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Abstract 
 

 

Dams are numerous in many eastern US streams, and instream 

physicochemical and biotic impacts of dams can alter flow and sediment regimes 

and channel geomorphology as well as reducing longitudinal movement by fishes 

and other mobile organisms.  In addition, dams can fragment populations, thus 

decreasing genetic diversity while increasing extinction vulnerability.  I quantified 

freshwater crayfish abundance and their habitats at reaches upstream (1000-5000 

m), immediately downstream (mill reaches), and >500 m downstream of 22 low-

head milldams within 9 Alabama drainages in 2006–2008.  Eleven dams were 

intact, 5 were partially breached, and 6 were considered relict with more natural 

flow regimes.  On streams with intact dams, crayfish abundance was lower at mill 

reaches than at reaches upstream of impoundments or further downstream, 

whereas on streams with breached dams abundance was higher at upstream 

reaches than at mill or downstream reaches.  In contrast, longitudinal patterns in 

crayfish abundance were similar among sites on streams with relict dams.  

Predatory fish abundance was higher at mill reaches on streams with intact dams 

than at sites upstream or further downstream, suggesting that predatory fish 

aggregations at dam reaches were responsible for low crayfish abundance.  

Genetic diversity and population connectivity of 2 crayfish species (Cambarus 

striatus and C. coosae) also was quantified from upstream, mill, and downstream 



 iii 

reaches of 2 focal, intact dam sites by sequencing a fragment of the mitochondrial 

cytochrome oxidase I (COI) gene.  Cambarus striatus in Sandy Creek showed 

evidence of upstream population isolation with movement limited to downstream 

migration across the dam, whereas C. coosae in Hatchett Creek showed no 

evidence of population structure.  Our results suggest that small low-head dams 

and their reservoirs can alter abundance and impede longitudinal migration of 

some freshwater crayfishes. 
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Chapter One:  Introduction and Literature Review 
 

 

Dams are numerous and widespread throughout the state of Alabama and 

elsewhere in the US, with >10,000 dams occurring in Alabama alone (AL Office 

of Water Resources http://www.adeca.alabama.gov/) and up to 44% of the 

mainstem Alabama, Coosa, and Tallapoosa rivers being impounded (Irwin et al. 

2007).  These structures were built for flood control, hydroelectricity, water 

storage, recreation, and irrigation.  However, most dams within the state are not 

large hydroelectric structures.  Of the >2200 Alabama dams included in the US 

Army Corps of Engineers National Inventory of Dams (NID) 2009 data set, 69% 

were <7.5 m in height and 29% were between 7.5 and 15.25 m tall.  It is 

important to note that the NID includes only dams of > 2 m height and 50 acre-ft 

(61700 m
3
)of storage or > 7.5 m height and 15 acre-ft (18510 m

3
) of water storage 

(http://crunch.tec.army.mil/). 

The effects of large dams on aquatic organisms and their habitats in large 

rivers have been well documented, whereas little research has been done to assess 

effects of small, surface-release, or low-head dams on low-order streams (Watters 

1996, Dean et al. 2002, Lessard and Hayes 2003).  Low-head dams are those with 

a hydraulic height of <15m and are typically overflow or spill-way structures  

http://www.adeca.alabama.gov/
http://crunch.tec.army.mil/
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(Poff and Hart 2002).  According to census records, >65,000 low-head dams 

existed in the Eastern US by 1840, most of which were built for water-powered 

milling (Walter and Merritts 2008).   

 

Physicochemical Impacts  

Physicochemical impacts of dams can be dramatic.  Perhaps the most 

obvious effects of dams on streams are changes in the hydrologic regime, channel 

geomorphology, water temperature, and chemistry, both within the impounded 

footprint and downstream of dams.  Dams and dam alteration may alter the 

magnitude of minimum flow events typically increases and number of maximum 

flow events decreases (Poff et al. 1997); in addition, the rate of change in flow 

(flashiness) increases, although the duration and magnitude of these events often 

decrease (Poff et al. 1997).  Timing of seasonal high and low flow events is 

altered, resulting in more predictable and less variable flow regimes (Magilligan 

and Nislow 2005, Graf 2006).  In turn, lower magnitude of high-flow events 

downstream reduces nutrient uptake by flood plains through the deposition of silt 

during floods, thereby reducing flood plain–stream nutrient exchange (Welcomme 

1975, Baxter 1977, Kingsford 2000, Junk and Wantzen 2004).   

Decreased current velocity in the impounded section increases sediment 

deposition upstream of the dam, which usually causes tailwaters to become 

sediment-starved and downstream sections to exhibit increased scour, streambed 

lowering, and bed coarsening (Baxter 1977, Chien 1985, Graf 2005).  Moreover, 

reduced magnitude of high-flow events and decreased deposition often cause 
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tailwaters to become less geomorphically complex, with fewer bars and islands 

and reduced shallow-water habitat (Poff et al. 1997, Graf 2006).  At the watershed 

level, such dramatic changes may transform slow-flowing marshy streams into 

fast-flowing gravel-bottomed systems (Walter and Merritts 2008).   

In addition to streambed alterations, dams also alter natural thermal 

regimes (Baxter 1977).  Reduced current velocity and increased solar inputs 

within reservoirs can increase surface water temperatures and plankton growth 

rates (Baxter 1977).  Reduction in current velocity in impounded sections also 

may cause depth stratification, resulting in a colder but oxygen-poor hypolimnetic 

zone relative to surface waters (Hart et al. 2002).  Increased surface water 

temperature in impounded waters can result in higher densities of primary 

producers (e.g., algae and cyanobacteria), which, by increased respiration rates, 

may result in anoxia or hypoxia (Carmago et al. 2005).  In addition, most low-

head dams are overflow dams and often result in a significant increase in 

temperature of dam tailwaters (Lessard and Hayes 2003).  The resulting low 

dissolved oxygen levels can, in turn, cause fish kills and release of macronutrients 

normally bound to bottom sediments (Correll 1998).  Such releases may cause 

reservoirs to act as nutrient sources, thereby creating downstream eutrophication 

(Wright 1967). 

 Dams may also affect the stream nitrogen cycle.  Nitrification has been 

shown to increase in impounded streams, especially in surface waters, where 

decreased current velocity and increased temperature may accelerate 

transformation of NH4
+
 to NO3  (Polak 2004, Straus et al. 2004).  In contrast, in 
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deeper anoxic sections ammonium denitrification and increases in N 

concentrations also can occur (Allen 1995).  In addition, the physical force of 

water flowing over dams may cause tailwaters to become supersaturated with 

oxygen and atmospheric N2 in downstream sections (Morris et al. 1968).  

Following dam construction, increases in N2 concentrations in downstream 

reaches of >20% have been documented to cause gas bubble disease and mortality 

in fish (Beiningen and Ebel 1968, Rucker 1972, Baxter 1977).      

 

Biological Impacts 

Altered flow regimes from impoundments have been shown to affect 

stream animal assemblages (Fraser 1972, Cushman 1985, Irvine 1985, Travinchek 

et al. 1995, Gerhke et al. 2002, McLaughlin et al. 2006) and even riparian 

vegetation (Janson et al. 2000).  Coarsening of the streambed by erosion of 

sediment-poor tailwaters reduces habitat availability for benthic species by 

decreasing habitat heterogeneity, which, in turn, may reduce species diversity and 

richness (Armitage and Blackburn 1990, Hauer et al. 1989, Poff et al. 1997).  

