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Thesis Abstract

Mixed Groups with Decomposition Bases and Global k-Groups

Chad Mathews

Master of Science, August 7, 2006
(B.S., University of West Georgia, 2004)

38 Typed Pages

Directed by William Ullery

This thesis is devoted to proving assertions made without proof by Paul Hill and

Charles Megibben in their fundamental papers regarding knice subgroups and the Ax-

iom 3 characterization of global Warfield groups. The main theme throughout is the

relationship between the notions of a global k -group and a group with a decomposition

basis. Most of our results involve properties of the auxiliary notions of primitive element

and ∗-valuated coproduct in both the mixed and torsion free settings.
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Chapter 1

Introduction

Throughout this thesis, G will always denote an additively written abelian group

and we shall only consider such groups. We do not exclude the possibility that G is a

nonsplit mixed group. By this we mean that G may contain elements of both finite and

infinite order and the torsion subgroup of G is not necessarily a summand.

Our main goal in this thesis is to provide the justification for many of the basic

facts that were stated by P. Hill and C. Megibben in [7, 8] without proof. Indeed, unless

explicitly stated to the contrary, most of our results appear there.

We conclude this brief introduction with an outline of the remainder of the paper.

In chapter two, we state the definitions and provide the notation that will be used

throughout. Chapter three consists of various properties of decomposition bases leading

up to the proof that a group with a decomposition basis is a k -group. In chapter four,

we discuss torsion free groups with decomposition bases and we show that a torsion free

group is completely decomposable if and only if it has a decomposition basis. In chapter

five, we show that every torsion free separable group is a k -group, and we use this fact

to provide an example of a k -group without a decomposition basis.
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Chapter 2

Preliminaries

This chapter is devoted to providing some basic results needed for the remaining

chapters. The terminology and notation used here is due to Hill and Megibben [7, 8].

Let O∞ denote the class of ordinals with the symbol ∞ adjoined as a maximal

element with the convention that α < ∞ for all α ∈ O∞. If x ∈ G, we write |x|p for the

height of x in G at the prime p. So |x|p = α if x ∈ pαG and x /∈ pα+1G, while |x|p = ∞

if x ∈ pαG for all α ∈ O∞. If P is the set of rational primes, a height matrix is a doubly

infinite P× ω0 matrix M = [mp,i] where mp,i ∈ O∞ and mp,i < mp,i+1 for all p ∈ P and

i < ω0. By a height sequence, we mean any sequence α = {αi}i<ω0 where αi ∈ O∞ and

αi < αi+1 for all i < ω0. Thus the p-row Mp = {mp,i}i<ω0 of a height matrix M is a

height sequence. We shall write ‖x‖ for the height matrix of x in G; that is, ‖x‖ is the

doubly infinite matrix indexed by P× ω0 and having |pix|p as its (p, i) entry. Similarly,

‖x‖p will denote the height sequence of x at p. We shall sometimes affix a superscript

to p-heights and height matrices in order to emphasize the group in which the heights

are computed.

For two height matrices M and N , we write N ≤ M if np,i ≤ mp,i for all primes p

and i < ω0. We define the product kM of the positive integer k and the height matrix

M = [mp,i] to be the height matrix having as its (p, i) entry mp,j+i where j = |k|Zp . We

say that M and N are quasi-equivalent and write M ∼ N if there are positive integers
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k, l such that N ≤ kM and M ≤ lN . Notice that M ∼ N implies that Mq = Nq for all

primes q for which q - k and q - l.

Lemma 2.1. For all x ∈ G and positive integers k, ‖kx‖ = k‖x‖.

Proof. We claim that ‖pnx‖ = pn‖x‖ for all primes p and positive integers n. Indeed,

‖pnx‖p = {|pnx|p, |pn+1x|p, . . .} = pn{|x|p, |px|p, . . . , |pn−1x|p, |pnx|p, . . .}

= pn‖x‖p = (pn‖x‖)p,

and if q is a prime different from p, ‖pnx‖q = ‖x‖q = pn‖x‖q.

Now if k = 1, the result is clear. So suppose k > 1 where k = pn1
1 pn2

2 · · · pnr
r for

distinct primes pi and positive integers ni with i ∈ {1, 2, . . . , r}. We proceed by induction

on r. If r = 1, then we are done by what we have shown above. So suppose r > 1. By

the induction hypothesis,

‖pn2
2 · · · pnr

r x‖ = pn2
2 · · · pnr

r ‖x‖.

Then again making use of the preceding paragraph, we have

‖kx‖ = pn1
1 ‖pn2

2 · · · pnr
r x‖ = pn1

1 (pn2
2 · · · pnr

r )‖x‖ = k‖x‖.

With each height matrix M and group G, we associate the fully invariant subgroups

G(M) = {x ∈ G : ‖x‖ ≥ M} and G(M∗) = 〈x ∈ G(M) : ‖x‖ � M〉. (We make
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the exception that if M ∼ ∞, where ∞ is the height matrix with all entries ∞, then

G(M∗) = tG ∩ G(M). Here tG denotes the torsion subgroup of G.) For each prime

p and each height sequence α = {αi}i<ω0 , we define G(α∗, p) to be the subgroup of G

generated by those elements x ∈ G such that |pix|p ≥ αi for all i but |pix|p 6= αi for

infinitely many i. Finally, we define the fully invariant subgroup G(M∗, p) as G(M∗, p) =

G(M) ∩ (G(M∗) + G(M∗
p , p)).

