
On Continuously Urysohn Spaces

by
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Abstract

We study the properties of weakly continuously Urysohn (denoted by wcU ) and con-

tinuously Urysohn (denoted by cU ) spaces. The class of continuously Urysohn spaces is

known to contain the class of metrizable, submetrizable, and nonarchimedean spaces. In

this work, by using the scattering process, we show that the class of proto-metrizable spaces

is also contained in the class of continuously Urysohn spaces. We show that being a (weakly)

continuously Urysohn space is not a multiplicative property, and that this property is not

preserved under perfect maps. However, being a weakly continuously Urysohn space is pre-

served under perfect open maps. We give a proof that the topological sum of (weakly)

continuously Urysohn spaces is also (weakly) continuously Urysohn and that any paracom-

pact locally continuously Urysohn ordered space is also continuously Urysohn. We prove that

a well-ordered space is continuously Urysohn if and only if it is hereditarily paracompact and

we obtain a result which characterizes when the linear extension of a separable GO-space is

continuously Urysohn.
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Chapter 1

Introduction

In 1993, Stepanova [16] defined a property, and showed that this property is equivalent

to metrizability for paracompact p-spaces. Then, in 2002, Halbeisen and Hungerbühler [9]

named the spaces which carry this property as continuously Urysohn spaces. Bennett and

Lutzer [3] studied continuously Urysohn spaces in the class of ordered spaces. In 2007, Zenor

[19] defined weakly continuously Urysohn spaces and gave the following characterization: A

Hausdorff space is weakly continuously Urysohn if and only if continuous functions defined

on the compact subsets can be continuously extended to the continuous functions defined on

the space itself. Thus continuously Urysohn and weakly continuously Urysohn spaces have

been shown to be interesting and useful classes of spaces. In this dissertation we continue

their study.

A topological space X is said to be continuously Urysohn(cU) if there is a continuous

function φ : X2 \ ∆→ C(X) such that φ(x, y)(x) ̸= φ(x, y)(y), where C(X) is the space of

all bounded real-valued functions endowed with the norm topology, and ∆ = {(x, x) : x ∈ X}

is the diagonal. This notion first appeared in [16], and found its name in [9]. After this, in

[19], the definition of a weakly continuously Urysohn space appeared. A space X is said to

be weakly continuously Urysohn(wcU) if there is a continuous function θ : (X2 \∆)×X → R

such that θ(x, y, x) ̸= θ(x, y, y).

In [18], the class of continuously perfectly normal spaces, continuously normal spaces,

and continuously completely regular spaces were defined, and studied by Phillip Zenor for

the first time. When we look at these definitions, they carry the notion of continuity with the

corresponding separation axiom. For instance, one may think that a continuously normal

space is nothing different than a normal space, which has a continuous operator, separating
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the disjoint closed subsets. After this, in [7], some results concerning the local properties of

continuously normal spaces, and continuously completely regular spaces are obtained.

Alexander V. Arhangel’skĭı, in [1], introduced a new type of space, namely a paracompact

p-space, and characterized this type as the class of preimages of metric spaces under perfect

surjections. In [16] and [17], E.N. Stepanova called a mapping θ : X2\ ∆→ C(X) separating

if it satisfies the conditions for continuity, and θ(x, y)(x) ̸= θ(x, y)(y) for any point (x, y) of

X2 \ ∆. She showed that the existence of a continuous separating mapping is a necessary

and sufficient condition for a paracompact p-space to be metrizable. In [9], L. Halbeisen and

N. Hungerbühler named the spaces carrying this property as continuously Urysohn spaces.

Following the hierarchy of separation axioms, naming a space with this property as

continuously Urysohn space is not surprising. Recall that a space X is a Urysohn space if

for any (x, y) ∈ X2 \∆, there exists a continuous function f : X → R such that f(x) = 0

and f(y) = 1. Also, it is easy to see that every continuously Urysohn space is Urysohn.

When we look at the definition of continuously Urysohn space, it is clear that metric

spaces are examples of continuously Urysohn spaces. In [9], Halbeisen and Hungerbühler,

examine the continuously Urysohn spaces with the additional property that the functions

φ(x, y) depend on just one parameter. They show that spaces with this property are spaces

with a weaker metric topology, namely submetrizable spaces. It is clear that any submetriz-

able space is also continuously Urysohn.

After that, Bennett and Lutzer studied continuously Urysohn linearly ordered and gen-

eralized ordered spaces in [3]. They show that a continuously Urysohn generalized ordered

space is hereditarily paracompact. Also, they proved that for a separable generalized ordered

space, being continuously Urysohn, submetrizable, and having a Gδ-diagonal are equivalent.

In [19], a weakly continuously Urysohn space is defined, and the following theorem is

proved. A space X is weakly continuously Urysohn if and only if there is a continuous

function e : {f : f ∈ C(H), H is a compact subset of X} → C(X), where e(f) is a
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continuous extension of f and {f : f ∈ C(H), H is a compact subset of X} is endowed with

Vietoris topology.

In [8], G. Gruenhage and P. Zenor worked on the properties of weakly continuously

Urysohn spaces. They showed that every weakly continuously Urysohn w∆-space has a base

of countable order, and separable weakly continuously Urysohn spaces are submetrizable,

hence continuously Urysohn. It is also shown that monotonically normal weakly continuously

Urysohn spaces are hereditarily paracompact, and no linear extension of any uncountable

subspace of the Sorgenfrey line is weakly continuously Urysohn. Finally, they showed that

any nonarchimedean space is continuously Urysohn.

In this dissertation, we examine weakly continuously Urysohn and continuously Urysohn

spaces in more detail.

We know that the class of nonarchimedean spaces are contained in the class of con-

tinuously Urysohn spaces. In chapter 3, by using the scattering process, we generalize this

by showing that the class of proto-metrizable spaces is a subclass of continuously Urysohn

spaces. We also prove that the topological sum of continuously Urysohn spaces and ultra-

paracompact, locally continuously Urysohn spaces are indeed continuously Urysohn.

In chapter 4, we prove that being a (weakly)continuously Urysohn space is not a mul-

tiplicative property. With a counterexample, we show that the image of a continuously

Urysohn space under a perfect map is not always continuously Urysohn. On the other hand

we prove that the perfect-open image of a weakly continuously Urysohn space is also weakly

continuously Urysohn.

In chapter 5, ordered spaces are studied. From [3] we know that for separable gener-

alized ordered spaces, being continuously Urysohn implies submetrizability. It is clear for a

separable linearly ordered space, being continuously Urysohn is equivalent to metrizability.

We answer the question: When is a linear extension of a separable generalized ordered space

X continuously Urysohn? We also give a characterization of when separable generalized

ordered spaces are weakly continuously Urysohn. For the well-ordered space case, we prove
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that the space is continuously Urysohn if and only if it is hereditarily paracompact. Finally,

we give a proof which shows that a paracompact, locally continuously Urysohn linearly

ordered space is indeed continuously Urysohn.

In the final chapter, we give a corollary to the free set lemma, and a theorem about the

relation between a special partition ofX2\∆ and the function φ which witnesses continuously

Urysohn on X. At the end, an example is provided.
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Chapter 2

Notation and Background

C(X) will denote the set of bounded real valued functions defined on the space X. τnorm

will denote the norm topology on C(X).

For any f ∈ C(X), the family {Ui(f)}∞i=1, where

Ui(f) = {g ∈ C(X) : there exists an a < 1/i such that| f(x)− g(x) |< a for x ∈ X},

is a base at the point f for the space C(X) endowed with norm topology.

Definition 2.1. For any topological space X let A(X) denote a family of non-empty subsets

of X. If {U1, ..., Un} is a finite collection of open subsets of X, then the set

< U1, ..., Un >= {H ∈ A(X) : H ⊂
n∪

i=1

Ui, and if 1 ≤ i ≤ n, then H ∩Ui ̸= ∅} is a basic

open set for the Vietoris topology on A(X).

For a topological space X, the diagonal is denoted by ∆ = {(x, x) : x ∈ X}.

Definition 2.2. A subset A of the space X a regular Gδ-set if there is a sequence {Un} of

open sets in X such that A =
∞∩
i=1

Ui =
∞∩
i=1

Ūi. Here, Ū denotes the closure of the set U . We

will say that X has a regular Gδ-diagonal if ∆ is a regular Gδ-set in X2.

Definition 2.3. A topological space X is said to have a zero-set diagonal if there exists a

continuous function F : X2 → [0, 1] such that F−1(0) = ∆.

Definition 2.4. A space X is submetrizable(contractible onto a metric space) provided that

there exists a one-to-one and continuous map from X onto a metric space.

Definition 2.5. A topological space X is said to be separable if there exists a countable

D ⊂ X such that D̄ = X.
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Theorem 2.6. ([12]) A separable space is submetrizable if and only if it has a zero-set

diagonal.

Definition 2.7. ([4]) A space X is a w∆-space provided that there is a sequence {Wi} of

open covers of X such that if, for each i, x ∈ ui ∈ Wi and yi ∈ ui, then {yi} has a cluster

point.

The notion of a base of countable order is due to Arhangel’skĭı ([1]). Chaber, Čoban,

and Nagami in [5] show that a space (X, τ) has a base of countable order if there is a function

σ : X<ω → τ satisfying:

(1) {σ(< x >) : x ∈ X} covers X.

(2) If x ∈ σ(< x0, x1, ..., xn >), then σ(< x0, x1, ..., xn, x >) ⊂ σ(< x0, x1, ..., xn >).

(3) {σ(< x0, x1, ..., xn, x >) : x ∈ σ(< x0, x1, ..., xn >)} covers σ(< x0, x1, ..., xn >).

(4) If x and the sequence x0, x1, ... satisfy x, xn+1 ∈ σ(< x0, x1, ..., xn >) for all n, then

{σ(< x0, x1, ..., xi >)}i∈ω is a base at x. Here, X<ω = {< x0, x1, ..., xn >: n < ω, xi ∈ X}

Definition 2.8. A continuous mapping f : X → Y is perfect if X is a Hausdorff space, f

is a closed mapping and all fibers f−1(y) are compact subsets of X.

Searching for generalized metric spaces, Arhangel’skĭı introduced in [1] a certain type of

spaces, which could be characterized as the class of preimages of metric spaces under perfect

surjections, and which are paracompact p-spaces.

Definition 2.9. A space X is nonarchimedean if X has a base B which is a tree under

reverse inclusion.

Definition 2.10. A set T is transitive if every element of T is a subset of T . A set is an

ordinal number (an ordinal) if it is transitive and well-ordered by ∈.

If α = β + 1, then α is a successor ordinal. If α is not a successor ordinal, then it is

called a limit ordinal.
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If the set of all ordinal numbers smaller than a limit ordinal α contains a subset A of

type β such that for every ξ < α there exists a ξ′ ∈ A satisfying ξ < ξ′ < α, then we say

that the ordinal β is cofinal with α.

An infinite ordinal α is an initial ordinal if α is the smallest among all ordinal numbers

β satisfying | β |=| α |. An initial ordinal α is regular if there is no β < α which is cofinal

with α.

Definition 2.11. An ordinal α is called a cardinal number (a cardinal) if | α |≠| β | for all

β < α.

