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Abstract 
 

 
The use of technology in mathematics education has been strongly encouraged by 

the National Council of Teachers of Mathematics (NCTM, 2000) and the American 

Association of Two-year Colleges (AMATYC, 2006). Researchers have envisioned 

technology’s potential in grand ways, including democratization of access to higher 

mathematics (Kaput, 1994). There are challenges to the realization of that dream. For 

example, innovation in technological advances often outpaces the evaluation of how 

those advances can be best applied (Epper & Baker, 2009).The need for improved use of 

technology in adult developmental mathematics education has been documented 

(Caverly, Collins, DeMarais, Otte, & Thomas, 2000; Epper & Baker, 2009).  

At the same time, adult developmental mathematics students’ need for support 

and help to realize their educational dreams is a vital current issue (Bryk & Treisman, 

2010). This study seeks to provide insight into how the use of mathematics technology 

affects the internal mathematical representations possessed by adult developmental 

mathematics students. It is hoped that such insight may provide teachers of adult 

developmental mathematics students with research based understanding which will aid 

them in incorporating the use of technology.  

Open recruitment was done on the campus of a mid-sized university in the 

southern United States. One subject was interviewed 7 times and then a second subject 

was interviewed 6 times. Each interview was video taped with three feeds to capture the 
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subjects’ interactions with both paper and technology and to record the subject’s 

movement and facial expressions. Qualitative analysis was done with the aid of Atlas.ti 

software during and after data collection.  Each case was considered separately, 

compared and contrasted and merged results were also considered.  Results suggest ways 

in which technology can impact student thinking.  
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1. Introduction 

In a junior high school in the southern United States, students have access to laptop 

computers and regularly interact with technological representations of mathematics. These may 

include charts, graphs, geometric shapes, algebraic equations, or other mathematical objects. 

Those objects may be represented via mathematics software, internet sites, or on hand-held 

devices such as calculators. Many of the students at this school are accelerated beyond the 

normal curriculum for their grade, increasing their future educational opportunities. Across the 

river at a mid-sized university, over 500 adult developmental mathematics students try to make 

up for lost opportunities to learn. Technology laboratories are provided for them at the 

university, but the students may be either reluctant to use them or unaware of their potential. This 

situation is symptomatic of issues regarding the use of technology in mathematics education. 

New mathematics technology continues to be developed, and may even be made available to 

teachers and students, but is it being used wisely to help the students that are most in need of the 

help it can provide? Examining the situation of adult developmental mathematics students may 

be an important avenue for the examination of this question.  

Statement of the Problem 

The need for more attention to ways to incorporate technology into developmental 

education has been documented (Epper & Baker, 2009; Caverly et al., 2000). Developmental 

education, sometimes referred to as remedial education, refers to educational efforts which serve 

college students who need additional preparation in order to be successful (Payne & Lyman, 
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1996). Developmental mathematics “has become an insurmountable barrier for many students, 

ending their aspirations for higher education” (Bryk & Treisman, 2010, p. B19). Instructors may 

not be familiar enough with the learning barriers that adult students face to choose technology 

which will meet their needs. Adult learners also may not have the verbal comprehension 

necessary to successfully interact with software designed to supplement instruction (Li & 

Edmonds, 2005).  The use of software designed to tutor them, provide them with extra practice, 

and sometimes engage them in dialog is sometimes known as computer-assisted instruction 

(CAI) and it is common in adult developmental mathematics programs ("CAI," 2003; Caverly et 

al., 2000). Other uses of technology in developmental programs include internet sites, distance 

learning technology, computer algebra systems, graphing calculators and spreadsheets (Epper & 

Baker, 2009). 

The American Mathematical Association of Two-Year Colleges (AMATYC) has adopted 

the use of technology as one of its basic principles (American Mathematical Association of Two-

Year Colleges, 2006; Epper & Baker, 2009). AMATYC’s (2006) document Beyond Crossroads, 

which seeks to provide help in implementing mathematics education standards for those teaching 

beginning college students, states that “Technology should be integral to the teaching and 

learning of mathematics” (p. 11). The description of the principle states 

Technology continues to change the face of mathematics and affect the relative 

importance of various concepts and topics of the discipline. Advancements in technology 

have changed not only how faculty teach, but also what is taught and when it is taught. 

Using some of the many types of technologies can deepen students’ learning of 

mathematics and prepare them for the workplace (p. 11). 
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Even though it is considered integral to teaching and learning and has the potential to 

exert a positive influence, innovation in technology has outpaced its evaluation (Epper & Baker, 

2009). There are also many questions still to be resolved in developmental mathematics such as 

curriculum content and sequencing which affect the use of technology. Software packages may 

follow a broad and shallow curriculum that is inappropriate for the needs of adult developmental 

mathematics students. Epper and Baker (2009) have suggested several steps to improve the use 

of technology in adult developmental mathematics education including blending best practice 

with leading technological innovations, providing greater research evidence, increasing 

technological development for education, and overcoming resistance to change in the community 

college culture.   

Theoretical Foundations in Representation 

In order to provide the research evidence which adult developmental mathematics 

educators need, it is necessary to understand the use of representation in mathematics education 

because of the connections between technology and representation. The National Council of 

Teachers of Mathematics (NCTM) (2000) defined mathematical representation as both “the act 

of capturing a mathematical concept or relationship in some form” and “the form itself” (p. 66). 

They also referred to the influence of computers and calculators on representation, noting that 

technology has increased the number of representations available to students (NCTM, 2000).  

They also noted that technology allows students access to more representations, some of which 

students may not otherwise be able to access. New dynamic technology, which allows the 

movement of an object represented technologically, often affecting the movement of another 

connected object,  transforms the possibilities for representation and may have a great impact on 

how mathematical objects are conceptualized and mathematical meanings are internalized 
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(Falcade, Laborde, & Mariotti, 2007; Moreno-Armella, Hegedus, & Kaput, 2008). Researchers 

have noted the connection between technology and representation and the need for further study 

of these connections (Hollenbeck & Fey, 2009; Stylianou, Smith, & Kaput, 2005). 

Many studies over the past ten years have looked at links between the use of technology 

and representation (cf. Abramovich & Ehrlich, 2007; Falcade, Laborde, & Mariotti, 2007; Kaput, 

1998; Yerushalmy & Shternberg, 2001). A variety of technologies in various settings have been 

examined, such as a professional development setting in which spreadsheets were examined as 

cognitive tools (Alagic & Palenz, 2006); the creation of computer technology to link middle 

grades classrooms for a study of multiple representations of functions (Hegedus & Kaput, 2004); 

the examination of the use of calculator based laboratories (CBLs, which use sensors to translate 

real-world information into calculator data for analysis) with students (Lapp & Cyrus, 2000) and 

preservice teachers (Sylianou, Smith, & Kaput, 2005). The idea of a function, central to some of 

these studies, is a mathematical relationship in which one set of data is matched with another set 

of data so that each piece of data in the input set is matched to one and only one piece of data in 

the output set. It is one of the most important topics in mathematics (O'Callaghan, 1998).  

Purpose of the Study 

This study seeks to add to the work which has been done linking technology and 

representation and broaden its scope to specifically address the needs of adult developmental 

mathematics students. It has been shown that technology has a potential impact on learners’ 

conceptualizations and internalization of mathematical meaning (Moreno-Armella, Hegedus, & 

Kaput, 2008). It has also been shown that teachers of adult students need more understanding of 

their learning barriers (Li & Edmonds, 2005). The focus of this study is on the effect of 

technology on adult developmental mathematics students’ understanding as evidenced by the 
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apparent changes in their internal representations of mathematics - those mathematical forms 

which exist within the students’ mind (Goldin, 2003). Those apparent changes and their 

relationship to the subject’s interaction with mathematics technology will be examined. The 

questions specifically are these:  

1. Following the introductory use of dynamic computer technology to explore mathematical 

concepts built upon previous knowledge, what internal representations of those concepts 

do developmental mathematics students possess?  

2. What can be determined about the validity and usefulness of those representations?  

3. How well do those representations endure over a period of time and in the company of 

tasks which build upon them?  

Significance of the Study 

The current study has the potential to assist developmental educators in meeting the 

needs of adult learners. It can help those educators realize the potential of technology to improve 

developmental mathematics instruction for all students (Epper & Baker, 2009).  Bryk and 

Treisman (2010) recently noted the dilemma of developmental mathematics students who may 

work under great pressures in their personal lives. They may put all the effort they can into 

completing the mathematics sequences designed to help them get ahead and still fail to complete 

them. Describing the case of a single mother working the late shift at a supermarket and trying to 

go back to school, Bryk and Treisman (2010) noted that she said “I just couldn’t do it anymore.” 

They noted that for "this student and too many others, the dream stops here" (p. 19). They also 

noted that as many as 70 percent of students placed in developmental mathematics courses do 

not complete them. Technology has the potential to change such students’ lives (Epper & Baker, 

2009). The dream need not stop. The results of this study can provide adult developmental 
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mathematics educators with information that will help them to better understand their students’ 

thinking and make more informed choices as to the technology-based mathematics instruction 

they provide those students.  

A Brief Summary of the Content to Follow  

In chapter 2, the review of the literature will examine the role of technology in 

mathematics education, the needs and concerns of adult developmental mathematics students’ 

mathematical representations, and ideas relating technology and representation as well as 

specific studies combining the two. Literature related to the ideas of constructivism will be 

presented in order to provide a theoretical setting for the study of students’ interactions with 

technological representations. Chapter 3 will first discuss the theoretical basis for the methods 

chosen and then describe the specific procedures. The theoretical presentation will conclude with 

a brief look at lessons learned during the course of a pilot study. In chapter 4, following an 

introduction to the two subjects of the case, the progress of the teaching experiment in each of 

their cases will be described. This will be followed by a look at the theoretical ideas which were 

investigated and discovered as they emerged from the data. In chapter 5 limitations and 

conclusions will be presented, including a discussion of what was learned about the research 

questions. Implications for teachers of adult developmental mathematics students will also be 

noted as will suggestions for further research.  It is hoped that these results may help empower 

adult developmental mathematics students for a viable academic future. 
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2. Review of the Literature 

In order to understand the influence of technology use on the mathematical thinking of 

adult developmental mathematics students, it is important to understand issues related to 

technology use in mathematics education in general and issues facing adult students. Ideas 

surrounding the use of mathematical representations are also important because of their close 

connection to the use of technology. This review will begin with an examination of the benefits 

and challenges associated with the use of technology in mathematics education. Following this 

the particular needs of adult developmental mathematics students will be considered. This will 

include information about their general needs as well as the issues related to the use of 

technology which they face. The role of representation in mathematics education will be 

carefully examined. This examination will conclude with the presentation of an interpretive 

framework with which student thinking might be considered. Once this framework has been 

established, the connections between technology and representation will be more carefully 

considered and several studies relating the two will be examined. Because knowledge and the 

development of knowledge is to be examined, an epistemology must exist as part of that 

examination, and so literature related to constructivism will also be presented. This will provide 

a theoretical foundation for understanding not only student thinking, but the way knowledge of 

student thinking can be built. Conclusions and research questions will follow. Note that a 

glossary defining key terms is provided in Appendix A.  
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Technology in Mathematics Education 

Educational technology continues to be reinvented at a rapid pace, and it is sometimes the 

case that research, access, and implementation have difficulty keeping up with the pace of 

invention and with each other (Fey, 1984; Fey, Hollenbeck, & Wray, 2010). In order to serve 

students, promote positive change, and understand the role of technology in mathematics 

education, both the benefits and the challenges associated with it must be considered. Table 1 is 

provided below as a summary of some of these ideas.  

Table 1 

 

Benefits and Concerns of the use of Technology in Mathematics Education 

Benefits 

 

Concerns 

New forms of mathematical activity (Moreno-

Armella et al., 2008)  

Opportunity for student initiative and 

exploration (Fey, 1984; Fey et al., 2010)  

The ability to visualize as mathematicians do 

(Cuoco & Goldenberg, 1996) 

Provides external reference objects which 

helps make their thinking explicit and clarify 

their ideas (Hennessy, Fung, & Scanlon, 2001) 

Quicker problem solving “feedback loops” 

(Shaffer & Kaput, 1998, p. 111) 

May serve the role of active listener (Connell, 

  

1998) 

 

Ensuring that conceptual understanding is 

center stage and student thinking is not 

replaced (Fennell & Rowan, 2001; Fey et 

al., 2010)  

Both technical and mathematical knowledge 

are needed to take advantage of learning 

possibilities (Lingefjard, 2008) 

Selection of appropriate tasks is important 

to taking full advantage of technology use 

(Alagic & Palenz, 2006; Gadanidis et al., 

2004) 
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Benefits 

 

Concerns 

More direct access to mathematics structures 

allowing a greater impact on their minds 

(Moreno-Armella et al., 2008) 

Encourages dynamic visualization 

(Yerushalmy et al. 1999, cited by Presmeg, 

2006) 

Encourages dynamic visualization 

(Yerushalmy et al. 1999, cited by Presmeg, 

2006) 

Move more flexibly between different 

representations (NCTM, 2000) 

 

Time, training, and immersion in the 

technology are needed for those using it to 

learn to think with technology rather than 

about it (Gadanidis, 2008) 

Gaps exist between the level of technology 

available and the practical use being made 

of it (Atan, Suncheleev, Shitan, & Mustafa, 

2008; Hollenbeck & Fey, 2009; Oncu, 

Delialioglu, & Brown, 2008) 

 

Benefits of technology to mathematics education. Digital technologies are capable of 

providing new forms of mathematical activity in socially rich ways (Moreno-Armella et al., 

2008). They redefine the practices, content, and ways of knowing about a subject. If a certain 

technology is absent, different knowledge will be produced (Villarreal, 2008). When present, 

technology can provide an opportunity in the learning environment for student initiative and 

exploration (Fey, 1984; Fey et al., 2010).  

Mathematicians have been known to use creative imagery and metaphor to understand 

and think about mathematics. Some researchers believe that through technology, students can be 
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provided with the opportunity to "tinker with mathematical objects just as they might tinker with 

mechanical objects" and thus develop the ability to visualize as mathematicians do (Cuoco & 

Goldenberg, 1996, p. 17). Immersion in dynamic, technological mathematical environments 

could have a great impact on how students conceptualize mathematical objects and what they 

consider doing mathematics to entail (Moreno-Armella et al., 2008). Dynamic environments 

allow mathematical representations to be set in motion in some way.  Not all technological 

representations of mathematics are designed to do so, as is the case with some types of computer 

aided instruction (CAI) software which may only involve the static input of student responses to 

questions (Kaput, 1992). The influence of dynamic computer environments continues to be an 

area of significant focus in the study of education for effective mathematical visualization 

(Presmeg, 2006). Researchers have conjectured that computer models can provide students the 

start they need to be able to engage in more advanced mental visualization of mathematical 

concepts (Cuoco & Goldenberg, 1996). 

Technology can provide an external reference object which encourages students to make 

their thinking explicit and clarify their ideas (Hennessy, Fung, & Scanlon, 2001). It allows 

students greater opportunity to experience mathematics as an "experimental enterprise.” The 

problem solving "feedback loops" are quicker and not dependent on symbolic manipulation 

(Shaffer & Kaput, 1998, p. 111).  Dynamic media allow students more direct access to 

mathematical structures and thus allow those structures to have greater impact on the minds of 

students (Moreno-Armella et al., 2008). Yerushalmyet al. (1999, as cited in Presmeg, 2006) 

noted that the use of computer software for mathematics encourages dynamic visualization. The 

visual process used to classify the types of problems in their study was enhanced by the use of 

dynamic software which allowed the users to move flexibly between different representations. 
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Iterative examples developing the concept of limit and the asymptotic behavior of certain 

functions, and transformations are some of the mathematical topics made more accessible 

through the use of technology (NCTM, 2000).  

Concerns regarding technology in mathematics education. Care must be taken to 

ensure that conceptual understanding, rich in connections to other ideas, is center stage and that 

students have the chance to produce their own representations of what is occurring within the 

technological representation (Fennell & Rowan, 2001; Goldin, 2003; Lapp & John, 2009). 

Sometimes materials used to represent mathematical thinking replace student’s thinking rather 

than represent it (Fennell & Rowan, 2001). Good representations show how students are 

thinking. Students may be taught how to use tools such as hand-held modeling objects known as 

manipulatives or technological representations as the only way to solve problems and when this 

happens, the tool may actually interfere with learning and fail to build mathematical 

understanding. Forms of representations can become ends in themselves, which is not productive 

for students. (Fennell & Rowan, 2001). It is just as harmful to use manipulatives or technological 

tools in a formulaic "do as I do" way as it is to have students blindly follow algorithms. The goal 

is to have students use manipulatives and technological tools to think with rather than as answer 

machines.  Van de Walle (2007) stated that "A mindless procedure with a good manipulative is 

still just a mindless procedure" (Van de Walle, 2007, p. 34). When the focus of teaching is on 

attitudes, atmosphere, and objectives, and the teaching materials are seen as a means to 

maximize those aspects of the lesson, then those materials are not an end in themselves 

(Villarreal, 2008). Rather than being used for mindless procedures, the computer may, for 

example, serve the role of an active listener, doing as the student tells it to do, and assisting the 

student in constructing their own knowledge (Connell, 1998).  
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Students must have both technical and mathematical knowledge to take advantage of the 

possibilities for learning that a technological tool provides (Lingefjard, 2008).  This requires time 

and training if students are to learn to think with the technology. When human beings immerse 

themselves in using a technology, then they can learn to think with that technology, rather than 

about that technology (Gadanidis, 2008). Selection of problems is another important aspect of 

accomplishing learning goals in a technology oriented environment. This is particularly 

important when time must be taken to assist students in becoming proficient with the tools being 

used (Alagic & Palenz, 2006).  

Interactive examples may be accompanied by instructions for students and teachers that 

have been designed to foster investigation, problem solving, and student discovery. Those 

examples, however, may not support the discovery envisioned by their creators (Gadanidis, 

Sedig, Liang, & Ning, 2004). Such tasks should be analyzed to see whether or not they support 

the desired pedagogy. One quality to look for is whether or not the task provides appropriate 

mathematical patterns related to the investigation, so that students may observe the relationships 

found in the objectives for the lesson. For example, if the investigation calls for students to 

analyze relationships between surface area and volume, are those outputs displayed together on 

the same graph or separately on different graphs? What would help the student more? Are 

different helpful representations present, such as equations, ratios, tables, graphs, and 

illustrations, if they would prove useful to the student? (Gadanidis et al., 2004). Even considering 

the benefits and attractions of interactiveness, students may be more likely to engage with an 

investigation involving real-life content than a purely mathematical investigation (Gadanidis et 

al., 2004). Those producing interactive visualizations for the classroom would benefit from using 

a review process including feedback from classroom teachers and suggestions for improvement. 
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The design of such tasks should include consideration of principles of both presentation and 

interaction, incorporating the maximum mathematical benefit for the student. This includes 

making the information intelligible, engaging the learners with the information and facilitating 

mental interaction with the material (Gadanidis et al., 2004). 

Though technology has advanced, the use of technology has not always kept pace with its 

development. Access to technological tools is easier than the far greater challenge of determining 

how to use those tools effectively (Fey et al., 2010). There may be gaps between the level of 

technology available and its practical applications in mathematics education (Atan, Suncheleev, 

Shitan, & Mustafa, 2008; Hollenbeck & Fey, 2009). Merely using the technological tool to find 

solutions does not guarantee knowledge of broader principles. Care must be taken that student 

conjectures arising from the use of software are subject to appropriate mathematical proof (Fey 

et al., 2010). It should also be noted that despite the many advantages of technology, paper and 

pencil provides a recording media which leaves an accessible record of what happened, 

something which technology cannot always provide (Goldin, 2003). 

Fey spoke in 1984 of the challenges of incorporating technology into mathematics 

education. He noted then that the traditional pattern for educational change, in which a proposal 

is made by professional educators, curriculum is written, and classroom implementation follows, 

underestimates the complexity of the actual process of change (Fey, 1984). In some instances, 

technology may be available to teachers, but may not be used to support student learning (Oncu, 

Delialioglu, & Brown, 2008). Hollenbeck and Fey (2009) illustrated how a variety of the latest 

technological tools, if available to teachers, could be used to enhance learning in the mathematics 

classroom. They concluded that appropriate use of technological instructional tools should be a 

high priority for mathematics education researchers (Hollenbeck & Fey, 2009). This echoes the 
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suggestion Fey made in 1984 that, in spite of the challenges in implementation, the best use of 

technology in the classroom be determined without the research being limited by concerns over 

how to make that technology available. One of the populations in need of such work is adult 

learners. Following is an examination of their general needs and then a more specific look at the 

role of technology in their mathematics education.  

Adult Developmental Mathematics Students 

I will first present some general information about adult developmental mathematics 

education. I will then look at particular challenges faced by the students in these programs. 

Following this, will be an examination of the use of technology for adult developmental 

mathematics students.  

Introduction to adult developmental mathematics education. One of the subjects of 

the current study instructed the tutors in the mathematics lab she frequented to “pretend” she was 

“in middle school.” She seemed to understand and reflect the truth that many students in the U.S. 

begin to fall behind at the point in their education where algebra course work customarily begins 

(Epper & Baker, 2009). This is the mathematical content on which developmental students are 

assessed for placement. Developmental mathematics programs may be the key to success for 

many students. They seek to bridge the gap between what has been learned in high school and 

what is needed for success in postsecondary education (Epper & Baker, 2009). Without 

developmental education, many people would never have the opportunity to attend college or 

improve their employment possibilities (Gerlaugh, Thompson, Boylan, & Davis, 2007).  Table 2 

displays some of the statistics regarding adult developmental mathematics education. Title IV 

institutions are those which participate in certain federal student aid programs (Aud et al., 2010). 
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Table 2  
 
Adult Developmental Mathematics Education Summary of Cited Statistics 
Item 
 

Percent Source and year 

All Title IV institutions offering developmental mathematics 71% Parsad and Lewis 

(2003) NCES report 

Public 2-year institutions offering developmental mathematics 97% Parsad and Lewis 

(2003) NCES report

Public 4-year institutions offering developmental mathematics 78% Parsad and Lewis 

(2003) NCES report

Freshmen surveyed at all types of institutions who were enrolled 

in developmental mathematics  

>20% Parsad and Lewis 

(2003) NCES report

Private 2–year institutions freshmen surveyed who were 

enrolled in developmental mathematics 

33% Parsad and Lewis 

(2003) NCES report

Students in 2-year colleges requiring developmental 

mathematics 

>50% Shwarte (2007) 

Those who test into developmental mathematics that pass on the 

first attempt (some states) 

40- 

50% 

Trenholm (2006) 

Percent of students in Nevada graduating from high school in 

2006 and attending college the following fall that enrolled in 

remedial mathematics during their first year of college 

37.6% Fong, Huang, & 

Goel (2008) 

NCES report  

 

More developmental courses in mathematics are generally offered than in the other two 

standard developmental topics, reading and writing (Parsad & Lewis, 2003). The National Center 

for Educational Statistics (NCES) (Parsad & Lewis, 2003) published a special report in 2003 
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focusing on what they call remedial education. They reported that in the year 2000, 71% of all 

Title IV degree-granting institutions with freshmen offered developmental courses in 

mathematics. When broken down further, it was noted that 97% of public 2-year institutions 

offered developmental courses in mathematics, as did 78% of public 4-year institutions. More 

than one fifth of freshmen at all institutions in the survey enrolled in developmental mathematics 

as freshmen. For private 2-year institutions, this figure rises to 35% (Parsad & Lewis, 2003). In a 

later study published by NCES, Fong, Huang, and Goel (2008) reported that of 4,653 students 

graduating from Nevada public high schools in 2006 and enrolling in at least one mathematic 

course in a Nevada public college the following school year,  37.6% enrolled in a remedial 

mathematics course. Schwarte (2007) stated an even higher figure, noting that more than half of 

the students in two-year colleges require developmental mathematics instruction to prepare them 

for college-level mathematics work. Trenholm (2006) noted further that in some states, only 40-

50% of those that test into developmental mathematics courses pass on the first attempt. These 

figures show the large population being served, the need for improvement, and the implication 

that research into adult developmental mathematics education is important.  

Lesik (2007) showed that developmental mathematics can be effective, noting that the 

risk of college drop-out among developmental mathematics students was significantly lower than 

for similar students who did not participate in developmental mathematics programs (Lesik, 

2007). Her study followed 1,276 freshmen at a 4-year institution and noted that 536 eventually 

dropped out. She reduced the sample to those students who were similar, that is who scored 

"within 5 points on both sides of the cutoff score" on a placement test which determined whether 

or not they were assigned to developmental mathematics courses. This resulted in n = 212 (p. 

597). A statistical analysis showed that the risk of a student dropping out was significantly lower 
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for similar students who did participate in developmental mathematics than it was for those who 

didn't participate in developmental mathematics. After the first year, those who did participate 

had "an estimated risk of dropout" of 8.2% (p. 601). For those who did not participate, the risk 

was 27.7%. 

A study by Duranczyk and Higbee (2006) showed that students and colleges both benefit 

from developmental mathematics programs at 4-year institutions, as well as at 2 year institutions. 

They surveyed 20 and interviewed 18 people who had completed developmental coursework at 

"a comprehensive, urban, public university in the Midwest" (p. 24). One practical aspect of being 

required to take developmental courses at a different location is the inconvenience of working 

through the registration process of two different institutions. Some respondents also indicated 

that the convenience of being able to easily transfer from a course in which they were enrolled, 

but having difficulty, to one which would bolster their chances of success at the same institution 

was a factor in their eventual success (Duranczyk & Higbee, 2006). Table 3 summarizes some of 

these ideas related to the importance and benefits of adult developmental mathematics education.  

Table 3  
 
The importance and benefits of adult developmental mathematics education 
Author 
 

Year Major ideas 

Gerlaugh, Thompson, 

Boylan, & Davis 

2007 The importance of 

developmental education in 

opening the door to 

opportunity 
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Author 
 

Year Major ideas 

Lesik  2007 Drop-out rates among 

students enrolled in 

developmental mathematics 

lower than for similar 

students who were not so 

enrolled 

Duranczyk and Higbee  2006 Benefits of having 

developmental mathematics 

available at 4-year 

institutions shown 

Galbraith and Jones 2008 Describe challenges of 

teaching adults 

 

Interested parties, including public policy groups and researchers, who have noted the 

role of mathematics as a gatekeeper to future success, have focused attention on developmental 

mathematics education and the feasibility and desirability of new strategies and innovations 

(Epper & Baker, 2009). Regarding those who teach developmental mathematics students, 

Galbraith and Jones (2008) have noted, "Teaching developmental mathematics in a community 

college is demanding, challenging, and rewarding for those who engage in the endeavor" (p. 35). 

Despite the effectiveness of developmental mathematics in many cases, the numbers cited by 

Trenholm (2006) are unacceptably high. Alternative educational methods for this population 
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must be considered (Trenholm, 2006).  In order to assess such methods, it’s necessary to 

understand the needs of adult learners. A look at some of the challenges they face follows. 

Challenges faced by adult developmental mathematics students. Special needs of 

adult developmental mathematics students include understanding and navigating the educational 

system, accurately assessing their own needs, managing non-cognitive factors affecting their 

education, and access to knowledgeable teachers and other resources.  Non-cognitive factors 

include influences unrelated to the student’s knowledge. They include factors such as self-

efficacy and motivation, which have been shown by research to be important in developmental 

mathematics achievement. In their study, Wadsworth, Husman, Duggan, and Pennington (2007) 

defined self-efficacy as a person’s belief in their own ability to be effective in managing future 

situations. They looked at achievement along with measures of learning strategies and self-

efficacy in 89 developmental mathematics students enrolled in an online course. They measured 

self-efficacy by asking students to rate their confidence in their ability to complete certain types 

of mathematics problems relevant to the course in which they were enrolled.  They found that 

achievement was in part affected by self-efficacy and certain learning strategies (motivation, 

concentration, information processing, and self-testing) (Wadsworth et al., 2007). Obiekwe 

(2000) in his discussion of the instrument used by Wadsworth et al. noted that concentration was 

thought of as a student’s ability to give attention to an academic task. He described self-testing as 

a student’s ability to prepare for tests and classes, and information processing as a student’s 

ability to process knowledge. Wadsworth et al., (2007) noted that direct instruction, a term they 

seem to use to indicate in-classroom instruction with a teacher present, as a supplement to 

computer instruction can help students improve in these areas. For example, online course 
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instructors can meet face to face with students and discuss with those students the learning 

strategies they will need in order to be successful.  

In addition to low self-efficacy and a need for better learning strategies, research has 

identified some of the other factors that affect adult students. For example, those who are placed 

in remedial mathematics courses are disproportionately minority and first-generation college 

students, placing them at risk (Epper & Baker, 2009). Some have also found that a higher 

percentage of developmental mathematics students have learning disabilities (Epper & Baker, 

2009). First-generation college students, recent immigrants, and students of color tend to be at a 

disadvantage because of their family's lack of understanding of the educational system and the 

implications for the future of non-college high school tracking (Collins, Bollman, Eaton, Otte, & 

Thomas, 2000). Those whose education includes a significant time gap between the completion 

of their last mathematics course in high school and the beginning of their first college course 

may find it difficult to be successful in their college mathematics course (Collins et al., 2000). 

Some who struggle in college mathematics may have difficulty correctly identifying what it is 

that is keeping them from succeeding (Hall & Ponton, 2005) 

Standardized tests, state placement tests, institutional placement tests, and the student’s 

history of courses taken and grades earned all may be factors in students’ college mathematics 

placements (Collins et al., 2000). "Students may resist or feel insulted by” those placements 

(Collins et al., 2000, p. 37). In addition, the placement tests they may be required to take may not 

only be far removed from their last mathematics course, as has been noted, but also may not 

match the instruction they were given. For example a student who took a calculator based 

curriculum in high school may not be permitted the use of a calculator on the placement exam 

(Collins et al., 2000).  
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This discussion shows that adult developmental mathematics students may need 

assistance outside of class to address both academic and non-academic factors. Research 

indicates that non-cognitive factors, such as time management and motivation, influence 

developmental students' success, but non-cognitive assessment is infrequently employed 

(Gerlaugh et al., 2007).  The time demands on adult developmental mathematics students may 

make it difficult for them to participate in enrichment programs designed to teach skills needed 

for success in college (Collins et al., 2000).  Many adult developmental mathematics students 

have multiple responsibilities outside of school and value flexibility of delivery and readily 

available support services (Epper & Baker, 2009).  

One of the challenges developmental education faces is that faculty have come from 

other fields and have not had professional training in dealing with developmental students. They 

may also not have had training in teaching with technology (Caverly et al., 2000). Though 

developmental mathematics instructors may all believe that mathematical understanding is their 

primary goal, they do not all think of that understanding in the same way. Many believe 

mathematical understanding to be procedural, consisting of an ability to perform a sequence of 

actions. Others believe it to imply conceptual knowledge, which has been described as 

knowledge that is part of a network of connections (Kinney & Kinney, 2002). Developmental 

mathematics teaching practices currently emphasize procedural fluency over conceptual 

understanding (Epper & Baker, 2009). Faculty members may not have had enough professional 

development opportunities. They are also under pressure to quickly do the job that was not done 

in high school, and may feel there is not time to teach for both concept and fluency. Some argue 

that teaching conceptually will aid in fluency. Those who seek to make improvements in courses 

may, nevertheless, reduce content or increase the number of courses in which the content will be 
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covered. Some believe there is not enough time to teach what is required without the use of 

technology (Epper & Baker, 2009). Table 4 summarizes some of the needs of adult learners 

which have been discussed.  

Table 4 
 
Needs of Adult Learners 
Author  Year Key ideas 

Wadsworthet 

al.  

2007 Adult learners achievement affected by self-efficacy and learning 

strategies.   

Epper & 

Baker 

2009 Adult developmental populations are disproportionately minority and 

first-generation college students. They also have a higher percentage of 

learning disabilities as well as many responsibilities outside of school.  

Faculty members are under pressure to quickly do a job that was not 

done in high school 

Collinset al. 2000 Family’s lack of understanding of educational system has affected many 

adult developmental mathematics students.  

A time gap between high school and college may hinder their success.  

“Students may resist or feel insulted by” placement tests (p. 37) 

Placement tests may not match the instruction that they received  

Hall & 

Ponton 

2005 They may have difficult identifying what it is that is keeping them from 

succeeding 
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Author  Year Key ideas 

Gerlaugh et 

al. 

2007 Non-cognitive factors such as time management are important but 

seldom assessed 

Caverly et al. 2000 Faculty may have come from other fields and lack appropriate 

professional development 

 

Technology use in adult developmental mathematics education. Technology found in 

use in developmental mathematics classrooms includes computer assisted instruction (CAI) 

software, internet sites, distance learning technology, computer algebra systems, graphing 

calculators, and spreadsheets (Epper & Baker, 2009). Almost one third of all institutions 

indicated that computers are frequently used by students as instructional tools in developmental 

mathematics (Parsad & Lewis, 2003). Such technology can be beneficial for developmental 

mathematics students.  

The American Mathematical Association of Two-Year Colleges (AMATYC) has adopted 

the use of technology as one of its basic principles (AMATYC, 2006). Technology, however, can 

only truly transform developmental education when it is used to foster change in student 

behavior, so that students take control of their own learning and persist toward the successful 

accomplishment of their worthy goals (Brothen, 1998).  

The following discussion will start with a look at issues particular to adult students using 

technology. As very few studies exist which pair adult learners specifically with the use of 

dynamic geometry or algebra software, I will present the reader with a closer look at studies 

involving CAI, which is the most dominant form of computer technology used with adult 
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learners. The technology choices adult developmental mathematics instructors must make will 

then be examined.  

Issues in technology use for adult students.  Although it has been shown that the use of 

technology is critical to the success of developmental mathematics education, innovation has 

outpaced evaluation (Epper & Baker, 2009). There are also other challenges to implementation. 

Those working with developmental mathematics students must carefully consider the role of 

race/ethnicity and prior academic performance, both of which may have bearing on the choices 

those students make about the use of educational resources made available to them, including 

computer technology (Duranczyk, Goff, & Opitz, 2006).  

One factor to consider when planning for the use of technology is the relatively low rate 

of computer ownership of students enrolled in developmental mathematics. Computer 

laboratories must be available and provide the features needed (Epper & Baker, 2009). For 

students to take advantage of the opportunities technology provides, "it must become a seamless 

part of the learning environment" (Epper & Baker, 2009, p. 9). Online learning faces the 

problems of student discipline, cost, and faculty acceptance (Epper & Baker, 2009).  

Instructors' perspectives may influence their decisions as to the use of technology in their 

classrooms (Kinney & Kinney, 2002). Epper and Baker (2009) reported tension between 

procedural fluency and conceptual understanding approaches in their review of practices in 

developmental mathematics education. This tension had implications for the use of technology 

(Epper & Baker, 2009). Some have noted that both fluency and conceptual understanding are 

vital, but curriculum content and sequencing questions have yet to be resolved. Many 

developmental mathematics texts and software packages possess the "mile wide and an inch deep 

. . . laundry list" quality that afflicts the U.S. K-12 curriculum (Epper & Baker, 2009, p. 5). More 
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technological applications in developmental mathematics focus on procedural fluency than on 

conceptual understanding due in part to the current demands of the market (Epper & Baker, 

2009). Table 5 summarizes some of the issues in technology use for adult students.  

Table 5 

Issues in technology use for adult students  
Author   Year Concerns noted 

Epper & Baker 2009 Low rate of computer ownership among students 

enrolled in developmental mathematics 

Online learning hampered by student discipline, cost, and 

faculty acceptance 

Tensions between faculty beliefs regarding procedural 

fluency vs. conceptual understanding affect the use of 

technology 

Software packages may have the same defects that 

textbooks have, such as a “mile wide inch deep” 

curriculum or a focus on procedural over conceptual 

understanding 

Duranczyk, Goff, & 

Opitz 

2006 Race/ethnicity and prior academic performance may 

have a bearing on choices students make about their use 

of educational resources available, including technology 

Kinney & Kinney 2002 Faculty perceptions affect decisions to use technology 

 

Computer assisted instruction. Computer assisted instruction (CAI), which provides a 

tutoring supplement to or in some cases replaces classroom instruction, is found by some studies 
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to be used in more that 40% of community colleges in the U.S. and is frequently referred to in 

developmental mathematics education literature (Epper & Baker, 2009).  Some have referred to 

such computer use as computer-mediated learning, defining it to be learner centered computer 

intervention in which the computer provides the instruction, requires student responses, provides 

immediate feedback, and tracks students' progress (Kinney & Kinney, 2002). This review will 

consider computer assisted instruction, computer-mediated learning as well as online instruction 

to all be under the umbrella of CAI. An examination of the issues related to this particular form 

of technological intervention may assist in the effective implementation of other forms of 

technology as well. Since CAI is the predominant form which technology use in adult 

developmental education currently takes, an examination of its use may also point to reasons 

why other forms of technology use with adult developmental mathematics students, such as the 

one examined in the current study, should also be considered. Table 6 summarizes some of the 

advantages and disadvantages to the use of CAI which will be discussed.  

Table 6  
 

Advantages and disadvantages of computer assisted instruction (CAI)   
Authors Type of work Advantages to the use 

of CAI noted 

Disadvantages to the use 

of CAI noted 

Caverly et 

al., 2000 

Conference paper 

summarizing issues 

in technology and 

developmental 

education 

Allows students to 

move on when they are 

ready to do so 

 

 

 

May provide only 

superficial knowledge 

which cannot be applied 

in other situations 
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Authors Type of work Advantages to the use 

of CAI noted 

Disadvantages to the use 

of CAI noted 

Epper & 

Baker, 

2009 

Overview 

summarizing the 

issues involved in 

using technology to 

remediate adult 

mathematics 

students 

Some improved results 

Allows an alternative to 

regular class meetings 

Some reduction in 

discrimination 

Certain types of CAI 

software may 

emphasize meaning 

 

Kinney & 

Kinney, 

2002 

Surveyed 11 

instructors who had 

taught both 

developmental level 

mathematics 

courses using CAI 

and those which did 

not 

Students control the 

pace of learning, 

receive more 

instruction,  

receive immediate 

feedback with detailed 

explanations,  

move more quickly,  

get more practice, and  

remain active during 

instructional time 

Lack of discussion 

Only one way of thinking 

presented 

Students fail to ask for 

help when needed 

Students can’t hear 

conversations with others  

Instructors had difficulty 

determining how deeply 

students were thinking 
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Authors Type of work Advantages to the use 

of CAI noted 

Disadvantages to the use 

of CAI noted 

Li & 

Edmonds, 

2005 

Three basic 

mathematics 

classrooms of at-

risk adult learners 

were compared, 

two of which used 

CAI and one which 

was traditionally 

taught. Students 

were tested for 

knowledge and 

attitude.  

Increased confidence 

level 

Increased satisfaction 

level 

Improved ability to 

transfer skills to 

classroom settings 

Bridges gaps in 

classroom instruction 

Helps meet needs of 

diverse learners 

Low literacy skills of 

developmental students 

hinder their ability to 

make use of CAI 

Qi & 

Polianskaia

2007 

Examined 

enrollment, 

completion, and 

assessment data for 

traditional and CAI 

courses  

 

 

 

 Those in CAI courses did 

no better than their peers 

in traditional courses 
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Authors Type of work Advantages to the use 

of CAI noted 

Disadvantages to the use 

of CAI noted 

Taylor, 

2008 

Surveyed freshman 

enrolled in 

intermediate 

algebra courses, 

both traditional and 

CAI based (online 

delivery) to 

determine both 

attitude and 

achievement 

Can decrease anxiety in 

some cases without 

lowering performance 

 

Trenholm, 

2007 

Surveyed online 

mathematics course 

faculty members to 

determine 

assessment 

practices 

 Questions as to proper 

assessment must be 

addressed when online 

delivery is used.  78% of 

online developmental 

instructors used proctored 

exams.  

 

Some studies do show improved results for those who use CAI (Epper & Baker, 2009). 

Research has shown that CAI increases confidence levels and satisfaction, improves student 

ability to transfer skills learned online to classroom settings, bridges gaps in classroom 
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instruction, and helps meet the needs of diverse learners (Li & Edmonds, 2005). Teachers in one 

study felt that the uses of CAI allowed students to control the pace of their learning, to choose 

the path that best met their needs, to receive more instruction through multi-media, to receive 

immediate feed back on their work with detailed explanations, to move more quickly and get 

more practice, and to remain active during their instructional time, rather than passive (Kinney & 

Kinney, 2002). It can also be advantageous for adult learners because technology which allows 

developmental mathematics students to find an alternative to regular class meetings allows them 

to manage their many responsibilities (Epper & Baker, 2009).  

Kinney and Kinney (2002) surveyed 11 instructors with experience leading two types of 

courses, those using CAI and traditional lecture style courses. The topics they taught ranged from 

elementary algebra to college algebra. Though the results showed a slight preference for CAI 

courses, they also found some disadvantages to the use of CAI mentioned. Those disadvantages 

included lack of discussion, the presentation of only one way of thinking, student failure to ask 

for help when they needed it, lack of opportunity for students to hear instructors’ conversations 

with others about topics they need to understand better, and the inability of the instructor to 

know how deeply the students were thinking (Kinney & Kinney, 2002). Some respondents 

wanted students to construct more of their own knowledge and gain greater conceptual 

understanding. They addressed this issue by incorporating writing into the class, such as daily 

checkpoint questions which briefly ask student to clarify a concept or justify a task, and learning 

logs, which require more in depth writing than a checkpoint question (Kinney & Kinney, 2002). 