Observe that if x is a generator of G(M∗) (in the case M � ∞) or of G(α∗, p), then

so is mx for every nonzero integer m. Thus, for example, if y ∈ G(M∗) and M � ∞,

y = x1 + x2 + · · ·+ xn with ‖xi‖ ≥ M and ‖xi‖ � M for all i.

Proposition 2.2. The following results hold for all height matrices M , positive integers

k, and primes p.

(1) G(kM) = kG(M)

(2) G((kM)∗) = kG(M∗)

(3) G((kMp)∗, p) = kG(M∗
p , p)

(4) G((kM)∗, p) = kG(M∗, p)

Proof. (1) First observe that for a given prime p and group G, we have that

G ⊇ pG ⊇ p2G ⊇ · · · ⊇ pαG ⊇ · · · .

That is, pαG ⊇ pα+1G for every ordinal α. Since G is a set, there is a smallest ordinal

λ such that pλG = pλ+1G. Now, if x ∈ G, |x|p = ∞ means that x ∈ pαG for all α ≥ λ.
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So if r is a positive integer and if |x|p = ∞, then

x ∈ pλ+rG = pr(pλG)

which implies that there is a y ∈ pλG such that pry = x. In particular, |y|p = ∞.

We claim that G(prM) ⊆ prG(M) for all primes p and positive integers r. We

proceed by induction on r. For the case where r = 1, if x ∈ G(pM), then x = py

with |y|p ≥ mp,0 and ‖y‖q = ‖px‖q for all primes q 6= p. But then ‖y‖ ≥ M so that

x ∈ pG(M). To finish the claim, note that

G(prM) = G(p(pr−1M)) ⊆ pG(pr−1M).

Then by induction, we have that pG(pr−1M) ⊆ prG(M). Hence, G(prM) ⊆ prG(M) as

claimed.

Now, if k = pr1
1 pr2

2 · · · prn
n where pi is a distinct prime and ri is a positive integer for

each i, then our argument above yields

G(kM) = G(pri
i (k/pri

i )M) ⊆ pri
i G((k/pri

i )M) ⊆ pri
i G(M).

Therefore,

G(kM) ⊆
⋂
i

pri
i G(M) = (

∏
i

pri
i )G(M) = kG(M).

5



Finally, if x ∈ kG(M), then x = ky for some y ∈ G(M). But then Lemma 2.1 gives

‖x‖ = ‖ky‖ = k‖y‖ ≥ kM.

That is, x ∈ G(kM).

(2) We need to separately consider the cases where M ∼ ∞ and M � ∞.

Case 1. Suppose M ∼ ∞. Then, by definition, k(G(M∗)) = k(G(M) ∩ tG). Observe

that kM ∼ ∞ and so

G((kM)∗) = G(kM) ∩ tG = kG(M) ∩ tG.

Now the fact that k(G(M) ∩ tG) ⊆ kG(M) ∩ tG is clear. So suppose x ∈ kG(M) ∩ tG.

Then x = ky for some y ∈ G(M) and nx = 0 for some positive integer n. But then

nky = nx = 0

which implies that y ∈ G(M) ∩ tG. Thus, x ∈ k(G(M) ∩ tG).

Case 2. Suppose M � ∞. If x ∈ G((kM)∗), then

x = a1 + a2 + · · ·+ an

where ai ∈ G(kM) and ‖ai‖ � kM for i = 1, 2, . . . , n. Then ai ∈ kG(M) and ai = kbi

where bi ∈ G(M) and ‖bi‖ � M . So bi ∈ G(M∗) which implies that ai ∈ kG(M∗).
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Hence, G((kM)∗) ⊆ kG(M∗). On the other hand, if x ∈ kG(M∗), then x = ky for some

y ∈ G(M∗). So

y = b1 + b2 + · · ·+ bn

where bi ∈ G(M) and ‖bi‖ � M . But then

x = kb1 + kb2 + · · ·+ kbn

with kbi ∈ G(kM) and ‖kbi‖ � kM . Therefore, kbi ∈ G((kM)∗) and x ∈ G((kM)∗).

(3) Let x ∈ kG(M∗
p , p). Then x = ky where y ∈ G(M∗

p , p). That is,

y = a1 + a2 + · · ·+ ar

where for j = 1, 2, . . . , r, ‖aj‖p ≥ Mp and |piaj |p 6= mp,i for infinitely many i < ω0.

Then,

x = ka1 + ka2 + · · ·+ kar

where for j = 1, 2, . . . , r, ‖kaj‖p = k‖aj‖p ≥ kMp and |pikaj |p 6= mp,i+e for infinitely

many i < ω0 with e = |k|Zp . Hence, kaj ∈ G((kMp)∗, p) for each j, which gives that

x ∈ G((kMp)∗, p).

For the reverse inclusion, let pe be the largest power of p that divides k. That is, e is

again equal to |k|Zp . Observe that it is enough to show that G((peMp)∗, p) ⊆ peG(M∗
p , p).

