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Abstract 

 

 

Precise and accurate estimates of demographics such as age structure, 

productivity, and density are necessary in determining habitat and harvest management 

strategies for wildlife populations.  The importance of incorporating detection rates into 

these demographic estimates cannot be overstated, as failure to include detection can lead 

to underestimated parameters.  Following some introductory material in chapter one, we 

describe a modeling exercise to explain heterogeneity in detection for passive-infrared 

(PIR) triggered cameras in chapter two.  This chapter illustrates the necessity of modeling 

camera detection when using PIR sensors in surveying populations for estimating 

demographics.  We then describe a method for estimating Eastern wild turkey (Meleagris 

gallopavo sylvesteris) population size and structure in Alabama at a relatively large scale 

using time lapse cameras in chapter three.  Through estimating turkey abundance, we 

determined and estimated important sources of variation within counts relating to 

detection, distribution, and density.  Prior to implementing this method as a monitoring 

tool, modeling of hypotheses should be improved for fitting turkey count data.  

Additional density hypotheses should be modeled to explain extra variation in counts.  

With the proper survey design and hypotheses, this method should provide unbiased and 

precise estimates of wild turkey populations.  In the final chapter, we provide some 

comprehensive thoughts on using cameras to survey wildlife populations and on 

population demographics estimation.  
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CHAPTER I: INTRODUCTION 

Precise and accurate estimates of demographics such as age structure, 

productivity, and density are necessary in determining habitat and harvest management 

strategies for wildlife populations.  Information on such demographics has previously 

been acquired through indices including transect sampling (Silveira et al. 2003), mark-

recapture (Soisalo and Cavalcanti 2006), aerial sampling (Amstrup et al. 2004), and 

automated camera surveys (Cobb et al. 1995).  These surveys often are opportunistic, and 

poor sampling design can lead to biased estimates from surveys because the counted 

portion of the population may not be representative of the entire population.  The 

importance of incorporating detection rates into these demographic estimates cannot be 

overstated, as failure to include detection can lead to parameter underestimation 

(MacKenzie et al. 2002).  In addition, much of this research is executed only on public 

lands, where population characteristics may be quite different from those on private 

lands; thus, extrapolating results to other areas may only provide biased estimates of 

population size and structure. 

Automated camera systems have evolved rapidly since methods to photograph 

wildlife were described by Gysel and Davis (1956).  Advanced camera technology 

coupled with the proper survey design has now been used to estimate population 

demographics (Cobb et al. 1996, Martorello et al. 2001, Soisalo and Cavalcanti 2006).  

An added benefit of automated camera surveys is they can easily and relatively 

inexpensively be repeated across space and time.  However, despite increasing use of
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 cameras to survey wildlife, few researchers have explicitly estimated detection rates for 

cameras, or more specifically, passive-infrared (PIR) sensors (Swann et al. 2004, 

Rowcliffe et al. 2008).  Automated cameras show great promise for estimating large-scale 

population demographics precisely and accurately, providing detection is accounted for 

and surveys are representative.   

 Wild turkeys are an ideal candidate for exploration of large scale population 

estimation techniques using automated camera surveys because they are relatively 

abundant and are easily attracted using bait.  Large turkey populations and increasing 

numbers of hunters in Alabama have arguably resulted in increased harvest, and 

questions have arisen as to the sustainability of this harvest.  In addition to suspected 

declines in productivity (Steve Barnett, pers. comm.), increased harvest may have 

negative impacts on Alabama turkey populations and hunter satisfaction.  Previous wild 

turkey surveys have largely been opportunistic and failed to incorporate detection into 

estimates. With a rigorous sampling design and ample observations, estimates from 

automated camera surveys should provide more accurate large-scale estimates than other 

methods of surveying wild turkey populations. 

We estimated detection rates of one commercially available PIR camera and 

described variability in detection rates based on taxonomic groups and body sizes of 

animals photographed to assess effects of variation in PIR sensors on demographic 

estimation.  Issues with incorporating detection of cameras led us to pursue use of time-

lapse triggered cameras for future research and surveys.  For a wild turkey population in 

Alabama, we estimated abundance, productivity, and age and sex structure of wild 

turkeys on an eco-region scale using spatially and temporally replicated time-lapse trail 
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camera surveys.  We modeled important sources of heterogeneity in detection of turkeys 

in counts related to environmental factors and placement of cameras to improve the 

precision of our estimates.  We also determined and estimated important sources of 

heterogeneity in the density and distribution of turkeys related to landscape scale habitat 

variables. 
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CHAPTER II: MODELING VARIATION IN DETECTION AMONG PASSIVE 

INFRARED TRIGGERED-CAMERAS IN WILDLIFE RESEARCH 

Abstract 

Precise and accurate estimates of demographics such as age structure, 

productivity, and density are necessary in determining habitat and harvest management 

strategies for wildlife populations.  Surveys using automated cameras are becoming an 

increasingly popular tool for estimating these parameters.  However, most camera studies 

fail to incorporate detection probabilities, leading to parameter underestimation.  The 

objective of this study was to determine the sources of heterogeneity in detection for trail 

cameras that incorporate a passive infrared (PIR) triggering system sensitive to heat and 

motion.  Images were collected at four baited sites within the Conecuh National Forest, 

Alabama using three cameras at each site operating continuously over the same seven-

day period.  Detection was estimated for four groups of animals based on taxonomic 

group and body size.  Our hypotheses of detection considered variation among bait sites 

and cameras.  The best model (w = 0.99) estimated different rates of detection for each 

camera in addition to different detection rates for four animal groupings.  Factors that 

explain this variability might include poor manufacturing tolerances, variation in PIR 

sensitivity, animal behavior, and species-specific infrared radiation.  Population surveys 

using trail cameras with PIR systems must incorporate detection rates for individual 

cameras.  Incorporating time-lapse triggering systems into survey designs should 

alleviate issues associated with PIR systems. 
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Introduction 

Precise and accurate estimates of population demographics such as age structure, 

productivity, and abundance are necessary to determine habitat and harvest management 

strategies for most wildlife species.  Knowledge of these parameters has been acquired 

through various indices including transect sampling (Silveira et al. 2003), mark-recapture 

(Soisalo and Cavalcanti 2006), aerial sampling (Amstrup et al. 2004), and automated 

cameras (Cobb et al. 1996).  Surveys using automated cameras are an increasingly 

popular tool for estimating these parameters; however, many studies fail to incorporate 

detection rates.  Variation in detection rates may bias parameter estimates (MacKenzie et 

al. 2002), and failure to incorporate detection may lead to parameter underestimation. 

Three general sources of bias in camera surveys can be identified:  those associated with 

differences among the species of interest, those associated with survey site 

characteristics, and those directly related to camera function. 

The use of automated cameras to photograph wildlife was first described by Gysel 

and Davis (1956).  Automated camera systems have evolved rapidly since that time and 

have been used to study avian nest predation (Lehman et al. 2008), foraging ecology 

(Weckel et al. 2006), nesting behavior (Margalida et al. 2006), activity patterns (Wong et 

al. 2004) and estimating population demographics (Soisalo and Cavalcanti 2006, 

Martorello et al. 2001, Cobb et al. 1996).  Despite increasing use of automated cameras to 

survey wildlife, few researchers have explicitly estimated detection rates for cameras or 

more specifically, PIR sensors (Swann et al. 2004, Rowcliffe et al. 2008; see Swann et al. 

2004 for a detailed description of PIR).  Researchers applying forward looking infrared 

(FLIR) in aerial surveys have more frequently noted problems with infrared sensors than 
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researchers using automated cameras.  Examples of sources for these problems included 

snow depth, airborne moisture, sunlight and background structure temperature (e.g., 

Kingsley et al. 1990, Amstrup et al. 2004, Bernatas and Nelson 2004, Locke et al. 2006, 

respectively).   

Our objective was to determine sources of heterogeneity in detection for a 

commercially available trail camera incorporating a PIR triggering system.  We estimated 

detection rates of one commercially available PIR camera and described variability in 

PIR detection rates based on taxonomic group and body size.  Our hypotheses of 

detection considered variation among bait sites and differences among individual cameras 

additive to effects of taxonomic group and body size.  Based on our results, we offer 

explanations of potential contributing factors to variability in detection rates.  We also 

suggest methods of incorporating detection rates into demographic estimates.  Finally, we 

propose an alternative that eliminates differences in detection among cameras. 

Methods 

We performed this research in conjunction with a wild turkey (Meleagris 

gallopavo) survey on the Conecuh National Forest (73,311 ha) in southern Alabama from 

23 August to 6 September 2006.  For this analysis, camera bait stations were established 

in areas consisting of small openings or dirt roads surrounded by managed pine forest.  

The average high temperature for the survey period was 33 °C, and the average low was 

19 °C.  Humidity averaged 76% and one rain event occurred during the study.  To ensure 

cameras had the opportunity to trigger, sites for this research were chosen where turkeys 

were observed during the survey.  A tree at least 20-cm DBH was selected to attach the 

cameras for each site, and a 10 m semicircle north of the tree was cleared of tall 
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vegetation and overhanging branches to limit camera lens obstruction and unintended 

camera activation.  All cameras were oriented north in order to avoid sun-blurred images.  

Each site was pre-baited with 4 L of cracked corn for 7 days prior to camera deployment, 

and bait was replenished only on the day of deployment if necessary.  Bait was broadcast 

from directly in front of the camera to 3 m out.  Three PIR activated Penn‟s Woods 

model DS-04 cameras (Penn's Woods Products, Inc., Export, PA; use of trade names or 

products does not imply endorsement) were deployed at each site and operated 

continuously during the same seven-day period.  Cameras were attached to the same tree 

as close to ground as possible, and all were aimed at bait center.  Units were set up to 

operate 24 h/day with a 10-sec delay between pictures.  We used settings recommended 

by Penn‟s Woods (use of trade names or products does not imply endorsement) for 

programming digital cameras.  Sites were visited a total of 3 times during the survey: pre-

baiting, camera deployment, and camera retrieval.  We examined images and recorded 

counts of each species. 

We developed hypotheses and corresponding models concerning detection rates a 

priori.  Species listed within these hypotheses were added post hoc. 

1) We hypothesized that detection varied by site, because each sites had a different 

vegetative background (different species, ages, vigor, etc.), and distance to 

background vegetation also varied.  This would lead to different detection rates 

across sites, but cameras at each site would have the same detection rate. 