For every cardinal number κ there exists an initial ordinal α such that | α |= κ and

this α is unique. A cardinal number κ is regular if the initial ordinal α mentioned above is

regular.

If X is a set of ordinals and α > 0 is a limit ordinal then α is a limit point of X if

sup(X ∩ α) = α.

Definition 2.12. Let κ be a regular uncountable cardinal. A set C ⊂ κ is a closed unbounded

subset of κ if C is unbounded in κ and if it contains all its limit points less than κ.

A set S ⊂ κ is stationary if S ∩ C ̸= ∅ for every closed unbounded subset C of κ.

Definition 2.13. Let X be a topological space. The function χA : X → {0, 1} defined

for any subset A of X by setting χA(x) = 1 if x ∈ A, and χA(x) = 0 if x /∈ A is called

characteristic function on A or characteristic of A.

Note that, χA is a continuous function if and only if A is an open and closed (clopen)

subset of X.
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Chapter 3

Some Classes Which Are Continuously Urysohn

The journey of this dissertation started with the search of a space which is weakly

continuously Urysohn but not continuously Urysohn. After Halbeisen and Hungerbühler’s

naming the spaces with a certain property as continuously Urysohn and Zenor’s definition for

weakly continuously Urysohn spaces, this search was natural. The definition of continuously

Urysohn contains a continuous function from the off-diagonal of a space to the space of all

continuous, bounded real valued functions on that space. On the other hand, the definition

of weakly continuously Urysohn contains a continuous function from the off diagonal times

the space itself to the real numbers.

Before providing any proofs, the following useful fact is presented. If X is continuously

Urysohn space and φ is the witnessing function, then for every (x, y) ∈ X2 \ ∆, we can

assume that φ(x, y)(x) = 0, and φ(x, y)(y) = 1.

Indeed, the mapping φ̃ : X2 \∆→ C(X), where φ̃(x, y) is defined by:

φ̃(x, y)(t) = (φ(x, y)(t)− φ(x, y)(x))/(φ(x, y)(y)− φ(x, y)(x))

also witnesses for X being a continuously Urysohn space. Note that φ̃(x, y)(x) = 0, and

φ̃(x, y)(y) = 1. There is a similar result for weakly continuously Urysohn spaces.

We will start with a known theorem. The class of metric spaces is a subclass of cU-

spaces.

Theorem 3.1. Any metric space X is also a cU-space.

Proof. Suppose d is the metric function on space X. Then we can define the function

φ : X2 \∆→ C(X) as follows:
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φ(x, y)(z) = d(x, z) for all (x, y) in X2 \∆, and every z in X.

Claim 1: For each (x, y), φ(x, y) is a continuous function.

Proof of Claim 1. For fixed (x, y) from X2 \∆, suppose ϵ > 0 and z ∈ X are given.

Note that | φ(x, y)(z)− φ(x, y)(t) | = | d(x, z)− d(x, t) |. Since d is a metric function,

it is also continuous. We can set the neighborhood G of z such that | d(x, z)− d(x, t) | < ϵ

for every t ∈ G.

Claim 2: φ is a continuous function.

Proof of Claim 2. Suppose ϵ > 0 and (x, y) ∈ X2 \∆ are given. For any z ∈ X,

| φ(x, y)(z)− φ(u, v)(z) | = | d(x, z)− d(u, z) | <| d(x, u) |.

In [16], there is a stronger result.

Theorem 3.2. A submetrizable space is continuously Urysohn.

We also know that a space with a zero-set diagonal is weakly continuously Urysohn [17].

Definition 3.3. ([9]) If X is a continuously Urysohn space, then we call the corresponding

family {φ(x, y) : (x, y) ∈ X2 \∆} a continuous separating family for X.

The following proposition characterizes topological spaces with continuous separating

families that depend on only one of its parameters.

Proposition 3.4. ([9]) A space X admits a continuous separating family

{φ(x, y) : (x, y) ∈ X2 \∆}

that depends on just one parameter if and only if X is submetrizable.

Recall that a space X is nonarchimedean if X has a base B which is a tree under reverse

inclusion. In [8], Gruenhage and Zenor present a result related to nonarchimedean spaces.

Theorem 3.5. ([8]) Any nonarchimedean space is cU.
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This work continues with the investigation of other classes which are contained in the

class of cU-spaces.

If K is a class of spaces, then define S(K) to be the class of spaces which are obtained by

the following scattering process: take any space in K, isolate all the points of some subset,

replace each such point by a space in K, and repeat transfinitely, taking some subspace of the

inverse limit at limit ordinals. In [14], Nyikos has shown that the class of proto-metrizable

spaces is precisely the class S(M) whereM denotes the class of metrizable spaces.

We will give a proof to a theorem stating that the class of proto-metrizable spaces is

a subclass of continuously Urysohn spaces. Before this proof, we present a theorem for an

easier case.

Suppose X is a cU-space, P is a subset of X, and the space X ′ is defined as follows:

Isolate the points of P , and replace each p in P by a cU-space Xp. The underlying set X ′

can be seen as: X ′ =
∪
{{p} ×Xp : p ∈ P} ∪ (X \ P ).

Let us define the function Π : X ′ → X as follows: Π(x) =

 x, if x ∈ X \ P ,

p, if x ∈ {p} ×Xp, for some p ∈ P.

Note that if x ∈ {p} ×Xp for some p ∈ P , then x = (p, a) for some a ∈ Xp. In X ′ we

declare an open neighborhood of a point x = (p, a) ∈ X ′ to be {p} × U where U is an open

neighborhood of a in Xp, and an open neighborhood of a point x ∈ X \ P is U ′ = Π−1(U)

where U is an open neighborhood of x in X.

Theorem 3.6. Every space X ′ obtained from a cU-space (respectively, from a wcU-space) X

by first isolating the points of some subset P , and then replacing these with cU-spaces(respectively,

with wcU-spaces) is also a cU-space (respectively a wcU-space).

Proof. Since X is a cU-space, there exists a continuous function θ : X2 \ ∆ → C(X) such

that θ(x, y)(x) ̸= θ(x, y)(y). Also for every Xp there is a function θp witnessing cU on Xp.

We define the function φ : (X ′)2 \∆ → C(X ′) as follows:
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φ(x, y)(z) =



θ(Π(x),Π(y))(Π(z)), if Π(x) ̸= Π(y),

θp(a, b)(c), if p = Π(x) = Π(y) = Π(z)

where x = (p, a), y = (p, b), and z = (p, c),

0, if p = Π(x) = Π(y) ̸= Π(z).

It is clear that φ(x, y)(x) ̸= φ(x, y)(y).

First we are going to show that φ is a continuous function.

Claim 1: φ is a continuous function.

Proof of Claim 1.

Case 1: Π(x) ̸= Π(y).

Note that under Case 1 we have four subcases:

Subcase 1: x, y ∈ X \ P .

x, y ∈ X. Since X is a cU-space, for every ϵ > 0 there exist U, V neighborhoods of x, y

such that

∀(u, v) ∈ U × V and ∀z ∈ X, | θ(x, y)(z)− θ(u, v)(z) |< ϵ.

If we take U ′ = Π−1(U) and V ′ = Π−1(V ) neighborhoods of x and y in the space X ′,

then for all (u′, v′) ∈ U ′ × V ′ and z ∈ X ′;

| φ(x, y)(z)− φ(u′, v′)(z) | = | θ(x, y)(Π(z))− θ(u′, v′)(Π(z)) |< ϵ.

Subcase 2: x ∈ {p} ×Xp for some p ∈ P , y ∈ {q} ×Xq for some q ∈ P , and p ̸= q.

x = (p, a), and y = (q, b) where a ∈ Xp, and b ∈ Xq. Take any neighborhood U of a in

Xp, and define U ′ = {p} × U neighborhood of x, and take any neighborhood V of b in Xq,

similarly define V ′ = {q} × V neighborhood of y.

Let us look at φ(u′, v′) for all (u′, v′) ∈ U ′ × V ′:

φ(u′, v′)(z) = θ(p, q)(Π(z)), and φ(x, y)(z) = θ(p, q)(Π(z)). That is,

| φ(x, y)(z)− φ(u′, v′)(z) |= 0.
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Subcase 3: x ∈ {p} ×Xp for some p ∈ P , and y ∈ X \ P .

x = (p, a) for some a ∈ Xp. Since X is a cU-space, then there exists a neighborhood

U × V of (p, y) such that:

∀(u, v) ∈ U × V and z ∈ X, | θ(p, y)(z)− θ(u, v)(z) |< ϵ. We set a neighborhood U ′ of

x as U ′ = Π−1(U), and V ′ of y as V ′ = Π−1(V ). For all (u′, v′) ∈ U ′ × V ′, and z ∈ X ′

| φ(x, y)(z)− φ(u′, v′)(z) | =| θ(p, y)(Π(z))− θ(u, v)(Π(z)) |< ϵ.

Subcase 4: x ∈ X \ P , and y ∈ {p} ×Xp for some p ∈ P .

This case can be proven similar to subcase 3.

Case 2: Π(x) = Π(y) = p.

x = (p, a), and y = (p, b) for some p ∈ P , where a, b ∈ Xp.

Since a ̸= b, and Xp is a cU-space, there exists a U ×V neighborhood of (a, b) such that

for all (u, v) ∈ U × V and c ∈ Xp, | θp(a, b)(c)− θp(u, v)(c) |< ϵ.

If we set U ′ = {p} × U , as a neighborhood of x, and V ′ = {p} × V as a neighborhood

of y, for all (u′, v′) ∈ U ′ × V ′, and z ∈ X ′;

| φ(x, y)(z)− φ(u′, v′)(z) |=


| θp(a, b)(c)− θp(u, v)(c) | Π(z) = p

where z = (p, c), u′ = (p, u), and v′ = (p, v),

| 0− 0 | Π(z) ̸= p.

Now we will show that for all (x, y), φ(x, y) is a continuous function.

Claim 2: For every (x, y) ∈ (X ′)2 \∆, φ(x, y) is a continuous function.

Proof of Claim 2.

Case 1: Π(x) ̸= Π(y).

Since θ(Π(x),Π(y)) is a continuous function on X, for every ϵ > 0, and every Π(z) ∈ X

there exists a neighborhood G of Π(z) such that

| θ(Π(x),Π(y))(Π(z))− θ(Π(x),Π(y))(p) |< ϵ
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for every p ∈ G.

So, for given any ϵ > 0 and z ∈ X ′ we take G
′
= Π−1(G) open neighborhood of z, where

G is the open neighborhood of Π(z) as mentioned previously. Then, for every t in G
′
we

have;

| φ(x, y)(z)− φ(x, y)(t) | =| θ(Π(x),Π(y))(Π(z))− θ(Π(x),Π(y))(Π(t)) |< ϵ.

Case 2: Π(x) = Π(y).

Subcase 1: Π(x) = Π(y) = Π(z) = p.

Note that φ(x, y)(z) = θp(a, b)(c). Since θp(a, b) is a continuous function on Xp for any

ϵ > 0, and c ∈ Xp there exists a neighborhood of G of c such that for every d ∈ G,

| θp(a, b)(c)− θp(a, b)(d) |< ϵ.

