Mixed Groups with Decomposition Bases and Global k-Groups

Except where reference is made to the work of others, the work described in this thesis is my own or was done in collaboration with my advisory committee. This thesis does not include proprietary or classified information.

Chad Mathews

Certificate of Approval:

Overtoun Jenda
Professor
Mathematics and Statistics
H. Pat Goeters

Professor
Mathematics and Statistics

William Ullery, Chair
Professor
Mathematics and Statistics

Peter Nylen
Professor
Mathematics and Statistics

Stephen L. McFarland
Dean
Graduate School

Chad Mathews

A Thesis
Submitted to
the Graduate Faculty of
Auburn University
in Partial Fulfillment of the

Requirements for the
Degree of
Master of Science

Auburn, Alabama
August 7, 2006

Mixed Groups with Decomposition Bases and Global k-Groups

Chad Mathews

Permission is granted to Auburn University to make copies of this thesis at its discretion, upon the request of individuals or institutions and at their expense. The author reserves all publication rights.

Date of Graduation

VitA

Michael Chad Mathews, son of Michael Brett and Tammy Elaine Mathews, was born on October 27, 1981 in LaGrange, Georgia. He is a 2000 graduate of Heard County Comprehensive High School in Franklin, Georgia. In the fall of that year, he entered the University of West Georgia and received the degree of Bachelor of Science in Mathematics on May 6, 2004. In August of 2004, he began his graduate study in the Department of Mathematics and Statistics at Auburn University.

Thesis Abstract
 Mixed Groups with Decomposition Bases and Global k-Groups

Chad Mathews
Master of Science, August 7, 2006
(B.S., University of West Georgia, 2004)

38 Typed Pages
Directed by William Ullery

This thesis is devoted to proving assertions made without proof by Paul Hill and Charles Megibben in their fundamental papers regarding knice subgroups and the Axiom 3 characterization of global Warfield groups. The main theme throughout is the relationship between the notions of a global k-group and a group with a decomposition basis. Most of our results involve properties of the auxiliary notions of primitive element and $*$-valuated coproduct in both the mixed and torsion free settings.

Acknowledgments

The author would like to thank Dr. William Ullery for lending his algebraic knowledge to this project and for his unyielding patience and understanding. The author also wishes to thank his family for their love and support.

Style manual or journal used Journal of Approximation Theory (together with the style known as "aums"). Bibliography follows van Leunen's A Handbook for Scholars.

Computer software used The document preparation package $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ (specifically ETEX) together with the departmental style-file aums.sty.

Table of Contents

1 Introduction 1
2 Preliminaries 2
3 Mixed Groups with Decomposition Bases 12
4 Torsion Free Groups with Decomposition Bases 20
5 Torsion Free Separable Groups 25
Bibliography 30

Chapter 1

Introduction

Throughout this thesis, G will always denote an additively written abelian group and we shall only consider such groups. We do not exclude the possibility that G is a nonsplit mixed group. By this we mean that G may contain elements of both finite and infinite order and the torsion subgroup of G is not necessarily a summand.

Our main goal in this thesis is to provide the justification for many of the basic facts that were stated by P. Hill and C. Megibben in $[7,8]$ without proof. Indeed, unless explicitly stated to the contrary, most of our results appear there.

We conclude this brief introduction with an outline of the remainder of the paper. In chapter two, we state the definitions and provide the notation that will be used throughout. Chapter three consists of various properties of decomposition bases leading up to the proof that a group with a decomposition basis is a k-group. In chapter four, we discuss torsion free groups with decomposition bases and we show that a torsion free group is completely decomposable if and only if it has a decomposition basis. In chapter five, we show that every torsion free separable group is a k-group, and we use this fact to provide an example of a k-group without a decomposition basis.

Chapter 2

Preliminaries

This chapter is devoted to providing some basic results needed for the remaining chapters. The terminology and notation used here is due to Hill and Megibben [7, 8].

Let \mathcal{O}_{∞} denote the class of ordinals with the symbol ∞ adjoined as a maximal element with the convention that $\alpha<\infty$ for all $\alpha \in \mathcal{O}_{\infty}$. If $x \in G$, we write $|x|_{p}$ for the height of x in G at the prime p. So $|x|_{p}=\alpha$ if $x \in p^{\alpha} G$ and $x \notin p^{\alpha+1} G$, while $|x|_{p}=\infty$ if $x \in p^{\alpha} G$ for all $\alpha \in \mathcal{O}_{\infty}$. If \mathbb{P} is the set of rational primes, a height matrix is a doubly infinite $\mathbb{P} \times \omega_{0}$ matrix $M=\left[m_{p, i}\right]$ where $m_{p, i} \in \mathcal{O}_{\infty}$ and $m_{p, i}<m_{p, i+1}$ for all $p \in \mathbb{P}$ and $i<\omega_{0}$. By a height sequence, we mean any sequence $\bar{\alpha}=\left\{\alpha_{i}\right\}_{i<\omega_{0}}$ where $\alpha_{i} \in \mathcal{O}_{\infty}$ and $\alpha_{i}<\alpha_{i+1}$ for all $i<\omega_{0}$. Thus the p-row $M_{p}=\left\{m_{p, i}\right\}_{i<\omega_{0}}$ of a height matrix M is a height sequence. We shall write $\|x\|$ for the height matrix of x in G; that is, $\|x\|$ is the doubly infinite matrix indexed by $\mathbb{P} \times \omega_{0}$ and having $\left|p^{i} x\right|_{p}$ as its (p, i) entry. Similarly, $\|x\|_{p}$ will denote the height sequence of x at p. We shall sometimes affix a superscript to p-heights and height matrices in order to emphasize the group in which the heights are computed.

For two height matrices M and N, we write $N \leq M$ if $n_{p, i} \leq m_{p, i}$ for all primes p and $i<\omega_{0}$. We define the product $k M$ of the positive integer k and the height matrix $M=\left[m_{p, i}\right]$ to be the height matrix having as its (p, i) entry $m_{p, j+i}$ where $j=|k|_{p}^{\mathbb{Z}}$. We say that M and N are quasi-equivalent and write $M \sim N$ if there are positive integers
k, l such that $N \leq k M$ and $M \leq l N$. Notice that $M \sim N$ implies that $M_{q}=N_{q}$ for all primes q for which $q \nmid k$ and $q \nmid l$.

Lemma 2.1. For all $x \in G$ and positive integers $k,\|k x\|=k\|x\|$.

Proof. We claim that $\left\|p^{n} x\right\|=p^{n}\|x\|$ for all primes p and positive integers n. Indeed,

$$
\begin{aligned}
\left\|p^{n} x\right\|_{p}=\left\{\left|p^{n} x\right|_{p},\left|p^{n+1} x\right|_{p}, \ldots\right\} & =p^{n}\left\{|x|_{p},|p x|_{p}, \ldots,\left|p^{n-1} x\right|_{p},\left|p^{n} x\right|_{p}, \ldots\right\} \\
& =p^{n}\|x\|_{p}=\left(p^{n}\|x\|\right)_{p},
\end{aligned}
$$

and if q is a prime different from $p,\left\|p^{n} x\right\|_{q}=\|x\|_{q}=p^{n}\|x\|_{q}$.
Now if $k=1$, the result is clear. So suppose $k>1$ where $k=p_{1}^{n_{1}} p_{2}^{n_{2}} \cdots p_{r}^{n_{r}}$ for distinct primes p_{i} and positive integers n_{i} with $i \in\{1,2, \ldots, r\}$. We proceed by induction on r. If $r=1$, then we are done by what we have shown above. So suppose $r>1$. By the induction hypothesis,

$$
\left\|p_{2}^{n_{2}} \cdots p_{r}^{n_{r}} x\right\|=p_{2}^{n_{2}} \cdots p_{r}^{n_{r}}\|x\| .
$$