Let x be a generator of G((peMp)∗, p). Then ‖x‖p ≥ peMp and |pix|p 6= mp,i+e for
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infinitely many i < ω0. So we have that |pix|p ≥ mp,i+e ≥ i + e for all i. It then follows

that

x ∈ pi+eG = pe(piG)

and x = pey for some y ∈ piG. But then ‖y‖p ≥ Mp and |piy|p 6= mp,i for infinitely many

i. Thus, x ∈ peG(M∗
p , p).

(4) Let x ∈ G((kM)∗, p). Then x = a1 + a2 where

a1 ∈ G((kM)∗) = kG(M∗)

and

a2 ∈ G((kMp)∗, p) ∩G(kM) = k(G(M∗
p , p) ∩G(M)).

So a1 = kb1 where b1 ∈ G(M∗) and a2 = kb2 where b2 ∈ G(M∗
p , p) ∩G(M). But then

x = kb1 + kb2 = k(b1 + b2)

where b1 + b2 ∈ G(M∗) + (G(M∗
p , p) ∩ G(M)). Hence, x ∈ kG(M∗, p). Similarly, if

x ∈ kG(M∗, p), then x = ky where y ∈ G(M∗, p). So y = a1 + a2 where a1 ∈ G(M∗)

and a2 ∈ G(M∗
p , p) ∩ G(M). Then x = ka1 + ka2 where ka1 ∈ G((kM)∗) and ka2 ∈

G((kMp)∗, p) ∩G(kM). Thus, x ∈ G((kM)∗, p).
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Definition 2.3. Call an element x ∈ G primitive if for each height matrix M , prime p

and positive integer n, nx ∈ G(M∗, p) implies that either ‖x‖ � M or |pinx|p 6= mp,i for

infinitely many i < ω0.

If {Ai}i∈I is a family of independent subgroups of the group G, then the direct sum

A =
⊕

i∈I Ai is said to be a valuated coproduct in G provided that if a =
∑

i∈I ai with

ai ∈ Ai, then |a|p =
∧

i∈I |ai|p = min{|ai|p}i∈I for all primes p. This concept can be

equivalently written as A ∩G(M) =
⊕

i∈I(Ai ∩G(M)) for all height matrices M .

Definition 2.4. Given a family of independent subgroups {Ai}i∈I of the group G, we say

that the direct sum A =
⊕

i∈I Ai is a ∗-valuated coproduct in G if A∩F =
⊕

i∈I(Ai∩F )

for each fully invariant subgroup F of the form G(M), G(M∗), G(M∗
p , p) or G(M∗, p).

We call a group G simply presented if it can be presented by generators and relations

where each relation is of the form mx = y or mx = 0 with m a positive integer. By

a global Warfield group, we mean a direct summand of a simply presented group. In

the mixed setting, it is well known that a summand of a simply presented group is not

necessarily simply presented.

A collection C of subgroups of G is called an Axiom 3 system if it satisfies the

following conditions.

(0) 0 ∈ C.

(1) If {Ni}i∈I ⊆ C, then
∑

i∈I Ni ∈ C.

9



(2) For each N ∈ C and countable subgroup A of G, there exists M ∈ C such that

N + A ⊆ M and M/N is countable.

Furthermore, we say that G satisfies Griffith’s version of Axiom 3 if there exists a

collection C of subgroups of G satisfying conditions (0) and (2) above with (1) replaced

by the statement that C is closed under unions of ascending chains.

A subgroup N of G is a nice subgroup if for each prime p and ordinal α, the cokernel

of the inclusion map (pαG + N)/N � pα(G/N) contains no element of order p.

Definition 2.5. A subgroup N of G is a knice subgroup if the following conditions are

satisfied.

(1) N is nice in G.

(2) To each finite subset S of G, there corresponds a (possibly empty) finite set of

primitive elements {x1, x2, . . . , xm} such that N ⊕ 〈x1〉 ⊕ 〈x2〉 ⊕ · · · ⊕ 〈xm〉 is a

∗-valuated coproduct that contains some positive multiple of 〈S〉.

A subset X of independent elements in a group G is said to be a decomposition basis

if each x ∈ X has infinite order, G/〈X〉 is a torsion group, and 〈X〉 =
⊕

x∈X〈x〉 is a

valuated coproduct in G.

The importance of the notions defined above is revealed by the following theorem.

Theorem 2.6 (Hill and Megibben [8]). For an arbitrary group G, the following condi-

tions are equivalent.

(i) G satisfies Axiom 3 with respect to knice subgroups.
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(ii) G satisfies Griffith’s version of Axiom 3 with respect to knice subgroups.

(iii) G is the union of a smooth chain (Gα)α<τ of nice subgroups such that G0 = 0 and,

for each α, either Gα+1/Gα is cyclic of prime order or else Gα+1 = Gα ⊕ 〈xα〉 is

a valuated coproduct in G with xα an element of infinite order.

(iv) G is a direct summand of a simply presented group, and hence a global Warfield

group.

(v) G has a decomposition basis and satisfies Axiom 3 with respect to nice subgroups.

We call a group G a (global) k-group if the trivial subgroup 0 is a knice subgroup.