2) We hypothesized detection varied by camera due to differing sensitivities of PIR 

sensors.  (Manufacturing tolerances, quality control, etc. caused each camera to 

detect animals at different rates.) 
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3) We hypothesized differences in detection occur due to animal size, so we grouped 

animals accordingly.  Large animals (i.e., white-tailed deer [Odocoileus 

virginianus]) have the highest detection rate because they have the larger area of 

infrared radiation compared to background.  Medium animals (i.e., wild turkey) 

are detected less frequently than large animals.  Small animals (i.e., raccoon 

[Procyon lotor], nine-banded armadillo [Dasypus novemcinctus], and cottontail 

rabbit [Sylvilagus floridanus]) are detected less than large and medium animals, 

but more than very small animals (i.e., gopher tortoise [Gopherus polyphemus] 

and mourning dove [Zenaida macroura]). 

4) We also hypothesized feathers (i.e., mourning dove and wild turkey) emit less 

infrared radiation which results in lower detection rates for birds than other 

animals. 

5) We hypothesized birds had lower detection rates than non-feathered animals, but 

larger sized birds (i.e., wild turkey) have higher detection rates than smaller birds 

(i.e., mourning dove). 

6) We hypothesized that a size threshold for detection existed with the PIR sensors.  

Because white-tailed deer have the greatest area of infrared radiation relative to 

the background, they have the highest odds of detection.  All other animals have 

the same detection rate. 

We combined additive effects of animal groupings with both site and camera 

models, respectively, to determine the best approximating model. 
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We used the Huggins closed population estimator (Huggins 1989, 1991) in 

Program MARK (White and Burnham 1999) to estimate the probability of detection (p) 

because it allowed us to include individual covariates.  We treated each camera as a 

potential capture event, therefore probability of initial capture and recapture were 

constrained to be equal.  An event occurred when at least one camera was triggered 

during any 9-sec interval.  We created a capture history for each event.  The initial 

capture was the image resulting from the camera that triggered first.  Recaptures 

consisted of the image(s) resulting from the other two camera(s) subsequently triggering 

within 9-sec of the first camera.  This interval was long enough to exclude multiple 

images of the same event from an individual camera and was enough time to allow 

potential recapture cameras to initialize, focus, and capture an image.  Models were 

compared in Program MARK using AIC corrected for small sample sizes (AICc, 

Burnham and Anderson 2002).  We estimated recapture probability in the Huggins model 

as a surrogate for detection; therefore, assessing goodness-of-fit (White and Burnham 

1999) was not appropriate.  Actual detection rates were not important for this exercise, so 

we compared odds ratios ( s) among cameras and animal groups.  We used indicator 

variables for sites and animal groups and a logit link to estimate log odds of detection.  

To compare among sites and animal groups, we calculated the relative odds of detection 

as the inverse natural log of the differences in the s for each group.  We did not present 

animal group-specific detection rates because they were different for each camera.  We 

compared the camera with the highest odds of detection to other cameras, and the animal 

group with the highest odds of detection to other groups.  Model averaging was not 

incorporated into these results, since model selection was unequivocal (wAICc = 0.9998). 
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Results 

Data at one site were discarded because only one camera at the fifth site recorded 

any images.  Even prior to modeling, the number of events triggered by individual 

cameras at each site varied considerably.  The PIR sensors detected a total of 868 events, 

701 of which resulted in an image of an animal (81%).  Variation in the number of events 

was high at each site (Table 2.1).  Two sites (1 and 4) had a high percentage of images 

with animals present and low variability between cameras (83-93% and 97-100%, 

respectively).  The other two sites (2 and 3) had greater variation (34-62% and 50-83%, 

respectively) and a greater number of images that did not include any animals. 

The most parsimonious and best approximating model was p(camera+size) (Table 

2.2).  This model estimated detection rates for individual cameras at each site and four 

size covariates.  It had the largest model probability (w = 0.9998), and best fit (Dev = 

1845).  The next best approximating model was p(camera+threshold) (∆AICc = 18), but 

had negligible model probability (w = 0.0002).  Odds of detection ranged from 0.02 to 

0.66 among cameras (Figure 1).  Therefore the camera with the smallest detection rate 

was 0.02 times as likely to detect an animal as the one with the largest detection.  Large 

animals were most likely to be detected followed by small, medium, and very small 

animals, respectively (Figure 2).  Despite large differences in relative odds of detection, 

95% confidence intervals overlapped in most cases (Figures 1 and 2). 

Discussion 

One potential cause of variation in detection rates among different animal groups 

is the variation in intensity of infrared radiation a species emits.  Most commercially 

available trail cameras operate using PIR, which only detects changes in background 
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infrared radiation wavelengths.  Therefore, if species have different body temperatures 

and insulative properties (feathers, fur, shell, scales, etc.), then differences in PIR 

sensitivity would contribute to variability in detection rates between animal groups.  For 

example, Butler et al. (2006) could not detect turkeys on the roost with a FLIR camera 

unless their featherless heads were exposed.  Counter to our size hypothesis, the odds of 

detecting medium-sized animals (turkeys) were lower than some smaller animals (small 

group).  Perhaps due to their feathered covering, turkeys might emit less infrared 

radiation than small mammals.  Although the feather hypotheses were not supported by 

our data, lack of fit for these models could have been caused by limited sample size and 

clustering non-feathered animals into a single detection group.  Ideally, we would have 

modeled detection rates for each species, but some species were detected infrequently. 

Both background temperature and environmental conditions (rain, snow, wind, 

cloud cover, etc.) are potential causes of lower detection rates.  If differences in 

background temperature and the target species are not large enough, the PIR sensor will 

not trigger the automated camera to capture an image.  Swann et al. (2004) found some 

models of commercially available automated cameras were more sensitive to changes in 

background temperature than others.  Bernatas and Nelson (2004) determined overcast 

skies allowed for greater detection of bighorn sheep (Ovis canadensis) than sunny skies 

in aerial FLIR surveys.  They also determined that flat rock surfaces emitted more 

infrared radiation than soil, grass, and sagebrush vegetation; therefore, sheep were 

detected less frequently in these areas.  Kingsley et al. (1990) reported problems with 

detecting ringed seal (Pusa hispida) lairs on ice using FLIR that were related to snow 

depth, ambient temperature, wind, and sunlight.  Known polar bear (Ursus maritimus) 
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dens were missed in a FLIR survey due to fresh snow, wind, and airborne moisture 

(Amstrup et al. 2004).  Locke et al. (2006) found external temperatures of turkeys and 

background structure (roost and ground) to be too close, regardless of other weather 

conditions, which made detecting wild turkeys with FLIR difficult.  While these variables 

could contribute to lower or varied detection rates, we controlled for them by placing 

sites in similar habitats, aiming all three cameras at the same focal point, and by 

collecting data at the four sites at the same time. 

Manufacturing tolerances of camera components could also contribute to 

variability in detection rates and could be linked to several sources.  The PIR components 

could have varied in sensitivity, which may have led to variable detection rates.  Swann 

et al. (2004) demonstrated leveling a camera may not align the PIR sensor detection zone 

perfectly to the area of interest.  This misalignment could lead to presumed false 

detections where an animal is present on site, missed by the camera, but detected by the 

sensor.  Therefore, the direction in which the sensor is facing when mounted inside the 

camera housing could influence detection rates.  Because our intent was to examine 

performance of the cameras under field conditions, we did not test the aim or sensitivity 

of PIR sensors in our units; thus, they are plausible explanations for at least some 

variation we observed.  However, we did aim cameras at the same focal point at each site.  

If our PIR sensors were mounted within the cameras similarly, aim should not have 

contributed to variability in detection. 

Detection rates for individual cameras should be incorporated into population 

estimation methods to minimize the effects of PIR sensor variability.  Failure to account 

for detection reduces the reliability of estimates.  The use of variance inflation factors 
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such as ĉ in model selection favors simpler models when model fit is poor, but does not 

eliminate or reduce the bias in parameter estimates (Burnham and Anderson 2002).  An 

“observer” effect could be included into the models that would account for variability in 

PIR sensitivity of individual cameras.  This method could complicate analyses because a 

parameter for each camera would be added to the model, potentially increasing amount of 

data needed to yield reasonable precision.  Mixture or random effects models would be 

more parsimonious than observer effects models and could estimate detection based on 

groups of cameras with similar rates (Pledger 2000).  They also allow for the use of 

covariates and can be fitted using Program MARK.  However, the lack of ability to 

distinguish among sources of variation is inherent within these models.   

Much of the literature that addresses use of trail cameras to estimate population 

parameters is based on the assumption that a direct relationship exists between the 

number of images captured over time and density of the species being surveyed (e.g., 

Jacobson et al. 1997, Main and Richardson 2002, Silveira et al. 2003, McKinley et al. 

2006).  These approximations do not include measures of detection for individual 

cameras or for environmental factors.  Proper use of mark-recapture methods circumvents 

these issues; however, for estimating population size, they are particularly sensitive to un-

modeled heterogeneity in detection rates (White et al. 1982).  Thus, differences in 

detection rates among cameras must be estimated to avoid biased estimates of population 

parameters.  Swann et al. (2004) explored measuring zones of detection for several 

models of trail cameras.  Rowcliffe et al. (2008) used animal group sizes and movement 

rates to accurately estimate density of three of four ungulate species.  If PIR triggering 

systems are used for population estimation, identifying these zones of detection for 
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individual cameras and controlling for group size and environmental conditions may 

reduce the effect of heterogeneity in animal detection caused by PIR sensors (Swann et 

al. 2004).  This identification would in turn reduce bias in population estimates, but could 

not fully account for large differences in detection among cameras. 

Time-lapse systems provide more reliable estimates and require fewer parameters 

because they eliminate the need to estimate detection rates for individual cameras.  With 

a time-lapse system, the camera captures an image on a fixed interval, irrespective of 

species presence, location, or environmental conditions.  Digital trail cameras have great 

advantages over 35mm cameras that allow them to function for several weeks in the field 

and store thousands of images, thus making surveys using a time-lapse triggering system 

more feasible than in the past.  Depending on the time interval, the number of images that 

must be analyzed could be increased substantially by using time-lapse systems.  

However, eliminating the effects of PIR sensor variability outweighs this cost because of 

more parsimonious model selection (fewer parameters and more data) and less biased 

demographic estimates (less un-modeled variation in detection).  Using a time-lapse 

system would further standardize surveys because they would be performed on a fixed 

interval.  Because of the inherent variability associated with PIR systems, time-lapse 

systems reduce the potential sources of variation in abundance estimation from repeated 

count (e.g., Royle et al. 2005) or mark-recapture methods. 
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Table 2.1.  Number of events triggered by each camera at each site 

and percentage of images with animals present from a wildlife 

survey of Conecuh National Forest, summer 2006. 