Alterations in temperature regimes from impoundments also may alter organism 

distribution and behavior.  Increased temperatures downstream of overflow dams 

can eliminate thermal cues vital to some invertebrate life cycles (Lehmkuhl 1974, 

Ward and Stanford 1982, Irvine 1985).  In addition, increased water temperature 

affects metabolic rates for fish and invertebrates, which, in turn, increase demands 

for food to maintain growth and survival (Gibbons 1976, Wotton 1995, Perry et 

al. 1987, Vinson 2001, Lessard and Hayes 2003).  Within reservoirs the deep, 
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cold, anoxic water often is a fish- and mollusc-free zone (Headrick and Carline 

1993, Dean et al. 2002).  

The few studies that were designed to examine effects of small dams have 

reported similar alterations but smaller in magnitude than those resulting from 

large dams (Graf 2006).  In particular, Cumming (2004) found that low-head 

dams increase summer maximum temperatures and decrease fish richness at 

reaches upstream of impoundments. Taylor et al. (2001) documented shifts in fish 

composition, from a cyprinid- to a centrarchid-dominated assemblage after 

impoundment of a stream by a low-head earthen dam. 

 

Habitat fragmentation and population isolation 

Physical barriers presented by dam structures (including the dam itself, the 

impounded zone, and the affected tailwaters) impede longitudinal movements of 

stream organisms (Baxter 1977, Watters 1996, Dean et al. 2002). Genetic drift can 

result after such separations as rare alleles become common or fixed in a 

population while other alleles become less frequent or disappear (Lande 1976). 

Natural selection may expedite the divergence between reproductively isolated 

populations occurring in different habitats (Felsenstein 1976), but isolation has a 

greater influence on genetic divergence between populations than selection 

(Dillon 1984, Finlay et al. 2006). The degree of divergence between separated 

populations can be quantified by analyzing the accumulation of fixed mutations in 

the genome of each population (Nei 1977). 
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Impeded migration of fishes and other mobile organisms by small dams 

has been observed, preventing individuals from reaching feeding and/or spawning 

habitat.  Among fish, decreased longitudinal connectivity across streams 

exacerbates population isolation (Neraas and Spruell 2001, Olden et al. 2001).  

One-way (downstream) migration of fish, commonly observed in impounded 

systems, reduces genetic diversity and population size in upstream reaches (Jager 

et al. 2001, Morita and Yamamoto 2002, Yamamoto et al. 2004).   

Dams have similar effects on freshwater mussels by restricting migration 

and distribution of their host fish through impounded sections (Watters 1996, 

Kelner and Sietman 2000).  Similar consequences on other invertebrates also have 

been observed.  Watanabe and Omura (2007) demonstrated greater genetic 

differentiation among sub-populations of caddisflies separated by large reservoirs 

than among sub-populations on unimpounded reference streams. It is unknown 

how low-head dams affect habitat conditions or longitudinal movements of stream 

crayfishes, although it is likely that migration of some species is impeded (Miya 

and Hamano 1988).  

Habitat fragmentation is of great conservation concern because ecological 

theory predicts that isolated populations can decrease in size and genetic diversity, 

making them more vulnerable to extinction (MacArthur and Wilson 1967, Lande 

1988, Lande 1999). Without sufficient immigration from neighboring 

populations, natural stochastic events or anthropogenic impacts that reduce 

population size can lead to loss of genetic diversity and inbreeding depression 

(Charlesworth and Charlesworth 1987, Crnokrak and Roff 1999), thus reducing 
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population fitness and ultimately causing local extinction (Hansson and 

Westerberg 2002, Reed and Frankham 2003, Watanabe and Omura 2007).  

Further, by reducing the likelihood of interaction among populations, 

fragmentation also reduces the chance of successful recolonization after local 

extinctions, thus threatening metapopulation persistence (Saunders et al. 1991, 

Young et al. 1996, Fagan 2002).   

 

Crayfish diversity in Alabama 

Alabama is a freshwater biodiversity ―hotspot,‖ as it supports 60% of 

North America’s native mussel species, 43% of native freshwater snails, 38% of 

native fishes, and 24% of native crayfishes, many of which are endemic to the 

southeastern US(Lydeard and Mayden 1995, Crandall et al. 2000, Schuster and 

Taylor 2004).  In addition, Alabama’s streams are considered its most imperiled 

ecosystems due, in part, to flow modification from impoundments (Dudgeon et al. 

2005). 

Freshwater crayfishes are highly diverse within Alabama, with at least 83 

species in 6 genera and 25 subgenera occurring in the state (Schuster and Taylor 

2004).  Diverse life history strategies are represented, including cave and spring 

dwellers, and primary, secondary, and tertiary burrowers.  Primary burrowers dig 

elaborate burrows in flood plains and moist low-lands where they spend most of 

their lives. Secondary burrowers dig more simplistic borrows, usually opening to 

a permanent body of water such as streams, lakes, and sloughs, and may forage in 

the open water.  In contrast, tertiary burrowers live primarily in permanent 
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flowing water and dig burrows only during drought or when females tend eggs 

(Taylor and Schuster 2004).  In addition, some species can facultatively use 

multiple burrowing strategies (Schuster and Taylor 2004, Finlay et al. 2006).   

Crayfish are polyphagous, consuming primarily macroalgae, but also feed 

on detritus and animal prey (Creed 1994, Momot 1995).  Predators of crayfish 

include fish, wading birds, mammals, and larger crayfish (Stein and Magnuson 

1976, Englund and Krupa 2000).  Male crayfish show cyclical reproduction, 

molting into the form I (reproductively active) stage at the onset of breeding, and 

back to form II (reproductively inactive) stage after reproduction (Crandall and 

Fitzpatrick 1996).  Form I and form II males are distinguished by the sclerotized 

condition of the gonopods, which are use to transfer sperm to females.  Females 

of some species also may exhibit form alteration (Wetzel 2002), and typically 

carry fertilized eggs and newly hatched young on the venter of the abdomen until 

their second or third juvenile molt.  Breeding for most species occurs in autumn, 

winter, and early spring (Taylor and Schuster 2004); however, life history and 

reproductive strategies of many of freshwater crayfish species, including those in 

Alabama, are unknown.   

Most of Alabama’s stream crayfish occur in the genera Cambarus, 

Procambarus, and Orconectes.  The genera are readily distinguished by the 

gonopods of form I males, and most form II males.  The form I male gonopods 

are important in identification of most crayfish species (Hobbs 1981, Crandall and 

Fitzpatrick 1996, Taylor and Schuster 2004); however, distinguishing species 

within a genus is considerably more difficult, if only form II or female specimens 
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are available.  It is likely that there are undescribed crayfish species in Alabama, 

and several museum specimens at the Auburn University Museum and the 

University of Alabama Museum are listed as undescribed (Schuster and Taylor 

2004, E. Hartfield, personal observations).   

Unlike many aquatic animals, crayfish may migrate both through water 

and, over land.  Long-distance dispersal occurs primarily during floods (Lodge et 

al. 2000).  Overland migration is limited by tolerance to desiccation, which varies 

among species (Larson and Magoulick 2008) and is usually limited to rain events, 

when relative humidity is high.  For this reason, migration mostly occurs within a 

single drainage, although inter-drainage movements do occur (Fetzner and 

Crandall 2003).  In addition, introduction of some species may occur via bait-

bucket transfer by humans (Lodge et al. 2000).   