Some CAI may be presented through online course delivery. Taylor (2008) conducted a 

study in which she surveyed 54 freshman students enrolled in intermediate algebra courses using 

computer software and 39 students enrolled in traditional intermediate algebra courses. She 
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administered pre-tests and post-tests for both mathematics achievement and mathematics anxiety 

ratings. Results showed that the use of web-based technology can in some cases decrease anxiety 

in developmental mathematics students without lowering performance. Some have reported that 

online delivery of instruction reduces discrimination (Epper & Baker, 2009). The visual image of 

the student in such cases is not a factor, and students who are reluctant to speak up in class may 

be less so in an online environment.  

Although there are benefits to online delivery, there are also disadvantages. A study by 

Trenholm (2007) addressed the question of how learning outcomes for online mathematics 

courses could be effectively assessed. It considered what percentage of such courses are 

proctored, what the differences might be in proctored and unproctored courses, and what faculty 

of online courses considered important to their assessment practices. Three survey questions 

were sent to about 120 online mathematics course faculty members. The total final response rate 

was 39%. Six courses and ten categories of assessment were considered in the analysis of the 

data. Results showed that half of the two-year institutions that responded used proctoring, but 

none of the four-year institutes used proctoring. There were significant differences in the 

proctoring percentage by course, with a large percentage of developmental courses using 

proctoring (78%), more than half of calculus course using proctoring, but only 39% of General 

Algebra courses and only 8% of general liberal arts courses. Data is also given about proctoring 

for different types of assessments. Unproctored (100% online) courses tended to rely more 

heavily on formative assessment, that is, assessment designed primarily to provide constructive 

feedback to the student so that he or she may improve. The author concluded that at "this time, in 

math e-learning, it appears only some form of significant proctored summative assessment 

instrument will ensure that educational standards and integrity are preserved" (p. 53).  
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Other issues that have arisen with the use of CAI involved literacy and experience. Li and 

Edmonds noted that "[a]t-risk students with low literacy skills are hindered by their inability to 

comprehend written language . . . in a CAI environment" (Li & Edmonds, 2005, p. 162). In 

addition, if teachers have not experienced CAI, they have no experiential basis upon which to 

decide about its effectiveness (Kinney & Kinney, 2002). The capabilities of the software used, 

the physical resources available, the method of implementation, the amount and type of 

teacher/student contact, and the teacher’s theoretical beliefs have all affected the implementation 

of CAI and could reasonably be expected to affect the implementation of other types of 

technology as well.  

Teachers who wish to make effective use of CAI may provide visually appealing web 

materials, and be readily available to assist students. Teacher should ensure that the format is 

easy to navigate. They would also better serve students by helping them connect what they are 

learning to their life's goals (Li & Edmonds, 2005). Instructors incorporating CAI into their 

courses may decide not to lecture, when the software used provides what they feel are complete 

initial presentations of the material. They may instead provide clarifications, assistance, 

feedback, and study skills training. Those who do feel the need to lecture typically use direct 

instruction, supplemented by whole class discussions, and opportunities for students to practice 

individually or collaboratively (Kinney & Kinney, 2002).   

Some schools have redesigned their programs with the help of CAI so that students only 

take the portions of the course in which they need remediation. The course is divided into 

modules and the modules are combined with CAI, giving different students different software 

assignments. Classroom instruction is focused on conceptual understanding and study skills 

(Epper & Baker, 2009). Different CAI programs have different capabilities. Cognitive Tutor is a 
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CAI program which emphasizes meaning and fluency, multiple representations, and formative 

assessment (Epper & Baker, 2009). Cognitive Tutor was developed by Carnegie Learning and is 

described as a research-based product incorporating the opportunity for students to work with 

multiple representations and to view examples which are intended to help build conceptual 

understanding ("Carnegie Learning," 2010). Epper and Baker (2009) reported that Pellissippi 

State Community College in Knoxville, Tennessee redesigned their developmental mathematics 

program to include the use of Cognitive Tutor in combination with classroom instruction, 

resulting in increased success over traditional teaching methods.  

Programs that use CAI are common to developmental education. They may place 

students at a certain level, and allow them to move on when a test indicates that they are ready to 

do so (Caverly et al., 2000). Such programs have some advantages, however, the behaviorist 

model such programs typically follow only provides students with superficial levels of 

knowledge. Behaviorist models may provide a stimulus and response approach without regard to 

conceptual understanding. Students may be able to recall information, but not be able to apply it. 

When technology is used as a tool in a social constructivist setting, the student has a greater 

chance of reaching more complex levels of understanding (Caverly et al., 2000).  

Qi and Polianskaia (2007) showed that the use of CAI does not necessarily increase 

performance. They examined enrollment, completion, and assessment data for traditional and 

computer-mediated course at a community college with a population of about 4,000 students. 

The computer-mediation was a self-paced multi-media environment called PLATO interactive 

mathematics (Plato Learning, 2004). Interactive conceptual presentation, immediate feedback, 

skills development, and online quizzes were all part of the software. It also provided teacher 

tools such as tracking for student progress and time on task. After a carefulness analysis of the 
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data which compared completion rates, pass rates, and average scores for traditional and 

computer-mediated courses, the researchers found that those in the computer-mediated courses 

did no better than their peers in traditional courses (Qi & Polianskaia, 2007). Other choices aside 

from CAI should be available for developmental mathematics teaching and learning. 

Helping instructors make technology choices. The issues surrounding the use of CAI 

illustrate the importance of the manner in which technology is incorporated into developmental 

mathematics courses. The use of technology in and of itself does not guarantee improvement in 

student performance (Qi & Polianskaia, 2007). Technology as it is being used may only be 

fostering superficial knowledge (Caverly et al., 2000). Attention to students’ learning barriers is 

another important consideration developmental educators face (Caverly et al., 2000). Decisions 

as to what technology to use and how to use it must be carefully considered in order to best meet 

the needs of students. Educators must have the knowledge they need to make these choices. They 

must be familiar with the way each particular type of technology affects student thinking and 

learning, since the capabilities of software is one of the factors in its implementation. Some CAI 

use, for example, may hamper valuable mathematical communication and instructors may find it 

challenging to determine how deeply students are thinking (Kinney & Kinney, 2002).  On the 

other hand, it has been shown that the use of dynamic interactive technology can, in some 

students, foster new understanding of mathematical concepts with which they have previously 

struggled (Li & Edmonds, 2005). It has also been shown that mathematical software which 

allows constructive explorations can help build higher levels of understanding.  Allowing 

students to use technology which lets them create tools for other students strengthens this 

knowledge even more (Kaput, 1998).  
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Research that provides insight into the way in which particular technologies can affect 

student thinking may assist instructors in deciding the method of implementation of that 

software. This can help them meet the needs of a diverse population of students with widely 

varying social and cognitive needs. Providing greater research evidence is one of the factors that 

can assist in this process, and help educators realize the potential of technology to improve 

developmental mathematics instruction for all students (Epper & Baker, 2009). Developmental 

educators would most likely benefit from evidence that comes from studies which bring 

developmental mathematics students together with various types of technology, since a greater 

base of evidence is needed to help them meet the challenges they face (Epper & Baker, 2009). 

Such studies may help broaden the range of choice those educators have for their students. In 

order to examine students’ thinking in such a setting, an understanding of the role of 

representation in mathematics education is necessary.  

Representation in Mathematics Education 

I will first consider how representation in mathematics education has been 

conceptualized, beginning with a look at representational systems and the associated idea of 

idiosyncratic representations (those which are unique to the learner) (Smith, 2003). Following 

this is a look at other constructs related to representation, including visualization (the creation of 

a mental image to guide the representation of ideas), and symbolization (the use of symbols to 

organize the mind and reflect thoughts) (Moreno-Armella et al., 2008; Presmeg, 2006). A look at 

something vital to the incorporation of representation in mathematics education, the use of 

multiple representations for the same concept will lead to an examination of modeling and 

functions. Modeling and functions are areas of mathematics in which the way representation is 

used is particularly crucial.  The systems of representation with which a student engages, their 
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visualizations, the connection of multiple representations, and the use of functions to model ideas 

are all important considerations in the examination of technology use undertaken in the current 

study.  

Representation can be thought of as both the language of mathematics and the process of 

illuminating ideas (Coulombe & Berenson, 2001). That is, it can be thought of as both a process 

and a product. It refers to the act of representing an idea as well as to the form used for that act 

(NCTM, 2000). Thought of this way, it permeates all of mathematics. Its effective use is a way 

of both teaching and learning mathematics (Fennell & Rowan, 2001). Recent shifts in 

educational practice include a “heightened awareness of representation as a cognitive and social 

process” as well as an increased understanding of the vital link it forms to knowledge (Monk, 

2003, p. 250). 

According to Cuoco and Curcio (2001), a representation is a map of correspondence 

between a mathematical structure and a better understood structure. This map of correspondence 

preserves the structure of what is being represented (Cuoco & Curcio, 2001). It “re-presents” the 

ideas so that a solution to a problem may be found (Smith, 2003, p. 263). Representations 

facilitate reasoning and support different ways of thinking. They are the tools of proof and the 

heart of communication (NCTM, 2000). Their effective use can provide classroom experiences 

which can help students “see the beauty and excitement in mathematics" (Cuoco & Curcio, 2001, 

p. xiii).  

Managing the long term process of conceptualization is more difficult in mathematics, 

which encompasses a large variety of situations, procedures, and symbols (Vernaud, 1998). This 

challenge makes understanding representation vital to mathematics education and representations 

become much more than just ends in themselves. They become essential to understanding, 
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communication, justification, connections inside and outside of mathematics, and mathematical 

applications (NCTM, 2000). Those that have researched the area of representation in 

mathematics education have used a variety of different terms in their search to clarify its use. A 

more detailed discussion of some of these ideas follows.  For the readers’ convenience, Table 7  

lists some of the major contributors to the study of mathematical representation in chronological 

order along with the major ideas contributed by the work listed. Some of those included were 

contributors to influential collected works.  

Table  7 
 
Some of the major contributors to the study of representation in mathematics education 
Author Year Major ideas 

Kaput1 1998 Functions are rich in representational possibilities 

The phenomenon being represented should be at the 

center of the study of functions. Theoretical framework 

also presented, including ideas related to systems of 

representation, notations, inscriptions, and language.  

NCTM 2000 Presented and defined representation as a process 

standard for teaching mathematics. Ideas include the 

notion that representation is both a process and a product. 

It refers to the act of representing an idea and to the form 

used for that act. 

 

                                                 
1 Part of a two volume special edition of the Journal of Mathematical Behavior which focused on 

representation and from which several other sources used herein were taken. 
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Author Year Major ideas 

Yerushalmy and 

Shternberg2 

2001 Described three representational phases involved in 

learning algebra: graphic (a drawing of a situation), iconic 

(sections of graphs seen holistically and used as icons), 

and symbolic  

Fennell & 

Rowan 

2001 Materials used to represent mathematical ideas may 

replace student thinking rather then represent it. 

Representations should not become ends in themselves.  

 

Pape & 

Tchoshanov 

2001 Four implications for the use of representations as 

cognitive tools rather then ends in themselves: 

opportunity to practice, socialization, variety of 

techniques, and use as tools for thinking, justifying and 

explaining. 

Goldin3 2003 Described systems of representation and made 

suggestions as to how researchers can examine students’ 

internal representations 

 

                                                 
2 From the 2001 yearbook of the National Council of Teachers of Mathematics, entitled The Roles of 

Representation in School Mathematics edited by Albert A. Cuoco and Frances R  Curcio. Several other sources used 

herein were also taken from this source.  

3 This, Monk (2003) and Smith 2003 are from A research companion to principles and standards for 

school mathematics edited by Jeremy Kilpatrick, W. Gary Martin, and Deborah Schifter.  
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Author Year Major ideas 

Monk  2003 Instead of being isolated items, graphs, charts, and other 

representations can be tools for building understanding of 

mathematics. 

 

Smith 2003 Provided examples of and discussed students’ 

idiosyncratic representations. Discussed the importance of 

helping students connect those representations to standard 

ones. Conversations with students about how they 

developed their representations can help teachers infer 

students’ internal reasoning.  

 

Abramovich & 

Norton 

2006 “Residual mental power” (p. 11) means that 

representations developed during the use of technology 

continue to be useful to the learner in the absence of 

technology  

Duval 2006 Connected semiotics to mathematics 

Semiotic representations are tools for producing 

knowledge 

 

Presmeg 2006 Summary of research on visualization in mathematics 

education. Ideas include the notion that students may not 

have sufficient training with visual representations 
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Author Year Major ideas 

Falcade, 

Laborde, & 

Mariotti 

2007 Technology can allow access to more representations and 

impact how mathematical objects are conceptualized 

 

Semiotic mediation can allow new, internalized meanings 

to be developed for mathematical tools 

Moreno-Armella, 

Hegedus, & 

Kaput 

2008 Mathematical notations, experiences, and the medium that 

relates them co-evolve. Symbolic thinking has evolved 

over time from static notations to dynamic technological 

inscriptions.  

Sedig, 2008 2008 Categorized representations into two broad categories, 

textual (descriptive) and visual (depictive). Textual 

representations are semantically dense, and conveyed 

through rules. Visual representations are more analogical. 

 
 

Representational systems within which learners operate. To better understand the role 

of representation, it is helpful to consider the systems of representation within which the learner 

operates. Those systems are generally described as either external or internal (Goldin, 2003). The 

words external and internal refer to the relationship of that representation to the mind of the 

student. If the representation exists within the mind of the student, then it is an internal 

representation. If the representation is found in the environment outside of the student’s mind, in 

a textbook, on a computer screen, or on a piece of paper for example, then it is considered to be 

an external representation. External or internal representational systems are influenced by other 
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constructs such as the ideas of linguistics, affective notions, and habits of mind. An examination 

of how some of these ideas relate to each other follows. A diagram summarizing some of the 

ideas that will be discussed is provided in Figure 1.   

 

  
Figure 1. The interplay between internal and external representations.  
 

In 1998, two volumes of the Journal of Mathematical Behavior addressed representation. 

The introduction to those two volumes, written by Goldin and Janvier (1998), described a system 

of representation as referring to any of the following four categories of concepts.  First, it can 

refer to embodied representations of mathematical ideas which are external, physical situations 

in the environment. Second, they said that it may refer to linguistic representations in which the 

emphasis is on syntax and semantics. It may also refer to formal systems which use symbols, 

axioms, definitions, constructs, etc. Finally, it may refer to internal, individual systems which 
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describe thinking processes and are inferred from behavior or introspection (Goldin & Janvier, 

1998).  

Some researchers have also referred to the affective domain as a representational system 

in and of itself. Goldin (2003) said:  

The affective domain refers to feelings that pertain to mathematics, to the experiencing of 

mathematics, or to oneself in relation to mathematics . . . affect serves a representational 

function in the individual and  . . . as a representational system, it enhances or impedes 

mathematical understanding in certain ways. Local, changing states of feeling are not just 

experienced but utilized by problem solvers and learners to store information, to  

monitor, and to evoke heuristic processes (p. 280).  

Frustration may signal the student to try a new strategy, signal that a problem is non-

routine, and provide impetus for a more effective approach. It may signal the possibility of joy at 

meeting a challenge. In some students, frustration may invoke panic. Either way, it represents 

something about mathematics to that student, either motivational or discouraging (Goldin, 2003). 

Negative attitudes toward mathematics may be influenced by memories of past failures; 

interactions with peers, teachers, and parents; and exposure to teaching methods, certain types of 

mathematics, and certain learning environments (Sedig, 2008).  

Representations occur externally in the physical environment or internally in the mind of 

the person doing mathematics (NCTM, 2000). External representational systems include 

conventional graphical and formal notational systems of mathematics, manipulatives, and 

computer-based representations (Goldin, 2003). Internal representational systems are personal to 

the learner and may consist of sensations, perceptions, imagined objects, or even emotional 

feelings. They also include visual imagery, spatial, tactile and kinesthetic representations along 
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with students’ personal conceptions and misconceptions. Each person forms their own internal 

representational system (Goldin, 2003). 

Mathematics is more than a collection of results and conjectures; it is also a collection of 

habits of mind, such as those related to the learners’ internal representational system (Cuoco & 

Goldenberg, 1996). Students should develop the ability to visualize, describe, and analyze 

situations mathematically (NCTM, 2000). One way that students understand a mathematical idea 

is through reification, the process by which something abstract becomes real to the learner and 

exists in his or her mind as a mental object (O'Callaghan, 1998).  Students may, however, have 

difficulty understanding standard representations which may be second nature to the teacher 

(NCTM, 2000). Presmeg (2006) cited a study by Mourao (2002) which showed that students 

may carry prototypical visual images, such as the image of a parabola with two real roots, which 

are at odds with other, different but also valid visual images of the same concept. Such 

insufficient internal representation can lead to manipulation of external representations without 

attached meaning. Students with insufficient internal representations may cling to memorized 

rules, rather than learning with comprehension (Saul, 2001). Representations students choose 

themselves can help them understand and think through problems and bridge this gap of 

understanding (Fennell & Rowan, 2001). They must be given the opportunity to practice 

producing external representations and internalizing mathematical ideas (Pape & Tchoshanov, 

2001). The internal and the external representational systems can then interact and represent each 

other’s constructs in different situations (Goldin, 2003).  

One of the challenges for researchers is that private representations and mental images 

are hard to describe (Cuoco & Curcio, 2001).  Goldin (2003) noted that such research relies on 

observations of students’ interactions with and production of external representations. He 
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proposed task-based interviews and suggested ten principles for planning, structuring, and 

conducting them. Those principles include well-designed research questions and tasks, explicit 

interview protocols with contingency plans, encouraging free problem-solving, and maximizing 

interaction with the external environment through a variety of representational possibilities. 

Smith (2003) analyzed the student's creative process through their language and beliefs in order 

to see more than their external representations revealed. His conversations with them included a 

discussion of the development of their representations. He concluded that research into 

understanding how representations enable learning must proceed from inside the child (Smith, 

2003). There is interplay between the external and internal representational systems; there are 

many mental constructs which come into play in a discussion of the internal representational 

system, and there are challenges involved in examining it.  

Representations unique to the learner. As students work to connect the world of their 

own internal representational system and the concepts within it to new mathematical ideas, they 

may create their own unique, non-standard, idiosyncratic representations. These can help the 

student cross the conceptual bridge to an understanding of standard representations. The way 

students build representations is part of how they learn (Cuoco & Curcio, 2001). Mathematical 

representations allow students to organize, understand, and communicate mathematical ideas 

(NCTM, 2000). Monk (2003) has stated that “students . . . have surprising representational 

competence when their activity is within a coherent community with a sustained purpose” (p. 

259). Helping students learn to choose the best representation wisely is vital. For example, 

teachers must be familiar with the strengths and weaknesses of different types of representations 

of a function, such as the quick reference aid a table provides and the global picture a graph 

gives the viewer (NCTM, 2000).  
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One way of helping students develop their representational competence and assisting 

them in learning to choose representations wisely is by incorporating the use of the students’ 

idiosyncratic representations (NCTM, 2000). NCTM encourages the use of representations 

which are invented by and unique to the student (Smith, 2003). Students often generate 

nonstandard representations for successfully accomplishing tasks (Izsak & Sherin, 2003). They 

may also push the form of a representation beyond its original intentions (Monk, 2003). 

Nonstandard representations often serve better than standard ones as tools for understanding and 

communicating. They serve as bridges between a phenomenon and its standard mathematical 

representation (Monk, 2003). Such personal forms of  representation, which may be very 

meaningful to the student, but have little resemblance to those commonly used, are an important 

first step in students' developing the ability to use representations wisely. They may also 

continue to be a tool with which students can reason and solve problems, even as their facility 

with standard representations develops (NCTM, 2000).  

One way to help students learn to use conventional representations is to engage the class 

in whole group discourse about student generated representations (NCTM, 2000). Inventing 

representations and then reflecting on them is a way to help promote fluency in the use of graphs 

(Monk, 2003). Students’ creation of idiosyncratic graphs, as opposed to standard ones, can be 

followed by group consolidation onto a common graph. This can lead to recognition of the need 

for standardization (Monk, 2003). 

One goal in working with idiosyncratic representations is to help students make the 

connection between their unique representations and discipline-valued representations. This is 

necessary if they are to progress within the discipline of mathematics (Smith, 2003). Another is 

to make inferences about student understanding. Inferences can be made about students' ability 
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to represent and understand mathematics by examining their language about their own 

mathematical representations together with their attitudes towards their mathematics learning 

(Smith, 2003). Some believe that the use of external representations of mathematical concepts to 

develop student understanding is directly related to students’ ability to visualize with those 

representations (Pape & Tchoshanov, 2001). The ability to visualize would indicate that those 

representations are part of their internal representational system (Goldin, 2003).  

Idiosyncratic representations can be a valuable tool for the student. Operating with them 

externally can lead to important classroom discourse and recognition of the need for 

standardization. They can also help the teacher make inferences about student understanding. 

Used externally, as they bridge to more conventional representations, they and the conventional 

representations they lead to can both become tools with which the student can visualize 

mathematics.  

The role of visualization and imagery. Visualization is one of the constructs with which 

researchers examine the field of representation, and it is an important consideration in examining 

what internal representations students may possess. Visualizations and imagery may be 

categorized in different ways as seen in the research discussed below.  

Some researchers categorize representations broadly as either textual (descriptive) or 

visual (depictive). Textual refers to those representations which are like language, semantically 

dense, and conveyed through rules. Visual representations, as opposed to textual, are more 

analogical in nature (Sedig, 2008). Smith (2003) cited Goldin and Kaput (1996) as stating that 

imagistic representations include internal imagery which may sometimes demonstrate meaning 

through visualization, analogy, or metaphor.  
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Presmeg (2006) used the term visualization to describe the creation of a visual image 

(mental construct) which guides the creation of mathematical inscriptions (representations). She 

referred to those who prefer to use visual methods as visualizers. Monk (2003) described seeing 

as a constructed activity, closely linked to thoughts and actions. How people see things is linked 

to how they think about them. Changes in the way students see things can be fostered. For 

example, many visual displays can be used, rather than a single visual representation, such as a 

traditional graph (Monk, 2003).  

Presmeg (2006) listed five types of imagery used by high school learners: concrete 

imagery, kinesthetic imagery, dynamic imagery, memory images, and pattern imagery. Concrete 

imagery is a picture in the mind. Kinesthetic imagery refers to physical movement. Dynamic 

imagery occurs when the image itself is moved or transformed. Memory images are those which 

allow learners to recall formulas. Pattern imagery is "pure relationships stripped of concrete 

details" (Presmeg, 2006, p. 210). Different categories of imagery may overlap. Visualization is a 

powerful tool in algebra as well as geometry and trigonometry, however, students may not have 

sufficient training with visual representations. For example, dynamic imagery was shown in one 

study to be used effectively, but rarely, by high school students (Presmeg, 2006). Textual, visual, 

concrete, kinesthetic, dynamic, memory, and pattern images have all been proposed as possible 

ways in which students visualize mathematics. They can be considered as ideas with which to 

examine a student’s internal representational system.  

Symbolization as a construct related to representation. While visualization is directly 

related to a student’s internal representational system, external representations are more closely 

related to the idea of symbolization. External representations may be idiosyncratic, but more 

often they employ standard mathematical symbols. The idea of symbolization is another lens 
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through which researchers have examined representations. An examination of research shows 

that symbols have been discussed as representing concepts, organizing the human mind, 

fostering the sharing of ideas, providing a link to abstract ideas, and becoming a new internalized 

tool with which the student can build new knowledge.   

Idiosyncratic, internal, and external representations each may provide different instances 

of one idea. A unifying expression for a set of multiple instances requires some sort of symbolic 

structure (Moreno-Armella et al., 2008). Symbols represent items from a reference field. For 

example, one reference field for the set of nouns is the set of material objects. Reference fields 

grow and transform with the shared use of symbols (Moreno-Armella et al., 2008). Symbolic 

structures re-design the architecture of the human mind and provide a meta-cognitive mirror in 

which our thought is reflected (Moreno-Armella et al., 2008).    

Educators sometimes refer to such a process as symbolization. Each mathematical 

representation stands for some mathematical concept. In the process of symbolization, symbols 

and referents are sometimes experienced as separate items and sometimes experienced as the 

same thing (Kaput, Blanton, & Moreno, 2008). Symbolizations can be privately constructed and 

used by one individual, as with students’ idiosyncratic representations. They can also be shared 

by a community, as with commonly used external representational systems, which may be the 

product of a long process of refinement (Kaput et al., 2008).  

Symbols may sometimes be treated as objects in their own right without regard to the 

referent for which they stand. Whitehead (1929), as quoted by Kaput, Blanton, and Moreno 

(2008) stated, "Civilization advances by extending the number of important operations we can 

perform without thinking about them" (p. 22). Students may operate on symbols by following 

rules and algorithms. Using this method of operation, students may, indeed, be acting upon the 
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marks on the paper without understanding. They may act based on the position of the symbols, 

not based on their meaning. On the other hand, writing which is not based on rules for 

manipulating symbols may be used to develop an idea or build an argument. In such instances, 

students may draw diagrams, for example. If so, what they write is not determined by "strict 

syntactically defined rules" (Kaput et al., 2008, p. 24). 

Symbolization cannot be separated from conceptualization. Rather than promoting the 

lack of thought, it has the potential to provide a "lift-off" from concrete thinking (Kaput et al., 

2008, p. 23). Algebraic symbolization historically gave rise to the understanding of new ideas 

such as negative and complex numbers. Through symbolization, "new mathematical worlds 

become possible" to students - one possible reason why algebra serves as a gateway to further 

mathematical development (Kaput et al., 2008, p. 23). The manner in which mathematical 

discourse and mathematical objects interact is a creative and continuous process, involving 

symbolization, which has occurred throughout history. It continues to occur in classrooms as 

well as in the minds of individuals (Kaput et al., 2008). 

Symbols also serve as signs. Semiotics is the study of signs and their meanings. 

Cunningham (1992) described semiotics as "a way of thinking about the mind, and how we come 

to know and communicate knowledge" (p. 166). He also noted that it has an "ecumenical nature" 

in that it "draws from" and "informs" many other disciplines (Cunningham, 1992, pp. 166-167). 

He argued that "knowledge does not exist separate from the knower" and that "knowing can't be 

anything but personal knowledge" (Cunningham, 1992). This is not to say that reality does not 

exist, but that our understanding of it is constructed, and there are limitations on those 

constructions determined in part by the existing structure of our thoughts. Though different 
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individuals’ constructions of understanding may differ, similarities across individual 

constructions may reveal something about reality.  

Representations can be considered signs, and their associations are produced according to 

a set of rules, allowing the description of a system. In this system, the semiotic representations 

become tools for producing new knowledge, not just for communicating a certain internal 

representation (Duval, 2006). Semiotic mediation refers to the use of a semiotic system or tool in 

social interaction so that new signs are generated to foster internalization of meanings. Under 

proper guidance, new meanings related to the use of a tool can be formed and developed 

(Falcade et al., 2007). 

Internalization occurs through systems of signs and semiotic processes. A tool used under 

expert guidance to accomplish a task functions as a semiotic mediator as new signs are derived 

from the actions performed with the tool. This fosters an internalization process, producing a 

new internal tool. The internal tool may resemble in some respects the actual external tool and 

new meanings may be generated related to the use of the tool (Falcade et al., 2007). This 

research gives us greater insight into the role played by those symbols normally thought of as 

forming the body of tools for representing mathematics. It is possible to see that they can take on 

added meaning, producing new knowledge as well as communicating what is already known.  

Connecting multiple representations. It was noted in the discussion of symbolization 

that seeking a unifying way to express multiple instances of the same idea may lead to the 

development of symbols. In a similar manner, those who encounter multiple symbols or 

representations for the same idea may find their understanding of that idea deepening. Students 

who learn to move flexibly among and choose from a variety of representations to solve 

problems will also be deepening their understanding of mathematics.  
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One way students demonstrate conceptual understanding is by their ability to move from 

one representation to another and coherently use different representations (Even, 1998; Hitt, 

1998; O'Callaghan, 1998). As the number of representational tools a student uses expands, he or 

she will need to move flexibly among different representations in order to view mathematical 

ideas from the different perspectives those tools offer. This ability will enhance their 

mathematical power (NCTM, 2000). Those who are able to switch representations can use the 

representation most beneficial to their analysis (Even, 1998). Mathematically proficient students 

productively choose from a selection of possible representations in order to solve problems 

(NCTM, 2000). In addition, the combined use of different types of representations has the 

potential to cancel disadvantages each type may have. They may provide greater information 

when used together (Friedlander & Tabach, 2001). Monk (2003) asserted: 

The goal is not to select one or two representational forms for students to learn and use in 

all situations but, rather, to teach students to adapt representations to a particular context 

and purpose and even to use several representations at the same time (p. 260). 

The use of multiple diverse representations has been shown to be important to the 

understanding of students at higher levels of mathematics (Santos-Trigo, 2002). Instead of being 

isolated items, graphs, charts, and other representations can be tools for building understanding 

of mathematics (Monk, 2003).  

Students may resist transitioning between different representations (Friedlander & 

Tabach, 2001). To help encourage them, tasks can be designed which promote the use of 

multiple representations. Such tasks may promote frequent transitions between representations, 

and the use of different representations becomes a "natural need" rather than an "arbitrary 

requirement" (Friedlander & Tabach, 2001, p. 176). An environment where teachers and students 
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are presenting in different representations encourages flexibility in the choice of representations. 

Students may be started with problems requiring the use of a specific representation and then 

later be asked more open-ended questions (Friedlander & Tabach, 2001). As teachers incorporate 

multiple representations into their classrooms, student thinking will emerge and their erroneous 

ideas can be addressed (Hitt, 1998). Teachers help students progress from seeing representations 

as ends in themselves to the act of representing by engaging them in ongoing discussions of the 

reasons for choosing one kind of representation over another (Monk, 2003). 

There is potential vulnerability in making conceptual and representational connections 

(Hitt, 1998). Two representations may be mathematically equivalent but cognitively non-

equivalent in that they are processed differently by different learners. Presenting ideas in ways 

that convey the most meaning to the most students will bring maximum benefit. This may mean 

using such visual cues as graphic indicators of number size, the use of proximity and color to 

distinguish related items, and the placement of related representations so they can all be seen at 

once (Gadanidis et al., 2004). 

As students grow and learn about mathematics their use of representations grows from 

directly perceived objects and actions, to indirectly perceived items such as rational numbers, 

and eventually to abstract ideas such as functions (NCTM, 2000). Abstraction in mathematics is 

the stripping away of features not necessary for analysis. By facilitating abstraction, 

representational ability aids students in identifying common underlying mathematical structures 

which appear in different settings. It also allows them to examine essential features of problems 

and their mathematical relationships. Rich representations allow students to examine many 

aspects of this process (NCTM, 2000). It has been said that the student use of multiple 

representations in working with the same mathematical object is what constitutes ideal 
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mathematics learning (Hsieh & Lin, 2008). Choosing, adapting, transitioning, communicating, 

abstracting, and justifying are all aspects of the use of representations for the study of 

mathematics. Each of these habits has the potential to emerge in the presence of multiple 

representations.   

Uses of representations: Models and functions. Two fruitful and closely related areas 

for the study of how representations affect mathematics are modeling and functions. Models and 

functions both can be used to illustrate real-life phenomenon mathematically and both regularly 

involve the use of multiple representations. A look at models as a form of representations will be 

followed by a look at representational ideas associated with functions.  

Models as representations. One form of study in the field of mathematics which employs 

representation as a problem solving tool is modeling. Models link different ideas together; 

particularly they link concepts outside of mathematics to mathematics. The process of modeling 

helps students to notice underlying mathematical structures in the world around them, builds the 

idea of isomorphism (a one to one relationship between two sets of data preserving operations 

within the two sets), broadens their understanding of what it means to represent something, and 

deepens their understanding of mathematics (Abrams, 2001).  

A mathematical model is a form of representation which illustrates mathematical features 

of a complex phenomenon and is used to clarify situations and solve problems (NCTM, 2000). 

Models have the potential to provide an important service, since cognitive knowledge is closely 

linked with the knowledge people have of a situation being represented (Monk, 2003). 

Traditional word problems have usually involved the use of a specific formula or algorithm, and 

an easily detectable list of data to be used. This is different from authentic problem solving using 

modeling tools (Yerushalmy & Shternberg, 2001).  
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Abrams (2001) defined modeling as the process of studying questions outside of 

mathematics with mathematics. When used for modeling real life situations, mathematics serves 

as an "intellectual lens" for examining questions (Abrams, 2001, p. 269). In this sense it is not 

self-contained, but used as a tool in other disciplines, as well as for abstract discoveries. When 

mathematical modeling is ignored, some skills, including choosing appropriate representations 

for a situation, and recognizing common structures are neglected (Abrams, 2001). As students’ 

understanding and use of representations develops and becomes more sophisticated they can 

learn to use variables, tables, equations, and graphs to model and analyze real life phenomenon 

(NCTM, 2000). Modeling can be supportive of emerging representations of functions 

(Yerushalmy & Shternberg, 2001).  

Modeling involves examining two ideas with matching structures, which builds the 

concept of isomorphism (Abrams, 2001). It maps the real-life situation to its mathematical 

model.  The modeling cycle consists of posing a question, selecting the representation(s), 

creating a model, manipulating the model, determining mathematical products, translating 

(interpreting mathematical results according to the setting), deriving new knowledge, and 

analyzing the results. Analysis leads back to the question until a sufficient model is created 

(Abrams, 2001). As part of the selection and creation of the representation, a real situation may 

first be idealized into a pseudo-concrete model before it is further abstracted into a mathematical 

model (Presmeg, 2006) . 

If students are allowed to interpret familiar events mathematically, then they can 

understand representation more deeply (Coulombe & Berenson, 2001). They can also more 

easily access problems which can be represented in ways that are meaningful to them (Fennell & 

Rowan, 2001). Some students may, in the process of representing a real life situation, strip the 
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context away while others may use the context. Stripping the context away seems in some cases 

to have helped the student avoid confusion (Smith, 2003). A deeper interpretation of 

mathematics based on familiar events and problem solving can broaden students’ understanding 

of conventional representations beyond mere manipulation (Coulombe & Berenson, 2001). The 

process of modeling helps develop the mathematical lens through which a student views the 

world. That modeling process may take several steps through different levels of abstraction. 

Representations, both idiosyncratic and standard, can be part of that process along the way. 

Through modeling, students can improve their facility with representational tools. 

Function as a context for studying representation. Functions are often used as a 

mathematical context for studies of representation because they are rich in representational 

possibilities. For example, the encouragement to regularly immerse students in mathematical 

experiences which involve an interplay of symbolic, numerical, and graphical forms of 

representation is commonly known as the rule of three (Reinford, 1998). The rule of three was 

meant to encourage students to take facts they see in graphs and verify them numerically and 

algebraically (Bridger & Bridger, 2001). Functions can be represented all three ways. Function is 

also considered by many to be the most important concept in all of mathematics and fundamental 

to the learning of mathematics (Hitt, 1998; O'Callaghan, 1998). The concept of function has been 

important in the study of students’ obstacles with regard to representations (Goldin, 2003). The 

ability to interpret and translate representations can help students construct their mental images 

of patterns and functions and thus extend their algebraic thinking (Coulombe & Berenson, 2001).  

Even (1998) referred to two ways participants in one study dealt with functions: 

pointwise or globally. To deal with functions in a pointwise way is to plot, read or deal with 

discrete points. To deal with the function in a global way is to look at its overall behavior, such 



  

56 

as when students sketch the graph of a function and look at its maximums and minimums and 

other characteristics. This study suggested that those who can easily use a global analysis of 

changes in the graphic representation of a function have a better understanding of the 

relationships between graphic and symbolic representations than those that check local 

characteristics (Even, 1998).  

When the student is able to understand the different representations of functions, those 

representations can serve as windows into functional relationships in particular situations (Lloyd 

& Wilson, 1998). Representations of functions then become valuable tools for modeling real life 

situations. Students having a good concept of function will be aided in solving problems 

(Yerushalmy & Shternberg, 2001).  

Numerical representations are some of the first representations that students encounter, 

and provide some of their first experiences forming internal representations (Pape & 

Tchoshanov, 2001). At first, children may not understand that when they are counting, the last 

word they say represents the number of things they have counted all together. Eventually the 

name of the number comes to represent a set of that many objects (Pape & Tchoshanov, 2001). 

Later uses of numerical representations are familiar and convenient, but lack generality. This 

limits some of their problem solving potential (Friedlander & Tabach, 2001). It is not directly 

evident that when teachers use manipulatives to represent number concepts, such as base ten 

blocks used for learning regrouping, that students see the connection between the manipulatives 

and the mathematical activities they are intended to represent.  Some believe that the use of such 

external representations of numbers to develop a student’s understanding of mathematics is 

directly related to the student’s ability to visualize with those representations (Pape & 

Tchoshanov, 2001). Algebraic representations have many advantages, such as conciseness, 
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generality, and effective modeling. Sometimes, they provide the only avenue of proof. The 

problem comes when their exclusive use interferes with the conceptual understanding of what 

they represent (Friedlander & Tabach, 2001).  

Verbal representations assist in understanding context, communicating results, solving 

problems, and working with patterns (Friedlander & Tabach, 2001). They emphasize connections 

to other domains of study. Verbal representations can, however, suffer from ambiguity and thus 

they can possibly become obstacles to communication (Friedlander & Tabach, 2001).  Oral and 

written language as tools of communication can be considered forms of mathematical 

representation (Coulombe & Berenson, 2001).  

A graph can be thought of as a lens through which to explore the phenomenon graphed. 

Learning to read graphs is referred to by some researchers as ‘disciplined perception’ (Monk, 

2003). Graphs connect formal static definitions of function with the metaphor of motion (Falcade 

et al., 2007). One of the complexities in graphing as a representation is that a graph has many 

potential meanings. Those who are fluent graph readers can forget the difficulties others have 

(Monk, 2003). Inappropriate responses to visual attributes of a graph are the most frequently 

cited student errors. Some mathematics educators have begun to focus on the process by which a 

learner constructs meaning from a graphical representation in addition to focusing on the 

information itself (Monk, 2003). 

A graph does not reach its full potential until it is used to make meaning. Monk (2003) 

suggested a variety of meaning making processes to aid students in making meaning from 

graphs, which can be transferred to the use of technological representations. Students can explore 

aspects of the situation graphed that were not otherwise apparent. The process of representing a 

context can lead to questions about it. Graphing and analyzing a well understood concept can 
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help them understand graphing better. Important features of a graph help them construct new 

concepts. Understanding of the graph and the context can build at the same time. Finally, a group 

can build shared understanding through the common use of a graph as a window into a 

phenomenon (Monk, 2003).  

Another approach to the study of functions in addition to the traditional Cartesian plane is 

to view them via  mapping diagrams (Bridger & Bridger, 2001). Bridger and Bridger’s (2001) 

use of function mapping diagrams is taken from the science of map projection, which renders an 

image of a globe on a flat surface. A function mapping diagram renders the x and y axes as 

parallel lines, with line segments connecting a point on the x-axis to its image on the y-axis. 

Different representations of functions have different advantages and disadvantages (Bridger & 

Bridger, 2001). Cartesian graphs are more useful for examining extrema, convexity, and 

asymptotes. Advocates of the function mapping approach feel that traditional graphs may inhibit 

the development of a mapping concept of functions (Bridger & Bridger, 2001). They point out 

that, in addition to promoting the concept of function as a mapping, they also show whether the 

function is an expansion or a contraction, and where and how it is one-to-one or many-to-one. 

They are also excellent for visualizing compositions and inverses of functions (Bridger & 

Bridger, 2001). Both models and functions, which are closely related, overlapping mathematical 

ideas, give us ample opportunity to consider the effect of representation on student 

understanding. In examining that understanding it will be helpful to consider an interpretive 

framework.  

Building validity, usefulness, and endurance.  One of the ideas discussed in regard to 

representation was the concept of a student’s internal representation, which incorporates the idea 

of conceptualizing and symbolizing. In considering the relationship between a student’s internal 
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representational system and their success in learning mathematics, I posit that it is useful to 

organize key ideas into three constructs: validity, usefulness, and endurance. These constructs, 

summarized in Table 8,  form an interpretive framework with which the effect of technology on 

student learning can be examined.  

Table 8  

Interpretive framework for ideas related to representation 
Representations are 

Valid if they Useful if they Enduring if they 

Accurately reflect the 

mathematics they seek to 

represent and are flexible enough 

to allow additional mathematical 

ideas to be built upon them. Are 

accompanied by sound 

mathematical habits of mind.  

Are accessible for 

reasoning and sense-

making, communication of 

mathematical ideas, and 

building new 

understanding.  

Remain with the student in 

various situations apart from 

the environment in which they 

were initially developed. Are 

carried forward, built upon, 

and refined over a period of 

time.  

 

Valid internal representations. Validity in research allows that research to be correctly 

interpreted (Gay, 1996). In mathematics, a representation may be considered valid if it accurately 

represents the mathematics it seeks to represent and is flexible enough to allow additional 

mathematical ideas to be built upon it.  Not all internal representations are mathematically valid. 

Research has shown that students may hold prototypical images of mathematical concepts, but 

that these images may limit their thinking and force them to rely on memorization, providing 

very little true comprehension (Saul, 2001). One such prototypical image is the parabola with 

two real roots, which, when fixed in the student’s mind, impedes the idea that a quadratic 
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equation may have just one real root or none at all (Presmeg, 2006). This concern is related to the 

thoughts expressed by Rogers (1999) that simplified diagrams make take away from the deeper 

learning that other representations may provide. Prototypical images which provide no true 

comprehension are not accurately representing the mathematics and simplified methods which 

short-cut deeper understanding are too inflexible to build upon.  