Site Camera Total images % images w/animals 

1 1 86 83 % 

1 2 49 86 % 

1 3 107 93 % 

2 4 110 62 % 

2 5 98 59 % 

2 6 56 34 % 

3 7 48 83 % 

3 8 6 67 % 

3 9 4 50 % 

4 10 121 98 % 

4 11 26 100 % 

4 12 157 97 % 
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Table 2.2.  Comparison of models for estimating detection rates of PIR-activated cameras from Conecuh National 

Forest, summer 2006.  Values for AICc, relative difference in AICc, model probability (w), likelihood (Lik), number 

of parameters in each model (K), and deviance (Dev) are shown. 

Model
 

Hypotheses
1 

AICc
2 

Δ
3 

w
4 

Lik
5 

K
 

Dev
6 

p(camera+size)
 

1,3 1877 0 0.9998 1.00 16 1845 

p(camera+threshold)
 

2,6 1895 18 0.0002 0 13 1868 

p(camera)
 

2 1904 27 0 0 12 1880 

p(camera+feathers)
 

2,4 1905 28 0 0 13 1879 

p(camera+feathersize)
 

2,5 1906 29 0 0 14 1878 

p(site+size)
 

1,3 2126 249 0 0 8 2109 

p(site+threshold)
 

1,6 2142 265 0 0 5 2132 

p(site)
 

1 2151 274 0 0 4 2143 

p(site+feathers)
 

1,4 2152 275 0 0 5 2142 

p(site+feathersize)
 

1,5 2153 276 0 0 6 2141 

p(.)
 

Intercept 2184 307 0 0 1 2182 

1
Indicates hypothesis(es) supported by the model; see text for descriptions. 

2
Akaike‟s Information Criterion corrected for small sample size. 

3
AICci – min(AICc). 

4

R

i

ii

1

)5.0exp(/)5.0exp(  

5
 )5.0exp( i  

6
-2ln(Lik(model|data)) 
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Figure 2.1.  Odds of detection of automated cameras relative to the camera with the highest estimated detection (9) and 95% 

confidence intervals. 
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Figure 2.2.  Odds of detection relative to the most frequently detected size of animal 

(large) and 95% confidence intervals. 
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CHAPTER III: USING TIME-LAPSE CAMERAS TO ESTIMATE ABUNDANCE 

AND POPULATION STRUCTURE OF EASTERN WILD TURKEYS IN 

SOUTHWEST ALABAMA 

Abstract 

Unbiased population size and structure estimates are lacking for wild turkeys 

(Meleagris gallopavo), particularly at large scales and for reasonable costs.  Large scale 

estimates are required when harvest management occurs at the state level.  In this study, 

we estimated abundance, productivity, and age and sex structure of wild turkeys on a 

larger scale in southwest Alabama using replicated time-lapse trail camera surveys.  We 

determined and estimated important sources of heterogeneity in detection of turkeys 

related to environmental factors and placement of cameras.  We also determined and 

estimated important sources of heterogeneity in the density and distribution of turkeys 

related to landscape scale variables.  Estimates of density were similar to those found in 

previous literature in similar habitats.  However, in addition to problems associated with 

extrapolation, model fit was poor for both adult gobblers and poults, which resulted in 

imprecise estimates.  A post hoc weighting system was used to reduce effects of 

extrapolation.  After weighting, population estimates were reasonable and comparable to 

population size gleaned by state biologists.  To increase precision, we suggest improving 

modeling of hypotheses for fitting wild turkey count data.  We also suggest modeling 

alternative density hypotheses to explain extra variation in counts.  We believe with 
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proper survey design, hypotheses modeling, and some additional research, repeated count 

density models could provide un-biased and precise estimates of wild turkey populations. 

Introduction 

The southeastern United States contained an abundance of wild turkeys in pre-

colonial times (Kennamer et al. 1992).  Turkey populations declined to all time lows due 

to unregulated hunting and timber harvest by the early 1900s (Mosby 1975).  Restocking 

efforts were unsuccessful until the development of the cannon net for capturing wild 

turkeys (Holbrook 1952).  Populations have increased dramatically throughout the 

remainder of the century (Mosby 1959 and 1975, Bailey 1980, Kennamer and Kennamer 

1996, Tapley et al. 2001).  Today hunted turkey populations thrive in every state except 

Alaska, much of the southern Canada, and Mexico.  The resurgence of turkey populations 

has resulted in increased harvest, and questions have arisen as to the sustainability of this 

harvest.  Current population estimation techniques are potentially fraught with bias and 

too inaccurate for managers to make well-informed management decisions for 

populations at large spatial scales (e.g. Main and Richardson 2002, McKinley et al. 2006, 

Jacobson et al. 1997, Silveira et al. 2003). 

Poor sampling design can lead to biased estimates from surveys because the 

counted portion of the population may not be representative of the entire population.  

Wild turkey surveys have largely been opportunistic and have included roadside counts 

(Bartush et al. 1985, Cobb et al. 1995), automated camera surveys at bait stations (Cobb 

et al. 1995), aerial surveys (Locke et al. 2006), roost surveys (Butler et al. 2006), and 

gobble counts (Lint et al. 1995).  Many of these surveys are conducted on public lands, 

where densities might be quite different from those on private lands.  Thus, extrapolating 
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these results to other areas may provide only biased estimates of population size and 

structure.  Variation in detection rates (relationship between the counted and uncounted 

portions of the population) may bias parameter estimates (MacKenzie et al. 2002), and 

failure to incorporate detection may lead to underestimation of parameters.  Surveys 

using automated cameras are an increasingly popular tool for estimating population 

parameters (Rowcliffe and Carbone 2008); however, many surveys fail to incorporate 

detection rates into estimates.  Using passive infrared triggered cameras may introduce 

additional heterogeneity into estimates of detection, but this issue is eliminated using a 

time-lapse system (see Chapter I, Damm et al. unpublished). 

With an appropriate sampling design and intensity, estimates from time-lapse 

camera surveys may provide more accurate estimates of wild turkey density at large 

spatial scales.  Estimates of density that account for detection can be obtained from 

repeated count surveys (Royle 2004), and survey replication across space and time is 

attainable with time-lapse cameras.  With adequate temporal and spatial replications, this 

approach could be used to minimize bias in estimates of population size and structure of 

turkeys by modeling heterogeneity in density and detection at landscape scales.  With 

repeated count surveys, uncertainty regarding the sources of heterogeneity can be 

incorporated using multi-model inference (Burnham and Anderson 2002).  Potential 

sources of variation in counts are modeled from a priori hypotheses concerning detection 

and density.  After correcting for differences in detection, estimates of density based on 

landscape characteristics could be used to estimate populations over large areas (Borchers 

et al. 2002). 
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Alabama‟s population of Eastern wild turkeys (M. g. sylvesteris) is approximated 

at over 500,000 birds by Alabama Department of Conservation and Natural Resources 

(ADCNR).  Harvest averages 62,500 gobblers per year (51,600 combined fall 2007 and 

spring 2008 gobbler harvest; Barnett and Barnett 2008).  Liberal spring hunting seasons 

and higher bag limits probably have caused increased harvest (Kurzejeski and Vangilder 

1992).  Current Alabama wild turkey population figures are based on land cover 

classifications and regional wildlife biologists‟ knowledge of habitat quality, brood-

rearing success, and other factors, while the number of harvested gobblers is estimated 

through a mail survey (Barnett and Barnett 2008).  In reality, the actual size and structure 

(e.g. sex and age ratios) of the turkey population changes annually and seasonally as a 

result of variations in reproductive success, availability of suitable habitat, and survival.  

Reliable estimates of population demographics such as age and sex structure, 

productivity, and abundance are especially critical, given the large harvest in Alabama.  If 

harvest is too large or occurs at the wrong time of year, it may have adverse effects on 

productivity that year in the form of illegal hen kill (Whitaker et al. 2005) and hens 

potentially not reproducing.  Estimating turkey populations is important for evaluating 

and recommending management practices and in determining future research needs 

(Kurzejeski and Vangilder 1992).  The most recent studies of wild turkeys in Alabama 

were conducted ~25 years ago.  These studies examined both historical and re-stocked 

turkey populations in southern (Speake et al. 1969, Gardner et al. 1972, Speake et al. 

1975, Fleming and Speake 1976, and Speake 1980) and northern (Everett et al. 1978, 

Everett et al. 1980, Speake 1980, Metzler and Speake 1985, and Speake et al. 1985) 

Alabama.  Information from these studies and others in similar habitats could be used to 
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develop a population model, but estimates of survival, reproductive success, suitable 

habitat, and harvest rates probably do not represent current conditions.  Therefore, a 

monitoring tool is necessary to improve the accuracy of abundance estimation and 

reproductive success and for informing decisions regarding harvest rates, habitat 

management, and conservation. 

Information on population demographics has been acquired through indices 

including transect sampling (Silveira et al. 2003), mark-recapture (Soisalo and Cavalcanti 

2006), aerial sampling (Amstrup et al. 2004), and automated camera surveys (Cobb et al. 

1995).  Methods of automated camera photography for wildlife were first described by 

Gysel and Davis (1956).  Automated camera systems have evolved rapidly since that time 

and have been used to study avian nest predation (Lehman et al. 2008), foraging ecology 

(Weckel et al. 2006), nesting behavior (Margalida et al. 2006), activity patterns (Wong et 

al. 2004), and for estimating population demographics (Soisalo and Cavalcanti 2006, 

Martorello et al. 2001, Cobb et al. 1995).  Using automated cameras in wildlife research 

is not a new idea; however, technological advances allow for easier data retrieval, longer 

battery life, increased data storage space, and reduced maintenance (Bolton et al. 2007).  

These advances allow researchers to obtain larger sample sizes with lower disturbance to 

surveyed species than were previously possible. 

The goal of this research was to develop and test a method for achieving relatively 

unbiased estimates of population size and structure of wild turkeys at reasonable cost 

using time-lapse cameras.  Our specific objectives were to estimate abundance, 

productivity, and age and sex structure of wild turkeys on a large scale in southwest 

Alabama using replicated time-lapse trail camera surveys.  We determined and estimated 
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important sources for variation in detection of turkeys in counts related to environmental 

factors and placement of cameras.  We investigated and estimated important sources for 

variation in density and distribution of turkeys related to landscape scale habitat 

variables. 

Methods 

Our study area was located in District V of the ADCNR in southwest Alabama 

and spanned Choctaw, Clarke, Wilcox, Monroe, Washington, Conecuh, Escambia, 

Baldwin and Mobile counties (Fig. 1).  The majority of the land in the district was 

privately owned, but was interspersed with relatively small parcels of public land.  Most 

of the area was rural and forested, but also contained agricultural land and other open 

type habitats such as clear cuts and wildlife openings.  The Alabama and Tombigbee 

Rivers flowed south through the study area, which resulted in corridors of river 

floodplain hardwoods.  The southern portions of Mobile and Baldwin counties consisted 

of large-scale agriculture and vast urban areas in addition to some inaccessible land 

(Mobile-Tensaw Delta) and thus were removed from the scope of inference (Fig. 1). 