Since 0 is a nice subgroup of every group G, G is a k -group if and only if to each finite

subset S of G, there corresponds a (possibly empty) finite set of primitive elements

{x1, x2, . . . , xn} such that 〈x1〉⊕〈x2〉⊕· · ·⊕〈xn〉 is a ∗-valuated coproduct that contains

some positive multiple of 〈S〉. Notice that it is immediate that every torsion group is a

k -group. Also, by Theorem 2.6, every global Warfield group G satisfies Axiom 3 with

respect to knice subgroups, and hence is a k -group.
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Chapter 3

Mixed Groups with Decomposition Bases

In this chapter we show that a mixed group G with a decomposition basis X is a

k -group (Theorem 3.5).

Proposition 3.1. If G has a decomposition basis X, then each element of X is primitive.

Proof. Suppose that x ∈ X and that nx ∈ G(M∗, p) for some positive integer n, height

matrix M and prime p. Assuming that ‖x‖ ∼ M , we need to show that |pinx|p 6= mp,i

for infinitely many i < ω0. Because G(M∗, p) = G(M) ∩ (G(M∗) + G(M∗
p , p)), we can

write

nx = a1 + a2 + · · ·+ ar + b1 + b2 + · · ·+ bs

where, for l = 1, 2, . . . , r, al ∈ G(M) with ‖al‖ � M and, for j = 1, 2, . . . , s, ‖bj‖p ≥ Mp

with |pibj |p 6= mp,i for infinitely many i.

Select a positive integer k so that all kal and kbj are in 〈X〉. Then, for l = 1, 2, . . . , r,

kal = clx + cl,1x1 + · · ·+ cl,txt

and, for j = 1, 2, . . . , s,

kbj = djx + dj,1x1 + · · ·+ dj,txt

12



where x, x1, . . . , xt are distinct elements of X and, for all l and j, cl, cl,1, . . . , cl,t and

dj , dj,1, . . . , dj,t are contained in Z. Since x has infinite order and x, x1, . . . , xt are Z-

independent elements of G,

knx = ka1 + ka2 + · · ·+ kar + kb1 + kb2 + · · ·+ kbs

implies that
r∑

l=1

cl +
s∑

j=1

dj = kn. (†)

In particular, there is at least one cl or dj that is not 0.

We claim that cl = 0 for all l. Indeed, if cl 6= 0 for some l, then

kal = clx + cl,1x1 + · · ·+ cl,txt

and the fact that 〈x〉⊕〈x1〉⊕· · ·⊕〈xt〉 is a valuated coproduct imply that ‖kal‖ ≤ ‖clx‖.

Recall that we are operating under the assumption that ‖x‖ ∼ M . So, if we select a

positive integer m such that ‖x‖ ≤ mM , then

‖al‖ ≤ ‖kal‖ ≤ ‖clx‖ = (|cl|)‖x‖ ≤ (|cl|m)M

with |cl|m > 0. Moreover, we know that M ≤ ‖al‖ and we obtain the contradiction that

‖al‖ ∼ M . Therefore, cl = 0 for all l, as claimed.
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We now know that
∑r

l=1 cl = 0 and can conclude from condition (†) that

s∑
j=1

dj = kn.

Let pe be the largest power of p that divides kn. Then, there is some dj that is not

divisible by pe+1. After reindexing if necessary, we may assume that d1 is not divisible

by pe+1. Since

piknb1 = d1p
inx + d1,1p

inx1 + · · ·+ d1,tp
inxt

for all i < ω0, and since 〈x〉 ⊕ 〈x1〉 ⊕ · · · ⊕ 〈xt〉 is a valuated coproduct, we have that

|pe+ib1|p = |piknb1|p ≤ |d1p
inx|p ≤ |pe+inx|p.

Because |pe+ib1|p ≥ mp,e+i for all i, and |pe+ib1|p 6= mp,e+i for infinitely many values

of i, we conclude that |pe+inx|p 6= mp,e+i for infinitely many values of i. Therefore,

|pinx|p 6= mp,i for infinitely many i, and the proof is complete.

Lemma 3.2. tG ∩G(M) ⊆ G(M∗) for every height matrix M .

Proof. We may assume that M � ∞, since otherwise tG∩G(M) = G(M∗) by definition.

Now, if x ∈ tG∩G(M), then x ∈ G(M) and there is a positive integer n such that nx = 0.

Note that ‖x‖ � M . Indeed, if it were the case that ‖x‖ ∼ M , we obtain

∞ = ‖0‖ = ‖nx‖ ∼ ‖x‖ ∼ M,

14



contrary to the assumption that M � ∞. So, we have that x ∈ G(M) and ‖x‖ � M .

Consequently, x ∈ G(M∗).

Lemma 3.3. If x ∈ G(M) for some height matrix M and if n is a positive integer, then

the following conditions are satisfied.

(a) If nx ∈ nG(M∗, p) for some prime p, then x ∈ G(M∗, p).

(b) If nx ∈ nG(M∗), then x ∈ G(M∗).

Proof. To prove part (a), we have by hypothesis that nx = ny for some y ∈ G(M∗, p).