Part of the validity of mathematical representations is situated in the mathematical habits 

of mind which accompany them and which assist the student in translating them into other valid 

representations (Cuoco & Goldenberg, 1996; Even, 1998). The parabola with two real roots may 

be invalid for a student who has no accompanying habits of mind allowing the switch to one or 

zero real roots. It may, however, be valid for another student who does possess those habits of 

mind. In addition to this type of flexibility, mathematically valid representations do not merely 

represent each other, they also represent contextual situations or reified concepts (Kaput, 1998; 

O’Callaghan, 1998). Such conceptualizations indicate that the mathematics is real to the learner 

and accompanied by understanding (O'Callaghan, 1998).   

Useful internal representations. Representations are useful when they can be selected 

and applied to maximize problem solving, build new knowledge, and communicate mathematical 

ideas to others.  Students demonstrate mathematical proficiency and power when they can use 

representations in these ways. The representations they hold are not useful to them if they cannot 

communicate and solve problems with them (NCTM, 2000). Note, for example, that there is an 

important difference in the learning process when a teacher uses representations as part of a 

dynamic, active process, which facilitates sense-making as opposed to making explicit the 

representations with which they wish their students to solve problems. The former involves 

students in the act of re-presenting to themselves prior mathematical activities in ways crucial to 
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the knowledge they are currently constructing (Cifarelli, 1998). This sense-making process 

requires useful representations as tools for students. They are available as what Cifarelli (1998) 

called “interpretive tools of understanding” (p. 241). They are general enough in the mind of the 

student so that their problem solving potential is not limited (Friedlander & Tabach, 2001). 

Using a problem based approach in teaching can give students the opportunity to construct and 

interpret graphs, generate data, find patterns, and interpret mathematical ideas in other ways 

(Coulombe & Berenson, 2001). This can allow the teacher to discover something about the 

usefulness of the student’s internal representations. Koedinger and Nathan (2004) referred to the 

process of using familiar representations to build new ones as “grounding” (p. 158).  Useful 

representations allow students to ground their new understanding in that which they already 

know. They will also be available for students so that they can organize, record, and 

communicate mathematical ideas (Fennell & Rowan, 2001). Useful representations may be non-

standard, but non-standard representations often serve well as tools for understanding or 

communicating (Monk, 2003). Useful internal representations provide students with 

mathematical power, which includes the ability to reason, communicate, discover, conjecture and 

connect mathematics within itself and outside itself (NCTM, 1991).  

Enduring internal representations. Internal representations may be considered enduring 

if they stay with the student in various situations apart from the environment in which they were 

developed and are carried forward to later work in which they are deepened and built upon as the 

student progresses mathematically. Abramovich and Norton (2006) referred to representations 

which may develop during the use of technology, but continue to be useful to the learner in the 

absence of technology as providing “residual mental power” (p. 11). In their study, the use of a 

locus approach for solving problems with parameters, studied with the use of technological 
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representations, resulted in the locus becoming a familiar mathematical thinking device 

(Abramovich & Norton, 2006). The variety of symbols used in mathematics makes long term 

conceptualization challenging for some students (Vernaud, 1998). A vivid and meaningful 

representation can be held onto, built upon, and refined over a period of time within an 

individual, thus aiding long-term conceptualization (Kaput, Blanton, and Moreno, 2008). 

Enduring representations become part of what Rogers referred to as “stored knowledge” which is 

part of the critical process of knowledge integration and reasoning (Rogers, 1999).  

Cifarelli (1998) noted that representation has a constructive function which involves the 

development of mental objects which students can reflect on and transform. Enduring 

representations will be stored and available to the student for future work and remain part of the 

set of mental objects upon which they reflect in order to build new knowledge.  

Building valid, useful, and enduring internal representations of mathematics within 

students will provide them with clarity of understanding, power in problem solving and 

communication, and a continually developing storehouse of mathematical knowledge. 

Considering these representational ideas will provide a framework with which to examine the 

interplay between technology and student learning. Following is a closer examination of the 

interplay between technology and representation.  

The Connections Between Technology and Representation 

The connections between technology and the use of mathematical representations are 

many. Technology transforms the possibilities present in mathematical representations (Moreno-

Armella et al., 2008). It can allow students to gain a better understanding of the use of 

representations (Maximo & Ceballos, 2004). Kaput (1998) believed that technology had the 
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potential to build grounded understanding of mathematical ideas so that different representations 

are doing more than just representing each other.  

Among the ways technology and the use of mathematical representations influence each 

other is the ability of technology to link multiple representations of the same phenomenon 

(Hennessy et al., 2001). Technology also allows a connection between real-life phenomenon and 

the representations which depict them (Stylianou et al., 2005). In addition, technology can allow 

students to access a variety of different types of representations and develop a deeper 

understanding of representations (Alagic & Palenz, 2006). Technology allows students to use 

representations to explore problems that were previously inaccessible, such as the modeling of 

complex real-life phenomenon and the examination of multiple changes in mathematical 

parameters (NCTM, 2000). Technology also allows a direct link between a real life phenomenon 

and its associated representations through the use of calculator based laboratories. In this way, 

using computer technology provides for bidirectional interactions (the phenomenon affects the 

representations and this affects the phenomenon), and this exchange can become rapid, allowing 

student hypotheses to be quickly tested (Kaput, 1998). 

Technology increases the opportunity to analyze multiple, connected representations 

(Yerushalmy & Shternberg, 2001). Heid and Blume (2008) noted technology's increasing 

sophistication and and "multirepresentational capability" (p. 58). Technology can connect 

mathematics with visual representations in such a way as to foster mathematical thinking and 

conceptual understanding (Lopez Jr, 2001). Through the promotion of multiple representations, 

technology imparts the advantage of flexibility to visual reasoning  (Friedlander & Tabach, 2001; 

Presmeg, 2006). Graphing calculators can mediate students’ problem solving by providing 
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seamless switching between symbolic, graphical, and numerical representations (Hennessyet al., 

2001). 

Microsoft Excel's "ability to integrate multiple representations" helps students think of 

things in different ways. Students must also think carefully about the role of variables which is 

vital to their understanding of algebra  (Donovan II, 2006). Interactive diagrams can allow 

multiple representations to be combined and changed in relationship to each other. Rogers (1999) 

called this process "dynalinking" (p. 423). When a computer simulation of a real-life setting was 

linked to an interfaced diagram showing aspects of that setting, students were able to learn more 

from working with the interfaced technological diagram than they had learned with static 

textbook diagrams. Their ability to reason with the abstract diagrams had improved (Rogers 

1999). In the same way, through the use of technology graphs have become manipulable, 

whereas they were previously seen as static, fixed entities (Kaput, 1998).  

Technology allows students access to representational ideas that otherwise might be 

difficult to share or visualize, such as a depiction of the movement of two variables at the same 

time (Falcade et al., 2007). Technology may allow students to make predictions about what a 

representation is telling them and then test their conjecture, allowing them to build increasing 

understanding of that representation (Hegedus & Kaput, 2004). Students may use technology to 

create different representations, leading them to make their own mathematical conjectures 

(Santos-Trigo, 2002). 

Technology can also assist students in developing greater conceptual understanding of 

representational ideas such as algebraic symbolization (Abramovich & Ehrlich, 2007). For 

example, they are often are able to solve equations with no conceptual understanding of what 

they are doing, but that lack of understanding is a much greater handicap when solving 
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inequalities. Technology can allow them to examine a series of comparisons which can give 

them insight into the effects of different choices of algebraic manipulation on the solution set of 

inequalities. This can give them a conceptual underpinning to what otherwise might be an 

ungrounded set of rules and procedures (Abramovich & Ehrlich, 2007).  

In considering these connections and the use of technology in the classroom to enhance 

the use of mathematical representations, teachers may wish to have certain things in mind. For 

example, having students produce their own representations of what is occurring within the 

technological representation may be important in making explicit the implicit knowledge that 

teachers may take for granted (Hennessy et al., 2001). Knowledge called for with the use of 

technological representations includes an understanding of the method of input and mathematical 

interpretation of output associated with the formats the technology uses. This may include 

notation which varies from the notation seen in textbooks. The use of such technology in the 

classroom requires the teacher to carefully consider the role of representation. (NCTM, 2000). 

Following is an examination of several studies which examine the use of both technology and 

mathematical representations. Table 9 provides a summary of the some of the major studies 

discussed.  
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Table 9 
 
A selection of studies in technology and representation 
Aspect of 

technology  

Researchers  What was done What they found 

Using relations 

to look at algebra 

from  a 

geometric 

perspsective 

Abramovich 

& Norton 

(2006) 

 

Abramovich 

& Erlich 

(2007) 

Pre-service teachers were 

engaged with graphing 

software which allowed 

relations from any two-

variable equation to 

graphed 

2006: Participants 

better understood 

connections between 

geometry and algebra 

2007: Visualization 

was fostered which 

provided conceptual 

insight. 

The use of 

spreadsheets as 

cognitive tools 

Alagic & 

Palenz (2006) 

 

 

 

 

 

 

 

Used Microsoft Excel for 

professional development 

with middle school 

mathematics teachers. 

Teachers explored a real-

world problem using 

multiple representations.  

Teacher were able to 

explore many ideas in 

a small amount of time 
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Aspect of 

technology  

Researchers  What was done What they found 

The use of 

spreadsheets as 

cognitive tools 

Hsieh & Lin 

(2008) 

Teaching experiment 

involving 8 sessions with 

three fifth grade students 

who needed mathematical 

remediation 

 

Linked representations 

produced greater 

progress in 

understanding and 

knowledge was 

transferred to internal 

representations 

The use of object 

oriented 

programming to 

build self-

efficacy 

Connell 

(1998) 

 

 

 

 

 

 

 

 

Stevens, To, 

Harris, & 

Dwyer (2008)  

52 caucasian lower-middle 

class elementary school 

students in student centered 

classrooms were taught 

object oriented 

programming language for 

mathematics – one class for 

presentation by the teacher 

and for exploration 

 

Gifted children worked 

with LOGO computer 

software 

 

Students benefitted 

from using the 

computer as a 

reflective tool which 

reacts to student input 

in a way that 

encourages accuracy 

 

 

Gifted children 

working with LOGO 

increased in creativity 

and verbal 

mathematical ability 
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Aspect of 

technology  

Researchers  What was done What they found 

Exploring 

connections with 

graphing 

calculators and 

dynamic 

software 

Hennessy, 

Fung, and 

Scanlon 

(2001) 

 

 

 

 

 

 

 

 

 

 

 

 

Examined adults working 

with each other on activities 

involving graphing 

calculators 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Advantages: speed, 

visualization, 

movement among 

representations, need 

to clarify ideas, pairs 

problem solving 

mediated 

Disadvantages: 

assessing mechanical 

vs. conceptual 

knowledge 

 

Paper and pencil use 

encouraged 
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Aspect of 

technology  

Researchers  What was done What they found 

Exploring 

connections with 

graphing 

calculators and 

dynamic 

software 

Santos-Trigo 

(2002) 

 

 

 

 

 

 

 

Yerushalmy 

& Sternberg 

(20010 

25 first year university 

students in a calculus class 

for which calculators and 

dynamic computer software 

were available were 

interviewed and written 

reports were gathered 

related to three tasks 

 

Created Function Sketcher 

software for use with 

seventh grade students to 

take them through 

algebraic, graphic, iconic, 

and symbolic phases to 

develop the concept of a 

function 

 

 

A visual approach 

helped the students 

understand the nature 

of the roots of 

equations. They were 

able to make 

connections between 

representations.  

 

Students could see 

how to translate a real-

life event into a 

graphical 

representation and a 

graphical 

representation into a 

symbolic one 
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Aspect of 

technology  

Researchers  What was done What they found 

Linked whole 

group study 

Hegedus & 

Kaput, 2004 

MathWorlds software used 

in teaching experiments in 

middle and high school 

classrooms in which each 

students or groups work 

could be uploaded and 

chosen for display to the 

class 

Displaying student 

work helped focus 

attention on the 

underlying 

mathematical 

structure. Students felt 

personally connected 

to the work presented 

 

The use of 

dynamic 

geometry 

environments to 

deepen thinking 

Cuoco & 

Goldenberg, 

1996 

 

 

Falcade, 

Laboorde, 

and Mariotti, 

2007 

Provided samples of tasks 

from studies done in 

computational and dynamic 

geometry environments 

 

Used the trace tool in a 

dynamic geometry 

environment to introduce 

the concept of functions by 

looking at the covariation 

of dragged objects 

Mathematical objects 

seemed to become real 

and the object of 

experimentation 

 

The teacher’s role is 

important in helping 

students make 

meaning. Students’ 

work can form the 

basis for discussion 
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Recent Studies in Technology and Representation 

Recent studies which focus on both technology and representation are numerous and 

varied in their approach. Following is a brief look at several studies conducted over the past ten 

years. The topics examined by these studies include the development of software to re-examine 

algebra through the graphing of relations, using spreadsheets as cognitive tools, the use of object 

oriented programming to develop logical thinking, looking at dynamic connections between 

representational forms with calculators and computers, the use of data-collecting laboratory 

tools, the use of technology to link a classroom of students in whole group study of their work, 

and the use of dynamic geometry software to deepen mathematical thinking.  

Using relations to look at algebra from a geometric perspective. Abramovich’s two 

studies, one with Norton (2006) and one with Erlich (2007) demonstrated the potential of 

technology to assist students in gaining a deeper understanding of inequalities. His work 

provided insight into errors through the use of visualization made possible through the use of 

graphing technology. Graphing software was developed which was able to graph a relation from 

any two-variable equation, as opposed to the standard calculator technology which requires the 

equation to be solved for the dependent variable. Both studies were done with pre-service 

teachers. The 2006 study allowed the participants to better understand the use of geometric ideas 

to understand algebraic relationships. The 2007 study showed that the graphing technology 

fostered visualization which gave the participants conceptual insight. They were able to see how 

algebraic manipulation affected the solution set of an inequality. 

The use of spreadsheets as cognitive tools. Alagic and Palenz (2006) used Microsoft 

Excel (Excel) in a professional development setting involving middle school mathematics 

teachers. Their study focused on the development of conceptual understanding which can come 
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from the use of multiple representations, using spreadsheets as cognitive tools. Their professional 

development model combined the immersion of teachers in the exploration of real-world 

problems and the connection of those activities to their classroom work. The teachers examined a 

problem involving exponential data from a story problem (The King’s Chessboard). They looked 

at the data in tabular form, graphed it, and zoomed in and out to see how the appearance of the 

graph changed when the window was changed. The ability of teachers to distinguish between 

exponential and linear growth was increased as a result. The teachers then created their own 

stories and activities for their students. The technology allowed the teachers to explore a variety 

of instances of a mathematical idea in a smaller amount of time. Hsieh and Lin (2008) also used 

Excel for a study involving multiple representations. They conducted eight sessions of a teaching 

experiment with three fifth grade students who needed remediation in mathematics. Their 

subjects had no difficulty with reading, but did have difficulty decoding textual material related 

to mathematics. The Excel based lessons the researchers provided included textual, numerical, 

and graphical representations of word problems and provided students with instant feedback with 

which they could observe changes in representations resulting from their choices. The 

researchers found that such representations, when linked, resulted in greater progress in 

understanding. The students’ knowledge was transferred to internal representations which 

allowed them to solve new problems (cf. p. 230 #6).  

The use of object oriented programming to build self-efficacy. Connell (1998) 

discussed the use of an object oriented computer authoring language to create personally 

meaningful representations by means of computer based tools in a constructivist environment. 

Connell (1998) noted that the object oriented qualities of the software used in his study allowed 

the students to use powerful graphic tools such as drawing implements in a setting requiring 
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relatively simple syntaxes to create their programs. 52 predominantly Caucasian lower-middle 

class elementary school students in two rural elementary school classrooms were the subjects of 

this study.  Their teachers had been observed using constructivist methods (student centered, 

facilitative, encouraging problem solving) prior to the study’s beginning and had had a year’s 

experience with the materials used in the study. Though the technology was used in both 

classrooms, it was only used for student exploration in one of the classrooms. In the other it was 

used as a presentation tool. Students working with the technology in this study could create their 

own personal representations and tools, which required them to write programming scripts which 

would perform as desired. Results showed that the students benefited from computer use which 

goes beyond “delivery of static information” and acts as a reflective tool which reacts to student 

input in a way that encourages mathematical accuracy.  

One report looked at the effect of study with LOGO computer software on seventh grade 

teachers’ self-efficacy and self-determination (Stevens, To, Harris, & Dwyer, 2008). LOGO is 

computer software providing a graphics programming language which allows the student to write 

directions for programming activities and receive immediate visual feedback. It was chosen for 

its ability to take basic concepts to more complex levels. The problem solving process involved 

in using LOGO can offer a "window into the student's mind" (Stevens et al., 2008, p. 199). The 

student must apply logical reasoning to their programming. Researchers have recommended that 

the use of such software be facilitated by teachers who can help students make connections with 

mathematical ideas and recognize their own thinking processes. It has also been suggested that 

such software can help students learn to work through challenges with more confidence. Failure 

becomes an "opportunity to plan a new course of action" (Stevens et al., 2008, p. 200). Gifted 

children working with LOGO were shown to increase in creativity, and in verbal domains of 
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mathematics. The teachers in this project appeared to be encouraged to implement technology 

into their classrooms and work through obstacles that might arise as they attempted to do so.  

In a related effort Kynigos, Psycharis, and Moustaki (2010) conducted an experiment 

with eight 17 year old students studying mechanical engineering in a secondary technical and 

vocational school. The students were instructed in the use of MoPiX, a computer software 

environment in which formal algebraic structures were used to manipulate animated models of 

real-life situations. MoPiX provides the user with a library of equations which use verbal terms 

to identify the purpose of the equation, such as "greenColour(ME, t) = 100." This equation would 

make object "ME", the object to which the equation is assigned, 100% green at time t. Since t 

was not used in the equation in this instance, the color of the object would not have changed over 

time and the object would have remained 100% green. Other library equations were provided 

which allowed attributes to change over time. Two researchers, one a teacher at the school for 

several years, observed, circulated among, and questioned students as they worked in groups of 

two or three. The researchers also conducted whole class discussions. Students appeared to build 

connections between the formal equations and the behavior of the objects. It seemed that the 

equations became "tools for controlling and creating animated models", not just as they were 

given in the library, but as refined or newly constructed by the students (Kynigos et al., 2010).  

Exploring connections with graphing calculators and dynamic software. Hennessy, 

Fung, and Scanlon (2001) examined adult students working with each other on activities 

involving graphing calculators. Advantages they noted in the use of the calculators included 

speed, visualization, seamless movement between representations, external reference to facilitate 

discourse, helping to make thinking explicit, and encouragement to clarify ideas. The seamless 

movement mediated the pairs’ problem solving. The use of the calculator also encouraged them 
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to make their thinking explicit to each other and clarify their ideas.  Disadvantages included the 

need to assess mechanical vs. conceptual knowledge produced, and the researchers encouraged 

the continued use of paper and pencil techniques to accompany the use of technology. Lopez 

(2001) study, in discussing problems used as part of an algebra in-service workshop funded by 

Casio, noted that used graphing calculators can be used “as a visualization tool to make 

connections between mathematical concepts” (p. 116).  One such activity asked participants to 

draw the “golden arches” using functions.  Another asked them to draw the outline of a stealth 

bomber. By working such problems, questions about the graphs involved force participants to 

“restructure their knowledge and connect it to the drawing that they are trying to display” (p. 

118). Santos-Trigo (2002) used a series of tasks for which 25 first year university students taking 

a course in calculus had graphing calculators and dynamic computer software available. Data 

was gathered by means of student interviews and written reports. Three tasks were chosen to 

demonstrate different features of student interaction with mathematics that emerged. The first 

task involved examining a representation of quadratic equations as points in the plane, a 

quadratic of the form y = x2 + bx + c being represented by the point (b, c). The visual approach 

helped students understand the nature of the roots of such equations. This new type of 

representation showed the importance of looking at mathematics from new perspectives. The 

technology students used for the series of tasks assisted them in exploring connections among 

different representations.  

Yerushalmy and Sternberg (2001) used their Function Sketcher software to take seventh 

grade students through three phases of learning algebra, graphic, iconic, and symbolic, in the 

development of the concept of function. The software was able to receive mouse input and allow 

students to draw on the xy plane. It also provided a “stair step” view which could be added to the 
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graph to show the rates of change for various changes in x and made available sections of graphs 

with different characteristics, such as increasing slope, concavity, etc. It provided technological 

tools which allowed students to experiment with objects used in representations of functions. The 

continuous mouse input gave them a graphical representation. The graph sections tools were 

iconic in nature and the stair step view gave rise to symbolic representations. Students were able 

to see how to translate a real-life event into a graphical representation and how to use graphical 

representations to build symbolic ones.  

Lapp and John (2009) examined the ways in which pre-service teachers' mathematical 

choices and conceptual understanding were affected by the use of "dynamically connected 

representations" (p. 37). The technology used was a prototype of Texas Instruments' (2006) TI-

Nspire CASTM. The pre-service teachers were able to observe patterns that they probably would 

not have been able to see very easily without the use of technology. The researchers' hope was 

that experiencing technology as learners would encourage the pre-service teachers to be more 

likely to foster a student centered learning environment (Lapp & John, 2009). 

Using technological laboratories to connect to real-life phenomenon. Microcomputer 

based-laboratories (MBL), calculator based laboratories (CBL), and calculator based rangers 

(CBR) allow the student a way to enter function information other than by equation. They also 

allow for different types of visual analysis than conventional representations (Yerushalmy & 

Shternberg, 2001). Students can study their own movement and discover relationships between 

the associated numerical, graphical and symbolic representations (Stylianou et al., 2005). 

Advantages of CBLs and MBLs include: multiple modalities, real events paired with their 

symbolic representations, scientific experience, elimination of mathematical drudgery, and the 
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encouragement of collaboration.  Appropriate curriculum is needed in order for CBL and MBL 

activities to be successful (Lapp & Cyrus, 2000) 

The use of MBL activities was also examined by Hegedus and Kaput (2004), who 

showed how their computer software, SimCalc MathWorlds could be used in a linked classroom 

environment to promote discussion and engagement. The SimCalc project was based in part on 

the idea that the phenomenon being graphed is itself a fourth representation (the first three being 

equation, table, and graph.) An MBL could be used in conjunction with the MathWorlds 

software as a connection to the phenomenon being graphed. Some students need physical action 

as the fourth representation in order to understand the relationship of the graph to the real-world 

phenomenon and to begin to move flexibly among representations (Stylianou et al., 2005).  A 

person's motion can serve as a semiotic embodiment when it is mathematical and facilitates the 

understanding of mathematical symbolism. Re-enacting the motion becomes an executable 

representation (Moreno-Armella et al., 2008). 

SimCalc MathWorlds had the ability to take input from an MBL or to display an 

animated image of a virtual actor moving in the way the graph described. Kaput (1998) referred 

to the movement of the virtual actor as a “cybernetic phenomenon” (p. 273). He felt that the 

cybernetic or physical phenomenon should be at the center of the network of representations and 

that the other representations be used to understand that phenomenon.  

Lapp and Cyrus (2000), when observing high school students working with CBR’s at a 

Mathematics, Physics, and Advanced Technology Exploration Day found that students did not 

understand the graphical information during the activity, demonstrating common 

misconceptions.  “To connect graphs with physical concepts, students need to see a variety of 

graphs representing different physical events” (p. 3-4). They described advantages of CBL’s as 
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including: multiple learning modalities addressed, real events paired with their symbolic 

representations, scientific experience gained, elimination of mathematical drudgery, and 

encouragement of collaboration.  

Stylianou, Smith, and Kaput (2005) used CBRs with pre-service elementary teachers to 

help them develop mathematical understanding. 28 preservice teachers attending a mathematics 

course for elementary school teachers participated in a two week study in which they worked in 

groups of four or five. CBRs were used in conjuction with calculators equipped with 

MathWorlds software to allow the user to see the graph of the motion captured by the CBR and 

to replay that motion (Stylianouet al., 2005). Questions were asked to determine the participants’ 

pre-existing understanding of graphs of motion. It was assumed that participants knew nothing 

about CBRs or graphing calculators and they were introduced to both of them. Students were 

asked to complete a task using the CBRs to collect data and represent mathematics in motion to 

help them understand a position graph. Pre and post tests were given. The researchers found that 

pre service teachers gained mathematical and pedagogical insights on graphs of functions when 

working with the CBR devices (Stylianouet al., 2005). Mathematical insights included facing 

their own misconceptions, realizing that graphs can be manipulated to allow for different views 

and arguments, and using graphs as a means for mathematical communication. Pedagogical 

insights included recognizing the value of building on students’ kinesthetic experiences, 

recognizing the need to link concrete experience to symbolic representations of that experience, 

differentiating between local and global interpretation of graphs as tools for arguments and 

recognizing the need to provide learning environments that allow for discussion and 

communication about graphs (Stylianouet al., 2005).   
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Linked whole group study. The SimCalc project's goal was to democratize access to 

higher mathematical ideas (Hegedus & Kaput, 2004). Recent work added to their previous 

studies a look at the potential of hand held wireless devices linked to larger computers. They saw 

classroom connectivity (CC) as critical because of its potential to impact communication in the 

everyday classroom even more so than internet connectivity. Technology can serve to be more 

than just a medium for individuals, and become a "medium in which teaching and learning are 

instantiated in the social space of the classroom" (Hegedus & Kaput, 2004, p. 130). They saw 

this type of technology as aiding an epistemological shift in which technologically assisted 

mathematical learning situations evolve from participatory simulations to joint constructions of 

knowledge (Hegedus & Kaput, 2004). 

Teaching experiments were conducted in middle and high school classrooms in 

Massachusetts and California. The project described the grouping of the students by two 

numbers (group number, count off number). The problem y = 2x + b, with "b" being the group 

number was assigned to each group. Each student could produce the function on their own 

device. The student's work was uploaded to the teacher, aggregated, chosen for display and 

discussed. Graphs for students in the same group should have overlapped and their animated 

objects should have moved alongside each other (Hegedus & Kaput, 2004). Organizing and 

displaying student work helped focus attention on the underlying mathematical structure. When 

using such an activity, before animating, asking what the race will look like will help students 

think about what the mathematical representation is telling them (Hegedus & Kaput, 2004). 

Triangulated data from pre and post test measures, video records, and field notes indicated that 

participating students’ algebraic thinking improved.  
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Assigning the students a group and count-off number and asking that those numbers be 

incorporated into the function they are displaying gives students a personal connection to the 

work, as they look to see how their construction fits in with those of other people (Hegedus & 

Kaput, 2004). Combining dynamic representation with connectivity can help students understand 

important algebraic concepts (Hegedus & Kaput, 2004). When dynamic mathematics software is 

combined with digital networks, students' individual mathematical objects can interact in 

meaningful ways. Students can share mathematical experiences (Moreno-Armella et al., 2008). 

The use of dynamic geometry environments to deepen thinking. Dynamic computer 

technology provides representations of mathematics which have not existed previously in the 

external environment (Moreno-Armella et al., 2008). Cuoco and Goldenberg (1996) provided 

examples of tasks from studies which had been done in both computational environments and 

dynamic geometry environments which showed how students can build mathematical habits of 

mind. Because computer environments perform exactly the instructions they are given, students 

using them must think about essential mathematical features. One activity used a dynamic 

geometry environment to examine a geometric construction to see how one segment changed 

when other features of the construction was changed. The purpose of the example was to show 

that technology can lead students to a style of thinking. Conjectures arose and were examined 

further using the technology. The mathematical objects became real and became the subject of 

experimentation. One concern was to determine whether or not the students were investigating 

the mathematics or the properties of the software. They believed that when students were 

engaged in the construction of the experiment, they would be more likely to feel that they were 

experimenting directly with mathematical objects (Cuoco and Goldenberg, 1996). .  
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Falcade, Laborde, and Mariotti (2007) used the trace tool in a dynamic geometry 

environment to introduce students in four 10th grade classes (15-16 year old students, two 

classes in France, two classes in Italy) to the concept of function by looking at covariation 

qualitatively. Considering functions from a standpoint of covariation means that variations in the 

independent variable (or input) and dependent variable (or output) are considered together. The 

dragging tool and trace tool were used in conjunction so that the user could experience and 

observe the combination of motions as an example of covariation. Students worked in pairs, but 

wrote individually about what they had learned. The writings were done in a setting detached 

from that in which the technological study took place. The students were also engaged in whole 

class discussion, which was important to the process of making meaning of what had been done, 

particularly in finding the search for a definition of function as it emerged from their 

technological work. The teacher redirected the discussion to the main objective, prompted the 

intervention of a student, repeated students’ comments, pushed the discussion in important 

mathematical directions based on student input, tried to involve non-participating students, and 

orchestrated the formation of mathematical meaning using the contributions of students 

(Falcadeet al., 2007). Evidence highlighted the importance of the teacher’s role in helping them 

to make meaning from what they were doing. Students needed the help of teacher facilitated 

discussion in moving from the technological experiences to a mathematical definition of function 

based on those experiences, however the ideas on which the discussion were based emerged 

from the students’ work in the technological environment (Falcade et al., 2007).  

This review has looked at several different ways that researchers have combined the 

study of technology and representation in mathematics education.  A theoretical framework for 

the study will now be considered.  
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Theoretical framework: Constructivism  

I have chosen to approach this study using a theoretical framework of constructivism. 

Constructivism emerged as a dominant theory in mathematics education in the 1980’s (Lambdin 

& Walcott, 2007). Based on ideas of Piaget and Vygotsky, constructivism encouraged educators 

to create an atmosphere where students could work through cognitive conflict using their own 

strategies, and thus learning via problem solving (Lambdin & Walcott, 2007). Students then have 

the opportunity to construct their own knowledge (Silver, 1990).  

In addition to offering an account of student learning, constructivism is also an 

epistemology and a research methodology (Ernest, 1998). Radical constructivism includes the 

ideas that knowledge is not passively received and that all knowledge is constructed and reveals 

nothing which can be applied with certainty to the world at large. Many researchers take issue 

with the second idea, believing that we "inhabit a knowable external reality" (Ernest, 1998, p. 

29). Social constructivism includes the idea that the social dimension of students' worlds affects 

their learning, and that the knowledge constructed by the student is in response to socially 

situated experiences (Ernest, 1998). Social constructivism includes Vygotsky's zone of proximal 

development (ZPD), which refers to problems that a student may not be able to solve alone yet, 

but that they can solve with just a little assistance, such as a facilitating question, or a hint 

(Norton & D'Ambrosio, 2008). Norton and D'Ambrosio (2008) noted that Steffe defined a 

different zone, the zone of potential construction (ZPC). He defined ZPC as the changes students 

might make in their own understanding during or following mathematical interactions. The 

teacher considers what he or she knows about the student's current way of thinking and considers 

what might be changed about or added to that understanding. In addition to being a way of 

looking at student learning, constructivism can also be seen in the work of the researcher who 
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constructs theory through the interpretation of data collected from subjects (Mills, Bonner, & 

Francis, 2006).  

Schwandt (2007) has said that in order to make sense of constructivism, it is important to 

note what is being constructed. Constructivist frameworks allow me to make some sense of 

students’ interactions with technology. Creating an atmosphere were students can work through 

cognitive conflict, observing the resulting changes students’ make to their understanding, and 

constructing theory through interpretation of data allow me to see and understand more about 

their thinking and the internal representations they may be constructing. Such observations are 

possible because mathematical representation is a dynamic, active process, in which students re-

present to themselves prior mathematical activities in ways crucial to the knowledge they are 

constructing (Cifarelli, 1998). Monk (2003) described seeing as a constructed activity, closely 

linked to thoughts and actions. Connell (1998) showed that students created personally 

meaningful representations using computer based tools for solving problems.  

Ernest (1998) noted that constructivist methods must be approached cautiously, with the 

understanding that "there is no 'royal road' to knowledge" (p. 31). In addition, attention must be 

given to beliefs, conceptions, language, and shared meanings of the subject and researcher 

(Ernest, 1998). He contended that research methodology set in a constructivist epistemology be 

conducted with caution and humility. Researchers may interpret the actions and language of 

others but must remember that those others have their own realities. Qualitative researchers seek 

to understand the realities of others in company with their own, acknowledging that such realities 

can never be assumed to be fixed. The researcher is never external to the analysis (Ernest, 1998). 

In keeping with these cautions, issues of validity were important to this study and will be 

discussed in detail in chapter three.  
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Conclusions and Questions 

Constructivist frameworks are being used in this study to examine issues surrounding the 

use of technology in mathematics education. Of particular concern are the internal 

representations which adult developmental mathematics students may develop though 

interactions with technology. There are both advantages and challenges to the use of technology 

in mathematics education. With the rapid pace of its development, research is continually needed 

in order to provide teachers of all ages with information to assist them in making wise choices 

(Atan et al., 2008; Hollenbeck & Fey, 2009). The issues surrounding adult developmental 

mathematics students are symptomatic of those challenges. Their presence in the educational 

system points to gaps in their learning. The combination of academic and personal challenges 

they face require adult developmental mathematics teachers to make careful choices about their 

use of educational resources (Qi & Polianskaia, 2007).  Figure 2 summarizes ideas found in the 

literature and illustrates forces affecting adult learners. Technology has the potential to advance 

student learning, but there are challenges to its use. Research is needed into how it can be used 

beneficially.  
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Figure 2: This diagram summarizes some of the issues adult learners face, benefits and 
challenges related to the use of technology, and the question this study seeks to address.   

 

Technology has a transforming influence on the role of representation in school 

mathematics. Decisions about the choice of mathematics technology to use in the classroom are 

strengthened by an understanding of the role of mathematical representations in student learning. 

Technology can transform and add to the representations that are available to students. It can add 

Benefits 
Technology can help learners 
visualize, work more quickly 
and flexibly, learn to 
communicate more 
effectively, move more 
flexibly among 
representations, and increase 
in confidence and satisfaction 

Challenges 
Technology requires 
training, may result in 
procedural learning, 
may hamper valid 
assessment, and 
requires appropriate 
tasks  

Needs 
Many adult learners need 
remediation in mathematics. 
Non-cognitive factors, low 
literacy skills, lack of 
experience in the educational 
system, and lack of access to 
trained faculty may affect their 
learning.  

Question 
How can technology best 
be used to address adult 
learner’s needs and help 
them build valid, useful, 
and enduring internal 
representations of 
mathematics?  
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to a student’s ability to access, explore, analyze, and connect representations (National Council 

of Teachers of Mathematics, 2000; Yerushalmy & Shternberg, 2001). For the internal 

representations that students acquire through the use of technology to benefit them, those 

representations must be valid, useful, and enduring. The following research questions form the 

basis of the present study and address the issue of improving adult developmental mathematics 

students’ learning through the informed use of technology 

1. Following the introductory use of dynamic computer technology to explore 

mathematical concepts built upon previous knowledge, what internal 

representations of those concepts do developmental mathematics students 

possess?  

2. What can be determined about the validity and usefulness of those 

representations?  

3. How well do those representations endure over a period of time and in the 

company of tasks which build upon them?  

This study was conducted to provide research-based evidence for developmental 

educators by allowing inquiry based learning to take place in the presence of technology, 

documenting students’ thinking and learning in that setting, introducing students to accessible 

resources, and focusing on mathematics which they are responsible for learning. Developmental 

mathematics students need the increased opportunity that such a study provides. The following 

chapter will provide details as to the specific methodology used. 
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3. Methodology 

This qualitative study was designed to gather knowledge about the effect of technological 

representations on developmental mathematics students’ understanding of functions.  A sequence 

of teaching interviews with developmental mathematics students was conducted, recorded, 

transcribed, and analyzed. It was an exploratory case study, conducted with an eye toward 

suggesting theory. Such theory generation does not require a large number of cases, since the 

suggestion of new theory, rather than the proof or verification of existing theory, is the goal 

(Glaser & Strauss, 1967). Further studies, some of which may take place over long periods of 

time, can build upon the theoretical suggestions which have arisen. Glaser and Strauss (1967) 

described theory as "an ever-developing entity" rather than "a perfected product" (p. 32). I chose 

qualitative research as the most viable method for an in depth examination of student thinking, 

and a teaching experiment as the most fruitful format in which such research could take place. I 

also chose to examine the emerging data using ideas from grounded theory, so that unexpected 

learning could be more readily and carefully examined. In order to provide a foundation for these 

choices, a look at qualitative research, qualitative research in mathematics education, and 

teaching experiments will begin the chapter. Grounded theory as an approach to data analysis 

will then be examined. This is followed by a look at what was learned from a pilot study.  A look 

at the specific procedures used for the present study will follow, as will a look at my stance as a 

researcher, and an examination of issues of reliability of validity.   
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Theoretical foundations for qualitative research  

It is helpful when considering the specifics of a study’s methodology to consider some of 

the ideas from which those methods arise. A look at qualitative research in general will be 

followed by an examination of qualitative research in mathematics education. The specific ideas 

related to the conduct of teaching experiments as a form of qualitative research in mathematics 

education will then be examined. A look at the relationship of case studies to teaching 

experiments and tasks for teaching experiments will conclude this section.   

Qualitative inquiry and foundations of thought.  Qualitative data helps researchers 

understand underlying relationships (Pandit, 1996). An observed situation is conceptualized, 

specifics of the situation singled out within an analytical framework, a representational system is 

used to analyze those aspects, the analysis is interpreted and inferences are made about the 

original situation (Schoenfeld, 2007). It is an appropriate method to use when investigating 

internal representations, such as mental imageries (Presmeg, 2006). Important contributors to the 

field of qualitative research have been Eisner (1998) who discussed the idea of connoisseurship, 

and Lincoln and Guba (1985) who described the nature of naturalistic inquiry. The term 

qualitative has the advantage of encompassing many forms of human activity. It has also become 

part of educational discourse. Rather than coining new terms, Eisner (1998) chose to refine the 

discourse. As part of that refinement he referred to "qualitative inquiry", and indicated his belief 

that the word inquiry had a broader application than the words "research" or "evaluation" 

(Eisner, 1998, p. 6). His major focus was on educational connoisseurship and educational 

criticism. Both types of analysis focus on qualities and though they are commonly considered in 

relation to art, they can be applied to "educational phenomena" (p. 6). Connoisseurship requires 

high levels of "qualitative intelligence" (p. 64). Our knowledge about a situation influences our 
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perception of it. When observing in a classroom for example, observers’ perceptions would 

change depending on their knowledge of the teacher's level of experience. They would think 

differently of a first year teacher than they would of a veteran, though otherwise the situations in 

which those teachers were working were the same. Knowledge about a situation can provide a 

window, but it can also prove a hindrance. Labels and theories, for example, can promote 

expectations which get in the way of perception. "[A] way of seeing is also a way of not seeing" 

(Eisner, 1998, p. 67). For example, in order to combat that very idea, Edwards (1979) had her 

drawing students turn the photograph they were copying upside down so that prior knowledge of 

what they thought a subject should look like would not interfere with their current observations.  

 It is also helpful to consider the foundations of thought motivating methods of qualitative 

inquiry. Lincoln and Guba (1985) described three historical eras of thought. The division of 

those eras is centered in the emergence of positivism in the early nineteenth century, a movement 

which can be characterized by the belief that the scientific method can be used to study diverse 

topics and provide generalizable, exact, objective knowledge about those subjects. Before that 

emergence, the prepositivist era was characterized by passive observation, rather than active 

hands-on inquiry. In seeking to introduce the post-positivist era, characterized by a naturalist 

paradigm, Lincoln and Guba (1985) described the emergence of non-Euclidean geometry. They 

concluded, among other things, that "[d]ifferent axiom systems have different utilities depending 

on the phenomena to which they are applied" (p. 36). Euclidean geometry and Non-euclidean 

geometry are each preferred in different situations. In a similar way, a post-positivist or naturalist 

paradigm allows the researcher to understand aspects of knowledge that positivism inadequately 

addresses. Lincoln and Guba (1985) summarized the naturalist paradigm through five axioms, 

which they contrasted with positivist ideas. Those five axioms include the following ideas. There 
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are multiple, holistic realities. The knower is inseparable from the known. Only idiographic (case 

specific) statements are possible, rather than universal generalizations. It is impossible to sort 

causes from effects because of mutual interdependence, and research is bound by values, 

including those of the researcher, the theories they employ, and the context within which they 

work (Lincoln & Guba, 1985). The present study will assume a post-positivist paradigm, noting 

that the research being conducted here is case specific, affected by the views and values of the 

researcher, and limited by the knowledge the researcher brought to the study regarding existing 

theories applicable to the research.  

Qualitative research in mathematics education. Quantitative research methods have 

occasionally demonstrated some important relationships in mathematics education, but have 

rarely explained those relationships. Mathematics education researchers have turned increasingly 

to qualitative research (Silver & Herbst, 2007). The increase in qualitative research in 

mathematics education has raised the demand for theory on which to base such research. Theory 

can mediate the bidirectional relationships between problems, research and practices (Silver & 

Herbst, 2007). It mediates between problems and research by giving meaning to results of 

research studies, providing a lens with which to look at data, or providing a tool to describe a 

body of research. It mediates between research and practice by prescribing what educational 

practices should be like, helping researchers understand observed practices, providing language 

to describe practices, explaining causes for practices, and predicting aspects of practice. It 

mediates between practice and problems by providing a proposed solution to a problem, by 

establishing criteria by which different instances of problems can be compared, by identifying 

different types of problems, by identifying aspects of practice that pose or contribute to 

information about problems, by helping design new practices, and by helping justify choices in 
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addressing problems (Silver & Herbst, 2007).  Any suggested theory which may arise from the 

present study will be considered in light of such mediation. The specific approach taken in the 

present search for theory is a teaching experiment.  