We randomly selected 100 survey points in the study area using a two-stage 

cluster sample and a geographic information system (GIS).  We clustered points to reduce 

travel time between surveys.  The nine-county study area was initially subdivided into 

square primary units 6084 ha in size for logistical purposes (Fig. 1).  A random number 

generator was used to select twenty primary units and five alternates.  Each primary unit 

was subdivided into secondary units 60.8 ha in size (100 in each primary) to ensure even 

turkeys with the smallest home ranges had some probability of being counted.  Within 

each of the selected primary units, five secondary units and five alternates were selected 
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at random for surveys (Fig. 2).  This number of selected sampling units allowed us to 

distribute cameras among observers for logistical purposes while achieving our goal of 

sampling 100 secondary units within a reasonable amount of time. 

Land ownership in each sampling unit was determined using county plat maps 

that contained information regarding property boundaries, parcel size, and landowner 

names.  These maps were compared to digital-ortho-photo quadrangles and land cover of 

southwest Alabama overlaid with township and range grids to locate survey points and 

their landowners.  Contact information for landowners was researched through county 

courthouses, phone books, internet, and by visiting landowner residences. 

Time-lapse camera field surveys were conducted 7 July through 12 September 

2008 by four state-employed biologists and one graduate student.  Survey plot centers 

were located with handheld GPS units using UTM coordinates acquired from our GIS.  

We arbitrarily selected camera sites within each secondary sampling unit close to plot 

center and in brood-rearing habitat (e.g. wildlife openings, old fields, low traffic roads, 

landings, or clearings).  Ideal brood-rearing habitat consists of herbaceous vegetative 

groundcover holding abundant insects interspersed with forest (Porter 1992).  At each 

site, we attached the camera to a tree at least 20-cm DBH, and cleared tall vegetation and 

overhanging branches within 10m on the north side of the tree to limit camera 

obstruction.  Sites were established so cameras could be aimed north to avoid sun-blurred 

images.  Seven days prior to sampling each site, we pre-baited sites with two gallons of 

cracked corn, and bait was replenished on the day of deployment if necessary.  Bait was 

broadcast within 3 m directly in front of the camera and was raked into the ground to 

slow rate of bait consumption.  Reconyx PC-85 game cameras (RECONYX, Inc., 
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Holmen, Wisconsin; use of trade names or products does not imply endorsement) were 

attached on the camera tree and aimed north as close to ground as possible.  All cameras 

operated on time-lapse, captured an image every 4 min, and were retrieved after seven 

days.  Sites were visited a total of three times: 1) pre-baiting; 2) camera deployment; and 

3) camera retrieval. 

Wild turkeys were counted in each image and divided into age and sex classes 

using physical characteristics (e.g. plumage, beard and spur length, body size).  We 

categorized individuals into classes of adult gobblers (males at least 2 years old), hens 

(females at least 1 year old), juvenile gobblers (males 1 year old), poults (young of the 

year of any age), or unknowns.  Birds were classified as unknown if we were unable to 

determine their sex or age.  Computer software limitations forced us to increase survey 

occasions to one hour instead of using each image as the interval (every 4 min).  We used 

the maximum count for each class in any one image during one-hour intervals for our 

analysis.  Since turkeys are diurnal, only images from between 30 min before sunrise and 

30 min after sunset were used.  To reduce bias associated with human disturbance during 

camera deployment, we allowed two-4 min images to lapse before beginning the first 

one-hour interval beginning after cameras were deployed. 

We determined land cover characteristics for each survey point using circular 

buffers from the 71-class Alabama GAP data (Silvano et al. 2008) using ArcGIS (ESRI, 

Inc., Redlands, CA;  use of trade names or products does not imply endorsement).  We 

pooled these class data into more general groupings for habitat covariates relating to 

density (Table 3.1).  Pooling resulted in six groups: hardwood classes, open pines, open 

habitat classes, forested classes, developed classes, and monoculture pine classes.  We 
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estimated habitat relationships based on the percentage of landcover of each group at two 

arbitrary scales:  the first (100ha) represents the approximate summer home range size of 

a hen with a small brood (Speake et al. 1975, Porter 1980); the second (1000ha) 

represents the approximate largest summer home range size of gobbler turkeys (Godwin 

et al. 1995).  We standardized all covariate data by subtracting the mean and dividing by 

the standard deviation.  We grouped similar landcover classes for covariates to represent 

hypotheses of density (Table 3.2). 

We defined detection as the probability of capturing turkeys in images, assuming 

they are present in the sampling unit, and developed a number of a priori hypotheses 

regarding detection rates. 

1. Because camera stations were located in early succession type habitats, we 

hypothesized that detection would decrease as temperature increased.  Hens with 

poults may select forested areas over open early succession areas to escape in 

periods of high heat (Rumble and Anderson 1996).  As a surrogate for 

temperature, we modeled detection using time of day and hypothesized detection 

would be greater in morning and late afternoon when temperatures were lower.  

Cobb et al. (1995) and Wunz (1990) both found a bimodal activity pattern at bait 

stations during camera surveys. 

2. We hypothesized that detection would increase as more turkeys found the bait 

station; conversely, we hypothesized detection would decrease as bait was 

depleted.  We modeled these changes in detection using time since camera 

deployment.   
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3. We also hypothesized that detection increased with increasing amounts of 

precipitation, because turkeys move to more open areas during and immediately 

following rain events, and they spend even more time in openings during and after 

larger amounts of rainfall (Philip Damm, pers. obs.).  Our camera locations were 

often located in openings likely to be used by broods, so we expected detection to 

increase with amount of precipitation.  Daily precipitation amounts were available 

from the nearest weather station of the National Oceanic and Atmospheric 

Association (<http://www.ncdc.noaa.gov/oa/climate/stationlocator.html>; 

accessed June 2009). 

4. We hypothesized detection increased where food resources on the landscape were 

lacking, and turkeys were more likely to be detected because they relied more 

heavily on corn bait in these areas. 

5. We hypothesized detection varied by the person selecting the camera site 

(hereafter, observer effect), because each observer could have a different 

perception of the “best” location to place the camera. 

6. We hypothesized detection increased as distance to nearest stream decreased. 

Sites that are closer to streams (i.e. roost sites) would be visited more frequently 

than those farther away. 

7. We hypothesized detection increases with calendar date for poults.  As poults age, 

their nutritional requirements change from mostly insects to a more diverse diet 

(Hurst 1992).  This diverse diet would lead them to use bait more frequently as 

they age. 
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We defined density as the number of turkeys per sampling unit, and developed 

density hypotheses a priori.  For models of density, we developed logical combinations 

of these covariates.  For example, we hypothesized that increasing amounts of 

monoculture pine habitat would make hardwood habitats more important; therefore, we 

modeled an interaction between area of hardwoods and area of monoculture pine (see 

hypotheses 1 and 6). 

1. We hypothesized that turkey density increased as percentage of hardwoods 

increased.  Hen turkeys prefer roosting in trees near water (Chamberlain et al. 

2000, Flake et al. 1996) and in the branches of trees that would grow in such areas 

(Flake et al. 1996).  Turkeys have been observed roosting in bald cypress trees 

located in standing water (Wilson 2005).  Several studies recognized wild turkeys, 

including hens with broods, used hardwoods as habitat (Phalen et al. 1986, Exum 

et al. 1987, Miller et al. 1999).  We estimated this relationship in two ways.  In the 

first model, we used the percentage of hardwoods through land cover classes.  In 

the second model, we used stream length in meters as a surrogate for available 

hardwoods in stream bottoms.  Stream bottoms are likely to be associated with 

older stands of hardwoods and better turkey habitat because current silvicultural 

methods typically avoid harvesting in streamside management zones. 

2. We hypothesized density increases as available stream habitat increases. Features 

of quality brood-rearing habitat may occur near streams (Smith et al. 1990, Stys et 

al. 1992, Palmer and Hurst 1996).  Miller and Conner (2005) and Burk et al. 

(1990) found all sex and age classes of turkeys use streams. 
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3. We hypothesized density increases as availability of older, managed (burned and 

thinned) open canopy pines increase.  Both gobbler and hen turkeys select older 

(>30 years) pine stands as foraging and roosting habitat (Miller et al. 1999).  Hens 

use saw timber sized pine (Chamberlain et al. 2000) and intensively managed pine 

(Miller and Conner 2007) for foraging.  We used the AL GAP open understory 

longleaf pine as the only measure of open canopy pine forest.   

4. We also hypothesized since turkeys have been associated with many forest types, 

they would be found in similar densities in all of them.  Therefore, density 

increases as the amount of forested habitat types increases. 

5. We hypothesized density increased as amount of open habitat types increased.  

Turkeys forage in these areas for invertebrates and seeds as well as to provide 

escape cover (Hurst 1981, Hurst and Dickson 1992, Rumble and Anderson 1993, 

Speake et al. 1975); and these characters are even more applicable to brooding 

hens (Phalen et al. 1986, Hurst and Dickson 1992, Porter 1992).  Also, Miller and 

Conner (2005) found all turkeys use agriculture fields as a source of food.  The 

open habitat covariate in this model included three classes of shrub/scrub, 

pasture/hay, and row crop. 

6. We hypothesized that density decreased with increasing area of closed canopy 

pines.  Once these pines reach canopy closure, foraging opportunities are limited, 

which results in lower densities.  Exum (1985) reported relatively low turkey 

density on a commercial pine forest in south Alabama.  This hypothesis also 

stems from personal observation of un-managed (absence of prescribed fire and 

thinning operations) pine stands in southwest Alabama.  Evidence suggests wild 
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turkeys readily use pine plantations, although proper management (e.g. burning, 

thinning, etc.) in these stands is critical (Allen et al. 1996).  We combined the 

density of plantation pine and loblolly land cover for the closed canopy pine 

covariate. 

7. Finally, we hypothesized density decreased with increasing amounts of 

development.  Developed areas are either unsuitable as habitat (e.g. impervious 

surfaces) or contain too much human disturbance for turkeys to inhabit in larger 

numbers. 

We used binomial and Poisson mixture models based on repeated count data to 

estimate probability of detection, density, and relationships to covariates (Royle 2004).  