Since both x and y are in G(M), x − y ∈ G(M). Moreover, x − y ∈ tG because

n(x− y) = 0. Therefore, by Lemma 3.2, x− y ∈ G(M∗). Then,

x ∈ y + G(M∗) ⊆ G(M∗, p)

because y ∈ G(M∗, p) and G(M∗) ⊆ G(M∗, p). The proof of part (b) is similar. For

again we have that x− y ∈ G(M∗). But then

x ∈ y + G(M∗) ⊆ G(M∗)

since y ∈ G(M∗).

Proposition 3.4. If G has a decomposition basis X, then
⊕

x∈X〈x〉 is a ∗-valuated

coproduct.
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Proof. Suppose that y ∈
⊕

x∈X〈x〉 and write

y = c1x1 + c2x2 + · · ·+ ctxt,

where x1, x2, . . . , xt are distinct elements of X, and cj ∈ Z for j = 1, 2, . . . , t. We need

to show that if y ∈ F , where F is one of the fully invariant subgroups of the form G(M),

G(M∗), G(M∗
p , p) or G(M∗, p), then each cjxj is in the same F . We consider, in turn,

each of the four natural cases.

Case 1. F = G(M). This case is clear since, by definition,
⊕

x∈X〈x〉 is a valuated

coproduct.

Case 2. F = G(M∗). If M ∼ ∞, then y ∈ G(M∗) implies that y ∈ tG. Then y = 0

since each nonzero element of
⊕

x∈X〈x〉 has infinite order. It then follows that each

cjxj = 0 ∈ G(M∗). Therefore, we may assume that M � ∞ and write

y = a1 + a2 + · · ·+ ar

where for i = 1, 2, . . . , r, ‖ai‖ ≥ M and ‖ai‖ � M . Now select a positive integer k so

that kai ∈ 〈X〉 for all i. Thus, for each i we have

kai = di,1x1 + di,2x2 + · · ·+ di,txt + d′i,1z1 + · · ·+ d′i,szs,
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where x1, x2, . . . , xt are as above, x1, x2, . . . , xt, z1, . . . , zs are distinct elements of X, and

all di,j and d′i,l are in Z (for j = 1, 2, . . . , t and l = 1, 2, . . . , s). Note that the inequalities

kM ≤ ‖kai‖ ≤ ‖di,jxj‖ imply that, for all i and j, di,jxj ∈ G(kM) and ‖di,jxj‖ � kM .

Thus, each di,jxj is in G((kM)∗) = kG(M∗). Therefore, since ‖cjxj‖ ≥ ‖y‖ ≥ M and

kcjxj =
r∑

i=1

di,jxj ∈ kG(M∗),

Lemma 3.3(b) implies that cjxj ∈ G(M∗) for all j.

Case 3. F = G(M∗
p , p). In this case we have that

y = a1 + a2 + · · ·+ ar

where for i = 1, 2, . . . , r, ‖ai‖p ≥ Mp and |peai|p 6= mp,e for infinitely many e < ω0.

Select a positive integer k such that kai ∈ 〈X〉 for all i. We then have

kai = di,1x1 + di,2x2 + · · ·+ di,txt + d′i,1z1 + · · ·+ d′i,szs,

where the notation is the same as that in Case 2. For a given j, observe that

r∑
i=1

di,j = kcj . (††)

Now temporarily fix j, and after reindexing if necessary, we may assume that j = 1.

Thus, the proof in this case will be complete once we have shown that c1x1 ∈ G(M∗
p , p).
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Let pf be the largest power of p that divides kc1. Then condition (††) implies that

pf+1 does not divide di,1 for some i. For such an i,

|pf+eai|p = |pekc1ai|p ≤ |pec1di,1x1|p ≤ |pf+ec1x1|p

for all e < ω0. From this we conclude that |pec1x1|p 6= mp,e for infinitely many e.

Moreover, ‖c1x1‖p ≥ ‖y‖p ≥ Mp. Hence, c1x1 ∈ G(M∗
p , p).

Case 4. F = G(M∗, p). In this case we have that y = a1 + a2 where a1 ∈ G(M∗) and

a2 ∈ G(M∗
p , p) ∩G(M). Select a positive integer k such that kai ∈ 〈X〉 for i = 1, 2. We

then have

kai = di,1x1 + di,2x2 + · · ·+ di,txt + d′i,1z1 + · · ·+ d′i,szs,

where the notation is the same as that in Cases 2 and 3. For i = 1, Case 2 says that

each d1,jxj ∈ G((kM)∗). While for i = 2, Case 3 implies that each d2,jxj ∈ G((kM)∗p, p).

Further observe that cjxj ∈ G(M) for all j because ‖cjxj‖ ≥ ‖y‖ ≥ M . Thus, for

j = 1, 2, . . . , t,

kcjxj = d1,jxj + d2,jxj ∈ G(kM) ∩ (G((kM)∗) + G((kM)∗p, p))

= G((kM)∗, p) = kG(M∗, p).

Therefore, Lemma 3.3(a) shows that cjxj ∈ G(M∗, p) for all j.