Population genetics studies have revealed extensive gene flow and large 

effective population sizes in several species of subterranean- and surface-dwelling 

crayfish; however, molecular data also have suggested recent declines in genetic 

variability and effective population size in some widespread non-burrowing taxa 

(Buhay and Crandall 2005, Finlay et al. 2006).  Such declines are of special 

concern because species with restricted ranges are highly vulnerable to genetic 

isolation resulting from habitat fragmentation (Lande 1999).   

 

Objectives 

Currently, there is little information available on historic distribution and 

population sizes, or ecology of Alabama’s crayfishes, especially endemic species 
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(Butler et al. 2003).  Only 5 species of crayfish in Alabama have been listed as 

High Conservation Concern (Schuster and Taylor 2004).  In the southeastern US, 

including Alabama, the high prevalence of small dams along streams and rivers 

has the potential to affect many imperiled aquatic species primarily through 

habitat fragmentation and population isolation (Travnicheck et al. 1995, Jager et 

al. 2001, Dean et al. 2002, Lessard and Hayes 2003, Irwin et al. 2007). Thus, the 

general paucity of knowledge of crayfish population size, life history, and ecology 

in Alabama, coupled with the high prevalence of impoundments, requires 

elucidation of the effects of impoundments on crayfish species assemblages, and 

increased ecological data on crayfish population dynamics within the state and 

elsewhere in the southeastern US.   

The objectives of my research were to examine if presence and condition 

of low-head dams affect crayfish assemblages, and whether small low-head dams 

impede gene flow among crayfish populations.  These objectives are important to 

crayfish conservation because 1) Alabama is a species-rich region with many 

endemic and undescribed taxa, 2) range, lifehistory, and ecology of many 

Alabama crayfish are unknown, and 3)patchy and fragmented habitats increase 

reproductive isolation and may increase likelihood of extinction/extirpation 

(Taylor et al. 2007).  Finally, low-head dams are widespread globally and 

increasing in abundance (Wu et al. 2003), so an increased understanding of how 

these structures contribute to population fragmentation may enhance management 

of imperiled aquatic species across regional and global scales. 
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Chapter Two:  Consequences of Low-head Dams on Crayfish Distributions 
and Gene Flow in Alabama Streams 

 

Introduction 

Fragmented populations are more vulnerable to local extinction than 

contiguous populations (MacArthur and Wilson 1967, Lande 1988, Frankham 

1997, Lande 1999).  Without sufficient immigration from neighboring 

populations, natural stochastic events and/or anthropogenic impacts that reduce 

population size can lead to loss of genetic diversity and inbreeding depression 

(Charlesworth and Charlesworth 1987, Crnokrak and Roff 1999), thus reducing 

population fitness and ultimately causing local extinction (Hansson and 

Westerberg 2002, Reed and Frankham 2003, Watanabe and Omura 2007).  

Following extirpation, fragmentation reduces the likelihood of successful 

recolonization of patches, which may reduce the size of and exchange within 

metapopulations and further threatening persistence (Saunders et al. 1991, Young 

et al. 1996, Fagan 2002). 

Streams are special cases when considering habitat fragmentation because 

of their linear structure.  Many lotic organisms are restricted to the wetted 

channel, so migration can only occur bidirectionally (i.e., upstream or 

downstream; Fagan 2002, Hughes et al. 2009).  Moreover, stream habitats often 

are naturally patchy (Townsend 1989).  Terrestrial dispersal may alleviate 

instream constraints for some aquatic species, but even these organisms are 
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restricted to or near stream corridors (Finn et al. 2007).  Thus, a single barrier 

bisecting a stream corridor may have dire consequences by restricting or 

eliminating connectivity for populations on either side.   

Dams are extreme examples of anthropogenic barriers that can fragment 

stream populations, and effects of large dams on lotic biota and their habitats in 

large rivers can be profound. Environmental consequences of these structures 

include severe alteration of assemblage structure of both animals (Fraser 1972, 

Cushman 1985, Irvine 1985, Travinchek et al. 1995, Gerhke et al. 2002, 

McLaughlin et al. 2006) and vegetation (Janson et al. 2000).  In addition, 

increased temperatures in tailwaters of overflow dams can increase energetic 

demands and physiological stresses for downstream fauna (Gibbons 1976, Wotton 

1995, Perry et al. 1987, Vinson 2001, Lessard and Hayes 2003).   

Interruptions in longitudinal dispersal by large dams have been well-

documented for several species.  Dams may halt upstream migration of fishes and 

other mobile animals, preventing individuals from reaching feeding and/or 

spawning habitat, which, in turn, drive population declines (Raymond 1979, 

Larinier 2001, Neraas and Spruell 2001, Olden et al. 2001).  The one-way 

(downstream) migration of fish, commonly observed in impounded systems, 

reduces genetic diversity and population size, particularly in upstream reaches 

(Jager et al. 2001, Morita and Yamamoto 2002, Yamamoto et al. 2004).  Dams 

can have similar impacts on freshwater mussels by restricting migration and 

distribution of their host fish through impounded sections and thus breaking 

mussel life cycles (Watters 1996, Kelner and Sietman 2000). 
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Longitudinal movement by crayfishes is common within streams (Fetzner 

and Crandall 2003, Lodge et al. 2000; however, unlike many lotic species, 

crayfishes are not restricted to the wetted channel. Overland dispersal is possible 

for some species (Viosca 1953, Penn 1956, Cappelli and Magnuson 1983), 

particularly those that are  desiccation-tolerant (Larson et al. 2009). Given that 

crayfish dispersal ability varies among species, it is difficult to predict the degree 

to which instream barriers, such as dams, affect population connectivity. 

Furthermore, the systematics, life history and ecology are poorly known for most 

crayfish species in North America, and a number of species remain undescribed 

(Taylor et al. 2007).  Understanding impacts of dams crayfishes is critical for their 

conservation. 

Consequences of dams on aquatic organisms and their habitats in large 

rivers have been well-documented, whereas comparatively little work has been 

done to assess effects of small, surface-release, and/or low-head dams on smaller 

streams (Watters 1996, Dean et al. 2002, Lessard and Hayes 2003).  Low-head 

dams are those with a hydraulic height of <8 m that typically have over-dam flow 

or lateral spillways (IFC Consulting Report 2005). Such structures are pervasive 

across the Eastern US; according to census records, >65,000 low-head dams 

existed in the region by 1840, most of which were built for water-powered milling 

(Walter and Merritts 2008).  The few studies designed to examine effects of small 

dams have reported similar types of alterations as with large dams, although 

effects are considerably smaller in magnitude (Graf 2006). Low-head dams are 

increasing in abundance globally (Wu et al. 2003), so it is essential to understand 
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the degree to which these structures contribute to population fragmentation and 

reproductive isolation of aquatic species. This study was designed to examine the 

degree to which variation in environmental conditions associated with low-head 

dams affected the abundance, distribution, and gene flow of crayfish populations 

across a range of dam conditions within impounded or historically impounded 

streams in Alabama.   

 

Materials and Methods 

Study sites 

I studied 22 low-head dams in 9 of the major drainages within Alabama (Fig. 1).  

Study sites spanned the full range of physiographic provinces with the state, 

including Highland Rim, Cumberland Plateau, Alabama Ridge and Valley, and 

Eastern Gulf Coastal Plain (Hackney et al. 1993).  Study streams ranged from 3
rd

 

to 5
th

-order, and sites drained predominantly forested watersheds, although a 

mosaic of agricultural, suburban and urban land uses also was present.  Because 

of the high variability across provinces and drainages, habitat types and 

conditions and associated animal assemblages greatly varied among sites. 