With the help of this setting, for given any ϵ > 0 and z = (p, c) ∈ X ′ where;

Π(x) = Π(y) = Π(z) = p, we set G
′
neighborhood of z as {p} × G, where G is the

neighborhood of c mentioned before.

For every t in G
′
, t = (p, d) and | φ(x, y)(z)−φ(x, y)(t) | =| θp(a, b)(c)− θ(a, b)(d) |< ϵ.

Subcase 2: Π(x) = Π(y) ̸= Π(z).

That means there exists a p ∈ P such that x, y ∈ {p} ×Xp, and φ(x, y)(z) = 0.

If z ∈ X \P , take a neighborhood G of z such that p /∈ G, and define the neighborhood

G
′
of z in X

′
as G

′
= Π−1(G). If z ∈ {q} × Xq, z = (q, c) for a q ∈ P , then define the

neighborhood of z as G
′
= {q} ×G where c ∈ Xq and G is a neighborhood of c.

Note that same proof works for a wcU-space X, if one replaces the points of P ⊂ X by

wcU-spaces. For this case by using the function θ which witnesses X being a wcU-space, we
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define the function φ on ((X ′)2 \∆)×X ′ as follows:

φ(x, y, z) =



θ(Π(x),Π(y),Π(z)) if Π(x) ̸= Π(y),

θp(a, b, c) if p = Π(x) = Π(y) = Π(z)

where x = (p, a), y = (p, b), and z = (p, c),

0 if p = Π(x) = Π(y) ̸= Π(z).

Now that we have this theorem, we will use it to prove that the classes of continuously

Urysohn and weakly continuously Urysohn spaces are closed under the scattering process.

Theorem 3.7. If cU is the class of all continuously Urysohn spaces, then S(cU) is a subclass

of cU . That is, the class of continuously Urysohn spaces is closed under the scattering process.

Proof. Let γ be an ordinal andX0 be a cU-space. We start the scattering process by isolating

a subset of X0, and replacing these points with cU-spaces. Let us name the resulting space

X1, and define the map σ1,0 : X1 → X0 naturally. On the second step, we isolate a subset of

X1 and replace these points with cU-spaces. We name this space as X2, and define the map

σ2,1 : X2 → X1 naturally. Similarly we can define Xn and σn,n−1 for all n < ω. Also for any

m < n we define the map σn,m : Xn → Xm as σn,m = σk,m ◦ σn,k where m < k < n. By using

the previous theorem we know that for every n < ω, Xn is a cU-space.

At the first limit ordinal step, we define the space Xω = lim
←−

Xn such that,

−→x =< x0, x1, ... >∈ lim
←−

Xn if and only if x0 = σ1,0(x1), x1 = σ2,1(x2), ...

We also define the map σω,n as the nth projection map from Xω into Xn. At the next

step we define the space Xω+1 by repeating the scattering process. For all n < ω, the maps

σω+1,ω and σω+1,n are defined similarly.

Finally, by replacing points with cU-spaces at successor ordinal steps, and by taking

the limit space at the limit ordinal steps, we form a space Xγ = lim
←−

Xβ. Note that for
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every β < γ, Xβ is a cU-space with the witnessing continuous function φβ. WLOG, we may

suppose φβ(x, y)(x) = 0, and φβ(x, y)(y) = 1.

By using πβ :
∏

Xα → Xβ, β
th projection map, we define the continuous map

π∗β = πβ|Xγ : Xγ → Xβ, and {(π∗β)−1(Uβ) : Uβ is open subset of Xβ} forms a base for

the limit space Xγ.

Let us define the function φ : X2
γ \∆→ C(Xγ) as follows:

φ(−→x ,−→y )(−→z ) = φα(xα, yα)(zα), where α is the least ordinal such that xα ̸= yα. It is

clear that φ(−→x ,−→y )(−→x ) = 0, φ(−→x ,−→y )(−→y ) = 1, and φ(−→x ,−→y ) is continuous for every (−→x ,−→y )

in X2
γ \∆. We only need to show the continuity of φ. Suppose ϵ > 0 and (−→x ,−→y ) are given.

By examining the ordinal α, where −→x differs from −→y for the first time, we have 3 cases.

Case 1: α = 0.

Since X0 is a cU-space there exists a U0 × V0 neighborhood of (x0, y0) such that;

| φ0(x0, y0)(z0)− φ0(u0, v0)(z0) |< ϵ for every (u0, v0) in U0 × V0, and z0 in X0.

We set U × V = (π∗0)
−1(U0)× (π∗0)

−1(V0). Then for every (−→u ,−→v ) in U × V ,

| φ(−→x ,−→y )(−→z )− φ(−→u ,−→v )(−→z ) |=| φ0(x0, y0)(z0)− φ0(u0, v0)(z0) |< ϵ.

Case 2: α > 0 is a successor ordinal.

Note that xα = (xα−1, a) ∈ Xα, and yα = (yα−1, b) ∈ Xα where a, b are in the cU-space

which has been replaced with xα−1 = yα−1 ∈ Xα−1. Since Xα is a cU-space, there exists

Uα × Vα neighborhood of (xα, yα) such that,

| φα(xα, yα)(zα) − φα(uα, vα)(zα) |< ϵ for every (uα, vα) in Uα × Vα, and zα in Xα.

WLOG, we can choose Uα, and Vα so that σα,α−1(Uα) = σα,α−1(Vα) = xα−1 = yα−1.

We set U × V = (π∗α)
−1(Uα)× (π∗α)

−1(Vα). Then for every (−→u ,−→v ) in U × V ,

| φ(−→x ,−→y )(−→z )− φ(−→u ,−→v )(−→z ) |=| φα(xα, yα)(zα)− φα(uα, vα)(zα) |< ϵ.

Case 3: α > 0 is a limit ordinal.

Since α is a limit ordinal, for every xα ∈ Xα, xα =< xβ >β<α. Also, xα ̸= yα means

that there is a successor ordinal β < α such that xβ ̸= yβ.

So, φ(−→x ,−→y )(−→z ) = φα(xα, yα)(zα) = φβ(xβ, yβ)(zβ). We are back in case 2.
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Corollary 3.8. Any proto-metrizable space is continuously Urysohn.

After this result on proto-metrizable spaces, our attention was directed to spaces which

are topological sum of continuously Urysohn spaces.

Recall that topological sum of the spaces {Xs}s∈S with Xs∩Xs′ = ∅ for s ̸= s′ is a space

with the underlying set X =
∪
s∈S

Xs, and the family O of open sets where U ⊂ X is open if

U ∩Xs is open in Xs for every s ∈ S. Topological sum of the spaces {Xs}s∈S is denoted by⊕
s∈S Xs, or by X1 ⊕X2 ⊕ ... ⊕Xk if S = {1, 2, ..., k}. Also for every s ∈ S, we know that

Xs is a clopen subset of X.

Theorem 3.9. The topological sum of continuously Urysohn spaces is also continuously

Urysohn.

Proof. Suppose X =
⊕

s∈S Xs, and for every s ∈ S, Xs is a cU-space with the witnessing

function φs.

We define the function φ : X2 \∆→ C(X) as follows:

φ(x, y)(z) =


0, if (∃s ∈ S) (x, y ∈ Xs), and (z /∈ Xs),

φs(x, y)(z), if (∃s ∈ S) (x, y, z ∈ Xs),

χXs′
(z), if x ∈ Xs, and y ∈ Xs′ .

Claim 1: For every (x, y) ∈ X2 \∆, φ(x, y)(x) ̸= φ(x, y)(y).

Proof of Claim 1.

φ(x, y)(x) =

 φs(x, y)(x) = 0, if (∃s ∈ S) (x, y ∈ Xs),

χXs′
(x) = 0, if x ∈ Xs, and y ∈ Xs′ .

On the other hand,
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φ(x, y)(y) =

 φs(x, y)(y) = 1, if (∃s ∈ S) (x, y ∈ Xs),

χXs′
(y) = 1, if x ∈ Xs, and y ∈ Xs′ .

Claim 2: For every (x, y) ∈ X2 \∆, φ(x, y) is a continuous function.

Proof of Claim 2. Suppose ϵ > 0, and z ∈ X are given.

Case 1: There exists a s ∈ S such that x, y ∈ Xs.

Subcase 1: z ∈ Xs.

Then φ(x, y)(z) = φs(x, y)(z). Since φs(x, y) is a continuous function there exists a

neighborhood Gs of z in Xs such that;

| φs(x, y)(z) − φs(x, y)(t
′) |< ϵ for every t′ ∈ Gs. We take G = Gs open neighborhood

of z in X, and for every t ∈ G,

| φ(x, y)(z)− φ(x, y)(t) |=| φs(x, y)(z)− φs(x, y)(t) |< ϵ.

Subcase 2: z /∈ Xs.

Note that there exists a p ∈ S such that z ∈ Xp, and φ(x, y)(z) = 0. We set G = Xp as

an open neighborhood of z. Then for every t ∈ G,

| φ(x, y)(z)− φ(x, y)(t) |=| 0− 0 |.

Case 2: x ∈ Xs and y ∈ Xs′ , s ̸= s′.

Then φ(x, y)(z) = χXs′ (z). If z ∈ Xs′ we take G = Xs′ , and if z /∈ Xs′ we take G = Xc
s′

as a neighborhood of z. So, for every t ∈ G we have;

| φ(x, y)(z)− φ(x, y)(t) |= 0.

Claim 3: φ : X2 \∆→ C(X) is a continuous function.

Proof of Claim 3.

Suppose ϵ > 0, and (x, y) ∈ X2 \∆ are given.

Case 1: There exists a s ∈ S such that x, y ∈ Xs.

Since Xs is a cU-space with the function φs there exists a neighborhood Us×Vs of (x, y)

in Xs so that for every (u′, v′) ∈ Us × Vs, and z ∈ Xs
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| φs(x, y)(z)− φs(u
′, v′)(z) |< ϵ.

We set U = Us, and V = Vs. Then for every (u, v) ∈ U × V ;

| φ(x, y)(z)− φ(u, v)(z) |=

 | 0− 0 |= 0, if z /∈ Xs,

| φs(x, y)(z)− φs(u, v)(z) |< ϵ, if z ∈ Xs.

Case 2: x ∈ Xs, and y ∈ Xs′ , s ̸= s′.

We take U = Xs, and V = Xs′ . Then for every (u, v) ∈ U × V ;

| φ(x, y)(z)− φ(u, v)(t) |=| χXs′
(z)− χXs′

(z) |= 0.

By using a function defined similar to the function used in the proof of previous theorem,

we have a result on ultraparacompact locally cU-spaces. Remember that a space X is

ultraparacompact if for every open cover U of X, there exists a locally finite pairwise disjoint

open refinement V . Also, if every point in the space has an open neighborhood which is cU

we say that the space is locally cU-space.

Corollary 3.10. If X is a ultraparacompact and locally cU-space, then X is a cU-space.

The analogues of Theorem 3.9, and corollary 3.10 also hold for wcU-spaces.
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Chapter 4

Some Properties of Continuously Urysohn Spaces

The function witnessing being a cU-space appears stronger than the function witness-

ing being a wcU-space. It is clear that any cU-space is a wcU-space. We know that any

submetrizable space is continuously Urysohn, and a zero-set diagonal implies being a weakly

continuously Urysohn space. Furthermore, if a separable space is also a wcU-space, then it

is also a cU-space.