Specific approach: Teaching experiment. The decision as to the type of approach to be 

used in research is influenced by the goals of that research (Creswell, 2007). The goals of 

research in this case are to examine the effects of technological representations on developmental 

mathematics students’ internal representations of functions. This requires the introduction of 

subjects to a technological mathematics environment and a deeply developed examination of 

their thinking. A teaching experiment provides a way to both introduce a teaching tool and 

examine student thinking. Researchers have used teaching experiments to investigate student 

thinking (Steele, 2008). As Lesh and Kelly (2000) have stated, teaching experiments can be used 

when it is desired that insight be gained into processes that bring student thinking from one state 

of knowledge to another. They allow conditions to be created which optimize the chance that 

change will occur while leaving open the direction in which the student’s knowledge can develop 

(Lesh & Kelly, 2000).  In their work examining the influence of technology, Falcade, Laborde, 

and Mariotti (2007) also noted that a teaching experiment is appropriate for introducing students 

to a mathematical concept.  

Exploring student thinking. The ideas of valid, useful, and enduring internal 

representations developed from a review of the literature for this research study and were carried 

into the study as part of the a priori coding of events which would transpire there. A teaching 

experiment would be a fitting setting in which to explore such ideas. Enduring representations 

are those which stay with the student in various situations, are carried over to later work, 

deepened and built upon as the student progresses mathematically. The teaching experiment can 
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be helpful in examining enduring representations, since it adds to the clinical interview by 

examining progress made over a period of time as opposed to just looking at the subject’s current 

knowledge (Steffe & Thompson, 2000).  

Valid representations have been defined by the researcher as those that accurately 

represent the mathematics they seek to represent. Useful representations are those which can be 

selected and applied to maximize problem solving, build new knowledge, and communicate 

mathematical ideas to others. A teaching experiment is useful for examining these two 

constructs, because of the deep exploration of the subject’s thoughts and the development of 

those thoughts in various circumstances (Nemirovsky & Noble, 1997; Steffe & Thompson, 

2000).  

As the teacher-researcher observes the subject in a teaching experiment, attempts on the 

part of the student to resolve a mathematical problem may confirm the student's mathematical 

reality, showing how they think (Steffe & Thompson, 2000). This ability of a teaching 

experiment to enlighten the researcher as to student thinking also makes it a viable method for 

examining the impact of technology on a student’s internal representations for mathematics, 

since, by definition, those representations exist in the student’s mind (Goldin, 2003). 

Nemirovsky and Noble (1997) noted how the subject’s thoughts developed, how she “came to 

recognize” certain mathematical behavior “by visual inspection” (p. 99). In their teaching 

experiment, in which they interviewed a subject for three one-hour sessions, they also noted her 

efforts to organize her thoughts as related to the visual experience with a computer based-tool 

which created graphs of height vs. distance and slope vs. distance (Nemirovsky & Noble, 1997). 

Their study demonstrates that teaching experiments allow the examination of teaching tools and 

the development of student knowledge within the environment that tool provides (Lesh & Kelly, 
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2000; Nemirovsky & Noble, 1997). The emphasis in teaching experiments on examining student 

thinking can also be seen in the selection of subjects for such a study, since in some cases 

students with particular thinking patterns were selected (Norton, 2008).  

One way of looking at student thinking is to find out the schemas they develop for 

solving problems (Steele & Johanning, 2004). A schema is “a mechanism in human memory that 

allows for the storage, synthesis, generalization, and retrieval of similar experiences” (p. 66). 

Steele and Johanning (2004) cited Piaget as using the term “cognitive structure” (p. 66). It lets 

the learner recognize similar experiences. Abstraction and reflection are two vital mental 

processes in the development of schema. An experience may provide a memory upon which a 

schema can be built. That mental construction may be triggered when a new situation arises for 

the learner to process. Schema are not memorized in the traditional sense of memorizing a 

formula, but are built up, becoming deeper and more connected to other knowledge (Steele & 

Johanning, 2004). Steele and Johanning (2004) noted that one strength of a teaching experiment 

is the opportunity to engage in conceptual analysis, looking "behind what students say and do" 

(p. 70). Teaching experiments allow researchers to experience students' learning and reasoning 

firsthand. They test as well as generate hypotheses. The basic goal of a teaching experiment is to 

examine what students say and do while engaged in mathematical pursuits and to model students' 

mathematics (Steffe & Thompson, 2000). Part of understanding the students’ mathematics is 

understanding what they cannot do or understand. This also emerges in the teaching experiment. 

The researcher can then consider what rationality lies behind the students’ choices (Steffe and 

Thompson, 2000).  

Case studies and teaching experiments. Suter (2005) noted that over 50% of researchers 

surveyed had used the case study method for their research. Educational case studies may 
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involve teaching experiments, but they may also use other techniques, such as a focus on 

understanding students’ existing knowledge or the effect of implementing a certain instructional 

approach.  

What students do versus what they might do. Sometimes the researcher's aim is clearly 

stated as the understanding of existing student thinking, as in Sajka's (2003) work in which the 

object of the study was to examine an average student's understanding of function. The 

researcher in this case chose non-standard tasks which required the student to look at functions 

from a different perspective than the one to which they were probably accustomed. Sajka (2003) 

stated, "I was not interested in the pupil's ability to solve the problem on his or her own, but 

rather in observing the process of finding a solution" (p. 232).  By observing problems the 

student encountered, the researcher gained information about the student's understanding. The 

student in this study had been learning about functions for three years, knew the formal 

definition, and was familiar with examples and representations (Sajka, 2003). The report was 

limited to an analysis of one dialogue which dealt with this task: "Give an example of a function 

f such that for any real numbers x, y in the domain of f the following equation holds: f(x+y) = 

f(x)+ f(y)" (Sajka, 2003, p. 233). The questions used by the researcher during the course of the 

interview helped clarify the student's understanding. The resulting dialog provided the researcher 

with information about the student’s understanding of function and its associated symbolism. 

Sajka (2003) was able to conclude that the subject's concept of function was not a "fully-fledged 

mathematical object" (p. 252). The choice of a task as one that was not conventional was a key 

factor, as it pointed also to "the influence of the typical nature of school tasks leading to standard 

procedures" (Sajka, 2003p. 253). In this way, the researcher, seeking to examine student 

thinking, also shed light upon an aspect of teaching.  
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Though examining student thinking occurs in this case, a case study investigation into 

how a student does think is different in its goals and activities from a teaching experiment which 

examines the way a student may think. Steffe (1991) stated that "[t]he constructivist teaching 

experiment is a technique that was designed to investigate children's mathematical knowledge 

and how it might be learned in the context of mathematics teaching" (Steffe, 1991, p. 177).  The 

role of the researcher in a teaching experiment is more than that of an observer. The researcher 

becomes “an actor” constructing models of what is occurring in the student’s mind as a result of 

the researcher’s actions (Steffe, 1991, p. 177).  

The choice to use a framework which considers all that students may think in regards to 

their experiences with technology permits the researcher to follow leads which may occur and 

turn the project into a truly exploratory case study from which possible theory may emerge. The 

possibilities for such theory are thus expanded. In a teaching experiment, as opposed to classic 

design, interactions that use the researcher’s mathematical knowledge are allowed, and student 

sense-making may emerge (Steffe & Thompson, 2000). The "researcher acts as teacher" in an 

"interactive communication" with the subject with the goal of finding out what the subject may 

learn and what may foster that learning (Steffe, 1991, p. 177). Steffe (1991) described the 

teaching experiment as "an exploratory tool . . . aimed at investigating what might go on in 

children's heads" (p. 177).  

Descriptions versus adjustments. In addition to adding to standard examinations of 

student knowledge by exploring what they may be able to learn, the exploratory and flexible 

nature of a teaching experiment also adds to standard explorations of instructional approaches in 

that the researcher's continued actions are based on the subject's actions. There is no 

predetermined way of solving the problem presented. The researcher bears the responsibility of 
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making "on-the-spot" decisions based on what is happening in the experiment and the emerging 

model of the student’s knowledge (Steffe, 1991, p. 177). In one teaching experiment, 6 pairs of 

children worked with a teacher/researcher for about 45 min. per week for about 75 weeks over a 

period of 3 years, outside their classroom, using computer tools which allowed the students to 

use discrete sets of objects and continuous line segments to model fraction concepts (Olive, 

1999). The introduction of technology is an instructional approach and certain pedagogical 

approaches may be present with the use of technology that may not otherwise have been there 

(Kaput & Thompson, 1994). One of the tasks discussed in the study by Olive (1999) was to 

consider sharing part of a pizza among friends and find out how much of a whole pizza each 

friend would receive. The researchers made hypotheses during the experiment when they saw a 

difficulty a student was having. They introduced a constraint that might move the student 

forward by refocusing his attention on an overlooked aspect of the problem. The instructional 

approach was adjusted during the course of the experiment. The teacher’s questions guided the 

student’s thoughts (Olive, 1999).  

Contrast this approach to a case study done by Butler, Beckingham, and Lauscher (2005) 

which looked at "the processes by which . . . students were supported to self-regulate their 

learning in mathematics more effectively" (p. 156). The instructional model used was Strategic 

Content Learning (SCL). Four SCL principles of instruction were described: "Integrate support 

for self-regulation into instruction . . . . Students as active interpreters . . . . Learning in 

mathematics as guided (re)construction" and "Learning in pursuit of a goal" (Butler, 

Beckingham, & Lauscher, 2005, p. 160). A formal evaluation of SCL had previously been done. 

This study looked at three eighth-grade students and asked how SCL achieved instructional 

goals, how the students' learning was mediated, and how SCL was used in responding to 
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individual needs. Individualized Educational Plans (IEPs), psychoeducational assessments, and a 

Metacognitive Questionnaire gave the researchers information about the students (Butler et al., 

2005). The researchers also conducted observations, collected teachers’ written reflections, 

analyzed videotapes of instruction, and looked at student work samples and strategy sheets. They 

kept track of test performance, including an analysis of data from examinations given early and 

late in the project to provide pretest and posttest information. Their interpretation of data 

provided "a descriptive account of SCL intervention in relation to student learning" (Butler et al., 

2005, p. 162). Researchers created narratives described how SCL worked for each case. They 

also completed a cross-case comparison.  

Multiple data sources were used in the study by Butleret al. (2005) and a particular 

instructional model was examined, the work done was observational and descriptive of what was 

happening between the instructor and the student. The SCL model provided built in 

encouragement to adjust to student needs, and the teacher observed did so. The study provided a 

“rich description of instructional processes” (p. 172). The study by Butleret al. (2005) examined 

an instructional process and provided a description of it. The Olive (1999) study tried an 

instructional approach and adjusted it based on researcher observations during the course of the 

implementation. This quality of adjusting an approach based on researcher observations during 

the course of a study is characteristic of the teaching experiment, in which, as has been noted, the 

researcher is “an actor making ‘on-the-spot’ decisions in order to maximize the exploration” 

(Steffe, 1991, p. 177). This potential for adjustment to the teaching approach based on 

observations during the data collection also makes a teaching experiment more suitable for the 

current research study than a traditional examination of a teaching method, since, as has been 

noted, the study is an exploratory one, seeking to suggest theory. When potential theory 
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development is a goal, the researcher must be allowed the freedom to follow such leads as may 

arise and question the subjects enough to develop the ideas that are emerging (Creswell, 2007). 

This pursuit of emerging ideas is consistent with the adjustable nature of the teaching experiment 

which has been described. A merely descriptive study would not provide sufficient flexibility to 

the researcher.  

Tasks for teaching experiments. Rather than guiding the students toward a definite 

answer, teaching experiments present students with tasks that invoke in them a need to develop 

new interpretations or refine their thinking. The tasks can allow students to learn and to 

document their learning through built in descriptions and explanations (Lesh & Kelly, 2000). 

The tasks should allow the researcher to “bring forth and sustain students’ independent 

mathematical activity” (Steffe & Thompson, 2000, p. 293). The questions accompanying the 

tasks should elicit conjectures based on the research questions or hypothesis (Norton, 2008).  

To see how tasks for knowledge assessment and for assessing instructional approaches 

might differ from tasks used in a teaching experiment, consider the following task:  

Describe the effect that changes to m and b have on the graph of the equation  

y = mx + b.  

If the goal was to assess the student’s knowledge about this topic, the task could be given 

to them as is, with no tools other than the knowledge possessed by the student and no prior 

interventions. If the researcher’s goal was to test an instructional approach, the instructional 

approach would need to be implemented prior to administering the above task. For purposes of 

this discussion, suppose the instructional approach is the use of technology to teach this topic. 

The same task might be given to different groups, one group receiving it after the students have 

received instruction in the use of the technology in question, for example dynamic sketches in 
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which they explored how changes in the parameters affected the graphs. The researcher might 

then administer the task and note the effect of the technological instruction on the subjects’ 

knowledge. In contrast, a teaching experiment task should  

 Provoke the student to develop and refine their thinking (Lesh & Kelly, 2000) 

 Provide built in opportunities for them to describe and explain what they are 

doing (Lesh & Kelly, 2000) 

 Allow the researcher to bring out mathematical activity in the student (Steffe 

& Thompson, 2000) 

 Allow the researcher to follow up on research questions and hypotheses 

including those that arise during the course of the data collection (Norton, 

2008) 

Summarizing these ideas for practice, the task for a teaching experiment must be thought 

provoking, built on prior knowledge (so that it is accessible and thinking may be refined), open 

ended, provide prompts which encourage description and explanation, and be accompanied by a 

semi-structured interview protocol which is flexible enough to allow the researcher to make the 

necessary explorations for their study. Such ideas were taken into consideration in developing 

tasks for the current study.  

Steffe (1991) has said, “a general goal of mathematics teaching is for teachers as well as 

students to learn, and the primary goal of the constructivist teaching experiment is but a 

microcosm of this general goal of mathematics teaching" (p. 192). The key quality indicated here 

is that the researcher’s and subject’s learning are intertwined and occurring simultaneously. This 

type of research will allow the investigator to examine the effect that the introduction of 

technological representations to the student has on their thinking (Falcade et al., 2007). The 
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range of possible effects that might be discovered is widened in a teaching experiment with its 

flexible and exploratory nature over case studies which merely look at student’s prior knowledge 

or the effect of a particular instructional approach. The teaching experiment looks at the 

student’s knowledge as it develops and allows the adjustment of the instructional approach to 

permit the investigation of emerging theory (Steffe & Thompson, 2000). Teaching experiments 

generate detailed data in the interactions they track. Following is a discussion of theory which 

will help formulate a method for analyzing the data that has been generated.  

Approach to data analysis: Grounded theory. The examination of data resulting from 

the teaching experiment conducted in the present study is inspired by the pattern described by 

Glaser and Strauss (1967) in their classic description of grounded theory. A researcher engaged 

in this method of analysis would first code his data into as many categories as are possible, 

taking care to compare different pieces of data in the same category. Theoretical properties of the 

category emerge from this comparison. As this coding continues, the researcher can periodically 

stop coding and use memoing to record thoughts and theoretical ideas (Glaser & Strauss, 1967). 

During these periods of reflection, care should be taken that any logic is grounded in the data and 

not in speculation. As more is learned about categories, different categories become integrated 

with each other when relationships between them become apparent. Questions may also emerge 

which may guide the subsequent collection of data. Glaser and Strauss (1967) noted that this 

continued coding and integration process leads to the reduction of categories to a "smaller set of 

higher level concepts" (p. 110). As this process moves forward, it is affected by what Strauss and 

Corbin (1990) referred to “theoretical sensitivity” which they described as the researcher’s 

ability to notice the meaning in data.  
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They noted that a theoretically sensitive researcher will be able to separate important 

from unimportant qualities in the data. The ability to do so allows the researcher to formulate 

well-grounded theory more quickly than he or she otherwise would and give the data meaning 

which is "faithful to the reality" (Strauss & Corbin, 1990, p. 46). Their ideas are in keeping with 

Eisner’s (1998) notions of connoisseurship in qualitative inquiry. Theoretical sensitivity can be 

acquired by a study of the literature, through professional experiences in a particular field, 

through personal experiences related to the field of study, and as a by-product of the analytic 

process (Strauss & Corbin, 1990). The comparisons and ideas arising during analysis lead to 

other ideas which may result in a closer look at previously examined data and the discovery of 

new meanings.  

Lincoln and Guba (1985) looked at the data processing aspects of Glaser and Strauss’s 

(1967) constant comparative method (p. 340). They expanded the information related to stage 

one of the process, "comparing incidents applicable to each category", noting that the emergence 

of categories involves more "effort, ingenuity, and creativity" than the statement that "categories 

'emerge'" might imply (p. 340). Semantic relationships, for example, might be difficult to 

identify. A relationship might be inclusive, and be described as  "x is a kind of y", or it might be 

sequential, allowing it to be referred to as "x is step (stage) in y" (p. 340). They stressed the 

importance of the analyst’s ''tacit knowledge" as used on the first pass through the data, in which 

assignments to categories may be made based on what seems right to the analyst. Later analysis 

can clarify such understanding, but Lincoln and Guba (1985) claimed that such impressions may 

be hard to capture later. It is important that new incidents assigned to a category be compared 

with previous entries in the category. Thinking about such things assists in the process of 

refining categories. When conflicts arise, memos can help the analyst capture his or her thoughts, 
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providing an outlet for any conflict he or she feels and helping him or her discover the category’s 

properties. Stage two of the analysis finds the analyst shifting to a more rule-based system of 

classifying incidents. Subcategories may need to be formed or categories may need to be 

redefined. The analysis then comes closer to describing what is being studied. Lincoln and Guba 

(1985) noted that "fewer and fewer modifications will be required as more and more data are 

processed" and that as categories become clearer "options need no longer be held open" (p. 343). 

They said that "categories become saturated, that is, so well defined that there is no point in 

adding further exemplars to them" (p. 343-344). Saturation may also be described as that point at 

which "continuing data collection produces tiny increments of new information in comparison to 

the effort expended to get them" (Lincoln & Guba, 1985, p. 350). Specific methods for applying 

grounded theory techniques to the present teaching experiment will be discussed following the 

summary below.  

Concluding ideas about methodological theory. This study is based in the ideas of 

constructivism. It assumes that both researcher and subject construct knowledge together during 

the course of the particular methodological approach taken here, the teaching experiment. 

Qualitative research methods allow the researcher to collect and examine data with the eye of a 

connoisseur and use the rigorous data analysis methods of grounded theory to construct ideas 

which are both truthful and important.  The next portion of this chapter will describe some of 

what I learned from conducting a pilot study. The specific procedures which were used in the 

final study are then described. This will be followed by a look at my stance as a researcher, and 

issues of reliability and validity.  

Methodology learned through the pilot study.  Since I had not previously conducted a 

teaching experiment or tried the video techniques that would be used for this study, I conducted a 
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pilot study.  I recruited Steve4, a male in his early 20’s, who had been out of school for about 4 

years and did not remember taking Algebra 2.  He participated in 5 sessions for a total time of 

about 3 hours and 34 minutes.  

Facilitating Steve’s work gave me valuable experience in the type of progress adult 

developmental mathematics students might be able to make and the kind of questioning and 

facilitation it might require. I also gained practice in basing my actions on his actions and 

investigating the potential of his thinking, as described by Steffe (1991), rather than trying to 

guide Steve to a particular goal I had in mind. As I did this I found that Steve “came alive” when 

he was allowed to pursue his own ideas. One goal of a teaching experiment is to “bring forth and 

sustain students’ independent mathematical activity” (Steffe & Thompson, 2000, p. 293). 

In addition to gaining experience allowing him to work at his own pace, I learned more 

about providing the type of facilitation that is sometimes necessary to focus the subject's 

attention on pertinent mathematical relationships which will allow them to use mathematical 

ideas they already possess in new situations Olive's (1999). This occurred when I encouraged 

him to graph a vertical line so that he could visually follow the relationships of the x value to the 

point on the function he had graphed and the related y value more closely. As I worked with 

Steve I also found that the interview protocols I started with were too complex to use or follow 

well in a teaching experiment setting and was able to simplify them considerably for the final 

study.   

A brief summary of the pilot study results, including the presentation of selected video 

clips from the pilot study, was presented to a group composed of two mathematics educators, a 

specialist in educational research, and a mathematician. Technical suggestions were made 

                                                 
4 All names are pseudonyms 
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regarding the video set-up so that the appearance of the final product would be more easily seen 

and understood. Ideas for strengthening the study’s theoretical investigation were also suggested. 

Particular attention was drawn to the nature of a teaching experiment and the perceived need to 

focus not on eliciting student understanding but on finding out how they come to understand. 

One technique which was clarified through the conduct of a pilot study was the practice 

of taking into account what happened previously in preparation for each new interview session. 

Some things that might have been investigated were to note more fully the role of technology in 

enhancing the usefulness of the internal representations that Steve possessed. Another possible 

idea was to see how much the things Steve determined from his visual examination of the graphs 

and his examination of how they changed translated into increased algebraic understanding. 

Though such intriguing questions may arise in the researcher’s mind, the pursuit of knowledge 

must be balanced with the pace at which the subject can be made to reveal information without 

imposing upon him or her the researcher’s own thinking. A pilot study such as the one described 

here can be an invaluable opportunity, particularly for new researchers, to learn more about that 

balance. 

Procedure   

This discussion of specific techniques used for this study includes information about the 

selection of cases, instrumentation and data collection, data analysis, stance of the researcher, 

and issues of reliability and validity. It will then be followed by a brief examination of the pilot 

study which was conducted in preparation for the final teaching experiment.  

Selection of Subjects. The following section starts with a look at how an institution 

appropriate to the needs of the study was selected. Following that, the process used to recruit the 
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subjects of this study as well as the procedures used to decide the ordering of the work done with 

the subjects will be described.  

Institutional selection. Subjects were recruited from and the data collection conducted at 

Harrisville State University5 (HSU), a mid-sized university in the southern United States offering 

both undergraduate and advanced degrees. This institution was selected because of its proximity 

to my home and the presence of a large adult developmental mathematics population from which 

it was hoped that a sufficient number of subjects could be recruited. HSU has provided 

substantial support to returning students and others from the local community. That support has 

included a college within the university offering developmental courses, including two course 

offerings in mathematics6, Math 98 and Math 99. Three faculty members at the college 

specialized in those developmental mathematics courses. In addition, a preparatory algebra 

course, Math 100, was also available to assist those students whose mathematics placement 

scores indicated the need for remediation, but who had not been required to test for learning 

support. This course was also considered to be at the developmental level, since it did not count 

for credit toward graduation. An inspection of course offerings during a recent spring semester 

including the two developmental mathematics courses and the preparatory course showed that 26 

sections of mathematics at the developmental level were being offered, with a population of 

almost 600 students, and employing at least 15 different faculty members. This attention to the 

developmental mathematics population and the resulting presence of large pool of potential 

subjects in close proximity to my own location made this an ideal setting for the recruitment. The 

                                                 
5 pseudonym 

6 Course designations have been changed 
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cooperation of personnel within the university in providing space and allowing recruitment also 

added to the benefits of doing the research at HSU.  

Case selection. Both passive and active recruitment methods were used to find potential 

subjects for this study. With approval, the researcher entered developmental and preparatory 

course classrooms at the study site, and delivered a brief invitation to participate in the study. 

Flyers were provided at that time to potential participants, describing the study and including 

contact information. Flyers were posted in areas nearby those classrooms. Since this was an 

exploratory case study, two to three cases were deemed to be sufficient (Creswell, 2007).  Five 

people responded to the recruitment to the extent of providing personal information and 

indicating an interest in the study.  On one occasion I had appointments set up with three subjects 

in the same day. One of the subjects got lost, but called and was able to make the appointment. 

The other two did not show for their appointments. I was eventually able to get three initial 

interviews with three different subjects. Even though I had intended to select from a pool of up to 

8 initial interview participants, the response was lower than expected. The three who did 

respond, however, were each enrolled in a different developmental mathematics course. Their 

initial interviews confirmed the notion that they represented a spectrum of mathematical 

experiences, and I decided to stop recruitment and use those three subjects. Recruitment and data 

collection took place during Fall Semester 2009.   

The three subjects were Shirley, Marlon, and Marjorie7. Shirley was a 46 year old 

African American female enrolled in Math 98 who had been enrolled in the same course the 

previous Spring, but had not completed it. Previous mathematics courses she listed included 

general mathematics and Algebra 1. Marlon, a 53 year old African American male, was enrolled 
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in Math 99 and listed Math 98 as a previous mathematics course. Marjorie, a 36 year old African 

American female, was enrolled in Math 100 and could not remember a previous mathematics 

course, indicating that it had been 14 years since she had been in high school.  

Miles and Huberman (1994) have noted that with a small number of cases, purposeful 

sampling can allow the sample to be chosen to fit the logic of the study. Random sampling would 

be less effective for the purpose of the study. Part of the purposefulness is in the setting of 

specific boundaries for the section of cases (Miles & Huberman, 1994). One boundary for this 

study is enrollment in developmental or preparatory mathematics at HSU. The cases selected 

provided a range of mathematical experiences, providing different perspectives for the study 

(Creswell, 2007). Although all of the subjects were African-Americans over age 35, they each 

showed different mathematical understanding in their initial interviews. They were also enrolled 

in different level courses of study for developmental mathematics students. This shows that 

although there were only two subjects, these two subjects represented different portions of the 

developmental mathematics population.  

Since the idea of the study was to examine the influence of technology on the student’s 

internal representations of mathematics, the previous experience of the potential subjects with 

technology in their mathematics learning was also one of the areas I examined through the initial 

interview. Both Shirley and Marlon indicated their use of the internet, particularly a computer 

aided instructional program used by their mathematics teacher. Marjorie indicated experience 

with calculators. Logically, the intervention used in the teaching interviews would have greater 

impact on inexperienced students’ internal representations than it would for those who have 

previously internalized technological representations. Though they had some experience with 
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technology, none of the subjects indicated any experience with the software to be used in the 

study, Geometer’s Sketchpad. This added to their suitability as study subjects.  

Marlon was selected to be the first participant in the study and Shirley and Marjorie were 

notified that they would be contacted later in the semester following my work with him. Since he 

was enrolled in the second developmental mathematics course, this would presumably allow a 

more central set of data to be collected and the two cases representing either extreme of the 

population could then be compared with his data. Unfortunately, due to illness and other 

challenges, Shirley was only able to attend the initial interview and one other session. Attempts 

were made to contact her early the following semester, but she did not make it to a follow up 

interview, and eventually stopped returning phone calls. Since two cases were deemed sufficient, 

the study was completed with Marlon’s and Marjorie’s cases.  

Instrumentation and data collection. Interviews were the source of data for this study 

and the mode and structure of those interviews is described below. A discussion of the general 

interview technique is followed by specific looks at the initial interview and the series of 

teaching interviews which followed it. 

Interview technique. Interview protocols are found in Appendix B. All interviews, both 

the initial interviews and the teaching experiment sequence, were semi-structured and in 

accordance with effective interview techniques, efforts were made at the beginning to put the 

subject at ease, gradually building to more direct examinations (Kvale, 1996). I designed 

questions which encouraged the subject to relax, to use language comfortable for them, to be 

descriptive, and to be specific about their experiences. At times I rephrased and repeated 

questions and encouraged them to explain what they were thinking to increase the validity of my 

interpretation of their responses (Kvale, 1996). Some brief field notes were collected during the 
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interviews, but these were minimal as my attention was focused on conducting the teaching 

experiment and responding to circumstances. I kept more detailed notes in a descriptive word 

processed journal in which I recorded my reactions to sessions. Any reference to the subject in 

notes, journals, and transcriptions was made using a pseudonym.  

Initial interview. Initial interviews can help researchers gain understanding of prior 

knowledge so that in addition to gaining other information for subject selection, they will gain 

knowledge about the subjects’ experiences with similar mathematical tasks (Hollebrands, 2004). 

The initial interviews held in the present study lasted from about 35 to 45 minutes. Following 

appropriate measures to ensure informed consent of the subject, I collected data regarding the 

subject’s demographics, times of availability, and educational background. Any reference to the 

subjects’ real names was kept in a locked file box along with copies of their signed informed 

consent documents. I collected data regarding mathematical background by listening to the 

subject’s anecdotal accounts of their educational experiences. I allowed them to share 

mathematics of their choice which they remembered, and presented them with a diagnostic task. 

Initial interview subjects were informed that they may or may not be selected for further 

participation. Note that provision was made for additional questions other than those listed on the 

protocol form.  

Teaching experiment interviews and tasks. "Learning how to bring forth and sustain 

students' independent mathematical activity is a part of learning how to interact with students in 

a teaching experiment" (Steffe & Thompson, 2000, p. 293). Koichu and Harel (2007) suggested 

that interviewers encourage the interviewee in his or her thinking, that they not probe deeply 

early in the interview, and that they engage in a semi-structured conversation.  With these things 

in mind, a sequence of tasks was designed to be presented to individual subjects. They were 
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created to investigate and advance the subjects’ understanding of different representations of 

functions at a level consistent with their exhibited prior knowledge.  However,  not all of the 

tasks prepared for the study were actually used. The tasks as designed can be seen in Appendix 

C.  

The first tasks, designed to be used in the initial interview, consisted of the examination 

of patterns. After the subjects had been permitted to share some mathematics of their choice, 

they were presented with the task “Looking at patterns” and examined the sequence of shapes. 

They were then presented with the task “Looking at dot patterns” to see what patterns they could 

find there. Should it be needed, a third task, “Soda Cans” was also prepared, but it was not used 

in the actual study. The task “Another dot pattern” was used as a supplement to “Looking at dot 

patterns” and arose from work done in the pilot study. A sequence of tasks situated in 

technological settings was also prepared. The technological tasks were designed to allow both 

written and technological representations. The tasks were adaptable to the specific needs of the 

subject, allowing multiple entry levels, and open-ended responses reflecting student thinking. 

They were also designed to elicit information about the subjects’ understanding of ideas and 

representations associated with functions. Probing and specifying questions were used as needed 

to elicit student thinking, as supplements to the protocol, consistent with semi-structured 

interviews.  

Technological procedures. The mathematics software selected for the study was 

Geometer’s Sketchpad v. 4.07s (Key Curriculum Press, 2006), which incorporates graphical, 

tabular, animated, and symbolic representations. This software was installed on a guest account 

on my laptop computer which I took to each session. I also provided a movable mouse for the 

subjects so they would not be hampered by the use of the laptop’s touchpad mouse.  
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There were other technological considerations as well. Because the study was to be a 

teaching experiment, a record was needed of all of the pertinent actions and statements made so 

that they could then be analyzed. These actions included the subject’s interactions with the 

software, the subject’s creation of representations on paper, and the physical actions of the 

subject and interviewer. In order to capture all of these interactions, and at the suggestion of my 

advisor, three simultaneous recordings were made and those recordings later synchronized into 

one video production. Campbell (2003) described the use of  "dynamic tracking . . . to capture a 

complete record of a learner's interactions with a [computer based learning environment] in real 

time" (p. 73). In order to capture the learner's interactions as completely as possible, Campbell 

(2003) made simultaneous video recordings of the learner and the learner's computer screen. The 

work done in the present study adds to these two the work done on paper as well. The 

synchronization required that either the paper view or physical movements view be synchronized 

first as a picture in picture (PIP) with the screen capture view and then the other view added as a 

PIP to the resulting video.  

The three recordings were produced as follows. One recording was captured by software 

which was used to create a video record of the activities on the computer screen. A small camera 

was placed on a small tripod which sat on the table and faced downward to capture what was 

happening on paper.  A blank piece of paper was taped to the table so the subject knew where to 

keep their written work so it would be in view of the small camera. Another camera was set up 

across the room on the other side of the table from the subject to capture the physical 

movements. Figure 3 is a still capture from one of the final synchronized videos.   
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Figure 3. Still capture illustrating the camera set up and assembled video recordings 
 

In the third session held with Marjorie, a technical error resulted in the loss of the 

recording of the computer screen, however sufficient data from the other two feeds provided 

insight into what happened during that session and implications were still possible through the 

conversations and paper representations which were preserved. A total of 7 sessions were held 

with Marlon for a total time of about 6 hours and 47 minutes. A total of 6 sessions were held 

with Marjorie for a total time of about 5 hours and 3 minutes. An examination of how the 

captured data was analyzed follows.   

Data analysis. It is essential that those engaging in teaching experiments plan adequately 

for the labor-intensive activity of retrospective analysis, including a careful examination of the 

videotapes (Steffe & Thompson, 2000). In this case, videotapes included a record of the 

computer screen, the subject's reactions, and the subject’s written work, necessitating extra care 

in observations. As noted, video recordings were synchronized via computer software, so that 
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interactions between researcher and subject, computer screen action, and the subject’s written 

work were viewable simultaneously. Care was taken to note mouse movements along with 

transcription of the spoken word, and occasional notation was also included as to the timing of 

episodes within the session being transcribed. Transcription technique was inspired by Campbell 

(2003) and includes actions within braces {} and timing within brackets []. For example, the 

following transcription shows that Marjorie had the mouse pointing at the point (10, 6) on the 

xy-plane after she said the word “itself”, moved it to (0, 5) before finishing her next statement, 

and then moved it so that it was at (0,0) before she said the word “So.” It also shows that this 

statement ended at about 37 minutes and 56 seconds into the rendered video recording.  

MARJORIE: It’s got to intersect with the graph itself {cursor now at (10, 6)} because it 

does not have any, um {cursor now at (0,5)} ― its like to the exact ― it is rounded up or 

its like rounded {cursor at (0,0)}. So it doesn’t go to like any of the, the cents [37:56]. 

Following is a look at the coding techniques used in this study including a discussion of 

how emergent codes were addressed. One important emergent code is described.  

Coding techniques. A unitizing and coding guide is provided in Appendix D for the 

reader’s convenience and may be referred to during this discussion. This guide includes 

definitions for unitization, and a listing of families of codes with a priori and emergent codes 

noted as is appropriate within each family. Definitions and examples are given for each code.   

Initial coding was done during the course of the data collection, to facilitate ongoing 

analysis (Miles & Huberman, 1994). Transcription and initial open, descriptive coding were 

usually done between sessions, along with such memoing as naturally arose (Creswell, 2007; 

Miles & Huberman, 1994). Frequent memoing allowed the researcher to capture emerging 

observations about what was happening while those thoughts were fresh. Coding was recorded 
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using Atlas.ti data analysis software (Hewlett-Packard, 1993-2009).  The unit of analysis was 

one or more sentences or paragraphs focused on a single topic. As many codes were attached to a 

unit as were deemed appropriate for an understanding of the important ideas present in the 

situation.   

As the study progressed, it became clear that some codes needed refining. For example, 

at the beginning of the study, the a priori code “student’s mathematics” was used. It arose from 

the literature related to teaching experiments. When it became clear that many different forms of 

mathematics were being observed, and it would be more profitable to code these occurrences 

more specifically, that code was eliminated. Later on, the many codes which replaced it were 

reduced to the particular mathematical ideas listed in the final coding guide.  

After the interviews were concluded, initial coding for the sessions was completed, 

including the addition of newer codes that had emerged during the course of the study. 

Transcriptions were examined and further coded based on what was learned during the course of 

the data collection, particularly with an eye to emergent ideas related to the subjects’ interactions 

with technology. Quotations were examined one by one to determine whether or not the coding 

which had been done appeared to be sufficient.  

Axial coding was used to categorize data into families, and selective coding was used to 

connect cooccurring ideas and develop a view of what codes might be associated through 

theoretical hypotheses (Creswell, 2007). This follows the pattern described by Glaser and Strauss 

(1967) who noted that generation of conceptual categories is followed by hypotheses about the 

relationships among the categories. Co-occurring codes lists were created using Atlas.ti and 

examined to see which codes were associated with each other. Networks were created which 

could show the density or connectedness of particular codes. Such a process served to help 
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highlight emergent ideas. A one page code list was used at times to help with coding. The 

software was also used at times to filter the codes according to family when examining a 

quotation which seemed to contain information related to that family.  

Queries done using the software helped create logical combinations of codes which were also 

helpful in analyzing the data.  

Indicative movements. I noticed during the course of the study that gestures and mouse 

movements used to interact with the mathematical representations were more prevalent and 

apparently more connected to the subject’s internal representations than I had anticipated. They 

were also connected to emergent ideas related to the influence the technology was having on 

student thinking. In order to go back and code for that emergent idea, I used the software’s 

category searches feature, which allows the researcher to look for all instances of particular 

words in the transcripts. Gestures were considered to be occasions where the subject pointed to 

or indicated something by a physical movement in some way. A search was done through the 

transcriptions for forms of the word “indicate” or the word “gesture.” Mouse movements were 

considered to be occasions where the subject’s cursor movements could be tracked in some way. 

Such movements were usually indicated in the transcription by the word cursor or mouse or 

forms of the word trace or slide. Those words were used in a category search as well. Not every 

single occurrence in the above named searches was coded as such; for example if it was a 

movement of the interviewer and not the subject, it was not coded. In the final coding structure, 

the instances of gestures and mouse movements were combined into the code indicative 

movements which I felt more accurately described their role, as they seemed to be providing 

indications of student thinking in similar ways.  
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This review of the techniques used in the present study has included a discussion of case 

selection, interview techniques, teaching experiment procedures and tasks, and data analysis 

procedures. Attention will now be turned to the point of view I brought to the study as a 

researcher and to the methods used to ensure that the research that was done was reliable and 

valid.  

My stance as researcher 

It is helpful for readers to know any biases on the part of the researcher and to understand 

clearly the role of the researcher in the study he or she is conducting. It clarifies exactly what 

opinions of the researcher may have affected his or her objectivity or interpretation of data (Pratt, 

2007). Readers of the present study need to know that I believe that it is essential that teachers 

today understand and incorporate into their classrooms the power that technology has to help 

students learn to love and understand mathematics. I have experience in the use of technology in 

the classroom which supports that belief.  

I taught entry-level college mathematics students for five years, many of whom had just 

completed developmental mathematics courses. In this instruction I used technological 

representations on many occasions, gaining practical experience with such technology and its 

effect on student learning. I also used technology in teaching students in grades 8-10. At both the 

college and public school level I provided websites through which students could gain access to 

technological representations which would help them in their study of mathematics. I believe that 

technology has the power to engage both the adults and the younger students I observed with 

mathematics in a way that other techniques may not have.  

In the public school setting in which I taught, computers were provided for every student 

in every classroom. No training was provided, however, as to how the teachers of each individual 
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subject would incorporate those computers into their classrooms. I believe that a greater 

understanding of the importance of the use of technology in the mathematics classroom will help 

school stakeholders to make wise decisions about what resources they provide for teachers.    

It was helpful that I had worked with adult learners previously, as is desired in a teaching 

experiment (Steffe & Thompson, 2000). I also had to observe what was happening and interact 

with students in a manner that would allow me to learn how students operate and put aside my 

own way of doing things as much as possible. I knew that there would be more happening than 

teaching. Because I was interested in watching the development of students’ thinking, observing 

what I could of their internal representations, and watching the subjects’ use of technology to 

solve problems, I responded to their confusions or misunderstandings with particular types of 

questioning rather than direct answers.  I also at times allowed them to pursue mistaken ideas so 

that I could see how the use of technology could allow those mistaken ideas to be revealed and 

clarified. I made decisions as to what problems to present to the subjects so that emerging ideas 

could be pursued, as opposed to making choices based on the completion of curricular goals. All 

of these choices in the pursuit of emerging ideas about student thinking affected the course of the 

research. In addition to clarifying any bias I had in the conduct of this study, additional measures 

were taken to ensure its reliability and validity. A discussion of what was done and the 

importance of this follows.  

Reliability and Validity 

It is vital that any study presented to the academic community be evaluated as to the 

quality of the research which was done, in order for that research to be deemed worthy of 

consideration. Such qualities may be considered under the broad headings of reliability and 

validity. Reliability refers to the quality and clarity of the research techniques used. Validity 
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includes the notions of internal validity or the authenticity of what it being said and external 

validity or the potential of the research to be applied to appropriate settings (Miles & Huberman, 

1994). Following is a discussion of constructs used to address reliability and validity in 

qualitative research. After that the specific methods used in this study will be described.  

Reliability and validity in qualitative research. Many constructs have been used to 

address these issues in qualitative research and have been aligned with or added to the above 

notions. Miles and Huberman (1994) provided a concise summary of many of those methods. 

They drew together ideas from researchers including Guba and Lincoln (1981) and Schwandt 

and Halpern (1988). Another researcher who drew from the work of Guba and Lincoln is Tuckett 

(2005) who provided practical examples as to how the ideals proposed by Guba and Lincoln 

might be enacted.  He noted that Guba and Lincoln's (1989) trustworthiness criteria included the 

notions of credibility, transferability, dependability, and confirmability and that their evaluation 

criteria included credibility, fittingness, auditability, and confirmability. To help ensure 

credibility, Tuckett (2005) used journaling, recordings, member checking, and triangulation, 

among other things. To ensure transferability or fittingness, he included the use of thick 

description, and purposeful sampling. To help ensure dependability or auditablity, Tucket (2005) 

used field journaling, recordings, negative case analysis, and peer review. Field journaling also 

helped him ensure confirmability.  

Geertz (1994) described "thick description" as providing "meaningful structures" through 

which people's actions may be better understood (p. 215). Thin description would merely 

describe the action. Thick description would give more than just a description of the action. It 

might provide, for example, information regarding the motivation for the action. Merely 

observing someone whose situation seems to fit the idea you are searching for does not give you 
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"the thing entire" (Geertz, 1994, p. 226). Part of the task is to "uncover the conceptual structures 

that inform our subject's acts" (Geertz, 1994, p. 229). It is then hoped that this will generate 

useful analysis.  

Miles and Huberman (1994) described reliability as comparable to dependability or 

auditability and said it was the quality which shows whether or not the process of the study was 

“consistent, stable over time, and across researchers and methods” and possessed “quality 

control” (p. 278). In exploratory studies such as the one reported here, an analyst applies global 

interpretations to the subject's mental processes, usually displaying transcript sections with his or 

her interpretations. This assists the reader in seeing how analytical decisions were made 

(Clement, 2000). Analysis must be conducted and reported in such a way that another researcher 

can follow decisions made by the author (Chiovitti & Piran, 2003).  