Dams are abundant throughout Alabama, and many were discovered 

during previous surveys and from discussions with local residents (Gangloff and 

Feminella 2007).  Sites were selected based on the 3 dam condition categories 

(below), landowner approval, and accessibility of the dam and upstream and 

further downstream reaches.  Also, sites were selected due to presence of 

endangered or threatened aquatic taxa (i.e., mussels, snails, fish, or crayfish)  
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Figure 1.  Map of study sites across Alabama.   Open circles represent intact 

dams, open squares represent breached dams, and black hexagons represent relict 

dams. 
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nearby.  Of the selected sites, 11 dams were intact, 5 were breached, and 6 were 

considered relict.  Intact dams were those where the impoundment structure had a 

functional spillway, over-dam flow, and a reservoir with slow current velocity 

relative to nearby free-flowing reaches (Fig. 2A). Breached dams were those 

where the impoundment structure was either partially broken or the spillway was 

open and the impoundment zone was absent or <50m long at base flow (Fig. 2B).  

Last, relict dams were those where impoundment structures were almost entirely 

eroded (e.g., often showing only pilings on the bank to indicate original dam 

location, Fig. 2C), usually from advanced age and the action of hydrologic forces 

during flood events, thus allowing the return of more typical free-flowing 

conditions.   

 

Study design 

I established three 150-m study reaches at each study dam:  1) upstream of 

impounded reaches (= upstream, 1500-5000 m), 2) immediately downstream of 

the dam (= mill; 0-150 m), and 3) 500 to 3000 m downstream of the dam (= 

downstream; usually <1000 m) (Fig. 2D).  I estimated longitudinal length of pre-

breached impoundment for breached and relict dams using information from local 

landowners or long-term residents.  Thus, I established this reach an equivalent 

distance upstream of dams in all conditions (Fig. 2D).   
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Table 1.  Study streams, drainages, milldam names and their condition (see 

text), geographic location, and key dates of construction and/or breach, where 

known. 

Stream Drainage Mill 

Cond-

ition 

Lat.  

(N) 

Long. 

(W) Dates 

Big Flat Alabama  
Rikard's 
Mill 

Intact 31.782 -87.223 Built 1868 

Cahaba  Alabama 
Grant's 
Mill 

Relict 33.509 -86.644  

Little 
Cahaba 

Cahaba  
Unnamed 
Mill 

Breached 33.451 -86.694  

Lost 
Black 
Warrior 

Boshell 
Mill 

Intact 33.855 -87.414 Built 1885 

Brushy 
Black 
Warrior 

Unnamed 
Mill 

Intact 34.292 -87.273 Built 1966 

Blue 
Springs  

Black 
Warrior 

Chamblee 
Mill  

Relict 34.060 -86.662  

Halawakee 
Chatahoo-
chee 

Bean's 
Mill 

Intact 32.697 -85.267 Built 1834 

Osanippa 
Chatahoo-
chee 

Ferguson 
Mill 

Relict 32.778 -85.193  

Little 
Uchee 

Chatahoo-
chee 

Meadow 
Mill 

Intact 32.528 -85.253  

Pea 
Choctaw-
hatchee  

Shellgrove 
Mill 

Relict 31.521 -85.869 
Built 
1890’s 

Big Canoe Coosa  
Goodwin 
Mill 

Breached 33.819 -86.384 
Breached 
1990’s 

Yellow Leaf Coosa 
Shannon 
Mill 

Intact 32.935 -86.611  

Hatchett Coosa 
Old AL 
Power Mill 

Intact 33.068 -86.096 
Built 
1920’s 

Chocta-
faula 

Tallapoosa  
Vaughn's 
Mill 

Breached 32.513 -85.578 
Built 1940  
Breached 
1990’s 

Loblockee Tallapoosa 
Macon's 
Mill 

Intact 33.653 -85.584  

Sandy  Tallapoosa Jones’ Mill Intact 32.751 -85.560 
Built 
1830’s 

Little 
Hilabee 

Tallapoosa Carr’s Mill Relict 33.204 -85.943 
Breached 
1940’s 

Paint Rock Tennessee  
Butler’s 
Mill 

Relict 34.579 -86.301 
Built 
1820’s 

Turkey  Tennessee 
Masterson 
Mill 

Intact 34.538 -87.283 
Built 
1870’s 

Butta-
hatchee 

Tombigbee  
Unnamed 
Mill 

Breached 34.126 -87.837 

Built 
1920’s  
Breached 
1980’s 

New Tombigbee Kelly's Mill Intact 33.930 -87.680  

Pearce's 
Mill 

Tombigbee 
Pearce's 
Mill 

Breached 34.122 -87.836 

Built 
1920’s 
Breached
1980’s 
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Figure 2.  Examples of dams showing intact (a), breached (b), and relict (c) 

conditions, and layout of study reaches (d) for streams with intact (left) and 

breached or relict (right).  Square symbols represent upstream sites, stars 

represent mill sites, and circles represent downstream sites. 
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I measured a full range of physicochemical variables (mean current 

velocity, stream depth, substrate size, and channel width) thought to vary among 

sites concurrently with biotic sampling over Spring-Summer and Fall 2007 and 

2008.  I established cross-stream transects every 10 m in each reach and measured 

wetted width, and current velocity (measured at 0.6x the channel depth, Gore 

2006), depth (n=5/transect), substrate size (pebble counts method [Wolman 1954], 

n=20/transect at random intervals), and proportion of unmeasured substrate in the 

channel (wood, bedrock, organic matter, sand/silt). Streamwater chemistry data 

included conductivity (Sharp C66 meter), pH (Sharp pH52), and dissolved oxygen 

(YSI 55), measured from grab samples from each reach and in the impoundment 

zone or its equivalent during summer base flow (July 2008).  Conditions at all 

reaches on a stream were measured within 1 or 2 d of each other to ensure similar 

physical conditions among reaches.  I measured water temperature continuously 

(3-h intervals) using iButton data loggers deployed at downstream, mill, and 

upstream reaches; I deployed a 4
th

 logger in the impoundment zone of intact 

dams, or in a reach of equivalent distance upstream from the dam for breached 

and relict sites.   

  

Crayfish and fish sampling 

I quantified crayfishes in each reach using a combination of trapping, 

seining, and electrofishing, thus minimizing sampling bias of any single method 

(Rabeni et al.1997, Ratcliffe and DeVries 2004).  I set 8 crayfish traps, baited 

with perforated cans of cat food, over night once in each reach during May-
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September.  All reaches on a stream were typically sampled the same night or 

within a day of each other to ensure similar conditions upstream to downstream.   

I used kick-seining (mesh size=0.25mm) and a backpack electrofishing 

unit (Smith-Root LR-24 electrofishing unit) to quantify fishes, potential biotic 

controls on crayfishes, in the full range of habitat unit types available in study 

reaches (i.e., riffles, runs, pools, backwaters).   

Crayfish specimens were kept alive on ice and later preserved in 95% 

ethanol in the laboratory where they were identified to species using keys in 

Hobbs (1981, 1989) and Taylor and Schuster (2004).  I anesthetized fishes in 

tricane methanesulfonate (MS-222), fixed them in a 10% formalin solution, and 

then transferred them to 70% ethanol for permanent storage.  In the laboratory, I 

identified fishes to species and classified them according to feeding guilds 

(Berkman and Rabeni 1987, Boschung and Mayden 2004, B. Helms unpublished 

data).  All specimens were deposited in the Auburn University Learning Center. 