Theorem 3.5. If G has a decomposition basis X, then G is a k-group.
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Proof. We first note the fact that 0 is always a nice subgroup. Now, if S is a finite subset

of G, there is a positive integer k such that ks ∈
⊕

x∈X〈x〉. Then k〈S〉 ⊆
⊕

x∈X〈x〉. So

for all s ∈ S, we have that

ks ∈ 〈x1〉 ⊕ 〈x2〉 ⊕ · · · ⊕ 〈xm〉

for some distinct x1, x2, . . . , xm ∈ X. Then, by Propositions 3.1 and 3.4,

k〈S〉 ⊆ 〈x1〉 ⊕ 〈x2〉 ⊕ · · · ⊕ 〈xm〉

where the coproduct is a ∗-valuated coproduct with each xi primitive.
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Chapter 4

Torsion Free Groups with Decomposition Bases

In this chapter we show that a torsion free group has a decomposition basis if and

only if it is completely decomposable (Theorem 4.3). We also show that a k -group of

finite torsion free rank has a decomposition basis (Theorem 4.5). As a result, we are

able to give an example of a torsion free group that is not a k -group.

A torsion free group G is of rank 1 if G is isomorphic to an additive subgroup of

Q and has the property that if x, y ∈ G are nonzero, then mx = ny for some nonzero

m, n ∈ Z.

Definition 4.1. A torsion free group G is said to be completely decomposable if it is a

direct sum of rank 1 subgroups.

Lemma 4.2. If A is a subgroup of a group G and if p and q are relatively prime integers,

then pA ∩ qA = (pq)A.

Proof. Clearly (pq)A ⊆ pA ∩ qA. For the reverse inclusion, suppose that x ∈ pA ∩ qA.

Then, x = pa1 = qa2 where a1, a2 ∈ A. Since (p, q) = 1, rp + sq = 1 for some r, s ∈ Z,

which implies that

a1 = rpa1 + sqa1 = rqa2 + sqa1 = q(ra2 + sa1) ∈ qA.
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But then,

x = pa1 ∈ p(qA) = (pq)A.

If N is a subgroup of a torsion free group G, define N∗ = {x ∈ G : nx ∈ N for some

nonzero integer n}. Observe that N∗ is a pure subgroup of G and is the smallest pure

subgroup of G that contains N .

Theorem 4.3. A torsion free group G has a decomposition basis X if and only if G is

completely decomposable.

Proof. Suppose that G is a torsion free abelian group and that X is a decomposition

basis for G. Observe that each 〈x〉∗ with x ∈ X has rank 1. For, suppose y, z ∈ 〈x〉∗.

Then my ∈ 〈x〉 and nx ∈ 〈x〉 for some nonzero integers m,n. So my = lx and nz = rx

for some nonzero integers l, r. But then

(rm)y = (rl)x = (ln)z.

Next we claim that the sum
∑

x∈X〈x〉∗ is direct. Indeed, if for some x1 ∈ X and y ∈ G

we have that

y ∈ 〈x1〉∗ ∩
∑

x∈X\{x1}

〈x〉∗,

then there are a finite number of distinct elements x2, x3, . . . , xk ∈ X\{x1} such that

y ∈
∑k

i=2〈xi〉∗. Thus,

y = a1 =
k∑

i=2

ai
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where each ai ∈ 〈xi〉∗. Now select a positive integer n such that nai ∈ 〈xi〉 for all i.

Then, since
⊕

x∈X〈x〉 is a direct sum,

ny ∈ 〈x1〉 ∩
k∑

i=2

〈xi〉 = 0.

Since G is torsion free and n 6= 0, y = 0. We conclude that
∑

x∈X〈x〉∗ =
⊕

x∈X〈x〉∗.

Since each 〈x〉∗ with x ∈ X is torsion free of rank 1, this part of the proof will be

complete once we have shown that G =
⊕

x∈X〈x〉∗. For a given y ∈ G, the fact that

G/〈X〉 is torsion implies there is a positive integer n, distinct x1, x2, . . . , xk ∈ X and

c1, c2, . . . , ck ∈ Z such that

ny = c1x1 + c2x2 + · · ·+ ckxk.

Let n = pe1
1 pe2

2 · · · pet
t be the prime factorization of n. Since

⊕
x∈X〈x〉 is a valuated

coproduct,

ej ≤ |pej

j y|pj = |ny|pj ≤ |cixi|pj

for i = 1, 2, . . . , k and j = 1, 2, . . . , t. We then have that

cixi ∈ p
ej

j G ∩ 〈xi〉 ⊆ p
ej

j G ∩ 〈xi〉∗ = p
ej

j 〈xi〉∗.

Therefore, for each i,

cixi ∈
t⋂

j=1

p
ej

j 〈xi〉∗
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so that cixi ∈ n〈xi〉∗ by repeated applications of Lemma 4.2. Hence,

ny = na1 + na2 + · · ·+ nak = n(a1 + a2 + · · ·+ ak)

with ai ∈ 〈xi〉∗ for i = 1, 2, . . . , k. Since n 6= 0 and G is torsion free, it follows that

y = a1 + a2 + · · ·+ ak ∈
⊕
x∈X

〈x〉∗

and we conclude that G =
⊕

x∈X〈x〉∗.