We used a logit link to estimate detection and a log link to estimate density.  We 

compared models using AIC corrected for small sample size (AICc, sample size = 

number of sites) and model probability (w) (Burnham and Anderson 2002).  We first 

compared all detection (p) models for each sex and age class of turkey using the average 

density model (λ(.)).  Then, to reduce the total number of models, only the best 

approximating detection models were used to compare density models.  We calculated 

effect sizes of model covariates (β) and their standard errors (SE) to determine the 

importance of landscape characteristics on turkey distributions. 

Density was estimated using model-averaging to incorporate uncertainty in model 

selection (Burnham and Anderson 2002).  First we calculated βs for each covariate of 

density for each secondary sampling unit in the study area.  Then, we estimated density 

for each class using each a priori model.  These estimates were multiplied by the strength 

of evidence for each respective model and summed across the sampling units to estimate 
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population size.  Finally, we obtained 95% confidence limits on the estimates using the 

variance on the βs and methods described by Dahiya and Guttman (1982) for a log-

normally distributed set of predictions.  Due to extreme outliers in poult and adult 

gobbler sampling unit densities, we weighted each density with the probability of 

occurrence under a log-normal distribution using the mean and variance from sampled 

sites (Stein 1956).  In doing so, we simply imposed the log-normal distribution as an a 

priori distribution of the study area density estimates.  We used the same procedure to 

weight 95% confidence limits on each sex and age class‟ density.  Productivity was 

calculated for both weighted and un-weighted estimates by dividing the total number of 

poults by total number of hens.  Sex ratios were calculated similarly, and both juvenile 

gobblers and adult gobblers were included.  Due to time constraints, we did not calculate 

prediction intervals for productivity and sex ratios. 

Results 

During the survey period, 5 observers collected 178,952 images at 101 sampling 

units during the survey period.  Turkeys were present in 2,712 (1.5%) of those images.  

Due to logistical constraints, surveys at 43 sites were less than 7 days.  The number of 

survey occasions (one-hour intervals during daytime) at each site ranged from 47 to 114 (

x  = 93; 7 days = ~91 occasions).  Hens were observed in images more frequently (70%) 

than any other sex or age class, followed distantly by poults (24%; Table 3.3).  More hens 

were counted in images (n = 3,358) than other classes, followed by poults (n = 2,222; 

Table 3.3).  Adult gobblers were conspicuously absent during surveys, both in terms of 

frequency (n = 279) and count (n = 397, 5%; Table 3.3).  Of the surveyed points where 
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turkeys were detected (n = 55), hens were observed at 91% and poults only 39%.  

Notably, we failed to sex or age 328 turkeys (4% of total count). 

Detection model selection 

The most parsimonious hen detection model was unequivocal (w = 0.98) and 

estimated detection based on time of day and amount of daily precipitation (Table 3.4).  

Detection increased with amount of precipitation, and we found a quartic relationship 

between detection and time of day (Figure 3).  The most parsimonious poult detection 

model also was unequivocal (w = 0.99) and estimated detection based on time of day and 

by the person selecting the survey site (Table 3.5).  Detection was different for each 

observer, and we found a quartic relationship between detection and time of day (Figure 

4).  The most parsimonious juvenile gobbler detection model estimated detection based 

on time of day and by each observer (Table 3.6).  Detection was different for each 

observer, and we found a quartic relationship between detection and time of day (Figure 

5).  Time since camera deployment (Figure 6) and amount of daily precipitation also 

probably are related positively to detection of juvenile gobblers; however, evidence for 

these models was considerably lower (ΔAICc = 5 and 6, respectively; w = 0.09 and 0.04, 

respectively).  The most parsimonious adult gobbler detection model estimated detection 

based on time of day and observer (Table 3.7).  Detection was different for each observer 

(one observer did not detect any adult gobblers, so only 4 estimates were possible), and 

we found a quartic relationship between detection and time of day (Figure 7).  Amount of 

precipitation also affected detection for adult gobblers positively (Figure 8); however, 

evidence for this model was lower (ΔAICc = 1; w = 0.33), and it did not explain as much 

variation in detection of our data. 
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Density model selection 

Models of hen density based on land cover within 100ha were more parsimonious 

than 1000ha models; therefore, 1000ha models were omitted from results tables (Table 

3.8).  The most parsimonious hen density model estimated decreasing density with 

increasing area of development (Figure 3.9; Table 3.14), even though it was only slightly 

better than the model that included the amount of open area.  All four models with model 

probabilities > 0 included the area of development covariate.  Although the data provided 

strong evidence in support of the top four models (ΔAICc ≤ 5), adding parameters to area 

of development only improved model deviance only slightly. 

All 100ha landscape buffer models for poults were more parsimonious than 

1000ha models; therefore, 1000ha models were omitted from results tables (Table 3.9).  

The most parsimonious poult density model was unequivocal (w = 1.00) and estimated 

density by a positive interaction between area of hardwoods and monoculture pines.  

Both area of hardwoods and monoculture pines had positive relationships to poult density 

(Figure 10; Table 3.14). 

All 100ha landscape buffer models for juvenile gobblers were more parsimonious 

than 1000ha models; therefore, 1000ha models were omitted from results tables (Table 

3.10).  Two juvenile gobbler density models were essentially equivocal in terms of 

evidence; they resulted in identical deviance and AICc and model probabilities were 

similar.  The best model estimated density based on an interaction between length of 

streams and amount of monoculture pine.  Both monoculture pine area (Figure 3.11) and 

stream length (Figure 3.12) had positive relationships to density, although the estimate of 

the interaction was negligible (Table 3.14).  The second best model estimated density by 
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additive positive relationships of length of streams and area of monoculture pine.  While 

area of open pine was included in this model, the magnitude of the relationship was 

negligible (Table 3.14; Figure 3.13).  Although nine models were at least marginally 

supported by our data (ΔAICc < 8), model probabilities were negligible (0.01-0.02) for 

all but the two best models. 

Adult gobbler density model selection was more ambiguous than other classes, as 

the top approximating models included covariates from both 100ha and 1000ha spatial 

scales (Table 3.11).  The top 19 models bore measurable model probabilities although 

most were negligible (n = 14; w = 0.01 to 0.04).  The top two models of density were 

1000ha scale and indicated positive relationships for open pines (Figure 14) and length of 

streams (Figure 15) and a negative relationship for area of development (Figure 16).  The 

relationship of open habitat types to density was negligible (Table 3.14).  The difference 

in model fit between the top two models resulted from differences in p model selection; 

one contained amount of precipitation and the other was the observer effect.  The 

differences in fit of the third and fourth best models also were attributed to differences in 

p model selection.  These models were at the 100ha scale and estimated density based on 

a positive interaction between length of streams and area of monoculture pine (Table 

3.14).  In both cases, the observer p model fit the data better than the amount of 

precipitation p model.  While these interaction models were ranked below the top two, 

they still bore relatively large model probability (w = 0.13 and 0.07 v. 0.28 and 0.14). 

Population estimates 

Both un-weighted and weighted estimates of hen and juvenile gobbler population 

size (Table 3.13) and density per sampling unit (Table 3.14) appeared plausible; however, 
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95% CIs were quite wide for both.  The width of intervals decreased considerably after 

weighting, as did the estimates.  Estimates of poult and adult gobbler population size and 

density per sampling unit were unbelievably large prior to weighting, as were 95% 

confidence intervals.  Prior to weighting, sex ratios were unbelievably large, which 

resulted from large population size estimates of adult gobblers (Table 3.12).  Productivity 

(poults per hen) was believable prior to weighting (4.23), but was quite low after (0.19; 

Table 3.12).  As a measure of performance of our weighting technique, we compared 

weighted average estimates of density to estimates from the intercept only density model 

(λ(.); Table 3.13). 

Discussion 

We estimated bimodal detection rates for poults, hens, and juvenile gobblers with 

peaks near 0900h and 1730h.  Similarly, in a study examining relationships of turkeys to 

clearings, Wunz (1990) found broods used bait at the clearings mostly from 0700h to 

0930h and 1300h to 1930h.  While attempting to validate a road-based transect survey, 

Cobb et al. (1995) found peak turkey bait use was 1000h and 1800h.  We also fit a quartic 

model to estimate adult gobbler detection rates, and the greatest detection occurred near 

0900h.  However, the second peak in detection was estimated to occur after dark, which 

was probably attributable to poor model fit and could have been an artifact of the quartic 

model. Adult gobblers may also have preferred roosting adjacent to easily accessible food 

resources (bait stations). 

We observed evidence for differences in detection by observers for poults, 

juvenile gobblers, and adult gobblers.  The effects of observers detecting birds at varying 

efficiencies during point counts have been shown widely (Cunningham et al. 1999); 
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however, we have not observed this in the turkey literature.  In our case, this effect could 

be explained by observers‟ ability to select sites where turkeys were most likely to be 

counted.  Or, some observers might have placed bait stations farther from the sampling 

unit‟s center to locate sites where turkeys would be more likely detected, while others 

might have sacrificed better sites for proximity to the sampling unit‟s center.  Our 

observers were all considered highly qualified in recognizing turkey habitat, so training 

was likely not an issue.  Differences in site selection by observers would be negligible if 

camera bait stations were placed precisely at the sampling plot‟s center, and cameras 

were all aimed in the same direction.  Reasonably, surveying a species having the ability 

to locate food by olfaction using bait stations at exactly plot center would be feasible.  

However, for turkey surveys, bait stations must be located where use by turkeys is likely, 

because they visually locate potential food items (Hurst 1992).  Turkey‟s use of randomly 

or systematically selected sites would probably be much less frequent, further decreasing 

detection rates and reducing the precision of density estimates.  However, if detection 

were high enough to use randomly selected sites, bias attributed to bait station placement 

should not exist. 

Even though precipitation data were sparse and potentially inaccurate (daily 

precipitation amounts were not available as for all areas, and were only available from 

the nearest weather station), evidence still suggested it affected visitation to bait stations.  

Surprisingly, estimated detection rates for adult gobblers approached 70% when bait site 

activity was maximized and amount of daily precipitation was highest.  Additionally, 

daily precipitation levels were associated with greater detection of hens.  Turkeys were 

likely moving to openings (therefore, camera bait stations) immediately following rain 



 

44 

 

events to dry their feathers in the sun (Philip Damm, pers. obs.).  Confounding factors 

causing increased detection in relation to precipitation could have included increased 

wind speed, weather fronts, and invertebrate activity.  Precipitation obviously cannot be 

controlled for within survey design, but it must be recognized as a potential contributor to 

variation in turkey detection. 

