
SIMBUILDER: AN INVESTIGATION AND USABILITY STUDY OF NOVICE

PROGRAMMING TECHNIQUES

Except where reference is made to the work of others, the work described in this thesis is
my own or was done in collaboration with my advisory committee. This thesis does not

include proprietary or classified information.

Sumitha Kanakadoss

Certificate of Approval:

_______________________________ _______________________________
Juan E. Gilbert Cheryl D. Seals, Chair
Assistant Professor Assistant Professor
Computer Science and Software Computer Science and Software
Engineering Engineering

_______________________________ ______________________________
N. Hari Narayanan Stephen L. McFarland
Associate Professor Dean
Computer Science and Software Graduate School
Engineering

SIMBUILDER: AN INVESTIGATION AND USABILITY STUDY OF NOVICE

PROGRAMMING TECHNIQUES

Sumitha Kanakadoss

A Thesis

Submitted to

the Graduate Faculty of

Auburn University

in Partial Fulfillment of the

Requirements for the

Degree of

Master of Science

Auburn, Alabama

December 16, 2005

 iii

SIMBUILDER: AN INVESTIGATION AND USABILITY STUDY OF NOVICE

PROGRAMMING TECHNIQUES

Sumitha Kanakadoss

Permission is granted to Auburn University to make copies of this thesis at its discretion,
upon request of individuals or institutions and at their expense. The author reserves all

publication rights.

Signature of Author

Date of Graduation

 iv

THESIS ABSTRACT

SIMBUILDER: AN INVESTIGATION AND USABILITY STUDY OF NOVICE

PROGRAMMING TECHNIQUES

Sumitha Kanakadoss

Master of Science, December 16, 2005
(B.E., University of Madras, Madras, India, 2003)

125 Typed Pages

Directed by Cheryl D. Seals

In many existing programming languages, novices always find it difficult to

transform their mental plan to terms compatible with the computer. By analyzing the

ways users think to solve their daily problems and designing programming languages

accordingly, would help novices to overcome this transformation barrier. This study

assumes that visual programming would be more effective for novice programmers since

it requires less cognitive overload than textual language-based approaches.

The study was initiated by analyzing the usability of currently available tools for

visual construction of educational simulations like AgentSheets, Alice3D, 3D Game

Creator, Toontalk, and Squeak. The main goal was to find the difficulties novice

programmers experienced while developing simple science simulations in Squeak

SimBuilder environment. These identified factors motivated and guided us to redesign

 v

the environment to achieve effectiveness, efficiency and satisfaction of users. We

followed tenets of the Natural Programming design process to accomplish this.

Comparative analysis was made and a wide range of quantitative and qualitative data was

collected. Results indicated that overall the redesigned environment performed better

than the previous version in all aspects and showed significant improvement in fun factor,

ease of understanding, and learnability.

 vi

ACKNOWLEDGEMENTS

 I would like to express my humble gratitude to Dr. Cheryl D. Seals, my advisor

and committee chair, for her support, motivation, patience and insightful guidance

throughout my research work and graduate study. I would like to thank my committee

members for taking time out of their schedules to be on my committee. I extend my

gratitude to my parents and sister for their tremendous support, love and encouragement.

I am grateful to all my friends for being there and providing emotional and moral support.

And, most of all, I want to thank God for blessing me with this life and guiding me

throughout my life.

 vii

TABLE OF CONTENTS

LIST OF FIGURES ... X

LIST OF TABLES.. XI

CHAPTER 1 .INTRODUCTION ... 1

1.1 APPROACH ... 2
1.2 DOCUMENT OVERVIEW.. 4

CHAPTER 2 .LITERATURE REVIEW .. 6

2.1 USER-CENTERED DESIGN... 8
2.1.1 Usability ... 8
2.1.2 UI Design strategies ... 11
2.1.3 UI Design Tools ... 11
2.1.4 Learner –Centered Design for Educational Software 12

2.2 NATURAL PROGRAMMING.. 12
2.2.1 Why Natural Programming? .. 13
2.2.2 Learning Barriers ... 14
2.2.4 Instructional Techniques .. 15
2.2.5 Design of new language... 17
2.2.6 LiveWorld – Environment for Novices ... 17

2.2.6.1 Message-passing protocols in programming .. 19
2.2.7 Recommendations for a programming language to be more natural 19

2.3 VISUAL PROGRAMMING ... 20
2.3.1 Characteristics of Visual Programming Languages .. 21
2.3.2 Comparison between Visual and textual code ... 23
2.3.3 Applications of Visual Programming .. 26

2.4 AUTHORING ENVIRONMENTS FOR TEACHING... 27
2.4.1 AgentSheets ... 28
2.4.2 LEGOsheets, HyperGami and Stagecast Creator .. 30
2.4.3 3D Graphical Programming Environment ... 31
2.4.4 Squeak.. 32

2.4.4.1 Smalltalk implementation ... 33
2.4.4.2 Squeak strengths ... 34
2.4.4.3 Squeak Application... 36

CHAPTER 3 .RESEARCH OVERVIEW .. 37

3.1 RESEARCH PURPOSE .. 37
3.1.1 Primary... 37
3.1.2 Secondary... 37

 viii

3.2 RESEARCH APPROACH ... 38
3.3 RESEARCH HYPOTHESIS... 39

CHAPTER 4 .PHASE 1: USABILITY STUDY WITH SQUEAK SIMBUILDER 3.7 .. 40

4.0.1 Background study .. 40
4.0.2 Learning ... 41
4.0.3 Creation of simple science model .. 41
4.0.4 Post survey ... 42
4.0.5 Experiment Results .. 42

CHAPTER 5 .PHASE II: REDESIGNING SQUEAK SIMBUILDER 3.7 45

5.1 GENERAL ENVIRONMENT... 46
5.2 SCRIPTING.. 47
5.4 KILLER PLAYFIELD AND GROUP ERASE ... 51

CHAPTER 6 .COMPARATIVE STUDY AND EVALUATION 54

6.1 EXPERIMENT METHODS ... 54
6.1.1 Population .. 54

6.1.2 Apparatus and Location of Experiment ... 55
6.1.3 Experimental design... 55

6.2 MATERIALS.. 57
6.2.1 Consent Form... 57
6.2.2 Tutorial... 58

6.2.2.1 Section 1: Learning ... 59
6.2.2.2 Section 2: Reuse.. 61
6.2.2.3 Interaction Guide .. 63

6.3 PROCEDURES.. 65
6.3.1 Pre-survey Questionnaire... 66
6.3.2 Performance Data and User Observations ... 67
6.3.3 Post-survey Questionnaire ... 67
6.3.4 Retrospective Interviews.. 67

6.4 RESULTS AND ANALYSIS.. 68
6.4.1 Participant Background.. 68
6.4.2 Learning Sessions: Performance and Qualitative Data.................................... 70
6.4.2 Reuse Sessions: Performance and Qualitative Data .. 72
6.4.3 User Reactions ... 75

CHAPTER 7 .DISCUSSIONS AND CONCLUSIONS... 81

7.1 Results Summary .. 81
7.2 Future Work .. 83
7.3 Conclusion .. 83

 ix

REFERENCES ... 85

APPENDICES .. 89

 x

LIST OF FIGURES

FIGURE 1 . RESEARCH APPROACH.. 38
FIGURE 2. OPENING SCENE IN SQUEAK .. 46
FIGURE 3. WATER CYCLE SIMULATION.. 47
FIGURE 4. OBJECT SUN AND PAINT TOOL... 47
FIGURE 5. SUN WITH HALO .. 48
FIGURE 6 .SCRIPTING CATEGORY... 48
FIGURE 7 . SCRIPTING WINDOW ... 49
FIGURE 8 . NAVIGATOR FLAP... 50
FIGURE 9 . FILE FLAP ... 50
FIGURE 10 . OBJECT FLAP .. 51
FIGURE 11 . KILLER PLAYFIELD... 52
FIGURE 12 . GROUP ERASE... 53
FIGURE 13. OPENING SCENE IN SQUEAK ... 59
FIGURE 14. LEARNING SECTION-EXPLORING SUN ... 60
FIGURE 15 . LEARNING SECTION - CREATING VOLCANO SIMULATION............................... 61
FIGURE 16 . REUSE OBJECTS IN THE OBJECTS FLAP.. 62
FIGURE 17. PHOTOSYNTHESIS SIMULATION ... 63
FIGURE 18 . INTERACTION GUIDE- A .. 64
FIGURE 19 . INTERACTION GUIDE -B .. 64
FIGURE 20. VOLCANO -MOUSE .. 71
FIGURE 21. VOLCANO - STYLUS... 72
FIGURE 22 . STARTER WORLD TO OCEAN WORLD .. 73
FIGURE 23 . OZONE DEPLETION TO PHOTOSYNTHESIS ... 74

 xi

LIST OF TABLES

Table 1 . Bi-polar Rating Scales .. 42
Table 2 . Likert-Scale Rating: General Ease of Use .. 43
Table 3 . Likert-Scale Rating: Assessing Motivation .. 44
Table 4 . Likert-Scale Rating: Assessing Programming Style Reaction 44
Table 5 . Experiment Design 1 .. 56
Table 6 . Experiment Design 2 .. 57
Table 7 . Data Collection ... 66
Table 8 . Participant Background Data .. 68
Table 9 . Learning and Creation times... 70
Table 10 . Reuse Session Times ... 73
Table 11 . Bi-polar Rating Scales ... 75
Table 12 . Likert-Scale Rating: General Ease of Use ... 76
Table 13 . Likert-Scale Rating: Assessing Motivation ... 77
Table 14 . Likert-Scale Rating: Assessing Programming style Reactions........................ 77

 1

CHAPTER 1 .INTRODUCTION

 Usability is the first objective of natural programming. Achieving

effectiveness, efficiency and satisfaction of the users for any application developed is a

usable product. There are so many applications with varying complexity developed using

different programming languages but the ease with which programmers code them is

always questionable. Though the programming field is dominated with so many high

level languages, novices always find it difficult to express their conceptual view in code.

Natural programming is a technique, which helps non-programmers to easily and

effectively learn a programming language. In natural programming we study culture,

work environment, and the technique users adapt to solve a problem. It utilizes

naturalness not only in programming but also in debugging. Success of any language

greatly depends on it’s learnability and productivity factor i.e. users should learn the

language without any training or manual and after learning how to use it, they should be

able to implement their tasks.

 End-Users have been supported with direct manipulation techniques to program,

where visible objects on the screen are directly manipulated with a pointing device.

Visual programming is the task of specifying a program based on visual and in some

cases direct manipulation techniques (graphics, drawings, animations, icons etc.). The

rationale is that this removes the necessity for learning a programming language

 2

in order to create a program or simulation. Thus visual programming tries to achieve

naturalness and decreases the effort required to program by an end-user. It is to be noted

that Microsoft visual programming languages are textual languages, which use a

graphical GUI builder to make programming basic interfaces easier for the programmer

to correct.

1.1 Approach

In my thesis, “SimBuilder: An Investigation and Usability Study of Novice Programming

Techniques”, I studied the difficulties non-programmers undergo while developing

simple science simulations in visual environments. Extensive study of the previous

research done in this field of natural programming motivated me to improve the usability

capabilities of the Squeak SimBuilder environment. I evaluated the usability of current

state of the art systems that are used to create interactive simulations in some of the visual

environments like AgentSheets, Alice3D, 3D Game Creator, SimBuilder, Squeak, and

ToonTalk. Although good simulation software sources already exist in some subject

areas, no interactive inquiry-based simulations are yet available for science. So some of

the basic simulations in science like Volcano, chemical reactions, atomic theory etc. were

created in these environments and the ease with which it can be done was studied. Pros

and cons for each environment were studied.

Each of the environments is specific to certain domains. Alice3D and Squeak are

deployed in the field of tutoring students and providing teaching aids. But Alice3D has its

limitation that it can run only on windows platform and limited to only 2D. AgentSheets

is more sophisticated environments for researchers investigating agents, robots etc. 3D

 3

Game Creator provides different visual tools for developing games. ToonTalk for kids

develop programming capability through its gaming features. Even the toughest concept

is illustrated as a fun play which kids can easily grasp. SimBuilder is a tool for modeling

and simulation. It is used to build and simulate science models for high school students. It

is programmed in Squeak.

 This research studied the Squeak SimBuilder environment in detail and utilized

the results to develop easier-to-use, fun, wonderful visual programming environment

designed to support the creation of educational simulations. The new environment is

expected to increase user satisfaction of the system.

 The Goal of this study is to redesign a system to aid teachers in delivering

curricula models and also aid middle school students in their pursuit of inquiry based

learning of science and/or introductory programming skills. We may utilize tenets of the

natural programming design process in the study. This process includes the following:

• Identify and understand audience

• Usability study of the existing system

• Evaluate system

• Redesign based upon evaluation

• User Centered Design applied to a specific domain.

The intended audience for this study is a set of novice programmers in visual

programming field. Usability study of the existing Squeak SimBuilder 3.7 version will be

done to analyze the current system. As an example for the creation of an educational

simulation in this environment, consider a water cycle simulation. The model of water

cycle is most familiar environment in the earth science field which contains objects like:

 4

clouds, sun, sunray, and grass. Quantitative and qualitative data collected with this

preliminary study will be used to redesign the environment. A few observations were

made: the menus and system flaps overload the novices with unwanted features thus

confusing them; system can be made more flexible and fun to use for novices; erasing

each object is cumbersome. To increase usability and to inculcate Natural programming,

we redesigned the existing version to give better performance. A usability study was

again conducted to evaluate the new system and the results were compared with the

previous environment to check whether the proposed system is really efficient and more

usable.

This research led to the analysis of opportunities and limitations of existing visual

programming environment for educational simulations. Though currently, visual

programming is not common compared to the textual programming this study would help

students to explore this new field and hope to make their programming life easier. Future

work will include porting Squeak to PDA so that it will be handy to use and can be

shared easily among students in the class thus helping them in handling their projects

easily.

1.2 Document Overview

The entire thesis is divided into seven chapters. This introduction is Chapter 1,

which provides the background study and gives a high level explanation about this

research. Chapter 2 is the literature review, which analyses the current literature for

information relevant to this study, including summarization of natural programming,

Visual Programming, Usability and educational software. Chapter 3 elaborates on the

 5

research purpose, questions and hypothesis of the study. Chapter 4 discusses the

preliminary usability study conducted with Squeak SimBuilder 3.7 version, from which

the initial requirements for redesign were obtained. Chapter 5 describes the redesign and

development of existing Squeak SimBuilder environment. Chapter 6 presents the

methodology, experiment design, materials collected during the comparative evaluation

of versions, data collection and the analysis of it. The final chapter, Chapter 7,

summarizes the conclusions about this work, including recommendations for future work

or enhancements.

 6

CHAPTER 2 .LITERATURE REVIEW

HCI as defined in text book Dix et al. (1997) is the study of people, computer

technology and the ways they influence each other. We study HCI to determine how we

can make this computer technology more usable by people. Research in HCI covers a

wide area some of which are improving the user interface of the applications, studying

the psychology of programming, Cross Cultural Interfaces, Natural Programming and

Ubiquitous HCI. Brad A. Myers (1996) discussed many of the developments and major

advancements in HCI which had fundamentally changed the field of computing and

paved the way for future works which would help the industry to provide more usable

products. My study concentrated on some of the fields of HCI, understanding the User-

Centered design for any application followed by improving Natural Programming

techniques for the Visual Programming environment used for educational Software.

In this ever changing world, people are required to be current with the

technologies no matter their age. By reducing the strain required for learning new

technology, learning can be made easy and a continuous process through out life.

Repenning (1996) identified two types of learning approach. In the constructionist

approach, users have to learn themselves without any guidance. In Instructionist

approach, users are provided with proper guidance to learn. Researchers wanted to make

the learning more creative and interesting which is a mix of both the approaches.