 

Statistical analysis 

I used a General Linear Model (PROC GLM, SAS 9.1) with reach 

(upstream, mill, downstream) as a fixed factor and site (intact, breached, relict 

dam condition) as a random factor with an interaction term to test for differences 

in substrate size and percentages of bedrock, wood, organic matter, and fine 

sediments (i.e., silt and sand). 

For each reach I calculated reach- and stream-specific catch per unit effort 

(CPUE) using mean trap success (mean number crayfishes per trap) as a measure 
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of abundance.  Traps are an efficient way to sample crayfishes in vegetated or 

highly structured environments (Feminella and Resh 1989). Moreover, our 

streams were spread throughout a range of physiographic provinces with a large 

array of habitat conditions (turbidity, substrate particle size, macrophyte and 

woody debris abundance, etc.) so traps were the most replicable method of 

sampling crayfish abundance (Hubert 1996). In contrast, to guard against potential 

trap bias against trap-shy species, for crayfish richness I used electrofishing and 

kick-seining to obtain more accurate estimates (Jordan et al. 2000).   

Crayfish abundance and richness data were non-normal and could not be 

normalized using transformations; thus, I used non-parametric Kruskal-Wallace 

tests (Zar 1999) to test the null hypothesis that crayfish abundance and richness 

did not differ among streams of contrasting dam conditions (i.e., intact vs. 

breached vs. relict sites).  I used Friedman’s test (Zar 1999) to test the null 

hypothesis that crayfish abundance and richness did not differ among reaches for 

streams of similar dam conditions (i.e., upstream vs. mill vs. downstream reaches 

of relict, breached, and intact dams).  Multiple comparisons were made using the 

Friedman’s Test on each pair of treatments (α=0.05).   

In addition, I used a General Linear Model (PROC GLM, SAS 9.1) with 

reach (upstream, mill, downstream) as a fixed factor, site as a random factor, and 

mean water depth as a covariate was used for each dam condition (intact, 

breached, relict) to test the null hypothesis that predatory fish abundance did not 

differ among reaches.  Predatory fishes were defined as those individuals in the 

families Centrarchidae, Cottidae, Esocidae, and Ictaluridae, all of which are 
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known to consume crayfishes (Berkman and Rabeni 1987, Boschung and Mayden 

2004). I did not use a minimum size threshold for counting predatory fish and 

instead assumed that fish large enough to be caught in seines were potential 

predators of juvenile and/or adult crayfishes. 

 

Crayfish population genetics 

For 2 sites with intact dams, Sandy Creek (Tallapoosa Drainage) and 

Hatchett Creek (Coosa Drainage), I quantified gene flow among crayfish 

subpopulations of impounded streams. Genetic analyses focused on Cambarus 

striatus (the ambiguous crayfish) from Sandy Creek, and Cambarus coosae (the 

Coosa crayfish) from Hatchett Creek.  I chose these species because they were 

locally common (i.e., had no conservation concerns) and were easily collected and 

identified in their respective streams.  In addition, the strongly disparate 

distributions of the 2 species promoted a contrast in their degree of endemism.  

Cambarus striatus is widespread throughout the Southeastern US; in contrast, C. 

coosae is restricted to the Coosa and Cahaba River Drainages (Hobbs 1981).  

Tissue samples used for genetic analysis were taken from the abdominal muscle 

of crayfishes from each reach and stored in 95% ethanol before animals were 

preserved (Fetzner and Crandall 2003). 

I extracted genomic DNA using a 2X CTAB extraction protocol as 

detailed in Coffroth et al. (1992) and amplified a portion of the mitochondrial 

cytochrome oxidase subunit I (COI) gene using the polymerase chain reaction 

(PCR) for all individuals using the primers HCO2198 and LCO1490 (Folmer et 
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al. 1994). The COI gene has been used widely in decapod phylogenetic and 

phylogeography studies because of its relatively high rate of substitution (Tontelj 

et al. 2005).   

Reactions were conducted in 25 μL using the following reagent 

concentrations:  2.5 μL 10 x buffer (1.5 μM), 0.5 μL dNTPs (10 μM), 0.1 μL Taq 

polymerase, 0.5 μL magnesium chloride (25 μM), 1 μL of each primer (10 μM), 

and 1 μL DNA template (~10-50 ng).  Thermocycling was performed with a PTC-

100
TM

 thermocycler (MJ Reactions) using the following program:  an initial 

denaturing step of 96˚C for 3 min, followed by 40 cycles of 94˚C for 1 min, 

annealing at 50˚C for 1 min, and 72˚C for 1 min, with a final elongation of 72˚C 

for 5 min. I purified amplified products with Montage
TM

 PCR Filter Units 

(Millipore) according to the supplier’s recommendations and sequenced using an 

ABI 3100 Genetic Analyzer (Applied Biosystems) in both directions.  I then 

edited sequences by comparing each read to its compliment strand using 

Sequencher v4.6 (Gene Codes Corporation) and aligned manually with Se-Al 

v2.0a11 (available at http://evolve.zoo.ox.ac.uk/).   

 

Genetic data analysis 

I assessed levels of genetic polymorphism and structure among 

subpopulations (e.g., upstream, mill, and downstream) of each species with 

DnaSP v4.06 (Rozas et al. 2003).  Specifically, I calculated nucleotide (π) and 

haplotype (Hd) diversity estimates (Nei 1987) within each subpopulation and 

overall (i.e., across all 3 subpopulations).  In these cases, π represents the mean 
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number of nucleotide differences per locus between any 2 sequences whereas Hd 

reflects the haplotype richness within a subpopulation. I estimated genetic 

differentiation of subpopulations using the nearest neighbor statistic, Snn (Hudson 

et al. 1992), which quantifies the frequency of the most similar sequence of a 

given haplotype being recovered from the same locality. I also quantified 

population structure and gene flow using Fst and Nm (Hudson et al. 1992), where 

Fst measures the proportion of genetic variation found among subpopulations 

within a larger population, Nm is the effective number of migrants exchanged 

between subpopulations per generation, N = the number of individuals in each 

subpopulation, and m is the fraction of migrants in each subpopulation per 

generation. 

To separate population history from population structure, I constructed 

networks for the COI haplotypes within each species using TCS v1.21 (Clement 

et al. 2000) and used in a nested clade analysis (NCA, Templeton et al. 1987). I 

tested the null hypothesis of no geographic association among haplotypes by 

calculating clade distance (Dc) and nested clade distance (Dn) by 5000 

permutations in the GeoDis v2.5 software package (Posada et al. 2000). Dc 

measures the geographical range of a haplotypes at each nested level whereas Dn 

measures the evolutionary distance between haplotypes in different levels of the 

nesting.  I assessed the output of GeoDis in the context of the most recent (i.e., 

April 2009) NCA inference key. This approach can help explain what 

evolutionary events (e.g., restricted gene flow) led to current levels of genetic 
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diversity and geographic distribution of haplotypes within a species (Templeton 

2005).  

 

Results 

Instream habitat, and crayfish and predatory fish assemblage variation 

Instream Habitat.—There was high variation in substrate characteristics 

across reaches, with mean particle width ranging from 0.6 to 272.2 mm, mean 

bedrock cover from 0 to 65%, and mean sand and silt cover from 1 to 78% (Table 

2).  Only substrate composition differed significantly among reaches, and only for 

intact dam sites.  There, percentage of fine particles (as sand and silt) in the 

stream bed was significantly lower at mill than at upstream reaches (22.1 vs. 