Conversely, suppose that G is completely decomposable. Say G =
⊕

i∈I Ai where

each Ai has rank 1. In each Ai, select a nonzero element xi. Now set X = {xi}i∈I . We

claim that X is a decomposition basis for G. To see that G/〈X〉 is torsion, suppose that

g ∈ G. Then there is a finite subset {i(1), i(2), . . . , i(n)} ⊆ I with

g = ai(1) + ai(2) + · · ·+ ai(n)

and ai(j) ∈ Ai(j) for j = 1, 2, . . . , n. For each j, there are nonzero integers kj , lj with

kjai(j) = ljxi(j) which implies that kjai(j) ∈ 〈X〉. Now, let k = lcm{k1, k2, . . . , kn}. Then

k has the property that kg ∈ 〈X〉 and hence G/〈X〉 is torsion. Finally, since
⊕

i∈I Ai is

a valuated coproduct in G,
⊕

i∈I〈xi〉 is valuated.

Definition 4.4. The torsion free rank of a group G is the cardinality of a maximal

Z-independent subset of G consisting only of elements of infinite order.
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Theorem 4.5. If G is a k-group of finite torsion free rank, then G has a decomposition

basis.

Proof. Let {a1, a2, . . . , ak} be a maximal Z-independent subset of G consisting of ele-

ments of infinite order. Since G is a k -group, there are primitive elements x1, x2, . . . , xn ∈

G with N = 〈x1〉⊕〈x2〉⊕· · ·⊕〈xn〉 a ∗-valuated coproduct such that there is some nonzero

integer m with mai ∈ N for i = 1, 2, . . . , k. Observe that if g is any element of G, there

is some positive integer l with lg ∈ 〈a1〉 ⊕ 〈a2〉 ⊕ · · · ⊕ 〈ak〉. Hence, G/N is torsion. We

conclude that {x1, x2, . . . , xn} is a decomposition basis for G.

One consequence of Theorem 4.3 and the last result is that any torsion free group of

finite rank cannot be a k -group unless it is completely decomposable. For an example,

let p1, p2, p3 be distinct prime numbers and let

G =
Z[1/p1]⊕ Z[1/p2]⊕ Z[1/p3]

〈(1, 1, 1)〉∗
.

It is known that G is a torsion free group of rank 2 that is not completely decomposable.

For example, see [1]. Hence, G is not a k -group.
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Chapter 5

Torsion Free Separable Groups

In this chapter we show that a torsion free separable group is a k -group (that does

not necessarily have a decomposition basis).

Definition 5.1. A torsion free group G is called separable if every finite subset of G is

contained in a completely decomposable direct summand of G.

Lemma 5.2. If G = A⊕B, then for every prime p and ordinal α, pαG = pαA⊕ pαB.

Proof. Clearly pαA ⊕ pαB ⊆ pαG. So it suffices to prove the reverse inclusion. We

proceed by transfinite induction on α. If α = 1, then x ∈ pG gives that x = py for some

y ∈ G. Now write y = a + b where a ∈ A and b ∈ B. Then

x = py = p(a + b) = pa + pb ∈ pA⊕ pB ⊆ pG.

Therefore, pG = pA⊕ pB. We finish the proof by considering two cases.

Case 1. α = β + 1 for some β. By induction, pβG = pβA ⊕ pβB. The base case then

provides that p(pβG) = p(pβA)⊕ p(pβB). That is, pαG = pαA⊕ pαB.

Case 2. α is a limit ordinal. Then pβG = pβA⊕ pβB for all β < α. Now if x ∈ pβG for

each β < α (that is, if x ∈
⋂

β<α pβG = pαG), then x = aβ + bβ where aβ ∈ pβA and

bβ ∈ pβB. Also, x ∈ A⊕B and so x = a + b for some a ∈ A and b ∈ B. Then for all β,
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a + b = aβ + bβ implies that

a− aβ = bβ − b ∈ A ∩B = 0.

Therefore, a = aβ ∈ pβA and b = bβ ∈ pβB for all β < α. Hence, a ∈ pαA and b ∈ pαB

results in x ∈ pαA⊕ pαB.

Corollary 5.3. If G = A⊕B, then A⊕B is a valuated coproduct.

Proof. If x = a + b where a ∈ A, b ∈ B and |x|p = α for some prime p and ordinal α,

then

x ∈ pαG = pαA⊕ pαB

by Lemma 5.2. Writing x = a1 + b1 with a1 ∈ pαA, b1 ∈ pαB we have that |a1|p ≥ α

and |b1|p ≥ α. Now if both |a1|p > α and |b1|p > α, then α < |(a1 + b1)|p = |x|p, a

contradiction. We conclude that |a1|p = α or |b1|p = α. Therefore,

|x|p = min{|a1|p, |b1|p} = |a1|p ∧ |b1|p.

Observe that Corollary 5.3 says that if G = A ⊕ B, then G(M) = A(M) ⊕ B(M)

for every height matrix M .

Proposition 5.4. If G = A⊕B, then A⊕B is a ∗-valuated coproduct.

Proof. Suppose x ∈ F where F is one of the fully invariant subgroups G(M), G(M∗),

G(M∗
p , p) or G(M∗, p). We need to show that x ∈ (A ∩ F ) ⊕ (B ∩ F ). We consider, in
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turn, each of the four natural cases.