 7

However, according to Amy Bruckman and Alisa Bandlow (2002), usability is a

prerequisite for learning. Before any software being created or redesigned a usability

study should be done so as to make sure that the design of software is sound. Research in

developing the most interactive, user friendly educational software for children which

enhances their learning capabilities is one of the key areas in HCI. According to Kori

Inkpen (1997), the three important characteristics to be studied are 1) The learning

environment and the context of learning, 2) Usability guidelines suitable for children and

3) Gender Interaction with Computers. She found that for educational software to be

efficient, the students should have fun while interacting with the software as they play

computer games, and interaction techniques like drag-and-drop were not utilized as much

as point-and-click with children. They found problems selecting the areas for any

operation which showed that students didn’t have experience using that technique. The

interaction techniques girls and boys use, their approach to solve problems, and ability to

solve problems differed a lot. Previous research found that if there is no proper

understanding of these gender differences, design would end up creating complex

environment. Practicing User-Centered design was the solution Inkpen provided for

developing educational software which will understand how children of both genders

interact in a learning environment. The user-centered design approach is cost-effective

since in that prototypes can be developed on paper and tested before many hours and

dollars have been spent for developing a product that doesn't work for a wide variety of

users.

 8

2.1 User-Centered Design

2.1.1 Usability

According to the book, “A Practical Guide to Usability Testing“ (1993), Usability

means that the people who use the product can do so quickly and easily to accomplish

their own task. The first step in this process is to identify the target audience and to meet

with them. By conducting interviews, watching users complete tasks and listening to

them talk about their work we can find out:

• what the users need

• what their work environment is like

• what is important to them

• what tasks they do both frequently and infrequently

• how they accomplish these tasks now

• how do they think about their tasks (the mental model)

Users do not have sufficient time for exploratory study and they generally expect

to finish a new task easily in a given time frame. So if the application is complex the

productivity will be less, ultimately users will be frustrated, the product may fail and

learning curve for users will be low. Usability should be started from the first phase of

development of software and the users should be involved through out the process and

provide design decisions along with a usability specialist in the developing team.

 9

Usability goals can be set early in process and at each stage the progress can be checked

by testing the prototype developed. Gould and Lewis (1985) gave four principles for

developing usable products:

• Focus early and continuously on users

• Integrate Consideration of all aspects of usability

• Test versions with users early and continuously

• Iterate the design

Effective design of a usable system is the most important issue. Good knowledge of

design results in its success which is important for both the novices and expert designers.

Daniel Fallman (2003) argues “that the role of design in HCI must not simply be

seen either as a question of problem-solving, but as an art-form, or as a bustle with

reality: it is contrary to an unfolding activity which demands deep involvement from the

designer.” J.W. van Aalst et al. (1995) found that a product fails in design due to some of

the reasons like inadequate task analysis, weak understanding of user’s goal and

inadequate set of design criteria and unsatisfactory management of the design process

itself. Design plays an important role in HCI research but its role is not acknowledged

fully in research. In HCI, both the academic researchers and designers from industry are

involved in designing the product, so a lack of knowledge in design ultimately leads to

failure of product. Design is an art of making or creating something new which didn’t

exist before.

 10

The design is captured using one of the three accounts namely the (J.W. van Aalst et al.

(1995))

• process-oriented conservative account,

• product-oriented romantic account

• Down-to-earth pragmatic account.

With the conservative account, the design process builds from the requirement

specification to the resulting product. The process in pragmatic account is defined for

each situation. The process of romantic account is solely based on the designer’s

creativity and individuality. Analyzing the problem in hand then synthesizing a solution

followed with the evaluation of the product outlines the stages of design. Designers

thought that these rigid stages had some disadvantages where came the concept of

iteration. Though iteration follows these steps it gives enough freedom to switch between

the stages making design process more flexible. Contrary to the view of design as a

process of certain steps, sketching reveals design as more of dialogue oriented approach.

Sketching helps in transforming a designer’s mental thoughts to a hard copy, which can

be used to exchange views of different designers. Though sketching has its own

importance in many fields, in HCI it is neglected because certain issues of sketching

cannot be captured using pen and paper. To acknowledge the value of design in HCI,

difference between Design-Oriented-Research and Research-Oriented-Design is

important. In Research-Oriented-Design the production of new artifacts is more

 11

important, but in Design-Oriented-Research production of knowledge is of importance.

There are UI guidelines and patterns followed to produce good UI design.

2.1.2 UI Design strategies

Anton Elines, Gerrit C. van der Veer, and Martijin van Welie (2000) in their

paper, “Patterns as Tools for User Interface Design” compares and contrasts guidelines

and patterns. Guidelines are small rules which have knowledge about the design

specifications and can be used when constructing new interface. But these guidelines fail

in the areas of validity and applicability, at time these guidelines are unclear about when

and why they are to be used. Patterns provide solutions for the problems faced by the

guidelines. Patterns are proven design knowledge which is in terms of problem, context

and solution. Though patterns are potentially better tools than guidelines, creating

patterns for UID is difficult. Patterns for UID are similar to the patterns for software

construction. They make the system more usable. The usability is the key concentration

of defining a pattern. Usability in general should be effective, efficient and satisfactory to

the users. Each UID pattern is formed with usability in mind. Each pattern consists of a

problem, context, solution and examples. Although patterns are of interest in UID, still

patterns are not widely available. Collections show writing patterns is not a trivial task

though it is more effective for the design purpose.

2.1.3 UI Design Tools

To aid designers Landay J. and Myers B. (2001), researchers at University of

California, Berkeley and Carnegie Mellon University have implemented a sketching tool

 12

called SILK (Sketching Interfaces Like Krazy) which would help in easily sketching the

interface according to usability guidelines and it allows testing prototypes so that

designers can change the results when the system infers incorrectly. Usability testing

found that SILK is a promising tool for early UI design. Researchers at ISTI-CNR

studied that the non programmers felt comfortable designing interfaces which didn’t

require specifying the low-level details as in the sketch-based systems. TERESA,

designed by Silivia et al. (2004) was an environment, which was useful in building and

analyzing UI design at different abstraction levels and generating a suitable

implementation for various platforms. It offered mixed initiative interaction together with

adaptive features which avoided dealing with the low-level details.

2.1.4 Learner –Centered Design for Educational Software

Amy Bruckman and Alisa Bandlow (2002) stated that user-centered design should

be expanded to learner-centered design for developing educational software. This

requires an understanding of not only the students who learn, but also understanding the

teachers who are going to use the software. A formative evaluation which is based on

usability and learning outcomes should be done to understand requirements for designing

a learning environment and to guide the process of iterative design.

2.2 Natural Programming

Nielsen (1994) stated Natural Programming as, “The system should speak the

user’s language, with words, phrases, and concepts familiar to the user, rather than

system-oriented terms. Follow real-world conventions, making information appear in a

 13

natural and logical order”. Researchers investigated novice’s behavior to a programming

language and learn how to create more natural languages to meet the user’s expectations.

Natural programming is a technique which provides ordinary users with applications built

the way they think. This technique helps users to get over the barrier imposed by many

programming languages. Natural Programming should help users to program in the way

they think in their day to day lives. Brad A. Myers in Human-Computer Interaction

Institute, CMU has been doing a lot of research in developing more usable programming

languages. His research is aimed at creating an environment which is more natural. A

usability study was conducted by Myers (1998) to explore the state of art in the field of

programming and difficulties involved. Many programming languages fail to be natural

because the syntax and semantics of the language implemented never considered the

words used by the people in their day-to-day life. It was found important to keep the

programmers aware of what is going on with the system by providing proper responses

and feedback. In his “Natural Programming” project Myers focused on studying the

human side of programming and discussed design requirements of a programming

language. These requirements will reduce the effort needed to write programs for novice

programmers, eventually help users learn to program more easily.

2.2.1 Why Natural Programming?

In the fields of Psychology of Programming and Empirical Studies of

Programming, programming is defined as “a process of transforming a mental plan that is

in familiar terms into one that is compatible with the computer”. The difference between

the way programmers and non-programmers think to solve a problem and the facilities

 14

provided by the current programming languages to accomplish those tasks are great. It is

pointed out by Myers (2001) that the design of new languages like JAVA and Java Script

do not take into account the findings of Empirical Studies of Programmers (ESP) and

Human-Computer Interaction (HCI) and follows the same mechanism for looping,

conditionals, and assignments that have been shown to be the most error prone for novice

programmers. Usability studies were conducted to find whether functional-oriented

programming style or objects-oriented programming style best suit novice users. The

Natural Programming Project aimed at studying how people naturally express the

programming concepts with which guidelines for new programming language were

formed. The design concepts used were from many different domains such as children

creating games, teachers building educational software, office workers, military purpose,

World Wide Web, etc. They found that there are gaps in knowledge about how people

reason about programming, and how programming languages can be made more

effective.

2.2.2 Learning Barriers

 Myers along with Andrew J. Ko (2004) identified the six challenges inherent in

developing a learnable end-user programming language. Studying at least three diverse

programming systems like Alice programming environment, Visual Basic and

Macromedia Flash, they identified the following barriers: design, selection, coordination,

use, understanding, and information. Some of the suggestions provided by Myers et al. to

overcome theses barriers are inculcating creativity among the learners, a search

mechanism or good documentation to find all the behaviors offered by the system,

 15

making the learners aware of the invisible rule, designing the programming interface

matching their semantics and an explanation of what the program can and can not

perform.

2.2.3 Studying the Novice programmers

For any programming language to be more efficient, it should help novices to

understand the language easily and quickly. So the way in which novice programmers

think and how the implementation of environment that supports novices should be

researched. Studies show that novices could understand the syntax and semantics of each

individual statement but they fail when combining together those statements to solve a

problem. Just understanding separate syntactical statements many not improve user

understanding of concepts and technology of the new programming language. Novice

programmers tend to have only a surface level knowledge of programming, while solving

complex problems in a programming language generally requires a deep algorithmic

understanding of the language.

2.2.4 Instructional Techniques

Richard E. Mayer (1981) based on his consistent results suggested a way to

improve novices understanding of new technical information by providing a framework

that can be used for incorporating new information and using elaboration techniques.

First novices should be comfortable when interacting with the computer. In the black box

approach, the computer is treated as a magic box to which input is given and output is

obtained without the user knowing what is happening inside the system. In another

 16

approach called glass box approach, the learner is aware of what is going on. To become

a successful programmer it is necessary to know the details of the process going on inside

the computer. A concrete model has strong effect on encoding the language which can

help the learners come up with creative solutions. Elaboration techniques have been used

by experimental psychologist to improve learning. The basic underlying concept is that

the learners are made to summarize the new technique in their own words so that they

will know how to inculcate new information with existing knowledge. Though

elaboration takes more time the efficiency of programmers is increased.

 James A. Spohrer and Elliot Soloway (1986) conducted programming

experiments with novices to study the mistakes they generally face when trying to use

small pieces of code to create a large program and the reason for their difficulties.

Novices find problems learning the correct semantics because they interpret that language

constructs always work in similar fashion irrespective of the application. Their difficulty

in program construction arises because of many underlying problems. Some of them as

stated by Soloway are Summarization problems, Optimization problems, Previous-

Experience problems, Specialization problems, Natural-Language problems,

Interpretation problems, Boundary problems, Unexpected cases problems, and Cognitive

Overload problems. Vikki et al. (1993) studied 20 novice and expert PASCAL

programmers. They found that some of the characteristics of mental representation were

lacking in novices. They include a hierarchical and multi-layered approach to problem

solving, explicit mappings between goal to be achieved and the code, recognition of

recurring patterns, internal connection and well grounded program text.

 17

2.2.5 Design of new language

 The new language developed by Myers et al. (1998) at CMU will eliminate the

need for most punctuation, where users normally make mistakes. This language uses a

form-based technology. The languages which are easy to learn will have a direct

manipulation front end other than explicit scripting. For example, in VB users can place

the controls using a mouse and set their properties with dialog boxes. The new language

is also self-disclosing so that when users perform an action by drag and drop the system

will generate the code. These actions help the users to learn the programming language

using those snippets. Using these direct manipulation features many different domains

like programming for children, WWW, simulations, multimedia tools, educational

software, and intelligent agents have all benefited. One study done by Andrew Jensen Ko

of CMU and Bob Uttl. of Oregon State University (2003), examined that if the

programming system designers offer interactive tutorial of the environment and language

the initial performance of the programmer can be increased. The research on Natural

Programming is an ongoing process in which J.F. Pane and Myers showed progressive

findings. In 2001, they conducted studies focusing on children who were the audience for

the new programming language. Children were studied to assess their learning

capabilities and structure of non-programmers’ solutions to programming problems.

2.2.6 LiveWorld – Environment for Novices

Travers et al. (1994) proposed an environment called LiveWorld, based on

concrete behavioral rules and computational models that offer novice users a world of

manipulable objects, with graphical objects and elements of the programs that make them

 18

more integrated into a single framework. LiveWorld is defined as a graphical

environment designed to support research in programming with active objects. The style

of programming followed in this design is rule-like agents which respond to the

environment. It combines object-oriented programming with a direct manipulation

interface to create an environment that is concrete, reactive and flexible. This provides

novices with a rich set of graphical objects, non graphical objects and elements of

programming that integrate these objects. The previous agent-based languages were Agar

and Playground. LiveWorld is intended to improve upon these systems without

overwhelming novices with complexity. The basic structure or entity used in this

interface is Frame. The design values include tangibility of objects, reactivity of objects,

improving the existing objects to explore new objects and learnability. The object

structure is based on frames which are a knowledge representation tool with prototype

based inheritance. The advantages of this prototype based programming over traditional

OOP is that it eliminates a whole set of objects and simplifies the inheritance and

increases correctness.

Each frame has a name, location and set of properties. All the frames are listed in

hierarchical fashion. There is no distinction between classes, slots and objects because the

frame itself can act as object or a slot, thus LiveWorld permits unification unlike the

traditional object system. Graphical objects are implemented by special frames called

actors. The system provides a graphical library of basic actors to use. They provided both

graphical as well as non graphical objects in the system which helps the novices who are

 19

familiar with direct manipulation to make learning easier. LiveWorld also provides

sensors as frames.

2.2.6.1 Message-passing protocols in programming

It handles programming through a message-passing protocol over different frame

objects. Action codes are written using Lisp. Messages are sent using ask primitive. The

traditional top-down, command driven model of execution is not followed in LiveWorld

as this top-down approach may hinder understanding of the system where control is

distributed. In LiveWorld, each object has its own control and also there is a background

control for the entire set of objects. But this pseudo-parallelism is not complete and needs

further investigation.

2.2.7 Recommendations for a programming language to be more natural (Myers et al.

1998, 2001)

• A mix of event-based and rule-based programming style to deal programming

task in the same environment would be more usable.

• Instead of looping controls, aggregate operations is preferred to reduce the errors.

• Simple rules were preferred rather than complex Boolean conditional statements.

It was also found that the use of negation was very less and recommended to have

“unless” clause in the control structure.

• Mathematical expressions should be more natural.

 20

• Variables were found to be more difficult and “state variables” where found to be

more used to keep track of progress.

• The use of Boolean Expression “OR” and “BUT” was less frequently used and

“AND” was used as sequencing word.

• A built-in list-like data structure is more natural than arrays.

• Fundamental Object Oriented capabilities are more preferred.

• Provide domain specific features in a programming language.

• Pictorial specifications should be implemented along with textual specifications

during the initial stages of developing software.

The study results were used to create a new language for children. One good example of

a natural programming language is HANDS (Human-Centered Advances for Novice

Development of Software), which is a part of John Pane’s Ph.D. work. HANDS aids

students to create simulations, games and educational software. Features like queries and

aggregate operators allow many tasks to be more natural than other languages that require

the use of search and iteration. User studies showed that the HANDS environment was

very natural and easy to program.

2.3 Visual Programming

The term "visual programming" means different concepts to different people. One

interpretation is that the interface or objects handled by the language are visual and

 21

another interpretation is that the language itself is visual. In the first case, "visual

language" means "language for processing visual information", or "visual information

processing language". In the second case, "visual language" means "language for

programming with visual expression", or "visual programming language" that improves

the user interface of the programming environment and also decreases the difficulty in

programming. Here we will concentrate on the second case of visual programming.