Then again making use of the preceding paragraph, we have

$$
\|k x\|=p_{1}^{n_{1}}\left\|p_{2}^{n_{2}} \cdots p_{r}^{n_{r}} x\right\|=p_{1}^{n_{1}}\left(p_{2}^{n_{2}} \cdots p_{r}^{n_{r}}\right)\|x\|=k\|x\|
$$

With each height matrix M and group G, we associate the fully invariant subgroups $G(M)=\{x \in G:\|x\| \geq M\}$ and $G\left(M^{*}\right)=\langle x \in G(M):\|x\| \nsim M\rangle$. (We make
the exception that if $M \sim \bar{\infty}$, where $\bar{\infty}$ is the height matrix with all entries ∞, then $G\left(M^{*}\right)=t G \cap G(M)$. Here $t G$ denotes the torsion subgroup of G.) For each prime p and each height sequence $\bar{\alpha}=\left\{\alpha_{i}\right\}_{i<\omega_{0}}$, we define $G\left(\bar{\alpha}^{*}, p\right)$ to be the subgroup of G generated by those elements $x \in G$ such that $\left|p^{i} x\right|_{p} \geq \alpha_{i}$ for all i but $\left|p^{i} x\right|_{p} \neq \alpha_{i}$ for infinitely many i. Finally, we define the fully invariant subgroup $G\left(M^{*}, p\right)$ as $G\left(M^{*}, p\right)=$ $G(M) \cap\left(G\left(M^{*}\right)+G\left(M_{p}^{*}, p\right)\right)$.

Observe that if x is a generator of $G\left(M^{*}\right)$ (in the case $M \nsim \bar{\infty}$) or of $G\left(\bar{\alpha}^{*}, p\right)$, then so is $m x$ for every nonzero integer m. Thus, for example, if $y \in G\left(M^{*}\right)$ and $M \nsim \bar{\infty}$, $y=x_{1}+x_{2}+\cdots+x_{n}$ with $\left\|x_{i}\right\| \geq M$ and $\left\|x_{i}\right\| \nsim M$ for all i.

Proposition 2.2. The following results hold for all height matrices M, positive integers k, and primes p.
(1) $G(k M)=k G(M)$
(2) $G\left((k M)^{*}\right)=k G\left(M^{*}\right)$
(3) $G\left(\left(k M_{p}\right)^{*}, p\right)=k G\left(M_{p}^{*}, p\right)$
(4) $G\left((k M)^{*}, p\right)=k G\left(M^{*}, p\right)$

Proof. (1) First observe that for a given prime p and group G, we have that

$$
G \supseteq p G \supseteq p^{2} G \supseteq \cdots \supseteq p^{\alpha} G \supseteq \cdots
$$

That is, $p^{\alpha} G \supseteq p^{\alpha+1} G$ for every ordinal α. Since G is a set, there is a smallest ordinal λ such that $p^{\lambda} G=p^{\lambda+1} G$. Now, if $x \in G,|x|_{p}=\infty$ means that $x \in p^{\alpha} G$ for all $\alpha \geq \lambda$.

So if r is a positive integer and if $|x|_{p}=\infty$, then

$$
x \in p^{\lambda+r} G=p^{r}\left(p^{\lambda} G\right)
$$

which implies that there is a $y \in p^{\lambda} G$ such that $p^{r} y=x$. In particular, $|y|_{p}=\infty$.
We claim that $G\left(p^{r} M\right) \subseteq p^{r} G(M)$ for all primes p and positive integers r. We proceed by induction on r. For the case where $r=1$, if $x \in G(p M)$, then $x=p y$ with $|y|_{p} \geq m_{p, 0}$ and $\|y\|_{q}=\|p x\|_{q}$ for all primes $q \neq p$. But then $\|y\| \geq M$ so that $x \in p G(M)$. To finish the claim, note that

$$
G\left(p^{r} M\right)=G\left(p\left(p^{r-1} M\right)\right) \subseteq p G\left(p^{r-1} M\right) .
$$

Then by induction, we have that $p G\left(p^{r-1} M\right) \subseteq p^{r} G(M)$. Hence, $G\left(p^{r} M\right) \subseteq p^{r} G(M)$ as claimed.

Now, if $k=p_{1}^{r_{1}} p_{2}^{r_{2}} \cdots p_{n}^{r_{n}}$ where p_{i} is a distinct prime and r_{i} is a positive integer for each i, then our argument above yields

$$
G(k M)=G\left(p_{i}^{r_{i}}\left(k / p_{i}^{r_{i}}\right) M\right) \subseteq p_{i}^{r_{i}} G\left(\left(k / p_{i}^{r_{i}}\right) M\right) \subseteq p_{i}^{r_{i}} G(M) .
$$

Therefore,

$$
G(k M) \subseteq \bigcap_{i} p_{i}^{r_{i}} G(M)=\left(\prod_{i} p_{i}^{r_{i}}\right) G(M)=k G(M) .
$$

Finally, if $x \in k G(M)$, then $x=k y$ for some $y \in G(M)$. But then Lemma 2.1 gives

$$
\|x\|=\|k y\|=k\|y\| \geq k M .
$$

That is, $x \in G(k M)$.
(2) We need to separately consider the cases where $M \sim \bar{\infty}$ and $M \nsim \bar{\infty}$.

Case 1. Suppose $M \sim \bar{\infty}$. Then, by definition, $k\left(G\left(M^{*}\right)\right)=k(G(M) \cap t G)$. Observe that $k M \sim \bar{\infty}$ and so

$$
G\left((k M)^{*}\right)=G(k M) \cap t G=k G(M) \cap t G .
$$

Now the fact that $k(G(M) \cap t G) \subseteq k G(M) \cap t G$ is clear. So suppose $x \in k G(M) \cap t G$. Then $x=k y$ for some $y \in G(M)$ and $n x=0$ for some positive integer n. But then

$$
n k y=n x=0
$$

which implies that $y \in G(M) \cap t G$. Thus, $x \in k(G(M) \cap t G)$.
Case 2. Suppose $M \nsim \bar{\infty}$. If $x \in G\left((k M)^{*}\right)$, then

$$
x=a_{1}+a_{2}+\cdots+a_{n}
$$

where $a_{i} \in G(k M)$ and $\left\|a_{i}\right\| \nsim k M$ for $i=1,2, \ldots, n$. Then $a_{i} \in k G(M)$ and $a_{i}=k b_{i}$ where $b_{i} \in G(M)$ and $\left\|b_{i}\right\| \nsim M$. So $b_{i} \in G\left(M^{*}\right)$ which implies that $a_{i} \in k G\left(M^{*}\right)$.

Hence, $G\left((k M)^{*}\right) \subseteq k G\left(M^{*}\right)$. On the other hand, if $x \in k G\left(M^{*}\right)$, then $x=k y$ for some $y \in G\left(M^{*}\right)$. So

$$
y=b_{1}+b_{2}+\cdots+b_{n}
$$

where $b_{i} \in G(M)$ and $\left\|b_{i}\right\| \nsim M$. But then

$$
x=k b_{1}+k b_{2}+\cdots+k b_{n}
$$

with $k b_{i} \in G(k M)$ and $\left\|k b_{i}\right\| \nsim k M$. Therefore, $k b_{i} \in G\left((k M)^{*}\right)$ and $x \in G\left((k M)^{*}\right)$.
(3) Let $x \in k G\left(M_{p}^{*}, p\right)$. Then $x=k y$ where $y \in G\left(M_{p}^{*}, p\right)$. That is,

$$
y=a_{1}+a_{2}+\cdots+a_{r}
$$

where for $j=1,2, \ldots, r,\left\|a_{j}\right\|_{p} \geq M_{p}$ and $\left|p^{i} a_{j}\right|_{p} \neq m_{p, i}$ for infinitely many $i<\omega_{0}$. Then,

$$
x=k a_{1}+k a_{2}+\cdots+k a_{r}
$$

where for $j=1,2, \ldots, r,\left\|k a_{j}\right\|_{p}=k\left\|a_{j}\right\|_{p} \geq k M_{p}$ and $\left|p^{i} k a_{j}\right|_{p} \neq m_{p, i+e}$ for infinitely many $i<\omega_{0}$ with $e=|k|_{p}^{\mathbb{Z}}$. Hence, $k a_{j} \in G\left(\left(k M_{p}\right)^{*}, p\right)$ for each j, which gives that $x \in G\left(\left(k M_{p}\right)^{*}, p\right)$.