Although turkey densities for all sex and age classes have not previously been 

estimated across such a relatively large area and variety of conditions, we compared our 

weighted and un-weighted estimates to some small-scale studies.  Our weighted estimate 

of density for all classes was 6.5/km
2
 (95% CI: 2.3-26.0), and our un-weighted estimate 

was 127.1 /km
2
 (95% CI: 1.8-785.0).  Speake et al. (1969) determined a turkey 

population in southeast Alabama reached 4.0/km
2
 three years after re-stocking using a 

“direct count” method.  Gardner et al. (1972) estimated 4.8/km
2
 after five years for the 

same population using the same methods.  Three areas in southwest Alabama within the 

spatial extent of our study were estimated ≥12.4 turkeys/km
2
 using total counts of 

separate flocks (Speake et al. 1975).  In northwest Florida Cobb et al. (2001) used several 

mark-recapture estimators to obtain estimates ranging from 1.7 to 19.0/km
2
, but most 

estimates were <10/km
2
.  In all cases, our un-weighted estimates were greater than other 

estimates in the literature; however, several of these published estimates were within our 

95% confidence limits.  Our weighted density estimate was close to most estimates 

presented in the literature, except for the three sites in southwest Alabama.  Our weighted 

estimate of density for gobblers (0.88/km
2
; 95% CI: 0.28-11.5) is comparable to those 

found on a wildlife management area in Mississippi using mark-recapture methods by 

Lint et al. (1996); they estimated gobbler densities at 0.3 to 0.7/km
2
.  Our weighted 
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(3.7/km
2
; 95% CI: 1.2-4.5) and un-weighted (5.2/km

2
; 95% CI: 0.77-18.1) hen density 

estimates were comparable to those found by Weinstein et al. (1995) in Mississippi using 

mark-recapture methods (0.95 and 3.21/ km
2
).  We must point out although our results 

are comparable to literature, methods we used at arriving at our densities were quite 

different from those presented in literature. Also, aside from mark-recapture studies 

modeling recapture rates, other studies did not incorporate detection rates into their 

estimates, which likely led to under-estimates of density. 

Our estimates of productivity seemed plausible prior to weighting.  Productivity 

in 2008 for District V using un-weighted and weighted estimates was 4.23 and 0.19 

poults per hen, respectively.  Estimates were found by Everett et al. (1980) in north 

Alabama at 1.9, 3.0, and 3.6 poults per hen for three consecutive years.  Speake (1980) in 

southwest Alabama found 0.5-6 poults per hen on an area with predator removals and 

0.5-2.5 on a control area over several years.  Bartush et al. (1985) found productivity in 

northwest Florida using road transect surveys for two consecutive years (2.1 and 4.1 

poults per hen).  In all cases our weighted estimates of productivity were lower than what 

we found in the literature for the southeast.  As in abundance estimation, the size of our 

study area precludes us from making detailed comparisons to other studies, and as such, 

productivity varied considerably across the area.  We also emphasize estimates from the 

literature were derived ≥23 years ago.  Due to the problems associated with extrapolating 

our models to non-surveyed sites, poult density estimates for some sites were 

unbelievably large; therefore, our un-weighted estimate of productivity is probably biased 

high and definitely lacks precision.  Even with great imprecision in poult estimates our 

mean poult to hen ratio was plausible.  That is, the mean ratio across all sites was 
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substantially less than the maximum expected brood size for both weighted and un-

weighted estimates. 

We compared the average of the weighted and un-weighted estimates of density 

for all sampling units to the estimate of density from the intercept only model (λ(.); Table 

3.13) under the assumption that discounting the outliers would not appreciably change 

the mean of the estimates when models fit well.  Both average estimates were similar for 

hens and juvenile gobblers, the classes where models fit adequately, so we felt the 

weighting scheme was appropriate.  Large site density estimates for poults and gobblers 

were based on covariate values that were far beyond the range encountered at the 

locations we sampled.  Undoubtedly, a better strategy for sampling turkey densities 

across the range of values for potential covariates would result in more precision and 

would eliminate the need for weighting due to extremes.  However, these improvements 

could require a substantially larger number of randomly selected samples, or a less 

efficient sampling design than the cluster sample we used. 

Assumptions 

Sometimes, turkeys present in images could not be classified by age and/or sex.  

We likely underestimated density by not including these individuals in counts, but would 

rather do so instead of misclassifying individuals.  Unknown turkeys occurred 328 times 

in 208 images (4% of the total number of birds counted, Table 3.3).  These observations 

were limited to three situations. In some instances, distinguishing poults from adult hens 

based on their size was impossible, or they were partially obscured from view by other 

turkeys.  Additionally, adult gobblers and juvenile gobblers were sometimes difficult to 

distinguish due to lack of defining beard, spur, or plumage characteristics.  The final 
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situation occurred when turkeys were too far from the camera to accurately classify, or 

when birds were obstructed by vegetation.  Without better information on the magnitude 

of underestimation for each class, we hesitate to speculate the effects these un-classified 

turkeys have on estimates of population structure. 

We used broad land cover class classes derived from Alabama GAP land cover in 

our analysis to minimize errors resulting from misclassification (Kleiner 2007).  For 

example, development classes were often confused with one another, so we grouped all 

of these classes into one to eliminate this potential source of error (Table 3.1).  However, 

Alabama GAP landcover classification was based on imagery collected in 1999-2001, 

while our turkey surveys were conducted in 2008, so potential for error in landcover 

classification still existed.  A recent survey of Alabama‟s forests from 2000-2005 

revealed increases in land area covered by pine plantations resulting from conversions of 

natural pine forests, oak-pine forests, and agricultural land (Hartsell and Johnson 2009).  

The survey also revealed decreases in land area covered by oak-hickory and oak-gum 

forests.  From 2000 to 2005, seven of nine counties in District V showed ≥2.5% increases 

in forested land. One county (Conecuh) showed no change; one (Baldwin) showed a 

decrease of 5%.  Because of intensive forest management practices (e.g. relatively 

frequent clear-cutting), the distribution of land cover types has also likely changed 

considerably.  More current landcover data is essential for more precisely estimating 

covariate relationships and populations of turkeys in areas where land use changes are 

frequent. 

Land development could result in diminished habitat for wild turkeys through 

increases in impervious surface, human disturbance, more localized hunting pressure, etc.  
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We found hens were negatively associated to amount of developed area.  If developed 

area has increased since GAP data were collected, we likely overestimated hen density.  

Alabama census data revealed decreases in human populations for seven of nine counties 

in District V from 2000 to 2006; only Baldwin and Mobile counties increased in 

population during this time (Trent 2007).  These increases probably resulted from 

development in the southern portions of those counties, which were not included in our 

scope of inference.  So, using population trends as a loose correlate to developed area, in 

District V, hen density should not be biased as a result of using old land cover data. 

An assumption of the repeated-count density estimator is all individuals within a 

sampling unit have some probability of being counted.  Violation of this assumption leads 

to underestimation of detection, and therefore, density.  Camera station placement within 

the sampling unit (~61ha square) could bias estimates of detection, because individuals 

whose home ranges did not overlap the bait station may not have had any probability of 

being counted.  Since our sampling unit size was significantly smaller than the home 

range size of turkeys without young and was about the size of a young brood home range, 

on average across the landscape all turkeys had some probability of being counted. 

Another assumption of the repeated-count density estimator is the number of 

individuals present at one sampling unit is random and independent of the number of 

individuals at adjacent sampling units.  Since our sampling units were ~61ha and the 

largest turkey home ranges (gobblers) at this time of year could have been ~1000ha, 

counting an individual (presumably a gobbler) in one sampling unit and an adjacent 

sampling unit seemed likely.  Since the density of turkeys was explained by differences 

in habitat associated with covariates, adjacency of sampling units had little to do with 
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correlation in densities.  However, because counting individuals in more than one 

sampling unit was possible, estimates of abundance are probably biased high.  We need 

to determine a method for estimating the magnitude of spatial autocorrelation and 

incorporating it into estimates of density.  Knowledge of home range size of each class of 

turkeys within our study area would allow for some adjustment of abundance estimates to 

reflect the magnitude of spatial autocorrelation.  

One final assumption of the repeated-count density estimator is the population 

being surveyed is demographically closed (i.e., no births, deaths, immigration, or 

emigration).  By the second week in July when the surveys began, most poults had aged 

at least a few weeks, allowing them to surpass the initial high mortality period (no births 

and few deaths), as Everett et al. (1980) found the majority of poult losses in north 

Alabama occurred in the first 2 weeks of life, and the latest hatch date was 24 June.  

Also, adults at this time of year have minimal mortality (Palmer et al. 1993, Vangilder 

1995) which reduces potential for bias attributed to changes in adult demographics.  

Since the study area was so large, we assume emigration was relatively minimal, and 

immigration should be equal to it where it might occur. Also, we attempted to conduct 

these counts in a relatively short period of time (~2 months) to minimize effects of 

violating this assumption. 

Recommendations 

Modeling detection is important in estimating density as the relationship between 

the counted and uncounted portions of the population may not be consistent.  While 

detection remains a nuisance parameter and actual estimates are not interpretable, 

recommendations can be made from results of these exercises in terms of survey design.  
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Researchers employing time lapse cameras surveys could improve detection rates by 

concentrating observations during periods of high detection, thus reducing the number 

images collected.  In our case, substantial reductions in the number of images would have 

allowed us to use each image as a sampling occasion instead of one per hour.  More 

occasions could have increased precision of density estimates through more precise 

estimates of detection, particularly for adult gobblers where counts were limiting.  With 

any turkey survey method, researchers should observe bait stations during periods of high 

detection to reduce sampling effort.  Survey times should be determined a priori and 

should include a range of times encompassing peaks in detection. 

Turkey surveys relying on observers placing cameras and/or bait stations should 

investigate the effects of station location on detection.  In cases where observers are un-

familiar with the surveyed species habitat requirements, proper training in site selection 

might decrease the effect of this potential variability on detection.  In addition, observers 

could be limited in the distance from the sampling unit‟s center when selecting bait 

station locations.  In any case, all types of demographic surveys employing more than one 

observer should model attempt to model detection based on observer effects. 

We assumed we could adequately model distribution of turkeys using landscape 

scale habitat data ( i.e. GAP landcover), and we raised problems with landcover data as 

well as potential influences on our estimates.  We emphasize the need for updated 

information at the landscape scale for added precision in both population estimates and 

habitat associations, particularly when land use changes are frequent.  Since turkeys are 

most likely affected by habitat at ground level, use of spatially explicit data on vegetative 

structure at that level would be ideal.  Recent data on percent canopy closure could 
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provide valuable information from which habitat structure at ground level could be 

inferred. 