Myers (1986) defines Visual Programming “as one that refers to any system that allows

the user to specify a program in a two or more dimensional fashion”.

2.3.1 Characteristics of Visual Programming Languages (Burnett et al. 1995)

• Fundamental concepts are only required to program for example pointers,

variables not included.

• It has concrete programming process making everything visible to a programmer.

• Response / feedback to the programmer help in quick testing and debugging. It

achieves this with help of efficient incremental translator and program execution.

The way of representing programs with logic diagram was supposed to be the first visual

programming concept. Flowcharts and other graphical programming languages followed

the logic diagrams. Some Visual language systems available are KidSim/Cocoa (i.e. a

system designed for children), ToonTalk, AgentSheets, Squeak, Garnet, Chimera, and

Forms/3 (i.e. based on the spreadsheet metaphor), etc. He also states that the visual style

of programming will make students understand the concepts more clearly than textual

 22

languages because human visual information processing is optimized for multi-

dimensional data.

Whitley and BlackWell (1997) conducted surveys to show the cognitive benefits

of visual programming both in academics and industry. They obtained significant results

analyzing Visual Programming (VP) literature, conducting surveys with professional

programmers and with LabVIEW programmers. Among many visual programming tools

available, LabVIEW was chosen for a study because it is a widely used tool and previous

research on it questioned some features which received the attraction of researchers. The

comparison between textual and visual languages was also determined by asking a set of

questions to users. VP can support a more user friendly environment and visual

statements are more natural and increase the learnability of the programming language,

more so than the often difficult and complex syntax offered in textual programming

languages. The hope is that visual programming languages will increase the ease of

learning a new programming language, and reduce time taken to develop the code to

increase productivity. VPLs are primarily intended to simulate thought of human–human

communication rather than human-computer interaction. Researches of VPLs should be

focused not only the computational side, but also on the cognitive side. Narayanan et al.

(1997) proposed a framework for analyzing the visual languages addressing the issues of

comprehension, reasoning and interaction in the cognitive side and issues of visual

program parsing, execution and feedback in the computational realm.

Previous research claimed that no language is universally best; rather each

structure in the process of explaining the concepts obscures others. Green et al. (1992)

 23

conducted experiments with the text based language called Nest-INE and the visual

programming language LabVIEW to compare and contrast both the languages. With the

results he obtained disagreed that VPLs are superior to TLs.

2.3.2 Comparison between Visual and textual code

The comparison between visual and textual notation of languages was studied

with respect to the ease of learning, mental thought process etc. which are stated below

(Myers 1986):

• Readability depends on various aspects of a language. For example, though VP is

easier to read and more natural it fails when expressing arithmetic expression (less

compact) where the textual languages are more preferred.

• Separate documentation like commenting is not necessary because the visual tasks

are self explanatory.

• There is a vast drop in the syntax involved (few keywords, no semicolons,

reduction of variable usage) thereby reducing the complexity of a language and

making it easier to learn.

• The code is more modularized than textual languages. Procedural abstraction is

achieved like using a form as a grouping mechanism , generalizing the sequence

of operation.(Burnett et al. 1995)

• Scalability of VP is a big question. It would perform well when the project is

small but tends to fail when the project size/complexity increases the same as with

 24

textual languages. Burnett et al. (1995) showed that the solution to this problem

relies not on compromising the distinctive qualities but in produce new ways to

capitalize on those features.

• Human brain is optimized for visual representation more than the one-

dimensional stream and VP is designed to make use of this ability.

• Visual programming increases creative thoughts and imagination helping to think

outside box. Diagrams or pictures convey more than plain text.

• VPLs are based on the flowchart notation with which many people are familiar

with and so transforming their ideas existing in the physical world to the

computer domain make it easier.

• Studies found that the inherent programming concepts were not visual but the

pictures helped with the understanding of the abstract principles.

• VPLs can be used for teaching the programming concepts for individuals with

who have problems with reading comprehension and for the physically

handicapped.

• Green et al. (1992) concluded from his studies that the graphics involved in the

VP consumes more time than process a textual code.

• Dynamic type checking is achieved in most of the VPLs like the TLs but there are

obstacles for implicit type checking.

 25

• Achieves Data persistency in four different ways to extend the lifetime of data

beyond a single program.

• Numerical ratings were analyzed for usability aspects and the computational

aspects of textual and visual representation. It was found that VPLs were rated

highest in their ease of writing and the power of coding. The results also showed

that for the users who were aware of VPLs knew their importance, advantages.

Some of the disadvantages of Visual programming (Myers 1986)

• Visual Program representation requires more space and memory than the textual

representation

• VPLs take longer to execute and also occupy more space.

• Unstructured programming practices are allowed

• Static representation of programs is hard to understand and editing is difficult.

Burnett et al. (1995) proposed a preliminary solution to overcome this problem by

devising static and dynamic syntax to be similar.

• No provision for comments. Burnett et al. (1995) says that textual documentation

like one line comment is possible but it has a problem of screen real estate in

which there is limited visual interaction.

• Even though visual data abstraction is achieved partly, more support is needed for

user-defined visual appearance and interactive behavior. (Burnett et al 1995).

 26

• Event handling is slow in VPLs.

Naraynan et al. (1997) in his study on visual programming in Human-Interaction

perspective says that “there is no need to choose between visual and textual languages as

they are two extremes of spectrum spanning from text to illustrated text, to annotated

pictures and to purely visual representation.”

2.3.3 Applications of Visual Programming

Taking advantage of VPLs in various domains, they are used in a number of

applications like building educational software, image processing, signal processing etc.

(Jurgen Herczeg, Hubertus Hohl and Matthias Ressel 1993). Visual programming

technique is the most natural and appropriate for building graphical user interfaces. Tools

like interface builders are used for creating GUIs by means of direct manipulation. These

interface builders act as a visual front end to a special programming language for

creating, manipulating objects and they are not visual programming tools. Some recent

tools used faced some problems like:

• The dynamic aspects of UI design not supported.

• Tools are suitable for specific applications, they are not generalized.

• There is no scope for redesigning or modifying the already existing interfaces.

• Customizing interfaces at run time is not supported.

 27

The new approach given by Jurgen (1993) provides powerful and knowledgeable UI

toolkits which provide a rich programming interface. These tools can be used to remodel

interfaces which have been already created by the conventional programming. This

concept of remodel interfaces is built in user interface development environment XIT,

based on CLOS (common Lisp Object System) and the X windows System. This system

includes user Interface toolkit that provides an object-oriented programming interface. It

consists of both low-level and high-level frameworks. User Interface browser is for

inspecting the structural dependencies of UI and its underlying applications. Researchers

in France, Olivier et al. (1995) developed a visual programming tool called WHIZZ’ED

editor which helps in creating highly interactive objects to build interfaces. Whizz’Ed is

actually built on the concept of data flow diagrams and with a set of predefined

elementary components.

2.4 Authoring Environments for Teaching

On reviewing the literature and research currently going in the areas of Natural

Programming, Novice Programming and Visual Languages, it became necessary to study

the usability of various educational tools available in the market, which were developed

to support novice learning and using visual language techniques. With the limited number

of experienced teachers in some field authoring environments may help students to learn

properly and efficiently. These tools are like having effective tutors. Some of the systems

studied are Squeak, Alice 3D, Lego Sheets, Agent sheets and Stage cast Creator. Jan Erik

Moström (2002) analyzed the use of concurrent constructs in authoring environments for

teaching, stated few features needed for a successful authoring environment:

 28

• Support for reuse.

• Revision control to handle changes.

• Support for collaborative work.

• Different tools for help during authoring, for example support for patterns.

• Flexibility to allow last minute changes.

• An easy to use search facility.

2.4.1 AgentSheets

AgentSheets is widely used by students as educational software and also by

graduate students to research about life long learning. Agents are instructed by the end

users explicitly to do certain actions. The users who do not have strong programming

background can make use of these agents to develop tools. Using Domain-oriented

Languages and Domain-oriented agents facilitate the working of agents. Alexander

Repenning and Andri Loannidou (2004) developed AgentSheets environment which is

based on the spread sheet metaphor is used for designing DODEs (Domain Oriented

Design environments). HyperGami is also one such language. Actually AgentSheets is

not a visual programming environment but it helps in developing visual programming

systems. AgentSheets combines several programming techniques into what it calls

“Tactile Programming”. Repenning and Ambach (1996) describes “Tactile

Programming” as: Tactile Programming extends the framework of visual programming

by adding perception by manipulation. This means that statement, values, variables, etc.,

of the programming language are objects that are manipulated by dragging and dropping

them to their desired place. While building interfaces using conventional programming

 29

techniques, a new interface element cannot be obtained from the existing ones but

AgentSheets overcomes this problem. Each element in the grid structure is called an

agent. Agents in AgentSheets have the capability of multimodal communication. They

respond to speech, keyboard input and webpage content. Every agent consists of a sensor

which has methods to be acted upon; Effectors which are a communicator, state,

depiction and an instance. A rule-based language called visual Agent Talk is used in

AgentSheets to communicate with agents. In one example, "The boulder Mountain biking

Advisor" the agents respond to a voice input and outputs the suitable places for biking in

Boulder County. In addition the agents call methods to check the weather condition

suitable for biking and tell whether biking is suitable in that area. In "bridge Builder"

example, the agents are used to demonstrate basic understanding of the static and

dynamic forces on the bridge. Users can explicitly instruct agents through rule based

language to accomplish certain applications.

AgentSheets was also studied in a real world application for its usefulness and its

naturalness (Repenning 1991). KEN is an expert system, which is used to configure

power plants. Configuration charts are used by the experts to query the knowledge base.

A particular scenario was given to a set of users and they compared the AgentSheets-

based Chart representation to the conventional text-based representation. They noted the

following: increase in performance, accomplish complex tasks, supports easily the

mapping between function required in visual form, and provides inheritance. AgentSheets

proved to support complex applications in the field of expert systems and also provided

an incremental approach to building agents from existing ones.

 30

2.4.2 LEGOsheets, HyperGami and Stagecast Creator

LEGOsheets, a rule-based programming environment implemented in

AgentSheets, is developed by the MIT media lab for children to create mechanical

artifacts. Gindling et al. (1995) discovered that children were encouraged by a lively

application with colorful icons and audio for either positive or negative feedback.

LEGOsheets provides an introduction to programming and designing of mechanical

artifacts like motors, vehicles, robots in conjunction with sensors and effectors to

program the behaviors of those artifacts. LEGOsheets tends to help children by helping

them to sharpening of their basic skills. But it fails in the cases of programming where

sequencing and timing of events are important.

Hypergami is another design-oriented language in the domain of math integrating

with LEGOsheets discussed by Repenning et al. (1996). Both the direct manipulation and

scheme programming is employed in HyperGami. It supports a wide range of

mathematical forms from simple geometry to 3D shapes for modeling. It helps people to

creatively approach learning math and problem solving. Since both these environments

stimulate learning capabilities, improvements to network these environments should be

implemented.

Stagecast Creator formerly known as Cocoa and KidSim can be classified as a graphical-

rewrite-rule language. It is based on the movie metaphor, where users create a cast of

characters who interact and move within a simulation micro world. Seals et al. (2002)

studied the usability of Stagecast seeking to improve the programming skills of non-

programmers. They found that the language fails in the areas of reusing rules, and

 31

students had problem with matching the visual state of rule to the exactness of visual

syntax.

2.4.3 3D Graphical Programming Environment

Mathew Conway et al. (1999) discussed a 3D Graphical Programming

environment. Alice 3D was designed to overcome the difficulties faced by the previous

environments and to give a new experience of learning with more ease and find more

compelling examples to aid students in learning to program. It is primarily a scripting

and prototyping environment that allows the users to build virtual worlds and write

sample programs to animate objects in those worlds. 3D interactive simulation can be

accomplished through the following steps:

• Opening a new world,

• Populating the world with the objects and focusing the camera,

• Defining the functions for each object through sets of commands,

• Creating scenes with more complicated functions.

An Alice animation begins with an opening scene, created by populating a virtual world

with objects, which have six degrees of freedom/orientation. World can be selected from

some of the provided environments. Once the opening scene is set up, the next step is to

plan and write a program for animating interactions between the objects and each other

and between the objects and the virtual world in which they reside. Alice defines an

assortment of built-in actions. In general, actions can be subdivided into two categories:

 32

• Those that tell an object to perform a motion.

• Those that change the physical nature of an object.

All commands in Alice are animated by default whenever it is semantically reasonable. A

program/script is a list of instructions for the objects to perform an action. Many usability

studies were conducted with the Alice software and the scholars and identified many of

its more interesting features. Cognitive load is reduced for extremely common operations

through the removal of X, Y, Z from the API, replacing these terms with the more useful

and more Lego-like direction names and surface names of Forward/Back, Left/Right, and

Up/Down. Implicit threads in Alice make launching parallel actions easy. The resize

operation and the space scaling operation are both useful, but are independent and

orthogonal, even if using a 4x4 matrix in the implementation makes this separation

difficult to build.

2.4.4 Squeak

Squeak is not just a programming language, an Integrated Development

Environment, and a meaningful authoring environment for kids over 5 years of age.

“Squeak is a movement towards an environment where you have separate areas to

explore – the large number of behaviors, 3D graphics, musical synthesizers – and yet all

in a uniform, general, powerful framework” said Mark Guzdial , an assistant professor at

Georgia Tech’s College of Computing. Squeak, an open source environment was

developed in 1996 by a team at APPLE for the need of Smalltalk language to pursue

many applications providing a proper user interface which can be programmed even by

 33

non-programmers, non-technical people and children. NASA center for distance learning

used Squeak to implement interactive Web activities for NASA’s KSNN and NASA

CONNECT programs. Guzdial and Rose (2002) described the learning philosophy in

Squeak, which promotes learning for school kids. First, the users experiencing the fun of

learning by creating or viewing multiple representations of the same processes helps in

understanding different conceptual levels. Secondly, Squeak supports dynamic processes

implemented with multimedia and allows new approaches to learning by supporting the

increase of creativity of the students.

2.4.4.1 Smalltalk implementation

Ingalls, Kaehler, Maloney, Wallace and Alan Kay worked together to develop

Squeak. Squeak is the first Smalltalk system that is completely self-supporting compared

to other commercial Smalltalk implementations like Apple SmallTalk, SmallTalk/V etc.

Every Squeak release comes with an image file, virtual machine and complete source

code. To achieve this useful level of performance, the virtual machine is written in

Smalltalk and a translator is used to convert to C, leading to an interpreter in Smalltalk

itself that can dynamically increase processing speed. Smalltalk is the preferred

environment for research and development because of its rich class library and

sophisticated programming tools which makes it an attractive environment for rapid

prototyping, for experimenting with interactive applications (Mary Beth Rosson 1990).

Squeak is portable, malleable, full-service computing environment, including browsing,

split-second recompilation and source debugging tools, all in a 1-MB footprint. It is able

to support the intimate computing potential of PDAs and the Internet.

 34

2.4.4.2 Squeak strengths

Some of the features of Squeak which add strength to the environment are:

• Efficiency and scalability of for large projects, and supporting all object formats of

the exciting Smalltalk system, a need of compact and general object memory was

required. A full 32-bit object pointer to every object was implemented to achieve the

desired effect.

• A two-generation approach followed in Apple Smalltalk was applied to get good

garbage collection behavior, there are a number of challenges like its capability to

deal with variable length headers, remapping of objects pointers as a method for

achieving incremental garbage collection that leads Squeak to be usable for real-time

applications like music and animation. Squeak’s garbage collection took only 250

milliseconds, which is very small compared to system of similar and larger sizes.

• Squeak’s BitBIt supports a wide range of color depths namely 1-, 2-, 4- and 8-bit

table-based color, as well as 16 and 32 bit direct RGB color. It also supported anti-

aliased image rotation and scaling.

• In real time to achieve sound and music synthesis, sound generation methods were

written to run directly in Smalltalk.