For the reverse inclusion, let p^{e} be the largest power of p that divides k. That is, e is again equal to $|k|_{p}^{\mathbb{Z}}$. Observe that it is enough to show that $G\left(\left(p^{e} M_{p}\right)^{*}, p\right) \subseteq p^{e} G\left(M_{p}^{*}, p\right)$. Let x be a generator of $G\left(\left(p^{e} M_{p}\right)^{*}, p\right)$. Then $\|x\|_{p} \geq p^{e} M_{p}$ and $\left|p^{i} x\right|_{p} \neq m_{p, i+e}$ for
infinitely many $i<\omega_{0}$. So we have that $\left|p^{i} x\right|_{p} \geq m_{p, i+e} \geq i+e$ for all i. It then follows that

$$
x \in p^{i+e} G=p^{e}\left(p^{i} G\right)
$$

and $x=p^{e} y$ for some $y \in p^{i} G$. But then $\|y\|_{p} \geq M_{p}$ and $\left|p^{i} y\right|_{p} \neq m_{p, i}$ for infinitely many i. Thus, $x \in p^{e} G\left(M_{p}^{*}, p\right)$.
(4) Let $x \in G\left((k M)^{*}, p\right)$. Then $x=a_{1}+a_{2}$ where

$$
a_{1} \in G\left((k M)^{*}\right)=k G\left(M^{*}\right)
$$

and

$$
a_{2} \in G\left(\left(k M_{p}\right)^{*}, p\right) \cap G(k M)=k\left(G\left(M_{p}^{*}, p\right) \cap G(M)\right) .
$$

So $a_{1}=k b_{1}$ where $b_{1} \in G\left(M^{*}\right)$ and $a_{2}=k b_{2}$ where $b_{2} \in G\left(M_{p}^{*}, p\right) \cap G(M)$. But then

$$
x=k b_{1}+k b_{2}=k\left(b_{1}+b_{2}\right)
$$

where $b_{1}+b_{2} \in G\left(M^{*}\right)+\left(G\left(M_{p}^{*}, p\right) \cap G(M)\right)$. Hence, $x \in k G\left(M^{*}, p\right)$. Similarly, if $x \in k G\left(M^{*}, p\right)$, then $x=k y$ where $y \in G\left(M^{*}, p\right)$. So $y=a_{1}+a_{2}$ where $a_{1} \in G\left(M^{*}\right)$ and $a_{2} \in G\left(M_{p}^{*}, p\right) \cap G(M)$. Then $x=k a_{1}+k a_{2}$ where $k a_{1} \in G\left((k M)^{*}\right)$ and $k a_{2} \in$ $G\left(\left(k M_{p}\right)^{*}, p\right) \cap G(k M)$. Thus, $x \in G\left((k M)^{*}, p\right)$.

Definition 2.3. Call an element $x \in G$ primitive if for each height matrix M, prime p and positive integer $n, n x \in G\left(M^{*}, p\right)$ implies that either $\|x\| \nsim M$ or $\left|p^{i} n x\right|_{p} \neq m_{p, i}$ for infinitely many $i<\omega_{0}$.

If $\left\{A_{i}\right\}_{i \in I}$ is a family of independent subgroups of the group G, then the direct sum $A=\bigoplus_{i \in I} A_{i}$ is said to be a valuated coproduct in G provided that if $a=\sum_{i \in I} a_{i}$ with $a_{i} \in A_{i}$, then $|a|_{p}=\bigwedge_{i \in I}\left|a_{i}\right|_{p}=\min \left\{\left|a_{i}\right|_{p}\right\}_{i \in I}$ for all primes p. This concept can be equivalently written as $A \cap G(M)=\bigoplus_{i \in I}\left(A_{i} \cap G(M)\right)$ for all height matrices M.

Definition 2.4. Given a family of independent subgroups $\left\{A_{i}\right\}_{i \in I}$ of the group G, we say that the direct sum $A=\bigoplus_{i \in I} A_{i}$ is a $*$-valuated coproduct in G if $A \cap F=\bigoplus_{i \in I}\left(A_{i} \cap F\right)$ for each fully invariant subgroup F of the form $G(M), G\left(M^{*}\right), G\left(M_{p}^{*}, p\right)$ or $G\left(M^{*}, p\right)$.

We call a group G simply presented if it can be presented by generators and relations where each relation is of the form $m x=y$ or $m x=0$ with m a positive integer. By a global Warfield group, we mean a direct summand of a simply presented group. In the mixed setting, it is well known that a summand of a simply presented group is not necessarily simply presented.

A collection \mathcal{C} of subgroups of G is called an Axiom 3 system if it satisfies the following conditions.
(0) $0 \in \mathcal{C}$.
(1) If $\left\{N_{i}\right\}_{i \in I} \subseteq \mathcal{C}$, then $\sum_{i \in I} N_{i} \in \mathcal{C}$.
(2) For each $N \in \mathcal{C}$ and countable subgroup A of G, there exists $M \in \mathcal{C}$ such that $N+A \subseteq M$ and M / N is countable.

Furthermore, we say that G satisfies Griffith's version of Axiom 3 if there exists a collection \mathcal{C} of subgroups of G satisfying conditions (0) and (2) above with (1) replaced by the statement that \mathcal{C} is closed under unions of ascending chains.

A subgroup N of G is a nice subgroup if for each prime p and ordinal α, the cokernel of the inclusion $\operatorname{map}\left(p^{\alpha} G+N\right) / N \mapsto p^{\alpha}(G / N)$ contains no element of order p.

Definition 2.5. A subgroup N of G is a knice subgroup if the following conditions are satisfied.
(1) N is nice in G.
(2) To each finite subset S of G, there corresponds a (possibly empty) finite set of primitive elements $\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$ such that $N \oplus\left\langle x_{1}\right\rangle \oplus\left\langle x_{2}\right\rangle \oplus \cdots \oplus\left\langle x_{m}\right\rangle$ is a *-valuated coproduct that contains some positive multiple of $\langle S\rangle$.

A subset X of independent elements in a group G is said to be a decomposition basis if each $x \in X$ has infinite order, $G /\langle X\rangle$ is a torsion group, and $\langle X\rangle=\bigoplus_{x \in X}\langle x\rangle$ is a valuated coproduct in G.

The importance of the notions defined above is revealed by the following theorem.

Theorem 2.6 (Hill and Megibben [8]). For an arbitrary group G, the following conditions are equivalent.
(i) G satisfies Axiom 3 with respect to knice subgroups.
(ii) G satisfies Griffith's version of Axiom 3 with respect to knice subgroups.
(iii) G is the union of a smooth chain $\left(G_{\alpha}\right)_{\alpha<\tau}$ of nice subgroups such that $G_{0}=0$ and, for each α, either $G_{\alpha+1} / G_{\alpha}$ is cyclic of prime order or else $G_{\alpha+1}=G_{\alpha} \oplus\left\langle x_{\alpha}\right\rangle$ is a valuated coproduct in G with x_{α} an element of infinite order.
(iv) G is a direct summand of a simply presented group, and hence a global Warfield group.
(v) G has a decomposition basis and satisfies Axiom 3 with respect to nice subgroups.

