding congestion and/or improving performance

after congestion. It aims to make the network operate around the knee point in the above

figure. These techniques are explained in detail in next sections.

3.3 Problem Statement

Assumptions and Goals

We begin by listing the assumptions we made about the networks.

• All nodes in the network are stationary.

• Each node is equipped with one 802.11b radio.

For this thesis we consider Directed Diffusion routing protocol. It manages paths in a

data-centric way. A sink node publicizes its interest in some events. Such an interest will

be disseminated within the network and received by nodes that have data on those events.

During this process, gradients that record two-way information along all possible paths are

established. Afterwards, a mechanism called path reinforcement is used to select high-quality
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routes. Directed Diffusion also provides two sets of application programming interface (API).

One set is network routing API, which enables upper-layer entities in sources and sinks to

communicate through the network. This API takes the form of publish/subscribe paradigm.

A sink node can subscribe to interesting events. Also, sources will publish their sensed events.

The Directed Diffusion platform takes care of the underlying implementation. To allow

processing in intermediate nodes, Directed Diffusion also offers another API called filters.

Application-specific operations can be implemented as filters to manipulate data packets as

they pass through the network. Filters are provided through an interface to specify interest

in particular events. For each filter, a priority is associated. Although directed diffusion is

a widely used in sensor networks, it has several weaknesses. It only considers delay as the

routing metric to select best path. As a result, high throughput may not be achieved. Its

failure to consider deadline during the route selection lowers the percentage of packets which

can meet the deadline of real-time traffic. Its reliance on flooding gives rise to differences

in interference levels during the exploratory data phase and the actually data transmission

phase, which makes the route decision even more inaccurate. It does not consider path

interference which worsens it performance during high rate data transmission. We propose a

routing protocol to augment and extend directed diffusion to handle these issues. There are

two phases in our protocol. The first phase consists of setting up efficient paths between the

source - sink pair. The second phase consists of using these paths to efficiently transfer data.

Data transmission considers multiple factors like the load on node, priority of applications

running on those nodes, and congestion level on those nodes.

First, we propose an algorithm which considers throughput, delay and intra-flow inter-

ference metric for a path. ETX (Expected Transmission Count) is used as the metric for

measuring link quality. We improve on QoS-based routing by limiting interference in lossy

links. We use an improved method for computing aggregate ETX for a path that increases

end-to-end throughput. We compute multiple paths between source-sink pair. We choose

best two paths based on the aggregate ETX metric and delay. The main goal of our protocol
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design is to use these routes to achieve high throughput and less delay. We monitor the

data transmission over a period of time. We measure maximum queue length over the active

path, we measure the rate of increase in queue length, and in addition we keep track of ETX

which can give us an idea of interference over links on active path. We have setup inter-

node queues, and intra node queues to handle data flowing through nodes. We maintain

a threshold value for all the queues. We check the current queue state after an interval of

δ. Depending on the increase in queue length we estimate if the queue might be over the

threshold value in time frame δ. We also measure the ETX value to see if it shows sign of

interference. If these metrics show sign of congestion on the active route, then we signal the

source to switch data transfer to an alternate path. If switching of path does not help to

control congestion, we use multiple paths to cope with high data rates. As a last option, if

even this does not mitigate congestion, then we limit source sending rate.

3.4 Proposed Techniques

As mentioned earlier Directed diffusion path metrics are inefficient. Our first problem

is to find paths which provide good throughput and high quality of service in the long run.

Also, in adhoc networks, finding one path from source to sink is inefficient. The topology and

node positions might change, some nodes might go down, and some of the links might fail

due to environmental conditions. So having multiple paths, which can act as backup in case

of failure is required. To overcome these main problems, we use the routing algorithm which

considers metrics of ETX as well as delay. Using a combination of these two metrics, we try

to find routes which have low interference and can support higher throughput. ETX is the

measure of Signal to Noise Ratio (SNR) over a wireless link. If the value of ETX is lower,

that means that the path has low error rate, interference, and hence can support higher

throughput. In addition to that we also account for delay, which will help us in selecting

shortest of available paths, which has high capacity.
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We use this path to transmit data from source to sink. In wireless medium the data

rate is affected due to lot of factors, which keep changing over time. This means that a

path that we have selected during route discovery phase might degrade and provide lower

throughput. This results in packet drops and packet retransmission. All these also affect the

congestion in that region. In our proposed algorithm, we keep track of ETX metric during

data transmission phase. If the value of ETX starts increasing, it means that the link quality

is degrading. However this parameter alone is not a very reliable indicator. ETX gives us

the link state - meaning how the link is performing at a given instant. In addition to the

link state we also have to get a measure of how node is performing during that instant. It

is very easy to misinterpret these parameters in wireless ad hoc network. So to get a more

accurate estimate of congestion we consider queue length in making the decision.

Queue length is another parameter which is used to get an estimate of congestion. We

use a congestion detection mechanism based on local buffer level monitoring in sensor nodes.

Any sensor node whose packet buffer overflows due to excessive incoming packets is said to

be congested and it informs the sink of the same. We use the technique of piggy-backing

to infrom the sink of current buffer level and channel quality. Sink keeps monitoring the

buffer levels, and it keeps track of average increase of the queue length. If sink feels that

the average increase might cause the queue length to go over threshold value, then it sends

a message to source to send data using alternate path. In addition to switching paths, we

make use of priority queues which will give preference to higher priority applications. Each

application will have a priority and deadline associated with it. In some applications like

video or voice transmission, we have to stream data real time. For such applications, jitter

control is more important than reliability. In other applications where we transmit highly

important data, we have to achieve maximum possible reliability and throughput. We have

to select the priority and deadline in such a way that it satisfies the application requirements.

Deadlines will buy more waiting time for the packets in buffer before getting dropped. This

will in turn make sure that packet drop rate for such application is as low as possible. At the
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same time priority of the application will help it get a preference in queues. It is left to the

user to determine the application priority and deadline based on the specific requirements.
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Chapter 4

Design of Congestion Control Mechanism

Congestion Control Component Mechanisms are composed from 3 sub-mechanisms:

1. Congestion Detection

2. Congestion Feedback and

3. Control Mechanism.

Congestion Detection is the mechanism used to safely detect if the problem has occurred

or is going to happen. The Feedback Mechanism, with which the sensor node or the sink

gives a feedback to the network to take some action according to the problem and Control

Scheme which is the final action taken.

4.1 Congestion Detection

Accurate and efficient congestion detection plays an important role in congestion control

of sensor networks. To detect congestion, the level of congestion should be quantified to

provide a fine-grained congestion control. We define two types of congestion levels in sensor

networks as follows:

• Per-node congestion level

• Per-flow congestion level

The per-node congestion depicts the local congestion level each individual node per-

ceives. To measure the per-node congestion level, each node can investigate the statistics
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on several metrics such as queue length, packet drop rate, channel loading, etc. For exam-

ple, ESRT [5] uses buffer utilization alone. However, if the wireless channel is unreliable

either by the unreliable MAC protocol (e.g. when the maximum number of retransmissions

is small) or by the unstable channel condition, the queue length or packet drop rate cannot

be a metric for congestion detection. This is because even though a node’s incoming traffic

volume exceeds the outgoing channel capacity, the queue length remains small since packets

quickly leave the queue due to collision and no subsequent retransmission after the collision.

Therefore, in CODA [6], each node measures its congestion level based on the perceived

channel loading as well as its queue length. In general, the per-node congestion level mea-

surement function f() returns a positive real number indicating the congestion level based

on the metrics of m1,m2, ...,mn as follows.

Li = f(m1,m2, ...,mn), where Li indicates the node i’s congestion level. (4.1)

The per-flow congestion level can be calculated in a distributed manner by each node

of a flow. The source records its current per-node congestion level in the header of a data

packet destined for the sink. Each subsequent node compares its per-node congestion level

with the per-flow congestion level recorded in the header of the data packet forwarded from

the previous hop. If its per-node congestion level is greater than the per-flow congestion level,

then the node updates the per-flow congestion level in the header of the data packet with its

per-node congestion level and forwards it to the next hop. If its per-node congestion is less

than the per-flow congestion level, the node simply forwards the packet without modifying

the per-flow congestion level. Therefore, the highest per-node congestion level is passed

downstream towards the sink. The sink may enforce an end-to-end congestion control based

on the per-flow congestion level. This approach could be used more efficiently in small

wireless sensor networks.
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4.1.1 Sensor Node Initiated

Two main techniques for detecting congestion by a sensor node are explained below. It

determines the local congestion levels and it performs better under high load traffic scenarios

= 50% of channel load, but it performs as well in the lower traffic load region. In this category

the following congestion indicators are used:

Buffer Occupancy

The simplest method is to compare the instantaneous buffer occupancy against some

threshold value. If the threshold is exceeded the congestion state is diagnosed. This kind of

detection is used from [75] [6] [76] [77] [55] [78] [7] [79] approaches. An improved method,

like that used for [5], takes the growth trend into account and eliminates the possibility of

the threshold that make up for a large fraction of the buffer size, to detect congestion state

too late. With this method the buffer size is regularly sampled and congestion is diagnosed

when the instantaneous buffer level is above some threshold and additionally the buffer size

has grown in the immediate past. As shown from [6] buffer occupancy alone is not a reliable

congestion indicator because packets can be lost in the channel due to collisions or hidden

terminal situations and have no chance to reach a buffer. Only the situations of a full

buffer and an empty buffer are reasonable indicators. This is because without link ARQ, the

clearing of the queue does not mean that congestion is alleviated since packets that leave the

queue might fail to reach the next hop as a result of collisions. CSMA does not guarantee

collision-free transmissions among neighboring nodes because of the detection delay. However

the buffer occupancy seems not to provide an accurate indication of congestion even when

the link ARQ is enabled. Following much of the prior work on congestion control, [68] uses

an exponentially weighted moving average of the instantaneous queue length as a measure

of congestion:
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AV Gq = (1− wq) ∗ AV Gq + wq ∗ instq (4.2)

where AV Gq = average queue length of node

wq = weighted queue length of node

instq= queue length of node at the current instant

The average queue length is updated whenever a packet is inserted into the queue. Thus,

if AV Gq exceeds a certain upper threshold U, the node is said to be congested. The node

remains in a congested state until AV Gq falls below a lower threshold L. In practice, a single

threshold is too coarse-grained to effectively react to congestion.

Channel Utilization

The goal of channel sampling is to obtain an estimate of the current channel utilization

U. In wireless networks, a community of nodes shares a single transmission medium. To

avoid collision and better utilize the bandwidth, some kind of medium access control (MAC)

protocol is needed. Carrier sensing multiple access (CSMA) is a random access protocol,

which allows users to transmit data in a none predetermined way. CSMA schemes require

a user to be sure the medium is idle before the transmission. This is called carrier sensing.

If the medium is busy, the user has to back-off for a random period and then re-sense. The

random period is to minimize collision since other users may also want to take the medium

at the same time. Once the channel is idle, the user can start transmission. Figure 4.1

illustrates the mechanism of RTS/CTS. Node N1 sends a RTS frame to node N2 before

the real data transmission. Node N0 also receives the RTS and is blocked by it. Upon

receiving the RTS, node N2 broadcasts the CTS frame to its neighbors. Thus, node N3 is

also blocked. Node N1 starts transmitting data once receiving the CTS frame from node N2.