Rather than relying on multiple independent coders, the exploratory method relies on an 

analyst who is sensitive to the subject and employs keen observation of detail (Clement, 2000).  

If the researcher works alone, he or she may present in detail his or her perspective on the data in 

such a way that readers can see things from the researcher's point of view, even if they do not 

agree with it (Kvale, 1996). Kvale (1996) noted that readers should be able to "retrace and check 

the steps of the analysis" (p. 209). Following is a description of measures taken to ensure the 

reliability and validity of the current study. 

Measures taken in the present study. During the course of the present study, the 

following measures were taken which add to its reliability. A record was kept through memoing 

and journaling of some of the questions and thoughts that arose during the course of the study 

and its analysis. Multiple recordings were made of each session.  Though only one researcher 

was involved in this study, triangulation is present in the form of visual, verbal, and written data 
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all being collected from the subjects, providing multiple mediums through which information 

was conveyed. Peers provided feedback following the conclusion of the pilot study, a peer was 

consulted during the course of the study for purposes of discussion and feedback as to the 

progress of the study, and a peer was also consulted regarding the process of ensuring reliability.    

Thick description and the inclusion of transcript portions are used in the description of 

the cases. Following are additional measures taken. Included are a sample of researcher 

questions, a look at the use of talk-aloud protocols, a description of how questioning was used to 

ensure internal validity, and a description of measures taken to ensure external validity.  

Questioning during the course of the analysis. One way analytical decisions may be 

tracked is by knowing some of the questions which arose during the course of the research 

(Chiovitti & Piran, 2003). Questions which arose during the course of this study included the 

following examples, drawn from the researcher’s reflective journal and from memos recorded in 

via Atlas.ti data analysis software (Hewlett-Packard, 1993-2009). Questions related to Marlon’s 

case follow:  

 Can technology help Marlon to see the connection between his idiosyncratic 

representation and the standard representation?  

 How can an understanding of functions be built on the idea of counting?  

 What other mathematics does he possess?  

 What connections is he making?  

 Could [a particular use of variables] be considered an idiosyncratic 

representation?  

 What internal representations does he possess?  
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 [H]e did not think of these two numbers as being added together previously. 

Could this be related to his confusion about the coordinates of a point, which he 

sometimes represented as an addition problem?  

 What learning came from the technology and what came from pattern 

examination? (Has he ever examined patterns like this before?) 

Questions related to Marjorie’s case follow:  

 How much did the software really help her to get this idea?  

 How important was her own discovery and investigation with the software to her 

understanding?  

 How much information is there in what she says and does? 

 What does this say about her internal representations? 

These and other similar questions served to focus the researcher’s thinking during the 

course of the study and afterwards as the analysis continued.   

Inter-rater reliability. Unitizing was done semantically. Semantic units are chosen based 

on the meaning of the text, while syntactic units are chosen by "graphic convention" (Murphy, 

Ciszewska-Carr, & Manzanares, 2006, p. 3). Semantic units allow the researcher to encompass 

whatever he or she feels constitutes a "complete idea" (Murphy et al., 2006, p. 4). Semantic units 

allowed me to more clearly examine the meaning found in exchanges between interviewer and 

subject. Since this study was designed to investigate student thinking, I felt it was vital that 

meaning be a factor in the selection of units. Meetings were held with a knowledgeable peer to 

discuss issues of reliability. 

Murphyet al. (2006) noted the challenges of working with semantic units, which require 

"interpretation and judgment on the part of coders" (p. 4). They said that "reliable and consistent 
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interpretation and judgment between coders may not be possible in spite of training" (p. 4). 

Creswell (2007) stated that in obtaining inter-coder reliability, it is important to decide what it is 

that is to be agreed upon. It might be code names, code passages, or the selection of codes 

assigned to the same passages. He noted that "there is flexibility in the process" (p. 210). In an 

inter-coder agreement process he designed for data related to the HIPPA privacy act, he and 

those working with him determined that they would not seek unitizing or coding passage 

reliability. He said that, in the case of that particular research, to expect different coders to select 

the same passages "would be hard to achieve because some people code short passages and 

others longer passages" (p. 211). What they did do was look at passages that they had all coded 

and see how well the codes they selected for those passages matched (Creswell, 2007).  

I did conduct unitizing reliability tests with two different trained persons. I found that the 

passages I selected were generally longer than the ones they selected, but there was some 

consistency as to the location of the breaks. Of the places where I deemed that a break between 

one unit and the next occurred, they also chose most of those same breaks (about 64%).  

I also conducted inter-rater coding reliability tests, focusing on the four categories of 

codes: mathematical content and thinking processes, representational ideas and issues, influences 

and uses of technology, and other. I looked to see whether or not, given the same passage of 

transcript, a trained peer with experience coding qualitative data would find those same themes 

reflected in those passages. Using percentage of themes assigned by both coders that were 

matched, the calibration session produced an agreement of 88.46%.  A first independent session 

produced an agreement of 77.78%.  A second independent session by the same coder produced 

an agreement of 78.95%. Total agreement over the three sessions was 81.94%. 
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Internal validity. Creditability may also be described as trustworthiness or internal 

validity and relates to the faithfulness of the description of the phenomenon (Chiovitti & Piran, 

2003). It speaks to whether or not one should believe what the author says, (Schoenfeld, 2007).  

It also indicates that the participants have in some way guided the process and that theory has 

been checked against participants’ meanings (Chiovitti & Piran, 2003). Creditable research 

methods protect the researcher from inaccurately representing the subject’s intended meanings 

(Chiovitti & Piran, 2003). In the present study, as noted above, a journal was kept. Some of these 

thoughts recorded following the sessions provide a fresh memory of what occurred during the 

session. The multiple video recordings also add to the believability of the study in addition to 

providing evidence of reliability. This is particularly helpful as it allows key portions of the 

resulting transcripts to be checked for accuracy. Triangulation, as noted above, also adds to 

internal validity. Following is a closer look at two other measures of internal validity used in this 

study, the use of talk-aloud protocols and careful questioning to elicit as accurately as possible 

the student’s own thinking.   

Talk-aloud protocol. Subjects were encouraged to talk out loud about what they were 

doing as they worked, to talk continually as if they were thinking out loud. Instructions given to 

subjects were adapted from ideas presented by Koichu and Harel (2007). At times the subjects 

had to be reminded of the idea of a talk-aloud protocol, but each subject provided narrations of 

their efforts during the course of their interactions with the technology. Such narrations, when 

they were more than just a sentence or two, were coded as verbal streams and were common in 

both Marlon’s and Marjorie’s cases. Campbell (2003) also referred to talk-aloud protocols and 

noted that such techniques along with “putting your mouse where your mind is” would help 

researchers better capture their subject’s thinking (p. 74). Instructions were given to the subjects 
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in the first session as to what they were expected to do. They were told to “read the directions 

and follow them . . . talk out loud about what you’re doing as you work, talking continually as if 

you were thinking out loud.” Other interviewer statements occurring during the course of the 

study to encourage this kind of talking were “What do you notice? Talk about what you’re 

noticing” and “keep talking about what you’re thinking so that I’ll know how you’re thinking 

about this.”  

Questioning for validity. Questions were also used which were designed to support the 

subject’s sharing of their own thoughts. Kvale (1996) noted that careful questioning during an 

interview as to the meaning of what was said can help with validation. In this case, such 

questions were noted by the following four sentences which were used as codes. Why? Explain 

your meaning or choice. What do you see? What happened? Coding analysis shows that such 

questions were also common in both Marlon’s and Marjorie’s cases.  

External validity. External validity is also referred to as transferability or fittingness 

(Miles & Huberman, 1994). Generality and importance ask how widely the research applies and 

whether or not it matters (Schoenfeld, 2007). Generality does not imply importance. A study 

may apply widely, but not contribute anything to our understanding of mathematics education 

(Schoenfeld, 2007). External validity is aided by a clear description of the scope of the study, the 

expectations for it, the subjects of the study, and by using thick description during the report of 

the study. The recruitment and sample used for this study have been clearly described. It has also 

been clarified that the purpose of this study is suggestive and not confirmative.  

Any final decision regarding transferability rests with the reader (Chiovitti & Piran, 

2003). The goal of theory development in mathematics education is to be able to communicate 

ideas about it to the educated world in ways no other academic field can. In order to do so, 
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theories must be developed and used wisely (Silver & Herbst, 2007). It is not within the scope of 

this study to develop grand theory, but to formulate substantive theory related to the experiences 

of these students which may suggest further work (Schwandt, 1997). 

Another way to increase external validity is through the use of thick descriptive data. 

This way judgments about fit can be more readily made by others (Lincoln & Guba, 2007).  As 

has been noted, thick description refers to the interlacing of meaning into described actions 

which helps us to better understand those actions (Geertz, 1994). Case descriptions for this study 

will include connections to ideas about representation and technology and other emerging ideas 

which will help the reader to situate the subjects’ actions theoretically.  

Conclusion 

In this chapter I have provided the reader with a description of the methods used for this 

study, beginning with a look at the theoretical basis for the methods chosen. I discussed 

qualitative research in general as well as qualitative research in mathematics education. I 

provided information to support my choice of a teaching experiment and showed how such a 

choice would allow me to learn more about the effect of the use of technology on student 

thinking. Grounded theory was discussed as a foundation for data analysis. Following that 

discussion, I presented a brief look at what I learned during the course of a pilot study. The 

specific procedures used in this study were described, including the selection of subjects, the 

instrumentation and data collection, and the technological procedures. I also discussed data 

analysis procedures, and defined my stance as a researcher. In addition, I showed how specific 

technological procedures in the form of a multiple camera technique allowed me to collect data 

so that students’ statements, paper inscriptions, and technological choices could all be examined 
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in detail. Finally, measures taken to ensure reliability and validity were described. A description 

of the results of the study follows.  
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4. Results 

 
The purpose of this study was to determine the effect of the use of mathematics 

technology on adult developmental mathematics students’ understanding of functions. Such 

understanding was to be characterized by the quality of internal representations those students 

appeared to be able to build as they interacted with technology. It was hoped that insight could 

be found which would enable teachers of adult developmental mathematics students to help 

those students overcome the challenges they may have, such as learning disabilities, a lack of 

self-efficacy (that is, a lack of a belief in their own ability to be effective learners) or a lack of 

understanding of what it is that is holding them back (Epper & Baker, 2009; Hall & Ponton, 

2005; Wadsworth et al., 2007). It was also hoped that teachers of adult developmental 

mathematics students might be provided with information which could broaden their use of 

technology, which, as in other developmental situations, may not have been allowing the insight 

into student thinking that would help these teachers better serve their students (Kinney & 

Kinney, 2002). I conducted a qualitative case study in the form of a teaching experiment in the 

hopes that it would allow me the best opportunity to examine adult students’ interactions with 

technology and study their thinking.  

This chapter begins with an introduction to the subjects and some of their personal 

characteristics. This will be followed by a summary of what happened during the course of the 

teaching experiment. Following that summary the major theoretical ideas which arose will be 

examined and supported by examples from the collected data on Marlon’s and Marjorie’s 

experiences. The chapter will conclude with a summary of those ideas.  
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Description of Subjects 

Marlon, a 53 year old African American male, entered the study desiring to learn and 

having persevered through personal challenges. He grew up in a large city in the northern United 

States where he had experienced the influence of gangs before moving to a different school. He 

dropped out of high school in his final year and then earned his GED while serving in the 

military. The exact reasoning for his dropping out of high school was not clear. He said, “I tried 

to take my subjects very seriously but . . . trying [to] raise kids at that time I just fell out.” He 

could not remember much about his high school mathematics classes, saying that he was 

“probably more into sports” at that time. He did say at one point that he had loved mathematics 

when he was growing up but that “you really have to practice it all the time.” He now found 

mathematics challenging, particularly after having been out of school for a while, which he said 

made learning harder. He had not passed the first developmental mathematics course when he 

took it during a recent spring semester, and stated that the heavy load from the English and 

reading classes he was taking at the same time made it more difficult to find the time to get his 

mathematics done.  He took it again that summer and passed it. He has made some use of the 

mathematics tutoring lab available on campus. He also expressed a strong desire to have his own 

computer available at home. He had some experience with calculators and with software used by 

his teacher which he said had been helpful.  

Marjorie was a 36 year old African American female with a military background who had 

left the military in order to pursue her education. Marjorie had apparently done well in school in 

her childhood having been on the honor roll until the 10th grade.  While Marjorie was in middle 

school, her mother had become ill. For about 4 years the illness was not, apparently, life-

threatening. Towards the end of that time, after they had returned to the United States from 
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overseas, her mother’s health deteriorated, and she passed away while Marjorie was in high 

school. This personal tragedy probably contributed to Marjorie’s loss of interest in school for a 

time. Even so, she graduated from high school with a B average. She said that “I was able to 

catch up with everything . . . and I graduated . . . with like a 3.2 but it wasn’t like . . . my 4.0’s I 

was getting before.” After high school she joined the military. She “didn’t want to do anything 

with school” when she first got into the military, but about 3 years later she took some college 

level courses. As part of her military service she was sent overseas where there was less access to 

the courses she needed. She has continued to take classes, sometimes “sporadically” and wants to 

“get as much education as [she can].”  

Table 10 provides a summary of the background information about the subjects of this 

study. Both Marlon and Marjorie had military backgrounds and had experienced difficulties in 

their childhood unrelated to their cognitive abilities which may have affected their academic 

progress. Such challenges are in keeping with the non-cognitive factors that often hamper adult 

developmental mathematics’ students efforts in their return to school, such as personal demands 

on their time (Gerlaugh et al., 2007). Marlon seemed to become more easily discouraged than 

Marjorie, since he would often apologize for mistakes while Marjorie often asked to work on a 

problem further. He demonstrated more of the lack of self-efficacy described in the literature as 

being evident in some adult learners (Wadsworth et al., 2007). They both however, seemed to 

have a strong desire to learn. 
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Table 10 
 
Subjects of Teaching Experiment 
 Marlon  Marjorie 

Demographics 53 year old African 

American Male 

Former military 

36 year old African 

American female 

Former military 

Secondary education Dropped out of high school 

in his final year and earned 

his GED while serving in 

the military 

Graduated from high school  

with about a 3.2 average 

Post-secondary education Had to take the first 

developmental mathematics 

course twice to pass it. Was 

enrolled in the second of 

three developmental 

mathematics courses during 

the study.  

Had taken other college 

level courses. Was enrolled 

in the highest (third level) 

developmental mathematics 

course available during the 

study. 

Attitude Worked very hard to 

analyze what he saw. Often 

apologized for making 

mistakes.   

 

Keen desire to understand 

everything. Wanted to work 

to solve problems beyond 

the designated time for the 

session.  
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 Marlon  Marjorie 

Non-academic influences Experienced the influence 

of gangs in his childhood   

Lost her mother to cancer 

while she was in high 

school 

 

 
 
 
The Teaching Experiment Sessions 
 

Following is a summary of what occurred in the teaching experiment sessions. This 

summary will focus on basic events and choices made during the course of the experiment and 

not on the mathematical or theoretical results. Table 11, provided as a summary of the sessions 

for both subjects, will be followed by a narrative description of the sessions.  

Table 11 

Content of Teaching Experiment Sessions 
 Marlon  Marjorie 

Session 1 He told about his background and 

shared some mathematics he 

remembered. He examined 

“Looking at patterns” and “Looking 

at dot patterns”   

 

She told about her background and 

shared some mathematics she 

remembered. She examined 

“Looking at patterns” and “Looking 

at dot patterns”   
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 Marlon  Marjorie 

Session 2 He went back over his thinking for 

“Looking at dot patterns”. He was 

introduced  to “Another dot pattern” 

and the software. He explored 

graphing coordinate points with the 

software.  

She was introduced to the software, 

and after free exploration she then 

explored the xy plane, including the 

graphing of coordinate points.  

Session 3 He continued to explore the 

graphing capabilities of the 

software. He described the patterns 

he saw in “Another dot pattern”, 

graphed the data points representing, 

and made observations and 

predictions about them.  

 

 

 

 

 

 

 

 

 

She continued her exploration of 

graphing points with the software. 

She was reminded of her work with 

“Looking at dot patterns” and she 

continued that analysis.  
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 Marlon  Marjorie 

Session 4 After about 22 minutes of work to 

remember what he had been doing, 

he was asked to make predictions 

about the number of dots in the 20th, 

nth or xth  pattern. He was 

introduced to the functions menu 

and encouraged to try the functions 

menu, using x as a variable and to 

try creating a function which would 

pass through the data points. 

  

She explored the function menu, 

and graphed some constant 

functions. She was encouraged to 

graph h(x) = x, put a measured 

sliding point on it, and asked her 

what it meant. She matched 

algebraic and graphical 

representations and looked for 

intersections of h(x) with the 

constant functions.  

Session 5 With facilitation, he explored as he 

tried to recall what we had done 

previously. He was encouraged to 

test ideas he was building about 

functions.  

 

She was challenged to graph a 

function that would pass through 

“Looking at dot patterns.” She 

explored the effect of the change of 

value of k in functions of the form 

f(x) = kx. With facilitation, she 

used the software to find the 

equation of the function passing 

through her data points.  
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 Marlon  Marjorie 

Session 6 With facilitation, he placed a vertical 

line at x = 7 to help himself think 

about what was happening on the 

graph of the function g(x) = x + 9 

with which he had chosen to work. 

Once those two were graphed, he 

was encouraged to examine their 

intersection.  

 

She was presented with a new table 

of values, and asked  to study it and 

use the software to explore it. 

Session 7 Using written instructions, he 

created a dynamic representation 

which included a movable measured 

point attached to the graph of g(x) 

that generated a table of values.  

(Only 6 sessions held with 

Marjorie) 

 

Marlon’s sessions. The purpose of the initial interview session was two-fold. First I 

asked him to talk about his background in a relaxed way. This provided me with information 

about him and allowed him to become comfortable with the setting and situation. Second, I 

asked him to analyze the patterns found in the two handouts “Looking at patterns” and “Looking 

at dot patterns”,  found in Appendix C. This allowed me to learn something about his 

mathematical thinking and to provide content which the software would be used to investigate in 

later sessions. Marlon attempted to remember some of the mathematics he was doing recently, 



  

135 

but did not accurately remember how to use the devices of rote memorization he was familiar 

with such as the first outside inside last (FOIL) method of multiplying two binomials, which he 

misapplied. He looked at “Looking at patterns” and “Looking at dot patterns” during this session, 

taking pains to examine them closely.  

During the second session, I allowed him to take considerable time going over his 

thinking for “Looking at dot patterns” so that I could understand his thinking better. I then gave 

him “Another dot pattern” which was a simpler growing pattern, and he seemed to work with it 

more fluidly. About 20 minutes into the second session, after his examination of “Another dot 

pattern” he was introduced to the software. He had not heard of Geometer’s Sketchpad. He was 

allowed to explore the tools, and then he was introduced to the graph menu. I asked him to 

choose graph and define coordinate system, asked him if he was familiar with it and what he 

could tell me about it. I could then choose steps which let him become familiar with the software 

and at the same time let me see him demonstrate and build understanding of graphing 

representations. I had him use the point tool to place a point on the plane, use the measure menu 

to find its coordinates, and use the selection arrow tool to move the point around so he could see 

how the coordinates changed, predict what the coordinates would be in certain locations on the 

plane, and test those predictions. This gave him practice selecting and moving objects and using 

the menus.  Later I had him use the plot points menu, which places a fixed point at one location, 

so he could see the difference in the two types of graphing methods. I also introduced him to a 

method for changing the scale of the graph.  

In session 3 I continued to allow him to explore the graphing capabilities of the software 

to try to recall what he had done the previous session for about 30 minutes. I then turned his 

attention to “Another dot pattern” before asking how we might use the software to explore the 
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data found in the pattern. He described the patterns he saw. In his work on paper the data was 

already being represented as a table of values and with some scaffolding questions on my part, 

he graphed the data points with the step number as the value of x and the number of dots in that 

step as the value of y. Once the points were graphed, he made observations about why they fell 

where they did and what their relationship to each other was. He also made predictions about 

where additional points would fall. By having him graph the points that were in the table, I 

hoped to help him make the transition from a representation he seemed comfortable with (the 

table) to a different representation (the graph).   

During the fourth session, Marlon initially still had trouble remembering how to graph 

with the technology. Helping him remember related mathematical vocabulary seemed to help 

him find the right menu choices. He first plotted random points, even though I put the work he 

had done on paper for “Another dot pattern” in front of him. After about 22 minutes of 

refamiliarization, we discussed how many dots would be in the 20th pattern and then in the nth  

pattern or the xth pattern. Following this discussion, I introduced him to the functions menu of 

the software. After some introductory explanation, I encouraged him to try creating some 

functions which used x as a variable. Even though I knew his understanding of these 

representations was weak, I wanted to see how much he could learn from using the software to 

explore such representations. He created and graphed some linear functions, and made some 

observations about them. I then challenged him to try creating a function that would pass through 

the data points he had graphed. With some scaffolding questions designed to help him observe 

what was happening in the things he was choosing to try, he was able to do so. I encouraged him  

to write down what he had found and to take notes on the other ideas he had explored. After this 

session I wondered how much he really understood about what he was seeing.  
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For the next session, the fifth with Marlon, I started the session with a file already open 

that showed coordinate points modeling data from “Another dot pattern” graphed on the xy-

plane. The x-coordinate represented the step number, and the y-coordinate represented the 

number of dots in that pattern. I also encouraged him to use the display menu to change the 

colors of what he was creating so that the algebraic and graphical representations of the same 

function would be the same ocolor. I let him explore a little before giving him his notes from the 

previous session. He did not remember how we got the graph of the line that passed through the 

data points and created some other functions as he tried to remember. I focused my questioning 

on helping him think about what was happening and facilitating the explorations he was trying to 

make to build understanding. With this facilitation, he was able to reason his way back to the 

correct representation. I also encouraged him to test the ideas I saw him building about the 

representations of functions by trying other functions which were similar to or different from the 

ones he had been using. 

In session 6, I wanted to challenge him to go beyond the understanding he seemed to 

have about the representations associated with functions. About 30 minutes into the session, after 

his explorations about the ideas he had been building, I facilitated his plotting of a vertical line at 

x=7 to draw his attention to the fact that the variable x in the function could take on many 

different values, such as 7. He had been thinking of x as zero. I hoped that looking at the 

intersection of g(x) = x + 9 and x= 7 would help him see that the function g(x) crossed over other 

places than the y-axis. I also hoped to give him entry into the meaning of the algebraic 

representation by allowing him to find points on g(x) other than the intercepts on which he had 

been focusing. In session 7, I gave him written instructions for creating a dynamic representation 

which would include a movable measured point attached to the graph of g(x) that generated a 



  

138 

table of values. I hoped to see whether this would help him make the next conceptual step from 

noticing that the graph “crossed over” particular places to seeing it as the set of all such 

locations.   

Marjorie’s sessions.  As with Marlon the initial session with Marjorie allowed me to 

learn something about Marjorie’s background. I also allowed her to share some mathematics that 

she remembered and presented her with both the “looking at patterns” and “Looking at dot 

patterns” handouts. I found that she saw the pattern present in “Looking at dot patterns” more 

easily than the other two subjects. Because she was the second subject in the study, it was several 

weeks later before the second session with her was held.  

For Marjorie’s second session I decided to start her with the introduction to the software, 

rather than looking back at her previous work as I had done with Marlon. As with Marlon, after 

some free exploration, I had her explore the xy plane in order that I might learn something about 

her understanding of it even as she built understanding and continued to learn about the software.  

The screen shot of the third session was lost due to a technical error. It started with 

Marjorie looking at graphing points for a while until I felt she had done enough to be able to 

move ahead and go to the next task. About 15 minutes into the session, I asked her to think back 

to her work with “Looking at dot patterns”. She had seen that it went up by 3 each time. I added 

the idea of step number and asked her how else she might represent that data. After examining 

the graph of the dots pattern data with the technology, I asked her to tell me how many dots 

would be in the twentieth step. She made a general guess by looking at the technological graph 

and then extended the representation in the table of values to test her guess. I asked her how 

many dots would be in the 100th  pattern and she used the paper representation of the table of 

values to solve this problem.  
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In the fourth session, I had her explore the function menu. She graphed some constant 

functions formed by entering a parameter in the formula. After she looked at the constant 

functions, I encouraged her to graph h(x) = x, put a measured sliding point on it, and asked her 

what it meant. I wanted her to see what understanding she had or could get from these 

explorations before we went back to the dot pattern and table of values. After encouraging her to 

match algebraic and graphical representations, I decided to let make her own choices as to what 

she would do next. She wanted to find the intersection of h(x) with the two constant functions. 

With minimal help she remembered what functionality and tools of the software would allow her 

to do that.  

At the beginning of session 5, I asked her to remember what she had been doing and had 

two of her saved sketches ready to which she could refer. I challenged her to graph a function 

that would pass through the graphed data points from “Looking at dot patterns.” I reminded her 

of the work she had done with the paper representations. Her choices led to an exploration of the 

effect of a change in slope on the graph of a linear equation. After she had made connections 

between what she found and the dot patterns, toward the end of the session, I assisted her in 

placing a line through the graphed points and asking the software to find the equation of the 

function for her and asked her to relate it to what she had already been doing. In session 6, I 

presented Marjorie with a table of values, and asked her to study it and use the software to 

explore it. Following these explorations, I asked her to give some concluding remarks about her 

experiences. 

 
Major Themes Arising from the Study 

Data analysis began with ideas from the literature related to teaching experiments and 

representation and a general search for places where technology use seemed to be important or to 
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affect the student in some way. Through looking at the subjects’ mathematical thinking, it 

became apparent that particular misconceptions were repeated. It also became apparent that the 

subjects had particular strengths in their mathematical thinking, such as the ability to observe 

patterns and to reason and make sense of things. Identifying certain types of mathematical 

thinking such as recursive thinking (noticing how patterns change from one to the next in a 

sequence of patterns) was also important. The types of mathematical thinking that were observed 

are collectively referred to by the category name mathematical thinking processes.  

 The importance of connecting multiple representations, the idea of a students’ internal 

representations, and the ideas of validity, usefulness, and endurance were codes arising from the 

literature related to representation which were expected to occur. Mathematical language and 

visual observations were codes addressing behaviors related to verbal and visual representations. 

Idiosyncratic use of representations became apparent when the subjects used standard 

representations in unexpected ways. The idea of indicative movements arose from observations 

made about gestures used along paper representations and technological gestures made through 

the use of mouse movements. Some studies were found which helped to underscore the 

importance of these unexpected notions and assist in incorporating them into the present study 

(Campbell, 2003; Stevens et al., 2008). The category name representational ideas and issues is 

used to refer collectively to these constructs.  

Some of the unexpected notions arising from an examination of representational issues 

also gave rise to notions relating to what was being learned about the use of technology. For 

example, examining indicative movements allowed the technology to become a window into the 

students’ mind, an idea Stevenset al. (2008) described in relation to their work with LOGO. It 

also became apparent during the course of the study that technology was being used as an aid not 
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only to reasoning, but also to mathematical communication, and to the use of standard 

representations. Technology also allowed misconceptions to be revealed and cleared up. In 

addition, the subjects were observed making choices which showed they were empowered by the 

use of technology. These ideas have been collected under the category name influences and uses 

of technology.  

The reader may notice that there are additional codes listed in the coding guide. These 

codes were helpful during analysis in understanding aspects of some of the other codes which are 

used in the discussion of the results. They are not specifically addressed in this discussion, 

because the ideas they represent are encompassed by other codes. For example, the ideas of 

disequilibrium and equilibrium can be seen in the discussion of ways in which technology is 

used to reveal and clear up misconceptions. The codes listed under the category “other” were 

used to identify data which did not illuminate the current theoretical investigation. They were 

necessary because all data must be coded in some way. 

Following is a more detailed look at the major ideas which arose from the study in each 

of these three categories and how those themes were evidenced in the data. A look at 

mathematical thinking processes will be followed by a look at representational ideas and issues. 

Finally, the influences and uses of technology will be examined. Each section will include a table 

which summarizes some of the data evidenced in the work of Marlon and Marjorie.  

Mathematical thinking processes. As the study progressed, it became apparent that both 

Marlon’s and Marjorie’s mathematical thinking processes contained misconceptions and also 

showed evidence of their ability to reason. These ideas were important to understanding their 

interactions with mathematics technology. Weaknesses seen in the subject’s mathematical 

thinking processes included algebraic misconceptions, function and coordinate point confusion, 
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and graphical confusions. Strengths included observing patterns and problem solving, reasoning, 

and sense-making.  

Algebraic misconceptions. Both Marlon and Marjorie showed evidence of algebraic 

misconceptions that appeared to be hampering their mathematical progress. Marlon examined the 

different representations carefully. At first he made connections and started to understand things 

and then a misconception interfered with the understanding he was building. It became apparent 

in the initial interview that Marlon had experienced some procedural instruction which did not 

provide him with useful and enduring mathematical representations. He stated, for example, that 

“I can always do  this . . . this is the foil” referring to the FOIL (first, outside, inside, last) method 

of multiplying two binomials, but then he applied this knowledge to the problem   6464  . 

Figure 4 shows the representations he shared in the initial interview when asked to “show” and 

“tell . . . about” some mathematics of his choice that he remembered. His inability to properly 

use a procedure with these algebraic representations is evidence of his algebraic misconceptions.  

 

Figure 4. Representations Marlon created to show mathematics he remembered. Arcs indicate 
that the FOIL method was applied to the multiplication problem.  
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His lack of algebraic understanding could also be seen in his use of variables to explain 

his mathematical ideas. Marlon observed that the sequence “Another dot pattern” (Appendix C) 

added one to the step number to get the number of dots. When I asked him how many dots would 

be in the eighth step, he said, “I would just, in this case . . . I would just add one . . . if it was 8 

it’d be 9.” He also said in a later session that “all I’m doing is actually adding a 1 to that and 10 

it’s going to give me 11.” This was a correct description of the mathematics in the pattern. When 

I asked him to express the same idea using n as the step number, however, rather than giving the 

number of dots as n + 1, he reasoned that “I’m just looking at n representing a certain number, a 

pattern and o being the next letter in the alphabet. So it’s the same thing as far as the numerical 

pattern. I would assume that the letter is going to be in a alphabetical order.” His reasoning was 

logical and made sense in his mind, but showed that he lacked understanding of the use of 

variables in mathematics. He could describe the pattern but he could not represent it 

algebraically using a variable for the step number, which was further evidence of algebraic 

misconceptions.  

Though Marjorie had showed some ability to use algebraic representations in the initial 

session, she also revealed weaknesses during the course of the study. She read f(x)  = A as “f 

times x equals A.”  Her use of the order of operations was weak, as she calculated 66 b  by 

saying “6 plus 6 is 12 and you multiply that by B.”  Her algebraic knowledge was also not strong 

enough to allow her to go from insightful reasoning about the function which represented the dot 

patterns to a corresponding algebraic representation.  Although she noted that to get the number 

of dots you multiplied the step number by 3 and added 1, she could not represent that idea 

algebraically. As she considered such a possibility, she said,  
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One times three is three but then you still gotta add and add one {she taps in the general 

direction of the table of values and it is uncertain as to whether she meant to indicate a 

certain value on the table} so if I was to try to do an algebraic expression, I guess I would 

do it like that ― It’d be like 

INTERVIEWER: Like what?  

MARJORIE: One times x or um one x plus one equals y - something like that, because 

I’m not quite sure exactly how I would write it as an algebraic expression  

She did say “the step” when asked what x would represent. Marjorie had the ability and 

desire to think logically and solve problems, but there was a gap between her ability to think and 

reason mathematically and her ability to use standard mathematical notation. This shows 

evidence of misconceptions as to the purpose and function of algebraic representations.  

Function and coordinate point confusion. A particularly important misconception that 

Marlon brought to this study was his lack of understanding of the algebraic representation of a 

function. Marlon consistently confused the representations of coordinate points and the 

representations of functions. This was most commonly exhibited in his tendency to enter the 

function f(x) = a + b in his attempt to graph a function which would pass through the point (a, b). 

His confusion was also manifested in his representation of a coordinate point as a sum. When I 

asked him to represent the point (0, 9) after its location was identified on a graph, he wrote 0+9. 

When I asked him to write the same idea as if it were in a table, he said, “In a table . . . it’d be 

here, zero, plus nine” and entered 0 in the x column and +9 in the y column. Because of the 

uniqueness of the confusion he exhibited and the persistence of the misconception, I have kept 

this as a separate code from other forms of algebraic misconceptions, even though Marjorie did 

not exhibit the same tendency. It also bridges algebraic misconceptions and graphical confusion.  
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Graphical confusion. Marjorie exhibited considerable depth of observation and 

deduction, but when confronted with standard graphical representations she had difficulty 

working with them. As noted above, she did not seem to remember the idea of using a table of 

values for graphing. In addition to that, during the introduction of the software, additional 

weaknesses in Marjorie’s graphical preparation appeared. Note that some of the 

misinterpretations may have come from misunderstandings about the terminology being used 

and a lack of understanding of what was being asked of her.  

She had constructed a circle and point on the circle. She had also used the software to 

find the abscissa of the point on the circle, moved the point and noted that the value changed but 

stayed negative “because that’s where the circle is, on the negative side.” When I asked her to 

predict what the y-coordinate would be, she at first hesitated then decided that she thought she 

could. She said that “when you’re doing graphing they always have those two, the x and the y: x 

I think is always the starting point and y is the endpoint.” She seemed to envision the x and y 

values to be starting and ending points of a journey. After finding using the ordinate choice on 

the measure menu to find the y value of -8.22, she was unable to explain this number. She moved 

her cursor toward (-8.22, 0) looked for other coordinate points near (8, 0). Later in the same 

session, when she had a point with coordinates measured which she could drag around the xy 

plane to observe how the coordinates changed, she had difficulty finding a location other than 

(0,0) where both coordinates were the same. She was limiting herself in her search to the axes. 

Even after experimenting and studying the movement of a point and the change in its 

coordinates, she still described the x coordinate as “the starting point” and the y-coordinate as 

“where I want to get to . . . that’s my second point, my y.” When asked to explain what she 

meant soon after this, she noted locations on the plane where points were positive and negative, 
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observed changes in the displayed coordinates of points A and B that she was dragging around 

the screen, but still could not really explain the meaning of what she was seeing. She compared it 

to “plotting coordinates on a map . . . . I know A is where you’re at right now, and then B is 

where you want to get to.”  She explained her concerns this way:  

It is rather difficult to try to maybe explain what I do see . . . . I have an idea of why . . . 

it’s negative, negative and it’s positive, positive, but it’s sort of a little difficult to try to  

 . . . explain . . . what I’m thinking right now because I really don’t know.  

In session 4, she described the graphed points B = (-6, -6) and C = (18, 18) by saying “it 

gives me coordinates B and C and B is negative 6. {cursor to graphed point B which was at (-6,-

6)}And C is 18, positive 18 {cursor to point C which was at (18,18) and then over to the 

coordinate point representations at the left of the screen}.” When asked to tell why two numbers 

were listed for each point, she then indicated (0, 18) and (18, 0) with the cursor and said “that’s 

where it actually meets.” So at least by this time in the study, she seemed to understand what the 

two coordinate values meant, but the language she used to describe the points was still 

unconventional. Marlon also exhibited graphical confusion. For example, when asked to move 

the cursor to a location where both coordinates of a coordinate point were positive, he moved the 

cursor to the right along the x-axis.  

Observing patterns, problem solving, reasoning, and sense-making. Both Marlon and 

Marjorie were able to examine patterns, and make some sense of them. In doing so, they showed 

their ability to reason and solve problems. Marlon’s ability to think logically was also apparent in 

the initial interview, when he was asked to examine the pattern found in “Looking at dot 

patterns”. He examined it carefully and determined that since the odd patterns had the leg of the 

T lined up with the center dot of the base but the even numbered pattern had the leg of the T 
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lined up with the space between two dots in the base, that he would consider the odd and even 

steps separately as if they were two different patterns. He was confused about whether or not to 

count the center dot in the base of the odd patterns as part of the leg or not. His inconsistency in 

doing so caused confusion as he analyzed the odd patterns. Focusing on just the even patterns 

which he could more accurately analyze, he came up with a reasonable way of thinking about the 

number of dots in the legs of the even numbered patterns. He gave the base of the T in his fourth 

pattern 6 dots and the leg of the T in his fourth pattern 5 dots. He added 2 to the number of dots 

in the leg of the second pattern to get the number of dots in the leg of the fourth pattern. This 

reasoning does not fit the overall pattern as it would conventionally be analyzed, but it made 

sense to Marlon based on his observations. Figure 5 shows Marlon’s work and to this has been 

added some of Marlon’s statements about the even numbered steps as he saw them. Recall that 

he was only given steps 1, 2, and 3 in the pattern to begin with and the rest he created. He had at 

first “estimated” that step 10 would have 13 dots in its leg. He later reasoned logically to 

determine that he should remove the last two dots so that the leg would only have 11 dots.  
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Figure 5. Marlon’s work in analyzing the pattern given in the handout “Looking at dot patterns”  
is supplemented here by a record of  some of the statements he made as he was working.  
 

Marlon’s focus on an aspect of the mathematics he could reason about amid a more 

complex and confusing situation, and his selection of a unique pattern that he observed is helpful 

background information in considering Marlon’s interactions with technology. It shows his 

ability to observe patterns, solve problems, reason, and make sense of things.  

When Marjorie examined “Looking at dot patterns”, she first noticed the recursive 

relationship, observing fairly quickly that the number of dots in each pattern increased by 3 with 
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each step. She wrote down the expected number of dots for several more steps in the pattern and 

drew a picture of the fourth pattern. With encouragement, she put a step number by each pattern 

and also wrote the number of dots in each pattern. In the third session, after having been 

introduced to the technology, she was asked to think again about the dot patterns and find the 

number of dots in the 20th pattern. She said she’d have to “count it out.” She could not think of 

another way to represent the pattern that might be helpful. When asked if she remembered what a 

table of values was, she said “You mean (like) multiplication table(s)?” and when asked about a 

table used for graphing, she did not seem to remember it. She was given a blank table and asked 

to fill in the step number in the left column and the number of dots in the right column. 

Once she had this representation to work with, she was asked again to find the number of 

dots in the 20th pattern. She found this by filling in the table using the recursive idea of an 

increase of 3 with each step which she had already noticed. She was later asked about the 100th 

pattern and then she talked about being “able to try to get there more quickly.” She studied the 

table of values and noticed that there would be 61 dots in the 20th pattern. She said, “You know 

like 20 times three gives you 60, but that’s 61.” When asked to explain why she said that, she 

explained “I looked at the step {pointing to the 20 in the step number column} and then number 

of dots, {pointing to the 61 in the #dots column}.” She was encouraged to write this idea down 

and after she did so she said, “It sort of works . . . because even with the ten . . . you can go . . . 

times . . . 3, but again its 31, not 30. So it ends up so I guess maybe if I do add – ooh . . . 

multiplying the step by 3 then add one.”   She looked at other entries and noticed that they were 

also 3 times the step number plus one. As she was describing the relationship, she wrote it down 

as “multiply step by 3 then add 1 = # dots.” This episode shows the problem sovling, reasoning, 
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and sense-making ability that Marjorie brought with her to the study and is important to consider 

when examining her interactions with the technology.  

Summary of mathematical thinking processes. Even though Marlon and Marjorie were 

at different levels of developmental mathematics, there were commonalities in their 

mathematical thinking processes. Both of them had valid mathematical ideas that they were able 

to deduce from examining patterns in the data they saw. They were able to observe patterns, and 

to solve problems, reason, and make some sense of what they saw. Both of them, however, had 

difficulties expressing the mathematical relationships they saw algebraically. It is not known 

whether or not Marlon or Marjorie possessed a learning disability, a condition which is not 

uncommon to adult developmental mathematics students (Epper & Baker, 2009). It did seem to 

be clear that algebraic misconceptions appeared to be part of what was holding back their 

progress. Both of them also had difficulty at first in locating coordinate points, demonstrating 

graphical confusion. Marlon’s mathematical thinking included unique a confusion about the 

representations associated with functions and coordinate points which Marjorie did not share. 

Table 12 provides a quick reference to some of the ways the constructs related to mathematical 

thinking processes were evidenced in Marlon’s and Marjorie’s work.  
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Table 12 
 
Data Related to Mathematical Thinking Processes 
 Marlon  Marjorie 

Algebraic 

Misconceptions 

 

 

Misuse of algorithm 

 

Inability to explain his valid 

mathematical ideas using 

algebraic notation 

 

 

Misuse of the order of 

operations 

 

Challenges expressing her 

valid mathematical ideas 

algebraically 

Function and 

coordinate point 

confusion 

Lack of understanding of 

algebraic representation of 

function, confusing it with the 

representation for a coordinate 

point 

 

She did not exhibit this 

particular misconception 

Graphical confusion Had difficulty when asked to 

find a location where both 

coordinates were positive, 

moving along the x-axis to the 

right.  

 

 

Had difficulty when asked to 

find particular types of 

coordinate pairs, such as those 

whose coordinates were both 

the same 
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 Marlon  Marjorie 

Observing Patterns 

Problem solving, 

reasoning, and sense 

making 

Devised his own unique way 

of understanding “Looking at 

dot patterns” 

 

Deduced the functional 

relationship in the table of 

values for “Looking at dot 

patterns” 

 

 

Representational ideas and issues. Representational ideas and issues were important to 

understanding Marlon’s and Marjorie’s conceptions of mathematics. The ability of technology to 

assist teachers in understanding their student’s conceptions would be an important addition to the 

literature regarding the use of technology in teaching adults. A teacher’s current use of 

technology may not provide enough depth of insight into student thinking (Kinney & Kinney, 

2002). Important representational issues in this study which were used in an examination of 

student thinking included the use of mathematical language, validity, usefulness, endurance, 

indicative movements, multiple representations, and internal representations.  