We call a group G a (global) k-group if the trivial subgroup 0 is a knice subgroup. Since 0 is a nice subgroup of every group G, G is a k-group if and only if to each finite subset S of G, there corresponds a (possibly empty) finite set of primitive elements $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ such that $\left\langle x_{1}\right\rangle \oplus\left\langle x_{2}\right\rangle \oplus \cdots \oplus\left\langle x_{n}\right\rangle$ is a $*$-valuated coproduct that contains some positive multiple of $\langle S\rangle$. Notice that it is immediate that every torsion group is a k-group. Also, by Theorem 2.6, every global Warfield group G satisfies Axiom 3 with respect to knice subgroups, and hence is a k-group.

Chapter 3

Mixed Groups with Decomposition Bases

In this chapter we show that a mixed group G with a decomposition basis X is a k-group (Theorem 3.5).

Proposition 3.1. If G has a decomposition basis X, then each element of X is primitive.

Proof. Suppose that $x \in X$ and that $n x \in G\left(M^{*}, p\right)$ for some positive integer n, height matrix M and prime p. Assuming that $\|x\| \sim M$, we need to show that $\left|p^{i} n x\right|_{p} \neq m_{p, i}$ for infinitely many $i<\omega_{0}$. Because $G\left(M^{*}, p\right)=G(M) \cap\left(G\left(M^{*}\right)+G\left(M_{p}^{*}, p\right)\right)$, we can write

$$
n x=a_{1}+a_{2}+\cdots+a_{r}+b_{1}+b_{2}+\cdots+b_{s}
$$

where, for $l=1,2, \ldots, r, a_{l} \in G(M)$ with $\left\|a_{l}\right\| \nsim M$ and, for $j=1,2, \ldots, s,\left\|b_{j}\right\|_{p} \geq M_{p}$ with $\left|p^{i} b_{j}\right|_{p} \neq m_{p, i}$ for infinitely many i.

Select a positive integer k so that all $k a_{l}$ and $k b_{j}$ are in $\langle X\rangle$. Then, for $l=1,2, \ldots, r$,

$$
k a_{l}=c_{l} x+c_{l, 1} x_{1}+\cdots+c_{l, t} x_{t}
$$

and, for $j=1,2, \ldots, s$,

$$
k b_{j}=d_{j} x+d_{j, 1} x_{1}+\cdots+d_{j, t} x_{t}
$$

where x, x_{1}, \ldots, x_{t} are distinct elements of X and, for all l and $j, c_{l}, c_{l, 1}, \ldots, c_{l, t}$ and $d_{j}, d_{j, 1}, \ldots, d_{j, t}$ are contained in \mathbb{Z}. Since x has infinite order and x, x_{1}, \ldots, x_{t} are \mathbb{Z} independent elements of G,

$$
k n x=k a_{1}+k a_{2}+\cdots+k a_{r}+k b_{1}+k b_{2}+\cdots+k b_{s}
$$

implies that

$$
\sum_{l=1}^{r} c_{l}+\sum_{j=1}^{s} d_{j}=k n .
$$

In particular, there is at least one c_{l} or d_{j} that is not 0 .
We claim that $c_{l}=0$ for all l. Indeed, if $c_{l} \neq 0$ for some l, then

$$
k a_{l}=c_{l} x+c_{l, 1} x_{1}+\cdots+c_{l, t} x_{t}
$$

and the fact that $\langle x\rangle \oplus\left\langle x_{1}\right\rangle \oplus \cdots \oplus\left\langle x_{t}\right\rangle$ is a valuated coproduct imply that $\left\|k a_{l}\right\| \leq\left\|c_{l} x\right\|$. Recall that we are operating under the assumption that $\|x\| \sim M$. So, if we select a positive integer m such that $\|x\| \leq m M$, then

$$
\left\|a_{l}\right\| \leq\left\|k a_{l}\right\| \leq\left\|c_{l} x\right\|=\left(\left|c_{l}\right|\right)\|x\| \leq\left(\left|c_{l}\right| m\right) M
$$

with $\left|c_{l}\right| m>0$. Moreover, we know that $M \leq\left\|a_{l}\right\|$ and we obtain the contradiction that $\left\|a_{l}\right\| \sim M$. Therefore, $c_{l}=0$ for all l, as claimed.

We now know that $\sum_{l=1}^{r} c_{l}=0$ and can conclude from condition (\dagger) that

$$
\sum_{j=1}^{s} d_{j}=k n
$$

Let p^{e} be the largest power of p that divides $k n$. Then, there is some d_{j} that is not divisible by p^{e+1}. After reindexing if necessary, we may assume that d_{1} is not divisible by p^{e+1}. Since

$$
p^{i} k n b_{1}=d_{1} p^{i} n x+d_{1,1} p^{i} n x_{1}+\cdots+d_{1, t} p^{i} n x_{t}
$$

for all $i<\omega_{0}$, and since $\langle x\rangle \oplus\left\langle x_{1}\right\rangle \oplus \cdots \oplus\left\langle x_{t}\right\rangle$ is a valuated coproduct, we have that

$$
\left|p^{e+i} b_{1}\right|_{p}=\left|p^{i} k n b_{1}\right|_{p} \leq\left|d_{1} p^{i} n x\right|_{p} \leq\left|p^{e+i} n x\right|_{p}
$$

Because $\left|p^{e+i} b_{1}\right|_{p} \geq m_{p, e+i}$ for all i, and $\left|p^{e+i} b_{1}\right|_{p} \neq m_{p, e+i}$ for infinitely many values of i, we conclude that $\left|p^{e+i} n x\right|_{p} \neq m_{p, e+i}$ for infinitely many values of i. Therefore, $\left|p^{i} n x\right|_{p} \neq m_{p, i}$ for infinitely many i, and the proof is complete.

Lemma 3.2. $t G \cap G(M) \subseteq G\left(M^{*}\right)$ for every height matrix M.

Proof. We may assume that $M \nsim \bar{\infty}$, since otherwise $t G \cap G(M)=G\left(M^{*}\right)$ by definition. Now, if $x \in t G \cap G(M)$, then $x \in G(M)$ and there is a positive integer n such that $n x=0$. Note that $\|x\| \nsim M$. Indeed, if it were the case that $\|x\| \sim M$, we obtain

$$
\bar{\infty}=\|0\|=\|n x\| \sim\|x\| \sim M,
$$

contrary to the assumption that $M \nsim \bar{\infty}$. So, we have that $x \in G(M)$ and $\|x\| \nsim M$. Consequently, $x \in G\left(M^{*}\right)$.

Lemma 3.3. If $x \in G(M)$ for some height matrix M and if n is a positive integer, then the following conditions are satisfied.
(a) If $n x \in n G\left(M^{*}, p\right)$ for some prime p, then $x \in G\left(M^{*}, p\right)$.
(b) If $n x \in n G\left(M^{*}\right)$, then $x \in G\left(M^{*}\right)$.

Proof. To prove part (a), we have by hypothesis that $n x=n y$ for some $y \in G\left(M^{*}, p\right)$. Since both x and y are in $G(M), x-y \in G(M)$. Moreover, $x-y \in t G$ because $n(x-y)=0$. Therefore, by Lemma 3.2, $x-y \in G\left(M^{*}\right)$. Then,

$$
x \in y+G\left(M^{*}\right) \subseteq G\left(M^{*}, p\right)
$$

because $y \in G\left(M^{*}, p\right)$ and $G\left(M^{*}\right) \subseteq G\left(M^{*}, p\right)$. The proof of part (b) is similar. For again we have that $x-y \in G\left(M^{*}\right)$. But then

$$
x \in y+G\left(M^{*}\right) \subseteq G\left(M^{*}\right)
$$

since $y \in G\left(M^{*}\right)$.