While searching for an example which distinguishes wcU and cU, some new properties

of these spaces were examined.

Firstly, we looked at the property of being wcU in product spaces. We discovered that

being a wcU-space is not a multiplicative property. In order to have that result we proved

the following lemma and two theorems.

Lemma 4.1. If X is a space with a zero-set diagonal, then the product space Y = X ×M ,

where (M,d) is a metric space, also has a zero-set diagonal.

Proof. Since X has a zero-set diagonal, there exists a continuous function F : X2 → [0, 1]

such that, F−1(0) = ∆. Let us now define the function G : Y 2 → R as follows:

G((x,m), (y, n)) = F (x, y) + d(m,n).

Claim 1: G is continuous.

Proof of Claim 1. Given any ϵ > 0 and ((x,m), (y, n)) ∈ Y 2, we choose the open

neighborhood A = (U1 × V1)× (U2 × V2). Here, U1 × U2 is the neighborhood of (x, y) such

that | F (x, y) − F (z, t) |< ϵ
2
for every (z, t) ∈ U1 × U2, and V1 × V2 is the neighborhood of

(m,n) such that | d(m,n)− d(p, q) |< ϵ
2
for every (p, q) ∈ V1 × V2.
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Then

| G((x,m), (y, n)) − G((z, p), (t, q)) | ≤ | F (x, y) − F (z, t) | + | d(m,n) − d(p, q) | < ϵ,

for every ((z, p), (t, q)) ∈ A.

Claim 2: G−1(0) = ∆.

Proof of Claim 2. Suppose, G((x,m), (y, n)) = 0. This is true if and only if F (x, y) = 0

and d(m,n) = 0, and this is true if and only if x = y and m = n.

Theorem 4.2. Let X be a topological space, and ω+1 = [0, ω] a convergent sequence. Then

Y = X × [0, ω] is a wcU-space if and only if X has a zero-set diagonal.

Proof. First, suppose that X is a space with a zero-set diagonal. By Lemma 4.1, the product

space Y = X × (ω+1) has a zero-set diagonal. Since zero-set diagonal implies being a wcU-

space, Y is a wcU-space. Now, suppose Y = X × (ω+1) is a wcU-space. Then, there exists

a continuous function Θ : (Y 2 \∆)× Y → R such that;

Θ((x, n), (y,m), (x, n)) ̸= Θ((x, n), (y,m), (y,m)).

WLOG, we can assume that Θ((x, n), (y,m), (x, n)) = 0, and Θ((x, n), (y,m), (y,m)) = 1,

and 0 ≤ Θ((x, n), (y,m), (z, p)) ≤ 1 for all (x, n), (y,m), (z, p) ∈ Y . For n < ω, let’s define

the function fn : X2 → R as follows:

fn(x, y) = Θ((x, n), (y, ω), (y, n)).

Note that for all n, fn is a continuous function. Finally we can define the function

F : X2 → R such that; F (x, y) =
∑∞

n=1
fn(x,y)

2n
. Since each fn is a continuous function,

F is a continuous function. And also, F−1(0) = ∆. Indeed, if x = y, then for all n,

fn(x, y) = Θ((x, n), (x, ω), (x, n)) = 0. So, F (x, y) = 0. If x ̸= y and F (x, y) = 0, then

fn(x, y) = 0 for all n. That means, Θ((x, n), (y, ω), (y, n)) = 0. If we look at the sequence
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((x, n), (y, ω), (y, n)), it converges to the point ((x, ω), (y, ω), (y, ω)). Since Θ is a continu-

ous function, Θ((x, n), (y, ω), (y, n)) converges to the point Θ((x, ω), (y, ω), (y, ω)). However,

Θ((x, n), (y, ω), (y, n)) = 0 for all n, and Θ((x, ω), (y, ω), (y, ω)) = 1, so this is a contradic-

tion. That is, F−1(0) = ∆, and the space X has a zero-set diagonal.

Corollary 4.3. If X × (ω + 1) is wcU, then X has a regular Gδ-diagonal.

Corollary 4.4. If X has a non-Gδ point, then X × (ω + 1) is not a wcU-space.

Example 4.5. There is cU-space X such that X × (ω + 1) is not wcU.

Proof. Let X be L(ω1) where L(ω1) is the one-point Lindelöfication of ω1. That is, every

α < ω1 is isolated, and the neighborhoods of ω1 are the sets with countable complements.

Since L(ω1) is a nonarchimedean space, by using Theorem 3.5 it is also a cU-space. On the

other hand, by using Corollary 4.4 and the non-Gδ point ω1 in L(ω1), L(ω1)× (ω+1) is not

a cU-space.

Example 4.6. Suppose X ′ is the topological sum of L(ω1) and ω + 1. Let us form the

quotient space X of X ′ obtained by identifying ω1 in L(ω1) with ω in ω + 1. Then X is not

even a wcU-space.

Proof. Suppose X is a wcU-space. Then there exists a continuous function

θ: (X2\∆)×X → R such that θ(x, y, x) ̸= θ(x, y, y).

We can assume that θ(x, y, x) = 0 and θ(x, y, y) = 1. For every n < ω, θ(p, n, p) = 0,

where p = ω = ω1. So, for every n < ω, there exists a neighborhood Gn of p such that

θ(q, n, p) < 1/2 for all q ∈ Gn. Note that
∩
Gn ̸= {p}. There exists a point q0 ∈

∩
Gn and

q0 ̸= p. Then θ(q0, n, p) < 1/2 for all n < ω. When we take the limit as n→ ω; θ(q0, n, p)→

θ(q0, p, p). Since θ(q0, n, p) < 1/2 and θ(q0, p, p) = 1 we have a contradiction.

Corollary 4.7. The cU-space and wcU-space properties are not always preserved under

perfect maps.
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Proof. Let X and X ′ be as in Example 4.6. The quotient map q : X ′ → X is perfect, and

X ′ is a cU-space. However, X is not even wcU.

We will show, however, that open-perfect maps preserve weakly continuously Urysohn

spaces. Since we have an open-perfect map, we will use a theorem of Michael’s from [13].

Before the statement of this theorem we will give some definitions that he mentions before

that theorem.

Definition 4.8. ([13]) Let f : X → Y be onto, and A(X) = {E ⊂ X : E ̸= ∅}. We define

(1) f−1∗ : Y → A(X) by f−1∗(y) = f−1(y),

(2) f−1∗∗ : A(Y )→ A(X) by f−1∗∗(E) = f−1(E).

Theorem 4.9. ([13]) Let X, Y be topological spaces, and f : X → Y be onto. Then with

the Vietoris topology on A(X), and A(Y ) we have:

(1) f−1∗ is continuous if and only if f is open and closed,

(2) f−1∗∗ is continuous if and only if f−1∗ is continuous.

Now, we can prove our theorem related to weakly continuously Urysohn spaces.

Theorem 4.10. The perfect-open image of a weakly continuously Urysohn space is also

weakly continuously Urysohn.

Proof. Suppose f : X → Y is a perfect-open map from a wcU-space X onto a space Y .

If X admits a continuous separating function φ : (X2 \∆)×X → R, by using Zenor’s

Lemma 2 from [19], there is a continuous function φ̃ :M(X)×X → [0, 1] such that

(1) if x ∈ H, then φ̃(H,K, x) = 0, and if x ∈ K,then φ̃(H,K, x) = 1,

(2) if (H,K), (H ′, K ′) ∈M(X) with H ⊂ H ′ and K ′ ⊂ K, then

φ̃(H ′, K ′, x) ≤ φ̃(H,K, x).

HereM(X) = {(H,K) ∈ K(X)×K(X) : H ∩K = ∅}, and K(X) denotes the space of

compact subsets of X endowed with the Vietoris topology.

Suppose X is a wcU-space with the function φ, and let us define the function
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θ : (Y 2 \∆)× Y → R by using the functions f , and φ̃.

θ(x, y, z) = max{φ̃(f−1(x), f−1(y), c) : c ∈ f−1(z)}.

Since f is a perfect map, f−1(z) is a compact subset of X for every z ∈ Y . Also note

that for every z from Y there exists a c1 in f−1(z) such that;

θ(x, y, z) = max{φ̃(f−1(x), f−1(y), c) : c ∈ f−1(z)} = φ̃(f−1(x), f−1(y), c1).

Claim 1: θ(x, y, x) ̸= θ(x, y, y).

Proof of Claim 1. It is clear that θ(x, y, x) = 0, and θ(x, y, y) = 1 for every (x, y) from

Y 2 \∆.

Claim 2: θ : (Y 2 \∆)× Y → R is a continuous function.

Proof of Claim 2. Suppose ϵ > 0, and (x, y, z) are given. Since φ̃ is a continuous

function, for every c ∈ f−1(z) there are open neighborhoods Hc, Kc, and Gc of f−1(x),

f−1(y), and c respectively, such that;

| φ̃(f−1(x), f−1(y), c)− φ̃(A,B, c′) |< ϵ for every A ∈ Hc, B ∈ Kc, and c′ ∈ Gc.

By using the compactness of f−1(z) we can select a finite subset {c1, c2, ..., cn} of f−1(z)

so that {Gci : i = 1, 2, ..., n} covers f−1(z).

Since neighborhoods of f−1(x), and f−1(y) are open with respect to Vietoris topology,

for every 1 ≤ i ≤ n, we can assume that;

Hci =< U1, U2, ..., Ur > is a neighborhood of f−1(x), and Kci =< V1, V2, ..., Vs > is a

neighborhood of f−1(y).

So, we take H =
n∩

i=1

Hci neighborhood of f−1(x), K =
n∩

i=1

Kci neighborhood of f−1(y),

and < Gc1 , Gc2 , ..., Gcn > neighborhood of f−1(z). Note that by using the definition of

Vietoris topology, we can restate H, and K respectively as follows:

H =< U1, U2, ..., Um >, and K =< V1, V2, ..., Vk >. Then there exist neighborhoods U

of x, V of y, and W of z such that f−1(U) ⊂
m∪
i=1

Ui, f
−1(V ) ⊂

k∪
i=1

Vi, and f−1(W ) ⊂
n∪

i=1

Gci .

Under this setting of neighborhoods, let us look at | θ(x, y, z) − θ(u, v, w) | for every

u ∈ U , v ∈ V , and w ∈ W .

Recall that θ(x, y, z) = max{φ̃(f−1(x), f−1(y), c) : c ∈ f−1(z)} = φ̃(f−1(x), f−1(y), c1).
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Case 1: Suppose θ(u, v, w) = max{φ̃(f−1(u), f−1(v), t) : t ∈ f−1(w)} = φ̃(f−1(u), f−1(v), t1)

where t1 ∈ Gc1 . Then;

| θ(x, y, z)− θ(u, v, w) |= | φ̃(f−1(x), f−1(y), c1)− φ̃(f−1(u), f−1(v), t1) |.

Since f−1(u) ∈< U1, U2, ..., Um >=
n∩

i=1

Hci , and f−1(v) ∈< V1, V2, ..., Vk >=
n∩

i=1

Kci we

have f−1(u) ∈ Hc1 , and f−1(v) ∈ Kc1 . By using the fact that φ̃ is a continuous function and

t1 ∈ Gc1 we conclude that:

| θ(x, y, z)− θ(u, v, w) |< ϵ.