The RTS/CTS mechanism is to deal with hidden terminal problems. In Figure 4.1, node
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Figure 4.1: Interference cause in wireless sensor networks

N5 is a hidden node of the transmission from N1 to N2, since N5 is beyond the interference

range of N2 (two hops). Node N5 cannot sense the data flow from N1 to N2 and will think

the medium is idle. If there is no RTS/CTS, node N5 will directly start sending data packets

to N4. In this case, the ACK frames from node N4 will be very likely to collide with the

data received by N2. With the use of RTS/CTS, node N5 won’t get the CTS from N4 and

cause interference to N1 and N2 since N4 can detect the flow between N1 and N2.

In sensor networks, CSMA schemes are practically used, for example, IEEE 802.11 [49]

and SMAC [86]. For CSMA, maximum utilization is Umax < 1 , beyond which the rate of

collisions increases and throughput decreases. Congestion is diagnosed when the channel

utilization is within some neighborhood Umax.

In CSMA networks, it is straightforward for sensors to listen to the channel, trace

the channel busy time and calculate the local channel loading conditions. Channel loading

gives accurate information about how busy the surrounding network is, but it is inherently

a local mitigation mechanism. It has limited effect, for example, in detecting large-scale

congestion caused by data impulses from sparsely located sources that generate high-rate

traffic. Listening to the channel consumes a significant portion of energy in a node. Therefore

performing this operation all of the time is not practical in sensor networks. So sampling

schemes activates local channel monitoring only [when queue is not empty] at the appropriate

time to minimize the energy cost while forming an accurate estimate of conditions. This

approach is also used in [55]. We use a similar approach to get the load condition of entire
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path. We term this metric as ETX. Our scheme calculates ETX for a set of three consecutive

links and sends it to sink. We use this metric at sink to get and estimation of channel load

and interference. Some other schemes are described below:

1. Measuring the received signal strength RSSI on messages, to determine how busy the

channel is from interference level. This is referenced as a possible congestion detection

method in [80].

2. By counting the continuous occupied queues neighborhood queue) that may appear

due to deadlock effects [81] because of CSMA MAC.

3. A combination of methods a and b seems to work very well. This kind of congestion

detection is used in [6] [80] [9].The above methods showed to work very well on detecting

congestion. The following are also proposed but seem to have mixed results.

4.2 Congestion Handling, Feedback and Control

This is a 2-step mechanism:

• Congestion Feedback

• Congestion control (action)

4.2.1 Congestion feedback

Based on congestion control algorithms classification done in [84] and according to

control theory point of view, we divided congestion control solutions into two groups.

• Open Loop

• Closed Loop
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Open Loop

These are the solutions in which control decisions of algorithms do not depend on any

sort of feedback information from the congested spots in the network, and so they do not

monitor the state of the network dynamically. The congestion control algorithm serves as a

controller or control actuator, purely based on its own knowledge of local sensor node. They

can be further classified as explicit control algorithms at the source or intermediate sensor

nodes of the network. This is used by [9] where the congested node in the visibility of a

Virtual Sink, redirect the traffic accordingly when working in the node initiated congestion

detection mode. Authors of [82] use open loop control as well.

Closed Loop

In contrast, closed loop solutions are based on the concept of a feedback loop. This

approach has three parts when applied to congestion control:

• Monitor the network to detect when and where congestion occurs.

• Pass this information to places where action can be taken.

• Adjust network operation to correct the problem.

The feedback can be either global or local; global means that the feedback information

goes all the way from destination to source (end to end) where local means the feedback

information comes only from immediate neighbors. With the provision of feedback these

algorithms are able to monitor the network performance dynamically. The feedback may be

explicit (sent explicitly as different or piggybacked messages) or implicit in other case. The

explicit feedbacks can be further classified as persistent (if available all times) and responsive

feedback (if only triggered under certain conditions). Furthermore many explicit closed loop

algorithms are divided into 2 stages - anticipatory and reactive congestion control. In the

anticipatory stage algorithms tend to achieve congestion avoidance whereas reactive strategy

is a congestion recovery scheme that responds to conditions of network congestion.
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In this thesis we use closed loop control mechanism. We monitor the network state on

a regular basis. Each node will keep track of its queue (buffer) level. Also, it measures the

SNR and calculates ETX value which will be conveyed to sink periodically. We keep track of

these parameters, and get an estimate of current network state. If the parameters indicate

that a network is being congested or is already congested, then we take a corrective action.

This corrective action is inform source of congestion on current active path. Then depending

on the state of source, it takes preventive action. The feedback mechanism is explained in

next section.

4.2.2 Feedback Mechanisms

Congestion feedback mechanisms can be categorized in several ways. In one way, they

are classified into explicit feedback and implicit feedback.

Explicit Feedback

Explicit feedback means that feedback is sent to the sender in an explicit form, like a

dedicated bit, or a control packet.

• Explicit Periodic Feedback:

This approach is used in [7] where the upstream nodes of a flow periodically notify their

congestion level to downstream (toward the sink) nodes by embedding their perceived

congestion level into the header of data packets. We make use of this approach to keep

sink updated with current status of nodes on the active path. We include the queue

length bit in packet header which will hold the maximum length of maximum queue

on the path. There is also a count field which will be incremented by each node on

path, whose queue length is more than the threshold value. This is an indicator of

the number of nodes which are getting congested. We can use these metrics to take

congestion control measures.
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• Explicit Responsive Feedback:

Explicit responsive feedback can be achieved using extra control messages. This ap-

proach is rarely used because extra packets consume sensors limited energy resources.

This technique is followed by [6] where backpressure messages are used in case of con-

gestion detection. We use this approach in even of congestion. To address the issue of

congestion, we send the response packet to source using an alternate path.

Implicit Feedback

In implicit feedback, feedback information doesn’t occupy any dedicated bits. It is

realized by piggyback. The well-known example of implicit feedback is TCP, where 3-

Acknowledgments imply congestion. From the aspect of information carried by feedback,

they can be categorized into binary or non-binary feedback. Binary feedback can only tell if

there is congestion or not. In contrast, non-binary feedback carries more information, which

can indicate the congestion level. TCP is a binary feedback mechanism.

• Piggybacking (as implicit feedback): Different forms of piggybacking are used in re-

search papers. In this case a congestion bit is inserted in the packet (message) header.

Some of the techniques are listed below:

– In inverse going traffic (sink to source). In [25] something alike happens when

new transmission rate is included in the packet forwarded from root(sink) toward

the leafs of a tree based sensor network

– Taking advantage of synchronous link layer NACKS to inform sender if the re-

ceivers buffer exceeds threshold as happens in [77].

– Overhearing outgoing packets from neighbor downstream nodes as happen in [6]

[55][68].
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– In RTS/CTS. In [79] proposal the authors suggest that congestion state is inserted

in the RTS/CTS signals. The congestion information distributed by the MAC-

signals may either include only those cost estimates (path, queue length) belonging

to the final destination of the currently transmitted packet, or it may include much

more than this, namely the cost estimates to every single node of the network.

In this thesis we keep track of ETX which indicates channel utilization. Also, we keep

track of buffer occupancy which is an estimate of queue length - load on the node. We keep

track of these two parameters, and measure the rise in values between two feedback’s. By

measuring these parameters we get an estimate of current network state. If the parame-

ters indicate that the network is being congested or is already congested, then we take a

corrective action. This corrective action is inform source of congestion on current active

path. This feedback is an explicit responsive feedback. We have introduced two messages

: SWITCH PATH MESSAGE and MULTI PATH MESSAGE, to implement the feedback

mechanism. In our case the cost of the feedback is this one message. Then depending on the

state of source, it takes preventive action. If the source receives a SWITCH PATH MESSAGE,

it will switch the data transfer to an alternate path, making it active path. This scheme is

possible because we change the routing algorithm for directed diffusion to find two disjoint

paths for source - sink pair. Switching of paths will help us transmit data around the con-

gested region. This has a twofold advantage. Firstly we will be using a path which does not

have congestion - meaning better throughput. Secondly, we will be avoiding the congestion

region, thus stopping the traffic from worsening the congestion and degrading the network

performance. If the source has already switched path before and congestion has not resolved,

then sink sends a MULTI PATH MESSAGE, which will indicate source to send data using

multiple paths. This will distribute the network traffic, thus mitigating congestion. We

explain the routing and congestion control in detail in next section.
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Chapter 5

Implementation Details

5.1 Directed Diffusion

Directed diffusion uses a publish/subscribe communication model in which a sink node

floods interests as requests for a named data. Directed diffusion consists of several elements:

interests, data messages, gradients, and reinforcements [86]. An interest message is a query

or an interrogation which specifies what a user wants. Each interest contains a description

of a sensing task that is supported by a sensor network for acquiring data. Typically, data

in sensor networks is the collected or processed information of a physical phenomenon. Such

data can be an event which is a short description of the sensed phenomenon. In directed

diffusion, data is named using attribute-value pairs. A sensing task (or a subtask thereof) is

disseminated throughout the sensor network as an interest for named data. As the interest is

propagated through the network, each intermediate node sets up a gradient with its neighbors

and enables data that match the interest to be pulled towards the sink. Sensor nodes with

data that match the interest will forward exploratory data propagated by intermediate nodes

through established gradients to the sink. This is shown in Figure 5.1.

This dissemination sets up gradients within the network designed to draw events (i.e.,

data matching the interest). Specifically, a gradient is direction state created in each node

that receives an interest. The gradient direction is set toward the neighboring node from

which the interest is received. Events start flowing towards the originators of interests along

multiple gradient paths. The sensor network reinforces one, or a small number of these

paths. This process is depicted in the Figure 5.2.
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Figure 5.1: Interest Propogation in Directed Diffusion [12]

Figure 5.2: Gradient Establishment in Directed Diffusion [12]
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Figure 5.3: Reinforcement packets in Directed Diffusion [12]

The sink initiates a reinforcement message to the node that first forwarded the new data

to it. Other nodes use the same rule to reinforce the upstream neighbor. This is shown in

Figure 5.3.

The source node starts to send data through the reinforced path after it receives the

reinforcement. Based on the above rule, basic diffusion generally selects route with the lowest

delay. In the past few years, researchers have proposed a variety of single or hybrid metrics

with the purpose of improving the performance, including throughput, delay, jitter, and

deadline hit ratio, of wireless networks. Single metrics include RTT [59], PktPair [59], ETX

[56], WCETT [60], and EDR [61]. Most of them can be implemented in directed diffusion. In

order to consider both throughput and delay and take into account intra-path interference,

a hybrid metric was proposed in [87]. Our routing algorithm highly relies on this metric to

find efficient routes.

5.2 Changes to Path metric

In this section, we present a routing algorithm which finds routes which try to reduce

channel interference, maximizes the throughput and minimizes the delay over lossy links

in multi-hop WSNs [87]. In our current protocol, none of the specific multimedia QoS
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requirements guide the routing decision process because we assume that every node has the

same bandwidth and lack of global information prevents us from getting the interference area

of a certain node. We only try to maximize throughput and minimize delay in order to meet

the requirements. We assume that packets which are sent earlier by the source are added

into the queue at each node earlier, which means they are processed earlier. Admittedly,

packet scheduling helps achieve the hard deadline requirement. For sensor nodes, however,

scheduling tasks may drain their energy. The ETX of a link is the predicted number of data

transmissions required to send a packet over that link [56].

ETX =
1

df ∗ dr
(5.1)

The forward delivery ratio, df , is the probability that a data packet successfully arrives

at the recipient; the reverse delivery ratio, dr, is the probability that the ACK packet is

successfully received.

• Definition of ETXp: The path ETX is the maximum of the sum of the ETXsum of any

three successive hops in a route. This computes the amount of bottleneck. N is the

number of hops. ETXj is the ETX value of the jth hop. The number of bottleneck

links may vary according to the network density.