Proposition 3.4. If G has a decomposition basis X, then $\bigoplus_{x \in X}\langle x\rangle$ is a*-valuated coproduct.

Proof. Suppose that $y \in \bigoplus_{x \in X}\langle x\rangle$ and write

$$
y=c_{1} x_{1}+c_{2} x_{2}+\cdots+c_{t} x_{t}
$$

where $x_{1}, x_{2}, \ldots, x_{t}$ are distinct elements of X, and $c_{j} \in \mathbb{Z}$ for $j=1,2, \ldots, t$. We need to show that if $y \in F$, where F is one of the fully invariant subgroups of the form $G(M)$, $G\left(M^{*}\right), G\left(M_{p}^{*}, p\right)$ or $G\left(M^{*}, p\right)$, then each $c_{j} x_{j}$ is in the same F. We consider, in turn, each of the four natural cases.

Case 1. $F=G(M)$. This case is clear since, by definition, $\bigoplus_{x \in X}\langle x\rangle$ is a valuated coproduct.

Case 2. $F=G\left(M^{*}\right)$. If $M \sim \bar{\infty}$, then $y \in G\left(M^{*}\right)$ implies that $y \in t G$. Then $y=0$ since each nonzero element of $\bigoplus_{x \in X}\langle x\rangle$ has infinite order. It then follows that each $c_{j} x_{j}=0 \in G\left(M^{*}\right)$. Therefore, we may assume that $M \nsim \bar{\infty}$ and write

$$
y=a_{1}+a_{2}+\cdots+a_{r}
$$

where for $i=1,2, \ldots, r,\left\|a_{i}\right\| \geq M$ and $\left\|a_{i}\right\| \nsim M$. Now select a positive integer k so that $k a_{i} \in\langle X\rangle$ for all i. Thus, for each i we have

$$
k a_{i}=d_{i, 1} x_{1}+d_{i, 2} x_{2}+\cdots+d_{i, t} x_{t}+d_{i, 1}^{\prime} z_{1}+\cdots+d_{i, s}^{\prime} z_{s},
$$

where $x_{1}, x_{2}, \ldots, x_{t}$ are as above, $x_{1}, x_{2}, \ldots, x_{t}, z_{1}, \ldots, z_{s}$ are distinct elements of X, and all $d_{i, j}$ and $d_{i, l}^{\prime}$ are in \mathbb{Z} (for $j=1,2, \ldots, t$ and $\left.l=1,2, \ldots, s\right)$. Note that the inequalities $k M \leq\left\|k a_{i}\right\| \leq\left\|d_{i, j} x_{j}\right\|$ imply that, for all i and $j, d_{i, j} x_{j} \in G(k M)$ and $\left\|d_{i, j} x_{j}\right\| \nsim k M$. Thus, each $d_{i, j} x_{j}$ is in $G\left((k M)^{*}\right)=k G\left(M^{*}\right)$. Therefore, since $\left\|c_{j} x_{j}\right\| \geq\|y\| \geq M$ and

$$
k c_{j} x_{j}=\sum_{i=1}^{r} d_{i, j} x_{j} \in k G\left(M^{*}\right)
$$

Lemma $3.3(b)$ implies that $c_{j} x_{j} \in G\left(M^{*}\right)$ for all j.

Case 3. $F=G\left(M_{p}^{*}, p\right)$. In this case we have that

$$
y=a_{1}+a_{2}+\cdots+a_{r}
$$

where for $i=1,2, \ldots, r,\left\|a_{i}\right\|_{p} \geq M_{p}$ and $\left|p^{e} a_{i}\right|_{p} \neq m_{p, e}$ for infinitely many $e<\omega_{0}$. Select a positive integer k such that $k a_{i} \in\langle X\rangle$ for all i. We then have

$$
k a_{i}=d_{i, 1} x_{1}+d_{i, 2} x_{2}+\cdots+d_{i, t} x_{t}+d_{i, 1}^{\prime} z_{1}+\cdots+d_{i, s}^{\prime} z_{s}
$$

where the notation is the same as that in Case 2. For a given j, observe that

$$
\sum_{i=1}^{r} d_{i, j}=k c_{j} .
$$

Now temporarily fix j, and after reindexing if necessary, we may assume that $j=1$. Thus, the proof in this case will be complete once we have shown that $c_{1} x_{1} \in G\left(M_{p}^{*}, p\right)$.

Let p^{f} be the largest power of p that divides $k c_{1}$. Then condition ($\dagger \dagger$) implies that p^{f+1} does not divide $d_{i, 1}$ for some i. For such an i,

$$
\left|p^{f+e} a_{i}\right|_{p}=\left|p^{e} k c_{1} a_{i}\right|_{p} \leq\left|p^{e} c_{1} d_{i, 1} x_{1}\right|_{p} \leq\left|p^{f+e} c_{1} x_{1}\right|_{p}
$$

for all $e<\omega_{0}$. From this we conclude that $\left|p^{e} c_{1} x_{1}\right|_{p} \neq m_{p, e}$ for infinitely many e. Moreover, $\left\|c_{1} x_{1}\right\|_{p} \geq\|y\|_{p} \geq M_{p}$. Hence, $c_{1} x_{1} \in G\left(M_{p}^{*}, p\right)$.

Case 4. $F=G\left(M^{*}, p\right)$. In this case we have that $y=a_{1}+a_{2}$ where $a_{1} \in G\left(M^{*}\right)$ and $a_{2} \in G\left(M_{p}^{*}, p\right) \cap G(M)$. Select a positive integer k such that $k a_{i} \in\langle X\rangle$ for $i=1,2$. We then have

$$
k a_{i}=d_{i, 1} x_{1}+d_{i, 2} x_{2}+\cdots+d_{i, t} x_{t}+d_{i, 1}^{\prime} z_{1}+\cdots+d_{i, s}^{\prime} z_{s}
$$

where the notation is the same as that in Cases 2 and 3 . For $i=1$, Case 2 says that each $d_{1, j} x_{j} \in G\left((k M)^{*}\right)$. While for $i=2$, Case 3 implies that each $d_{2, j} x_{j} \in G\left((k M)_{p}^{*}, p\right)$. Further observe that $c_{j} x_{j} \in G(M)$ for all j because $\left\|c_{j} x_{j}\right\| \geq\|y\| \geq M$. Thus, for $j=1,2, \ldots, t$,

$$
\begin{aligned}
k c_{j} x_{j}=d_{1, j} x_{j}+d_{2, j} x_{j} & \in G(k M) \cap\left(G\left((k M)^{*}\right)+G\left((k M)_{p}^{*}, p\right)\right) \\
& =G\left((k M)^{*}, p\right)=k G\left(M^{*}, p\right)
\end{aligned}
$$

Therefore, Lemma $3.3(a)$ shows that $c_{j} x_{j} \in G\left(M^{*}, p\right)$ for all j.

Theorem 3.5. If G has a decomposition basis X, then G is a k-group.