Case 2: Suppose θ(u, v, w) = max{φ̃(f−1(u), f−1(v), t) : t ∈ f−1(w)} = φ̃(f−1(u), f−1(v), s1)

where s1 /∈ Gc1 .

Then there exists an i ≤ n, such that s1 ∈ Gci . By using the definition of θ, we know

that φ̃(f−1(x), f−1(y), c1) ≥ φ̃(f−1(x), f−1(y), ci). Since φ̃ is a continuous function,

φ̃(f−1(x), f−1(y), ci)− ϵ < φ̃(f−1(u), f−1(v), s1) < φ̃(f−1(x), f−1(y), ci) + ϵ. That is;

φ̃(f−1(u), f−1(v), s1) < φ̃(f−1(x), f−1(y), c1) + ϵ...(∗).

We also know that if t ∈ Gc1∩f−1(W ), then φ̃(f−1(u), f−1(v), t) ≤ φ̃(f−1(u), f−1(v), s1).

By using the continuity of φ̃ one more time we have;

φ̃(f−1(x), f−1(y), c1)− ϵ < φ̃(f−1(u), f−1(v), t) < φ̃(f−1(x), f−1(y), c1) + ϵ. That is;

φ̃(f−1(x), f−1(y), c1)− ϵ < φ̃(f−1(u), f−1(v), s1)...(∗∗).

With the combination of (∗), and (∗∗) we finally have:

| θ(x, y, z)− θ(u, v, w) |< ϵ.
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Chapter 5

Continuously Urysohn Ordered Spaces

In this chapter we study weakly continuously Urysohn and continuously Urysohn prop-

erties on linearly ordered topological spaces(LOTS) and generalized ordered spaces(GO-

spaces). Recall that a LOTS is a linearly ordered set with the usual open interval topology.

A GO-space is a Hausdorff space with a linear order < such that the topology of the space

has a base consisting of convex sets. Equivalently, GO-spaces are subspaces of LOTS.

In [3], Bennett and Lutzer show that for a separable GO-space X, being continuously

Urysohn, submetrizable, and having a Gδ-diagonal are equivalent properties. The behavior

of the linear extensions of separable GO-spaces in that manner was not known. We have

a theorem which characterizes exactly when a linear extension of a separable GO-spaces is

continuously Urysohn. Let us start with the definition of linear extension of a GO-space.

Definition 5.1. Let X = (X, τ,≤) be a GO-space, where (X,≤) is a linearly ordered set

and τ is a topology on X such that:

(a) λ(≤) ⊆ τ , where λ(≤) is the open-interval topology of ≤,

(b) every point of X has a local τ -base consisting of (possibly degenerate) intervals of

X.

Define a subset X∗ = (X, τ,≤)∗ of X × Z by

X∗ = (X × {0}) ∪ {(x, n) : [x,→ [∈ τ \ λ and n ≤ 0} ∪ {(x,m) :] ←, x] ∈ τ \ λ

and m ≥ 0}. Then we order X∗ = (X, τ,≤)∗ lexicographically, and it carries the usual

open-interval topology of this lexicographic order.

X∗ is the smallest LOTS which contains X as a closed subspace.
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Theorem 5.2. Let X be a separable GO-space, X∗ be any linear extension of X, and define

A = {x ∈ X|{(y, x] : y < x} base at x}
∪
{x ∈ X|{[x, y) : x < y} base at x}. Then, A is

countable if and only if X∗ is continuously Urysohn.

Proof. Let us first assume that X is a separable GO-space, X∗ is a linear extension of X,

and A = {x|{(y, x] : y < x} base at x}
∪
{x|{[x, y) : x < y} base at x} is countable. We

will show that X∗ is a cU-space.

Case 1: A is countable, and X has no isolated points.

Claim: X is metrizable.

Proof of Claim. Since regular and second countable spaces are metrizable all we need

to show is the second countability of X. By the definition of a GO-space without isolated

points, the collection:

{] ←, x] : x ∈ L} ∪{[x,→ [: x ∈ R} ∪λ(≤), where L,R are disjoint subsets of X, and

λ(≤) is the open interval topology on linearly ordered set X, is a subbase for X.

X is separable, so there exists a countable dense subset D of X. If we take the collection:

S = {(←, x] : x ∈ L} ∪{[x,→) : x ∈ R} ∪λ′
(≤), where λ′(≤) is a subcollection of λ(≤),

with intervals having their endpoints from the set D as the subbase, then the resulting base

is a countable base and gives the same topology for X. That finishes the proof of claim.

We then conclude that metrizability of X implies the metrizability of X∗, and that

implies cU for X∗.

Case 2: A is countable and X has isolated points:

First we construct a LOTS extension of X by assuming no isolated points. Let us call

this space Y . In the previous case we showed that Y is a cU-space. Then we apply the

scattering process to the space Y . Since Y is a cU-space, and the class of all cU-spaces is

closed under scattering process X∗ the linear extension of X is also a cU-space.

Let us now assume that X is a separable GO-space, and the cU hence wcU-space X∗ is

a linear extension of X.
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Note that since for GO-spaces ccc implies hereditarily Lindelöfness, X is also a heredi-

tarily Lindelöf space.

Claim: A is countable.

Proof of Claim. Suppose A is uncountable.

Case 1: R = {x ∈ X : [x, y) is a base at x } is uncountable.

By using hereditarily Lindelöfness of X, and removing countably many points if neces-

sary we may assume that every x ∈ R is a limit point of (x,→) ∩R.

Given any r from R there must be a point r
′ ∈ X∗ \ R such that r

′
< r, and s < r

′
for

any s from R with s < r.

For U ⊆ R let U
′
= {r′

: r ∈ U}. Since being a wcU-space is hereditary R ∪ R
′
should

also be a cU-space. Suppose φ witnesses that R ∪R
′
is wcU.

Let C ⊂ R be countable and dense in R. Note that each r ∈ R has a local base of sets

of the form [r, c), where c ∈ C and the interval computed in X∗.

WLOG, we may assume φ(x, y, x) = 0 and φ(x, y, y) = 1 for all x ̸= y ∈ R ∪ R
′
. Then

for each r ∈ R there is a point cr ∈ C such that;

φ(r
′
, [r, cr)

2) > 3/4.

Let Ac = {r ∈ R : cr = c}. We choose a point c ∈ C such that | Ac | > ω. Since X is

hereditarily Lindelöf space, and Ac is an uncountable subset of R there exist x, rn, r ∈ Ac

such that rn → x from the right and r > rn for all n.

Also r
′
n → x, and (r, rn) ⊂ [rn, c)

2. Thus φ(r
′
n, r, rn) > 3/4, but (r

′
n, r, rn) → (x, r, x)

and φ(x, r, x) = 0.

So, we have a contradiction.

Case 2: L = {x : (y, x] is a base at x } is uncountable.

Proof of this case is identical to the proof of case 1.

After this theorem we have a similar characterization for separable GO-spaces being

weakly continuously Urysohn.
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Theorem 5.3. Let X be a separable GO-space. Then X is weakly continuously Urysohn if

and only if A is countable, where A = {x : x has an immediate successor or predecessor}.

Proof. First we suppose X is a separable, wcU, GO-space. Then there exists a continuous

function θ : (X2 \∆)×X → R such that:

θ(x, y, x) ̸= θ(x, y, y), and we can assume θ(x, y, x) = 0, and θ(x, y, y) = 1.

Suppose A is uncountable. WLOG we will assume that the set R = {r ∈ X : r has

an immediate successor} is uncountable. So for every r from R there exists r
′
immediate

successor of r. Let us define R
′
= {r′

: r ∈ R}. Since being wcU-space is hereditary then

R ∪R
′
is also wcU.

We have θ(r
′
, r, r) = 1. Then for every r ∈ R there exists a basic neighborhood Gr of r

such that, θ(r
′
, G2

r) > 3/4.

As a result of the separability assumption on X there exists a countable dense subset

D. So for every r ∈ R there exists a cr ∈ Gr. We can also assume that (cr, r] ⊂ Gr. Note

that there exists a c that repeats for uncountably many r.

Let us define P = {r : c ∈ Gr} where | P |> ω. Since X is hereditarily Lindelöf, P is

also a Lindelöf space.

Then there exist x, rn, r ∈ P such that rn → x and c < r < rn for every n < ω. Note

that r
′
n converges to x.

We have θ(r
′
n, r, rn) > 3/4. However (r

′
n, r, rn)→ (x, r, x) and θ(x, r, x) = 0 is a contra-

diction.

Now we suppose A = {x : x has an immediate successor or predecessor} is countable.

Let us form a base B = {{x} : x isolated in Xτ} ∪ { K : K convex-open with endpoints

in A∪D}; where Xτ is the topology on GO-space and D is the countable dense subset. It is

clear that this is a countable base for a weaker order topology on X. So, X is submetrizable,

hence cU.
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In [3], Bennett and Lutzer prove that a stationary subset S of a regular uncountable

cardinal κ is not continuously Urysohn, and for any monotonically normal space being con-

tinuously Urysohn implies being hereditarily paracompact. Also Gruenhage and Zenor in [8]

show that any stationary subset of a regular uncountable cardinal cannot even be weakly con-

tinuously Urysohn. With the help of these results, we give a characterization for well-ordered

spaces in the following theorem.

Theorem 5.4. A well-ordered space is continuously Urysohn if and only if it does not contain

a subset homeomorphic to a stationary subset of a regular uncountable cardinal. Equivalently,

a well-ordered space is continuously Urysohn if and only if it is hereditarily paracompact.

Proof. With the result of Bennett and Lutzer’s mentioned above, we know that well-ordered

cU-spaces cannot contain a stationary subset of a regular uncountable cardinal. All we need

to show is that the cU property holds when a well-ordered set does not contain the subsets

mentioned.

Since a subset of ω1 contains a stationary subset if and only if it is nonmetrizable, claim

is true for subspaces of ω1.

Let α be any ordinal. Suppose the claim is true for the subsets of β for every β < α.

That is if B ⊂ β does not contain a stationary subset of a regular uncountable cardinal,

then B is a cU-space.

Claim : If A ⊂ α does not contain a stationary subset of a regular uncountable cardinal,

then A is cU-space.

Proof of Claim.

Case 1: α is a limit ordinal.

Subcase 1: Cofinality of α is greater than ω. That is cfα > ω.

Suppose cfα = κ > ω. Note that κ is a regular cardinal. Also there exists a subset K

of α, which is a copy of κ. We know that K is closed, order isomorphic to κ, and cofinal in

α.
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On the other hand; since A does not contain a stationary subset of any uncountable

regular cardinal there exists a club subset C of K such that C ∩ A = ∅. WLOG; we can

assume K = C and K ∩A = ∅. Since Kc is the union of disjoint convex subsets, Kc =
∪
γ

Iγ.

That is, Kc is the topological sum of cU-spaces. By using Theorem 3.9, we conclude that

Kc is cU. Hence A ⊂ Kc is cU.

Subcase 2: Cofinality of α is equal to ω. That is cfα = ω.

There exists a K = {kn}n<ω countable subset of α, where K is a copy of ω in α.