ETXp =
N−3
max
i=0

(
i+2∑
j=i

ETXj) (5.2)

• Definition of Delayp : The end-to-end delay of a packet in a network is the time it

takes the packet to reach the sink from the time it leaves the source.

• Definition of Costp: The path cost is the combined metric of a route.

51



Costp = ETXp ∗Delayp (5.3)

• Definition of decision interval (INTERVAL): We start an adaptive timer at each node

(except the source) when the node receives the first exploratory packet. After an

”INTERVAL” period, the timer expires and it selects the route with the lowest Costp.

• EXPLOREdelay: is a constant with the basic timeout value. ETXi is the ETX value

of the upstream link on which the first exploratory data arrive. Different ”INTERVAL”

may be computed at different nodes based on the following formula.

INTERV AL = ETXi ∗ EXPLOREdelay (5.4)

5.3 Computing Path Metric

Our path metric is called Costp which conforms to the following three goals.

1. The protocol should take into account both end-to-end delay and ETX of a route. Since

the 802.11b MAC implements an ARQ (retransmission) mechanism, a links ETX can

be computed. Delay can be calculated by using time-stamps from each packet.

2. The path metric should be independent of number of hops in a route, as number of

hops is not an accurate measure of congestion or path quality.

3. The method for computing the path ETX must consider intra-flow interference.

First, it takes both end-to-end delay (Delayp) and ETX of a route (ETXp) into account.

By adjusting the values of α and β , we are able to set different weights to each factor. If

throughput is more important for an application, α should be greater than β and vice versa.
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Figure 5.4: Transmission range and interference range for a chain of nodes. The solid line
circle is a nodes transmission range while the dotted line circle shows the interference range.
Nodes within 3 hops interfere with each other. [87]

The way we compute ETX for a path is based on the theoretical analysis and experimental

demonstration in [63]. [87] employed the Packet Decoupling property to conclude that the

first packet has outpaced the rest of the packets when the fourth packet is to be injected.

[71] examined the capacity of a chain of nodes and they found that an ideal MAC protocol

could achieve chain utilization as high as 1/3. The example below illustrates this principle

for the node placement in Figure 5.4

We modify route selection process of directed diffusion by

1. Using Costp as the metric instead of pure delay;

2. Reinforcing multiple links at the sink to obtain disjoint paths from the source.

These modifications will maximize the throughput and minimize the delay over lossy

links in multi-hop WMSNs. We are not using specific multimedia QoS requirements such as

bandwidth to guide the routing decision process or prioritized packet scheduling to avoid fast

depletion of energy in sensor nodes. However we do consider the playout deadline since end-

to-end delay constraint is one of the most important QoS requirement because data packets
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Figure 5.5: Extra fields added in packet header to compute ETX.

Figure 5.6: Routing Table modified to include ETX metric.

arriving later than the deadline are simply useless, making them equivalent to data dropped.

We discard paths which fail to meet the playout deadline. Throughput is influenced by ETX,

which is estimated by the cumulative SNR (Signal to Noise Ratio). The use of historical

SNRs offers more stable and accurate estimation of ETX. When interests are first flooded, a

timestamp t0 is inserted in the interest packets. Exploratory data packets are flooded after

the source receives interests from the sink. At each intermediate node which received an

exploratory data packet, SNR is read from the packet. Cross-layer design is probably needed

here since SNR is a MAC layer metric. ETX information of the previous three upstream

links, calculated from SNR, is inserted in the packet header in the ETX (n%3) fields [87].

This is shown in Figure 5.5

The ETX information of each link could be collected while the exploratory data are

flooded. CostP of each sub-path is kept at the intermediate nodes local table in ascending

order. The format of the local table is shown in Figure 5.6

Only the one with the lowest Costp is forwarded to the next hop. Another timestamp at

the sink t1 is recorded when the first exploratory packet reaches the sink. ti is the timestamp

for the ith exploratory packet to reach the sink. We only consider packets whose timestamp

ti satisfies the constraint
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ti − t0 <= DL (5.5)

where DL is set to be slightly less than the real playout deadline to take into account the

time for flooding disjoint paths. If no path can satisfy the delay constraint, the sink adjusts

the metric CostP by giving more weight to β (for delay) and piggybacks the new value in

new INTEREST messages. This routing algorithm will help us create a high throughput,

low delay path. But for our purpose we need multiple paths which will act as back up paths

in event of congestion.

5.4 Multiple path reinforcement

The sink stops putting exploratory data packets in the candidate pool when it received

one that cannot meet the deadline or when the multi-path timer expires. It then sorts the

candidate paths in ascending order of CostP and selects the first ρ paths to reinforce, where

ρ > ∆ and ∆ is the number of paths needed at the source. We need to find more than

the required number of paths because some candidate paths may not be reinforced i disjoint

nodes cannot be found or the delay exceeds the playout deadline. If two nodes try to reinforce

a link that converge in the same node, the first one to reinforce would win.

In figure 5.7, A reinforces C first. Then, B tries to reinforce C and C will drop the packet

because C regards it as an old message. C will then send B a NEG RESPONSE so that B

could delete the entry of C in its local candidate table and selects the next candidate, e.g.

D. In addition, delay constraints must be satisfied by computing the difference between two

local timestamps. We can guarantee that if we choose the node within the delay constraint

in each step, the final route can also meet the delay constraint, no matter how many times

we have to choose the next-best node. This technique not only guarantees disjoint nodes
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Figure 5.7: Scenario to reinforce multiple paths

(paths with disjoint nodes are definitely disjoint paths), but also ensures loop-free path since

loops are broken when selecting the next candidate in the local table.

We will see an example of loops can be avoided. In figure 5.8, A has already reinforced

B and C, D, E are reinforced sequentially.

When E tries reinforcing B, B drops the packet and sends NEG RESPONSE to E. So

E is able to select the next candidate F to reinforce. Standard diffusion only reinforces one

route and when there is a loop, the reinforcement packet is simply dropped and no packet

is received at the source. Our algorithm guarantees the success of reinforcement packets

reaching the source provided that the delay constraint could be satisfied.

5.5 Queue Priorities

We mentioned earlier that we make use of queues to buffer data. Queue length is one of

the parameter which is used to get a estimate of congestion. Instead of using simple queues

we make use of priority queues which will give preference to higher priority applications. In

some applications like video or voice transmission, we have to stream data real time. In such

applications, dropping some packets does not cause as much distortion as delay in trying

to achieve maximum throughput. For such applications, jitter control is more important
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Figure 5.8: Avoid Loops using NEG RESPONSE

than reliability. In other applications where we transmit highly important data, we have to

achieve maximum possible reliability and throughput. For such applications, we can have

less stringent deadlines but higher priorities, which will make the queues, deliver as much

packets as possible. Deadlines will buy more waiting time for all the packets in buffer before

getting dropped. This will in turn make sure that packet drop rate for such application is as

low as possible. At the same time priority of the application will help it get a preference in

queues. This will imply that the application packets will be transmitted as early as possible.

These application packets will get more preference over the other applications; hence more

deadlines will be met. Sometimes, due to high network load, we might not be able to meet

deadlines of some packets. We will drop these packets as transmitting will use energy as well

as network resources. It is left on user to determine the application priority and deadline

based on the specific requirements. Both the queues explained below help us achieve the

goals described in above paragraph.

5.5.1 Inter-Queue Priority

The application assigns the priorities for heterogeneous traffic. If there are multiple

applications running on same nodes, each of them will have a application queue which will
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Figure 5.9: Inter Queue Priority

hold packets for that application. All the packets coming out of that queue will have same

priority as the application. Therefore, we can say that each data queue shown in Figure 5.9

has its own priority. This is termed as Inter-Queue priority. The scheduler schedules the

queues according to the Inter-Queue priority. It decides the service order of the data packets

from the queues and manages the queues according to their priorities. This ensures the data

with higher priority to get higher service rate.

Each application A1, A2, A3, ..., An will have a priority assigned to it say AP1, AP2,

AP3, ..., APn. This application priority will normally be in the range from 1 - 10, where 1

will be lowest priority and 10 will be highest priority. We are using a reverse convention of

what is normally present in Linux systems. The reason for that is, it will help us calculate

the data rate for a particular application depending upon this number. Hence to simplify

the calculations, we make use of priorities in a different manner. Data rate of applications is

determined by using the priority assigned to the application queue. Queue length is one of

the parameter which is used to get a estimate of congestion. Instead of using simple queues

we make use of priority queues which will give preference to higher priority applications. In

some applications like video or voice transmission, we have to stream data real time. In such

applications, dropping some packets does not cause as much distortion as delay in trying
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to achieve maximum throughput. For such applications, jitter control is more important

than reliability. In other applications where we transmit highly important data, we have to

achieve maximum possible reliability and throughput. For such applications, we can have

less stringent deadlines but higher priorities, which will make the queues, deliver as much

packets as possible. Deadlines will buy more waiting time for all the packets in buffer before

getting dropped. This will in turn make sure that packet drop rate for such application is

as low as possible. At the same time priority of the application will help it get a preference

in queues. This will imply that the application packets will be transmitted as early as

possible. These application packets will get more preference over the other applications;

hence more deadlines will be met. Sometimes, due to high network load, we might not be

able to meet deadlines of some packets. We will drop these packets as transmitting will use

energy as well as network resources. It is left on user to determine the applications priority

and deadline based on the specific requirements. Depending on the assigned data rate and

number of application, the available data-rate of these applications will vary. If a higher

priority application does not have any data to transmit it will relinquish its slot and that

will be used by other application which has a lower priority than it and has some data to

transfer.

As sensor nodes have limited processing power and memory, we have to implement a

simple scheduler which will not incur high power usage. Hence, we came up with a simple

scheme where-in we add up the application priorities of all available applications. Each

application is eligible for a share of data-rate, which is proportional to a fraction of its

priority against the total application priorities. Hence, to represent it mathematically, the

eligible share of each application i will be:

sum =
n∑

j=0

APj (5.6)
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FI =
APi

sum
(5.7)

The data rate available for this application will be this fraction of total data rate.

Di = D ∗ FI (5.8)

Each application will transmit data with a data rate of DI . This data rate is allocated in

round robin fashion. Each application AI will get a time slot every n units. If the application

queue has any data to transmit during that time slot it will use it transmit data. If it does

not have any data it will pass it on it the next application in the queue. Consider a sensor

node with 3 applications A1, A2, A3. Each of these applications has a priority of 4, 7, 9

respectively. Depending on priority we can calculate the fraction F available for each of

these applications as:

sum =
2∑

I=0

API (5.9)

sum = 4 + 7 + 9 = 20 (5.10)

F1 =
4

20
=

1

5
(5.11)
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F2 =
7

20
=

7

20
(5.12)

F3 =
9

20
=

9

20
(5.13)

Assume that the total data rate available for given sensor is 10 packets/sec. Using the

above fractions we will determine the data rate available for each of the applications:

D1 =
4

20
∗ 10 = 2 packets/sec (5.14)

D2 =
7

20
∗ 10 = 3.5 packets/sec ∼ 3 packets/sec (5.15)

D3 =
9

20
∗ 10 = 4.5 packets/sec ∼ 4 packets/sec (5.16)

The total data rate based on this is 9. But the allocated data rate is 10. To balance this

we can allocate the remaining slots (1 in this case) to all the applications beginning from

highest priority application. Hence the final data rate assigned to applications is:

AP1 = 2 packets/sec (5.17)
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AP2 = 3 packets/sec (5.18)

AP3 = 5 packets/sec (5.19)

5.5.2 Intra Queue Priority

Apart from data produced by a node itself, there can be other sources of data. The

same node can act as an intermediate node for other source - sink pair. In such case, there

will be two sources of data. One will be data produced by itself. The other one will be data

routed through it. We cannot ignore this source of data while designing priority queues.