Proof. We first note the fact that 0 is always a nice subgroup. Now, if S is a finite subset of G, there is a positive integer k such that $k s \in \bigoplus_{x \in X}\langle x\rangle$. Then $k\langle S\rangle \subseteq \bigoplus_{x \in X}\langle x\rangle$. So for all $s \in S$, we have that

$$
k s \in\left\langle x_{1}\right\rangle \oplus\left\langle x_{2}\right\rangle \oplus \cdots \oplus\left\langle x_{m}\right\rangle
$$

for some distinct $x_{1}, x_{2}, \ldots, x_{m} \in X$. Then, by Propositions 3.1 and 3.4,

$$
k\langle S\rangle \subseteq\left\langle x_{1}\right\rangle \oplus\left\langle x_{2}\right\rangle \oplus \cdots \oplus\left\langle x_{m}\right\rangle
$$

where the coproduct is a $*$-valuated coproduct with each x_{i} primitive.

Chapter 4

Torsion Free Groups with Decomposition Bases

In this chapter we show that a torsion free group has a decomposition basis if and only if it is completely decomposable (Theorem 4.3). We also show that a k-group of finite torsion free rank has a decomposition basis (Theorem 4.5). As a result, we are able to give an example of a torsion free group that is not a k-group.

A torsion free group G is of rank 1 if G is isomorphic to an additive subgroup of \mathbb{Q} and has the property that if $x, y \in G$ are nonzero, then $m x=n y$ for some nonzero $m, n \in \mathbb{Z}$.

Definition 4.1. A torsion free group G is said to be completely decomposable if it is a direct sum of rank 1 subgroups.

Lemma 4.2. If A is a subgroup of a group G and if p and q are relatively prime integers, then $p A \cap q A=(p q) A$.

Proof. Clearly $(p q) A \subseteq p A \cap q A$. For the reverse inclusion, suppose that $x \in p A \cap q A$. Then, $x=p a_{1}=q a_{2}$ where $a_{1}, a_{2} \in A$. Since $(p, q)=1, r p+s q=1$ for some $r, s \in \mathbb{Z}$, which implies that

$$
a_{1}=r p a_{1}+s q a_{1}=r q a_{2}+s q a_{1}=q\left(r a_{2}+s a_{1}\right) \in q A .
$$

But then,

$$
x=p a_{1} \in p(q A)=(p q) A .
$$

If N is a subgroup of a torsion free group G, define $N_{*}=\{x \in G: n x \in N$ for some nonzero integer $n\}$. Observe that N_{*} is a pure subgroup of G and is the smallest pure subgroup of G that contains N.

Theorem 4.3. A torsion free group G has a decomposition basis X if and only if G is completely decomposable.

Proof. Suppose that G is a torsion free abelian group and that X is a decomposition basis for G. Observe that each $\langle x\rangle_{*}$ with $x \in X$ has rank 1. For, suppose $y, z \in\langle x\rangle_{*}$. Then $m y \in\langle x\rangle$ and $n x \in\langle x\rangle$ for some nonzero integers m, n. So $m y=l x$ and $n z=r x$ for some nonzero integers l, r. But then

$$
(r m) y=(r l) x=(l n) z .
$$

Next we claim that the sum $\sum_{x \in X}\langle x\rangle_{*}$ is direct. Indeed, if for some $x_{1} \in X$ and $y \in G$ we have that

$$
y \in\left\langle x_{1}\right\rangle_{*} \cap \sum_{x \in X \backslash\left\{x_{1}\right\}}\langle x\rangle_{*},
$$

then there are a finite number of distinct elements $x_{2}, x_{3}, \ldots, x_{k} \in X \backslash\left\{x_{1}\right\}$ such that $y \in \sum_{i=2}^{k}\left\langle x_{i}\right\rangle_{*}$. Thus,

$$
y=a_{1}=\sum_{i=2}^{k} a_{i}
$$

where each $a_{i} \in\left\langle x_{i}\right\rangle_{*}$. Now select a positive integer n such that $n a_{i} \in\left\langle x_{i}\right\rangle$ for all i. Then, since $\bigoplus_{x \in X}\langle x\rangle$ is a direct sum,

$$
n y \in\left\langle x_{1}\right\rangle \cap \sum_{i=2}^{k}\left\langle x_{i}\right\rangle=0 .
$$

Since G is torsion free and $n \neq 0, y=0$. We conclude that $\sum_{x \in X}\langle x\rangle_{*}=\bigoplus_{x \in X}\langle x\rangle_{*}$.
Since each $\langle x\rangle_{*}$ with $x \in X$ is torsion free of rank 1 , this part of the proof will be complete once we have shown that $G=\bigoplus_{x \in X}\langle x\rangle_{*}$. For a given $y \in G$, the fact that $G /\langle X\rangle$ is torsion implies there is a positive integer n, distinct $x_{1}, x_{2}, \ldots, x_{k} \in X$ and $c_{1}, c_{2}, \ldots, c_{k} \in \mathbb{Z}$ such that

$$
n y=c_{1} x_{1}+c_{2} x_{2}+\cdots+c_{k} x_{k} .
$$

Let $n=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{t}^{e_{t}}$ be the prime factorization of n. Since $\bigoplus_{x \in X}\langle x\rangle$ is a valuated coproduct,

$$
e_{j} \leq\left|p_{j}^{e_{j}} y\right|_{p_{j}}=|n y|_{p_{j}} \leq\left|c_{i} x_{i}\right|_{p_{j}}
$$

for $i=1,2, \ldots, k$ and $j=1,2, \ldots, t$. We then have that

$$
c_{i} x_{i} \in p_{j}^{e_{j}} G \cap\left\langle x_{i}\right\rangle \subseteq p_{j}^{e_{j}} G \cap\left\langle x_{i}\right\rangle_{*}=p_{j}^{e_{j}}\left\langle x_{i}\right\rangle_{*} .
$$

Therefore, for each i,

$$
c_{i} x_{i} \in \bigcap_{j=1}^{t} p_{j}^{e_{j}}\left\langle x_{i}\right\rangle_{*}
$$

so that $c_{i} x_{i} \in n\left\langle x_{i}\right\rangle_{*}$ by repeated applications of Lemma 4.2. Hence,

$$
n y=n a_{1}+n a_{2}+\cdots+n a_{k}=n\left(a_{1}+a_{2}+\cdots+a_{k}\right)
$$

with $a_{i} \in\left\langle x_{i}\right\rangle_{*}$ for $i=1,2, \ldots, k$. Since $n \neq 0$ and G is torsion free, it follows that

$$
y=a_{1}+a_{2}+\cdots+a_{k} \in \bigoplus_{x \in X}\langle x\rangle_{*}
$$

and we conclude that $G=\bigoplus_{x \in X}\langle x\rangle_{*}$.
Conversely, suppose that G is completely decomposable. Say $G=\bigoplus_{i \in I} A_{i}$ where each A_{i} has rank 1. In each A_{i}, select a nonzero element x_{i}. Now set $X=\left\{x_{i}\right\}_{i \in I}$. We claim that X is a decomposition basis for G. To see that $G /\langle X\rangle$ is torsion, suppose that $g \in G$. Then there is a finite subset $\{i(1), i(2), \ldots, i(n)\} \subseteq I$ with

$$
g=a_{i(1)}+a_{i(2)}+\cdots+a_{i(n)}
$$

and $a_{i(j)} \in A_{i(j)}$ for $j=1,2, \ldots, n$. For each j, there are nonzero integers k_{j}, l_{j} with $k_{j} a_{i(j)}=l_{j} x_{i(j)}$ which implies that $k_{j} a_{i(j)} \in\langle X\rangle$. Now, let $k=l c m\left\{k_{1}, k_{2}, \ldots, k_{n}\right\}$. Then k has the property that $k g \in\langle X\rangle$ and hence $G /\langle X\rangle$ is torsion. Finally, since $\bigoplus_{i \in I} A_{i}$ is a valuated coproduct in $G, \bigoplus_{i \in I}\left\langle x_{i}\right\rangle$ is valuated.

Definition 4.4. The torsion free rank of a group G is the cardinality of a maximal \mathbb{Z}-independent subset of G consisting only of elements of infinite order.