Mathematical language. Marlon’s use of mathematical vocabulary was sometimes 

confused. On some occasions he used the word intercept to refer to the x and y coordinates of a 

point.  When describing the position of the point (7, -11), he said, “I’m dropping down to a 

negative 11 for my y intercept – that’s where that point is located right there.” He also used the 

word formula when referring to the representation needed to plot a coordinate point. After 

entering 9 in the x column and -7 in the y column of a table, he said, “then what (would) I have 

to do is plot it (there) with the formula.” When I asked him to remember how he plotted points 

with the software, he brought up the “plot new function” menu rather than the “plot points” 
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menu which was in the same list. He also sometimes had difficulty understanding questions, for 

example, when I asked him what the coordinates of an indicated point would be, he did not 

answer correctly until he was asked what it would look like if written in table of values. Marjorie 

also confused her mathematical vocabulary.  She used the word coordinates on one occasion to 

refer to the name and value of a parameter. On another occasion she used it to refer to a point on 

the plane, saying that the software had given her “coordinates B and C” referring to points B and 

C. These episodes highlight the importance a student’s understanding of mathematical language 

has to their use of technology.   

Validity and usefulness. It is also helpful to note which representations the subjects 

found to be valid or useful. Marlon, for example, seemed to find a table of values to be a useful 

representation. It allowed him to consider the two elements of a coordinate point using a standard 

representation rather than using a + b as representation of the point (a, b), as he sometimes did. It 

also allowed him to observe multiple patterns in the function represented by “Another dot 

pattern.” When asked what he would put on the next line of the table of values for “Another dot 

pattern” after he had made some entries, he noted he would put 6 in the left column and 7 in the 

right column, explaining that “looking at the pattern here everything is in numerical order, and I 

notice that the next one here {indicating the right hand column} follows 2 and it’s also starting 

from 2 in numerical order.” It is uncertain whether the statement transcribed as “follows 2” 

meant “follows the number 2” or “follows also.” It does seem clear that he was noticing that the 

right hand column started at 2 and that when looking down the column, the numbers were in 

numerical order. Later he gestured from the left to the right hand column in explaining why the 

eighth step would have 9 dots. These gestures, used to show where he was looking for his 
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information, were followed by the statement, “It’s just adding one.” The tabular representation 

seemed to help him to see these relationships, and was therefore useful to him. 

Marjorie’s work demonstrated how valid and useful representations developed for her 

during the course of her work with the technology. At the end of session 5, after she had been 

examining slope and seen that the function s(x) = 3x came very close to passing through the 

coordinate points representing the dot patterns, Marjorie was shown how to construct a line 

through the dots and use the measure menu to find an equation for the constructed line. She 

noted that it was y = 3x + 1 and when asked how that related to what she had on paper, she said 

“Exact same thing, because no matter what it’s a multiply of three and you’re always going to 

add one to it.”   

When confronted with a table representing a different, unknown dot pattern in the last 

session she was able to describe its functional relationship fairly quickly. She noted that that 

there was a “difference of 2” and that “you multiply that step by the difference of the dots and 

add one.”  She still did not know how to describe the relationship algebraically. She did use the 

software, choosing from among ways that had been presented to her, and with some facilitation, 

found the algebraic representation and then described how that representation related to the 

functional relationship she had already described. This time she plotted the points for the pattern 

using the point tool instead of the plot points menu and so the resulting equation did not exactly 

correspond with the function describing the table of values. The software result was y = 2.02x + 

1.04. She said “that is the equation” and that “it is letting me know . . . the difference between 

the different points which there is a difference of two add one.” After I asked her what she would 

write down if she were to write down what the equation should be, she said she would write “y = 

2x + 1”, pointing at and gesturing towards the computer screen as she did so. She explained:  
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MARJORIE: Pretty much really exactly what um the equation is on there {pointing 

directly at the computer screen} I'd probably have ah x equals or I guess like that y equals 

2 x plus one {she paused slightly before the words "plus one" and gestured in the air 

towards the computer screen as she said this}.  

INTERVIEWER: Okay 

MARJORIE: Because it’s a matter of {she pointed to the table of  values on paper from 

which the pattern arose} you're taking . . . how many steps you go {referring to paper} 

and {gesturing over the table of values left to right across the table} if you’re going from 

like number five, five steps, its 11 dots {she pointed at the 5 and then the 11} if you go to 

six steps, its 13 dots, there’s that difference of two {note that the table stopped at 5, there 

was a space and then step 20 was displayed - she gestured in the space below step 5} but 

the way you get it would be five times, well . . . five times ten, I mean five times two is 

ten add one is eleven. Six times two is 12 add one is 13. So it’s multiplying {she now 

gestured in the air at the computer screen} two times the number add one. 

She was making connections between representations. She saw the algebraic 

representation presented by the software as confirming her understanding of the mathematics in 

the functional relationship, and in that way it was valid and useful. It accurately reflected for her 

the mathematics in the dot patterns and helped her communicate those mathematical ideas. She 

understood that the coefficient of x in the technological representation told the difference 

between the number of dots from one step number to the next and that x represented the step 

number.  

When I asked her to write on paper next to the table of values what the algebraic 

representation would be, she wrote y = 5x + 1 and said “but since I know what x is then”. When I 
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asked her what x was she said “x is two” and wrote y = 5(2) + 1 = 11. She was creating a 

separate expression for each line in the table and using x as if it represented the slope instead of 

the step number. For example, for step 5, she wrote y = 5x + 1, for step three she wrote y = 3x + 

1 and explained that “since you know that the difference is two, x is two.” When I asked her why 

the software gave 2x + 1, she said “Because the difference is two . . .  the x represents um I think 

the, the number or the step. 1, 2, 3, 4, 5, 6, .7. I think, I think that’s what the x represents here – 

the step . . . . The way I did it was the x represents the difference.” She knew that she and the 

computer had used the variable differently and was able to explain those different uses. It is 

uncertain why she used the variable on paper as she did, but the fact that she could clearly 

explain the difference indicates that there was validity and usefulness in those representations for 

her.  

Endurance. Information about endurance can be seen when the subjects attempt to recall 

what they learned in earlier sessions. When Marjorie was asked to consider the work she had 

done in an earlier session, she was able to intelligently discuss the function she had created, f(x) 

= (A -5) + 20, but could not remember entering the one I had asked her to enter, h(x) = x. 

Regarding h(x) = x, she said “I don’t remember where that came from . . . . I don’t remember if I 

put that on there or not.”  

When considering her work with f(x) however she said, “I already had an equation 

{cursor at f(x)=(A + 9) - 20} for um, f x and g x {moving cursor back and forth between those 

two algebraic representations}. And I have A equaling 5 and I have B equaling 2.” Earlier she 

had noted that entering 5 gave the function the value of -6 and that this number related to the 

location of the graph in some way. It appeared that that she had a clearer memory of the 

mathematical objects she created herself than the ones that I prescribed for her.  
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She also remembered from one session to next that the scale of the graph could be 

changed, although she could not always remember the technological procedures as to how this 

was done. In session 4, when she was trying to clarify the location of a graph, she wanted to 

change the scale. When I asked her what she was trying to do, she said, “trying to get what you 

had shown me about the moving it up and down . . . you can either make the [grid] squares larger 

or make them smaller . . . so I could see more” The dynamic qualities of the technological 

representation had endured for her in a manner that allowed her to call upon such an idea in order 

to solve a problem.  

Marlon also remembered dynamic representations, and from one session to the next could 

remember how to change the scale of the graph. His verbal challenges, however, interfered with 

his ability to remember some of the other technological procedures. When asked to remember 

how to plot points, he said, “Let me just, let me just go up to these here functions again just to 

introduce myself again to them again {he moves the mouse along the top of the screen across the 

menus and settles on the graph menu} I can go to the um I can plot a new function or plot new 

function {he opens the new function window} just let play with it.” He continued to look at the 

list of menus, at one point opening the calculate menu. I had to facilitate his recall of the correct 

terminology in order for him to use the correct menus. When I told him the key word was 

“point” he opened the plot points menu, noted that it looked familiar, and was able to continue 

with his work.  

Indicative movements and multiple representations. In response to my request that she 

“show me some mathematics” in the initial interview, Marjorie settled on factoring the sum of 

two cubes. In order to show this, she created her own prepared example by cubing 4 and 2 to get 

the expression 64x3 + 8. She recalled the formulas enough to produce 4x + 2(16x2 + 8x + 4), 
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which was not far from the actual solution of (4x + 2)(16x2 – 8x + 4). As she thought about it she 

at first wrote 4x + 2(x2 + 8x + 4). She then gestured with the pen in a bouncing fashion between 

4x and x2 and then over to 64x3. Eventually she inserted the 16, saying “I knew I missed 

something there.” The gestures may indicate that she was remembering that 4x should have been 

multiplied by the first term in the trinomial to obtain the x3 term in the original binomial. Other 

events in the study showed how both gestural movements such as noted above, and movements 

made with the mouse provided insight into the subject’s thinking beyond what their verbal 

statements alone might suggest. Some of this influence of indicative movements has already 

been noted in the discussion of the influences and uses of technology. Following are additional 

examples which highlight the use of indicative movements to make connections between 

multiple representations.  

Marlon seemed to indicate that he was making connections between different 

representations as he worked to represent the dot pattern found on paper using the standard 

mathematical representations present in the technology. Figure 6 shows the situation at the time 

this incident occurred.  
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Figure 6: Marlon’s situation at the time he was connecting multiple representations on paper and 

technology.  

 
As he spoke about what he was seeing after predicting the location of (20, 21) and 

plotting it using the technology, he looked back and forth between the paper and the screen. He 

gestured with his pen along the paper representations and with his mouse along the technological 

representations. The coincidental nature of these gestures may indicate that he was connecting 

the different representations. A transcription of his dialog with actions is shown below.  

MARLON: So again I’m looking at a numerical sequence {looking at the paper and 

pointing with the pen from the step number 10 to the number of dots 11 written below it}. 

And again if I assume that that top number is my x-axis {looking at the paper and 

gesturing from the step number 10 written above the dot pattern to the space to the right 

of it, then looking up at the screen} because it is running across the x-axis {cursor 

moving along the x-axis} in a positive motion. My y is also in a positive motion being up 

here {he looks down at the paper and then up at the screen during this phrase and moves 



  

160 

the mouse to upper y-axis}, because these are also positive numbers going from the 

center all the way to the top {mouse moves from near origin all the way up the y-axis}. 

Note particularly here his phrase “if I assume that that top number is my x-axis” and the 

indicative movements and statements that followed. He appeared to be connecting the step 

numbers used to label the dot patterns with the x-axis in the technological representation he was 

seeing on the screen.  

Marjorie also connected multiple representations through the use of technology. One 

incidence of this occurred when she graphed f(x) = (A + 9) -20 and set A = 1. She noted that the 

graph was located at y = -10 and by examining the algebraic representation was able to make the 

connection that if A = 1, then (A + 9) - 20 = -10. In this way she connected the algebraic and 

graphical representations. This incident will be considered in more detail as an example of the 

way in which technology empowered Marjorie’s explorations.  

Internal representations. One of the goals of the study was to determine the effect of 

technological representations on the subject’s internal representations of mathematics. As the 

study progressed, and it became clear that my time with Marlon was growing short, I decided to 

give him a more dynamic representation in the last session which might build on what he had 

been experiencing and effect his internal representations in some way. The activity presented 

him with a prescribed set of technological instructions, since this would introduce a new feature 

of the technology, and I wanted the technological steps to be clear. Even though the steps were 

described, he still needed some help in interpreting those instructions, for example confusing the 

selection arrow tool with the point tool (perhaps because it points to things).  

The activity called for him to put a sliding point on the graph of f(x) = x + 9, create an 

electronic table of values to track where the point was located, and eventually animate the point. 
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Once the representation was created, he was free to study it and make observations. Marlon’s 

language about what he was seeing seemed to change from the language he had previously been 

using. During the study he had at first focused on the y-intercept of the graph. He then noticed 

some other locations where the graph intercepted other parts of the xy plane. After seeing the 

dynamic representation, he said “when it was sliding up and down, it was actually giving me 

these different locations {cursor to table and then graph} where it was crossing over the line. 

Every single one was giving . . . in this case here x and y {cursor from line to table} . . . . So all 

of these here are actually on this particular connected.” His mention of “different locations where 

it was crossing over” seemed to connect to his previous explorations. The rest of his meaning 

was unclear. When I asked him what he was trying to describe, he said “The whole line itself.” It 

seemed that his understanding of the graph had moved to a new level. The sliding point and its 

accompanying table seemed to have helped him to consider the idea of the entire line – an idea 

conceptually beyond the multiple points he had noticed previously. This is supported by his 

statement that, “The whole line comes from actually . . . connecting all the different points in a 

straight line, connecting every last one . . . because they (were) plotted and they all . . . 

intersected each other.” His internal representation seemed to have gone beyond a focus on the y-

intercept and “intercepts” of other lines which the graph of f(x) crossed. He now seemed to 

consider the entire line as a collection of connected points. The phrase “every last one” in 

particular seems to indicate that his thinking may have been broadened and gone beyond the idea 

of “crossing over.”   

Insight into Marjorie’s internal representations of graphing was gained when she used 

both verbal description and indicative movements to demonstrate how she found the location of a 

coordinate point by movement outward from the origin.  
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INTERVIEWER:  So why does it list the numbers, why does it list two numbers for each 

of those?  

MARJORIE:  Because its going off of, for C, its actually um 18 and 18 {indicating (0,18) 

and (18.0)}and that like, that’s where it actually meets I mean if you were at the zero 

{cursor at (0,0)} you would go to the right 18 {slides to the right along the x-axis} and 

you would go up 18 {goes up to (18,18)} and that’s exactly where that point is.  

Summary. Both Marlon and Marjorie had some difficulty with verbal mathematical 

representations, confusing words on various occasions. This is in keeping with the literature 

which tells us that adult learners’ low literacy skills may hinder their ability to use technology 

effectively (Li & Edmonds, 2005). They both were able to use tables to see patterns and solve 

problems. Marjorie appeared to build validity and usefulness in her internal representation of a 

function, eventually being able to describe in her own words how it modeled the mathematics of 

the dot pattern it represented. Both Marlon and Marjorie remembered dynamic representations 

which they wished to use. Both of them also had some difficulty in remembering technological 

procedures, a representational issue, since recalling the verbal representation or mathematical 

language associated with the technological representation was a key to recalling how to produce 

it. Mathematical objects created by Marjorie endured better than those I prescribed for her. 

Indicative movements were used by both subjects to connect multiple representations of the 

same idea. Such movements also provided insight into their internal representations. These 

qualities became important in examining the influences and uses of technology. Table 13 

provides a quick reference to some of the ways that constructs related to representational ideas 

and issues were evidenced in Marlon’s and Marjorie’s work.  
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Table 13 
 
Data Related to Representational Ideas and Issues 
 Marlon  Marjorie 

Verbal: Mathematical 

language 

Said “intercept” to refer 

to x and y coordinates 

of a point, referred to a 

set of coordinate points 

as a formula, and 

looked at the function 

menu when trying to 

plot points 

Confused the use of the word 

coordinates, using it on one occasion 

to refer to the name and value of a 

parameter and at another occasion to 

refer to a point on the plane, e.g. “It 

gives me coordinates B and C” 

referring to points B and C.  

Validity and 

usefulness  

Found a table of values 

to be a useful 

representation 

Built validity and usefulness in her 

internal algebraic representations of 

a function 

Endurance Marlon remembered 

how to change the scale 

of the graph, but 

misconceptions 

interfered with the 

endurance of other 

technological 

procedures 

 

Mathematical objects she created 

herself seemed to endure better than 

mathematical objects I prescribed 

for her to enter.  

Dynamic qualities of helpful 

technological representations 

endured from one session to the 

next, but the technological 

procedures used did not.  
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 Marlon  Marjorie 

Indicative movements 

and multiple 

representations 

Gestured along both 

paper and technology, 

connecting the step 

numbers with the x-

axis values 

Gestured toward related algebraic 

representations as she worked on 

paper.  

 

Gestured to algebraic and graphical 

representations as she explained why 

the software placed the graph of f(x) 

= (A + 9) -20 at y = -10 when A was 

equal to 1.  

 

 

 

Internal 

representations 

Expressed a clearer 

vision of what a graph 

was representing 

following examination 

of a dynamic 

representation 

connecting table and 

graph 

Demonstrated her understanding of 

graphing coordinate points as a 

movement from the origin. Also see 

validity and usefulness.  
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Influences and uses of technology. Marlon and Marjorie interacted with technology in 

particular ways that showed how technology can be useful and influential for adult 

developmental mathematics students in ways which add to its use in saving time, providing 

individualized attention, increasing confidence, and decreasing anxiety (Kinney & Kinney, 2002; 

Li & Edmonds, 2005; Taylor, 2008). Technology was used as an aid to mathematical 

communication and as an aid to reasoning. It was also useful for revealing and clearing up 

misconceptions. It provided a window into student thinking and aided them in the use of standard 

representations. It also empowered both Marlon and Marjorie mathematically. These ideas show 

how technology can be used in mathematics education and how it can influence student thinking.  

Technology as an aid to mathematical communication. As he struggled with what was 

presented to him in the initial interview, Marlon gestured toward the representations he found 

and created on paper. Once introduced to the technological representations, he used the mouse to 

point just as he had used his hands. The use of mouse movements provided a bridge for him as 

he tried to communicate his thinking. An example of this occurred early in his struggles to find a 

way to use standard representations to analyze the data from “Another dot pattern.” During the 

second session, I gave him “Another dot pattern” to study and introduced him to the software. In 

the third session, I asked him to graph data points from his table of values for “Another dot 

pattern” so the pattern could be analyzed with the software using standard representations. Figure 

7 shows a screen shot of the graphed points.  
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Figure 7. Marlon’s graphed points which arose from the dot pattern shown in the handout 
“Another dot pattern” 
 

Once the points were graphed he was asked if he noticed a relationship between them. He 

said that the points were “in a straight line” and “going actually on a 45 degree angle.” When I 

asked him why he said that, he said “it’s just completely straight on a 45 degree angle” and then 

he said, “Well now it’s . . . I take that back.” He then used the mouse to explain why he was 

changing his mind.    

MARLON: Okay, here {tracing along the positive x-axis and then the positive y-axis} 

right now I’m dealing with a - I would say a 90 degree angle.  

INTERVIEWER: Okay 

MARLON: 45 would actually have been here {tracing along the path where the line y = x 

would be from the origin up to the right}. So it’s right off a 45 degree angle. So it’s not 

completely a 45 degree angle . . . it’s a little bit off.  
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He traced the x and y axis and noted that they were at a 90 degree angle and that if the 

line going through the points had intersected the origin, then it would have been at a 45 degree 

angle, but since such a line would intersect at (0, 1), he said it was “just off of a 45 degree 

angle.” In this way he was able to demonstrate with the mouse what his language was not 

adequately expressing. He used the technology to make the genuine mathematical observation he 

was making understood.  

In Marjorie’s case, technology could aid her communication. In session 2, she was 

observing how the movement of a point on the plane affected its coordinates. She moved the 

point around the plane and described what was happening. At one point she described the point 

A as being “in a negative spot.” At the time, A was at (-2.57, 7.20). The technological 

representation clarified her meaning, which otherwise would not have been clear. It thereby 

aided her mathematical communication. In each of these cases, Marlon and Marjorie were using 

the functionality of the software to accompany their description of mathematical ideas they were 

trying to communicate. The ideas were clarified, and in this way, technology became an aid to 

mathematical communication.  

Technology as an aid to reasoning. Some of Marlon’s interactions with the technology 

in session 4 seemed to indicate that he was beginning to reason logically based on the 

representations he was seeing. He had graphed coordinate points for “Another dot pattern” up to 

(9, 10). When asked to explain what was happening and where the next point would be located, 

he correctly located the point (10, 11) before graphing it and without directly referring to the x 

and y-axis until asked how he knew where it would be. Soon after this, he described the pattern 

he was seeing and gave the location of the next point, (11, 12), before graphing it. He described 

what he understood about the pattern of points, accurately predicted the location of the next point 
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in the pattern and graphed it using the technology, declaring, “And there it is.” Later when I 

asked him to predict where (20, 21) would go he went along the x-axis to 21 and then gestured 

with the mouse in the general area where the point would be and then made a precise prediction 

based on the locations of 20 and 21 on the x-axis and the y-axis. The use of technology allowed 

him to make and follow up on mathematical predictions and so aided him in his reasoning about 

mathematical patterns.  

Marjorie’s work also showed the power of the technology to aid her in reasoning about 

mathematical ideas. During the fourth session, Marjorie graphed the coordinate points 

representing the sequence of dot patterns in “Looking at dot patterns.” In the fifth session she 

was asked to consider what function would result in the graph of a line which would pass 

through those coordinate points. She noted that in an algebraic expression “the letters represent 

numbers” and that “if we already know . . . what the numbers are that add up to the value . . . we 

would just go and just replace . . . maybe one of the values.” So she decided to “replace . . . one 

of  . . . the numbers in the equation.” We had recently been discussing the number of dots in the 

50th pattern. As she considered what to replace with a variable, she said “Probably the 3. Maybe 

like have . . . 50 times x equals 151? Or 150?” After being encouraged to try it, she used the new 

function menu to create q(x) = 50x. She wanted it to equal 150, but after some discussion, 

graphed it and said “It did something, but it didn’t . . . that don’t look right. That doesn’t look 

right at all.” Once she saw what that function did, she tried changing the 50 to different values to 

see what would happen. In this way the technology became an aid to her reasoning. She tried r(x) 

= 70x, then s(x) = 30x. She then observed that “the lower the number is, the more it moves away 

from the y-axis.” She then tried t(x) = 10x. She said, “Yes it does!” She moved the cursor back 

and forth from algebraic to graphical representations as she explained what she had observed. 
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Once she saw that a slope of 1 took her line beyond where she wanted it to be, she concluded 

that “I’ve got to . . .  keep it between one and 10.” Eventually she tried 3 times x. She had 

reasoned that the coefficient had to be between 1 and 5 and because of what she had seen in the 

pattern, she tried 3. Because of the scale of the graph at the time, the graph of the function 

appeared to land on the dots. As she discussed what had happened she mentioned that “It was a 

difference of three when [she] did the step and dots”, referring to the rate of change in the 

pattern. The running conversation she kept up as part of the talk-aloud protocol helped provide 

insight into her thinking and demonstrate that she was engaging in reasoning and problem 

solving with the software. She was noticeably excited when it behaved the way she expected it to 

behave, and technology was an aid to her as she reasoned her way toward her conclusions.  

Using technology to reveal and clear up misconceptions. Both Marlon and Marjorie 

experienced episodes where they discovered misconceptions through the use of the software and 

ideas were clarified. Two different episodes are used below to illustrate how this happened in 

Marlon’s case.  An episode from Marjorie’s case follows.  

Marlon’s case.  Because he confused the representations of functions and coordinate 

points, he used f(x) = a + b to try to graph a function which went through the point (a, b). During 

the fifth session, I asked him to recall the function he had previously found which, when 

graphed, produced a line which passed through his data points. He could not remember what that 

function was, and in his efforts to remember, his confusion over the representations for 

coordinate points and functions interfered. He opened the function menu. He knew that the 

function had to pass through the point (1, 2) and so he had graphed f(x) = 1 + 2. Since the graph 

did not travel in a diagonal line through the points, he tried again and looked at the currently 

graphed point which was farthest to the top and right of the graph at that time, (8,9), and graphed 
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g(x) = 8 + 9.  This graph of g(x) turned out to be out of the viewing window, and he had to 

change the scale of graph to see where it was. He did this himself with no facilitation after he had 

done some additional exploration which had produced h(x) = 8 + 9  and the equation 1 +2 = 3. 

When he finally saw the graph of g(x) he said “I’m getting a straight edge again here” and 

indicated 1+2 = 3 and then the graph of g(x) = 8 + 9 with his mouse. When I asked him where 

the graph of g(x) had come from, he at first replied “this last one I just put in” and indicated 1 + 

2 = 3, then said “as you were” which was a phrase he commonly used when he realized 

something was wrong. He then counted to see that g(x) crossed the y-axis at 17. I asked him 

“Where might 17 come from?” This was genuinely puzzling to him, and he wondered aloud 

“How did I get 17 in there?” I asked him if there was anything on the screen that might give him 

17. The situation at the time he responded is illustrated through the image presented in Figure 8, 

which is followed by his statements.  

 

 
Figure 8: These portions of a screen shot, from which non-essential elements have been 
removed, show the situation at the time Marlon was asked to consider why the graph of h(x)  = 8 
+ 9 might have been placed at y = 17.  
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MARLON: {he put the cursor at h(x) = 8+9 then moved it down toward the bottom of the 

list between q(x)=x+9 and 1+2=3} ,ummmm, {He moved the cursor back up the list and 

then to 1 + 2 = 3} I don’t see, I mean, that would give me 17. How’d I get that one there? 

{cursor near 1+2=3 and q(x) = x + 9} And this is the, this is the same -similar to the one 

that I gave down here {cursor at (0,3)} through 3. Okay {cursor to 1 +2 =3} [18:48] 

{cursor up to h(x) = 8 + 9}. Oh, not unless these added together. 

By looking at the multiple representations presented by the technology, he realized that in 

the functional notation f(x) = a + b, those two numbers were in fact added together to determine 

where the graph would be located, and were not representative of the two numbers describing a 

coordinate point, which was the way he had been trying to use them to graph the function. The 

location of the graph of h(x) = 8 + 9 in a different place than he expected it to be revealed the 

misconception and examining the different representations present helped clear up the confusion. 

Even though the representation 1 + 2 = 3 was not the functional representation which matched 

the graph which passed through (0, 3), the presence of that representation may have been 

important to his building an understanding that “these added together.”  

 In session 6, I sought to challenge Marlon’s understanding of functions of the form f(x) 

= x + b. He seemed to have an interpretation of them which was restricted to the location of the 

y-intercept. I had also learned in the pilot study that the use of a vertical line at a particular x 

value could help developmental mathematics students to visualize more clearly relationships in 

the graphs they are seeing. I facilitated Marlon’s construction of the line x = 7 and asked him to 

notice where the graph of the function g(x) = x + 9 intersected that line. He found that it was (7, 

16) by examining the graph and looking to see which x and y axis locations would give him a 

point at that intersection. He did not seem to understand the algebraic representation. When 
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asked where the 16 came from, he said that it came from the y-axis “where it intercepts . . . here 

again on the g of x”, indicating the point (7, 16) and the algebraic representation of the function 

and the point again, but he did not say anything which indicated that he connected these 

representations with the idea of adding 9 to 7 to get 16.  Earlier, I had asked him to think about 

some other points that would land on the graph and asked him to think about the algebra and 

consider what it represented. He said, “x is actually zero {cursor to (0,0)} 

 . . .  and plus 9 is {cursor to algebra and back to (0,0) then up y-axis to (0,9)} plus 9 on my y a - 

intercept.”  

When I asked him what else we knew about the line, he pointed out the x-intercept. When 

asked to graph a point that would land there he tried (0, -9), decided he hadn’t done something 

right and opened the plot points menu again. He began again by saying x was going to be zero 

and I asked him why. As he explained his thinking and moved the cursor to show that thinking, 

he was able to realize his own error.  

INTERVIEWER:  How do you know x is going to be zero?  

MARLON:  Well if  - you know its, this is my x intercept again {cursor up and down the 

x-axis} so I know it’s right there {indicating (0,0)}. And then if I go to a negative 9 . . . 

Oh {cursor down to (0, -9)}. Okay, um, {cursor back at (0,0}. If it’s going to be x . . .  is 

it going to be . . . {looking back at paper representation, pointing with pen to (0,-9)} I’m 

looking at this is going to be . . . {puts pen down and looks back at screen}. I’m trying to 

― I’m thinking that it’s actually, in order for me to get it here {cursor at (-9,0)} (I’m on) 

a negative 9 on the x-axis. So if I give it x being zero its going to start here {cursor at 

(0,0)} and (then) say negative 9 it would have brought me down here {cursor at  
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(0, -9)}. So I’m thinking now I got to reverse it in order to get it over here. {cursor at (-9, 

0)}. 

Note that other than (0, -9), none of the other points he had written on his paper had an x-

coordinate of zero. Because the technology graphed the point (0,-9) in its correct location, 

Marlon was able to recognize that his idea that it was the x-intercept was a misconception. He 

examined the representations further and was able to find the correct coordinate point value for 

the x-intercept, clearing up his misconception.  

Marjorie’s case. Marjorie’s use of technology also allowed some of her misconceptions 

to be revealed and helped clear some of them up for her. This can be seen in her work in 

graphing coordinate points. I asked her to fill in a table of values on paper representing the 

sequence of dot patterns with the step number in the left column and the number of dots in the 

right column. She was then asked to graph those points. She dragged a point using the point tool 

to graph the point (1,4) and placed it at (4,1). I told her to use the “plot points” tool instead so 

that the points would stay where we wanted them to be. When she did so, the software placed the 

point in its correct location, and she was able to see her mistake. She was also able to give a clear 

description of what that mistake was. She said, “I went to the right hand side and . . . I  just 

moved up from the center - I moved up one, and to the right, to the right four. But in actuality . . . 

I should have moved to the right first and then up four. So . . . it was right and up.” In this way, 

the technology helped reveal and clarify a misconception.  

Technology as a window into student thinking. An examination of Marjorie’s graphing 

work also shows how technology can provide a window into student thinking. This adds to the 

idea of technology as an aid to mathematical communication by showing how technology can 

reveal internal representations and ways of thinking about mathematics that might not be 
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apparent from the student’s verbal descriptions alone. Stevenset al. (2008) in their work with 

LOGO, noted that examining student’s problem solving processes can provide a “window in to 

the student’s mind” (p. 199). Here, the window into student thinking provides a view of their 

internal representations of mathematics.  

For example, when I asked Marjorie to find a point whose coordinates were the same, she 

moved the cursor from its current location at about (6, 9) over the y-axis and down to the origin. 

Later during the same session, when I asked her to find another such point she said, “Both the 

same, let’s see. Hm. Actually I cannot. Not where they’re both the same. Right there at the 

origin.” Here is the same quotation with mouse movements inserted. 

Both the same, let’s see {moves the cursor up to (0, 13), which was the maximum y-axis 

coordinate}. Hm. {down to (0, 0) and over to (-10,0) and to (22,0) which was the 

maximum x-axis coordinate,  back to (0,0) and down to (0,-13) which was the minimum 

y-axis coordinate}. Actually, I cannot {cursor back to (0,13)}. Not where they’re both the 

same. Right there at the origin. {cursor is now back at the origin} 

The indicative movements described reveal that she was restricting her search to the axes, 

something that would not have been apparent from her words alone. In this way, the technology 

has provided a window into her thinking. The episode noted earlier in which Marlon is 

explaining what he means by “just off of a 45 degree angle” is also an example of how 

technology provides a window into his thinking. The indicative movements show what he meant 

and how he thought about the relationship of different angles beyond what his words alone 

would have told us. He chose aspects of technology to help him communicate, and this 

communication provided a window into how he thought about angles on the xy-plane.  
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Technology as an aid in the use of standard representations. After she failed to find a 

place other than the origin where both coordinates were the same, I asked Marjorie to find a 

point for which the right coordinate was bigger than the left. She said she could do that “By 

going into the negative” and moved the cursor to (-11, 0). After being asked “And what happens 

if you go up?” she went first to (-13, 9), observing that the right coordinate was increasing as she 

went up. She then began to explore more freely and moved the cursor to (-12, 12) without 

prompting, noting that “I’m at 12, 12. It’s the exact same . . . .” After being prompted that this 

was true except for one thing, she said:  

MARJORIE:  The negative and if I probably did it for the opposite side it’d be the exact 

same thing except for . . . the left it would be positive 12 and the right would be negative 

12.  

INTERVIEWER:  Why don’t you try . . . {she moved the cursor to (12, 12)}  

MARJORIE:  Yep 

INTERVIEWER: Now is the . . . 

MARJORIE: Ooooh, no! They’re bo ― okay, okay. They’re both positive because I’m in 

the positive area {pointing to the screen}. If I go down it’s negative {cursor at (12, -8)}. 

These appeared to be genuine discoveries for her, even if as reminders of knowledge she 

possessed in the past. Note that once prompted to move off of the axes, she then made additional 

choices about what to explore. In addition to the interaction noted above, she made general 

observations about the xy plane, moving a point around the plane to confirm her observations, 

noting for example that  “when I drag the A over to the left hand corner, the first number is 

negative.” The technology had been an aid to her in the use of standard graphing representations. 
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Technology also helped Marlon in his use of standard representations. For example, when 

Marlon saw that h(x) = 8 + 9 passed through the y-axis at (0,17), he was able to make a 

connection between the algebraic and graphical representations. Later, he was able to create a 

function on his own using a similar representation.  

Technology was also an aid in the use of standard representations in Marlon’s work on an 

occasion when he was trying to find a function which would pass through the data points he had 

graphed for “Another dot pattern.” He had tried r(x) = x + 2, and I asked him to think about what 

he had done.  

MARLON:  Okay so now what I did especially is I provided x plus 2, that’s what gave 

me this {he traced that graph}. 

INTERVIEWER:  Okay  

MARLON:  And again, x , this is my x axle {indicating the x-axis} I mean axis and plus 

two gave me right here {indicated (0, 2)} [23:46]. Okay. So if I want to do this here I can 

actually say x + 1 {indicated (0, 1)} so if I go to . . . the graph a new function {he opened 

that menu} I can say x plus 1 {he entered it}.  

He had not chosen plot new function. Once the function was plotted he said.  

MARLON:  There she go. x + 1 and the reason why I got it is because here again is my x-

axis {traced the x-axis} and plus 1 is right here {he went up to (0,1) from (0,0)} and it 

intersected through those points that I graphed last week {he traced along the graph}.  

Note that he used the cursor to indicate the location of the previous attempt and that once 

he graphed the new attempt he used the cursor to indicate and trace along key aspects of the new 

attempt. It may be that such movements serve to help the learners solidify in their minds the 

knowledge they are building.  
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Other instances are indicative of a focusing of the subject’s mind as he or she examines 

representations. This could be seen when Marjorie changed the parameter A to equal 5 and then 

looked to see its effect. She moved her cursor along the algebraic representation containing A as 

she spoke aloud, saying “Okay, let me see . . . . 5 {cursor at algebraic representation, and she 

moved her cursor over it as she spoke} 14, and then I have to, because I did my parentheses first, 

it was 14, and 14 minus 20 would make that negative 6 because 14 minus 20 {looked up in the 

air in thought}, negative 6.” She did look up in the air in thought at one point here, but she also 

moved her cursor along the representation in the process of trying to understand it. She then said, 

“And negative 6 is on the graph {cursor back and forth at the graph} negative 6.” Here she was 

back at the technological representation making connections and building understanding of 

standard representations.  

Empowerment through the use of technology. Marlon was making connections between 

different standard representations. He used the technology for his own explorations of ideas he 

was having about what was happening and worked to understand the functions he was creating. 

In this way technology empowered him mathematically. Two occurrences in session 5 

demonstrate this.  

Examples of empowerment from Marlon’s work. Marlon’s response to being asked to 

graph a function parallel to those he had seen (that is, a constant function) is a good example of 

the way he was using the technology to build on his own unique understanding. He decided that 

he wanted a function to go horizontally through the point (0, 14). Rather than entering f(x) = 14, 

even though he had seen that the numbers a + b in his other examples were “added together”, he 

entered f(x) = 7 + 7.  He said, “I would actually go, go to plot new function {which he did} and 

lets say I want to do 14. I would just say 7 + 7 again {he entered that expression into the function 
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and hit okay} and it should give me straight across.” He couldn’t quite bring himself to abandon 

his internal representation of f(x) = a + b, but yet he understood something more than he had at 

the beginning. He decided himself that the horizontal line he wanted to graph would be at y = 14. 

He decided himself to use 7 + 7 (rather than something else for example such as 8 + 6), and he 

was able to see that what he thought would happen did in fact happen.  

During session 4, I asked him to enter the variable x into the functions he was graphing. 

He graphed f(x) = x + 9 and g(x) = x - 9 and noticed that they crossed the y-axis at (0, 9) and (0, 

-9) respectively. He was building some understanding that functions of the form f(x) = x + b 

cross the y-axis at (0, b). He also observed that the two graphs were parallel. When I questioned 

him further, he was able to deduce and demonstrate that f(x) = x + 1 went through his graphed 

points. In session 5, he had reasoned his way back to that representation again after forgetting it. 

Later in session 5, after some discussion, I asked him to try something that he hadn’t 

done before. He entered v(x) = x – 9 and then said “Could I add more?” and I told him he could 

try that. The software automatically entered parentheses to what he entered to give the function 

v(x) = (x – 9) + 6. After giving the graph and equation matching colors, he moved the equation 

close to the graph, studied it and said, “Now how did I get that one?” I turned the question back 

over to him. During the exchange he moved the cursor from the algebraic representation to just 

below the y-intercept briefly, back to the algebra and then to a blank spot in the second quadrant.  

INTERVIEWER:  Think about what’s happening with that one. Why is it going the way 

its going?  

MARLON:  Okay. x negative 9 - so - x negative 9 here - x negative 9 {cursor at algebra} 

― I’m coming across here to a 3, {cursor at (0,-3)} Ah! What’s happening {cursor at 

algebra until the word “giving” when it moves to (0, -3)} is that it’s subtracting {cursor 
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moves back and forth along the algebra until “negative 3” when he moves it back to (0, -

3)} the negative 9 from the 6 and it’s giving me a negative 3 and that’s the reason why 

it’s intersecting here {indicates (0,-3)} because . . . its subtracting the -9 from a positive 6 

which gives me actually negative 3 and again it is diagonal. 

His cry of “Ah!” seemed to indicate confidence as did his clear explanation. Although 

there was most likely much he still did not understand, he understood a correct mathematical 

idea which made sense to him and was built on his own demonstrated prior knowledge. He had 

chosen the exploration himself, he had put his plan into action using the technology, and he had 

drawn a correct conclusion about the connection between the algebraic and graphical 

representations. Such an exploration may have been difficult for him to do without the use of 

technology, and in this way he was empowered by his use of technology.  

Examples of empowerment from Marjorie’s work. Technology also empowered Marjorie 

to explore her own mathematical ideas. This can be seen in her explorations of the function 

menu. One of the first things she did in this exploration was to create the parameter A = 1. She 

then used that in the function f(x) = (A + 9) – 20 and graphed that function. She noted that if one 

were to substitute in the value of 1 for A, f(x) would be -10. At first she didn’t seem to notice the 

graph of the line. When I pointed it out to her she noticed how far to the left and right the line 

went. I asked her to consider where it was located “up and down” and she said “looks like 

negative 9” and wanted to change the scale of the graph, but couldn’t remember how to do that 

as she had been previously instructed. She said that she was “trying to get what you had shown 

me . . . you can either make the squares larger or make them smaller.” By “squares” she was 

referring the size of the grid spaces on the coordinate plane. In this instance, she knew what she 

wanted to do with the technology. She wanted to use a feature she had previously seen, changing 
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the scale, in a way that would help her to understand the mathematics better, but she needed 

some facilitation. Once she was able to change the scale of the graph, she was then able to 

observe that “it’s at negative ten.” When I asked her why the graph was located there, she moved 

her cursor to the algebraic representation. Notice her statement and mouse movements as she 

thought about how the algebraic and graphical representations were related to each other. 

MARJORIE:  Ah, you know I really don’t know. Because up here, {cursor running back 

and forth across f(x) = (A + 9) - 20} well, wait a minute, ten minus, I guess it would be 

negative ten. Yes it would be. {cursor near the A in that function}. Um, the equation for 

the function of x is negative 10 once the equation’s worked out. It is negative ten, {she 

has been moving the cursor along the algebraic representation of f(x) as she speaks and 

now moves it to (0, -10)} so that’s where it plotted . . . at negative ten. Let’s see {goes to 

graph menu}. Graph, plot new function {cursor to that choice, but doesn't open it}. 

At first she said she didn’t know, then she said “wait a minute” and made a logical 

deduction. She appeared to consider and connect the different representations and then headed to 

the menu with which she could create another representation to check her understanding.  

Though invited to record on paper what she was experiencing, she instead stayed with the 

technology and created 66 b , with B = 1. Even though she had some difficulty with order of 

operations, the fact that B was 1 in this instance concealed that weakness, preventing it from 

being revealed. The graph was at y = 12, where she expected it to be. She was making 

connections between different representations using her own mathematical choices which were 

empowered by the technology.  

Later in the study, she changed the value of B and was able to see that something was 

wrong in her understanding. With B = 2, she expected the graph to be at y = 24, but it was at y = 



  

181 

18. After being asked to consider how that might happen, she noted that “you replace the B 

which equals 2, you’re gonna put the 2 in there.” After being asked what she would do then, she 

said, “I guess you could, two times 6 which is 12, and then add 6 to 12 and we get 18. Hm. 

Okay.” Once she realized this, she again chose to explore further. She changed the parameter A 

to 5 so that she had f(x) = (A + 9) – 20 with A = 5. She said 

MARJORIE: Let’s change that parameter for A . . . let’s see, let’s change that to 5. {after 

changing it to 5, she hovered the cursor over the “ok” button for 5 seconds, then clicked}. 