WLOG we can assume that, kn is a successor ordinal for every n and we can write

α =
∪
n

[kn, kn+1). Note that In = [kn, kn+1) is clopen and a cU-space with the witnessing

function φn. Since, α is the topological sum of cU-spaces, it is cU.

Case 2: α is a successor ordinal. That is α = γ + 1 for an ordinal γ.

WLOG, we can assume A
′
= A∪{γ}, and we will show that A

′
is a cU-space. Otherwise,

A ⊂ γ < α and A is a cU-space by assumption.

Subcase 1: Cofinality of γ is greater than or equal to ω. That is cfγ ≥ ω.

Let us set cfγ = τ ≥ ω. There exists a cofinal subset T of γ which is a copy of τ . So

T ⊂ γ is closed and order isomorphic to τ . On the other hand since A does not contain a

stationary subset of an uncountable regular cardinal there exists a club subset C of T such

that C ∩ A = ∅.

WLOG, we assume that A = γ \ C. Then A =
∪
ξ

Iξ, where {Iξ}ξ is a pairwise disjoint

collection of convex subsets of γ. For every ξ, we can define Iξ = (cξ, cξ+1), where cξ, cξ+1 ∈ C.

Note that Iξ is a cU-space with the witnessing function φξ.

Let us define the function φ as follows:

If x, y, z ∈ Iξ, then φ(x, y)(z) = φξ(x, y)(z).

If x, y ∈ Iξ, and z /∈ Iξ, then φ(x, y)(z) = 0.

For the case when x, and y are not in the same convex subset:

If x < y, then there exists a Iµ such that x ∈ Iµ, and cµ < x < cµ+1. We define

φ(x, y)(z) = 1− χ(cµ,cµ+1](z).
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If y < x, then there exists a Iν such that y ∈ Iν , and cν < y < cν+1. We define

φ(x, y)(z) = χ(cν ,cν+1](z).

Claim 1: φ(x, y)(x) ̸= φ(x, y)(y).

Proof of Claim 1.

Case 1: x, y, z ∈ Iξ.

φ(x, y)(x) = φξ(x, y)(x) = 0, and φ(x, y)(y) = φξ(x, y)(y) = 1.

Case 2: Other cases.

If x < y, then φ(x, y)(x) = 0 and φ(x, y)(y) = 1. If y < x, then φ(x, y)(x) = 0 and

φ(x, y)(y) = 1.

Claim 2: φ(x, y) is a continuous function for every (x, y).

Proof of Claim 2.

Suppose ϵ > 0, and a point z are given.

Case 1: x, y, z ∈ Iξ.

Since φξ(x, y) is a continuous function, there is a neighborhood Gξ of z in such that;

| φ(x, y)(z)− φ(x, y)(t) | < ϵ, for every t ∈ Gξ. We set G = Gξ. Then,

| φ(x, y)(z)− φ(x, y)(t) | < ϵ, for every t ∈ G.

Case 2: x, y ∈ Iξ, and z /∈ Iξ.

Subcase 1: z ̸= γ. There exists a Iς such that z ∈ Iς .

We set G = Iς . Then,

| φ(x, y)(z)− φ(x, y)(t) | < ϵ, for every t ∈ G.

Subcase 2: z = γ.

We set G = (cξ+1, γ] ∩ A
′
. Then,

| φ(x, y)(γ)− φ(x, y)(t) | < ϵ, for every t ∈ G.

Case 3: Other cases:

(1) x < y.

Subcase 1: x, z ∈ Iµ.

We set G = (cµ, cµ+1) ∩ A
′
. Then,
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| φ(x, y)(z)− φ(x, y)(t) | < ϵ, for every t ∈ G.

Subcase 2: x ∈ Iµ, and z /∈ Iµ.

We set G = [[cµ, cµ+1] ∩ A
′
]c.

| φ(x, y)(z)− φ(x, y)(t) | < ϵ, for every t ∈ G.

(2) y < x

Subcase 1: y, z ∈ Iν .

We set G = (cν , cν+1) ∩ A
′
.

| φ(x, y)(z)− φ(x, y)(t) | < ϵ, for every t ∈ G.

Subcase 2: y ∈ Iν , and z /∈ Iν .

We set G = [[cν , cν+1] ∩ A
′
]c.

| φ(x, y)(z)− φ(x, y)(t) | < ϵ, for every t ∈ G.

Claim 3: φ is a continuous function.

Proof of Claim 3.

Suppose an ϵ > 0, and (x, y) are given.

Case 1: x, y ∈ Iξ.

We define φξ(x, y) for (x, y). By using the continuity of φξ we know that there is a

neighborhood Uξ × Vξ of (x, y) in Iξ such that

| φξ(x, y)(z)− φξ(u, v)(z) |< ϵ for every (u, v) from Uξ × Vξ.

We take neighborhoods U = Uξ and V = Vξ.

If z ∈ Iξ, then | φ(x, y)(z)− φ(u, v)(z) |=| φξ(x, y)(z)− φξ(u, v)(z) |< ϵ, and if z /∈ Iξ,

then φ(x, y)(z) = 0 and φ(u, v)(z) = 0.

Case 2: Other cases:

(1) x < y.

We take U = Iµ, and V = (cµ, γ] ∩ A
′
. Note that x ∈ Iµ. Then,

φ(x, y)(z) = 1− χ(cµ,cµ+1](z), and φ(u, v)(z) = 1− χ(cµ,cµ+1](z).

(2) y < x.

We take U = (cν , γ] ∩ A
′
and V = Iν . Note that y ∈ Iν . Then,
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φ(x, y)(z) = χ(cν ,cν+1](z), and φ(u, v)(z) = χ(cν ,cν+1](z).

Subcase 2: γ = β + 1, for some ordinal β. We define the set A
′
= [0, β] ∩ A ∪ {γ}.

Notice that [0, β] is cU, and γ is isolated. So, we have a topological sum of cU-spaces.

After these results we want to examine the locally continuously Urysohn property in

ordered spaces. The question was: locally continuously Urysohn and what other assumption

on the ordered spaces imply continuously Urysohn?.

It is known that for many cases, paracompactness and having a property locally imply

this property for the space itself. We do not know if this is true for cU in general, but

we prove that a locally continuously Urysohn paracompact LOTS is continuously Urysohn.

Before proving this theorem, we will prove a useful lemma.

Lemma 5.5. Assume X is a LOTS, a, b ∈ X, and a < b. If (←, b) and (a,→) are continu-

ously Urysohn, then X is continuously Urysohn.

Proof. Suppose that the functions which witness cU on (←, b), and (a,→) are φ1, and φ2

respectively. By using Proposition 2.1. from [3], we can assume that if x < y then φ1(x, y)

sends (←, x] to 0, and [y,→) to 1. Similarly, φ2(x, y) sends (←, x] to 0, and [y,→) to 1.

In addition to these assumptions normality gives a function θ : X → [0, 1] such that:

θ(x) = 0 for x ≤ a, and θ(x) = 1 for x ≥ b.

In order to prove this lemma, we will define a function φ : X2 \∆→ C(X) as follows:
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If x < y, define

φ(x, y)(z) =


θ(z), if z ≤ x,

θ(x).φ2(x, y)(z) + (1− θ(y)).φ1(x, y)(z) + θ(z), if x < z < y,

θ(x) + (1− θ(y)) + θ(z), if y ≤ z.

If y < x, define

φ(x, y)(z) =


(1− θ(x)) + θ(y)− θ(z), if z ≤ y,

(1− θ(x)).φ1(x, y)(z) + θ(y).φ2(x, y)(z)− θ(z), if y < z < x,

−θ(z), if x ≤ z.

Claim 1: φ(x, y)(x) ̸= φ(x, y)(y) for every (x, y) ∈ X2 \∆.

Proof of Claim 1. Suppose x < y. Then φ(x, y)(x) = θ(x), and φ(x, y)(y) = θ(x) + 1.

Similarly, if we assume y < x, then φ(x, y)(x) = −θ(x), and φ(x, y)(y) = 1− θ(x).

Claim 2: φ(x, y) is continuous for every (x, y) ∈ X2 \∆.

Proof of Claim 2. Suppose ϵ > 0, z ∈ X are given, and WLOG we may assume x < y.

Case 1: z ≤ x. Then φ(x, y)(z) = θ(z).

Subcase 1: z < x.

Since θ is a continuous function there exists a neighborhood G′ of z such that

| θ(z)− θ(t) |< ϵ, for every t ∈ G′. We take G = G′ ∩ (←, x) neighborhood of z. Then

for every t ∈ G,

| φ(x, y)(z)− φ(x, y)(t) |=| θ(z)− θ(t) |< ϵ.

Subcase 2: z = x, and x = z < y ≤ a.

Since θ, and φ1(x, y) are continuous functions there exist neighborhoods G′, and G1 of

z = x such that | θ(t) |< ϵ for every t ∈ G′, and | φ1(x, y)(t) |< ϵ for every t ∈ G1.

We set G = (←, y) ∩G′ ∩G1.

If t ∈ G also satisfies t < x = z, then | φ(x, y)(x)− φ(x, y)(t) |=| 0− 0 |= 0.

If t ∈ G also satisfies t > x = z, then | φ(x, y)(x)− φ(x, y)(t) |=| φ1(x, y)(t) |< ϵ.
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Subcase 3: z = x, and x = z ≤ a < y < b.

Since θ, and φ1(x, y) are continuous functions there exist neighborhoods G′, and G1 of

z = x such that | θ(t) |< ϵ\2 for every t ∈ G′, and | φ1(x, y)(t) |< ϵ\2 for every t ∈ G1.

We set G = (←, y) ∩G′ ∩G1.

If t ∈ G also satisfies t < x = z, then | φ(x, y)(x)− φ(x, y)(t) |=| 0− 0 |= 0.

If t ∈ G also satisfies t > x = z, then

| φ(x, y)(x)− φ(x, y)(t) |=| (1− θ(y))φ1(x, y)(t)− θ(t) |≤

| (1− θ(y)) | . | φ1(x, y)(t) | + | θ(t) |< ϵ.

Subcase 4: z = x, and x = z ≤ a < b ≤ y.

Since θ is a continuous function, and θ(x) = 0 there exists a neighborhood G′ of z = x

such that | θ(t) |< ϵ for every t ∈ G′.

We set G = (←, y) ∩G′.

If t ∈ G also satisfies t < x = z, then | φ(x, y)(x)− φ(x, y)(t) |=| 0− 0 |= 0.

If t ∈ G also satisfies t > x = z, then | φ(x, y)(x)− φ(x, y)(t) |=| θ(t) |< ϵ.

Subcase 5: z = x, and a ≤ x = z < y < b.

Since θ, φ1(x, y), and φ2(x, y) are continuous functions there exist neighborhoods G′,

G1, and G2 of z = x such that | θ(x) − θ(t) |< ϵ\3 for every t ∈ G′, | φ1(x, y)(t) |< ϵ\3 for

every t ∈ G1, and | φ2(x, y)(t) |< ϵ\3 for every t ∈ G2.

We set G = (←, y) ∩G′ ∩G1 ∩G2.

If t ∈ G also satisfies t < x = z, then | φ(x, y)(x)− φ(x, y)(t) |=| θ(x)− θ(t) |< ϵ.