• To achieve interactive graphics WarpBIt is completely described in Smalltalk, and

then translated into C to deliver suitable performance.

 35

• Entire VM is approximately around 100 pages. Squeak performance was obviously

seen with respect to byte code/sec and sends/sec which was partly due to removal of

scaffolding such as assertion checks and range checks on memory references – and

partly to improve the running model of the translator.

Dan Shafer (1996) discussed that despite many advantages and performance increases,

programmers accustomed to C, C+, and Java would find the Squeak Smalltalk syntax a

little cumbersome. Squeak, more than trying to attract the Java, C++ programmers it aims

to increase the support for the first time users. Four aspects considered for improvement

by the Squeak central were:

• Experiments with alternative syntaxes

• Making it easier to create simple applications

• A new, streamlined programming framework focusing on an integrated :object

operating table”

• Integration of “SqueakToy” scripting tiles.

 36

2.4.4.3 Squeak Application

Squeak is used in the following fields (Ned Konz, 2004):

• Education – 80000 users in Spain and tens of thousands of users in Japan and

around the world.

• Web applications – XML support, file system, networking capabilities.

• Academic research- Squeak’s portability, share ability and malleability caught the

attention of many in academic research

• Multimedia

• Croquet – Squeak is used as the basis for Croquet system.

 37

CHAPTER 3 .RESEARCH OVERVIEW

3.1 Research Purpose

3.1.1 Primary

• Determine the key factors with which novices found difficulty using the Squeak

Environment (Squeak SimBuilder 3.7).

• Design a new user interface for Squeak based on the results obtained from the

previous usability studies.

• Conduct a usability study with redesigned interface.

• Compare the data obtained with the previous study and analyze whether the new

design increased the user satisfaction, ease of learning, and fun.

3.1.2 Secondary

The secondary purpose was to examine whether multimodal input i.e. using

mouse and the stylus would increase the performance of users, making it more fun to

learn and investigate.

3.2 Research Approach

This research can be subdivided into three tasks as illustrated in Figure 1. In the

First Phase, a pilot study was conducted for analyzing the usability of Squeak SimBuilder

3.7 Version. The result of this analysis was used to redesign the environment in the

Second Phase. In Second Phase, a new design was implemented. Once the environment

was redesigned, in the Third Phase experiments were conducted and the results were

compared with the previous pilot study. The three phases were designed to answer the

research hypothesis as discussed in the following section.

First Phase
Usability study with Squeak
SimBuilder 3.7

Second Phase
Redesigning Squeak SimBuilder
3.7

Third Phase
Comparative study and Evaluation
between Squeak SimBuilder 3.7
and New Version

 Figure 1 . Research Approach

 38

 39

3.3 Research Hypothesis

Hypothesis 1:

There will be significant increase in the ease of understanding compared to existing

Squeak SimBuilder 3.7 Version.

Hypothesis 2:

There will be an increase in tool associations and the new interface will make it easier to

remember the location of tools.

Hypothesis 3:

There will be a significant increase in the flexibility of the environment with the use of

stylus than the mouse.

Hypothesis 4:

The new interface will have increase user rating of their fun during building simulations.

 40

CHAPTER 4 .PHASE 1: USABILITY STUDY WITH SQUEAK SIMBUILDER 3.7

The preliminary stage of this research was to explore the Squeak SimBuilder

environment and to conduct a usability study on the existing system from which the new

design requirements were obtained.

4.0.1 Background study

The pilot study was held in spring 2005. It started with a pre-survey to understand

the participant’s background and their computer literacy. There were a set of 9 students

from computer science majors with good programming background in Java, C, and C++.

Most of the participants were well versed with personal computers with an average of 13

years of computer experience. They had previous experience in using some drawing

software and also with visual programming. Some of their ideas of the role of computer

in classroom were:

• It can play a vital role if implemented properly but only risk is it can do more

instructing than the instructors.

• More for illustration purposes than for analysis.

• Speed up experience and control for the order and quality of those experiences.

• More important in industrial engineering where simulation can reduce the cost.

Participants felt some of the diagrams from various sources like geology textbooks;

photographs, weather, plan design, working schedule, pilot training etc can be simulated.

 41

Compared to the participants of the first study, students in the second study were equally

proficient in computers and they were comfortable using it.

4.0.2 Learning

Participants were made aware of the objective of this study and their role in this

experiment. Students started their learning session with the help of a 5 page minimalist

tutorial, which gave the basic ways to create objects, add behaviors and the ways to

interact with other objects. The tutorial described each step with the pictures showing

what would be the result so that it will help the users in expecting the solution. It also had

an interaction guideline, which gave helpful hints to remind them of frequently used tasks

on what they have learned. The participants were asked to ‘think aloud’ during the

session so as to understand their thoughts.

The learning tutorial began with exploring the water cycle model and the

participants were asked to modify the behavior of the objects in it to get good

understanding of how to create scripts. During user’s learning, they were required to

speak out using the think aloud protocol to express their thoughts and what they expected

as outcome. Their questions were recorded to analyze the user’s thought process.

4.0.3 Creation of simple science model

Following the learning session, users were given a real world model of a volcano

eruption. They were asked to create a simulation for it using the tools provided. With the

basic functionalities learned, the users were tested for their understanding and the system

was evaluated to see whether it can be suitable for the novice programmers.

4.0.4 Post survey

After the completion of volcano simulation, a post survey was conducted to know

the user’s reaction towards the software to analyze the positive and negative things about

the environment, which would help us in redesigning the environment to make it more

efficient and user friendly.

During the whole experiments, quantitative and qualitative data were collected, such as

time, errors and critical incidents, user’s comments for the purpose of analyzing. Each

session took approximately took one hour for each participant to complete the entire

study.

4.0.5 Experiment Results

Users provided their satisfaction with the environment by answering set of

question, which used two types of rating scales. The first set of five questions asked the

participants to provide a rating on a bi-polar scale to analyze the usability of the

environment. The means and standard deviations for these rating are shown in Table 1.

Table 1 . Bi-polar Rating Scales
 Bi-polar Scale User Ratings Mean (SD) N=10

 Terrible ------------ Wonderful 3.5 (0.71)

 Frustrating -------- Satisfying 3.3 (0.67)

 Dull ----------------- Stimulating 3.4 (0.84)

 Difficult ------------- Easy 3.4 (0.85)

 Rigid ---------------- Flexible 3.4 (0.84)

 Boring --------------- Fun 3.8 (0.92)

 42

A quick review of the means show that the users overall rated the environment to be fun a

wonderful experience, with lower marks for satisfying experiences. A high fun factor

shows positive indication of the user friendliness of environment for kids.

The second set of questions used the Likert-scale to obtain user’s reactions

specific to the learning activities. Participants responded using a 5-point scale from

1=Strongly Disagree to 5=Strongly Agree. Most of the items were written with a positive

context such that a “5” would be a positive reaction; some items written with a negative

context are noted using italicized text, and the ratings for these items have been recorded

to be consistent with the others. Table 2 assess the general ease of use , which reveals that

the system provides good understanding but not that easy to get started and familiarize

with the simulations. Table 3 assesses the motivation provided by the environment for

users. All Table 3 items have good mean rating supporting the environment. The means

in the Table 4 reveals that the tools made it harder to convert their thoughts to

simulations.

Table 2 . Likert-Scale Rating: General Ease of Use
 Likert-Scale Rating User Ratings Mean (SD) N=10

 Easy to learn and use 3.3 (0.67)

 Easy to get started 3.2 (0.92)

 Hard to remember tool location(NOT) 3.0 (0.94)

 Easy for novices 3.3 (0.95)

 I understand how to use 3.7 (0.48)

 It was hard to recover from errors(NOT) 3.1 (1.29)

 43

Table 3 . Likert-Scale Rating: Assessing Motivation
 Likert-Scale Rating User Ratings Mean (SD) N=10

 Fun for building simulations 3.4 (1.07)

 Creation of working simulation 3.7 (0.95)

 I can have objects any size I want 3.7 (0.82)

 I am enthusiastic about creating simulation 3.7 (0.82)

Table 4 . Likert-Scale Rating: Assessing Programming Style Reaction
 Likert-Scale Rating User Ratings Mean (SD) N=10

 Drag and drop rules were complicated (NOT) 2.9 (0.99)

 Simulation works logically but tools made it harder 2.7 (0.82)

 Rule creation was simple and natural 3.7 (0.67)

 44

 45

CHAPTER 5 .PHASE II: REDESIGNING SQUEAK SIMBUILDER 3.7

Analyzing the results from the usability study conducted with Squeak SimBuilder 3.7

environment, we found certain features, which need re-designing that, will help the users

to perform better. The main aim was to improve the usability of the environment for the

novice users. Squeak is an open source project and can be freely downloaded from

www.squeak.org. It supports many operating systems like: Windows, Macintosh, UNIX

and etc. Squeak SimBuilder environment has undergone many developments in the past

few years. The environment is a combination of the following files: “image” file, text

source code, text change file, and an executable virtual machine file. The environment

can be updated either by filing in and compiling a set of changes or by distributing a new

version of the image and/or source code. The base version used for redesigning was

Squeak SimBuilder 3.7. The changes made were filed in to develop a new interface. The

flaps, the killer play field, and the group erase were the features redesigned in our new

environment. The opening scene in the environment is shown in the Figure 2.

 Figure 2. Opening scene in Squeak

5.1 General Environment

One of the main problems faced by the novices during the usability study was that

too many windows open up and user may feel they lose control over the environment.

The user’s get frustrated, which reduces their motivation to continue using the software.

To avoid this confusion, the new interface is well organized as shown in Figure 2. The

WaterCycle and OzoneDepletion are separate simulations and the Science Models

contains six other simulations within it. Figure 3 shows the WaterCycle model. To run

the simulation, users hit “go” and see that the Sun produces Sun rays, the clouds move

forward producing rain and the mist coming up from the sea. The Science model contains

simulations explaining the chemical reaction, atomic theory, etc.

 46

Figure 3. Water Cycle simulation

5.2 Scripting

A project in the Squeak SimBuilder environment starts with the user designing a

visual representation of a simulation they plan to create. There can be many objects that

will interact to create a working simulation. For example they can draw object (Sun) with

the help of paint kit provided (Figure 4).

Figure 4. Object Sun and Paint tool

 47

 After creating the object Sun, its behavior can be added using the scripting tool. The user

invokes the halo around the object using <Alt> and <Middle button> click (Windows

OS) and click the “blue eye” to open viewer as shown in Figure 5.

Figure 5. Sun with Halo

Figure 6 shows the viewer for the object and the categories of scripts. This reveals all the

scripting categories and the rules available for this object. There are thirteen categories of

scripts available for adding behaviors. The user programs by dragging rules from this

viewer to the rule window. To make a script active, the user selects the rule, drags it and

drops it to the world.

Figure 6 .Scripting Category

 48

To make the Sun move forward, drag the “forward by” from the basic category and drop

it in the world and change the “normal” to “paused” as shown in Figure 7. Users can test

their scripts once with “!” for incremental execution. In similar fashion, rules can be

added to all the objects in a simulation and can be played when all the scripts will start

running.

Figure 7 . Scripting Window

5.3 Flaps

The current version of the Squeak SimBuilder environment as shown in Figure 2

opens with the Squeak icon in the top with three other projects (WaterCycle World,

Science Models, and Ozone depletion). In Squeak SimBuilder 3.7, the interface has five

flaps namely: Squeak, Navigator, Widgets, Supplies, and Tools. The Squeak flap contains

many options (e.g. save , about and trash can. The Tools flap contains objects useful for

a developer. The Supplies flap contains forms, buttons, e-book and etc. The Widget flap

contains objects useful for multimedia application. The Navigator flap contains few basic

buttons for creating projects. Since the goal of this study was to find how usable and

effective this environment is for the novices, and from the results obtained from usability

study with Squeak SimBuilder 3.7 the new design is aimed not to over load users with

unnecessary features or options which are not required while getting introduced to the

 49

new environment. The Tools, Supplies and the Widgets flaps are hidden and the trash

from the Squeak flap is placed in the opening scene. The items in the Navigator flap

(Figure 8) are used to redesign a flap called File and added one more global flap called

“Objects”.

Figure 8 . Navigator Flap

Some of the features in this Navigator flap are not required for the novices, which we got

rid of and created a new global flap called “File” similar to the look of Windows menus

and it has only the required options useful for novices as shown in Figure 9.

Figure 9 . File Flap

The File flap contains only seven basic functions without overloading the new

programmers.

• OPEN - To find existing projects in the system.

• NEW – To create a new project.

• PAINT BRUSH – To make painting.

• <PREV – To go to the previous project.

• NEXT> - To go to the next project.

• PUBLISH IT! – To save a project.

• QUIT – Exit squeak.

 50

The File menu is programmatically added to the environment by evaluating the

ProjectNavigationMorph and addFileFlapIfMissing. Separate methods for each of the

actions in the File menu are reused from the already existing methods. The methods were

modified as required. Another global flap called “Objects” is also added to the

environment which contains the basic tools required for running simulation and the

objects which can be reused. Figure 10 shows the Object flap. It contains the script

runner for running simulations and other objects like Sun, Sky, Chemicals, BrCl,

Smokestack, and Chemicals which are reuse objects from one of the existing simulation

called “Factory Model”. It aids the novice user, by providing an easy mechanism to reuse

generic objects rather users starting objects completely from scratch.

Figure 10 . Object Flap

5.4 Killer Playfield and Group Erase

In Squeak SimBuilder 3.7, we wanted the objects to be deleted when they hit the

boundary, a script should be added to that particular object to check for that condition.

The users can either make the object wrap when it hits the boundary or delete itself.

Instead of writing scripts for deleting the objects, if the playfield could handle this

procedure itself, it will decrease the burden for the novices. One problem with adding the

delete script explicitly to the objects is that even when the object is removed from the

environment and placed in the trash the process is not actually removed; it still runs and

degrades the performance. Figure 11 shows the killer playfield which deletes the object

 51

which hits its boundary automatically. By using this killer playfield, the performance of

the Squeak can be increased by not wasting process speed for objects in the trash.

Figure 11 . Killer Playfield

Erasing each object individually by bringing the halo around the object and hitting (X)

was time consuming and users were frustrated when there were many objects to be

deleted. So there came the need of group erase, which could delete all the objects at a

single time. Group erase as shown in Figure 12 is accomplished by holding Shift along

with the Left Mouse button click (Windows) and dragging across the objects to be

deleted. A new halo appears showing a blue box like boundary selecting all the objects.

Once the selection is done hit the (X) to move all the objects to trash.

 52

Figure 12 . Group Erase

The main difference between the Squeak SimBuilder 3.7 version and this new

environment is focused on usability and support of the environment. Most of the changes

are aimed at the novice programmers, and not overloading them with unwanted tools or

information with the technique of keeping advanced tools hidden from initial user view.

 53

 54

CHAPTER 6 .COMPARATIVE STUDY AND EVALUATION

Some of the valuable findings from the usability study conducted in spring 05

helped in redesigning the Squeak SimBuilder environment to make it more efficient for

the novices. A similar usability study was conducted with the new environment and the

results were compared with the previous study. The major goal was to determine if the

new design and interface of Squeak SimBuilder would produce more satisfaction, ease of

use, and fun for the novices. The secondary goal was to test whether multimodal input

(mouse and stylus) would increase the usability of the system. The following section

describes the methodology followed when conducting the experiments, the instrument

used to capture the required data, analysis of the results and the comparison with the

previous study using statistical tools. The results of comparison would conclude whether

the new design satisfies the hypotheses of this study.

6.1 Experiment Methods

This section discusses the methodology followed in this experiment. The study of

population, apparatus used and the design will be detailed here.

6.1.1 Population

The intended population for this study is set of 12 undergraduate or graduate

students above the age of 19 years enrolled in Department of Computer Science and

Software

 55

Engineering, Auburn University. Each participant considered for this study will have

good background knowledge about the computers and should have used computers for

more than 10 years. They are considered novice programmers in this study because they

would not have had experience using visual programming tools. An announcement was

made in the class and the volunteering students for this study take part in the experiment.