 A key assumption to any survey is that an appropriate sampling design is 

employed.  As we illustrated, use of bait, placement of bait stations within the sampling 

units, and sampling unit size may lead to biased estimates of density.  We need to 

determine the potential effects that using bait and bait station placement have on our 

estimates of density.  In addition further examination of sampling unit size is warranted.  

These potential influences on estimates could be investigated through a study on home 

ranges, including home range size and spatial fidelity after introduction of bait stations.
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Table 3.1.  AL-GAP land cover class (Silvano et al. 2008) aggregations used as covariates of wild turkey density on time-lapse camera 

surveys in southwest Alabama, summer 2008. 

Hardwood 

East Gulf Coastal Plain Southern Mesic Slope Forest 

East Gulf Coastal Plain Interior Upland Longleaf Pine Woodland-Offsite Hardwood Modifier 

East Gulf Coastal Plain Large River Floodplain Forest-Forest Modifier 

East Gulf Coastal Plain Small Stream and River Floodplain Forest 

Southern Coastal Plain Blackwater River Floodplain Forest 

East Gulf Coastal Plain Southern Loblolly-Hardwood Flatwoods 

Southern Coastal Plain Nonriverine Cypress Dome 

East Gulf Coastal Plain Large River Floodplain Forest-Herbaceous Modifier 

 Monoculture pine 

Evergreen Plantations 

East Gulf Coastal Plain Interior Upland Longleaf Pine Woodland-Loblolly Modifier 

 Open pine 

East Gulf Coastal Plain Interior Upland Longleaf Pine Woodland-Open Understory Modifier 
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Table 3.1.  AL-GAP land cover class (Silvano et al. 2008) aggregations used as covariates of wild turkey density on time-lapse camera 

surveys in southwest Alabama, summer 2008. 

Open 

Successional Shrub/Scrub (Clear Cut) 

Successional Shrub/Scrub (Utility Swath) 

Successional Shrub/Scrub (Other) 

Pasture/Hay 

Row Crop 

 Developed 

Developed Open Space 

Low Intensity Developed 

Medium Intensity Developed 

High Intensity Developed 

Bare Soil 

Quarry/Strip Mine/Gravel Pit 

  

Forest 

East Gulf Coastal Plain Southern Mesic Slope Forest 
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Table 3.1.  AL-GAP land cover class (Silvano et al. 2008) aggregations used as covariates of wild turkey density on time-lapse camera 

surveys in southwest Alabama, summer 2008. 

East Gulf Coastal Plain Interior Upland Longleaf Pine Woodland-Offsite Hardwood Modifier 

East Gulf Coastal Plain Large River Floodplain Forest-Forest Modifier 

East Gulf Coastal Plain Small Stream and River Floodplain Forest 

Southern Coastal Plain Blackwater River Floodplain Forest 

East Gulf Coastal Plain Southern Loblolly-Hardwood Flatwoods 

Southern Coastal Plain Nonriverine Cypress Dome 

East Gulf Coastal Plain Large River Floodplain Forest-Herbaceous Modifier 

Evergreen Plantations 

East Gulf Coastal Plain Interior Upland Longleaf Pine Woodland-Loblolly Modifier 

East Gulf Coastal Plain Interior Upland Longleaf Pine Woodland-Open Understory Modifier 



 

65 

 

Table 3.2.  List of abbreviations for density (λ) and detection (p) covariates of wild 

turkey density on time-lapse camera surveys in southwest Alabama, summer 2008. In 

model selection tables, a „2‟ after an abbreviation indicates 100ha scale GIS data 

extraction, and a „3‟ indicates 1000ha. 

 

Abbreviation p covariate Abbreviation 

Open area open Time of day (temp.) TOD 

Open pine area oppine Amount of precipitation rain 

Hardwood area hdwd Time since deployment TSD 

Monoculture pine area pine Date date 

Developed area dev Distance to stream strmd 

Forest area allfor Resource limited reslim 

Stream length strml Site selection person obs 
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Table 3.3.  Uncorrected counts and percentages of wild turkeys separated into sex and age classes from time-lapse camera wild turkey 

density survey in southwest Alabama, summer 2008. 

  Hen Adult gobbler Juvenile gobbler Poult Unknown Total 

Images with turkeys present 1885 279 557 645 208 2712 

Total individuals counted 3358 397 1354 2222 328 7659 

Percent of sites turkeys where counted 

(n = 101) 51% 13% 20% 22% 31% 56% 
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Table 3.4.  Comparison of detection (p) models for wild turkey hen abundance 

estimation using time-lapse cameras in southwest Alabama, summer 2008.  For each 

model, values for bias corrected AIC, relative difference in AICc, model probability 

(w), model likelihood (Lik), number of estimable parameters (K), and deviance are 

shown (Dev). 

Model AICc ΔAICc w Lik K Dev  

λ(.) p(TOD+rain) 5698 0 0.98 1.00 7 5682  

λ(.) p(TOD+strmd) 5707 9 0.01 0.01 7 5692  

λ(.) p(TOD) 5708 10 0 0 6 5696  

λ(.) p(TOD+reslim) 5709 11 0 0 7 5694  

λ(.) p(TOD+TSD) 5710 12 0 0 7 5695  

λ(.) p(TOD+obs) 5710 12 0 0 10 5687  

λ(.) p(TOD+date) 5710 12 0 0 7 5695  

λ(.) p(.) 5863 165 0 0 2 5859  
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Table 3.5.  Comparison of detection (p) models for wild turkey poult abundance 

estimation using time-lapse cameras in southwest Alabama, summer 2008.  For each 

model, values for bias corrected AIC, relative difference in AICc, model probability 

(w), model likelihood (Lik), number of estimable parameters (K), and deviance (Dev) 

are shown. 

Model AICc ΔAICc w Lik K Dev  

λ(.) p(TOD+obs) 4689 0 0.99 1.00 10 4666  

λ(.) p(TOD+rain) 4699 10 0.01 0.01 7 4684  

λ(.) p(TOD+strmd) 4702 13 0 0 7 4687  

λ(.) p(TOD+reslim) 4702 13 0 0 7 4687  

λ(.) p(TOD+TSD) 4703 14 0 0 7 4688  

λ(.) p(TOD) 4707 18 0 0 6 4694  

λ(.) p(TOD+date) 4709 20 0 0 7 4694  



 

69 

 

Table 3.6.  Comparison of detection (p) models for wild turkey juvenile gobbler 

abundance estimation using time-lapse cameras in southwest Alabama, summer 2008.  

For each model, values for bias corrected AIC, relative difference in AICc, model 

probability (w), model likelihood (Lik), number of estimable parameters (K), and 

deviance (Dev) are shown. 

Model AICc ΔAICc w Lik K Dev  

λ(.) p(TOD+obs) 2195 0 0.87 1.00 10 2173  

λ(.) p(TOD+TSD) 2200 5 0.09 0.10 7 2184  

λ(.) p(TOD+rain) 2201 6 0.04 0.05 7 2186  

λ(.) p(TOD) 2206 11 0 0 6 2193  

λ(.) p(TOD+strmd) 2208 13 0 0 7 2193  

λ(.) p(TOD+reslim) 2208 13 0 0 7 2193  

λ(.) p(.) 2289 94 0 0 2 2285  
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Table 3.7.  Comparison of detection (p) models for wild turkey adult gobbler 

abundance estimation using time-lapse cameras in southwest Alabama, summer 2008.  

For each model, values for bias corrected AIC, relative difference in AICc, model 

probability (w), model likelihood (Lik), number of estimable parameters (K), and 

deviance (Dev) are shown. 

Model AICc ΔAICc w Lik K Dev 
 

λ(.) p(TOD+obs) 890 0 0.67 1.00 10 868  

λ(.) p(TOD+rain) 892 2 0.33 0.50 7 877  

λ(.) p(TOD) 908 18 0.00 0.00 6 895  

λ(.) p(TOD+reslim) 909 19 0.00 0.00 7 893  

λ(.) p(TOD+TSD) 909 19 0.00 0.00 7 894  

λ(.) p(TOD+strmd) 909 19 0.00 0.00 7 894  

λ(.) p(.) 930 40 0.00 0.00 2 926  
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Table 3.8.  Comparison of density (λ) and detection (p) models for wild turkey hen abundance estimation using time-lapse cameras in 

southwest Alabama, summer 2008.  For each model, values for bias corrected AIC, relative difference in AICc, model probability (w), 

model likelihood (Lik), number of estimable parameters (K), and deviance are shown (Dev).  Only the “best” p model was used for λ 

model comparisons. 

Model AICc ΔAICc w Lik K Dev 

λ(dev2) p(TOD+rain) 5669 0 0.52 1.00 8 5651 

λ(dev2+open2) p(TOD+rain) 5670 1 0.39 0.74 9 5650 

λ(dev2+strml2+oppine2+open2) p(TOD+rain) 5674 5 0.05 0.10 11 5649 

λ(dev2+hdwd2+oppine2+open2) p(TOD+rain) 5674 5 0.04 0.07 11 5649 

λ(hdwd2+pine2+hdwd2*pine2) p(TOD+rain) 5696 27 0 0 10 5674 

λ(.) p(TOD+rain) 5698 29 0 0 7 5682 

λ(open2) p(TOD+rain) 5698 29 0 0 8 5681 

λ(strml2+pine2+strml2*pine2) p(TOD+rain) 5698 29 0 0 10 5676 

λ(allfor2) p(TOD+rain) 5699 30 0 0 8 5682 

λ(hdwd2+oppine2+pine2) p(TOD+rain) 5700 31 0 0 10 5678 

λ(allfor2+open2) p(TOD+rain) 5700 31 0 0 9 5680 

λ(hdwd2+oppine2) p(TOD+rain) 5701 32 0 0 9 5681 

λ(strml2+oppine2) p(TOD+rain) 5702 33 0 0 9 5682 

λ(hdwd2+oppine2+open2) p(TOD+rain) 5703 34 0 0 10 5680 
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Table 3.8.  Comparison of density (λ) and detection (p) models for wild turkey hen abundance estimation using time-lapse cameras in 

southwest Alabama, summer 2008.  For each model, values for bias corrected AIC, relative difference in AICc, model probability (w), 

model likelihood (Lik), number of estimable parameters (K), and deviance are shown (Dev).  Only the “best” p model was used for λ 

model comparisons. 

Model AICc ΔAICc w Lik K Dev 

λ(open2+pine2+open2*pine2) p(TOD+rain) 5703 34 0 0 10 5680 

λ(strml2+oppine2+open2) p(TOD+rain) 5703 34 0 0 10 5680 

λ(strml2+oppine2+pine2) p(TOD+rain) 5704 35 0 0 10 5681 
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Table 3.9.  Comparison of density (λ) and detection (p) models for wild turkey poult abundance estimation using time-lapse cameras 

in southwest Alabama, summer 2008.  For each model, values for bias corrected AIC, relative difference in AICc, model probability 

(w), model likelihood, number of estimable parameters (K), and deviance (Dev) are shown.  Only the “best” p model was used for λ 

model comparisons. 