Okay, let me see if I (know), 5 {cursor was now at the algebraic representation and she 

moved her cursor over it as she spoke} 14, and then I have to, because I did my 

parentheses first, it was 14, and 14 minus 20 would make that negative 6 because 14 

minus 20 {she looked up in the air in thought}, negative 6  

INTERVIEWER:  Okay 

MARJORIE:  And negative 6 is on the graph {cursor back and forth at graph} negative 6 

Even though she was exploring and building some understanding, there were still 

limitations to what she knew about the representations, as revealed by her statement that “B is at 

12, positive 12 and A is at negative ten because it’s going off the equations.” Rather than naming 

the functions f(x) and g(x), she was naming them by using the parameter which was included in 

their argument. She did, however, move her mouse between f(x) and g(x) and describe the 

parameters accurately. During the following session, when looking at her saved work from the  

session in which she had created f(x) = (A – 5) + 20 again, she was able to discuss with some 

understanding the function she had created, namely f(x) = (A – 5) + 20, but could not remember 

the function I had told her to enter, namely h(x) = x, which was in the same sketch. Her ability to 
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chose an exploration, learn from that exploration, and then in a later session intelligently discuss 

her own creation is evidence of the empowerment technology is capable of providing.  

Summary. Both Marlon and Marjorie used technology in their explanation and to reason 

about mathematical ideas. As they did so, misconceptions were revealed and cleared up, and they 

both learned more about standard representations. Their work provided a window into their 

thinking. They were also empowered in that they followed their own ideas, creating functions of 

their own choice for their investigations. Even though their work was at different levels, this 

empowerment could still be seen. Table 14 provides a summary as to some of the ways the 

influences and uses of technology were evidenced in Marlon’s and Marjorie’s work.  

Table 14 
 
Data Related to the Influences and Uses of Technology 
 Marlon  Marjorie 

As an aid to 

mathematical 

communication 

Used cursor movements in his 

explanation of why he said the 

line through the points would be 

“just off of a 45 degree angle”  

Used technology to explain the 

positive and negative aspects of 

the xy-plane allowing us to see 

what she meant when she said a 

point is “in a negative spot” 

 

As an aid to 

reasoning 

Deduced the location of 

additional coordinate points for 

“Another dot pattern” 

 

Explored the influence of k in 

functions of the form f(x) = kx 
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 Marlon  Marjorie 

To reveal and 

clear up 

misconceptions 

Gained a better understanding of 

functions of the form f(x) = a + 

b. He also discovered the correct 

coordinates for (-9, 0), which he 

has mislabeled as (0, -9) 

 

 

Discovered that she had 

misplaced the point (1,4) at (4,1) 

and found its correct location 

As a window 

into student 

thinking 

When communicating his idea 

that the graphed points were 

“just off of a 45 degree angle” 

his cursor movements allow us 

to see his thinking 

 

 

Cursor movements showed she 

was only looking along the axes 

for a point of the form (a, a) 

 

As an aid in the 

use of standard 

representations 

Saw that h(x) = 8 + 9 passed 

through the y-axis at (0,17) and 

was able to make the connection 

between the two representations. 

 

 

  

Found a point of the form (a,a) 

other than the origin and observed 

how the coordinates changes as 

she moved the point around the 

xy plane 
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 Marlon  Marjorie 

Empowerment 

through the use 

of technology 

Created the function f(x) = 7 + 7 

to pass through (0,14) 

demonstrate his growing 

understanding.  

 

Created a function of the form 

f(x) = (x – a) + b and explained 

that it passed through the y-axis 

at  –a+b 

Created constant functions using 

parameters and explained how the 

value of the parameter affected 

the location of the graph 

 
Chapter Summary 

Three major categories of information emerged from this study: the importance of 

mathematical content and thinking processes in the use of technology, associated 

representational ideas and issues, and particular influences and uses of technology as related to 

student thinking. This chapter has examined some of the ways those themes emerged from the 

cases of Marlon and Marjorie. Even though their mathematical understandings differed in some 

ways coming into the study, they were able to use the technology in closely associated ways to 

build greater understanding of representations associated with functions. The themes which 

emerged in the study appeared to converge in many ways. Indicative movements provided 

insight into their internal representations. This was evidenced in the ways that Marlon and 

Marjorie appeared to think about what was happening, and what they appeared to understand. By 

considering the mathematical thinking and representational ideas present in the technological 

interactions, the issues and uses related to the use of technology could then be clarified. 
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Technology’s use as an aid to reasoning and communication added meaning to the indicative 

movements. Those movements served a particular purpose. Technology became a window into 

students’ thinking as they reasoned and communicated about the representations they were 

seeing and with which they were interacting.  

In addition to examples previously given, the convergence of ideas can be seen in some 

additional examples. Marlon’s illustrated what he was thinking about the function f(x) = x + 1 

through the use of indicative movements. His efforts showed that he thought of the idea of x plus 

1 in the function f(x) = x + 1 as a movement starting to the left of the origin on the x-axis, going 

to (0, 0) and then moving up and to (0,2) and ending at (0,1) as he spoke the words “x plus one.” 

The insight this gives into the misconception of the role of x in the function might not have been 

obtained had he not chosen to clarify his thinking through the use of indicative movements. Here 

algebraic misconceptions, indicative movements, internal representations, technology as an aid 

to mathematical communication, and technology as a window into student thinking interact with 

each other.  

Another convergence of themes can be seen in work Marjorie did while she was 

examining the idea of slope. She used mouse movements to punctuate her explanations, 

providing insight into her internal representations. These movements seemed to be motivated by 

the request to predict where the next graph was going to land before graphing it. When asked to 

make a prediction, she used indicative movements to aid in her explanations. Consider the 

following exchange. Figure 9 is provided below for your convenience in following her 

explanation.   
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Figure 9: This screen shot shows the appearance of the screen at the time Marjorie provided her 
explanation of her prediction of where the graph of h1(x) = 2x would fall.  
 

INTERVIEWER: Before you hit okay, where do you think . . . two times x is going to be 

― show me with your cursor where you think it’s going to land.  

MARJORIE: I think 2x might be right here {cursor near (4, 6)} [48:19]. Because the one 

and x was right there {cursor at about (6,6) on the graph of v(x) = 1x} that’s the one and 

x. 

INTERVIEWER: Okay 

MARJORIE: And that’s 4 and x {cursor at about (2.5, 10) on the graph of g1(x) = 4x} 

[48:25] and that’s 3 and x {cursor just below (3, 10) on a segment passing between 
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plotted points near f1(x) = 3x} so I think that 2 and x will probably be right there {moves 

cursor in area of first quadrant between graphs of v(x) = 1x and f1(x)=3x back and forth 

along a short linear path near where the graph would land}  

INTERVIEWER: Okay 

MARJORIE: Really because that’s 5, 4, 3,{cursor moves from one graph to the next as 

she speaks, hitting the segment when she gets to 3}. I think 2 will be (about) right there 

between 3 and 1 {cursor moving in the space in the first quadrant between the functions x 

and 3x along a short linear path near where the graph would land}, because I think no 

matter what I try or if I do it going this way {cursor in new function window} it’s not 

going to put it directly on the dot, the step dot coordinates {cursor near the graph of 3x 

and then back to new function window}. Yeah. And I don’t think so. So really 2 (is) 

probably a waste of time but I’ll put 2 out there anyway just to see {she clicks okay to 

graph it}. 

INTERVIEWER: Okay 

MARJORIE: Yeah, I was right. {cursor at about (6, 12)} Yeah. 2 was - 2 was just as far 

out as 1 {cursor back and forth between 2x and 1x} maybe not as far out but yeah. Its 

definitely not {cursor back and forth between 2x and 3x} 2 or 1 definitely not them. 

Three is the closest {Cursor near about (5, 15), pointing at the segment joining two of the 

data points}. 

Note that she purposefully moves the cursor from one example to the next and then 

indicates by cursor movements where she thinks the graph of h1(x) = 2x will land. Note also 

when she is analyzing the results, and saying “2 was just as far out as 1” that indicative 

movements gave clarity to the idea that was in her mind as she said this.  It is clear that she knew 
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they were two different graphs and that she knew where they were located, whereas her 

statement alone would not have provided that information. This example also shows how she 

was empowered by the technology. She created different functions based on her own 

explorations which helped to test and build on her own understanding. In this example we see 

patterning observations, problem solving, reasoning, and sense-making, internal representations, 

indicative movements, technology as a window into student thinking, technology as an aid to 

mathematical communication, and technology as an aid in the use of standard representations.  

In addition to the convergence of ideas present in teaching experiment episodes, it is also 

evident that similar influences and uses of technology could be seen in the work of both subjects. 

This occurred even though they were working at different mathematical levels. Marlon worked 

with a simpler dot pattern. Marjorie had deduced the functional relationship in the more complex 

dot pattern. Marlon was confused about the representation associated with a coordinate point. 

Nevertheless, both Marlon and Marjorie built increased understanding of what they were 

studying and did so in part through their own mathematical choices. Such empowerment arising 

from their own choices may help adult learners to grow in their belief in their own effectiveness 

as learners of mathematics and as a result improve their achievement (Wadsworth et al., 2007). 

In the next chapter, a discussion will be presented as to how the study specifically addressed the 

research questions and what it showed about the potential of technology to help build valid, 

useful, and enduring internal representations of mathematics.     

 

 
 
 

 

 



  

189 

 
 
 
 

5. Discussion 

Following a summary of chapters one through three and a description of the limitations of 

the study, I will examine the results of this study in light of the research questions. I will then 

discuss the implications of the study for adult developmental mathematics students, teachers of 

adult developmental mathematics students, the design of developmental mathematics programs, 

the general use of technology in mathematics education, and for further research.  

Summary of chapters 1-3  

The decision to address the problem of the effective use of technology for the 

mathematical education of adult learners arose in part from an examination of literature related to 

the use of technology in mathematics education, some of which presented a lofty vision of the 

potential of such technology use to improve students’ learning (Epper & Baker, 2009; Hegedus 

& Kaput, 2004; Kaput, 1994).  It was also clear that adult developmental mathematics students 

form a substantial population that has continuing and unique needs which require the attention of 

mathematics educators (Bryk & Treisman, 2010; Epper & Baker, 2009; Parsad & Lewis, 2003). 

Using technology in the classroom and doing so wisely has come to be expected of those 

aspiring to be excellent teachers of mathematics, and this includes teachers of adult learners 

(AMATYC, 2006; National Council of Teachers of Mathematics, 2000). Adult developmental 

mathematics students have specific needs that need to be addressed (Epper & Baker, 2009; 

Gerlaugh et al., 2007). Technology seems to have particular promise in impacting adult students’ 

representations (Epper & Baker, 2009; Lapp & John, 2009).  
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As the National Council of Teachers of Mathematics has sought to improve the standards 

they promote and the resources they provide, appropriate use of representation emerged as one of 

the standards for mathematical teaching and thinking (NCTM, 2000). They have also noted 

technology’s influence on the role of representation (NCTM, 2000). Some of the ideas examined 

with regards to representation have been representational systems, idiosyncratic representations, 

visualization, symbolization, the use of multiple representations to describe the same concept, 

modeling as a use of representation, and the mathematical idea of functions as a rich context for 

examining the use of representations. The ideas of valid, useful and enduring internal 

representations emerged as an interpretive framework from a study of the literature related to 

representation.  

Benefits to the use of technology include the possibility of opening students’ ability to 

conceptualize mathematical objects and to visualize as mathematicians do (Cuoco & 

Goldenberg, 1996; Moreno-Armella et al., 2008). Concerns include the promotion of conceptual 

over procedural learning (Fennell & Rowan, 2001). Other issues include the pace of progress in 

the cycle of invention, research, and implementation (Fey, 1984; Oncu, Delialioglu, & Brown, 

2008). Since the form of technology provided for adult developmental mathematics students is 

often computer assisted instruction (CAI), the use of CAI for adult learners is important to 

consider. Its benefits include time saved and an increase in confidence level that some students 

experience. Challenges include the production of only superficial knowledge and the hindrance 

that low literacy skills can be in adult developmental mathematics students’ use of CAI (Caverly 

et al., 2000; Li & Edmonds, 2005).  

Several studies looking at various populations shed light on some of the connections 

between technology use and mathematical representations. Software has been developed by 
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mathematics education researchers for specific purposes (Abramovich & Ehrlich, 2007; 

Yerushalmy & Shternberg, 2001). Studies involving spreadsheets, object oriented programming, 

graphing calculators, dynamic geometry software, and technological laboratories also provide 

insight. Issues such as the use of multiple representations, self-efficacy, gaining understanding of 

the mathematics involved in real-life situations, facing misconceptions, and deepening thinking 

are among the issues that research into technology and representation provides (Falcade et al., 

2007; Hennessy et al., 2001; Stevens et al., 2008; Stylianou et al., 2005).  

Research on mathematical representation suggests that students sometimes experience 

challenges in building their own conceptualizations of mathematical ideas because of the wide 

variety of situations, procedures, and symbols present in mathematics (Vernaud, 1998). This is 

particularly evident in adult developmental mathematics students, many of whom carry with 

them learning disabilities which may make navigating that variety of symbols more challenging, 

(Epper & Baker, 2009). Challenges to the implementation of the use of technology in adult 

developmental mathematics education also include student discipline and choice as well as 

faculty acceptance and perspectives (Epper & Baker, 2009; Kinney & Kinney, 2002). I hoped 

that by engaging adult developmental mathematics students in a teaching experiment, ideas 

might arise that would help in thinking about how to address some of these challenges. I sought 

insight regarding the following questions 

1. Following the introductory use of dynamic computer technology to explore 

mathematical concepts built upon previous knowledge, what internal 

representations of those concepts do developmental mathematics students 

possess?  
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2. What can be determined about the validity and usefulness of those 

representations?  

3.  How well do those representations endure over a period of time and in the 

company of tasks which build upon them?  

I decided that the study would be conducted following the qualitative research paradigm 

using a constructivist theoretical framework. I developed a teaching experiment in which I could 

construct knowledge of the use of technology in adult developmental mathematics education at 

the same time that the adult being examined was developing his or her own knowledge at a pace 

guided by their own zone of potential construction and my associated movements (Norton & 

D'Ambrosio, 2008). I used the ideas of grounded theory as a framework with which to examine 

the resulting video, audio, and hard copy data in this case study through the use of a priori, open, 

axial, and selective coding.  

Limitations 

This study is first and foremost limited by its nature, in that it was designed to suggest 

ideas for theory and was not intended as a verification of theory. No claims are made otherwise. 

In the summaries of the cases and in the conclusions given below, descriptions will be of what 

seemed to be happening. Suggestions for follow up will also be included. The study was also 

limited in that it is the interpretation of one person. Even though inter-rater reliability test results 

may show some consistency in the codes assigned to data, I selected those codes, and my choices 

are based on my interpretation of what is essential in the data. As discussed by Eisner (1998), the 

view of qualitative intelligence as connoisseurship includes the idea that a researcher’s 

knowledge about a situation influences his or her perception of it. In this case, I had a favorable 

view of the potential of the use of technology in mathematics education and believed in the 
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potential of each student, particularly the participants in the study, to learn from that technology. 

This bias may have affected my observations in some way. I also made some interpretations as to 

what the subject was thinking. Some of this was validated in by the subjects’ own statements, but 

it nevertheless leaves room for uncertainty. As final conclusions are drawn, and existing theory 

connected, it is hoped that the proper place and power of this study will be clarified.  

Conclusions 

The specific purpose of this study was to find out how the use of dynamic computer 

technology to explore mathematical concepts affected the internal representations of 

mathematics possessed by adult developmental mathematics students, as reflected in the research 

questions. I hoped that such an investigation would provide information that would allow adult 

developmental mathematics educators to make wiser technological choices.  

In considering the way in which internal representations might have been determined, 

Smith (2003) suggested that he learned more about student thinking through conversations with 

his subjects in which they discussed the development of their representations. Goldin (2003) also 

noted that research into students’ internal representations relies on observations of students’ 

interactions with and production of external representations and that he proposed that researchers 

use task-based interviews. I used teaching interviews in which I held conversations with the 

subjects about the development of the technological representations they were using. I also 

observed their interactions with and production of technological representations.  

When I analyzed the results, the subject’s indicative movements (gestures and mouse 

movements), technological choices, written work, and verbal descriptions were all tools which 

were available to help suggest student thinking. As noted in the description of cases, the subjects 

in this study appeared to make connections between multiple representations. They also appeared 
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to find technology to be an aid in the use of standard representations and were in some instances 

mathematically empowered through the use of technology. During the course of their work, they 

also demonstrated the potential of technology as a means to facilitate communication and to 

provide a window into their thinking. In many instances, the insight gained into the subject’s 

thinking was revealed through the interplay of their indicative movements and the things they 

said about what they were doing as a result of the talk-aloud protocol. Such observation and 

conversation is in keeping with the ideas suggested by Smith (2003) and Goldin (2003) for 

examining internal representations. A more detailed look at key results of the present study as 

related to the research questions follows.    

What internal representations followed the use of technology? In considering what 

internal representations of mathematical concepts the subjects’ possessed, it is first important to 

note that the use of dynamic computer technology allowed me to make inferences about those 

representations. Observations of indicative movements strengthened inferences about the 

student’s internal representations, providing a window into their thinking (Campbell, 2003; 

Stevens et al., 2008; Yerushalmy & Shternberg, 2001).  

For example, when Marjorie was searching for locations on the coordinate plane where 

the x and y coordinates were both the same, indicative movements allowed me to see that she 

was restricting her search to the x and y axes. When Marlon decided that the data points he had 

graphed to illustrate the mathematics in “Another dot pattern” was “just off” of a 45 degree 

angle, indicative movements allowed me to see that he considered passing through the origin to 

be a requirement of the pattern being exactly at a 45 degree angle. Marlon also revealed his 

thinking when he used indicative movements with both paper and technological representations 

coincidentally to show that he was connecting the step numbers listed on the paper with the x-
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axis. These and other incidences show that indicative movements can be used to better 

understand students’ interactions with mathematical representations.  

As suggested by the work of Yerushalmy and Sternberg (2001), free movement of the 

mouse is important and in the current study the mouse movements used by the subjects of the 

study were often not requested for a specific mathematical purpose, but were chosen freely by 

the subjects in order to communicate or reason mathematically. The current study also builds on 

the work done by Stevens et al. (2008) by demonstrating that a technological medium other than 

object oriented programming languages can serve as a “window into the student’s mind” (p. 

199). I extended the work done by Campbell (2003) in examining student’s mouse movements in 

that paper and technological representations were connected and indicative movements examined 

in both media. I found that indicative movements recorded simultaneously in more than one 

media may provide additional insight and relate to and support each other. It also situates the use 

of recordings of both the learner and the learners’ screen work in a teaching experiment in which 

the thinking of adult developmental mathematics students could be studied in depth. Hennessy, 

Fung, and Scanlon (2001) in their observations of students’ work with graphing calculators noted 

the importance of the use of paper and pencil techniques to accompany technology. The current 

study adds to this finding by showing additional ways that the two mediums might work 

together.  

The observations made of the subjects’ internal representations showed them connecting 

multiple representations and building representations upon their own thinking. Each of these 

aspects will be discussed below.   

Connecting multiple representations. In considering mental activity many studies have 

noted the importance of connecting multiple representations of the same mathematical concept to 
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students’ understanding (Abramovich & Norton, 2006; Pape, Bel, & Yetkin, 2003; Stylianou et 

al., 2005). The subjects of the current study were repeatedly observed to be making connections 

between multiple representations. This is demonstrated in Marjorie’s investigations of slope, and 

Marlon’s investigations of f(x) = a + b. As seen in figure 9, Marjorie had listed the algebraic 

forms of the functions electronically along with the graphs of those functions. She then described 

that algebraic information as she moved her mouse along the graphical representations, making 

statements such as “that’s 4 and x” or “that’s 5, 4, 3” referring to the value of k in f(x) = kx 

which went with that particular graph. Marlon was able to see that for functions of the form f(x) 

= a + b, he could find the sum a + b and that would tell him where the graph of that function 

would cross the y-axis. In this way he was connecting algebraic and graphical representations. In 

his final session, when he saw the animated table of values, the algebraic representation of the 

function, and the graph of the function, his understanding seemed to deepen as well. He saw the 

animated point, saw the different values that point was place in the table, and eventually made 

the statement that “the whole line itself” was being represented.  

From this I inferred that the use of technology strengthens connections between 

algebraic, graphical, and numerical representations.  Additional evidence for this can be seen in 

Marjorie’s final session. She found an algebraic representation using technology for points she 

had plotted based on a new table of values. She was able to connect that algebraic representation 

with the mathematics she was seeing in the table of values, saying “it is letting me know . . . the 

difference between the different points which there is a difference of two add one.”  This 

statement seems to show that her experiences with the technology strengthened her 

understanding of how the algebraic representation related to the numerical information she saw 

in the table of values. She was connecting numerical, algebraic, and graphical representations.  
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Building representations based on their own thinking.  Internal representations which 

were being built by the subjects of the study seemed to be based upon their own thinking. This 

can be seen in the earlier stages of their explorations when their understanding was weaker. 

Marlon’s choice to try f(x) = 1 + 2 to pass through the point (1, 2) was based on his conception 

of a coordinate point as a movement to one side and then an upward motion symbolized by 

addition. This conception was evident from his mouse movements and written representations of 

coordinate points. He moved the mouse to the right and then up to show the locations of 

coordinate points. When asked to write down a representation of the point (0, 9), he wrote 0 + 9, 

and said, “It’d be here, zero, plus nine.” In session 4, as he considered how to find a function to 

pass through his coordinate points, including the point (1, 2), he noted that he should have said 1 

+ 2 and moved the cursor from (0,0) to (1,0) to (1,2). His choice to try f(x) = 1 + 2 as a function 

which might pass through the data points for the pattern of dots found in “Another dot pattern” 

(see task in Appendix C) was based upon his idiosyncratic thinking about coordinate points.  

Later in the study after he had begun to build some understanding, as shown I asked him 

to create a function of his choice. He had noticed that functions of the form f(x) = x + b passed 

through the y-axis at (0, b). He had already been working with g(x) = x – 9. When I asked him to 

create a function of his own, he decided to “add more” and created v(x) = (x – 9) + 6. He then 

observed that the function passed through the y-axis at -3 and was able to deduce correctly that 

the -9 and the +6 were combined to give the information as to where the graph crossed the y-

axis. He was building upon his own understanding to understand a function he created.  

Marjorie created three different functions which used constant parameters before she 

began to build an understanding of the use of x in a function. One of the functions with a 

constant parameter which she created was 66)(  Bxf .  At first she interpreted this 
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representation as the quantity 6 plus 6 multiplied by B. When she tried different values for B, she 

was able to see that she had been mistaken about the order of operations that should be used, and 

saw the operation it represented as B times 6 followed by the addition of 6. This increased 

understanding of the order of operations was built on representations she had chosen to create. 

Later, she created graphs with different slopes based on the observations she was making about 

the effect of the parameter k in functions of the form f(x) = kx.  Her choice to try f(x) = 50x was 

based on her examination of the table of values she had created for the function she was trying to 

graph. When she saw that this function did not come close to her graphed points, she chose to try 

different values for k. The understanding she built about the impact of different values of k on 

the graphs was built on her choice to examine the representation f(x) = 50x using the technology, 

a choice which arose from her own thinking about the table of values.  

What was determined about validity and usefulness? Valid representations accurately 

reflect the mathematics students seek to reflect and are flexible enough to allow additional 

mathematical ideas to be built upon them. They are also accompanied by sound mathematical 

habits of mind. Useful representations are accessible for reasoning and sense-making, 

communication of mathematical ideas, and building new understanding.  

While there was much about the representations they were working with that Marlon and 

Marjorie still did not understand, considered within their zone of potential construction (ZPC), 

they did build some validity and usefulness in those representations. Marlon’s observation that 

functions of the form f(x) = x + b cross the y-axis at the value b added validity to that 

representation. It also appeared to become a useful representation for him in his examination of 

functions of the form f(x) = (x - a) + b.  This is indicated by his examination the y-intercept in 

order to understand f(x) = (x – 9) + 6.   
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The valid representation of the graphed points for “Looking at dot patterns” was useful to 

Marjorie in her exploration of the algebraic and graphical representations of that function. She 

knew that matching the graphed points was her goal in assessing the validity of the other types of 

representations. In addition, her valid conception of the pattern in the table of values included the 

understanding that the difference of the number of dots from one step to the next was 3. This 

became useful to her. She referred to that idea when she tried f(x) = 3x as a function which might 

pass through the graphed points. She observed that three had been the difference between the 

number of dots from one step to the next. 

The qualities of valid and useful representations can be seen in Marlon’s and Marjorie’s 

work. Marlon had built a sound habit of mind to accompany his internal algebraic 

representations of functions. Once he saw that the y-intercept correlated with the value b in f(x) 

= x + b, he examined the y-intercept in order to understand other representations of functions. In 

this way, he used his growing understanding of algebraic representations of functions to build 

new understanding. Once Marjorie noticed the pattern in the table of values, this added a habit of 

mind to her examinations of other representations. She carried that idea of the rate of change to 

her examination of algebraic and graphical representations and to the examination of a different 

table of values. When given a new table of values, she noted fairly quickly that the difference in 

the y-value from one step to the next was 2. She was able to make sense of this new table of 

values and also make sense of the algebraic representation the technology provided for her. 

Sound habits of mind, building new understanding, and making sense of things indicate the 

validity and usefulness that Marlon and Marjorie were building as they used technology to 

examine representations of functions.  
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How well did those representations endure over a period of time? The definition 

given of enduring internal representations is that they will remain with the student in various 

situations apart from the environment in which they were initially developed. They are also 

carried forward, built upon, and refined over a period of time. They become part of the student’s 

“stored knowledge” (Rogers, 1999). They will become part of the set of mental objects available 

to students (Cifarelli, 1998).  

Marlon’s mathematical misconceptions interfered with the endurance of what he was 

learning. In examining his progress over the course of the study, it was apparent that his 

challenges with mathematical vocabulary interfered with the endurance of the verbal 

representations needed to use the software without facilitation. He also could not remember how 

the function h(x) = x + 1, which represented the dot patterns he had been studying, had been 

discovered. He did remember from one session to the next how to change the scale of the graph 

and used that feature to solve a problem in the fifth session, leading to his discovery that the 

constants a and b in a function of the form f(x) = a + b are “added together” to give the y-

intercept of that function. In the opening to session 6, when asked to show what he remembered, 

he was able to put an xy-plane on the sketch and graphed the function f(x) = 5 – 9, noting after 

observing the plot of the graph that “they wind up subtracting.” Facilitation helped him to reason 

his way back through some of the thinking he had previously done during session 5 and call back 

to mind with some meaning the representations he had been studying, particularly the function 

which passed through the points representing the dot pattern. Marlon’s handwritten graphs drawn 

from his technological work in a previous session were also a help to him in session 5. 

Looking at previous work also helped representations endure for Marjorie, who was 

aided by referring back to a saved technological sketch. When considering the work done in this 
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sketch, Marjorie was able to intelligently discuss the function she had created, namely f(x) = (A -

5) + 20, but could not remember entering the one I had asked her to enter, namely h(x) = x. She 

also remembered from one session to next that the scale of the graph could be changed, but not 

always how it was done.  

These events indicate some possible conclusions about the endurance of internal 

representations arising from the use of technology. Saved technological representations which 

were created by the student and paper and pencil representations associated with them may help 

the student recall previous work more clearly. Dynamic movements of representations may 

remain in the student’s mind as a tool for problem solving, even though the technological steps 

which produced them do not. Also, enduring representations may be more likely to be built 

through tasks in which students have control over their avenues of exploration and which are 

situated within their ZPC.  

Implications 
 

Though this was a teaching experiment conducted with only two subjects, those subjects 

represented a range of developmental mathematics experiences. The suggested theory may apply 

to students at more than just one level of developmental instruction. It has implications for adult 

developmental mathematics students, developmental mathematics teachers, for those who 

manage developmental mathematics programs, for the use of technology in mathematics 

education in general, for those interested in understanding student thinking, and for further 

research.  

Adult developmental mathematics students. There are important implications of this 

study that might be shared with adult developmental mathematics students. This study reinforces 

the observation that some of the challenges adult learners face is their own lack of self-efficacy, 
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lack of study skills, and learning experiences which may be procedurally rather then 

conceptually based (Epper & Baker, 2009; Wadsworth et al., 2007). Both subjects in this study 

found opportunities to make and check their own conjectures through the use of technology. 

Adult learners can consider that some of those investigations would have been difficult for them 

to engage in without technology. They can think how this type of empowering investigation may 

help them to make valid mathematical learning choices. Such experiences may help build their 

self-efficacy. Student centered investigations may also help adult developmental mathematics 

students to understand the learning process better in general and thus enhance their learning 

skills. In addition, they may see that being able to create and test their own conjectures can help 

them learn conceptually and see the advantage of learning conceptually. In the current study, for 

example, the subjects sometimes appeared to remember and discuss more clearly their own 

investigations.   

Adult learners may be encouraged by the progress Marlon and Marorie made over the 

course of the study. Both Marlon and Marjorie grew over the course of the study. Marlon began 

with great confusion about what he was seeing, and an inability to properly represent coordinate 

points, representing them as a sum of the x coordinate plus the y coordinate. He did not 

understand what the functional notation the software required meant and saw it as just another 

way to graph coordinate points, entering f(x) = a + b in an attempt to graph a line passing 

through the point (a, b). During the study he was able to discover that this was a misconception 

and that such functions create a horizontal line crossing the y-axis at y = a + b. By the end of the 

study, he had learned that functions of the form f(x) = x + b create a diagonal line passing 

through the point (0, b), and that such functions pass through other points on the plane. He 

learned to associate the step numbers for the table of values representing “Another dot pattern” 
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with the numbers along the x-axis. He also seemed to begin to understand that a function is 

associated with points along the entire line, representing “the whole line itself.”  

Early in the study, Marjorie was able to deduce the functional relationship present in 

“Looking at dot patterns” merely by her analysis of the table of values representing the step 

number and its associated number of dots. She was, however, unable to use algebraic 

representations to describe this relationship. During the study she used the software to explore 

the xy-plane, learn about the effect of k in functions of the form f(x) = kx and find, recognize, 

and describe an algebraic representation of a table of values similar to the one for “Looking at 

dot patterns.” Her description included the meaning of the variable x in that representation. Adult 

students can learn from the experiences of Marlon and Marjorie that by using technology in an 

interactive manner, they can make their own mathematical choices and investigations, and that 

they can understand mathematics at a deeper level than rote memorization.  

Teachers of adult developmental mathematics students. Teachers of adult 

development students can note that the subjects of this study both brought mathematical 

misconceptions to the study which affected their progress. Teachers must do everything they can 

to understand the misconceptions adult learners may bring to their classrooms and to the use of 

mathematics technology. A better understanding of their students’ misconceptions will allow 

adult developmental mathematics educators to recognize what their students’ zones of potential 

construction (ZPCs) are and how they affect their use of technology (Norton & D'Ambrosio, 

2008). The findings of this study imply that technology has the potential to help build learning 

within adult learners’ ZPC.   

The results of this study also imply that teachers of adult learners who are incorporating 

technology would benefit from having multiple forms of assessment they can draw upon. They 
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can consider their students’ indicative technological movements and verbal descriptions of what 

they are doing.  They can also examine their students’ use of both paper and technological 

representations in order to more clearly assess their understanding. Consider for example that 

Marjorie correctly described the algebraic representation for a table of values representing the 

function f(x) = 2x + 1 viewing the technology, but when asked to transfer that knowledge to 

paper, she used a different representation. When questioned she was able to tell what she meant 

by the representation she used on paper and to accurately describe different uses of the variable 

that were involved.  Such understanding of Marjorie’s thinking would be a great benefit to a 

teacher in deciding what step to take next to help build Marjorie’s understanding of algebraic 

representations. Validity in making inferences about student understanding should include 

adequate relevant evidence (NCTM, 1995). Allowing students to represent mathematics in 

different media and asking students to explain those representations may allow teachers to make 

more valid inferences as to their students’ learning.  

Teachers should also take note that Marlon and Marjorie seemed to be able to build more 

enduring representations when they had some choice over the avenue of exploration and were 

building on those choices they had made. As noted above, teachers should choose tasks in which 

students have control over their avenues of exploration and which are situated with those 

students’ ZPCs. In considering the challenges which adult learners may have in remembering 

technological procedures, teachers may also wish to provide clear facilitating tools to accompany 

the use of technology so that the dynamic representations and the empowerment they provide can 

be activated by the student for learning as easily as possible.  

Design of developmental mathematics programs. Research suggests that 

developmental mathematics programs may employ teachers who lack appropriate professional 
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development or have little experience dealing with the special needs of adult learners (Caverly et 

al., 2000). The teachers may also have beliefs which adversely affect the technological choices 

they make for their students (Caverly et al., 2000). Developmental mathematics programs should 

attend to the potential advantages of the appropriate use of technology which this study 

highlights, such as the mathematical empowerment of adult learners. Program directors may 

wish to make certain that dynamic interactive software such as Geometer’s Sketchpad is 

available to their teachers and students and that their teachers receive some training in how to 

implement such technology into their classrooms. With appropriate training, teachers may be 

able to take greater advantage of time spent in computer laboratories as they learn to select 

appropriate tasks and assess their students’ understanding. They can be trained to make valid 

assessments as they observe their students’ interactions with technology.  

They can also learn to question their students in ways that elicit valid information as they 

circulate among and interact with them. Teachers can learn to make appropriate inferences from 

the indicative movements they observe and the students’ talk-aloud descriptions of their own 

work. In so doing, teachers of adult learners may be able to more easily uncover some of the 

misconceptions that their students possess, giving them greater power in serving those students 

(Li & Edmonds, 2005). 

Directors of developmental mathematics programs should also note that there are 

indications in this study that adult learners may not be carrying into their current coursework the 

knowledge they are expected to have. Marlon was enrolled in the second level developmental 

mathematics course. According to the course description for the first level developmental 

mathematics course, which he had recently passed, he should have been introduced to algebra in 

a manner that included a discussion of linear functions, but he began the study with a lack of 
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understanding of the representations associated with linear functions. Marjorie was in the third 

and highest level of developmental mathematics. It is not known whether or not she recently took 

the previous course, but her placement in the highest level course implied that she was expected 

to have greater knowledge of algebraic representations than she seemed to possess. The second 

level of developmental mathematics included basic algebra, linear and quadratic functions and 

she should have had that foundation, but had difficulty expressing ideas algebraically. Those 

who direct developmental mathematics programs may wish to examine the knowledge their 

students are carrying into subsequent levels of instruction, and examine the effectiveness of their 

programs. It may be that alternative solutions which include the use of dynamic mathematics 

technology would provide more enduring representations of mathematics and more lasting 

conceptual knowledge for these students.  

The general use of technology in mathematics education. The use of technology as a 

window into student thinking, as an aid in the use of standard representations, as an aid to 

reasoning, as an aid to mathematical communication, to reveal and clear up misconceptions, and 

to empower students mathematically need not be restricted to the education of adult 

developmental mathematics students. These influences and uses may well occur with other 

populations, and teachers at all levels may wish to investigate how their own use of technology 

in the classroom may be expanded to include any or all of these uses not currently being realized. 

Middle school or secondary mathematics teachers, for example, may wish to allow their students 

to explain mathematical concepts using dynamic graphing software and indicative movements to 

show their thinking. 

The power that is found in these potential effects of the use of technology is much greater 

than is often found in the ways that technology is actually used. In the present study, a dynamic 
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interactive form of technology was used and the subjects made their own choices about their use 

of standard representations, receiving rapid feedback as to the effect of those choices. This 

feedback was embedded in multiple connected representations, sometimes dynamically animated 

so that the effect of changes in the representations could be seen. Such technology empowered 

these subjects in ways that some other forms of technology would not have been able to do. 

Forms of computer aided instruction (CAI) which do nothing more than provide electronic 

textbooks or multiple choice question and answer sessions may have their place in reinforcing 

what students have already learned, but would probably not provide the kind of cognitive power 

that dynamic connected interactive representations of equations, tables, and graphs was able to 

give these adult learners.  

Further research. The current study opens up many avenues to potential further research 

(Epper & Baker, 2009). Potential areas of continuing research are the use of technological 

gestures, the interplay between previously held misconceptions and technological 

representations, the effect of technology on the internal representations of different populations 

of students, the use of indicative movements in a large group setting, the use of paper and pencil 

in combination with technology, and longitudinal work into the effects of dynamic mathematics 

technology in fostering enduring representations.  

 Additional research into the use of technological gestures may be able to provide 

teachers with practical ways to record and analyze such work. It may give them further support 

in using such representations to understand their student’s thinking. Such gestures could be 

observed in various technological settings in addition to the one used here.  

Research into how adult students’ misconceptions interfere with their use of technology 

can provide teachers with information about how to facilitate the use of technology. Such 
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research might show teachers how to diagnose difficulties students are having by observing 

particular technological behaviors. This might allow teachers to discover weaknesses they had 

not suspected, giving mathematics technology use additional power.  

Future studies may include a similar examination of indicative movements and the 

resulting insight into student thinking that might be obtained with different populations of 

students. These might include elementary, middle, or secondary school students or college level 

students who do not require remediation. An examination of such populations may help 

generalize the influences of uses of technology noted. Younger students may also become more 

easily acquainted with new technologies. Observing indicative movements may give teachers at 

every level insight into their students’ misconceptions, reasoning, and thinking. It may also 

provide students of all ages with a means to communicate mathematically which they had not 

previously considered. Teachers at all levels could conduct similar experiments with their own 

students in after school settings.  

Campbell (2003) conducted his study in dynamic tracking in a large group setting with 

elementary pre-service teachers. Large group research settings are also possible with the methods 

used in the current study. Screen capture software could be installed in laboratory computers, and 

computer cameras used to record the subjects’ expressions and actions. Students’ paper artifacts 

could be recorded as well using additional small cameras or collected for examination. Observers 

could circulate and question the subjects and their field notes could be used as a basis for further 

examination and analysis of particular subjects’ interactions.  

 In the current study, I presented the subjects with a paper and pencil activity on which 

the technological activity was built. During the course of the study, paper and pencil and 

technological interactions were both used, sometimes simultaneously, as when Marlon was 
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connecting the step numbers on paper with the x-axis represented on screen. Marjorie wrote her 

thoughts about patterns represented by a table in her own words on paper and then connected 

those representations with technological ones. A subject of further study might be the 

interactions of paper and technological representations. How would the study have been different 

if the subjects had been presented with technological representations first and then asked to use 

paper and pencil to assist them in their investigation? How can teachers make decisions about the 

use of paper and pencil together with technology? 

One of the ideas presented in this study was the possible endurance of technological 

representations beyond the use of technology. Because of the limited nature of the study, 

examination of endurance was limited. Further longitudinal studies could be conducted which 

look more closely at what students retain from dynamic interactive technological tasks designed 

to build conceptual understanding. For example, if such tasks were used in the first level of 

developmental mathematics, would students then retain more of what they had studied as they 

moved through the second level of developmental mathematics? Would summative paper and 

pencil assessments indicate that any of the internal representations they may have gained through 

the use of technology had endured with validity and usefulness?   

Conclusion  

Technology has the potential to empower adult developmental mathematics students to 

strengthen their internal representations of mathematics, allowing those representations to grow 

in validity and usefulness. Technology appears to have the potential to allow adult learners to 

build understanding by choosing their own avenues of exploration situated within their zone of 

potential construction (ZPC), although students may also bring misconceptions to these 

activities. Teachers seeking to provide such empowerment must first carefully consider the 
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misconceptions related to the use of technology. Teachers need to keep these misconceptions in 

mind when assessing technological interactions. Such misconceptions as well as other aspects of 

student thinking may be revealed by indicative movements. Teachers must be ready to provide 

clear technical facilitation so that learners will be empowered by the capabilities of technology 

and not hampered by difficult technological procedures. Teachers may also benefit from making 

assessment inferences using multiple sources of data, not necessarily relying on technological 

interactions alone.  

Marlon’s cry of “Ah!” after he had chosen to graph v(x) = (x – 9) + 6, noticed where it 

crossed the y-axis, and connected that graph with the algebraic representation and his prior 

understanding is indicative of the empowerment technology can give adult learners. Such an 

exploration may have been difficult for him to do without the use of technology. There was still 

much he did not understand, but he did understand something more than he had previously 

understood. He made his own mathematical choices and used his own reasoning to analyze the 

results. Coming from a setting in which he was failing at his attempts to remember algorithms, 

this was mathematical empowerment. Technology has the potential to prevent developmental 

mathematics from being the “insurmountable barrier” it was recently described as being by Bryk 

and Treisman (2010), who noted that difficulties in developmental mathematics was “ending . . . 

aspirations for higher education” (p. 19). In the year 2008, a higher percentage of African 

Americans ages 25 to 34 were enrolled in some kind of schooling than were Whites, Hispanics, 

or the total population (Snyder & Dillow, 2010). Could they have been trying to make up for a 

lack of opportunity to learn earlier in their lives similar to that described by Tate (1995) in his 

discussion of African American students’ experiences in urban schools? Adult developmental 

mathematics students need not be victims of traditional teaching methods which have been 
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passed down as an artifact, but which have not been effective in meeting their learning needs 

(Tate, 1995). Proper use of technology can change adult developmental mathematics education 

for the better. Considering the efforts put forth by adult learners, the special needs they have 

which have affected their opportunities to learn, and the substantial population whose futures 

may be at stake, mathematics educators cannot afford to ignore this work. 
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Glossary 
 
Word Definition 
Affective domain  “The affective domain refers to feelings that pertain to mathematics, to 

the experiencing of mathematics, or to oneself in relation to mathematics” 
(Goldin, 2003, p. 280) 
 

Behaviorist  Behaviorist teaching models may provide a stimulus and response 
approach without regard to conceptual understanding. 
 