As directed diffusion is an ad-hoc network protocol, all the routing takes place at network

layer. Hence, each packets next hop is newly decided by the current node. So, when the data

to be routed comes in, it will be transferred to network layer, where the node will look up

its gradient table and forward packet depending upon its interest. In our case, when node

travels to network layer, we have a filter which is a priority queue. This means that when

the packet comes in with a priority already assigned to it by its original application, it will

be automatically put into one of the priority queues. All the queues shown in Figure 5.10

are priority queues.

Priority queues are used for giving the route data more priority than originating data.

The reason behind this is that, as route data has already traversed some hop(s), their loss

would cause more wastage of network resources than that of the originating (i.e., source)

data. Hence, it would be better to forward those as soon as possible after receiving from the

immediate downstream node. We term this type of priority as Intra-Queue priority. The

classifier can assign the priority between the route data and originating data by examining
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Figure 5.10: Intra Queue Priority

Figure 5.11: Time Slots assigned for Applications.

the source address in the packet header. In our case this classifier is deadline. Naturally,

the deadline of originating data at the node is going to be less stringent than the deadline of

packets being routed through the node. The packets being routed will have already elapsed

some time in travelling. So we consider deadline as other of the metrics in deciding intra

queue priority. As each packet header has a field which includes deadline for that packet,

our job is simplified. Each of these queues will sort the packets in terms of deadlines. The

packet having lowest deadline will be sent first. Hence we will try our best to route the

packet in least time with minimum possible waiting delay. As mentioned above each of the

application queues will get slots where they can transmit data. In the example mentioned

above, we allocate three time slots to each of the applications. Figure 5.11 represents the

data transmission of 3 applications.

Now, if in the duration of transmission, Application 3 does not have any packets to

transmit in its given time slot, Application 2 can transmit data. There can also be a scenario
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where-in a packet selected for transmission has missed its deadline. In such scenarios, we

will have to drop that packet because it is already late. Delivering such packets to sink will

result in resource utilization without increasing throughput or data quality.

5.6 Congestion Detection

In order to determine the current network state, the sink must be able to detect con-

gestion in the network. However the conventional ACK/NACK-based detection methods for

end-to-end congestion control purposes cannot be applied here. The reason once again lies in

the notion of event-to-sink reliability rather than end-to-end reliability. Only the sink, and

not any of the sensor nodes, can determine the reliability indicator i and act accordingly.

Moreover, end-to-end retransmissions and ACK/NACK overheads are a waste of limited

sensor resources.

Hence, we use a congestion detection mechanism based on local buffer level monitoring

in sensor nodes. Any sensor node whose routing buffer overflows due to excessive incoming

packets is said to be congested and it informs the sink of the same. The traffic generated

during each reporting period, mainly depends on the reporting frequency f and the number

of source nodes n. The reporting frequency f does not change within one reporting period.

Assuming n does not significantly change within one reporting period, the traffic generated

during the next reporting period will have negligible variation. Therefore the amount of

incoming traffic to any sensor node in consecutive reporting intervals is assumed to stay

constant. This, in turn, signifies that the increment in the buffer fullness level at the end of

each reporting interval is expected to be constant.

Let,

bk and bk−1 be the buffer fullness levels at the end of kth and (k-1) th reporting intervals

respectively and

B be the Threshold value for the queue in Figure 5.12.
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Figure 5.12: Queue Threshold

For a given sensor node, let ∆ b be the buffer length increment observed at the end of

last reporting period,

i.e.,∆b = bk − (bk−1) (5.20)

Thus if the sum of current buffer level at the end of kth reporting interval and the last

experienced buffer length increment exceeds the buffer size,

i.e., bk +∆b > B, (5.21)

the sensor node infers that it is going to experience congestion in the next reporting

interval. When node infers that its queue length is greater than threshold, it will put its

queue length in the header field. Also, it will increment the Node Count Field in packet

header. All the nodes lying on the path till sink will check their queue length against the

threshold value and update the Node Count Header field accordingly. Nodes also check the

Queue Length field, and if their queue length is more than queue length stored in packet

header, they will update the queue length field in header of their queue length. As we can
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Figure 5.13: New fields added to keep track of congestion control

see in the Figure 5.10 , every node has multiple queues corresponding to each application.

If node has many applications running on it, the individual queue for each queue length

might not be high, but the cumulative queue length might be more than the node threshold.

Hence while calculating the congestion state, node always takes cumulative queue length

into account. Cumulative queue length is the actual number of packets node has to send or

route.

When the sink receives this packet, it will have all the information about the nodes

lying on its path. To include this information we have added following extra fields. The

fields shown in gray have been added earlier. The new fields which have been added to take

care of congestion are T1, maximum queue length and Node Count.

5.7 Congestion States

If on a given route, one of the nodes has poor link quality, or is getting overloaded, the

overall throughput of path degrades. If the queue length of node is over the threshold, it

means it is getting overloaded. This will result in packets being dropped which will reduce

the efficiency of route. We need to take some action before the condition degrades. The

nodes will signal sink even before they get congested (cross the queue threshold). This gives

time for sink to send a message back to source and take preventive action if the node is

getting congested or corrective action if node is already congested. As we also consider

ETX to compute the congestion condition, we will take into account network interference

and packet retransmissions due to MAC layer losses. Sink will analyze packet headers and

conclude if node(s) on the route is congested.
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Figure 5.14: Scenario with a single source - single sink showing paths formed by Directed
Diffusion and proposed Protocol

To consider a simple scenario, we can assume that there is a one source sink pair

in the network. Both directed diffusion and Proposed Congestion Control protocol use

interest packets, to establish paths. During the interest propagation, we take special care

to keep track of two paths which are completely distinct than the other. We make use of

NEG RESPONSE to drop the nodes which have already taken part in interest propagation

by some other path. Once the interest packets travel to sink, both the protocols use different

metrics to decide upon the final path. While deciding upon the final path, directed diffusion

finalizes only one path and sends a reinforcement message along that path. In case of DDCC

we send positive reinforcement to multiple paths (in case of simulations we normally use two

paths). Once the positive reinforcement reaches source, the gradients across the network

will be set to denote these paths. The 5.14 shows the network state once the gradients are

set. To differentiate between the protocols, we use color convention. The path selected by

directed diffusion is shown in black, where as path selected by proposed protocol is shown

in red. Also we observe that there are two paths in red. But in the initial state, we only use

one of these paths as active path.
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Figure 5.15: Scenario with a single source - single sink showing data flowing through active
path.

We maintain the list of multiple paths in a data structure which is similar to circular

queue. When the source starts sending data, it will select the first path available in the

queue. This path will be most reliable, and will provide the best quality. For directed

diffusion, no such data structure is required. Hence it will directly select the only path

available and start sending data over that path. Of the two paths available, we show the

active path by highlighting it with a red glow around it. The source sink pair will be using

only one path initially. Hence only one path glows. The state of network once data transfer

starts is shown in Figure 5.15:

If there is congestion over active path of proposed protocol, then we switch path to the

lower one. But in case of directed diffusion, we will have to initiate route discovery and find

a new path. Depending on the information received and the network state, various possible

scenarios can occur. We explain some of the peculiar scenarios, which will take care of all

the possible network conditions.

5.7.1 Initial Congestion State

We can say that network is in initial congested state if received queue length is not more

than the threshold value and ETX value is unchanged (or not significant change). There can

be many reasons which result in increase in queue length. They do not indicate congestion in
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all cases. But, congestion can cause rise in queue length of congested node. Hence, we cannot

predict that the cause for this flag to be raised is congestion. It can also be a momentary

congestion caused due to burst of data at the source. In this case sink starts monitoring

ETX and queue length for next few packets. For our simulation purpose we have assumed

this number to be 7. If we find that ETX or queue length is increasing, we send a switch

path message. But if the network condition remains stable and does not change over the

period, we do not take any action. If the queue length of a node is greater than threshold,

it will mean that the node is being overused. It might be because many sources can use it

as an intermediate node. If this is the scenario, then due to interference of other paths, the

ETX will increase and raise the congestion flag. But if the node itself is producing lot of data

in addition to forwarding data, then its queue might get filled. In such scenarios it is not

advisable to still use the same path because soon the node will start dropping packets. So

to avoid such scenarios, we send a switch-path-message to source, and take up the alternate

path. There can be scenarios where we predict that there is congestion, when there is not,

and send a switch path message. This is a case of false alarm. But this will only cost us

one extra packet over the network. Because, once sink sends switch path message to source,

source will switch its path to the alternate path and continue sending data. The alternate

path selected is still better than the default path selected by directed diffusion. This can be

clearly seen in our simulation results.

5.7.2 Congested Network

Lets consider a scenario where network is in congested state, and the congested node

raises the flag. A node will update the packet header with its queue length. Packet

header will also include ETX, and timeout value for that packet. At sink, when it re-

ceives the information, it will check the Queue length field included in packet header. If

Queue Length > Threshold value, we send switch path message due to possible losses ex-

plained above. If the ETX value of the path is greater than the ETX MAX value, (which
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will be the max value of ETX, which will still deliver the packets within timeout.) then it

is indication that the network resources are being overused and we can be sure that there is

congestion in the network. We can also be sure that there is lot of interference, which will

cause packet loss at MAC layer, and queues are building up on the nodes. We can also check

the delay parameter, which will be more because of possible retransmission in and around

the congested region.

5.7.3 Prolonged congestion

A sensor can also suffer from prolonged congestion in some instances. This mainly occurs

in scenarios where multiple sources, which do not have distinct paths to their respective sinks,

are generating data at high rate. In this case, the node where two or more paths intersect

will have to forward data packets from both the sources. This node will have high influx of

data, and if this is more than the link capacity or node capacity, then it will not be able to

handle it. This will cause in packet loss and eventually result in congestion. In such cases,

if we switch path it will reduce congestion momentarily, but eventually mean shifting the

point of congestion. This can also cause source-sink pairs to switch paths in round robin

fashion, without improving network scenario. To avoid such cases, we go through the list of

alternate paths only once. If we still face congestion over the new path, we conclude that

the network load is more than what a single path can handle. This gives rise to the need of

multiple paths. We send a multi path message, if we traverse the set of routes once.

5.7.4 Path failure

Our algorithm is designed for avoiding congestion. But in some cases it can be used to

recover route. Though we dont focus on this issue, we address this issue in this section. In

ad-hoc network it is not possible for a sink to know if the source has data or not. So we

introduce a control packet, End Transmission, which is sent by source to sink when it has

sent all the data. Once an intermediate node receives this message, they can go into dormant
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state, unless they are being used by some other path. If during transmission, sink does not

receive any message from source for a time > 2 ∗ delay, (where delay is the time required

by last packet to travel from source to sink), sink assumes that there has been a problem

on the path from source to sink. It is not possible to know the cause of this delay. It can

be node failure, link failure, or very high interference caused due to some external device.

In this case, sink sends a switch path message to source and tells source to start sending

data using alternate path. This feature can be used for path recovery. The advantage of

using this method is that it will select and alternate path which is guaranteed to satisfy the

application deadlines, throughput and QoS requirements.

We can have different source - sink pair combinations. Depending on the data rate and

required throughput, the network will fall in one of the above described states. We cover

some of the basic designs in which we can place source and sink in the following section.