35.6%, respectively, p=0.015); % sand and silt at downstream reaches (28.8%) 

was not significantly different from upstream or mill reaches (p>0.05).  

Crayfish.—A total of 20 crayfish taxa was collected from the 22 study 

sites (Appendix A).  Richness and total catch did not differ among streams with 

different dam conditions (H=0.244, p=0.885 and H=0.033, p=0.984, respectively).  

However, when expressed as CPUE there were significant differences among dam 

conditions (H=7.923, p=0.019).  Mean CPUE for streams with breached dams 

was significantly lower than that of relict and intact dams (Fig. 3A). 
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Table 2. Summary of physicochemical and crayfish data from the study streams.  Up= site 1500-5000 m upstream of the dam, Mill= site immediately 
downstream of the dam, Down= site 500-3000 m downstream of the dam. Cond. = specific conductance, DO = dissolved oxygen, Temp = water 
temperature, CPUE=crayfish catch per trap and crayfish species found at each reach type. Mean + SD. 

Dam 
condition 

Study 
reach 

Current 
velocity 
(m/s) 

Stream 
Depth 
(m) 

Wetted 
width 
(m) 

Mean 
substrate 

(mm) 

% 
Bedrock 

% 
Woody 
debris 

% 
Organic 
matter 

% Sand 
/ silt 

Cond. 
(uS/cm) 

pH 
DO 

(mg/L) 
Temp 
(C) 

CPUE 

Intact Overall 
0.05 

+0.04 
0.26 

+0.12 
11.97 
+5.03 

116.91 
+59.59 

18.50 
+16.56 

9.41 
+9.24 

8.44 
+7.42 

28.85 
+13.63 

111.92 
+134.69 

8.33 
+0.58 

6.18 
+1.20 

22.93 
+5.29 

3.00 
+0.15 

    Up 
0.04 

+0.03 
0.26 

+0.15 
10.46 
+5.26 

113.10 
+63.99 

16.18 
+15.87 

11.57 
+10.6

8 

8.29 
+5.37 

35.64 
+14.94 

114.63 
+134.49 

8.52 
+0.69 

5.88 
+0.99 

21.29 
+5.67 

4.34 
+0.48 

 Mill 
0.07 

+0.05 
0.26 

+0.11 
13.09 
+4.75 

133.47 
+53.42 

18.02 
+13.41 

6.22 
+6.26 

8.68 
+8.66 

22.09 
+11.45 

116.88 
+149.93 

8.12 
+0.53 

5.94 
+1.47 

24.24 
+4.90 

1.58 
+0.31 

 Down 
0.05 

+0.05 
0.26 

+0.10 
12.35 
+5.22 

103.78 
+63.60 

21.31 
+20.91 

10.44 
+10.2

0 

8.35 
+8.58 

28.81 
+11.92 

105.11 
+137.28 

8.38 
+0.56 

6.71 
+1.08 

23.28 
+5.54 

3.08 
+.049 

Breached Overall 
0.16 

+0.07 
0.28 

+0.11 
13.08 
+6.12 

138.88 
+77.83 

20.50 
+17.19 

5.98 
+4.35 

7.91 
+7.11 

29.21 
+19.04 

313.71 
+420.00 

8.47 
+0.50 

7.62 
+2.00 

21.09 
+4.00 

0.99 
+0.06 

 Up 
0.16 

+0.07 
0.30 

+0.30 
14.04 
+8.18 

124.36 
+101.94 

24.14 
+17.43 

8.03 
+3.89 

7.79 
+6.32 

35.70 
+29.03 

326.71 
+446.05 

8.40 
+0.61 

6.28 
+2.32 

20.27 
+4.61 

1.73 
+0.21 

 Mill 
0.15 

+0.09 
0.30 

+0.11 
13.96 
+3.89 

143.22 
+55.38 

18.17 
+14.53 

5.94 
+4.61 

7.36 
+8.87 

27.37 
+9.73 

240.14 
+225.43 

8.40 
+0.57 

7.55 
+1.54 

21.85 
+3.31 

0.56 
+0.11 

 Down 
0.18 

+0.05 
0.25 

+0.06 
11.23 
+6.06 

149.08 
+79.66 

19.20 
+21.14 

3.96 
+4.13 

8.59 
+7.01 

24.57 
+13.88 

374.29 
+572.21 

8.60 
+0.32 

8.76 
+1.64 

21.17 
+4.56 

0.69 
+0.15 

Relict Overall 
0.11 

+0.06 
0.32 

+0.17 
19.28 
+0.73 

109.98 
+127.81 

18.96 
+21.08 

7.25 
+5.05 

7.11 
+5.43 

31.41 
+16.11 

146.89 
+81.43 

8.23 
+0.15 

5.99 
+1.91 

26.76 
+1.52 

2.77 
+0.17 

 Up 
0.08 

+0.05 
0.30 

+0.15 

19.85 
+12.0

4 

65.61 
+75.06 

11.18 
+13.29 

9.52 
+2.98 

10.26 
+5.55 

33.58 
+22.26 

147.00 
+91.33 

8.20 
+0.10 

3.82 
+0.10 

26.60 
+1.65 

1.85 
+1.36 

 Mill 
0.14 

+0.09 
0.28 

+0.12 
19.83 
+9.66 

163.57 
+165.24 

23.58 
+21.61 

4.60 
+4.36 

6.42 
+4.99 

24.86 
+8.69 

144.67 
+92.68 

8.17 
+0.12 

7.41 
+0.12 

26.00 
+2.83 

3.50 
+3.54 

 Down 
0.11 

+0.05 
0.38 

+0.25 
18.17 
+5.15 

100.74 
+134.44 

22.12 
+28.22 

7.64 
+6.78 

4.66 
+5.19 

35.80 
+15.93 

149.00 
+97.86 

8.33 
+0.21 

6.75 
+0.21 

27.43 
+0.12 

2.95 
+2.71 
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Figure 3.  Catch per trap effort of crayfish on streams with intact, breached, and 

relict dams across all study reaches (a), catch per trap effort of crayfish at each 

study reach on streams with dams in different conditions (b), and abundance of 

predatory fishes (as total catch) (c), at each study reach on streams for dams in 

different conditions (see text).  White columns represent upstream reaches, black 

columns are dam reaches, and gray columns are downstream reaches.  Mean + 

SE.   



 39 

For streams with intact dams, CPUE was lower at mill reaches than at 

upstream or downstream reaches (Xr
2
=21.88, p<0.0001). For streams with 

breached dams, CPUE was significantly higher upstream than at mill or 

downstream sites (Xr
2
=10.83, p=0.005). For streams with relict dams, CPUE did 

not differ among sites (Xr
2
=1.90, p=0.39; Fig. 3B). 

 Predatory fish.—Individuals from 5 fish families known to consume 

crayfishes were collected during the study (B. Helms unpublished data).  For 

streams with intact dams, there were significantly higher abundances of predatory 

fishes at mill reaches (i.e., immediately below dams) than at upstream or 

downstream reaches (Fig. 3C). The numerically dominant taxa of predators were 

centrarchids. 

 

Crayfish population genetics 

A total of 562 base pairs of COI were obtained from each of 22 Cambarus 

striatus at Sandy Creek. From these, 19 (3.38%) polymorphic sites were 

recovered from 12 haplotypes found at all 3 reaches (upstream, mill, and 

downstream).  π was higher upstream than overall or at mill or downstream 

reaches, whereas Hd was higher overall than at any single reach except the mill 

reach, where only 2 individuals were collected, and each represented a different 

haplotype.  Snn was significant and approached 1 (Snn=0.705, p=0.009), implying 

genetic differentiation between upstream and downstream subpopulations.  