This experiment will run for approximately 1.5 hours. Though no monetary

compensation will be provided for the participants, they will be exposed to new field of

programming through an educational tool.

6.1.2 Apparatus and Location of Experiment

All of the study sessions were conducted at an Auburn University’s Computer

Science Department. The office utilized was located in the Old Power Plant (OPP 108).

The study was conducted on an IBM machine with 17’’ Monitor running Windows XP

equipped with standard scroll mouse and an inbuilt speaker. A stylus (I-pen) with a stylus

pad was provided for half of the participants. An Evaluator monologue was pasted on the

wall for the participants to read before starting the experiment. Two evaluators were

normally present during the study to observe participant reactions while exploring the

environment.

6.1.3 Experimental design

 The experiment was a comparative study of Squeak 3.7 version and our new

prototype design. The entire experiment was divided into two phases, the learning phase

and reuse phase as described in Table 5.

 56

Table 5 . Experiment Design 1
Learning 30-45 minutes Squeak SimBuilder

3.7 Version Reuse 30 minutes

Learning 30-45 minutes New Version

Reuse 30 minutes

In the learning phase participants were introduced to simulation building and basic

functionalities of Squeak SimBuilder. They explored the Water cycle model with

guidance of a tutorial to help with their understanding of how to write scripts to achieve

desired action. They were asked to create interactive simulations and utilizing the think

aloud protocol. . An interaction guide was also provided to easily identify the tools

required to create new simulations. At the end of learning session, the participants were

asked to create a basic Volcano simulation using the experience obtained by exploring

Water cycle method. During this creation time they were not allowed to ask any

clarifications from the investigator. The Factory model and Science models were also

presented if the participant wanted to explore more simulations in the Squeak

environment. After a short break, participants were asked to take the Reuse session. The

Ozone model was studied and the objects in it were reused in creating the Photosynthesis

World Simulation and users also created original objects when necessary. We followed a

lattice structure to design the entire experiment. 12 participants (P1 to P12) were divided

into two groups with respect to the interaction style as shown in Table 6.

 57

Table 6 . Experiment Design 2
Reuse Method Interaction style

Ozone->Photosynthesis Starter -> Ocean

P1 P10

P2 P11

Mouse

P3 P12

P7 P4

P8 P5

Stylus

P9 P6

6.2 Materials

This section details the materials required for the study. An informed consent

form and tutorial were given to the participants.

6.2.1 Consent Form

The Institutional Review Board (IRB) of Auburn University requires that any

research involving the human being, surveys etc. should be approved for its validity as

research. After the approval from IRB, an informed consent was given to the participants

when they attended the experiment. It lists out the purpose, objective of the study, the

motive behind running this experiment, risks involved and the compensation for same

and the benefits. The consent form is signed by all the investigators and in case of

necessity; the participants can contact the investigators in future through email or phone.

 58

The participants sign the form and can take with them after completing their study. (See

Appendix A for details of Informed Consent).

6.2.2 Tutorial

After participants signed their consent form, they were provided with a 15 page

tutorial. The main purpose of the tutorial was to introduce SimBuilder environment to the

participants and to help them to create small projects. It clearly pointed that there was no

need of any visual programming experience for working in this environment. The entire

tutorial was drafted as a power point presentation with 22 slides. Each slide is a guided

exploration card taking a user through one programming concept. The starting page

discussed the purpose of study and includes a screen shot of opening environment in

Squeak SimBuilder as shown in Figure 10. The first section explored some of the existing

simulations and behaviors of the objects. The second section explained the reuse of

objects between different projects. The tutorial aims to decrease the learning effort for

understanding anew programming language. Each step in the tutorial was discussed with

a screen shot of what actually happens when they play around the environment. By this

visually the participants captured more information than with lengthy texts. Sufficient

help was provided at each step.

Figure 13. Opening Scene in Squeak

6.2.2.1 Section 1: Learning

This section consisted of 10 slides. It started with exploring the WaterCycle

model which was one of the simulations placed in the opening scene of Squeak

SimBuilder. Participants were asked to run the simulation and observe how different

objects like sun, cloud, and rain interacted with each other. After they explored the

complete simulation, they were asked to observe the behavior of each object in it. The

scripts for Sun (Figure 11) and other objects were expanded as training examples. The

user was instructed in how to activate objects by invoking the objects halo to manipulate

it. The objects halo provides the user with the following operations: open viewer, change

color, rotates object, etc. Creation of new scripts by direct manipulation techniques (i.e.

dragging and dropping from the viewer) was also discussed. With the guided exploration,

participants were asked to change the direction of the cloud and also to increase the speed

 59

of its movement.

Figure 14. Learning Section-Exploring Sun

 After the learner explored the WaterCycle simulation, he or she was asked to draw new

objects like a bird to the playfield using the paint brush tool available in the file flap and

create behaviors or methods to make it fly in the simulation. Participants were

encouraged to think aloud and ask for help to clarify their doubt until this period. A

performance task was designed to assess the experience obtained by exploring the

WaterCycle model. Participants were asked to create a sample environment, which

simulates the volcano eruption. Figure 12 shows the tutorial page, which describes the

steps for starting a new project and getting the playfield, script runner for the

environment. After 5 minutes of brain storming and drawing a paper prototype, they

 60

proceeded to create a simulation. No clues or guidance, or help was provided during this

process. The degree to which they succeed in developing this environment measures the

effectiveness of tutorial and grasp of concepts in short time span.

 Figure 15 . Learning Section - Creating Volcano Simulation

6.2.2.2 Section 2: Reuse

This section consisted of 7 slides. The task for this section was to use the objects

provided for creating two new simulations called Ocean World and Photosynthesis. A set

of objects where provided in the Objects flap which can be reused. Our goal was to

identify how helpful those objects if reused and make suggestions of other objects, which

could be added to make it more generic and more widely reusable. In the first step,

participants were asked to investigate each player in the Object flap to discover its

behavior. Figure 13 shows the reuse objects in the flap. The next step was to create an

 61

Ocean World simulation using existing object templates and also adding new objects and

behavior.

Figure 16 . Reuse Objects in the Objects flap

After the Ocean world, the Ozone Depletion model was investigated. In this

model, a Factory object creates pollution, which moves upward in the air until it comes

into contact with Sun. When the pollution object overlaps a chemical reaction takes place

and converts to elements Bromine and chloride, which upon contacting the Ozone layer

will deplete it. Some of the objects in this simulation model like Sun and Factory can be

reused for Photosynthesis model. Figure 14 shows the steps in creating the

Photosynthesis model (i.e. the factory is a producer or emitter of other objects which can

be generalized and reused for other models).

 62

Figure 17. Photosynthesis Simulation

6.2.2.3 Interaction Guide

To help users to remember significant features required for creating simulations, a two

page guide was provided. It contains a pictorial representation of icons with their

meaning, buttons, dialogue boxes and menus. This guide will aid participants by

providing support for them to perform the task easier and more quickly. Figure 15 and 16

shows the Interaction Guide.

 63

Figure 18 . Interaction Guide- a

Figure 19 . Interaction Guide -b

 64

 65

6.3 Procedures

A general announcement was made in the undergraduate and graduate classes in

the Department of Computer Science and Software Engineering at Auburn University

about this study for requisites of participation. We aimed for a population of about 12

students for the study. A time slot was allotted for each participant so that there was little

waste of time and they can reschedule their daily work accordingly. The experiment

started with the participants reading the consent form, which described the purpose,

objective of this study, and informed them in what needed to be accomplished at the end

of this study. After reading the informed consent, students decided whether to participate

or not and if they wished to participate they signed the form and kept it as reference for

future in case they wanted to contact the investigators. Next, users took an on-line pre-

survey, which was used to understand their background details like major, experience

with software etc. After the completion of pre-survey, the tutorial was provided and the

investigator gave a formal introduction of the environment, they were insisted to think

aloud when browsing exploring the environment.

The experiment started with a learning session, which approximately ran for 30 to

45 minutes. The tasks for this session were to familiarize the user with the environment

by guiding their investigation of rules and behaviors of the WaterCycle Simulation and to

demonstrate user’s understanding by creation of a Volcano Simulation. During the

creation of the Volcano Simulation, no clues or help were provided. After learning

session, a 5-10 minutes break was provided for the participants to refresh. Next in the

reuse session, which was designed for 30 minutes, users were asked to create two

 66

simulations – Ocean model and Photosynthesis model which reused objects from the

Objects flap and from the Ozone Depletion model.

After completing the experiment, participants were asked to take a post-test

questionnaire, which gathered subjective reactions to the environment measuring the

satisfaction they obtained using this environment. A retrospective interview was

conducted finally to allow the investigator to collect any last participant thoughts. The

following table (Table 7) shows the overview of the data collected through out the

experiment.

Table 7. Data Collection
Method Description

Pre-survey Questionnaire User Background, Major, Computer Literacy.

Performance Data Time taken, number of rules created, error recovery.

User Observations Qualitative Observations

Post-survey Questionnaire User reactions and system ratings

Retrospective Interview Understanding Users thoughts

6.3.1 Pre-survey Questionnaire

The main purpose of this survey was to collect background information about the

participants. For some questions, participants answered by entering text, some had yes or

no options and others used Likert scales. Basic details like Gender, Age, Major, etc. were

collected initially. Their educational background was in the Computer Science field, all

had experience in computer programming, and years of experience using computers was

also asked. A Set of questions analyzed their familiarity with particular software like

 67

drawing software, word processors, spreadsheet programs, chat etc. A set of questions

were designed to assess their perceptions about simulations, use in the real world ,what

could be best simulated and the role of simulating software in teaching. Pre-survey

Questionnaire took approximately 10 minutes to complete. (See Appendix B for details

of Pre-survey Questionnaire).

6.3.2 Performance Data and User Observations

Performance was analyzed through out the learning and the reuse session. Time

taken for creating the new simulations, the number of rules added, the complexity of

rules, questions asked by the participants while learning, number of objects reused during

the reuse session were some of the data collected for analysis purposes.

6.3.3 Post-survey Questionnaire

This was designed to gather user’s reaction towards the environment and to assess

performance of the software. Overall user reactions to the system were obtained using six

bi-polar rating scales. The six scales were: Terrible/Wonderful, Frustrating/Satisfying,

Dull/Simulating, Difficult/Easy, Rigid/Flexible, and Boring/Interesting. Other questions

used Likert Scales to rate the ease of use, fun creating simulations, easy to get started,

and was it easy for the novices There were some questions asked about the tutorial we

also planned to use this information to redesign it to better help future users.

6.3.4 Retrospective Interviews

It had set of questions that obtained the last thoughts about the environment, any

suggestion, pitfalls, and good things about environment, which they wanted to share.

6.4 Results and Analysis

This section provides the results, both quantitative and qualitative data and

analysis. We start with the summary of participant’s background obtained from the pre-

survey and then discuss the results obtained in both learning and reuse section. We also

compare the data sets with the previous usability study with Squeak SimBuilder 3.7 and

provide discussions for the same. In the following discussion “N” specifies the number of

participants involved.

6.4.1 Participant Background

A set of 12 students was recruited from the Computer Science Department to

participate in this study. Their pre-survey provides information about their background. A

summary of several quantitative measures appears in Table 8.

Table 8 . Participant Background Data
 Quantitative Measures N=12

Average age 24

Percent Female 67 %

Average years of computer use 11

 The ages of 12 participants ranged from 21 to 28 with a mean age of 24 years. All had

good experience in Software design and Computer programming like C, C++, and Java.

Half of the participants had previous teaching experience by teaching courses in the

school. In answer to the question regarding their comfort using computers, majority of

the participants rated them as “good with computers”.

 68

 69

All of the participants had considerable experience with computers, with a mean

of 11 years and mostly with the PCs and much less with MACs. The majority of users

have used computer games and the drawing software (e.g. Adobe Photoshop, Microsoft

Paint, AutoCAD, etc.). They saw a role for computer simulation in the classroom with the

responses like the following:

• Can be used for handicap students

• Teaching children, more hands on, more visual than text books

• Simulation of rain

• Simulation portraying the generation of computers

• A good instance would be for physics/chemistry classes. Often these classes

present issues or topics that a student may not be able to physically see or

observe. A simulation would allow the students to visualize the concept

presented.

• Computer simulations could play an excellent role that will give a more visual

outlook of environmental issues and how things actually work, taking children far

beyond their imaginations.

When asked what kind of simulations they would build, the participants proposed the

following: volcano, butterfly lifecycle , photosynthesis, earth quake, tornados, caterpillar

to a butterfly , driving a car - a simulation of this would be very helpful and much safer

when teaching someone to drive , earthquakes, thunderstorms, hurricanes/tornados,

melting ice-caps, smoke filled lungs , network of computers , tsunamis, tornadoes,

earthquakes, hurricanes , manufacturing unit in a factory, working of a computer

network, modeling of social organizations

6.4.2 Learning Sessions: Performance and Qualitative Data

The learning phase started with a guided exploration of the Water cycle method

followed by the users creating a volcano simulation. Table 9 shows the times (in minutes)

for the participants completing the learning and creation phase using Squeak SimBuilder

3.7 and the new version. Learning time was measured from the time the participants

began reading the tutorial until they completed the creation of bird and adding behaviors

to it. The creation time started when they started reading about the simulation until they

published their project.

Table 9 . Learning and Creation times
 Squeak SimBuilder 3.7 New Version
Squeak
 Average Minutes N=9 Average Minutes N=12

Learning (Water cycle) 17 16

Creation (Volcano) 18 14.5

Total Learning time 17.5 15.25

Comparing the means of both studies, the new version shows a decrease in the

total learning time. Though the time taken for exploring the Water cycle was mostly the

same in both the studies, the creation time showed a significant decrease. This shows that

the new version has provided a well guided tutorial during the exploring phase.

Analyzing the volcano simulation created by the participants we observe that an

average of 5 objects were created and simple rules like forwarding, making sound was

used.

 70

During the exploration of the Water cycle model, qualitative observations were

made. It was noted that few participants had problems with dragging the scripts from the

viewer pane to the playfield and insertion of a particular script under the empty script.

The learners had little trouble in activation the object halo for a specific object.

The drawing tool was helpful to all the participants. Half the participants used the

stylus for drawing and the rest, used mouse. Participants were more comfortable using

the mouse rather than the stylus because it was more sensitive and they don’t have prior

experience in using the stylus. Figure 17 shows the volcano simulation created using

mouse.

Figure 20. Volcano -Mouse

 71

Figure 21. Volcano - Stylus

Figure 18 shows the volcano simulation created using stylus. During the learning session,

we observed that learners were benefited using the paint brush, erase tool and the undo

option. Users were confused about drawing the objects, which needs to interact

separately, and keeping it. They also had little problem in viewing the behaviors of

objects they created.

6.4.2 Reuse Sessions: Performance and Qualitative Data

The reuse session was conducted in two different ways. Half the participants (six)

explored the Starter world simulation and reused the world to create the Ocean world

simulation. Other half of the participants explored the Ozone Depletion simulation and

 72

reused the objects in it to create the Photosynthesis model. Table 10 shows the average

time taken during the reuse session either ways using the new version of Squeak.

Table 10. Reuse Session Times
Reuse Method Average Minutes N=12

 Starter world to Ocean world 17.3

 Ozone Depletion to Photosynthesis 16.3

The mean difference in times, between the two methods is less showing that both the base

simulation (Starter world and Ozone Depletion were comparatively efficient for reuse. In

the first reuse method (Starter world to Ocean) as shown in Figures 19 the users reused

the objects emitter as ocean, mover as wave and replacer as sand. Though the user did not

complete the entire simulation of reusing all objects, they found that just by re-designing

a few of the base objects it would be easier to create new simulation. Similarly, Figures

20 shows how the objects in Ozone Depletion simulation can be reused for the

Photosynthesis. Users reused smokestack as sun, chemicals as rays, and sun as plants.

With the few changes in the scripting behind the base simulation, they made the new

simulation work.