Computer 
assisted 
instruction 

The use of software designed to tutor students, provide them with extra 
practice, and sometimes engage them in dialog is sometimes known as 
computer-assisted instruction (CAI) (Kinney & Kinney, 2002).  
 

Concentration Obiekwe (2000) in his discussion of the instrument used by Wadsworth et 
al. (2007) noted that concentration was thought of as a student’s ability to 
give attention to an academic task. 
 

Conceptual 
knowledge 

Knowledge that is part of a network of connections to other ideas (Kinney 
& Kinney, 2002) 
 

Constructivism Based on ideas of Piaget and Vygotsky, constructivism encouraged 
educators to create an atmosphere where students could work through 
cognitive conflict using their own strategies, and thus learning via 
problem solving (Lambdin & Walcott, 2007). Students then have the 
opportunity to construct their own knowledge (Silver, 1990).  
 

Covariation Considering functions from a standpoint of covariation means that 
variations in the independent variable (or input) and dependent variable 
(or output) are considered together.  
 

Developmental 
education 

Developmental education, sometimes referred to as remedial education, 
refers to educational efforts which serve college students who need 
additional preparation in order to be successful (Payne & Lyman, 1996) 
 

Direct instruction Wadsworth et al., (2007) seem to use this term to indicate in-classroom 
instruction with a teacher present, as opposed to computer instruction 
students engage in independently outside of class. 
 

Embodied, 
linguistic,  
formal, and  
internal 
representations 

Embodied representations of mathematical ideas are external, physical 
situations in the environment. 
Linguistic representations are those in which the emphasis is on syntax 
and semantics.  
Formal systems use symbols, axioms, definitions, constructs, etc.  
Internal, individual systems describe thinking processes and are inferred 
from behavior or introspection (Goldin & Janvier,1998)  
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Word Definition 
Formative 
assessment 

Assessment designed primarily to provide constructive feedback to the 
student so that he or she may improve 
 

Function A mathematical relationship in which one set of data is matched with 
another set of data so that each piece of data in the input set is matched to 
one and only one piece of data in the output set. 
 

Function 
mappings 

A function mapping diagram renders the x and y axes as parallel lines, 
with line segments connecting a point on the x-axis to its image on the y-
axis. (Bridger, 2001) 
 

Global To deal with the function in a global way is to look at its overall behavior, 
such as when students sketch the graph of a function and look at its 
maximums and minimums and other characteristics. (Even, 1998) 

Idiosyncratic 
representations 

Those which are unique to the learner (Smith, 2003). Such personal forms 
of  representation, which may be very meaningful to the student, but have 
little resemblance to those commonly used 

Information 
processing  

A student’s ability to process knowledge. (Obiekwe, 2000) 

Internal and 
External 
representations 

The words external and internal refer to the relationship of that 
representation to the mind of the student. If the representation exists 
within the mind of the student, then it is an internal representation. If the 
representation is found in the environment outside of the student’s mind, 
in a textbook, on a computer screen, or on a piece of paper for example, 
then it is considered to be an external representation. (Goldin, 2003) 

Isomorphism A one to one relationship between two sets of data preserving operations 
within the two sets. (Dictionary.com, 2010) 

Manipulatives Hand-held objects used to model mathematical ideas.  

Model A mathematical model is a form of representation which illustrates 
mathematical features of a complex phenomenon and is used to clarify 
situations and solve problems. (NCTM, 2000) 

Non-cognitive 
factors 

Non-cognitive factors include influences unrelated to the student’s 
knowledge and may include such items as motivation and time 
management. (Gerlaugh, 2007) 

Object oriented 
programming 

As used in mathematics education, software which provides powerful 
tools such as drawing implements and other graphics in a setting 
requiring relatively simple syntaxes with which students can create their 
own programs. (Connell, 1998)  
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Word Definition 
Pointwise To deal with functions in a pointwise way is to plot, read or deal with 

discrete points. (Even, 1998) 

Reference field  A set of objects related to a set of representations. For example, one 
reference field for the set of nouns is the set of material objects. (Moreno-
Armella et al., 2008) 

Reification The process by which something abstract becomes real to the learner and 
exists in his or her mind as a mental object. (O'Callaghan, 1998) 

Representation This term refers to both “the act of capturing a mathematical concept or 
relationship in some form” and “the form itself” (NCTM, 2000, p. 66).  

Cuoco and Curcio (2001), described a representation as a map of 
correspondence between a mathematical structure and a better understood 
structure. 

Self-efficacy A person’s belief in their own ability to be effective in managing future 
situations. (Wadsworth, Husman, Duggan, and Pennington, (2007) 

Self-testing A student’s ability to prepare for tests and classes. (Obiekwe, 2000) 

Semiotic 
mediation 

The process by which new signs are derived from the actions performed 
with another sign or symbol. It indicates an internalization process, 
producing a new internal tool. (Falcde, Laborde, & Mariotti, 2007) 

Semiotics Semiotics is the study of signs and their meanings. Cunningham (1992) 
described semiotics as "a way of thinking about the mind, and how we 
come to know and communicate knowledge" (p. 166). 

Symbolization The process by which symbolic structures re-design the architecture of 
the human mind and provide a meta-cognitive mirror in which our 
thought is reflected. (Moreno-Armella et al., 2008) 

Technological 
representations 

Charts, graphs, geometric shapes, algebraic equations, or other 
mathematical objects represented via mathematics software, internet sites, 
or on hand-held devices such as calculators. 

Textual 
(descriptive) and 
visual (depictive) 

Textual representations are semantically dense, and conveyed through 
rules. Visual representations are more analogical. (Sedig, 2008) 

Thick description 
 

Thin description would merely describe the action. Thick description 
would give more than just a description of the action. It might provide, 
for example, information regarding the motivation for the action. (Geertz, 
1994) 
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Word Definition 
Title IV Title IV institutions are those which participate in certain federal student 

aid programs. (Aud et al., 2010) 

Visualization The creation of a mental image to guide the representation of ideas. 
(Presmeg, 2006)  
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Interview Protocol: Initial Interview  
 
Project: the Effect of Technological Representations of Developmental Mathematics 

Students’ Understanding of Functions 
 

Time of interview:  
 
Date:  
 
Place:  
 
Interviewer:  
 
Interviewee:  
 

Obtaining of informed consent: Before anything else, I need to obtain your signature on 
this document. It officially lets you know about the study and what your rights 
and obligations are. (point to first paragraph). You can read here that the purpose 
of this project is to find out how using computer software to study mathematics 
affects how a person thinks about mathematics. Look over the rest of the 
document and let me know if you have any questions. (Answer questions as 
needed, obtain signatures.) 

Obtaining personal information: Ask subject to fill out the subject information sheet. 
 
Further description: This first interview will help me get to know you a little bit and find 

out what your experiences with math have been. I’ll be selecting four people to 
continue on and participate in more interviews where we’ll look at some math 
computer software and I can see how they think. No one will have to pass any 
kind of a test to be selected to continue. I’ll be picking people to continue based 
on how they will fit in with what I want to learn and what I’m doing to do to learn 
it. Do you have any questions about the project?  

 
Questions and Prompts:  
 

1. Tell some things you remember about school when you were growing up.  
2. Describe a (another) good experience you remember having in school.  
3. (If not already stated) What helped you learn?  
4. (If not already stated) What made learning harder?  
5. Talk to me about your most memorable teacher.  

a. How did they teach?  
b. How did you feel about that class?  

6. (If not already mentioned) Describe your most memorable math teacher. 
a. (If not already stated)  How did they teach? 
b. (If not already stated) How did you feel about that class?   

7. What about your other math classes? 
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8. What other things do you remember about your math classes?  
9. Did your teachers ever use any kind of technology in teaching mathematics?  

a. That includes calculators, computers, and the internet . . . 
b. (If so) What did they use?  
c. How did they use it?  
d. How did you feel about using ________________ to study mathematics?  
e. Do you think ___________________ helped you learn?  

10. (Give them a blank sheet of paper and a pencil) Show me and tell me about some 
mathematics you remember. It can be anything that you remember.  

a. Why did you pick this to share?  
b. Additional probing questions might focus on the mathematics they share, 

but not for the purpose of measuring achievement, e.g.  
i. Can you tell me anything else about ___________________ ?  

ii. NOT  What’s the answer to _________________ ?  
11.  I’m going to give you something to look at now, and I want you to just tell me 

everything you can about it. Don’t worry about what the right answer is, or what 
math you’re supposed to use or anything like that. Just look at this, read the 
directions, and follow them. One of the other things I want you to do is talk out 
loud about what you are doing as you work, talking continually, as if you were 
thinking out loud and I were listening in on your thoughts. (Give them “Looking 
at patterns).  

a. Probing questions for this and number 12 might include:  
i. How will the pattern continue? Can you draw the next shapes in 

the pattern?  
ii. What will the 20th shape in the pattern be?  

iii. Can you tell what the 35th shape in the pattern will be (without 
drawing it?) What about the 41st? How do you know?   

12.  (If this seems not to challenge them, you may continue with one or more of the 
following) Here is another idea for you to think about. (Give them “Looking at dot 
patterns” and/or“Soda cans”). Read the directions and follow them. Talk out 
loud about what you are doing as you work, talking continually, as if you were 
thinking out loud.  

a. What will the next pattern be?  

b. Can you tell me how many dots the 10th pattern will have? How?  

13. Thank you for participating. Is there anything else you’d like to say?   
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Teaching experiment interview protocol: Exploring patterns 
 
Project: the Effect of Technological Representations on Developmental Mathematics 

Students’ Understanding of Functions 
 

Time of interview:  
 
Date:  
 
Place:  
 
Interviewer:  
 
Interviewee:  
 
Questions and prompts:  
 
Recalling the last session and examining the data:  

1. What do you remember about this dot pattern that you saw last time?  
a. Follow with probing questions, such as those listed below, to elicit student 

thinking  
i. Why did you think that?  

ii. Is there anything else you’ve noticed about the pattern? 
iii. How do you know what the number of dots in the next pattern 

will be?  
1. Is there a way you can write down this information?  

iv. Do you know what a table of values is?  
1. If they do: Show me what you know about tables by 

creating a table of values showing what you know about the 
step numbers and numbers of dots.  

a. Tell me about your table.   
2. If they don’t or are unsure: then go ahead and give them 

page 1 of the exploration, so they can see the blank table.  
 

a. Does this look familiar? What do the columns tell 
us?   

b. Enter what you know about the step numbers and 
number of dots.   

 
2. Look at the information in your table and see if you notice any patterns. 

Record your thoughts and talk about them as you write.  
a. Subject may also compare back to the dot pattern representation.  
b. What is the number of dots in the _____ th pattern? (several steps beyond 

the data they have).  
c. Can you give me a rule for how many dots would be in any pattern?  
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i. If they can, show them another pattern until you find one for 
which they can’t. Finding the rule will be the overall question 
this teaching experiment seeks to answer.  

 
 
 

 
 
 
Introduction to the software 

3. We are going to use mathematical software to study this question. The name 
of the software is the Geometer’s Sketchpad. (Open the software) Have you 
ever heard of it?  
a. (If so) Open a new file and show me what you know about the Geometer’s 

Sketchpad.  
b. (If not) We’re going to explore it. Open a new file. Make it as large as you 

can.  
i. What do you notice?  

ii. Hold your cursor over the buttons at the left.  
1. What do you notice?  
2. What are the names of the buttons?  
3. What happens when you hold the buttons down?  

iii. Try some of these buttons and tell me what you notice.  
c. Open a new file. From the menu at the top, select Graph, define 

coordinate system.  
i. Does this remind you of anything?  

ii. (If so) What is it? What can you tell me about it?  
iii. (If not, unsure, or more scaffolding is needed regarding the xy 

plane) Use the point tool to put a point somewhere in the 
coordinate system. Use the measure menu, and measure the 
coordinates of the point. Use the selection arrow tool and move 
the point around. Talk about what you see. What are the 
coordinates telling you?  

1. (If needed to elicit further observations). Use the graph 
menu and choose snap points if you want the point to 
always land at an intersection. Look at the coordinates.  

a. What do you notice as you move the point around? 
Try this for a minute and as you do so, talk about 
what you see.  

2. Put the point at a place where8  
a. Both coordinates are the same  
b. The right is twice as much as the left 
c. The right is half as much as the left 

                                                 
8 As suggested in Key Curriculum Press (2002)  
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d. The right equals the negative of the left or the left 
equals the negative of the right 

d. Using the selection arrow tool, select the point at the middle of the crossed 
axes (called the origin) and move it to see how the coordinate grid moves 
around.  

i. What’s happening to the point you put on the grid?  
ii. What about its coordinates?  

e. Using the selection arrow tool, select the other point you see, the one at 1 
on the x-axis and move it to see how the grid changes.  

i. Talk about what you see.  
f. Using graph, plot points, enter some coordinates of your choice and see 

where those points lie. See if you can predict where they will be.  
i. Move these points around. How do they behave differently from 

the other points you have put on the graph?  
 
 
Using the software to look at their data:  

4. How can you use these tools to explore your data?  
a. What data do you have?  
b. What value in your data could be the left coordinate of a point? What 

could be the right coordinate to go with that point? Why?  
5. If they have graphed their points: What pattern do your points form?  

a. (If they think the points are in a straight line). How could you find out for 
certain?  

6. What if you had another step in the sequence of dot patterns, whose data is not 
already listed in your table? Where do you think the point representing that 
data would fall?  

 
Additional questions may be asked, based on the student’s thinking.  
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Teaching experiment interview protocol: Exploring functions 
 
Project: the Effect of Technological Representations on Developmental Mathematics 

Students’ Understanding of Functions 
 

Time of interview:  
 
Date:  
 
Place:  
 
Interviewer:  
 
Interviewee:  
 
Questions and prompts:  
 
Recalling the last session and starting algebraic notation 
 

1) Begin with GSP in its opening configuration 

a. Show me what you remember from last time. Talk about what you see 

i. What is the problem we’re trying to solve? 

ii. What do you know about that problem?  

iii. What have we done so far to explore that problem with GSP?  

iv. What does the table tell us?  

v. What does the graph tell us?  

vi. If I asked you now how many dots were in a certain step number, 

how would you find out?  

vii. If we had a rule, how would we describe it?  

1. Look at a simpler pattern for which a rule can be found and 

help the subject to see how to use algebraic notation to 

describe it.  
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a. How is the number of dots related to the step 

number?  

b. Can you write that in a sentence?  

c. How can we write that in a simpler way?  

i. Use boxes to represent the step number if 

scaffolding to the use of variables is needed. 

Using the software to explore algebraic notation 

2) Go to graph, new function. In the rectangle, you can enter expressions, or rules.  

a. Enter the rule we found for our pattern 

b. Hit okay.  

c. Hit plot function.  

d. What do you notice?  

e. Why does the graph look the way it does? 

i. Explore some different expressions. You may change the colors to 

match using the display, color menu.  

f. What patterns do you notice?  

 
Additional questions may be asked, based on the student’s thinking.  
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Teaching experiment interview protocol: Exploring parameters 
 
Project: the Effect of Technological Representations on Developmental Mathematics 

Students’ Understanding of Functions 
 

Time of interview:  
 
Date:  
 
Place:  
 
Interviewer:  
 
Interviewee:  
 
Questions and prompts:  
 
Recalling the last session  

3) Begin with GSP in its opening configuration 
a. Show me what you remember from last time and talk about what you are 

doing.  
b. What did you find out about how the graphs of different equations 

behave?  
c. What is different about their . . .? 

i. Graphs 
ii. Tables 

iii. Equations  
 

Using the software to explore parameters 

4) Go to graph, new parameter. Enter a letter name (other than x or y) for the new 
parameter to replace the one that is there and hit okay.  

5) Define and plot a new function which uses that parameter in its equation (find it 
under “values”).  

6) Double click on the parameter and change its value. Before you hit okay, predict 
how you think the graph will change.  

a. Try this until you can describe in general how this parameter affects this 
type of function. 

7) Select the parameter and edit, action button, animate parameter. Predict how you 
think the graph will change as the parameter changes. Hit animate parameter and 
see what happens.  

a. Use the animation feature of GSP to further explore the equations of 
functions. Talk about what you are noticing.  

8) What have you learned about how equations of functions behave?  
Additional questions may be asked, based on the student’s thinking and his or her 
progress to this point.  
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Teaching experiment interview protocol: Exploring applications 
 
Project: the Effect of Technological Representations on Developmental Mathematics 

Students’ Understanding of Functions 
 

Time of interview:  
 
Date:  
 
Place:  
 
Interviewer:  
 
Interviewee:  
 
Questions and prompts:  
 
Recalling the last session  

9) Begin with GSP in its opening configuration 
a. Show me what you remember from last time and talk about what you are 

doing.  
b. What did you find out about how parameters affect the way different 

functions behave?  
c. What have you learned about their . . .? 

i. Graphs 
ii. Tables 

iii. Equations  
 

Using the software to explore parameters 

10) Use the things you have learned so far to explore the problems on this handout. 
Talk about what you are thinking and doing as you explore.  

 
 
 
 
 
 
 

Additional questions may be asked, based on the student’s thinking and his or her 
progress to this point.  
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Looking at patterns 
 

Study the pattern below and tell me everything you notice about it.   
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Looking at dot patterns 
  

Study the pattern below and tell me everything you notice about it.   
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Soda Cans 

 

How many soda cans will you put in the next stack if it follows the same pattern? Draw a 

picture to show the stack.  What else can you say about this pattern? What if the manager 

of the store wanted 10 cans across the bottom of the stack? How many total cans would 

be in the stack?  
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Another dot pattern 

 

Draw the next pattern in the sequence.  
 
 
How many dots are in each pattern?  
 
 
What else do you notice about the patterns?  
 
 
Fill in the table below for the patterns 
 

 
  
 

 

 

 

 

 

 

How many dots will be in the  
 10th pattern?  
 25th pattern? 
 107th pattern?  
 
How do you know that?  

If I let x represent the step number, how many dots will be in the xth  pattern?  Why?  
 
 
 
 

Step 
number 

Number 
of dots 
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Exploring patterns 
 

 
Enter what you know about the step numbers and number of 
dots for the pattern you are analyzing.  
 
Look at the information and see if you notice any patterns. 
Record your thoughts below.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Step 
number 

Number 
of dots 
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Use the grid and space below to record what you noticed about the things you explored 
today9.  
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                 
9 Graph image found at http://faculty.matcmadison.edu/kmirus/GraphPaper20x20AxesUnits.bmp 
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Exploring Parameters10 
Change the values of some of the parameters in a function you have used and observe 

what happens. Make notes about what you find.  

 

Notes about the effect of parameters:  

  

 

 

                                                 
10 Graph image found at http://faculty.matcmadison.edu/kmirus/GraphPaper20x20AxesUnits.bmp 
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Do you think those parameters would have the same effect on other functions? How 

could you find out?  

 

 

Use technology to investigate the effects of changing parameters on different types of 

functions. 

 

Notes about the effect of parameters:  
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Notes about the effect of parameters:  
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Notes about the effect of parameters:  
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Summarize what you have noticed about the effect of parameters on functions:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 255 

Exploring functions  
How does the equation for a function affect the way a function looks?  
 
Part 1: Exploring equations and graphs 
Use the Geometer’s sketchpad to explore different equations of function. Make a record 
of your work by sketching a graph in each grid below and labeling the graph with the 
equation that goes with it.11  
 
 

 

________f(x) =______________________       _____ f(x) =______________________  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

________f(x) =______________________       _____ f(x) =______________________   
 
 

                                                 
11 Graph image found at http://faculty.matcmadison.edu/kmirus/GraphPaper20x20AxesUnits.bmp 
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________f(x) =______________________       _____ f(x) =______________________   
                                                                       

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

________f(x) =______________________       _____ f(x) =______________________   
 
 
What did you find out about how the equations affect the graphs?   
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Part 2: Find an equation to go with points 
Give the table a title and headings and record coordinate points in the table. Graph those 
points in the Geometer’s Sketchpad and below. Use the Geometer’s Sketchpad to find a 
function which will pass through most or all of your points. Record the equation and 
graph for that function. 

 
      ________________ 

 
 
 
 
 
 
 
 
 
 
 
 
         

________f(x) =______________________ 
 
 
 
 
How did you find the best function?  
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Exploring Different Applications of Functions 
 
Part 1: Data for Albert and Carl 
 
Open the sketch “Race with adjustable paths.” Animate the points and see what happens. 

Drag the points back to the start.   
 

1. Have Geometer’s Sketchpad create a table of values which will keep track of 
Albert and Carl’s distance from the finish line, updating the table every 10 
seconds.  

 
2. Run the race again.  

 
a. Where was Carl at 4 seconds?      
       _________            ___________________________ 

   
b. Where was Albert at 4 seconds? 

____________________________________________ 
 

3. Use the table you see in the Geometer’s Sketchpad to fill in the table below.  
 

 
 
 
 
 
 
 
 
 
 
 
 

4. Use what you have learned in the Geometer’s sketchpad to find one function that 
shows us Carl’s movement, and one function that shows us Albert’s movement. 
You may open a new sketchpad file in which to work.  

 
 
 
 
5. Sketch both graphs on a paper grid and label the grid12.  

                                                 
12 Graph image found at http://faculty.matcmadison.edu/kmirus/GraphPaper20x20AxesUnits.bmp 

 

Seconds  Carl’s distance from finish Seconds Albert’s distance from finish  
 0   0  
1  1  
2  2  
3  3  
4  4  
5  5  
6  6  
7  7  
8  8  
9  9  
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6. What can you tell me about Albert’s and Carl’s movement? How do their 
equations and graphs compare?  
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Part 2: Adjusting the Race  
1. Drag Albert and Carl back to the start. Make an adjustment in the sketch so that 

Albert and Carl will finish at the same time.  
 
 

2. Set up a table as you did before and run the race again so you can keep track of 
this data, showing where they are as each second passes.   

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Seconds  Carl’s distance from finish Seconds Albert’s distance from finish  
 0   0  
1  1  
2  2  
3  3  
4  4  
5  5  
6  6  
7  7  
8  8  
9  9  
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3. Find the functions to go with their new race and graph them. Sketch the graph on 

a grid and label the grid.   
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4. Describe how you adjusted the race and why and describe how you found the 

functions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5. How do these equations and graphs compare to each other?  
 
 
 
 
 
 
 
 
 
 
 
 

6. How do they compare to the equations and graphs for the first race?  
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Appendix D 
 

Coding Guide 
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Coding Guide 
 

The purpose of this guide is to explain the method that was used to unitize and 
code the transcriptions of both the initial interview and teaching experiment sessions held 
during the course of this study.  Feeds from the computer screen, the work done on paper, 
and a view of participants were all coordinated together for the final video recording. 
Transcriptions were made of these video taped sessions. Notations were made of timing 
and actions of the participant in addition to what was said.  
 
Unitizing 
 
The table below shows the definitions used to describe units of analysis for this study.  
 
Term Definition 

Topic A complete idea, type of technological action, or topic 
of conversation upon which the attention of the speaker 
or speakers is focused.  

Unit A word, sentence, paragraph or several consecutive 
sentences or paragraphs focusing on the same topic. 

 
 
Examples of Unitizing  
 
Dividing a section into units 
 
Below is a section of dialog which contains more than one unit of analysis 

 
INTERVIEWER: Okay. Could you tell  me - can you tell me what the 35th shape 
in the pattern will be?  
 
MARJORIE:  okay, 20, 22, 24, 26, 28 {she circulates back in her counting to the 
beginning of what she has illustrated} 30, 32, 34, a rectangle, 35.  
 
INTERVIEWER:  Okay, and how did you know that? [31:17] 
 
MARJORIE:  I just did the twos, I counted by twos.  

 
INTERVIEWER: Alright. What about the 41st? [31:28] 
 
MARJORIE:  41st, Okay so if that’s {gesturing as she counts across the shapes} 
35, 36, 37, 38, 39, 40, 41, triangle. And I counted that with, just counted one 
{laughs} 

 
This section of dialog would be unitized as follows. Notice that each unit begins with a 
key word and a question on the part of the interviewer. Because finding the 41st pattern 
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in a pattern which was five shapes long was qualitatively different from finding the 35th  
pattern, this question was considered to have started a new topic.  
 
First unit INTERVIEWER: Okay. Could you tell me - can you tell me what the 

35th shape in the pattern will be?  
 
MARJORIE:  okay, 20, 22, 24, 26, 28 {she circulates back in her 
counting to the beginning of what she has illustrated} 30, 32, 34, a 
rectangle, 35.  
 
INTERVIEWER:  Okay, and how did you know that? [31:17] 

 
MARJORIE:  I just did the twos, I counted by twos. 

Second unit INTERVIEWER: Alright. What about the 41st? [31:28] 
 
MARJORIE:  41st, Okay so if that’s {gesturing as she counts across 
the shapes} 35, 36, 37, 38, 39, 40, 41, triangle. And I counted that 
with, just counted one {laughs} 
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Keeping a section in one unit 
 
Below is a section of dialog which was kept as one unit. The rationale for doing so is also 
given. The boldfaced sentence might indicate a change of topics, but in this case I felt it 
was important to consider this passage as one unit.  
 
Unit Rationale 
INTERVIEWER: Okay, so can you write on your paper what how you (would) 
write that in an algebraic expression? Can you write that down?  
MARJORIE: {writes y = 5 x + 1} but since I know what x is , then  
INTERVIEWER: What do  you mean - what is x?  
MARJORIE: fi- x is two {writes y = 5(2) + 1 = 11} () gives you ll  
INTERVIEWER: So what would the equation be for, for this step  
MARJORIE: For step number three, it’d be the exact same thing you’re just 
replacing the five with three. (It) would be three x plus one which would (get 
you) 7 and then since you know that the difference is two, x is two. 3 times 2 is 
6 plus one equals 7.  
INTERVIEWER: Okay -  
MARJORIE: Hmm, mm hmm. Because when I first saw it, I was, I mean the 
one thing I did notice when I first saw it was that it was odd numbers {she 
gestures with the pen down the #dots column of the table} and I was like, oh, 
okay (something) there. But then once I started looking at it, and trying to you 
know, figure out what the difference was {she gestures back and forth from left 
to right entries in the table} because no matter what there’s always, there’s 
always got to be well not always but there seems to be a difference you know 
as far as these numbers just aren’t randomly {gesturing down the #dots 
column} picked especially since I’ve been in this study. These numbers are not 
just randomly picked {some gesturing back and forth again as she speaks, 
INTERVIEWER: laughs} so its got to be a pattern and I just started you know, 
looking down the different steps till like {gesturing with pen down the step 
column}- okay and since um, and then when I didn’t, when I couldn’t see a 
correlation between the step and the dots, {gestures from left to right across 
table} I started looking at the dots {gestures with pen down the #dots column} 
because the steps were just going you know straight down {gestures down the 
step column} just like it was before. When I was looking I was like the dots 
{gestures down the #dots column}- what’s the difference between the dots and 
then I just started counting and I got you know difference (from) when you add 
two to three you can get five if you added five, if you add two to five you get 7, 
and so forth {waves pen in air above the table}. I  just went down. And then I 
noticed that pattern of two,{some gesturing towards #dots column} it was 
before it was three, but this one here is two. 
 

 
 
 
I wanted to understand 
and I wanted her to think 
about her reasoning for 
saying 5(2) + 1 = 11 so 
the highlighted question 
is a continuation of the 
same topic: her reasoning 
for her paper 
representation being 
different from the 
representation given by 
the software.  Note that 
following the boldfaced 
statement, she says “it’d 
be the exact same thing.” 
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Coding  
 

This study was entered into with a handful of a-priori codes, some of which 
evolved over the course of the study and were divided into codes which captured the 
nuances more clearly. Though specific names for codes may have changed over the 
course of the study, those listed as a-priori below reflect the ideas looked for going into 
the study. Some emergent codes were given names which were associated with the 
literature. Other unexpected ideas arose as well. Codes referring to characteristics which 
are beyond the scope of this study are not listed below.  
 

Code Family: Mathematical Thinking Processes 
 

Emergent codes 
Code Description Example 
 
Math-AM: Algebraic 
misconceptions 

Quotations where it is evident that 
the subject doesn't understand the 
role, meaning, or purpose of an 
algebraic representation as 
commonly used or as related to 
other mathematical ideas.  

“Okay, x + 9 so the x is equal to 
9” 

Math-FC: Function and 
Coordinate point confusion 

Quotes where the representations 
and concepts related to functions 
and coordinate points seem to be 
becoming confused 

“Do you remember the different 
ways you plotted those points? 
MARLON: Maybe, plot new 
function?” 

 
Math-GC: Graphical 
confusion 

Quotations where the subject 
exhibits Confusion about how 
points are located on the 
coordinate plane, the terminology 
used to describe them, or the 
nature and origin of graphed 
structures.  

INTERVIEWER:  Can you find 
one for me where the, the right 
coordinate is bigger than the left 
coordinate?  
MARJORIE:  If I go to the right 
of the -and stay in the 
positive.{cursor at (21,0)} 

 
A-priori codes 
Code Description Example 
 
Math-1: Disequilibrium 
 

Quotes showing moments where 
the subject is "off-balance" 
mathematically - "Disequilibrium 
occurs when learners are presented 
with new information they must 
accommodate" (from my 
comments on Vander Zander 
1989).  
 

“Okay I’m confused now again”  

 
Math-2: Equilibrium 
 

Quotes where the subject appears 
to reach a point of understanding 
about something he or she found 
confusing 
 

“[T]he reason why I can’t do it 
that way is because” 

 
Math-3: Functional thinking 

Coded where the subject directly 
connects the input with the output 
value of a function 

“Because no matter what it’s a 
multiply of three and you’re 
always going to add one to it.”  
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Code Description Example 
Math-4: Mathematical 
misconceptions 
 

Quotations which reveal the 
subject’s mathematical 
misunderstandings.  
 

“and it has like f times x equals 
A {reading f(x) = A and cursor 
pointing along f(x)}” 

Math-5: Observing patterns 
 

Quotes which show the subject 
observing patterns. 

“the pattern will continue with . 
. . two squares . . . two 
rectangles, two circles, and a 
rectangle.”  

Math-6: Problem Solving, 
reasoning, and sense-making 
 

Quotes where the subject appears 
to be building knowledge by 
making conjectures, drawing 
logical conclusions, or connecting 
new topics with existing 
knowledge.  

“INTERVIEWER . . .  where 
do you think number 11 would 
go, step 11. Where would that 
point fall? If we graphed that - 
can you predict  
MARJORIE:  Add 3 to that, 
should go to 34” 

 
Math-7: Recursive thinking 

Coded where the subject uses the 
rate of increase or decrease to 
describe a function 

“I notice that each pattern 
is different between each 
one increasing at the base 
and also right down the 
middle and in between the 
middle it just changed each 
time.” 

 
Code Family: Representational Ideas and Issues 

 
Emergent codes 
Code Description Example 
Rep-IM: Indicative 
movements 

Gestures and mouse movements 
made by the subject as they 
interact with mathematical 
representations  
 

“{gesturing from step one to step 
two}” 
 
Also:  
“{cursor waves back and forth 
between the x and y 
coordinates}”  

Rep-IU: Idiosyncratic use 
of representations 

Quotes in which the subject used 
standard representations in an 
idiosyncratic way which reflects 
the subject's mathematical 
thinking 

“INTERVIEWER:  How do you 
know what the - if we’re just 
looking at that place where the 
arrow is pointing right now, that 
point right there, what would the 
table . . . 
MARLON:  Oh, that would be 
zero, that would be zero, nine, so 
that would be zero (14:49). +9 
{he writes 0+9}” 
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Code Family: Representational Ideas and Issues (cont.) 
 
A-priori codes 
Code Description Example 
Rep-1: Endurance Quotes showing places where a 

topic either did or did not endure 
for the subject from one session 
to the next or through the course 
of a session 
 
 

“I can’t remember what they 
actually do” 

Rep-2: Internal 
representations 

Quotes which seem to give 
possible insight into the subject's 
internal representations. Some 
ways this occurs are when the 
subject discusses the external 
representation so that we see how 
he or she uses that representation, 
or how he or she thinks about it. 

“because I only have one point on 
there, so it’s only going to give 
me . . .  one measurement.” 
 
“if I go over here [31:38] {Moves 
B to about (-4.5, 6.1)} I’m in a 
negative area here still in the 
positive area going upwards” 
 

Rep-3: Multiple 
representations 

Quotes in which the subject is 
working with different forms of 
representation of the same 
mathematical concept. These may 
be: 

 Pictures 
 Numbers  
 Graphs 
 Geometric figures 
 Tables 
 Algebraic Expressions 

or Equations 
 Coordinate pairs 

INTERVIEWER: . . . Where 
would that point fall? If we 
graphed that – can you predict . . 
. 
 
MARJORIE: Add 3 to that, 
should go to 34 . . . . Plot and hit 
11, and 34. Yep . . . {she enters 
11, 34 in the table} 
 

Rep-4: Usefulness Quotes indicating whether or not 
a subject finds a particular 
representation to be useful.  

“INTERVIEWER:  How would 
you write it in a table? Write it as 
if it were in a table.  
MARLON: In  a table so um it’d 
be here , zero , plus 9 {he creates 
an x, y table and enters 0 in the x 
column and +9 in the y column} 
That’d be my table” 
 

Rep-5: Validity Quotes which seem to show 
whether a representation is valid 
or not valid for the subject, that is 
whether or not it accurately 
represents the mathematics it 
seeks to represent and is flexible 
enough to allow additional 
mathematical ideas to be built 
upon it.  
 
 

Because I think there was a 
difference of three. For each um. 
For at least the first three {points 
to patterns on the paper}, there 
was a difference of three. So I 
had just added three and just kept 
adding three. {points to pattern 
number 4 and beyond} 
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Code Family: Representational Ideas and Issues (cont.) 

 
 
Code Description Example 
 Rep-6: Mathematical 
language 

Quotes which give insight into 
the subject's use of verbal 
representations, such as his or her 
misuse or idiosyncratic use of 
terminology, difficulty in 
remembering mathematical 
terminology which affects his or 
her ability to use the software, or 
difficulty understanding what is 
being asked of him or her 
verbally by the interviewer. 
Idiosyncratic use would be non-
standard, but make some sense to 
the subject (such as "axle" instead 
of "axis"). 
 

“I have the x and the new 
parameter and it looks like a pi 
sign and an e. So I click on new 
parameter .See what that does. 
Some coordinates are in there 
{she is referring to the name and 
value of the parameter as 
“coordinates”}” 

 Rep-7: Visual observation Where the subject seems to see 
something in the way things look 
that affects his or her thinking. 
Among things to look for is the 
phrase "I noticed" 

“they’re all shaded” 
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Code Family: Influences and Uses of Technology 
 
Emergent codes 
Code Description Example 

Tech-EM: Empowerment 
Through Technology 

Quotes showing the subject 
making their own mathematical 
choices and/or discoveries using 
the technology 
 
 

“Pretty neat. Let’s see what 
measure is.”  

Tech-WT: Technology as 
a window into student 
thinking13 

Quotes in which the subject's use 
of technology gives the observer 
insight into their mathematical 
thinking 
 
 

“now on the right hand side of 
that is all positive {illustrates this 
by moving the cursor from the 
origin along the x-axis to the 
right}”  

Tech-SR: Technology as 
an aid in the use of 
standard representations 

Quotes which seem to show that 
the use of technology has aided 
the subject in the use of a 
standard representation with 
which they may have been 
struggling 
 

“Where would that point fall? If 
we graphed that - can you predict  

MARJORIE:  Add 3 to that, 
should go to 34 . . . Plot and hit 
11, and 34.Yep.” 
 

Code Description Example 

Tech-AR: Technology as 
an aid to reasoning 

Quotes which show the subject 
using technology to reason about 
mathematics 

“INTERVIEWER: Yeah. Did it 
do what you . . . thought it was 
going to do?  

MARLON: It’s going to - it’s 
actually 5, 14 now where it 
stopped it at . . . That would be 
um, {writes g(4) = 4 + 9 and then 
g(5) = 5 + 9}. Okay in this case 
here . . . 5 plus 9 is 14 
 

Tech-MC: Technology as 
an aid to mathematical 
communication 

Quotes in which the subject uses 
or expresses a desire to use the 
software to communicate 
particular mathematical ideas.  

Okay same thing (here) if I go 
over here [31:38] {Moves B to 
about (-4.5, 6.1)} I’m in a 
negative area here still in the 
positive area going upwards. So 
this x and y, okay. Same thing 
down here {moves B to 3rd 
quadrant}. 

Tech-CM: Using 
technology to reveal and 
clear up misconceptions 

Quotes in which the use of 
technology helps identify and/or 
clear up a misconception 

“and hit okay . . . Oop. Okay I 
did it wrong” 

 

                                                 
13 Stevens, To, Harris, and Dwyer (2008) spoke of  LOGO as giving a “window into the student’s 

mind” (p. 199).  
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Code Family: Other 
 

These codes are not part of the final theory, but were used to note characteristics of data 
and were provided so that inter-coder reliability tests could be accurately conducted.  

 
Code Description Example 
Other-1: Characteristics 
of the learner 

Quotations which give 
information about the background 
or attitude of the subject. 

“I used to be in the military” 

Other-2: Clerical and 
technical procedures of 
the Study 

Portions where papers are being 
signed, the use of cameras and 
other arrangements are being 
described, and the methodology 
of the study is being explained.  

“move this motion controller up, 
because when I put the films 
together your paper will be down 
there.”  

Other-3: Incidental 
conversation 

Casual conversation such as 
discussions about the weather, the 
temperature of the room, 
greetings, good-byes. 
Conversation not related to the 
topic of the study or how it is 
being conducted.  

“I’m sorry it was so hot in here”  

Other-4: Narrative notes 
about the study 

Not part of the transcription of 
what happened during the study – 
environmental or background 
information added in later.  

Marjorie did not create or interact 
with any mathematical 
representations on paper during 
this session.  

Other-5: Scaffolding Places where particular 
statements or actions on the part 
of the interviewer are influencing 
the actions of the subject.  

“And what else do you see 
happening in that picture?” 
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Example of coding 
 
Unit Codes Reasoning 
INTERVIEWER:  Okay, so you don’t 
have any existing values in your sketch. 
So you can click on those menus and 
see what you find.  

MARJORIE:  Okay, click on values 
{she does} 

INTERVIEWER:  Go ahead (values) 
 
MARJORIE:  I have the x and the new 
parameter and it looks like a pi sign and 
an e {stated as cursor moves down the 
list of these items}. So I click on new 
parameter. See what that does. Some 
coordinates are in there {cursor moves 
along the name and value of the 
parameter as she says "coordinates"} 
um, under the name, it looks like they 
have a bracket and one and then under 
it says equal value one point 
 

 
Indicative movements 
 
 
 
 
 
Mathematical misconception 
 
 
 
 
 
Scaffolding 
 
 
 
 
 
Verbal/mathematical 
vocabulary/language 
 

The cursor 
movements 
which are 
present 
 
She confuses 
the name and 
value of a 
parameter with 
“coordinates” 
 
The 
interviewer 
suggests 
actions on the 
part of the 
subject  
 
 
Misuse of the 
word 
“coordinates”   
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Appendix E 
 

Consent Forms 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

275 

IRB approval notice 
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RECRUITMENT SCRIPT  (verbal, in person) 
(This should be a brief version of the consent document.) 
 
My name is Lauretta Garrett, a doctoral student from the Department of Curriculum and 
Teaching at                              .  I would like to invite you to participate in my research 
study to find out how using computer software to study mathematics affects how a person 
thinks about mathematics.  Anyone may participate if they are enrolled in Math 098, 
Math 099, or Math 100 and age 18 or older.  Please do not participate if you are under 
age 18. 
 
As a participant, you will be asked to participate in a sequence of video taped interviews.  
Your total time commitment after the initial interview will be approximately 30 to 45 
minutes per interview, for four to eight interviews over a period of about 4 to 8 weeks.   
 
(Briefly discuss any risks, compensation or benefits, costs, privacy issues, or other 
information that would likely influence the participant’s interest in the study)  
By participating, you risk the possibility of your personal information being known to 
others, but I will take steps to protect that data. You also risk some discomfort if you 
suffer from mathematics anxiety, but you will be able to work at your own pace. You do 
have the opportunity to learn about mathematics software and mathematics topics from 
your course. Your personal information will be kept secure during the study and will be  
destroyed when the research is completed You can withdraw at any time. You can decide 
who, in addition to me and possibly one other person involved with the research, will see 
the videotapes.  
 
If you would like to participate in this research study, contact me at the email address or 
phone number listed on this flyer (pass out flyers).  
 
Do you have any questions now?     
 
If you have questions later, my contact information is on the flyer.  
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Technology Study 
 

HAVE FUN! LEARN! PREPARE 
FOR THE FUTURE!  

 
 
 

 
Are you enrolled in Math 98, Math 99, or Math 100 and age 18 or 
older? 
 
Do you want to learn about some mathematics software that might help 
you to be successful in mathematics? 
 
If you answered YES to these questions, you may be eligible to participate in  
a mathematics education research study. 
 
The purpose of this research study is to find out how using computer 
software affects the way people think about mathematics. Benefits include 
learning about a type of technology used for mathematics education and 
receiving personal instruction in a topic that is part of the curriculum for the 
course in which you are currently enrolled. Participants will receive gift 
certificates in appreciation for their participation.  
 
Anyone 18 or older enrolled in Math 97, Math 98, or Math 100 is eligible.  
 
This study is being conducted by a doctoral student in the Department of 
Curriculum and Teaching at                           . Interviews will take place at 
                                     .  
 
Please contact Lauretta Garrett at                              or                            for 
more information.   
 

PLEASE RESPOND BY SEPTEMBER 25th  
 
 
 
 

 