5.8 Scenarios

In this section we try to cover all the possible source sink pair combinations which can

exist in the network. For the ease of tracking events, measuring the metrics, and doing

calculations, we limit ourselves to two source sink pairs for our simulation.

5.8.1 Overlapping paths

The first scenario which we describe here is where we have two source sink pair’s. Both

the sources viz. Source1, Source2 work independently using the two different protocols. If

the network is running on directed diffusion, then it will find only one path between source

- sink. This path is shown in black. There will one path between each of the respective

source - sink pair. If the network is running proposed protocol, then it will find two paths.

These paths are shown in red. We consider a scenario where one of the paths determined by

one source - sink pair will partially overlap with one of the paths of other source - sink pair.

The paths dont cross each other, but at some point, a part of the path overlaps with the
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Figure 5.16: Scenario where one of the paths for source sink pair overlaps

other. When the source sends interest to corresponding sink, they are unaware of the other

source-sink pair existing in the network. Intermediate nodes will receive interest packets from

both the sources. When the intermediate nodes see these interest messages, they compare

attributes of newly packet with the entries of their routing table. Hence, when the sources

determine path, these paths are distinct to the other path of the same source. There is a

possibility that one of the paths might overlap with the other source - sink pair. We will not

be able to predict which path will coincide. In our scenario, we consider that the primary

path of first source - sink pair will be the one which overlaps with the primary path of other

source-sink pair. In the initial stage of the network, data is being transmitted on primary

path. This primary path of both source sink pairs overlaps with each other. This is shown

in Figure 5.16.

Once the path is set, the source starts sending data to sink. As we know in the initial

phase of network, we just use one of the paths which will be called primary path. As we can

see in figure 5.16, three nodes are shared by both paths. This means that only half of the

total throughput of the link will be available for each of the paths. If the sum of data rate

of both the sources is greater than the total throughput of the link, then it is natural that

three nodes will be overloaded. Those three nodes will not be able to handle the resultant

load of source1 and source2. That is shown in Figure 5.17 in yellow.
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Figure 5.17: Overlaping path scenario showing data transfer over the common path

This overload of data will cause congestion over those three nodes. Due to high rate

of incoming data, queues will start building up on those three nodes. Apart from building

up of queues, there will be other effects of congestion. As the queues build up, waiting time

of packets in those queues will increase. This will increase the delay for these packets. In

addition to this, queues and high load over the channel will also cause interference around

that area. We keep measuring these metrics at sink. Once we notice that these metrics are

increasing, we send a switch path message. Now in this scenario, we cannot really determine

which of the sinks will notice the network congestion. We assume that the sink closer to

congestion region will detect degradation of these metrics, and send switch path message to

its corresponding source. When the source receives switch path message it sends data via

alternate path. That is depicted in Figure 5.18.

5.8.2 Partially crossing paths

One more scenario that we will be covering is where paths of source - sink pair partially

cross each other. In this scenario, we have one source - sink pair going across the network.

We have placed another source in the middle of two paths between source1 − sink1. In

this scenario, both the paths between source2 − sink2 will cross one of the paths between

source1−sink1. Even in this case, when two sources - source1 and source2 broadcast interest
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Figure 5.18: Overlapping path scenario where path switch occurs resulting in source-sink
pairs taking different paths which resolve congestion.

messages to find path to sink, all the intermediate nodes consider the two interest packets as

different packets, as they have two different attributes. For each of these source-sink pairs,

there will be only one path that is active. The way these paths are formed is shown in Figure

5.19.

Once the sources start transmitting data, the data flows through one of the paths - the

primary path. This path will be active path for that duration. We show the active path

as glowing red. For the sake of explanation we consider the top path of source1 − sink1

pair to be active. Also, we consider the left path to be primary path for source2 − sink2

pair. As we can see in the figure, these two paths intersect each other at a node, which is

shown in bright yellow. Also, we show the path taken by Directed Diffusion in black. As we

know Directed Diffusion will find only one path from source to sink. The paths for these two

source sink pairs will intersect each other at a node represented in dark yellow. This is the

node where congestion occurs, if the source-sink pair runs on directed diffusion. The bright

yellow node represents congestion spot for proposed protocol. We use the same metrics

explained in previous scenario to get an estimate of congestion. If we assume that the pair

source1 − sink1 detects congestion and sends a switch path message, then the congestion

region is avoided. In addition to this the paths of source sink pairs are now distinct. This
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Figure 5.19: Partially crossing path scenario showing two set of paths discovered by each
source-sink pair.

will ensure that congestion does not occur in the network due to interference of these two

paths! The forming of congestion spot is shown in Figure 5.19.

Due to this congestion spot, if the other source-sink pair (pair 2) decides to switch paths

and try to avoid congestion, it will send a switch path message. Now this switch path message

will go to source2. Once source2 switches path, the alternate path will be taken. Now,

none of the source, sink nodes are aware of other source sink pair existing in the network,

or the path which goes across its intermediate nodes. The switching of path will result

in source2 − sink2 taking an alternate path. But the alternate path also intersects the

source1 − sink1 path in the same way as does the primary path (Figure 5.21 ). Hence, it

might resolve congestion for a few milli/micro seconds. But due to the existing high data

rate on few of the nodes of alternate path, it will result in congestion over the nodes common

to alternate path of source2 − sink2 and primary path of source1 − sink1. We term this as

Congestion-Shift. This shift takes place in Figure 5.22 .

Once Congestion Shift occurs, the performance of both paths going through conges-

tion region will degrade. This will again trigger a congestion avoidance mechanism. Now,

at this stage, if the other source1 − sink1 pair detects congestion, then it can send a
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Figure 5.20: Partially crossing path scenario shows that congestion is building up over
common nodes on primary path of both source - sink pair. The same happens for directed
diffusion.

Figure 5.21: Partial crossing path scenario showing reduced congestion over common nodes
on primary path, after alternate path is selected by one source - sink pair
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Figure 5.22: Partial crossing path scenario showing congestion building up on the interme-
diate nodes of alternate path. We term this as Congestion - Shift.

switch path message to its corresponding source. This switch path will completely avoid

the congestion region and solve the problem of congestion. But, instead of sink1 detecting

congestion, if sink2 detects congestion. It will take preventive measures to avoid congestion.

In case of sink2, it has already used both the paths - primary path and alternate path. If

congestion still exist on the link, then it will deduce that the source sending is too high

for one single path to handle. Hence it will decide to use multiple paths. Which means

it will send multi path message to source2. When source sees this message, it will start

sending data over all the paths through which it receives multi path message. Sink sent the

multi path message through two paths. Hence, source2 will transmit using the two paths as

shown in Figure 5.23

Even when the source2− sink2 is using multiple paths to transmit data, there are a few

common nodes resulting in intersecting paths. This might take care of overall load on the

paths, but there might still be some interference due to essentially three paths going thorough

that region. This might still affect the performance. This can cause sink2 to ask source2

to send data at slower rate. But even in this case if sink1 detects congestion and switches

path, then it will resolve the congestion problem. Once, this happens, sink1 − source1 will
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Figure 5.23: Partial overlapping path scenario showing use of multiple paths.

use alternate path, whereas source2 − sink2 will be using multiple paths. There might not

be a need to use multiple paths once source1 − sink1 changes paths. But we dont have any

mechanism to signal the source2 to switch back to single path or switch back to primary

path. Even in this case, as we know that the network state will be refreshed every few

minutes. Hence, we can rely on that for source - sink pairs to make efficient use of resources.

5.8.3 Complete crossing paths

The last scenario we will consider is a network where we have two source - sink pairs

whose paths cross each other completely. Which means, all the paths between source - sink

pair (including alternate paths) will intersect the paths from other source-sink pair. We

place source sink pair across the network, in such a way that it completely crosses the other

source sink pair. Hence the source - sink pair essentially form a ’X’. The intersecting point

of the two paths will be a set of nodes where the resultant load/throughput will be equal

to the sum of throughput offered by both source-sink pair. This will result in congestion

around the node where the paths intersect. The formation of paths is shown in Figure 5.24.
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Figure 5.24: Scenario with source - sink pair having cross paths

Each of this sources has two paths going through network to the sink. As they lie

across the network, they, both these alternate paths cross each path of other source-sink

pair. When they sources want to transmit data, they will choose one of the paths which

will be a primary path for that source. As primary paths of two sources cross each other,

the node common to both paths will have to forward incoming data from both sources to

respective nodes. Which means the common node will have effective data-rate equal to sum

of data rate of two sources. If the resultant data rate is more than capacity of network, then

the node will not be able to handle the load. Nodes queue will start to building up. It will

start dropping packets. It will also result in congestion around that node. This is shown in

Figure 5.25 .

When the throughput of two paths starts decreasing, one of the two sinks will detect

it. The sink will send a switch path message so as to indicate the source to send data via a

different path. But as we can see in Figure 5.25, switching paths will not really help as the

alternate path intersects with active path of other source sink pair (all paths of a source-sink
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Figure 5.25: Cross path scenario showing active path being used for data transfer

pair intersect with all paths of other source-sink pair). The node which is congested is shown

in yellow in Figure 5.25 .

When the path switch occurs, it will result in Congestion-Shift which explained in the

previous scenario. When congestion shifts occurs, it will be again detected by one of the two

sinks. The network can be in different states depending on which sink detects congestion.

If the second sink detects congestion, it will be the first time it detects congestion. Hence

it will send a switch path message to its source. This will cause the source-sink pair to use

an alternate path. This will again result in congestion shift as in the previous case. The

network will still remain in the same state even after sending one more switch path message.

But instead of other source-sink detecting, the original sink detects congestion, then the

network might end up in a different condition. The source-sink pair has already sent a

switch path message and has used all its paths. So it will send a multi-path over multiple

paths. Hence one of the source-sink pair’s will start using multiple paths. If there is still

congestion in network, then the other source-sink pair might also start using multiple paths.

This will cause each of the source-sink pair’s to use two paths. There can be a maximum of
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4 nodes in common lying on these 4 paths. These paths will share data rate of each source,

and eventually reduce the total load over common nodes. In some, cases congestion can

still exist, if the load offered by sources is very high. In such scenario dividing load over

multiple paths will not solve the congestion problem. It will just result in spreading the

effect of congestion over different nodes. But it will not completely take care of congestion.

We cannot really do anything if the load offered is too high for the network to handle. The

only option that we have is to send a message to source to slow down so as to alleviate

congestion. This part has not been covered in this thesis. In these cases we can call some

other congestion control technique like CODA.
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Chapter 6

Simulation And Results

6.1 Simulation Environment

The simulator we have used to simulate the directed diffusion ad-hoc routing protocols

is the Network simulator 2 (ns) [88] from Berkeley. To simulate the mobile wireless radio

environment we have used mobility extensions to ns that is developed by the CMU Monarch

project at Carnegie Mellon university.

6.1.1 Network Simulator

Network simulator 2 is the result of an on-going effort of research and development

that is administrated by researchers at Berkeley. It is a discrete event simulator targeted

at networking research. It provides substantial support for simulation of TCP, routing, and

multicast protocols. The simulator is written in C++ and a script language called OTcl.

NS uses an OTcl interpreter towards the user. This means that the user writes an OTcl

script that defines the network (number of nodes, links), the traffic in the network (sources,

destinations, type of traffic) and which protocols it will use. This script is then used by ns

during the simulations. The result of the simulations is an output trace file that can be used

to do data processing (calculate delay, throughput etc) and to visualize the simulation with

a program called Network Animator (NAM). An overview of how a simulation is done in ns

is shown in Figure 6.1 .