Theorem 4.5. If G is a k-group of finite torsion free rank, then G has a decomposition basis.

Proof. Let $\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$ be a maximal \mathbb{Z}-independent subset of G consisting of elements of infinite order. Since G is a k-group, there are primitive elements $x_{1}, x_{2}, \ldots, x_{n} \in$ G with $N=\left\langle x_{1}\right\rangle \oplus\left\langle x_{2}\right\rangle \oplus \cdots \oplus\left\langle x_{n}\right\rangle$ a $*$-valuated coproduct such that there is some nonzero integer m with $m a_{i} \in N$ for $i=1,2, \ldots, k$. Observe that if g is any element of G, there is some positive integer l with $l g \in\left\langle a_{1}\right\rangle \oplus\left\langle a_{2}\right\rangle \oplus \cdots \oplus\left\langle a_{k}\right\rangle$. Hence, G / N is torsion. We conclude that $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ is a decomposition basis for G.

One consequence of Theorem 4.3 and the last result is that any torsion free group of finite rank cannot be a k-group unless it is completely decomposable. For an example, let p_{1}, p_{2}, p_{3} be distinct prime numbers and let

$$
G=\frac{\mathbb{Z}\left[1 / p_{1}\right] \oplus \mathbb{Z}\left[1 / p_{2}\right] \oplus \mathbb{Z}\left[1 / p_{3}\right]}{\langle(1,1,1)\rangle_{*}}
$$

It is known that G is a torsion free group of rank 2 that is not completely decomposable. For example, see [1]. Hence, G is not a k-group.

Chapter 5

Torsion Free Separable Groups

In this chapter we show that a torsion free separable group is a k-group (that does not necessarily have a decomposition basis).

Definition 5.1. A torsion free group G is called separable if every finite subset of G is contained in a completely decomposable direct summand of G.

Lemma 5.2. If $G=A \oplus B$, then for every prime p and ordinal $\alpha, p^{\alpha} G=p^{\alpha} A \oplus p^{\alpha} B$. Proof. Clearly $p^{\alpha} A \oplus p^{\alpha} B \subseteq p^{\alpha} G$. So it suffices to prove the reverse inclusion. We proceed by transfinite induction on α. If $\alpha=1$, then $x \in p G$ gives that $x=p y$ for some $y \in G$. Now write $y=a+b$ where $a \in A$ and $b \in B$. Then

$$
x=p y=p(a+b)=p a+p b \in p A \oplus p B \subseteq p G .
$$

Therefore, $p G=p A \oplus p B$. We finish the proof by considering two cases.
Case 1. $\alpha=\beta+1$ for some β. By induction, $p^{\beta} G=p^{\beta} A \oplus p^{\beta} B$. The base case then provides that $p\left(p^{\beta} G\right)=p\left(p^{\beta} A\right) \oplus p\left(p^{\beta} B\right)$. That is, $p^{\alpha} G=p^{\alpha} A \oplus p^{\alpha} B$.

Case 2. α is a limit ordinal. Then $p^{\beta} G=p^{\beta} A \oplus p^{\beta} B$ for all $\beta<\alpha$. Now if $x \in p^{\beta} G$ for each $\beta<\alpha$ (that is, if $x \in \bigcap_{\beta<\alpha} p^{\beta} G=p^{\alpha} G$), then $x=a_{\beta}+b_{\beta}$ where $a_{\beta} \in p^{\beta} A$ and $b_{\beta} \in p^{\beta} B$. Also, $x \in A \oplus B$ and so $x=a+b$ for some $a \in A$ and $b \in B$. Then for all β,
$a+b=a_{\beta}+b_{\beta}$ implies that

$$
a-a_{\beta}=b_{\beta}-b \in A \cap B=0
$$

Therefore, $a=a_{\beta} \in p^{\beta} A$ and $b=b_{\beta} \in p^{\beta} B$ for all $\beta<\alpha$. Hence, $a \in p^{\alpha} A$ and $b \in p^{\alpha} B$ results in $x \in p^{\alpha} A \oplus p^{\alpha} B$.

Corollary 5.3. If $G=A \oplus B$, then $A \oplus B$ is a valuated coproduct.

Proof. If $x=a+b$ where $a \in A, b \in B$ and $|x|_{p}=\alpha$ for some prime p and ordinal α, then

$$
x \in p^{\alpha} G=p^{\alpha} A \oplus p^{\alpha} B
$$

by Lemma 5.2. Writing $x=a_{1}+b_{1}$ with $a_{1} \in p^{\alpha} A, b_{1} \in p^{\alpha} B$ we have that $\left|a_{1}\right|_{p} \geq \alpha$ and $\left|b_{1}\right|_{p} \geq \alpha$. Now if both $\left|a_{1}\right|_{p}>\alpha$ and $\left|b_{1}\right|_{p}>\alpha$, then $\alpha<\left|\left(a_{1}+b_{1}\right)\right|_{p}=|x|_{p}$, a contradiction. We conclude that $\left|a_{1}\right|_{p}=\alpha$ or $\left|b_{1}\right|_{p}=\alpha$. Therefore,

$$
|x|_{p}=\min \left\{\left|a_{1}\right|_{p},\left|b_{1}\right|_{p}\right\}=\left|a_{1}\right|_{p} \wedge\left|b_{1}\right|_{p}
$$

Observe that Corollary 5.3 says that if $G=A \oplus B$, then $G(M)=A(M) \oplus B(M)$ for every height matrix M.

Proposition 5.4. If $G=A \oplus B$, then $A \oplus B$ is a *-valuated coproduct.

Proof. Suppose $x \in F$ where F is one of the fully invariant subgroups $G(M), G\left(M^{*}\right)$, $G\left(M_{p}^{*}, p\right)$ or $G\left(M^{*}, p\right)$. We need to show that $x \in(A \cap F) \oplus(B \cap F)$. We consider, in
turn, each of the four natural cases.
Case 1. $x \in G(M)$. Corollary 5.3 provides that the coproduct is valuated.
Case 2. $x \in G\left(M^{*}\right)$. If $M \sim \bar{\infty}$, then $G\left(M^{*}\right)=t G(M)$. So since $G(M)=A(M) \oplus B(M)$ we have that $t G(M)=t A(M) \oplus t B(M)$. More precisely,

$$
G\left(M^{*}\right)=A\left(M^{*}\right) \oplus B\left(M^{*}\right) \subseteq\left(A \cap G\left(M^{*}\right)\right) \oplus\left(B \cap G\left(M^{*}\right)\right) .
$$

If $M \nsim \bar{\infty}$, then $x=x_{1}+x_{2}+\cdots+x_{n}$ where $\left\|x_{i}\right\| \geq M$ and $\left\|x_{i}\right\| \nsim M$. Also, for each $i, x_{i}=a_{i}+b_{i}$ where $a_{i} \in A$ and $b_{i} \in B$. We claim that $\left\|a_{i}\right\| \nsim M$ for all i. Indeed, if $\left\|a_{i}\right\| \sim M$, there are positive integers k, l such that $M \leq k\left\|a_{i}\right\|$ and $\left\|a_{i}\right\| \leq l M$. But then $\left\|x_{i}\right\| \leq\left\|a_{i}\right\| \leq l M$ and $\left\|x_{i}\right\| \geq M$. That is, $\left\|x_{i}\right\| \sim M$, a contradiction. Therefore, $\left\|a_{i}\right\| \nsim M$, and by symmetry, $\left\|b_{i}\right\| \nsim M$. We now obtain