Figure 22 . Starter World to Ocean World
 73

Figure 23 . Ozone Depletion to Photosynthesis

During the reuse sessions, qualitative observations were also made. The

participants started their first task by exploring the model simulation provided (Starter

world or Ozone depletion) followed be drawing their target simulation (Ocean World or

Photosynthesis) in paper. They were directed to assess if and how the objects in the

model simulation could be good candidates for reuse in creating their new simulations.

They began with re-drawing the existing objects and changing the supporting scripts to

suit their new simulations. Users found that reusing existing objects was very helpful and

easy. We found that participants understood the semantic concept behind each object

easily by using the emitter (emission of something) to Sun (emitting rays) or Ocean

(emitting waves). In contrast, the visual representation of smokestack in the Ozone

Depletion model did not visually mean the emission function.

Comparing both the reuse models provided, we analyzed that visual

representation of objects in the Starter world is more convincing than those in the Ozone

depletion model. Users preferred the objects emitter, mover in Starter world than objects

smoke stack, chemicals in Ozone depletion because those visually implied their function.

 74

6.4.3 User Reactions

Users provided their satisfaction with the environment by answering to a set of

questions, which used two types of rating scales. The first set of five questions asked the

participants to provide a rating on a bi-polar scale to analyze the usability of the

environment. Table 11 shows the mean and standard deviation for these ratings, broken

down by the version of Squeak used.

Table 11. Bi-polar Rating Scales
 Bi-polar Scale New Version Old Version
 Mean (SD) N=12 Mean (SD) N=10

 Terrible ------------ Wonderful* 4.0 (0.74) 3.5 (0.71)

 Frustrating -------- Satisfying 3.58 (0.67) 3.3 (0.67)

 Dull ----------------- Stimulating* 4.0 (0.85) 3.4 (0.84)

 Difficult ------------- Easy 3.5 (0.8) 3.4 (0.85)

 Rigid ---------------- Flexible 3.83 (0.83) 3.4 (0.84)

 Boring --------------- Fun* 4.25 (0.45) 3.8 (0.92)

* Difference approaches significance, p < .10

A quick review of the means show that the users overall rated the new

environment to be more promising than the older version. The mean differences were

tested using a ANOVA; the test revealed that none of the difference were significant

although the difference for ratings on Terrible-Wonderful, Dull-Stimulating, Boring-Fun

approached significance (p < .10).

The second set of questions used the Likert-scale to obtain user’s reactions

specific to the learning activities. Participants responded using a 5-point scale from

1=Strongly Disagree to 5=Strongly Agree. Most of the items were written with a positive

 75

context such that a “5” would be a positive reaction; some items written with a negative

context are noted using italicized text, and the ratings for theses items have been recorded

to be consistent with the others. Table 12 assess the general ease of use

Table 12. Likert-Scale Rating: General Ease of Use
 Likert-Scale Rating New Version Old Version
 Mean (SD) N=12 Mean (SD) N=10

 Easy to learn and use 3.75 (0.87) 3.3 (0.67)

 Easy to get started * 3.91 (0.67) 3.2 (0.92)

 Hard to remember tool locations(NOT) 2.9 (1.24) 3.0 (0.94)

 Easy for novices 3.58 (1.16) 3.3 (0.95)

 I understand how to use ** 4.16 (0.72) 3.7 (0.48)

 It was hard to recover from errors(NOT) 3.66 (1.3) 3.1 (1.29)

* indicates significance p < 0.05, ** indicates significance p < 0.1

Examination of the above items pertaining to the general ease of use we see that

in all aspects the mean values for the new version is higher that the older version. To

assess the reliability of theses raw differences, a simple ANOVA was conducted. These

revealed that two of these mean differences were statically reliable. Easy to get started (p

< .05) and good understanding (p < .10). This shows that the users found the new

environment provided good understanding of the process and made it easy to get started

with creating simulations.

 76

Table 13. Likert-Scale Rating: Assessing Motivation
 Likert-Scale Rating New Version Old Version
 Mean (SD) N=12 Mean (SD) N=10

 Fun for building simulations ** 4.3 (0.49) 3.4 (1.07)

 Creation of working simulation 4.25 (0.45) 3.7 (0.95)

 I can have objects any size I want 4.08 (0.79) 3.7 (0.82)

 I am enthusiastic about creating simulation 4.16 (0.83) 3.7 (0.82)

** indicates borderline significance p < 0.01

In all above cases under motivation as shown in Table 13, we note that the mean

values of new version are higher than the previous version. To assess the reliability,

simple ANOVA was conducted and found that the mean difference for the fun factor

achieved a borderline significance of 0.01. So the new version has increased the fun

during the exploration of the new environment increasing the motivation of the users.

Table 14. Likert-Scale Rating: Assessing Programming style Reactions
 Likert-Scale Rating New Version Old Version
 Mean (SD) N=12 Mean (SD) N=10

 Drag and drop rules were complicated (NOT) 3.0 (1.28) 2.9 (0.99)

 Simulation works logically but tools made it harder 2.83 (1.19) 2.7 (0.82)

 Rule creation was simple and natural 3.83 (0.94) 3.7 (0.67)

An examination of the items designed to assess the programming style shown in

(Table 14) that the mean difference is lower and ANOVA results revealed none of them

were statistically significant. Thus we cannot conclude anything from the ratings.

 77

 78

To obtain the qualitative data, open-ended questions were provided to know the user’s

reactions. The following paragraphs summarize their responses.

1. What was most interesting or fun?

Users commented that it was interesting to create, erase and to redesign the

objects. They had fun with adding scripts to the objects. Set of users were impressed the

way the simulation worked as they intended. Many of them considered drawing the

volcano simulation using the paint brush was more fun.

2. What was least interesting or fun?

Users commented some of the least interesting and fun things for them to do dealt

with adding actions/behaviors to the objects, bringing the halo for each object by clicking

the mouse and one among the 12 participant responded that drawing was least interesting

as he/s she was not an artist.

3. Did you find the example simulations in the tutorial effective? Why or why not?

Everyone found that the example simulations used in the tutorial were effective

for the following reasons: It provided good understanding of the process involved before

starting the simulation; it helped me to get started easily. One participant suggested

having the tutorial part on the computer rather than the hard copy.

4. Did you find the instructions in the tutorial helpful? Why or why not?

Everyone found that the instructions in the tutorial were helpful. Some of the

comments were: Yes, it went step by step along with me with the diagrams explaining all

the steps; yes, it was straight-forward; yes, they were clear and precise. One participant

felt that not all the necessary steps for final simulation were detailed.

 79

5. What 1-2 things would you change if you were asked to revise the tutorial?

Some of the remarks were as follows: Some of the instructions could be clear;

More specific instructions; Provide detail information about certain menu items; Step by

step tutorial within the program itself instead of power point slides.

6. Suppose you were going to build a computer simulation of a volcano exploding for

earth science. What sort of things do you think would be involved?

Everyone mentioned the basic objects like lava, mountain, smoke, grass, clouds,

rocks falling, and vibrations.

7. As well as you can, please describe what you think is the best way to come up with

projects?

After being exposed to the environment, users commented the following: If its for

science class , then any subject that cannot be re-created ordinarily in classroom can be

made as simulation; Inculcate creativity; Understand the students weak subjects and do

simulations in that for better understanding; Projects that cannot be viewed in the

classroom ; simulation showing how caterpillars become butterflies.

8. Can you think of any changes or enhancements to this system, especially ones that

would make it more useful in creating simulation for novices?

• More shapes for drawing.

• Include help session.

• Scripts should be more kid-friendly.

• Baseline objects necessary.

• Selecting halo can be made easier.

 80

9. Any final comments about your experiment or the software.

• It was fun using the system.

• Young science students will find it more helpful.

• Extensive training is necessary.

• What I expected to happen I got it easily done with the system.

• It takes long time to get comfortable.

• Better than the previous Squeak version.

A retrospective interview was also conducted at last to give a chance for the

participants to tell out what they felt about the environment. Most of the questions were

similar to those listed above but in addition asked about the stylus to the participants who

used it.

10. Do you think a stylus was helpful for drawing application? How do you support and

for what action it was helpful?

Among the six participants, 5 of them responded that using stylus was helpful

compared to the mouse. One participant told that after getting used to stylus, he/she found

it more natural to draw like using a pencil. Few participants mentioned that stylus was too

sensitive and so took time to get used to it. Only one participant felt that mouse was less

complex than the stylus for drawing. Stylus was more preferred for drawing.

 81

CHAPTER 7 .DISCUSSIONS AND CONCLUSIONS

The general aim of this research was to increase the user satisfaction of the

Squeak SimBuilder environment. It was initiated by conducting a usability study for

identifying the difficulties the novices faced using the Squeak SimBuilder 3.7 version for

creation of science simulations. Utilizing the Natural programming design process, those

identified factors were used to motivate and guide the redesign of the environment to

achieve effectiveness, efficiency and satisfaction of users. The usefulness and usability of

the redesigned version was contrasted with the older version using empirical evaluations.

The quantitative, and qualitative data collected during the study summarizes that in

overall the redesigned version has number of advantages compared to previous version.

This research also studied whether the use of stylus for interaction would increase the

performance of users, making it more fun to learn and use.

7.1 Results Summary

The research addressed questions related to whether the newly redesigned visual

environment has potential advantages over the existing environment. A set of four

hypotheses were framed to support these questions. First we wanted to explore how easy

the system to understand is. The novices when they investigate a new environment will

try to explore only the high level features of it before creating working simulations. The

time they require to understand the system and the important aspects they understand are

 82

very crucial. We captured the time while the users practice the learning session, and

compared it with the time obtained in the study with the earlier version. Though the time

required with our interface did not show a significant difference, the Likert-Scale rating

assessing how well the system provides good understanding was statistically significantly

with p < 0.1 for this hypothesis. Therefore, the hypothesis was accepted and we conclude

that our redesigned system provides better understanding of the system helping novices to

easily get started with the creation of working simulations.

Second, we noticed that excessive flaps and menus in the environment make it

hard for the novices, to locate tools required for basic simulations. Users should not be

overloaded with the information when they explore the new environment. The new

environment was redesigned with fewer and necessary flaps after proper consideration.

The hypothesis for this was that the new environment will make it easier to locate the

tools thus reducing the confusions. A significant level of 0.05 was not obtained for this

hypothesis. Therefore, the hypothesis was not supported.

Third, we were concerned about the interaction style, whether stylus would

improve the flexibility of environment. Qualitative data was collected to test this

hypothesis. Stylus was preferred for creations of simulations since it produced a more

natural way of drawing and painting than the mouse. But we also found that highly

sensitive stylus pad frustrated the users. We expect that stylus with less sensitive pad

would enhance the user’s interaction with the environment.

Finally, we wanted to analyze whether the users had fun working with the

environment. Draper (2002) stated that fun is a candidate software requirement in design

of any software where learning is the main function. Inculcating fun in software design

 83

would help to achieve the learn ability easily. The hypothesis tested for this was that the

new redesigned environment would be more fun to explore and build simulations. A

significant level of 0.01 was obtained for this hypothesis. Therefore, the hypothesis was

strongly supported.

7.2 Future Work

• In future studies we need a more detailed analysis of areas of reusable objects.

Few categories of generic objects should be identified from the existing

simulations, which can be used for the new simulations without any change in the

scripts.

• The existing simulations are based on the earth and physical science models,

which can be extended to the biological sciences.

• We can port Squeak SimBuilder 3.7 to PDA so that it will be handy to use and

can be shared easily among students in the class thus helping them in handling

their projects easily.

• It could prove more beneficial to re-conduct the study with a population of school

students to increase the reliability of the word “novice programmers”.

• The tutorial, which is now in power point slides, can be provided in the Squeak

environment itself.

7.3 Conclusion

The contribution of this research is simple. This research led to analyze the

opportunities and limitations of the existing visual programming environments for

educational simulations. After understanding the difficulties of novices in the

 84

programming field, we aimed at redesigning an environment to make it more usable,

easier-to-use, fun, and stimulating environment. We expect that this environment will

increase the accessibility of programming systems and help novices to understand the

programming concept easier. Our belief is that using visual tools as method of instruction

for the students would be revolutionize the education system.

 85

REFERENCES

Alan Dix, Janet Finlay, and Gregory Abowd.(1997). Human-computer Interaction.
Prentice Hall.

Alex Repenning. (1991). Creating User Interfaces with AgentSheets. Proceedings of
the 1991 IEEE Symposium on Applied Computing, April 3-5,1991, Kansas City,
Missouri, 191-196.

Alexander Repenning and J. Ambach. (1996). Tactile Programming: A Unified
Manipulation Paradigm Supporting Program Comprehension, Composition and
Sharing. In 12th IEEE Symposium on Visual Languages, 102-109.

Alexander Repenning and Andri Loannidou.(2004).Agent-Based End User
Development. Communications of the ACM September 2004.

Amy Bruckman and Alisa Bandlow.(2002).HCI for Kids.Published in The Human-
Computer Interaction Handbook: Fundamentals, Evolving Technologies, and
Emerging applications.

Andrew Jensen Ko and Bob Uttl.(2003).Individual Differences in Program
Comprehension Strategies in Unfamiliar Programming Systems. Proceedings of the
11th IEEE International Workshop on Program Comprehension, Portland, Oregon,
May 05 – 10.

Andrew J. Ko, Brad A. Myers, and Htet Aung (2004).Six Learning Barriers in End-
User Programming Systems.IEEE Symposium on Visual Languages - Human Centric
Computing, Rome, Italy. September 26 – 29.

Brad A. Myers. (1986).Visual Programming, Programming by Example, and Program
Visualization Taxonomy. ACM. Proceedings of the 1986 ACM SIGCHI Conference
on Human Factors in Computing Systems.

Brad A. Myers. (1996).A Brief History of Human Computer Interaction Technology.
CMU-CS-96-163, CMU-HCII-96-103.

Brad A. Myers (1998).Natural Programming: Project Overview and Proposal.
CMU-CS-98-101, CMU-HCII-98-100.

 86

Cheryl Seals, Mary Beth Rosson, John M. Carroll, Tracy Lewis, and Lenese Colson
(2002). Fun Learning Stagecast Creator: An Exercise in Minimalism and
Collaboration, IEEE 2002 Symposia on Human Centric Computing Languages and
Environments (HCC'02) 09 03 - 09, Arlington, Virginia, USA

Christopher Jones. (1998).The Mouse that Squeaked.
 http://www.wired.com/news/technology/0,1282,16833,00.html

Dan Ingalls, Ted Kaehler, John Maloney, Scott Wallace, and Alan Kay (1997).Back
to the Future: The Story of Squeak, A Practical Smalltalk written in itself. In Proc. of
the ACM SIGPLAN conference on Object-oriented programming systems, languages
and applications, Atlanta, GA USA, October 1997.
 ftp://st.cs.uiuc.edu/Smalltalk/squeak/docs/OOPSLA.Squeak.html

Daniel Fallman. (2003). Design-oriented Human-Computer Interaction. Proceedings
of the SIGCHI conference on Human factors in computing systems, Ft. Lauderdale,
Florida, USA. April 5-10.

Dan Shafer.(1996).The Future of Squeak. The We Talk Network, Inc.

Draper, S.W. (2002, May 14). Web page title [WWW document]. Retrieved 2003
April 1. http://www.psy.gla.ac.uk/~steve/fun.html

Gould, J. D., & Lewis, C.(1985).Designing for usability: Key principles and what
designers think.Communications of the ACM, 28, 3, 300-311

Guzdial, Mark and Rose, Kim (2002) Squeak: Open Personal Computing and
Multimedia. Prentice Hall.

Hal Eden, Mike Einsenberg, Gerhard Fischer, and Alexander Repenning
(1996).Making learning a Part of Life. Communications of the ACM April 1996/vol
39.No.4

Jacob Nielsen and R.L Mack. (1994). HeuristicEvaluation.Usability Inspection
Methods. New York, John Wiley & Sons: 25-62.