The version 2.29 of the Network simulator supports simulation of mobile wireless envi-

ronments. The Network simulator alone was initially only intended for stationary networks

with wired links. Researchers at CMU Monarch group realized the need for mobility models

in ns and therefore started to design and implement a mobility model that would extend the
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Figure 6.1: Top level overview of input/output in Network Simulator - 2

simulator. The CMU Monarch extensions to ns provide new elements at the physical, link,

and routing layers of the simulation environment. Using these elements, it is possible to

construct detailed and accurate simulations of wireless subnets, LANs, or multi-hop ad-hoc

networks. Recent versions of ns contain further extensions to this model to allow combined

simulation of wired and wireless networks. The following section provides an overview of the

extensions added to NS.

6.1.2 Mobility Extensions

Node Mobility

Each mobile node is an independent entity that is responsible for computing its own

position and velocity as a function of time. Nodes move around according to a movement

pattern specified at the beginning of the simulation.

Realistic Physical Layers

Propagation models are used to decide how far packets can travel in air. These models

also consider propagation delays, capture effects and carrier sense.
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MAC 802.11

An implementation of the IEEE 802.11 Media Access Protocol (MAC) protocol was

included in the extension. The MAC layer handles collision detection, fragmentation and

acknowledgments. This protocol may also be used to detect transmission errors. 802.11 is

a CSMA/CA (Carrier Sense Multiple Access with Collision Avoidance) protocol. It avoids

collisions by checking the channel before using it. If the channel is free, it can start sending,

if not, it must wait a random amount of time before checking again. For each retry an

exponential back off algorithm will be used. In a wireless environment it cannot be assumed

that all stations hear each other. If a station senses the medium, as free, it does not nec-

essarily mean that the medium is free around the receiver area. This problem is known as

the hidden terminal problem and to overcome these problems the collision avoidance mecha-

nism together with a positive acknowledgment scheme is used. The positive acknowledgment

scheme means that the receiver sends an acknowledgment when it receives a packet. The

sender will try to retransmit this packet until it receives the acknowledgment or the num-

ber of retransmits exceeds the maximum number of retransmits. 802.11 also support power

saving and security. Power saving allows packets to be buffered even if the system is asleep.

Security is provided by an algorithm called Wired Equivalent Privacy (WEP). It supports

authentication and encryption. WEP is a Pseudo Random Number Generator (PRNG) and

is based on RSA RC4. One of the most important features of 802.11 is the ad-hoc mode,

which allows users to build up wireless LANs without an infrastructure (without an access

point).

Address Resolution Protocol

The Address Resolution Protocol, ARP is implemented. ARP translates IP-addresses

to hardware MAC addresses. This takes place before the packets are sent down to the MAC

layer.

84



Figure 6.2: Diagram showing design of physical layer shared by NS2 simulator

Radio Network Interfaces

This is a model of the hardware that actually transmits the packet onto the channel

with a certain power and modulation scheme.

Transmission Power

The radius of the transmitter with an omni-directional antenna is about 250 meters in

this extension. Different antennas are available for simulations.

Shared Media

The wireless extensions in ns2 are based on a shared media model (Ethernet in the air).

This means that all mobile nodes have one or more network interfaces that are connected to

a channel. A channel represents a particular radio frequency with a particular modulation

and coding scheme. Channels are orthogonal, meaning that packets sent on one channel do

not interfere with the transmission and reception of packets on another channel. The basic

operation is as follows, every packet that is sent (i.e. put on the channel) is received (i.e.

copied to all mobile nodes) connected to the same channel. When a mobile node receives a

packet, it first determines if it is possible for it to receive the packet. This is determined by

the radio propagation model, based on the transmitter range, the distance that the packet

has traveled and the amount of bit errors. The conceptual diagram is shown in Figure 6.2.
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Figure 6.3: A model of mobile node in NS-2
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6.1.3 Mobile Node

Each mobile node makes use of a routing agent for the purpose of calculating routes

to other nodes in the ad-hoc network. A system model of mobile node is shown in Figure

6.3. Packets are sent from the application and are received by the routing agent. The agent

decides a path that the packet must travel in order to reach its destination and stamps it

with this information. It then sends the packet down to the link layer. The link layer level

uses an Address Resolution Protocol (ARP) to decide the hardware addresses of neighboring

nodes and map IP addresses to their correct interfaces. When this information is known,

the packet is sent down to the interface queue and awaits a signal from the Multiple Access

Control (MAC) protocol. When the MAC layer decides it is ok to send it onto the channel,

it fetches the packet from the queue and hands it over to the network interface which in

turn sends the packet onto the radio channel. This packet is copied and is delivered to all

network interfaces at the time at which the first bit of the packet would begin arriving at the

interface in a physical system. Each network interface stamps the packet with the receiving

interfaces properties and then invokes the propagation model. The propagation model uses

transmit and receive stamps to determine the power with which the interface will receive

the packet. The receiving network interfaces then use their properties to determine if they

actually successfully received the packet, and send it to the MAC layer if appropriate. If

the MAC layer receives the packet error-free and collision-free, it passes the packet to the

mobiles entry point. From there it reaches a multiplexer, which decides if the packet should

be forwarded again, or if it has reached its destination node. If the destination node is

reached, the packet is sent to a port de-multiplexer, which decides to what application the

packet should be delivered. If the packet should be forwarded again the routing agent will

be called and the procedure will be repeated.
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6.1.4 Simulation Overview

A typical simulation with ns and the mobility extension is shown in Figure 6.4. Basically

it consists of generating the following input files to ns:

1. A scenario file that describes the movement pattern of the nodes.

2. A communication file that describes the traffic in the network.

These files can be generated by drawing them by hand using the visualization tool or

by generating completely randomized movement and communication patterns with a script.

We used the scripts provided as part of ns2 since we found this method faster. These files

are then used for the simulation and as a result from this, a trace file is generated as output.

Prior to the simulation, the parameters that are going to be traced during the simulation

must be selected. The trace file can then be scanned and analyzed for the various parameters

that we want to measure. This can be used as data for plots with for instance Gnu plot. The

trace file can also be used to visualize the simulation run with either Ad-hockey or Network

animator.

We simulated Directed Diffusion with Congestion control over NS 2 version 2.29. NS-

2 has implemented the basic directed diffusion. We compare our protocol with the basic

directed diffusion to get an idea of how much better/worse our protocol performs in different

scenarios. To get an idea of the performance in varying conditions, we run the simulation by

varying parameters like network size, data rate and source-sink pair positions. We compare

our protocol and basic diffusion over different network sizes of 100, 144, 196, 256, 324 and

400 nodes configured in the rectangular area. For simulations in which we keep network

size constant, the distance between any two nodes is always 100m. The size of packets is

500 bytes, greater than double of the smallest video frame which is 187 bytes. We use a

deadline of 200ms because the playout deadline varies from 50ms to 200ms. The deadline

for the exploratory packets is 2000ms. We measure the performance of 12 simulation runs

with randomly generated seed. The simulation time of each run is 1000s in ns2. We compare
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Figure 6.4: A system design of Network Simulator to get input and generate output.
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throughput (packets per second), end-to-end delay (ms) and energy usage. We also show the

way queues build up during simulation. The simulations were conducted on an Intel(R) PC

with a Xeon(TM) processor at 1700 MHz, 512 Mbytes of RAM running Fedora Core 4.0.

Validation of simulation setup is an important part of simulation. In this thesis, we use

NS-2 to implement protocol details. To verify if we have implemented the protocol correctly,

and the code does not have memory leaks, or unreferenced pointers, we make use of DDD

debugger. We have tried our best to eliminate any memory leaks and make sure that code is

correctly written. We have used the NS-2 trace files to verify if the simulation setup has been

correctly implemented. For a given scenario, we trace the exploratory packets to trace the

routes which have been established during the routing phase. We then trace the routing of

data packets to see if data is following the same route which was selected by the source. This

will prove that we have found route correctly and are using one of the routes to transmit data.

While checking exploratory packets, we also check for exploratory packets which are being

sent to setup alternate routes. When data transmission starts, and sink detects sign of con-

gestion, it will send a SWITCH PATH MESSAGE to source. We scan the trace files for this

SWITCH PATH MESSAGE. We note down the time at which SWITCH PATH MESSAGE

reaches source. This message tells source to start transmitting data using an alternate path.

We then look for data flowing through new path. We check the timestamp of first data packet

and compare it with timestamp of SWITCH PATH MESSAGE to see if the data transmis-

sion began immediately after receiving SWITCH PATH MESSAGE. This will prove that

the data is flowing through new path, and was triggered by the control message. We also

check nodes on old path to make sure that data is no longer transmitted using this path.

This proves that SWITCH PATH MESSAGE mechanism has been implemented correctly.

We also check for number of times SWITCH PATH MESSAGE is sent across the network

and see if multiple SWITCH PATH MESSAGE’s maintain the network state. We have ver-

ified the working of MULTI PATH MESSAGE in a similar way by scanning trace files for

MULTI PATH MESSAGE and making sure that data is flowing through both the paths.
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We check the sequence number on data packets to make sure that data is being divided on

two paths and not just being duplicated. All these validation steps are used to ensure proper

working of the implemented protocol before we begin to collect results.

Metrics

Before we get into actual simulation results, we will discuss the metrics we want to vary

to get an estimate of the performance of our algorithm. We will measure throughput, delay,

energy and queue length of the nodes on active paths.

Parameters

The metrics has to be measured against some parameter that describes the characteristic

behavior of an ad-hoc network and can be varied in a controlled way. One of the advantages

of simulation is that it allows us to do so. To get an idea of the protocol we will change

following parameters in the network:

1. Network size: It is the number of nodes and the geographical size of the area that

the nodes are moving within. The network size basically determines the connectivity.

Fewer nodes in the same area mean fewer neighbors to send requests to, but also

smaller probability for collisions. To see how our protocol performs in large networks,

as against small networks, we test our protocol on various network sizes.

2. Data Rate: To check the load handling capacity, we check our protocol on varying

loads.

3. Number of Source-Sink pairs: We also try to keep the data rate constant but increase

number of source-sink pairs. We try to implement as many combinations of source

sink pairs as possible from the above shown scenarios.

We can also change the packet size and get an idea of network load. In our case we do

not change packet size.
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6.2 Results

We simulated the basic Directed Diffusion over NS-2 simulation with different network

sizes and throughput. We also made a few changes to basic directed diffusion which comes

with NS-2 to implement our protocol. The changes we made to basic directed diffusion in-

clude: adding a new packet type to incorporate switch path message and multi path message,

finding multiple routes, changing path metric. We added a filter which acts as queue be-

tween two phase pull and gradient filter, which will store incoming data packets and forward

it to two phase pull for processing. This filter acts as a priority queue and creating multiple

queues for multiple applications to store respective priorities of those applications. Priority

queue is implemented using a pre-gradient filter and a post-gradient filter. Each variant

essentially performs the three steps.

1. Add priority information to packets at sink.

2. Extract priority information from packets at source.

3. Compute priority and append it to outgoing data packets.

The priority is stored in the priority attribute by the source and used to prioritize the

data packet at each intermediate hop. The source also timestamps the packet so that inter-

mediate nodes can compute the elapsed time. Upon receiving a data packet, intermediate

nodes extract the location of the sink and the timestamp. They use this information along

with their location to update the priority again using equation:

V =
||pi − pdst||
Tdeadline − Ti

(6.1)

We also added two extra types in the message structure to include the control message

types viz. switch path message and multi path message. Once we made all the changes
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required to implement our proposed protocol in directed diffusion we have done a number

of experiments to assess the reliability of our protocol. We have measured different metrics

which according to us are a good measure robustness and reliability of the proposed protocol.