$$
\begin{aligned}
x=\sum_{i=1}^{n}\left(a_{i}+b_{i}\right)=\sum_{i=1}^{n} a_{i}+\sum_{i=1}^{n} b_{i} & \in A\left(M^{*}\right) \oplus B\left(M^{*}\right) \\
& \left(A \cap G\left(M^{*}\right)\right) \oplus\left(B \cap G\left(M^{*}\right)\right),
\end{aligned}
$$

as desired.
Case 3. $x \in G\left(M_{p}^{*}, p\right)$. If $x \in G\left(M_{p}^{*}, p\right)$, then $x=x_{1}+x_{2}+\cdots+x_{n}$ where each x_{j} has the property that $\left\|x_{j}\right\|_{p} \geq M_{p}$ but $\left|p^{i} x_{j}\right|_{p} \neq m_{p, i}$ for infinitely many i. Now write $x_{j}=a_{j}+b_{j}$ where $a_{j} \in A$ and $b_{j} \in B$. Then

$$
\left\|a_{j}\right\|_{p} \wedge\left\|b_{j}\right\|_{p}=\left\|x_{j}\right\|_{p} \geq M_{p}
$$

gives that both $\left\|a_{j}\right\|_{p} \geq M_{p}$ and $\left\|b_{j}\right\|_{p} \geq M_{p}$. Hence, for all $i<\omega_{0}$,

$$
\left|p^{i} a_{j}\right|_{p} \wedge\left|p^{i} b_{j}\right|_{p}=\left|p^{i} x_{j}\right|_{p}
$$

gives that both $\left|p^{i} a_{j}\right|_{p} \neq m_{p, i}$ and $\left|p^{i} b_{j}\right|_{p} \neq m_{p, i}$ for infinitely many i. Therefore,

$$
x \in A\left(M_{p}^{*}, p\right) \oplus B\left(M_{p}^{*}, p\right) \subseteq\left(A \cap G\left(M_{p}^{*}, p\right)\right) \oplus\left(B \cap G\left(M_{p}^{*}, p\right)\right) .
$$

Case 4. $x \in G\left(M^{*}, p\right)$. In this case,

$$
\begin{aligned}
G\left(M^{*}, p\right) & =G(M) \cap\left(G\left(M_{p}^{*}, p\right)+G\left(M^{*}\right)\right) \\
& =(A(M) \oplus B(M)) \cap\left[\left(A\left(M_{p}^{*}, p\right) \oplus B\left(M_{p}^{*}, p\right)\right)+\left(A\left(M^{*}\right) \oplus B\left(M^{*}\right)\right)\right] \\
& =(A(M) \oplus B(M)) \cap\left[\left(A\left(M_{p}^{*}, p\right)+A\left(M^{*}\right)\right) \oplus\left(B\left(M_{p}^{*}, p\right)+B\left(M^{*}\right)\right)\right] \\
& \subseteq\left(A(M) \cap\left(A\left(M_{p}^{*}, p\right)+A\left(M^{*}\right)\right)\right) \oplus\left(B(M) \cap\left(B\left(M_{p}^{*}, p\right)+B\left(M^{*}\right)\right)\right) \\
& =A\left(M^{*}, p\right) \oplus B\left(M^{*}, p\right) \\
& \subseteq\left(A \cap G\left(M^{*}, p\right)\right) \oplus\left(B \cap G\left(M^{*}, p\right)\right) .
\end{aligned}
$$

Corollary 5.5. Let $G=A \oplus B$ with A torsion-free of rank 1. If $0 \neq a \in A$, then $\langle a\rangle \oplus B$ is *-valuated and a is primitive in G.

Proof. Observe that $\{a\}$ is a decomposition basis for A. Then by Proposition 3.2, a is primitive in A. So if $n a \in G\left(M^{*}, p\right)$, it must be that either $M \nsim\|a\|^{A}=\|a\|^{G}$ or
$m_{p, i} \neq\left|p^{i} n a\right|_{p}^{A}=\left|p^{i} n a\right|_{p}^{G}$ for infinitely many i. Thus, a is primitive in G. Finally, note that since $A \oplus B$ is $*$-valuated, $\langle a\rangle \oplus B$ must be as well.

Theorem 5.6. If G is a torsion free separable group, then G is a k-group.

Proof. Suppose $S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ is a finite subset of G. Then $S \subseteq C$ where $G=C \oplus B$ for some B and completely decomposable C of finite rank. Write $C=A_{1} \oplus A_{2} \oplus \cdots \oplus A_{m}$ where each A_{i} is torsion free of rank 1 . For each i, select a nonzero $a_{i} \in A_{i}$. Then there is a positive integer k such that $k x_{i} \in\left\langle a_{1}\right\rangle \oplus\left\langle a_{2}\right\rangle \oplus \cdots \oplus\left\langle a_{m}\right\rangle$. Observe that repeated applications of Corollary 5.5 then gives that each a_{i} is primitive and that the coproduct is *-valuated.

Example 5.7. We claim that $G=\prod_{\aleph_{0}} \mathbb{Z}$ is a k-group that does not have a decomposition basis. We note that G is indeed a k-group since by Theorem 139 of [4], G is separable, and by Theorem 5.6, torsion free separable groups are k-groups. Now, if G had a decomposition basis, it would be a direct sum of rank 1 groups by Theorem 4.3. Then Proposition 96.2 of [3] (due to Mishina [15]) provides that each rank 1 summand of G is isomorphic to \mathbb{Z}. This would mean that $G=\prod_{\aleph_{0}} \mathbb{Z}$ is free, a contradiction in light of Corollary 52 of [4] which states that $\prod_{\alpha} \mathbb{Z}$ is not free for any cardinal $\alpha \geq \aleph_{0}$. Hence, G does not have a decomposition basis.

We conclude by noting that Example 3.1 of [6] provides an example of a torsion free k-group that is not separable.

Bibliography

[1] D. Arnold, Finite rank torsion free abelian groups and rings, Lecture Notes in Math., vol. 931, Springer-Verlag, New York, 1982.
[2] L. Fuchs, Infinite abelian groups, vol. I, Academic Press, New York, 1970.
[3] L. Fuchs, Infinite abelian groups, vol. II, Academic Press, New York, 1973.
[4] P. Griffith, Infinite abelian group theory, Univ. of Chicago Press, Chicago, Ill., 1970.
[5] P. Hill, On the classification of abelian groups, photocopied manuscript, 1967.
[6] P. Hill and C. Megibben, Torsion free groups, Trans. Amer. Math. Soc. 295 (1986), 735-751.
[7] P. Hill and C. Megibben, Knice subgroups of mixed groups, Abelian Group Theory, Gordon-Breach, New York, 1987, pp. 89-109.
[8] P. Hill and C. Megibben, Mixed groups, Trans. Amer. Math. Soc. 334 (1992), 121142.
[9] R. Hunter and F. Richman, Global Warfield groups, Trans. Amer. Math. Soc. 266 (1981), 555-572.
[10] R. Hunter, F. Richman, and E. Walker, Warfield modules, Lecture Notes in Math., vol. 616, Springer-Verlag, New York, 1977, pp. 87-123.
[11] R. Hunter, F. Richman, and E. Walker, Existence theorems for Warfield groups, Trans. Amer. Math. Soc. 235 (1978), 345-362.
[12] C. Megibben and W. Ullery, Isotype Warfield subgroups of global Warfield groups, Rocky Mountain J. Math. 32 (2002), 1523-1542.
[13] C. Megibben and W. Ullery, The sequentially pure projective dimension of global groups with decomposition bases, J. Pure and Applied Algebra 187 (2004), 183-205.
[14] C. Megibben and W. Ullery, On global abelian k-groups, Houston J. Math. 31 (2005), 675-692.
[15] A. Mishina, On the direct summands of complete direct sums of torsion free abelian groups of rank 1, Sibirsk. Mat. Ž. 3 (1962), 242-249.