Furthermore, whereas Fst was not high (0.378), Nm was <1 (0.410), suggesting 

limited gene flow among subpopulations (Table 3).  Of the 12 haplotypes, 8 
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(67%) were found at the downstream reach, with 2 being shared by downstream 

and mill reaches, and 4 haplotypes found at the upstream reach.  The upstream 

reach shared no haplotypes with downstream and mill reaches (Fig. 4A), again 

suggesting limited to no longitudinal gene flow among subpopulations. The NCA 

of C. striatus found one 2-step clade to be significant (2-1: Dn=1.420, p<0.0001; 

I-T: Dc=-1.467, p=0.013), with a conclusion of contiguous range expansion based 

on the inference key. All other clades yielded inconclusive outcomes in the NCA.   

 A total of 598 base pairs of COI were obtained from each of 50 Cambarus 

coosae at Hatchett Creek.  Overall, 16 haplotypes were collected across the 3 

study reaches, with a total of 15 (2.51%) polymorphic sites.  π was higher 

upstream than overall or at mill or downstream reaches, with Hd being highest at 

the mill reach.  Fst was low, whereas Nm was high, but Snn was not significant 

(Table 3), suggesting little to no genetic differentiation among subpopulations. 

This pattern was visually apparent in the TCS network: of the 16 identified 

haplotypes, the most commonly recovered (i.e., haplotype 1) was found at the 

upstream, mill, and downstream sites at a similar frequency.  The remaining 

haplotypes were singletons and/or unique to a reach (Fig. 4B). The NCA of C. 

coosae revealed no clades with significant divergence. 

 

Discussion 

A wide range of biotic and abiotic factors influence crayfish abundance 

and distribution in streams.  Abiotic factors involve appropriate substrate sizes 

and/or types (i.e., the availability of refugia), water depth, hydrologic  
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Table 3.  Genetic diversity and differentiation among subpopulations of the crayfish Cambarus 

striatus and C. coosae. π = nucleotide diversity, Hd = haplotype diversity, Fst = genetic variation 

among subpopulations within the metapopulation, and Nm = effective number of migrants 

exchanged between subpopulations per generation, Snn = estimate of genetic differentiation of 

the crayfish subpopulations (see text).  

 

Species 

 

Population 

No. of  

indiv. 

No. of 

haplo-

types 

 

π 

 

Hd 

 

Fst 

 

Nm 

 

Snn 

C. 

striatus 
Overall 22 12 0.0107 0.887 0.3778 0.41 

0.70519 

p=0.009 

 Upstream 6 4 0.0108 0.867    

 Mill 2 2 0.0018 1.0000    

 Downstream 16 8 0.0084 0.824    

C. 

coosae 
Overall 50 16 0.0016 0.593 0.0094 26.81 0.35432 

 Upstream 15 7 0.0019 0.625    

 Mill 13 5 0.0013 0.667    

 Downstream 22 8 0.0015 0.545    
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Figure 4.  Halpotype networks showing nesting levels used to infer historical 

processes for Cambarus striatus at Sandy Creek (a) and C. coosae at Hatchett 

Creek (b).  Numbered circles each represent a unique sampled haplotype whereas 

small open circles represent unsampled (i.e. missing) haplotypes.  The size of a 

circle is proportional to the frequency at which that haplotype was recovered.  

Shading corresponds to sites where individuals were collected (white = upstream, 

black = mill, and gray = downstream).  Note that despite variable lengths, each 

branch implies a single mutational difference between haplotypes.  For example, 

haplotype 1 in 4a differs from haplotype 5 by one mutation, whereas haplotype 5 

differs from haplotype 7 by 4 mutations.   
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permanence, and water chemistry (Bovbjerg 1970, Jordan et al. 2000, Flinders 

2003, Ratcliffe and DeVries 2004, Larson et al. 2009).  Biotic factors can include 

inter- and intraspecific competition and predation by fish, wading birds, and 

mammals, each of which may affect crayfish behavior, distribution, and overall 

assemblage structure (Bovbjerg 1970, Stein and Magnuson 1976, Garvey et al. 

1994, Englund and Krupa 2000).  On streams with intact mill dams crayfish I 

found crayfish abundance to be lower at mill reaches than at upstream or 

downstream reaches. In  addition, abundance of predatory fish was higher at mill 

reaches (vs. upstream or downstream) of these same streams.  Dams may serve as 

sources of fish aggregations downstream of the impoundment (Agostinho et al. 

2007), which may, in turn, act as ―predator gauntlets‖ (sensu Hein and Crowl 

2010, see also Creed 2006), decreasing crayfish abundance in these reaches 

through direct consumption by fish, behavioral avoidance, or a combination of 

these factors. Irrespective of the source, presence of predators immediately 

downstream of impoundments may impose additional limits on longitudinal 

dispersal by crayfishes, thus exacerbating the influence of the physical barrier on 

crayfish movements.  

Interactions between abiotic factors and biotic factors also may be driving 

reductions in crayfish abundance at intact mill sites.  Our data did show evidence 

of reduced amounts of fine sediments immediately downstream of intact dams 

(unpublished data).  Decreased current velocity in the impounded reaches can 

greatly increase sediment deposition upstream of the dam, often causing 

tailwaters to become sediment-starved and downstream sections to exhibit 
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increased scour, streambed lowering, and bed coarsening (Baxter 1977, Chien 

1985, Graf 2005).  Decreased deposition causes tailwaters to become less 

geomorphically complex, with fewer bars and islands and reduced shallow-water 

habitat (Poff et al. 1997, Graf 2006).  Moreover, coarsening of the stream bed 

reduces habitat availability for benthic species by decreasing habitat heterogeneity 

(Hauer et al. 1989, Armitage and Blackburn 1990).  At the watershed scale, these 

geomorphic changes may transform slow-flowing marshy streams into fast-

flowing gravel-bottomed systems (Walter and Merritts 2008).  Our habitat data 

revealed few significant differences among sites on streams with intact dams, but 

the influence of abiotic factors on aquatic populations may be transient and/or 

difficult to detect empirically because of high spatial and temporal variation; thus, 

it is possible that our sampling regime may have not adequately characterized the 

potentially critical habitat conditions affecting crayfishes. 

It is important to note that there was high variability in structural 

conditions of breached dams, as well as habitat across these breached sites. In this 

context, dams at most (60%) of our breached sites were breached intentionally by 

landowners or managers for safety or conservation concerns, whereas all other 

breaches ostensibly occurred by natural erosion during storm events.  Some 

breaches (both intentional and natural) were the result of removal of a small 

portion of the dam, whereas the spillways were opened on others allowing free-

flowing conditions. Duration of time following intentional breaches was easily 

determined from the landowners, whereas time since natural breaches often was 

less clear, as these structures often were frequently unmaintained and/or occurred 
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in remote areas.  According to landowner accounts, most dams were breached 

between the late 1980s and the early 1990s (E. Hartfield, personal observation), 

indicating a 20- to 30-y post-breach period for biotic and abiotic conditions to 

change within our study sites. 