These metrics give us an idea of how the protocol behaves in certain scenarios such as

congestion. As explained above there are different scenarios where congestion occur. Each

of these scenarios have varying magnitude and affect the overall performance in a different

ways. In this chapter we will describe how the simulations were done.

We have done different types of simulations:

• Offered load simulations: we vary the load that we offer the network, to see how the

protocols behave when for instance the load is high.

• Network size simulations: we vary the number of nodes in the network. The geograph-

ical area itself was fixed in order to make sure the density of nodes is varied.

In all our simulations we have used a grid topology, where each node will have 4 neighbors

except for the nodes lying on the edge of the grid who will have 3 neighbors. To avoid these

nodes to be considered in path formations, we have selected source - sink pairs in such a way

so that they lie in the grid such that they do not have to rely on edge nodes to find path. We

do not use randomized scenarios because we want to know where the source-sink are present

for each run. For a given set of parameters we make 12 runs. We want our simulations to

represent all the 3 scenarios we explained earlier. We have a fixed source - sink position

which will guarantee us that the network is in one of the 3 explained scenarios. We make

4 runs on each of these 3 scenarios for given metrics. Then we take an average of these 12

runs and use those values as a measure of throughput or delay.

The reason we consider 12 runs for a given set of parameters is because we want to

prove that our simulations are not seed specific, and results for each seed are consistent with

the other. In case of our simulations, we also want our simulations to be able to represent all

the 3 different scenarios explained above. If we select 12 random seeds, the path formation
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for these seeds cannot be predicted. 12 random seeds may or may not cover all the scenarios

in forming path structure. We try to simulate our protocol over 3 scenarios to prove the

point that our protocol is not dependent on path formations, between source-sink pair. It

performs equally well all the three scenarios, giving consistent results. The deviation of

values for throughput, delay and average energy for all the 12 seeds is very little, and well

within the range of acceptable deviation. Hence, taking an average of all these values, which

fall within the same range, will give us an estimate of overall performance of network, instead

of scenario specific performance. As all the parameters, except random seed are same for all

the simulation runs, we can say that these 12 runs are similar to each other, and prove the

same metric. Hence taking an average of throughput/delay/energy for these 12 runs will be

a more appropriate way of representing the protocol behaviour. Each of the graphs shown

below for proposed protocol (DDCC) have a ’I’ which is a indicator of variations in values

for a particula parameter over three different scenarios for 12 different seeds in NS-2.

The parameters that can be changed are:

• Maximum speed: Every time a speed is going to be randomized, it is randomized in

the interval [0,maximum speed]. For most of our simulation we have not used the

randomized feature. We manually set the packet rate of a node to transmit constant

bit rate traffic. In our simulations, randomized traffic did not generate high amount of

congestion and hence it was tough to test our protocol. Hence, for our convenience we

have decided upon using a constant traffic rate so as to be sure that congestion occurs

in network.

• Number of nodes: This was constant during one set of simulation runs. We used

100 nodes for all simulation except the size simulation where we varied the number

of nodes. This parameter determines the density of mobile nodes in a given area of

dimensions 1000 x 1000 meters.
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Simulation Parameters
Parameter Value
Transmitter range 250.10 meters
Bandwidth 2 Mbps
Simulation time 900 s
Number of nodes 100
Environment size 1000m X 1000m
Traffic type Constant Bit Rate
Packet rate 200, 100, 67, 50, 25, 10
Packet size 500 Bytes
Simulation Runs 12

Table 6.1: Simulation Parameters for Offered Load simulations

• Simulation time: The time for which the simulations will be run. We have used a

simulation time of 900 seconds for all simulations. We calculated the metric considering

the initial route discovery phase, as well as the intermediate route discovery phase

where it would find new paths.

6.2.1 Simulation Parameters for Offered Load

Table 6.1 shows the simulation parameters and setup configuration for simulations in

which we change offered load and observe the performance of the protocol.

6.2.2 Offered Load Simulation

We compare the proposed protocol with traditional directed diffusion in terms of through-

put, delay and energy consumption. The first graph compares the throughput of directed

diffusion to proposed protocol. Figure 6.5 shows throughput vs data-rate for a fixed network

size of 100 nodes. This includes results from 12 runs: consisting of 4 runs each for each of

the 3 different scenarios explained in previous section. We vary data rate through a range

of 200, 167, 125, 100, 67, 40 packets/sec. The graph for directed diffusion shows a rise in

throughput till data rate of 100 packets/sec, after which there is a fall in throughput. This

point is called as knee point, and is a point after which effects of congestion are seen. This
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Figure 6.5: Throughput vs Datarate.

knee point indicates that network is congested, and packet drop rate has increased. This

results in drop in throughput for higher data rates. As opposed to directed diffusion, the

proposed protocol handles this increase in data rate pretty efficiently. The delivery ratio for

the proposed protocol very stable as compared to directed diffusion. There is a very slight

change in throughput of proposed protocol at very high data rates. But this change is very

insignificant as compared to directed diffusion. There is a very little drop in throughput in

proposed protocol at the data rate of 200 packets/sec as compared to throughput at 167

packets/sec.

Also, the knee for proposed protocol is very subtle, and it tries to keep the data rate

at a constant 93 packets/sec. As we mentioned earlier, we did 4 simulation runs for each of

the 3 different scenarios. Then we get average throughput for all the 3 different scenarios.

In case of very high data rate, and a complete crossing path scenario, there is very high

congestion, and proposed protocol needs to switch path multiple times before it decides

upon a using multiple paths. This limits the maximum throughput of the system to less

than 100 packets/sec. Delay is also a good measure of reliability and effectiveness of the

protocol. Figure 6.6 shows a graph of Delay vs Data-rate for a fixed network size of 100
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Figure 6.6: Delay vs Datarate.

nodes. This also includes results from 12 runs: consisting of 4 runs each for each of the 3

different scenarios explained in previous section. As we can see in Figure 6.6, delay gradually

increases as data rate increases. As the data rate increases, the number of packets flowing

through wireless medium increase. This might cause interference, as well as congestion on

the network. This will result in causing more delay in packet delivery. Both the proposed

protocol, and directed diffusion show a gradual increase in delay due to this reason. But

the rate of increase in proposed protocol is less than that of directed diffusion. Also, the

effective delay for directed diffusion is much more that that of proposed protocol. This can

be caused due to many reasons.

The proposed protocol uses multiple metrics while setting up paths. These metrics are

ETX, delay and average queue length. ETX helps us select a path which is more reliable,

and has low SNR ratio. Delay metric also plays an important role of selecting a path with

minimum delay, but it is combined with ETX. In addition to this queue length helps us select

a path over nodes which have lower queue lengths. This might mean that those nodes do

not participate in path formation with other source-sink pair. We can never be sure of this,

because path formation also depends on the topology of network. All these three metrics
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Figure 6.7: Average Energy Consumption vs Datarate.

help proposed protocol select a path which will provide low error rate, low delay and less

interference. This means that the effective delay of packets transmitted over this path is

lower. Hence, our protocol performs better than diffusion in terms of end-to-end delay.

Energy consumption during data transfer is an important metric for measuring conges-

tion. When there is rise in network congestion, the performance of network starts degrading.

In wired protocols, like TCP, packet drop is a sign of congestion. When a node (receiver)

senses that the packets are being dropped, it will run a backoff algorithm, which will tell the

sender to reduce the data sending rate. This strategy does not work in wireless networks. In

wireless ad-hoc networks, there can be many reasons for packet loss like link quality, inter-

ference, and packet collision. Due to which ad-hoc network protocols cannot incorporate any

such schemes to limit congestion. As a result even in case of network congestion, the sink

will still keep sending data at a constant rate, thus worsening congestion condition. This will

only result in packet retransmissions, interference, which in turn will result in more energy

being used by a node for sending data. Hence energy consumption can give us an idea of how

network copes in times of congestion. Also, in ad-hoc networks, energy is a limited resource
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Figure 6.8: Maximum Energy Consumption vs Datarate.

and should be used efficiently. So, we measure energy used by our proposed protocol against

directed diffusion.

Figure 6.7 shows average energy consumption of network for different data rates and

uniform network size of 100. This includes results from 12 runs: consisting of 4 runs each for

each of the 3 different scenarios explained in previous section. Average energy denotes the

energy consumed by all the nodes throughout the network. It gives an estimate of energy

used by nodes to forward interest, exploratory packets, as well as the energy consumed by

nodes to transmit data. We vary the data rate of the source - sink pairs to have values ranging

from 200, 100, 67, 50, 25, 10, 5 etc. We also calculate energy consumption for varying data

rates below 5 packets/sec. We measure energy consumed in Joules. At very high traffic rates

of 200 packets/sec, directed diffusion is not able to keep up with the generated traffic and

just drops the incoming packets in the initial phase. But if we reduce the data rate to 100

or 66 packets/sec, then the data rate is just high enough to cause congestion. But in this

case diffusion can barely try to transmit most of the packets. This will cause more energy

consumption due to the effort of trying to achieve high throughput. But at the same time

there is congestion in network, which will result in retransmissions, and drops. This will
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increase delay and also reduce throughput as shown in the previous graphs. When the data

rate decreases, the total energy consumed gradually decreases to a point of 2 packets/sec.

If we further lower the data rate we can see that the total energy consumption for proposed

protocol is more or less constant, and does not fall below a certain value. At this point the

total energy consumption is more than that of basic directed diffusion. We can say that this

energy value is the minimum energy required by our protocol.

In DDCC (proposed protocol), we find multiple paths and in addition keep track of

some metrics throughout the data transmission phase. This will consume some minimum

amount of energy. In Figure 6.7 , we can see that once data rate drops below 2 packets/sec,

DDCC still consumes some minimum amount of energy each cycle. But directed diffusion

energy consumption is lower than DDCC. This means our protocol benefits outrun those

of directed diffusion until we hit a data rate of 2 packets/sec. If we drop below that, then

directed diffusion consumes less energy. Once we start increasing the data rate, the energy

consumed by nodes running DDCC gradually increases. But the total energy used is still less

than the node which run on directed diffusion, which is to say that the rate of increase with

DDCC protocol is comparatively less than directed diffusion. Also, at a very high data rate

of 200 packets/sec, our protocol still performs well enough consuming less average energy

than directed diffusion. Average energy is a representation of energy consumption for regular

traffic flow.

In our case, we are more concerned about congestion in network, and the energy con-

sumed to overcome that. We propose to measure maximum energy consumed by a sensor, in

the network to get an estimate of that. This means, in case of the third scenario, where two

source - sink pairs are across each other in the network, the node which lies at intersection

of two paths will consume maximum energy and it is the point where congestion occurs.

Figure 6.8 shows maximum energy consumption of network for different data rates and uni-

form network size of 100. To get an accurate estimate of maximum energy consumption,

we have used only scenario 3 for simulation. To plot each point on the graph, we made 7
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runs for a given data rate providing different random seed to the simulation. For each run

have to determine the node which acts as intersecting node, and measure energy for that

particular node. Normally there will be two nodes which are intersecting nodes for each of

the two paths. To get the total energy consumed, we will have to take into account the

energy of the node which is currently active. If both the nodes are active, then we will have

to add up the energy consumption of two nodes for this interval to get the total energy con-

sumed. This maximum energy can act as a measure of amount of energy used while trying

to resolve congestion. When we consider Figure 6.8, we can see that max. energy consumed

by one of the nodes at data rate of 200 packets/sec is very high. The justification for this

is that, when the data rate is very high, as explained in scenario, queues will build up at

the intersecting node. This will cause multiple switch - path messages to be sent across the

network. In addition to that, we also use a multipath message, causing both the intersecting

nodes to be used simultaneously. Hence, both nodes transmitting data will be using energy

simultaneously. Due to this factor, the energy consumed by DDCC is more as it adds up

the energy consumed by two nodes in that period of time. But as we reduce the data rate,

the maximum energy consumed by DDCC is far less that that used by directed diffusion.