Case 1. x ∈ G(M). Corollary 5.3 provides that the coproduct is valuated.

Case 2. x ∈ G(M∗). If M ∼ ∞, then G(M∗) = tG(M). So since G(M) = A(M)⊕B(M)

we have that tG(M) = tA(M)⊕ tB(M). More precisely,

G(M∗) = A(M∗)⊕B(M∗) ⊆ (A ∩G(M∗))⊕ (B ∩G(M∗)).

If M � ∞, then x = x1 + x2 + · · · + xn where ‖xi‖ ≥ M and ‖xi‖ � M . Also, for

each i, xi = ai + bi where ai ∈ A and bi ∈ B. We claim that ‖ai‖ � M for all i. Indeed,

if ‖ai‖ ∼ M , there are positive integers k, l such that M ≤ k‖ai‖ and ‖ai‖ ≤ lM . But

then ‖xi‖ ≤ ‖ai‖ ≤ lM and ‖xi‖ ≥ M . That is, ‖xi‖ ∼ M , a contradiction. Therefore,

‖ai‖ � M , and by symmetry, ‖bi‖ � M . We now obtain

x =
n∑

i=1

(ai + bi) =
n∑

i=1

ai +
n∑

i=1

bi ∈ A(M∗)⊕B(M∗)

⊆ (A ∩G(M∗))⊕ (B ∩G(M∗)),

as desired.

Case 3. x ∈ G(M∗
p , p). If x ∈ G(M∗

p , p), then x = x1 + x2 + · · · + xn where each xj

has the property that ‖xj‖p ≥ Mp but |pixj |p 6= mp,i for infinitely many i. Now write

xj = aj + bj where aj ∈ A and bj ∈ B. Then

‖aj‖p ∧ ‖bj‖p = ‖xj‖p ≥ Mp
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gives that both ‖aj‖p ≥ Mp and ‖bj‖p ≥ Mp. Hence, for all i < ω0,

|piaj |p ∧ |pibj |p = |pixj |p

gives that both |piaj |p 6= mp,i and |pibj |p 6= mp,i for infinitely many i. Therefore,

x ∈ A(M∗
p , p)⊕B(M∗

p , p) ⊆ (A ∩G(M∗
p , p))⊕ (B ∩G(M∗

p , p)).

Case 4. x ∈ G(M∗, p). In this case,

G(M∗, p) = G(M) ∩ (G(M∗
p , p) + G(M∗))

= (A(M)⊕B(M)) ∩ [(A(M∗
p , p)⊕B(M∗

p , p)) + (A(M∗)⊕B(M∗))]

= (A(M)⊕B(M)) ∩ [(A(M∗
p , p) + A(M∗))⊕ (B(M∗

p , p) + B(M∗))]

⊆ (A(M) ∩ (A(M∗
p , p) + A(M∗)))⊕ (B(M) ∩ (B(M∗

p , p) + B(M∗)))

= A(M∗, p)⊕B(M∗, p)

⊆ (A ∩G(M∗, p))⊕ (B ∩G(M∗, p)).

Corollary 5.5. Let G = A⊕B with A torsion-free of rank 1. If 0 6= a ∈ A, then 〈a〉⊕B

is ∗-valuated and a is primitive in G.

Proof. Observe that {a} is a decomposition basis for A. Then by Proposition 3.2, a

is primitive in A. So if na ∈ G(M∗, p), it must be that either M � ‖a‖A = ‖a‖G or
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mp,i 6= |pina|Ap = |pina|Gp for infinitely many i. Thus, a is primitive in G. Finally, note

that since A⊕B is ∗-valuated, 〈a〉 ⊕B must be as well.

Theorem 5.6. If G is a torsion free separable group, then G is a k-group.

Proof. Suppose S = {x1, x2, . . . , xn} is a finite subset of G. Then S ⊆ C where G = C⊕B

for some B and completely decomposable C of finite rank. Write C = A1⊕A2⊕· · ·⊕Am

where each Ai is torsion free of rank 1. For each i, select a nonzero ai ∈ Ai. Then there

is a positive integer k such that kxi ∈ 〈a1〉 ⊕ 〈a2〉 ⊕ · · · ⊕ 〈am〉. Observe that repeated

applications of Corollary 5.5 then gives that each ai is primitive and that the coproduct

is ∗-valuated.

Example 5.7. We claim that G =
∏

ℵ0
Z is a k -group that does not have a decom-

position basis. We note that G is indeed a k -group since by Theorem 139 of [4], G is

separable, and by Theorem 5.6, torsion free separable groups are k -groups. Now, if G

had a decomposition basis, it would be a direct sum of rank 1 groups by Theorem 4.3.

Then Proposition 96.2 of [3] (due to Mishina [15]) provides that each rank 1 summand

of G is isomorphic to Z. This would mean that G =
∏

ℵ0
Z is free, a contradiction in

light of Corollary 52 of [4] which states that
∏

α Z is not free for any cardinal α ≥ ℵ0.

Hence, G does not have a decomposition basis.

We conclude by noting that Example 3.1 of [6] provides an example of a torsion free

k -group that is not separable.
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