If t ∈ G also satisfies t > x = z, then

| φ(x, y)(x)− φ(x, y)(t) |=| θ(x)− θ(x)φ2(x, y)(t)− (1− θ(y))φ1(x, y)(t)− θ(t) |≤

| θ(x)− θ(t) | + | θ(x) | . | φ2(x, y)(t) | + | (1− θ(y)) | . | φ1(x, y)(t) |< ϵ.

Subcase 6: z = x, and a ≤ x = z < b < y.

Since θ, and φ2(x, y) are continuous functions there exist neighborhoods G′, and G2 of

z = x such that | θ(x) − θ(t) |< ϵ\2 for every t ∈ G′, and | φ2(x, y)(t) |< ϵ\2 for every

t ∈ G2.
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We set G = (←, y) ∩G′ ∩G2.

If t ∈ G also satisfies t < x = z, then | φ(x, y)(x)− φ(x, y)(t) |=| θ(x)− θ(t) |< ϵ.

If t ∈ G also satisfies t > x = z, then

| φ(x, y)(x)− φ(x, y)(t) |=| θ(x)− θ(x)φ2(x, y)(t)− θ(t) |≤

| θ(x)− θ(t) | + | θ(x) | . | φ2(x, y)(t) |< ϵ.

Subcase 7: z = x, and b ≤ x = z < y.

Since θ, and φ2(x, y) are continuous functions there exist neighborhoods G′, and G2 of

z = x such that

| θ(x)− θ(t) |< ϵ for every t ∈ G′, and | φ2(x, y)(t) |< ϵ for every t ∈ G2.

We set G = (←, y) ∩G′ ∩G2.

If t ∈ G also satisfies t < x = z, then | φ(x, y)(x)− φ(x, y)(t) |=| θ(x)− θ(t) |< ϵ.

If t ∈ G also satisfies t > x = z, then

| φ(x, y)(x)− φ(x, y)(t) |=| θ(x) | . | φ2(x, y)(t) |< ϵ.

Case 2: x < z < y. Then φ(x, y)(z) = θ(x)φ2(x, y)(z) + (1− θ(y))φ1(x, y)(z) + θ(z).

Subcase 1: x < y ≤ a.

Since φ1(x, y) is a continuous function there exists a neighborhood G1 of z such that

| φ1(x, y)(z)− φ1(x, y)(t) |< ϵ.

We set G = (x, y) ∩G1. Then,

| φ(x, y)(z)− φ(x, y)(t) |=| φ1(x, y)(z)− φ1(x, y)(t) |< ϵ for every t ∈ G.

Subcase 2: x ≤ a < y < b.

Since φ1(x, y) is a continuous function there exists a neighborhood G1 of z such that

| φ1(x, y)(z)− φ1(x, y)(t) |< ϵ.

We set G = (x, y) ∩G1. Then,

| φ(x, y)(z)− φ(x, y)(t) |=| (1− θ(y)) | . | φ1(x, y)(z)− φ1(x, y)(t) |< ϵ for every t ∈ G.

Subcase 3: x ≤ a, and b ≤ y.

Since θ is a continuous function there exists a neighborhood G′ of z such that

| θ(z)− θ(t) |< ϵ.
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We set G = (x, y) ∩G′. Then,

| φ(x, y)(z)− φ(x, y)(t) |=| θ(z)− θ(t) |< ϵ for every t ∈ G.

Subcase 4: a < x < y < b.

Since θ, φ1(x, y), and φ2(x, y) are continuous functions there exist neighborhoods G′,

G1, and G2 of z such that

| θ(z)− θ(t) |< ϵ\3 for every t ∈ G′, | φ1(x, y)(z)− φ1(x, y)(t) |< ϵ\3 for every t ∈ G1,

and | φ2(x, y)(z)− φ2(x, y)(t) |< ϵ\3 for every t ∈ G2.

We set G = (x, y) ∩G′ ∩G1 ∩G2.

Then

| φ(x, y)(x)− φ(x, y)(t) |≤| θ(x) | . | φ2(x, y)(z)− φ2(x, y)(t) | +

| 1− θ(y) | . | φ1(x, y)(z)− φ1(x, y)(t) | + | θ(z)− θ(t) |< ϵ.

Subcase 5: a < x < b ≤ y.

Since θ, and φ2(x, y) are continuous functions there exist neighborhoods G′, and G2 of

z such that

| θ(z)− θ(t) |< ϵ\2 for every t ∈ G′, and | φ2(x, y)(t) |< ϵ\2 for every t ∈ G2.

We set G = (x, y) ∩G′ ∩G2. Then,

| φ(x, y)(z)− φ(x, y)(t) |≤| θ(x) | . | φ2(x, y)(z)− φ2(x, y)(t) | + | θ(z)− θ(t) |< ϵ.

Subcase 6: b ≤ x < y.

Since φ2(x, y) is a continuous function there exists a neighborhood G2 of z such that

| φ2(x, y)(z)− φ2(x, y)(t) |< ϵ for every t ∈ G2.

We set G = (x, y) ∩G2. Then,

| φ(x, y)(z)− φ(x, y)(t) |=| φ2(x, y)(z)− φ2(x, y)(t) |< ϵ for every t ∈ G.

Case 3: y ≤ z. Then φ(x, y)(z) = θ(x) + (1− θ(y)) + θ(z).

The proof for this case is identical to the proof of case 1. And also the for the case

y < x the proof works similarly.

Claim 3: φ : X2 \∆→ C(X) is a continuous function.
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Proof of Claim. Suppose ϵ > 0, and (x, y) ∈ X2 \∆ are given. And WLOG we assume

x < y.

Since θ is a continuous function, there exists a neighborhoods U ′, and V ′ of x and y so

that | θ(x) − θ(u) |< ϵ\4 for every u ∈ U ′, and | θ(y) − θ(v) |< ϵ\4 for every v ∈ V ′. Also

note that | θ(x) |≤ 1 for every x ∈ X.

If the location of (x, y) with respect to a, and b is examined, it is one of the following:

only φ1(x, y) can be defined, only φ2(x, y) can be defined or they both can be defined.

Also we know that φ1, and φ2 are continuous functions.

Then there exists a neighborhood U1 × V1 of (x, y) such that:

| φ1(x, y)(z)− φ1(u, v)(z) |< ϵ\4 for every (u, v) ∈ U1 × V1, and z.

Similarly, there exists a neighborhood U2 × V2 of (x, y) such that:

| φ2(x, y)(z)− φ2(u, v)(z) |< ϵ\4 for every (u, v) ∈ U2 × V2, and z.

So, we set U = U1 ∩ U2 ∩ U ′ ∩ (←, y), and U = V1 ∩ V2 ∩ V ′ ∩ (x,→), depending on the

location of (x, y). Note that WLOG, we may assume that U1 ∩ V1 = U2 ∩ V2 = ∅, and u < v

for every u ∈ U , and v ∈ V .

In addition to these, we assume that | φi(x, y)(z) |≤ 1 for every (x, y) ∈ X2 \ ∆, and

z ∈ X, where i = 1, 2.

Case 1: z ≤ x.

That is φ(x, y)(z) = θ(z). Under this case two subcases can occur.

Subcase 1: z ≤ u. That is φ(u, v)(z) = θ(z), and we are done.

Subcase 2: u < z < v.

That is φ(u, v)(z) = θ(u).φ2(u, v)(z) + (1− θ(v)).φ1(u, v)(z) + θ(z). Then,

| φ(x, y)(z)− φ(u, v)(z) |=| −θ(u)φ2(u, v)(z) + (1− θ(v))φ1(u, v)(z) |≤

| θ(u) | . | φ2(u, v)(z)± φ2(x, y)(z) | + | 1− θ(v) | . | φ1(u, v)(z)± φ1(x, y)(z) |< ϵ.

Case 2: x < z < y.

That is φ(x, y)(z) = θ(x).φ2(x, y)(z) + (1− θ(y)).φ1(x, y)(z) + θ(z).

Subcase 1: z ≤ u. That is φ(u, v)(z) = θ(z). Then,
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| φ(x, y)(z)− φ(u, v)(z) |=| −θ(x)φ2(x, y)(z) + (1− θ(y))φ1(x, y)(z) |≤

| θ(x) | . | φ2(x, y)(z)± φ2(u, v)(z) | + | 1− θ(y) | . | φ1(x, y)(z)± φ1(u, v)(z) |≤

| φ2(x, y)(z)− φ2(u, v)(z) | + | φ1(x, y)(z)− φ1(u, v)(z) |< ϵ.

Subcase 2: u < z < v.

That is φ(u, v)(z) = θ(u).φ2(u, v)(z) + (1− θ(v)).φ1(u, v)(z) + θ(z). Then,

| φ(x, y)(z)− φ(u, v)(z) |=| θ(x)φ2(x, y)(z) + (1− θ(y))φ1(x, y)(z)− θ(u)φ2(u, v)(z)−

(1− θ(v))φ1(u, v)(z) |≤

| θ(x)φ2(x, y)(z)− θ(u)φ2(u, v)(z)± θ(x)φ2(u, v)(z) | +

| (1− θ(y))φ1(x, y)(z)− (1− θ(v))φ1(u, v)(z)± (1− θ(y))φ1(u, v)(z) |≤

| θ(x) | . | φ2(x, y)(z)− φ2(u, v)(z) | + | φ2(u, v)(z) | . | θ(x)− θ(u) | +

| 1− θ(y) | . | φ1(x, y)(z)− φ1(u, v)(z) | + | φ1(u, v)(z) | . | θ(y)− θ(v) |≤

| φ2(x, y)(z)− φ2(u, v)(z) | + | θ(x)− θ(u) | + | φ1(x, y)(z)− φ1(u, v)(z) | +

| θ(y)− θ(v) |< ϵ.

Subcase 3: v ≤ z. That is φ(u, v)(z) = θ(u) + (1− θ(v)) + θ(z). Then,

| φ(x, y)(z)−φ(u, v)(z) |=| θ(x)φ2(x, y)(z)+(1− θ(y))φ1(x, y)(z)− θ(u)− (1− θ(v)) |≤

| θ(x)φ2(x, y)(z)− θ(u)± θ(x) | + | (1− θ(y))φ1(x, y)(z)− (1− θ(v))± (1− θ(y)) |≤

| θ(x) | . | φ2(x, y)(z)− 1 | + | θ(x)− θ(u) | + | 1− θ(y) | . | φ1(x, y)(z)− 1 | +

| θ(y)− θ(v) |≤

| φ2(x, y)(z)− 1± φ2(u, v)(z) | + | θ(x)− θ(u) | + | φ1(x, y)(z)− 1± φ1(u, v)(z) | +

| θ(y)− θ(v) |≤

| φ2(x, y)(z)− 1φ2(u, v)(z) | + | θ(x)− θ(u) | + | φ1(x, y)(z)− φ1(u, v)(z) | +

| θ(y)− θ(v) |< ϵ.

Case 3: y ≤ z.

That is φ(x, y)(z) = θ(x) + (1− θ(y)) + θ(z).

Subcase 1: v ≤ z. That is φ(u, v)(z) = θ(u) + (1− θ(v)) + θ(z). Then,

| φ(x, y)(z)− φ(u, v)(z) |=| θ(x)− θ(y)− θ(u) + θ(v) |≤

| θ(x)− θ(u) | + | θ(y)− θ(v) |< ϵ.
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Subcase 2: u < z < v.