Directed diffusion has only one path from source - sink, and once that gets congested, it is

going to try to send data through the same path. This will result in high packet loss rate,

as well as low throughput. This can be deduced from throughput graph shown in Figure 6.5

and the energy graph.

If we look closely at Figure 6.8, we can see that the range in which values lie for each

parameter on the graph is larger than the range for other graphs explained above. The

only reason for a large range of values for maximum energy consumption graph is that these

are sepcifically designed for scenario 3. In this scenario, there are multiple nodes which are

intersecting point for the two paths. The energy consumtption will be sum of nodes falling

on intersection of two paths. Due to this the number of nodes simultaneously used for data

transmission is more for scenario 3 than for any other scenario. Because of this the energy
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Simulation Parameters
Parameter Value
Transmitter range 250.10 meters
Bandwidth 2 Mbps
Simulation time 900 s
Number of nodes 100, 144, 169, 256, 324, 400
Environment size 1000m X 1000m
Traffic type Constant Bit Rate
Packet rate 100 packets/sec
Packet size 500 Bytes
Simulation Runs 12

Table 6.2: Simulation Parameters for Network Size simulations

consumption given by this will be greater than energy consumption by other 2 scenarios.

Hence there is a variation in energy values. But we consider only scenario 3 for plotting this

graph. Hence the values under consideration in this graph are fairly consistent and have a

slight standard deviation. The I in this graphs is representation of range of values for all 3

scenarios.

6.2.3 Simulation Parameters for Network Size

Table 6.2 shows the simulation parameters and setup configuration for simulations in

which we change network size and observe the performance of the protocol.

6.2.4 Network Size Simulation

In addition to compare the proposed protocol by varying load, we also compare the

protocol by varying the network size. The purpose of comparing it with varying network size

is that we can get an idea of how scalable our protocol is. Number of node in the network is

a very important factor in adhoc networks. If number of nodes in a given area is increased,

then node density increases. This means that the links between nodes are stronger because

the signal strength between two nodes is going to be strong. At the same time, as a node

will be surrounded by many other sensors, there will be interference that is caused by signal
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Figure 6.9: Throughput vs Network Size.

strength due to those sensors. Also, if for a given area, we decrease the number of nodes in

that region, then connectivity between those nodes will be weak. The main reason for that

is because nodes will be farther from each other. This will mean that the signal between

2 nodes will have to travel longer distance, resulting in weak signals. We need to test our

protocol in both the cases where there is high density of nodes, with high interference, as

well as in scenarios where there is low connectivity.

In our scenario, we run the simulation 12 times. We run the simulation 4 times, with

same setup for each of the 3 different scenarios. Then we take an average of these readings to

get an estimate of the network performance for a given scenario. The first graph compares

throughput with the network size. We run the simulation with constant parameters of data

rate and bandwidth. We change the network size and observe the variations in throughput.

Figure 6.9 shows the effects of throughput on network size. For the proposed protocol,

DDCC, the throughput more or less remains constant with network size. This means that the

protocol handles the issue of scalability very nicely. There might be some delays associated

with the end-to-end transmission time of control messages like switch path message and

multi path message. But the simulations show that these delays are very less, mainly because
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Figure 6.10: Delay vs Network Size.

the packets transmitted are in a priority queue and best effort is made to deliver those

packets. Also, in case of congestion, most of the packets will be sent via alternate path

once we detect congestion. Hence, we are able to keep throughput constant irrespective of

network size.

The graph in Figure 6.10 shows simulation results for delay against network size using

same parameters. We calculate average delay by finding the transmission time for each

packet and getting an average of these to find effective delay throughout the transmission.

As the number of nodes increases, the interference between nodes increases. This might

cause the packets to be retransmitted. Also, as the number of nodes increase, the number

of transmission over a path increases. This might cause the end-to-end delay to increase.

In addition to measuring throughput and delay, I have also measured the energy con-

sumption against network size. We will first see the average energy variations with increasing

network size. Figure 6.11 shows that average energy consumed by each node decreases with

network size. When directed diffusion finds paths between source - sink, it just relies on

delay. It does not consider the link quality while deciding upon path. This affects the per-

formance of protocol when number of nodes in the network are less. As node density is less,
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Figure 6.11: Average Energy Consumption vs Network Size.

all the links between nodes might not be able to transmit data with same reliability. Due

to this, when the number of nodes is 200, the amount of energy used by directed diffusion

is very high. The reason is that the paths which have been selected on delay metric are not

the best ones, and do not perform well during data transmission. As the network density

increases, number of nodes increase. This will shorten the wireless links between nodes. This

also means that the path selected based on delay might perform well as the wireless between

nodes is going to be strong. Hence, the transmissions are more reliable and will consume less

energy per node. In case of the proposed protocol, DDCC, we try to select the best available

path. So even if the node density in network is less, we select a path which is most reliable,

and has least SNR. This ensures that there are less retransmission over the wireless link.

Hence the energy used is less than that required by directed diffusion. As DDCC selects

the best available path, the energy used in network remains relatively unchanged. There is

a slight decrease in energy consumed when the network density is higher. This brings up

a peculiar characteristics of wireless network. As the network density increases, end-to-end

delay might increase, but the energy consumed for transmission decreases.
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Figure 6.12: Maximum Energy Consumption vs Network Size.

The last graph, shown in Figure 6.12, shows the effect of maximum energy on network

density. As explained earlier, the maximum energy consumption is mainly a measure of

the congestion. For a packet rate of 100 packets/ second, the amount of congestion over the

node decides the maximum energy consumption of a node. Congestion over the node at given

data rate is not too high. We use the same technique we used earlier to calculate maximum

energy consumption of a given scenario. We will use scenario 3 for simulation, and would

calculate the energy consumption of only the nodes lying on intersecting paths. We can

see that if the average energy consumption is around 8 Joules per minute, then maximum

energy consumed is around double of it, which is 16 joules per minute. The maximum energy

consumed remains more or less constant for DDCC. This is mainly because the congestion

level over the nodes is not too high. Also, congestion resolution takes place on end-to-end

basis. But there is a gradual decrease in the maximum energy consumed, which is due to the

fact that due to more node density, the transmission energy consumed is slightly lower. Even

with directed diffusion there is a slight decrease in maximum energy consumed, which can

be attributed to the fact that the links are shorter, which might reduce the energy consumed

during data transmission.
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Chapter 7

Conclusion and Future Work

We have proposed Directed Diffusion with Congestion Control (DDCC) protocol,which

tries to prevent congestion in wireless ad-hoc networks. In scenarios where the data rate is

very high and congestion cannot be prevented, it tries to avoid congested region by sending

data via alternate path. In contrast to directed diffusion which is severely affected by data

rate and network size, DDCC is more consistent under varying topologies and configurations.

Directed diffusion fails in cases of high load, and is very inefficient in terms of energy and end-

to-end delay. DDCC incorporates a efficient path finding algorithm which helps to find paths

which can handle high load than paths used by Directed Diffusion. We do not use source data

rate limiting technique in event of congestion. This enables the source to transmit important

data even in the state of congestion, with very low packet losses without increasing end-to-

end delay. DDCC collects statistics over the active path and tries to determine whether the

network path is in state of congestion. When it concludes that the path is getting congested,

DDCC will have source send data through an alternate path. To implement this we use an

end-to-end congestion detection and recovery technique. By selecting an alternate path, we

achieve two important things. Firstly, we avoid congested region, due to which congestion

situation will not worsen in the region. Secondly, we select an alternate path, which enables

us to get transmit data with lower delay without affecting the data rate.

We have tried to overcome many drawbacks of directed diffusion. We have made the

path finding algorithm more efficient enabling it to consider multiple metrics while selecting

a path. We also find multiple paths, without using significant resources. As we broadcast

packets throughout the network for path discovery, it is an expensive process, and running

path discovery algorithm in event of congestion or route failure will worsen the network state
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and performance. Instead we make use of multiple acknowledgement packets we receive at

destination due to use of broadcast mechanism to find multiple, but disjoint paths. These

paths act as backup routes in case of congestion or path failure. We collect path statistics on

a regular interval. We use these statistics to see how route is performing, and whether there

is congestion or bottleneck on any routes. Congestion state arises when the data flowing

through network is more than it can handle. The network is in a critical state, because

it is transmitting important data, but the resources which are available to do so are not

sufficient. Any preventive/corrective actions in this case should have a primary objective of

not incurring any extra cost or using excessive resources. We achieve that by having backup

routes and activating them in such critical situations, with only one extra message. Multiple

paths help us to switch paths in event of congestion incurring no extra route discovery cost.

Also, the energy consumed in switching path is far less than energy saved by switching path

to an efficient less congested route, which provides better data delivery. The advantage of

switching path is we avoid congested region, and this enables us to achieve high data rates

and lower delays.

We have proved the efficiency of our protocol using simulation. We implemented the

protocol in NS-2 simulator. NS-2 has a implementation of basic directed diffusion. We

incorporated the changes into the basic diffusion to implement our protocol. We created

scenarios which represent all the states a network can be in, when there are two source -

sink pairs. We made simulation runs for each of these scenarios to see how our protocol

performs for varying path formation combinations. To get an estimate of scalability and

stability of our protocol, we ran simulations for sufficiently long duration. We made multiple

runs of simulation for same scenario with different random seed to the NS-2 simulator, to

get statistics for varying conditions. We then took average of these values to get a more

accurate representation of performance.

From the resulting graphs, we can see that there has been a significant rise in through-

put. For our simulations, we have tested the two protocols for a data rate as high as 200
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packets/sec. For this data rate the throughput achieved by DDCC is 46% more than that

of directed diffusion. We measure end-to-end delay for various topologies varying network

size and data rate. The delay achieved by DDCC can be as low as 40% than that achieved

by directed diffusion. As we are concentrating on congestion, energy consumed during data

transfer is an important factor to prove efficiency of our protocol. Our protocol can be 52%

more energy efficient than directed diffusion in average scenarios. In case of few scenarios,

we also compare the maximum energy consumed by a node during data transfer, which gives

an estimate of energy consumed by a congested node. We can see that a congested node

running on DDCC consumes 75% less energy than a node running on directed diffusion.

Thus, in this thesis, we have shown that DDCC performs better in all aspects than

directed diffusion. There are many possibilities for future work in ad-hoc networks, and

congestion control in wireless sensor networks. We have proved the efficiency by simulation,

however verifying the same by actual experiment remains to be done. As I mentioned earlier,

we can use the statistics collected on a route for route recovery. We have an algorithm in

place which finds efficient routes which act as back up routes in case of congestion. As a

part of future work we can come up with a mechanism to determine a node or link failure,

and as a preventive action, we can switch to a back up route to transmit data. Also, we

use an end-to-end congestion detection and recovery technique. End-to-End scheme has a

few drawbacks in wireless ad-hoc network. Future work can also include implementing this

technique using local recovery and path discovery scheme. Currently we have implemented

the congestion control algorithm for wireless sensor networks. One of the future work scopes

can be implement this scheme in SmartGrid networks. SmartGrid networks are highly

dense networks with multiple links connecting every node. Congestion in such networks

can adversely affect the network performance, and a light weight recovery technique in such

networks will be very useful.
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