James A. Landay and Brad A. Myers (2001).Sketching Interfaces: Towards More
Human Interface Design. Proceedings of IEEE.

James C. Spohrer and Elliot Soloway (1986).Novice Mistakes: Are the folk wisdoms
correct?. Communications of the ACM, July 1986,Volume 29, No 7.

Jan Erik Moström. (2002).Using Concurrent constructs in an Authoring Environment.

http://www.wired.com/news/technology/0,1282,16833,00.html
ftp://st.cs.uiuc.edu/Smalltalk/squeak/docs/OOPSLA.Squeak.html

 87

Jim Gindling, Andri Ioannidou, Jennifer Loh, Olav Lokkebo, Alexander Repenning.
(1995). LEGOsheets Rule-Based Programming, Simulation and Manipulation
Environment for the LEGO Programmable Brick. Proceedings of the 11th
International IEEE Symposium on Visual Languages.

John F.Pane, Chotirat “Ann” Ratanamahatana and Brad A. Myers. (2001).Studying
the language and structure in non-programmers’ solutions to programming problem.
Natural Programming project, CMU.

Joseph S. Dumas and Janice C. Reddish. (1993).A Practical Guide to Usability
Testing. Alex Publishing Corporation, Norwood, New Jersey.

Jurgen Herczeg, Hubertus Hohl, and Matthias Ressel.(1993).A New Approach to
Visual Programming in User Interface Design. Proceedings of HCI 1993, Orlando,
FL, USA.

J.W. van Aalst, C.A.P.G. van der Mast, and T.T. Carey. (1995). A Multimedia
tutorial for User Interface Design. Report 95-35.

K.A. Whitley and Alan L. Blackwell. (1997).Visual Programming: The Outlook from
Academia and Industry. Paper presented at the seventh workshop on Empirical
studies of programmers.

Kori Inkpen. (1997).Three Important Research Agendas for Educational Multimedia:
Learning, Children, and Gender. Proceedings of Educational Multimedia '97,
Calgary, AB, June 1997, pp.521-526.

Margaret M. Burnett, Marla J. Baker, Carisa Bohus, Paul Carlson, Sherry Yang,
Pieter van Zee (1995).Scaling Up Visual Programming Languages .Proceedings of
IEEE, Volume 28 , No.3.

Martijn van welie, Gerrit C.van der Veer, Anton Eliens. (2000). Patterns as Tools for
User Interface Design.Virje University.

Mary Beth Rosson, John M.Carroll, and Rachel K.E. Bellamy. (1990).Smalltalk
scaffolding: A Case study of Minimalist Instruction.Proceedings of CHI 1990.

Mathew Conway, Steve Audia, Tommy Burnette, Dennis Cosgrove, Kevin
Christiansen, Rob Deline, Jim Durbin,Rich Gossweiler, Shuchi Koga, Chris Long,
Beth Mallory, Steve Miale, Kristen Monkaitis, James Patten, Jeff Pierce, Joe Shochet,
Brian Stearns, Richard Stoakley, Chris Sturgill, John Viega, Jeff White, George
Williams, Randy Pausch. (2000). Alice: Lessons Learned from Building a 3D System
for Novices. Proceedings of CHI 2000, 486-493.

 88

Ned Konz. (2004). A More Inclusive Community-Based Model for Squeak
Development. http://bike-nomad.com/squeak/community2.html

N.Hari Narayanana and Roland Hubscher. (1997).Visual Language Theory: Towards
a Human-Computer Interaction Perspective in Visual Language Theory, pages 85-
127, Springer Verlag, New York, NY, 1998.

Olivier Esteban, Stephane Chatty, Philippe Palanque. (1995).Whizz’Ed: A Visual
Environment for Building Highly Interactive software. In K. Nordby, P. Helmersen,
D.J. Gilmore & S.A. Arnesen (Eds.), Human Computer Interaction: Interact ‘95.
London: Chapman & Hall, pp. 121-126.

Randall Caton. (2004). Squeak Interactive Web Activities Developed for the NASA
Center for Distance Learning. NASA Langley Research center.

Richard E. Mayer. (1981). The Psychology of How Novices Learn Computer
Programming. Computing Surveys, Vol.13, No.1

Silvia Berti, Fabio Paterno, and Carmen Santoro. (2004). Natural Development of
Ubiquitous Interfaces. Communications of the ACM September 2004/vol 47.No.9

Travers, M. (1994).Recursive Interface for Reactive Objects. Proceedings of CHI'94,
in Boston, Massachusetts.

T.R.G. Green and M. Petre. (1992).When Visual Programs are harder to Read then
Textual Programs. Human-Computer Interaction: Tasks and Organization,
Proceedings of ECCE-6 (6th European Conference on Cognitive Ergonomics).G. C.
van der Veer, M. J. Tauber, S. Bagnarola and M. Antavolits. Rome, CUD.

Vikki Fix, Susan Wiedenbeck, Jean Scholtz. (1993).Mental Representations of
Programs by Novices and Experts. Proceedings of the SIGCHI conference on Human
factors in computing systems, INTERCHI ’93, Amsterdam, The Netherlands, pp.74 –
79.

http://bike-nomad.com/squeak/community2.html

 89

APPENDICES

APPENDIX A: INSTITUTIONAL REVIEW BOARD FORMS: INFORMED
CONSENT .. 90

APPENDIX B: EVALUATOR MONOLOGUE.. 92

APPENDIX C: PRE-QUESTIONNAIRE .. 93

APPENDIX D: SIMBUILDER TUTORIAL ... 98

APPENDIX E: POST-QUESTIONNAIRE.. 107

APPENDIX F: STATISTICAL ANALYSIS ... 110

APPENDIX G: RETROSPECTIVE INTERVIEW QUESTIONS................................. 114

APPENDIX H: CREATION AND REUSE TIMES .. 116

 90

Appendix A: Institutional Review Board Forms: Informed Consent

 Visual Programming 2005

INFORMATION CONSENT SHEET
for Research Study Entitled

SimBuilder: An Investigation and Usability study of Novice Programming Techniques

You are invited to participate in a research study which aims in studying the problems
faced by the novice programmers when using a visual programming tool called Squeak.
The usability of our new design will be evaluated against the latest versions of the
software available in the market. This study is being conducted by Dr. Cheryl D. Seals,
Assistant Professor and Sumitha Kanakadoss, graduate student of Computer Science and
Software engineering Department. We plan to analyze the difficulties of novices and
make programming easier and fun with our new design thus decreasing the learning
curve. You were selected as a participant because you are computer literate, enrolled in a
computer science graduate or undergraduate course.

If you decide to participate, you should be able to spend 1 hour for this entire study. First
you will take a pre survey which will provide us some background information about
you. After that a learning session of 30 minutes will be provided to get familiarized with
the environment. Once you are comfortable with the environment, the next stage is that
you will be asked to create a simulation of your own. A post survey will be done at the
end of this to understand the user’s reaction towards this environment.

Any information obtained in connection with this study will remain anonymous.
Information collected through your participation may be used to fulfill an educational
requirement (Thesis), published in a professional journal, and/or presented at a
professional meeting.

While there are no direct benefits to you from this research, you may find the research
and interaction with the new educational tool interesting. Your participation should make
it possible to better understand the opportunities provided by a visual programming tool
like squeak.

Your decision whether or not to participate will not jeopardize your future relations with
Auburn University or Computer Science and Software engineering Department. You are
free to withdraw from this study at any time without any question.

If you have any questions we invite you to ask them now. If you have questions later, you
can contact either Dr. Cheryl D. Seals (sealscd@eng.auburn.edu) or Sumitha

mailto:sealscd@eng.auburn.edu

 91

Kananakadoss (kanaksu@auburn.edu , 334-524-1296) and we will be happy to answer
them.

For more information regarding your rights as a research participant you may contact the
Auburn University Office of Human Subjects Research or the Institutional Review Board
by phone
(334)-844-5966 or e-mail at hsubjec@auburn.edu or IRBChair@auburn.edu .
 .

HAVING READ THE INFORMATION PROVIDED, YOU MUST DECIDE
WHETHER TO PARTICIPATE IN THIS RESEARCH PROJECT. IF YOU DECIDE
TO PARTICIPATE, THE DATA YOU PROVIDE WILL SERVE AS YOUR
AGREEMENT TO DO SO. THIS LETTER IS YOURS TO KEEP.

Investigator's signature Date

Co-investigator's signature Date
(if appropriate)

Participant's signature Date

mailto:kanaksu@auburn.edu
mailto:hsubjec@auburn.edu
mailto:IRBChair@auburn.edu

 92

Appendix B: Evaluator Monologue

EVALUATOR MONOLOGUE

1. Complete the pre-survey

2. Learning Session

• Follow the steps given in the tutorial properly.
• Explore the Water cycle simulation.
• Create few new rules to get familiarized with the Environment.
• ‘Think aloud’ while you are learning about the new environment.
• Make use of the interaction guidelines provided at the end of tutorial.

3. Creation

• A sample environment of volcano eruption is provided.
• Identify the various objects involved in it and their interaction.
• Draw those and gives the rules for their behavior.

4. Reuse

• Explore the Starter/Ozone world which is provided for you in the main page.
• Create the Ocean/Photosynthesis (evaluator will tell you which one to do) model

reusing the objects.

5. Complete the post-survey

6. Retrospective Interview

Appendix C: Pre-Questionnaire

Visual Programming Summer 2005

Sim ID

Age

Gender

Major

Educational background: Please list any degrees or courses taken in the following areas.

Software Design

Computer Programming

Other instruction that would be helpful in design

Please list any work experience.

Do you have any teaching experience?

Yes

No

If Yes, what classes did you teach?

For approximately how many years have you been using a computer?

of years

Do you have experience using a PC(i.e. IBM, Dell, Compaq, Toshiba, etc.)or Macintosh
(formerly called Apple) Computer?

 93

 94

PC Mac Both None

How many years of PC use.

How many years of Mac use.

On average, how many times a week do you use a computer?

0-1 2-3 4-5 6 or more

On average, how many hours do you spend on your computer per week?

0-4 5-8 9-12 more than 12

Have you used a hand held computer game?

Yes

No

How many times have you played a computer game?

0-4 5-8 9-12 more than 12

How many minutes on average did each game take?

0-5 6-10 11-20 30-60 more than 60

Have you used a palm pilot or pocket pc?

Yes

No

How many times have you used it?

0-4 5-8 9-12 more than 12

How many minutes on average did each use take?

0-5 6-10 11-20 30-60 more than 60

Have you ever used any drawing software?

Photo Editor Adobe Photoshop Microsoft Picture It Corel Draw

Microsoft Paint None other:

If Yes, How many times have you used any drawing software?

0-4 5-8 9-12 more than 12

Have you ever done any programming ?

Yes

No

If yes, what languages have you used..

Do you have any previous experience with visual programming environments?
(Authorware, Director, Dreamweaver, Visual Basic, etc.)?

Yes

No

If yes, what types of software packages did you use and what kinds of projects did you
design or create with these packages?

Do you use a word processor, such as Microsoft Word or Word Perfect?

Yes

No

If Yes, How many documents have you created?

0-4 5-8 9-12 more than 12

Have you used a spreadsheet program, like Microsoft Excel or Quattro Pro?

Yes

No

If Yes, How many spreadsheets have you created?

0-4 5-8 9-12 more than 12

How many times do you email or chat per week?

0-1 2-3 4-5 6 or more

How many times do you use the Internet per week?

0-1 2-3 4-5 6 or more

Do you use computers in any of your classes?

 95

Yes

No

For what type of activities?

Do you consider yourself more artistic, analytical or both?

Analytical

Artistic

Both

What (if any) role do you see for computer simulations in primary/secondary education? (
e.g. simulation of a factory and pollution it creates).

Suppose you were going to build a computer simulation of a volcano exploding for earth
science. What sorts of things do you think would be involved (i.e. what objects and what
do they do)?

What kinds of real world situations are you familiar with and could imagine a simulation
recreating it?

In the section below, choose the response that most accurately describes you.
1. I frequently read computer magazines or other sources of information that describe
new computer technology.

Strongly Agree Agree Neutral Disagree Strongly Disagree

2. I know how to recover deleted or lost data on a computer or PC.

Strongly Agree Agree Neutral Disagree Strongly Disagree

3. I know what a LAN is.

Strongly Agree Agree Neutral Disagree Strongly Disagree

4. I know what an operating system is.

 96

Strongly Agree Agree Neutral Disagree Strongly Disagree

5. I know how to install software on a personal computer.

Strongly Agree Agree Neutral Disagree Strongly Disagree

6. I know what a database is.

Strongly Agree Agree Neutral Disagree Strongly Disagree

7. I am computer literate.

Strongly Agree Agree Neutral Disagree Strongly Disagree

8. I am good with computers.

Strongly Agree Agree Neutral Disagree Strongly Disagree

 97

Appendix D: SimBuilder Tutorial

Exploring Visual
Programming

Squeak SimBuilder Tutorial
Implementing a Model of the Water Cycle

Human Computer Interaction
@

Auburn University

This tutorial is a draft of materials being developed as part of
behavioral research underway in the CSSE at Auburn. It is provided
on an "as-is" basis; however, we welcome comments and
suggestions. Please direct any feedback to sealscd@auburn.edu.

SimBuilder Tutorial © AU Computer Human Interaction Laboratory

Preliminaries
The purpose of this document is to introduce you to SimBuilder by helping you
create a small project.

SimBuilder is designed for building simulations, such as a model of the water
cycle.

No programming experience is required.

In this experiment we want to evaluate the usefulness of this tool to a science
teacher to simulate environments or lab experiments as curricula aids in his/her
classroom with SimBuilder.

The last page of this document contains an interaction guide.

 98

Exploring the Water Cycle Model

Double click the icon on the desktop to open the Squeak
environment.

Select Water Cycle

This will open your first example of a simulation.

Now, Press to start this model.

Watch the Simulation.
What actions are taking place?

Press after a few minutes of observing the model.

Squeak

Exploring The Sun

Let’s investigate the players
To investigate the Sun

<Alt> <Left button> or <Middle button> Click the Sun and it’s Halo will appear.

Select the grey Repaint handle tool to change the Sun from yellow to bright
orange.

To investigate the rules or that govern the sun’s behavior,
Select the blue eyeball to Open a Viewer of me.
This will show you the set of graphical rules for this player.

What does the Sun do?

You program by simply selecting a rule, then dragging and dropping the out
of the scripting window and placing it somewhere in the world other than the green
playground.

(Take a few minutes to explore scripts in the viewer…)

 99

Changing The Behavior of White Cloud
Examine some of the more complicated behaviors by
selecting the White Cloud and reviewing its behavior.

Take a moment to review the interaction guide to gain a better
understanding of the interactions between player’s behaviors

Make White Cloud more active.
Currently the behavior of the white cloud is to move forward 5 spaces. Find the script
that causes this behavior. Let’s make the clouds move a lot more.

Select the desired script “moving” from the
Increase the value to 10 for moving forward.

Press to see how your changes affect the simulation.

Press and try another change.

Make the clouds move vertically.
Currently the behavior of the cloud is to move horizontally across the sky. Let’s try to
change the behavior of the cloud so that it will move vertically.

<Alt> <Left button> or <Middle button> Click your cloud and it’s Halo will appear.

Select Rotate and move your cloud just a tiny bit for it’s direction arrow to appear.

In order to change the direction that the player moves
Click on the green arrow and drag it until it points up.

Press to see how the simulation has changed.

and move it outside the playfield

Creating a Bird

A key aspect of creating new simulations is to build new agents. We will begin with
the small task of adding a new agent to the Water Cycle project.

Drawing a bird

Select from File menu

Use a brush and the color palette to draw something that looks like a bird.

• Refer to the interaction guide for Gallery Tools if you need to refresh your memory.
This is just for fun. Do not worry if you are not a good artist.

Once finished Press .

Your bird has been added to the playground. It’s just as easy as that !!!

 100

Giving the Bird Behaviors

In this playground, we want the bird to be able to fly through the sky.