Surprisingly, breached dams appeared to have a greater negative impact 

on crayfish abundance than intact or relict dams, as many breached mill and 

downstream reaches supported fewer crayfishes than upstream reaches.  Large 

deposits of fine sediments are characteristic of the reaches immediately upstream 

of breached (and intact) dams, often extending for >1000 m upstream of 

impoundments.  At the dam, the breach often constricted the stream to a narrow 

exit point where water velocity is greatly increased during major storm events, 

resulting in a ―pressure hose effect.‖ It is possible that episodic pulses of fine 

sediments from behind the breached dams may reduce the availability of crevices, 

interstitial space, and other refugia, reducing crayfish habitat quality, 

heterogeneity, and stability for considerable distances downstream of the breach.  

This effect could explain why our sampling regime did not show higher fine 

sediment loads in mill or downstream reaches compared with upstream reaches. 

The lack of significant differences in abundance among sites on streams 

with relict dams suggests that after total dam removal, crayfish abundance 

homogenizes longitudinally and may return to pre-impoundment levels. 

Assessment of recovery after dam removal was beyond the scope of this paper, as 

exact estimates of time since dam failure at relict sites often could not be 

obtained.  According to landowner accounts, most relict dams failed between the 
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1940s and 1960s; if these estimates are correct, then recovery of crayfish 

assemblages may take years to decades, depending on how much of the structure 

was removed.  The time for captured sediment in formerly impounded reaches to 

move through the system may play a key role in recovery time, making time since 

breach or removal of dams an important factor when studying recovery time of 

these systems.  Unfortunately, such historical data are not typically available.   

Genetic diversity measures (Hd and π) for C. striatus in Sandy Creek were 

not higher downstream than upstream, as would often be expected if upstream 

subpopulations were isolated for long periods and experienced subsequent 

reductions in diversity.  However, values estimated for Snn, Fst and Nm all suggest 

genetic structure exists for C. striatus in Sandy Creek, with differentiation and 

limited gene flow among subpopulations. Abundance of C. striatus at the mill 

reach was low, but the 2 haplotypes found also occurred downstream, suggesting 

unrestricted gene flow between these reaches. The upstream reach shared no 

haplotypes with downstream or mill reaches, but 2 haplotypes found downstream 

(haplotypes 10 and 12 in Fig. 4A) were more similar to upstream haplotypes than 

to other downstream haplotypes.  Presence of upstream haplotypes in downstream 

reaches implies the occurrence of migration/dispersal over the dam, but only in 

the downstream direction.  Such downstream unidirectional movement across a 

dam has been documented in fish populations (Neraas and Spruell 2001). 

In contrast, for C. coosae in Hatchett Creek, Snn, Fst and Nm values 

suggested no population structuring.  This result also was reflected in the 

haplotype network, where one haplotype was numerically dominant across all 3 
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subpopulations. Overall genetic diversity (as Hd and π) for the endemic C. coosae 

was much lower than the widespread C. striatus, which is consistent with the idea 

that restricted-range endemic species are less genetically diverse than widespread 

species (Frankham 1997).  Differences in apparent gene flow between the 2 

species also may be the result of the relatively young age of the Hatchett Creek 

dam (~80 y) compared to the age of Jones Mill dam on Sandy Creek (at least 160 

y).  This time difference would be equal to many generations of crayfishes, and 

may explain why the COI gene fragment used in this study revealed no population 

structuring.  It is possible, that use of more sensitive genetic markers, such as 

microsatellites (Avise 2004), might detect finer-scale (i.e., shorter-term) genetic 

structuring within this system.   

Aging and degraded low-head dams are a hazard to recreational activities 

and may also threaten survival of sensitive aquatic taxa.  Our data suggest that 

streams with intact dams negatively affect crayfishes by creating predaceous fish 

aggregations downstream of dams that may reduce crayfish abundance.  In 

addition, low-head dams and their resulting reservoirs have the potential to limit 

longitudinal movements by crayfishes, and serve as an additional source of 

fragmention of these populations.  As such, dams make excellent targets for 

restoration projects. However, partial removal (i.e., breaching) of these structures 

may actually increase threats to downstream biota because of decreased habitat 

stability due to potentially rapid and catastrophic delivery of multiple decades of 

sediment buildup directly behind dams. When designing instream restorations in 

such regulated systems that support at-risk freshwater biota, extensive case-by-
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case evaluations are needed to weigh the costs and benefits of dam removal 

(Stanley and Doyle 2003). 
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Appendix A.  Crayfish species, streams where each species was collected, drainage, and 

study reaches (Up=upstream reach; Mill=mill reach; Down=downstream reach; X=present).   

Species Streams Drainage Up Mill Down 

Cambarus coosae Little Cahaba Creek Cahaba X X X 

 Hatchett Creek Coosa X X X 

 Big Canoe Creek Coosa X X X 

 Yellow Leaf Creek Coosa X X X 

C. englishi Little Hillabee Tallapoosa X  X 

C. girardianus Turkey Creek Tennessee   X 

C. halli Choctafaula Creek Tallapoosa X X X 

 Sandy Creek Tallapoosa X X X 

  Loblokee Creek Tallapoosa X X X 

C. howardi Halawakee Creek Chatahoochee X X X 

 Osanippa Creek Chatahoochee X X X 

C. latimanus  Halawakee Creek Chatahoochee  X X 

 Hatchett Creek Coosa  X X 

 Big Canoe Creek Coosa X X X 

C. striatus Blue Springs Creek Black Warrior X X X 

 Brushy Creek Black Warrior X  X 

 Little Cahaba River Cahaba X  X 

 Cahaba River Cahaba   X 

  Little Uchee Creek Chatahoochee X X  

 Choctafaula Creek Tallapoosa  X X 

 Little Hillabee Creek Tallapoosa  X X 

  Sandy Creek  Tallapoosa X X X 

 Turkey Creek Tennessee X   

  Pearce's Mill Creek Tombigbee  X X 

  New River  Tombigbee X   

C. obstipus Brushy Creek Black Warrior X  X 

 Pearce’s Mill Creek Tombigbee   X 

Falicambarus fodiens Choctafaula Creek Tallapoosa  X  

Orconectes erichsonianus Blue Springs Creek Black Warrior X X X 

 Cahaba River Cahaba  X X 

 Big Canoe Creek Coosa X X X 

 Paint Rock River Tennessee X  X 

O. forceps Paint Rock River Tennessee X X X 
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Appendix A.  Crayfish species, streams where each species was collected, drainage, and 

study reaches (Up=upstream reach; Mill=mill reach; Down=downstream reach; X=present).   

Species Streams Drainage Up Mill Down 

O. holti Big Flat Creek Alabama X X  

O. perfectus New River  Tombigbee X X X 

 Lost Creek Black Warrior X X X 

O. putnami Turkey Creek Tennessee X X X 

O. spinosus Turkey Creek Tennessee X X  

O. validus Brushy Creek Black Warrior X X X 

 Paint Rock River Tennessee X X  

 Turkey Creek Tennessee X   

 Buttahatchee River  Tombigbee X X X 

 Pearce’s Mill Creek Tombigbee X X X 

O. virilis Cahaba River  Cahaba X X X 

  Little Cahaba River Cahaba X X X 

Procambarus spiculifer Big Flat Creek Alabama X X X 

 Halawakee Creek Chatahoochee X X X 

 Little Uchee Creek Chatahoochee X X X 

  Osanippa Creek Chatahoochee X X X 

 Little Hillabee Tallapoosa X X X 

 Loblockee Creek Tallapoosa  X  

P. versutus Yellow Leaf Creek Coosa X  X 

 Choctafaula Creek Tallapoosa X X X 

  Loblockee Creek Tallapoosa X X  

P. verrucosus Choctafaula Creek Tallapoosa X X  

 Sandy Creek Tallapoosa X   

 