That is φ(u, v)(z) = θ(u).φ2(u, v)(z) + (1− θ(v)).φ1(u, v)(z) + θ(z). Then,

| φ(x, y)(z)−φ(u, v)(z) |=| θ(x)+(1− θ(y))− θ(u)φ2(u, v)(z)− (1− θ(v))φ1(u, v)(z) |≤

| θ(x)− θ(u)φ2(u, v)(z)± θ(u) | + | 1− θ(y)− (1− θ(v))φ1(u, v)(z)± (1− θ(v)) |≤

| θ(x)− θ(u) | + | θ(u) | . | 1− θ2(u, v)(z) | + | 1− θ(v) | . | 1− φ1(u, v)(z) | +

| θ(y)− θ(v) |≤

| θ(x)− θ(u) | + | 1− φ2(u, v)(z)± φ2(x, y)(z) | + | 1− φ1(u, v)(z)± φ1(x, y)(z) | +

| θ(t)− θ(v) |≤

| θ(x)− θ(u) | + | φ2(x, y)(z)− φ2(u, v)(z) | + | φ1(x, y)(z)− φ1(u, v)(z) | +

| θ(y)− θ(v) |< ϵ.

After this lemma, we are going to prove that a paracompact, locally continuously

Urysohn LOTS is continuously Urysohn. Here a space X is locally continuously Urysohn

provided that every x ∈ X has an open neighborhood which is also a continuously Urysohn

space.

Theorem 5.6. If X is a paracompact, locally continuously Urysohn LOTS, then X is con-

tinuously Urysohn.

Proof. Suppose X is a paracompact, locally cU LOTS.

Since X is locally cU, then for every x ∈ X there exists a neighborhood Ux which is

also a cU-space. The collection U = {Ux : x ∈ X} is an open cover for the space.

By using paracompactness, we find V = {Iα : α ∈ A} locally finite open refinement of

U such that for every α ∈ A:

(1) Iα = (aα, bα),

(2) Īα is cU,

(3) |{β ∈ A : Iα ∩ Iβ ̸= ∅}| ≤ 2.

Let us define an equivalence relation ≈ as follows:
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Iα ≈ Iβ if and only if there exists a finite chain link between Iα, and Iβ. If we examine

the equivalence classes [Iα], it is clear that |[Iα]| ≤ ω. Suppose
∼
Iα=

∪
Iβ∈[Iα]

Iβ. Then for every

α, β ∈ A:

(i)
∼
Iα is clopen,

(ii)
∼
Iα is convex, and

(iii)
∼
Iα ∩

∼
Iβ= ∅ for α ̸= β.

Claim :
∼
Iα is cU for every α ∈ A.

Proof of Claim.

Case 1: [Iα] is finite.

Then by using the previous lemma, we are done.

Case 2: [Iα] is countably infinite.

Let us denote this connected collection as [Iα] = {I0, I1, ...}, and pick x, y ∈
∼
Iα such that

x < y. We will show that [x,→), and (←, y] are cU.

These proofs work identically, so we will only prove that [x,→) is cU. Note that
∼
Iα can

be densely embedded into a compact LOTS X̂. Let us say X∗ = X̂ \ {lastpoint}.

Subcase 1: X∗\
∼
Iα is cofinal in X∗. That means for every a ∈ X∗ there exists a

b ∈ X∗\
∼
Iα such that a < b. Then, if I0 = (a0, b0), there exists an x0 ∈ X∗\

∼
Iα so that

b0 < x0, if I1 = (a1, b1), there exists an x1 ∈ X∗\
∼
Iα so that b1 < x1, and by following

this idea we have a sequence x0, x1, .... Note that (←, x0] ∩ [x,→) is either empty or can

be covered by finitely many of Iα’s which implies cU. Similarly, [xn, xn+1] ∩ [x,→) is either

empty or cU for every n < ω. That tells us [x,→) is cU.

Subcase 2: X∗\
∼
Iα is not cofinal in X∗. That means there exists a p ∈ X∗ such that

q < p for every q ∈ X∗\
∼
Iα. So WLOG, we assume x < p, and pick a ∈ X∗ such that p < a.

Then, [x,→) = [x,→) ∩ {[x, a) ∪ (p,→).

So far we we showed that [x,→) is cU for the countable and connected collection
∼
Iα, and

x ∈
∼
Iα. With a similar proof one can show that (←, y] is also cU. Combining these together
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we say
∼
Iα is cU. Since

∼
Iα’s make a partition of X, we have a topological sum of cU spaces,

which is also cU.

Note also that if X has a last point m, in addition to this proof we only need to look

at the collection
∼
Iα which contains m. Pick x ∈

∼
Iα. By revisiting subcase 1 and subcase 2,

[x,m] can be covered by finitely many Iα’s. So it is cU.
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Chapter 6

Miscellaneous

A set S ⊂ X is said to be free for a set function F if x, y ∈ S with x ̸= y imply x /∈ F (y).

Free Set Lemma ([11]) If F : X → [X]<λ where λ < |X| then there is a free set S ⊂ X

for F , with |S| = |X|. Here [X]<λ is the collection of all subsets with cardinality less than

λ.

Corollary 6.1. X = L(ω2), the one-point Lindelöfication of ω2, is not a cU-space.

Proof. Suppose X is a cU space with the witnessing function φ. WLOG we can assume

φ(α, β)(α) = 0, and φ(α, β)(β) = 1 for every (α, β) ∈ X2\∆.

For every α < ω2, φ(ω2, α)(ω2) = 0, and φ(α, ω2)(ω2) = 1.

Since ω2 is a P -point there exists a neighborhood G
′
α of ω2 such that:

φ(β, α)(γ) = 0 for all β, γ ∈ G
′
α.

Similarly, there exists a neighborhood G
′′
α of ω2 such that:

φ(α, β)(γ) = 1 for all β, γ ∈ G
′′
α.

We set Gα = G
′
α ∩ G

′′
α. Then φ(β, α)(γ) = 0, and φ(α, β)(γ) = 1 for every α < ω and

for all β, γ ∈ Gα.

Let us say Cα = Gc
α. Note that |Cα| < ω for all α < ω2.

If we define the set function F : X → [X]<ω as follows: F (α) = Cα by using the free

set lemma, there exists a free set S ⊂ X such that;

|S| = |X| = ω2 and α, γ ∈ S and α ̸= γ implies α /∈ F (γ) = Cγ, and γ /∈ F (α) = Cα.

Let’s take α ̸= γ ∈ S. Then α /∈ Cγ implies α ∈ Gγ, and γ /∈ Cα implies γ ∈ Gα.

That is φ(α, γ)(ω2) = 0, and φ(α, γ)(ω2) = 1.
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Theorem 6.2. X2 \ ∆ admits a partition P into clopen sets such that for every P ∈ P

there exist A, B clopen subsets of X satisfying P ⊂ A × B ⊂ X2 \ ∆ if and only if X is

a continuously Urysohn space with the witnessing function φ : X2 \ ∆ → C(X) such that

φ(x, y)(z) = 0 or φ(x, y)(z) = 1 for every (x, y) ∈ X2 \∆, and z ∈ X.

Proof. Suppose that there exists a partition with the mentioned properties. For every (x, y) ∈

X2 \∆, there is a P ∈ P such that (x, y) ∈ P .

Let us define φ : X2 \∆→ C(X) as follows:

φ(x, y)(z) = χB(z), where P ⊂ A×B ⊂ X2 \∆. Then,

(1) φ(x, y)(x) = 0, and φ(x, y)(y) = 1.

(2) φ(x, y) is a continuous function for every (x, y) ∈ X2 \∆. Indeed,

Suppose ϵ > 0, and z ∈ X are given. For fixed (x, y);

If (x, z) ∈ A×B we set G = B. Then,

| φ(x, y)(z)− φ(x, y)(t) |=| χB(z)− χB(t) |= 0 for every t ∈ G.

If (x, z) /∈ A×B we set G = Bc. Then,

| φ(x, y)(z)− φ(x, y)(t) |=| χB(z)− χB(t) |= 0 for every t ∈ G.

(3) φ is a continuous function. Indeed,

Suppose ϵ > 0, and (x, y) ∈ X2 \ ∆ are given. We will set U = Π1(P ) ⊂ A, and

V = Π2(P ) ⊂ B, where Π1 is the first projection map from X2 onto X, and Π2 is the second

projection map from X2 onto X. Then,

| φ(x, y)(z)− φ(u, v)(z) |=| χB(z)− χB(z) |= 0.

We now suppose that X is a cU-space with the function φ, and φ(x, y)(z) = 0 or

φ(x, y)(z) = 1 for every (x, y), and z. WLOG we may assume φ(x, y)(x) = 0, and

φ(x, y)(y) = 1.

Let us fix ϵ = 1\2, and pick (x, y) ∈ X2 \∆. By using the continuity of φ, there exists

a neighborhood U ′xy × V ′xy of (x, y) such that

| φ(x, y)(z)− φ(u, v)(z) |< 1\2 for every (u, v) ∈ U ′xy × V ′xy, and z ∈ X.
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Since φ is a function which carries every (x, y) ∈ X2 \∆ to a function which is always

0 or 1 then φ(x, y) = φ(u, v) for every (u, v) ∈ U ′xy × V ′xy.

For a fixed (x, y) ∈ X2 \∆ we define the set P = {(u, v) ∈ X2 \∆ : φ(u, v) = φ(x, y)}.

Since φ(x, y) and φ(u, v) are continuous functions, P is closed. In addition to this, by using

the fact that φ is a locally constant function, P is also open. It is clear that for any two

sets P1 and P2 which are defined this way, either P1 = P2 or P1 ∩ P2 = ∅. So, we have our

partition P.

Finally, for a point (x, y), the sets (φ(x, y))−1(0), and (φ(x, y))−1(1) are clopen sets.

Also, P = {(u, v) ∈ X2 \∆ : φ(u, v) = φ(x, y)} ⊂ (φ(x, y))−1(0)× (φ(x, y))−1(1).

Although we do not have an example which is weakly continuously Urysohn, but not

continuously Urysohn there is a candidate. The next example, due to Reed [15]. In [2] it

is verified that X is a continuously symmetrizable space. That implies a zero-set diagonal,

which implies wcU.

In [2] it is also proved that X is not submetrizable. Since submetrizability implies cU,

there is still hope about this space not being cU.

Example 6.3. Let X = X0 ∪ X1 ∪ U , where X0 = R × {0}, X1 = R × {−1}, and U =

R×(0,∞). If x = (a, 0) ∈ X0, then x′ denotes (a,−1) ∈ X1. For n ∈ N, and x = (a, 0) ∈ X0

we let Vn(x) = {x} ∪ {(s, t) ∈ U : (t = s − a) ∧ (0 < t < 1
n
)}, and Vn(x

′) = {x′} ∪ {(s, t) ∈

U : (t = a− s) ∧ (0 < t < 1
n
)}.

The topology τ on X is induced by isolating all elements of U , and using the collections

{Vn(x) : n ∈ ω, n ≥ 1} and {Vn(x
′) : n ∈ ω, n ≥ 1} as bases of the topology at x and x′,

respectively.
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