<Alt> <Left button> or <Middle button> Click your bird and it’s Halo will appear and open its viewer.
The viewer is a window to select scripts for your object.
Let’s add the behavior that will make your agent move in one direction.
Select click on normal to change it to paused.

and drag it out of the viewer and place it outside the playground and change normal to paused.

Press to see how your bird acts within the playground. Your bird should fly across the
playground. If it doesn’t you may need to check out which direction your bird is flying.

<Alt> <Left button> or <Middle button> Click your bird and it’s Halo will appear.

Select Rotate and move your bird just a tiny bit for it’s direction arrow to appear.

Click on the green arrow and change its direction so that it points to the right.

Try putting a bird on the ground. Does it move? What would you need to make it move?

Now you have all the basic tools you need to create your own Simulations!!

Creating a Volcano Simulation

A sample environment that you could simulate is a volcano
erupting. A volcano involves the interaction of several complex
factors. Pressure is built up over a period of time. Once the
pressure reaches a certain level the pressure is released as
sparks, smoke, lava, and heat.The lava causes the earth and the
mountain to become larger as a by-product. After the volcano has
erupted the pressure has been released and the Volcano becomes
quiescent.

On the next sheet draw a simple picture of what you would expect
a volcano to look like. Also identify candidate agents/players for
your volcano simulation.

(Take 2-5 minutes brainstorming and drawing.)

 101

Creating a Volcano Simulation

To Leave WaterCycle
Select File and Press <PREV.

Now that you are back in the Welcome page.
Select File and Press NEW project

Click Unnamed1 at the bottom of the new window and
Replace it with volcano_yourInitials.

Click to begin a New Project.

Once you have an idea of the new environment you want to create, begin
by creating new players. You can use your in the File tab to
paint whatever you like.

Adding Behaviors to Volcano Simulation

You can create a mountain, sparks (that fly out of the volcano), lava and
any other players that will improve the aesthetic view of your playground.
Perhaps you would like to include a sky for background, or trees, etc. If you
need help drawing a player, refer to the interaction guide.

To make your volcano erupt, the players need to interact with each other.
To add actions and behaviors to your simulation in your next session, we
would like you to think about the possible behaviors that your players can
possess.

For example, in the simulation that you reviewed, a cloud moves from
place to place, produces rain and changes itself to a rain cloud.

Think of interactions that happen to cause a volcano to erupt. The eruption
of a volcano is caused by pressure within the earth crust that needs to be
released.

Have fun trying to get your agents to collaborate in interesting ways.

When finished Save your project.

Press in the File and then

Press project and you should be back at the Welcome page.

 102

Section II

Exploring Visual
Programming

Reusing Objects
to Create

Erosion and Ocean World Simulation

The new environment that you could
simulate is an Ocean biosphere. This
simulation will involve the interaction of
several complex factors. There will be
an ocean, the ocean produces waves,
the waves hit the beach, and after they
hit the beach they cause the amount of
the sand on the beach to decrease from
erosion…

On the next sheet draw a simple picture
of what you would expect an Ocean
World Simulation to look like. Also
identify candidate players for your
Ocean World simulation.

(Take 2 5 minutes brainstorming

 103

Reusing the Objects

From the main page click the Starter World and hit to see what
happens.
There are a set of objects provided in the Objects Flap which can be
reused for other simulations.

Investigate each player to discover its’ behavior.

The Mover just moves in one direction.

The Emitter produces another agent.

The Eraser erases other agents that it contacts.

The Replacer replaces the Mover with another agent.

The Changer will change another player into a new player when it
comes in contact with it.

Refer to interactions guide for Help.

Starter World

Creating new agents and
Adding behaviors to create Ocean World Simulation.

A simulation in SimBuilder is simply a set of players that work together
to create visual effects.

A key aspect of reusing a simulation is to reusing existing players and adding new agents.
We will begin with the small task of reusing a new player from the Objects flap.

Task 1. Create a new project
In the File tab Press project.

Click Unnamed1 at the bottom of the new window and
Rename it OceanWorksheetYourInitials
Click the Ocean Project to enter it.

Task 2. new players Refer to interactions guide for Help.

Task 3. Reusing and creating new behaviors for your new player
Some player already have behavior scripts. You may need to look at their behaviors to
get started.

To add behaviors for new players you create. Refer to interactions guide for Help.

Think of other interactions to make your Ocean World simulation interesting.

Press and then

Press and return to the Welcome page.

 104

Reusing Ozone World
In the Ozone depletion Cycle a factory emits CFC into the atmosphere and a
heterogeneous reaction takes place. This reaction converts the inactive
chlorine and bromine reservoirs to a more active form. No ozone loss occurs
until sunlight initiates the catalytic ozone destruction.

Open the Ozone Depletion Simulation in the main page.

Now, Press to start this model.
Investigate each agent to discover its’ behavior.

The Smoke_stack agent emits chemicals into the atmosphere.

The Chemicals are emitted by the smoke stack and move up into the
atmosphere. They are changed into active BrCl when contacted by the sun.

The Sun agent replaces the inactive chemicals with active BrCl.

The BrCl agent moves randomly until it contacts an ozone agent.

The ozone absorbs (erases) BrCl and is changed into a weaker ozone agent

Press after a few minutes of observing the model.

Refer to interactions guide for Help.

Ozone Depletion

Interaction Guide (Object Halo & Handles & Paint Tools)
Halo Tools

To manipulate objects in Squeak SimBuilder select the object and
<Alt>< Left button>Click or <Middle button> Click your object and it’s Halo

will appear.

The pink Close handle will move your object to the trash.

The red Menu handle will open a menu of other options for your object.

The black Pick Up handle will let you Lift Your Object and move it.

The brown Move handle will let you Drag your object.

The green Duplicate handle will let you Copy your object.

The light grey Debug handle is used for script debugging.

The grey Repaint handle will let you Repaint your object.

The purple Change Color handle lets you change the color of your object.

The yellow Change Scale handle will let you Resize your object to make it
larger and smaller.

The dark yellow Make a tile representing this object handle will make a
Label for this object.

The light blue Open a viewer of Me handle will let you view the characteristics
of an object..

Paint Tools
Just click on the Paint brush
and Paint tools will appear.

Use the Paint Brush to create.
Use Paint Bucket to fill areas.
Use Dropper to select a color.
Use Eraser to modify.
Multiple Circles choose brush size.
Color palette will change color.
Press Keep when complete.

 105

Interaction Guide (Object Behavior & Scripting Tools)

The Search area allows you to
quickly locate a script with the search.

The scripts category is where user
created scripts are located.

The basic category is to make
sounds and move your object.

The color & border category is to
make sounds and move your object.

The tests category contains scripts
that help you to test conditions.

The graphics category is to make
sounds and move your object.

The miscellaneous category
contains many scripts (copy, show,
hide, delete, etc.)

Scripting Tools
To open more tools click

Scripting Categories

A user defines the behavior of objects
by creating a script for that object.

To use one of the predefined scripts.
Select a script and drag it from the
script window into the world any place
other than the playground.

Press to Test an individual script.

To Save your projects.
Press and

then

Scripts define behaviors

Saving your Work

 106

Appendix E: Post-Questionnaire

Simulation Questions

SimID

Please respond by circling the reaction that best reflects your reaction to the system:
Terrible --------------- Wonderful

1 2 3 4 5

Frustrating ------------ Satisfying

1 2 3 4 5

Dull -------------------- Stimulating

1 2 3 4 5

Difficult --------------- Easy

1 2 3 4 5

Rigid ------------------ Flexible

1 2 3 4 5

Boring ------------------ Fun

1 2 3 4 5

Please respond by selecting the reaction that best reflects your impressions:
This system was easy for me to learn and use.

Strongly Agree Agree Neutral Disagree Strongly Disagree

It was easy to get started.

Strongly Agree Agree Neutral Disagree Strongly Disagree

It was difficult to remember where some of the tools and commands were located.

Strongly Agree Agree Neutral Disagree Strongly Disagree

This system would be easy to use by folks who don’t know much about computers.

Strongly Agree Agree Neutral Disagree Strongly Disagree

This system would be fun for building simulations.

 107

Strongly Agree Agree Neutral Disagree Strongly Disagree

I have a good understanding of how to use this system to build simulations.

Strongly Agree Agree Neutral Disagree Strongly Disagree

I was able to use this system to turn my ideas into working simulations.

Strongly Agree Agree Neutral Disagree Strongly Disagree

Creating visual rules by dragging and dropping the desired parts to create behavior was
complicated.

Strongly Agree Agree Neutral Disagree Strongly Disagree

My simulation works logically, but the tools made it hard to create the desired behavior

Strongly Agree Agree Neutral Disagree Strongly Disagree

It was hard to recover from errors.

Strongly Agree Agree Neutral Disagree Strongly Disagree

The rules I created for objects’ behaviors were simple and natural.

Strongly Agree Agree Neutral Disagree Strongly Disagree

I was able to have agents any size I wanted.

Strongly Agree Agree Neutral Disagree Strongly Disagree

At this point, I am enthusiastic about creating new simulations.

Strongly Agree Agree Neutral Disagree Strongly Disagree

Please answer the questions below.
What was most interesting or fun?

What was least interesting or fun?

 108

Did you find the example simulations used in the tutorial effective? Why or why not?

Did you find the instructions in the tutorial helpful? Why or why not?

What 1-2 things would you change if you were asked to revise the tutorial?

Suppose you were going to build a computer simulation of a volcano exploding for earth
science. What sorts of things do you think would be involved (i.e. what objects and what
do they do)?

As well as you can, please describe what you think is the best way to come up with
projects? (What criteria would you emphasize?)

Can you think of any changes or enhancements to this system, especially ones that would
make it more useful in creating simulations for novices? Please briefly describe the
features that you think are needed in building simulation software.

Any final comments about your experiment activities or the software.

 109

Appendix F: Statistical Analysis
Table 15 . Anova 0.1
Anova: Single
Factor Terrible -Wonderful

SUMMARY

Groups Count Sum Average Variance
Summer05 12 48 4 0.545455
Spring 05 10 35 3.5 0.5

ANOVA

Source of
Variation SS df MS F P-value F crit

Between
Groups 1.363636 1 1.363636 2.597403 0.122709 4.351243
Within Groups 10.5 20 0.525

Total 11.86364 21

Table 16 . Anova 0.2
Anova: Single
Factor Dull -Stimulating

SUMMARY

Groups Count Sum Average Variance
Summer05 12 48 4 0.727273
Spring 05 10 34 3.4 0.711111

ANOVA

Source of
Variation SS df MS F P-value F crit

Between Groups 1.963636 1 1.963636 2.727273 0.114263 4.351243
Within Groups 14.4 20 0.72

Total 16.36364 21

 110

 111

Table 17 . Anova 0.3
Anova: Single
Factor Boring -fun

SUMMARY

Groups Count Sum Average Variance
Summer05 12 51 4.25 0.204545
Spring 05 10 38 3.8 0.844444

ANOVA

Source of
Variation SS df MS F P-value F crit

Between Groups 1.104545 1 1.104545 2.242732 0.149861 4.351243
Within Groups 9.85 20 0.4925

Total 10.95455 21

Table 18 . Anova 0.4
Anova: Single
Factor Fun for building simulations

SUMMARY

Groups Count Sum Average Variance
Column 1 12 52 4.333333 0.242424
Column 2 10 34 3.4 1.155556

ANOVA

Source of
Variation SS df MS F P-value F crit

Between
Groups 4.751515 1 4.751515 7.272727 0.013875 4.351243
Within Groups 13.06667 20 0.653333

Total 17.81818 21

 112

Table 19 . Anova 0.5
Anova: Single
Factor Good understanding

SUMMARY

Groups Count Sum Average Variance
Column 1 12 50 4.166667 0.515152
Column 2 10 37 3.7 0.233333

ANOVA

Source of
Variation SS df MS F P-value F crit

Between
Groups 1.187879 1 1.187879 3.058915 0.095627 4.351243
Within Groups 7.766667 20 0.388333

Total 8.954545 21

 113

Table 20 . ANOVA results
Usability aspects Mean Value (SD) ANOVA
 Summer 05 Spring 05 F(df) p
System is wonderful 4(.74) 3.5(.71) 2.59(1) .12
Satisfaction 3.58(.67) 3.3(.67) .97(1) .33
System is stimulating 4(.85) 3.4(.84) 2.72(1) .11
Easy 3.5(.8) 3.5(.85) 0(1) 1
Flexible 3.83(.83) 3.4(.84) 1.45(1) .24
Fun 4.25(.45) 3.8(.92) 2.24(1) .14
Easy to learn and use 3.75(.87) 3.3(.67) 1.78(1) .19
Easy to get started 3.91(.67) 3.2(.92) 4.47(1) .04
Difficult to locate tools 2.9(1.24) 3(.94) .03(1) .86
System would be easy for
students who know about
computers

3.58(1.16) 3.3(.95) .38(1) .54

Fun for building
simulations

4.3(.49) 3.4(1.07) 7.27(1) 0.01

Good Understanding 4.16(.72) 3.7(.48) 3.05(1) .09
Turning ideas to working
simulations

4.25(.45) 3.7(.95) 3.18(1) .89

Difficult to create rules by
drag and drop

3(1.28) 2.9(.99) 0.04(1) .84

Tools make it hard to
create behavior

2.83(1.19) 2.7(.82) 0.89(1) .76

Hard to recover from
errors

3.66(1.3) 3.1(1.29) 1.04(1) .31

Rules are simple and
natural

3.83(.94) 3.7(.67) .14(1) .71

Easy to create agents of
any size

4.08(.79) 3.7(.82) 1.23(1) .28

Enthusiastic about creating
new simulations

4.16(.83) 3.7(.82) 1.72(1) .20

Appendix G: Retrospective Interview Questions

 Visual Programming 2005

Interview Questions ID__________

1. What other ideas do you have for simulation ideas?

2. Which was more enjoyable drawing or making the simulation work?

3. What things were the hardest for you to accomplish? What were the easiest?

4. Would you consider using this environment to train students to program or in
your classroom if you taught introductory visual programming?

5. Do you feel that young students would be motivated to use this environment?

6. What support would you need to utilize this software in an introductory class?

 114

 115

7. Do you think a stylus was helpful for drawing application? Yes/No

8. How do you support your choice for or against using stylus?

9. Was the stylus useful for the following?

A. General Interaction

B. Creation of Rules

C. Selection of Objects.

 116

Appendix H: Creation and Reuse Times

PID
Learning
Time(min)

Creation
Time(min)

Reuse
Time(min)

Reuse
Method

Interaction
Style

1 10 12 10 OZ->Ph Mouse

2 17 20 18 St->Oc Mouse

3 12 18 16 OZ->Ph Mouse

4 17 18 12 St->Oc Stylus

5 10 18 12 St->Oc Stylus

6 24 15 39 St->Oc Stylus

7 13 15 8 OZ->Ph Stylus

8 46 17 30 OZ->Ph Stylus

9 8 5 16 OZ->Ph Mouse

10 13 15 12 St->Oc Mouse

11 15 11 18 OZ->Ph Stylus

12 8 9 11 St->Oc Mouse

Average(min) 16.08333 14.41667 16.83333

Stdev(min) 10.44865 4.399552 9.033607

 117

	Thesis_SK.pdf
	Thesis_SK.pdf
	2.1.1 Usability
	2.2.6.1 Message-passing protocols in programming
	2.4.4.1 Smalltalk implementation
	2.4.4.2 Squeak strengths
	2.4.4.3 Squeak Application
	6.1.2 Apparatus and Location of Experiment
	6.2.2.1 Section 1: Learning
	6.2.2.2 Section 2: Reuse
	6.2.2.3 Interaction Guide
	Appendix A: Institutional Review Board Forms: Informed Conse
	Appendix B: Evaluator Monologue
	Appendix C: Pre-Questionnaire
	Appendix D: SimBuilder Tutorial
	Appendix E: Post-Questionnaire
	Appendix F: Statistical Analysis
	Appendix G: Retrospective Interview Questions
	Appendix H: Creation and Reuse Times