Model AICc ΔAICc w Lik K Dev  

λ(hdwd2+pine2+hdwd2*pine2) p(TOD+obs) 4606 0 1.00 1.00 13 4576  

λ(dev2+strml2+oppine2+open2) p(TOD+obs) 4651 45 0 0 14 4618  

λ(dev2+hdwd2+oppine2+open2) p(TOD+obs) 4651 45 0 0 14 4618  

λ(dev2+open2) p(TOD+obs) 4654 48 0 0 12 4626  

λ(dev2) p(TOD+obs) 4655 49 0 0 11 4630  

λ(hdwd2+oppine2+pine2) p(TOD+obs) 4672 66 0 0 13 4642  

λ(hdwd2+oppine2) p(TOD+obs) 4672 66 0 0 12 4645  

λ(hdwd2+oppine2+open2) p(TOD+obs) 4675 69 0 0 13 4645  

λ(open2+pine2+open2*pine2) p(TOD+obs) 4681 75 0 0 13 4651  

λ(strml2+oppine2+open2) p(TOD+obs) 4682 76 0 0 13 4652  

λ(strml2+oppine2) p(TOD+obs) 4683 77 0 0 12 4656  

λ(strml2+oppine2+pine2) p(TOD+obs) 4686 80 0 0 13 4656  

λ(open2) p(TOD+obs) 4687 81 0 0 11 4662  
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Table 3.9.  Comparison of density (λ) and detection (p) models for wild turkey poult abundance estimation using time-lapse cameras 

in southwest Alabama, summer 2008.  For each model, values for bias corrected AIC, relative difference in AICc, model probability 

(w), model likelihood, number of estimable parameters (K), and deviance (Dev) are shown.  Only the “best” p model was used for λ 

model comparisons. 

Model AICc ΔAICc w Lik K Dev  

λ(.) p(TOD+obs) 4689 83 0 0 10 4666  

λ(strml2+pine2+strml2*pine2) p(TOD+obs) 4689 83 0 0 13 4659  

λ(allfor2+open2) p(TOD+obs) 4689 83 0 0 12 4662  

λ(allfor2) p(TOD+obs) 4690 84 0 0 11 4665  



 

75 

 

Table 3.10.  Comparison of density (λ) and detection (p) models for wild turkey juvenile gobbler abundance estimation using time-

lapse cameras in southwest Alabama, summer 2008.  For each model, values for bias corrected AIC, relative difference in AICc, 

model probability (w), model likelihood (Lik), number of estimable parameters (K), and deviance (Dev) are shown.   Only the “best” p 

models were used for λ model comparisons. 

Model AICc ΔAICc w Lik K Dev 

λ(strml2+pine2+strml2*pine2) p(TOD+obs) 2172 0 0.45 1.00 13 2142 

λ(strml2+oppine2+pine2) p(TOD+obs) 2172 0 0.38 0.85 13 2142 

λ(strml2+pine2+strml2*pine2) p(TOD+TSD) 2178 6 0.02 0.05 10 2155 

λ(dev2+strml2+oppine2+open2) p(TOD+obs) 2178 6 0.02 0.05 14 2145 

λ(strml2+oppine2+pine2) p(TOD+TSD) 2178 6 0.02 0.05 10 2156 

λ(strml2+oppine2+open2) p(TOD+obs) 2178 6 0.02 0.04 13 2148 

λ(strml2+pine2+strml2*pine2) p(TOD+rain) 2178 6 0.02 0.04 10 2156 

λ(strml2+oppine2) p(TOD+obs) 2178 6 0.02 0.04 12 2151 

λ(strml2+oppine2+pine2) p(TOD+rain) 2179 7 0.02 0.04 10 2156 

λ(dev2+strml2+oppine2+open2) p(TOD+TSD) 2179 7 0.01 0.03 11 2154 

λ(dev2+strml2+oppine2+open2) p(TOD+rain) 2180 8 0.01 0.02 11 2155 

λ(strml2+oppine2+open2) p(TOD+TSD) 2181 9 0 0.01 10 2159 

λ(strml2+oppine2+open2) p(TOD+rain) 2182 10 0 0.01 10 2159 

λ(strml2+oppine2) p(TOD+TSD) 2182 10 0 0.01 9 2162 



 

76 

 

Table 3.10.  Comparison of density (λ) and detection (p) models for wild turkey juvenile gobbler abundance estimation using time-

lapse cameras in southwest Alabama, summer 2008.  For each model, values for bias corrected AIC, relative difference in AICc, 

model probability (w), model likelihood (Lik), number of estimable parameters (K), and deviance (Dev) are shown.   Only the “best” p 

models were used for λ model comparisons. 

Model AICc ΔAICc w Lik K Dev 

λ(open2+pine2+open2*pine2) p(TOD+obs) 2182 10 0 0.01 13 2151 

λ(strml2+oppine2) p(TOD+rain) 2182 10 0 0.01 9 2162 

λ(allfor2) p(TOD+obs) 2185 13 0 0 11 2160 

λ(allfor2+open2) p(TOD+obs) 2186 14 0 0 12 2158 

λ(dev2+hdwd2+oppine2+open2) p(TOD+obs) 2186 14 0 0 14 2153 

λ(open2+pine2+open2*pine2) p(TOD+TSD) 2190 18 0 0 10 2167 

λ(dev2) p(TOD+obs) 2191 19 0 0 11 2166 

λ(dev2+open2) p(TOD+obs) 2191 19 0 0 12 2163 

λ(dev2+hdwd2+oppine2+open2) p(TOD+TSD) 2191 19 0 0 11 2166 

λ(open2+pine2+open2*pine2) p(TOD+rain) 2191 19 0 0 10 2169 

λ(hdwd2+oppine2) p(TOD+obs) 2191 19 0 0 12 2164 

λ(allfor2) p(TOD+TSD) 2192 20 0 0 8 2174 

λ(allfor2+open2) p(TOD+TSD) 2192 20 0 0 9 2172 

λ(dev2+hdwd2+oppine2+open2) p(TOD+rain) 2192 20 0 0 11 2167 
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Table 3.10.  Comparison of density (λ) and detection (p) models for wild turkey juvenile gobbler abundance estimation using time-

lapse cameras in southwest Alabama, summer 2008.  For each model, values for bias corrected AIC, relative difference in AICc, 

model probability (w), model likelihood (Lik), number of estimable parameters (K), and deviance (Dev) are shown.   Only the “best” p 

models were used for λ model comparisons. 

Model AICc ΔAICc w Lik K Dev 

λ(allfor2) p(TOD+rain) 2194 22 0 0 8 2176 

λ(hdwd2+pine2+hdwd2*pine2) p(TOD+obs) 2194 22 0 0 13 2164 

λ(hdwd2+oppine2+pine2) p(TOD+obs) 2194 22 0 0 13 2164 

λ(allfor2+open2) p(TOD+rain) 2194 22 0 0 9 2174 

λ(dev2+open2) p(TOD+TSD) 2194 22 0 0 9 2174 

λ(hdwd2+oppine2+open2) p(TOD+obs) 2194 22 0 0 13 2164 

λ(dev2) p(TOD+TSD) 2194 22 0 0 8 2177 

λ(.) p(TOD+obs) 2195 23 0 0 10 2173 

λ(dev2+open2) p(TOD+rain) 2195 23 0 0 9 2175 

λ(dev2) p(TOD+rain) 2196 24 0 0 8 2178 

λ(open2) p(TOD+obs) 2196 24 0 0 11 2171 

λ(hdwd2+oppine2) p(TOD+TSD) 2198 26 0 0 9 2178 

λ(hdwd2+oppine2) p(TOD+rain) 2199 27 0 0 9 2179 

λ(.) p(TOD+TSD) 2200 28 0 0 7 2184 
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Table 3.10.  Comparison of density (λ) and detection (p) models for wild turkey juvenile gobbler abundance estimation using time-

lapse cameras in southwest Alabama, summer 2008.  For each model, values for bias corrected AIC, relative difference in AICc, 

model probability (w), model likelihood (Lik), number of estimable parameters (K), and deviance (Dev) are shown.   Only the “best” p 

models were used for λ model comparisons. 

Model AICc ΔAICc w Lik K Dev 

λ(open2) p(TOD+TSD) 2200 28 0 0 8 2182 

λ(hdwd2+oppine2+open2) p(TOD+TSD) 2200 28 0 0 10 2178 

λ(hdwd2+pine2+hdwd2*pine2) p(TOD+TSD) 2200 28 0 0 10 2178 

λ(hdwd2+oppine2+pine2) p(TOD+TSD) 2201 29 0 0 10 2178 

λ(.) p(TOD+rain) 2201 29 0 0 7 2186 

λ(open2) p(TOD+rain) 2201 29 0 0 8 2184 

λ(hdwd2+oppine2+open2) p(TOD+rain) 2202 30 0 0 10 2179 

λ(hdwd2+pine2+hdwd2*pine2) p(TOD+rain) 2202 30 0 0 10 2179 

λ(hdwd2+oppine2+pine2) p(TOD+rain) 2202 30 0 0 10 2179 
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Table 3.11.  Comparison of density (λ) and detection (p) models for wild turkey adult gobbler abundance estimation using time-lapse 

cameras in southwest Alabama, summer 2008.  For each model, values for bias corrected AIC, relative difference in AICc, model 

probability (w), model likelihood (Lik), number of estimable parameters (K), and deviance (Dev) are shown.  Only the “best” p 

models were used for λ model comparisons. 

Model AICc ΔAICc w Lik K Dev 

λ(dev3+strml3+oppine3+open3) p(TOD+obs) 875 0 0.28 1.00 14 842 

λ(dev3+strml3+oppine3+open3) p(TOD+rain) 876 1 0.14 0.51 11 851 

λ(strml2+pine2+strml2*pine2) p(TOD+obs) 877 2 0.13 0.47 12 846 

λ(strml2+pine2+strml2*pine2) p(TOD+rain) 878 3 0.07 0.25 9 855 

λ(dev2+strml2+oppine2+open2) p(TOD+obs) 878 3 0.06 0.23 14 845 

λ(dev2) p(TOD+obs) 879 4 0.04 0.15 11 854 

λ(dev3+hdwd3+oppine3+open3) p(TOD+rain) 879 4 0.04 0.13 11 854 

λ(dev2+open2) p(TOD+obs) 879 4 0.03 0.12 12 852 

λ(strml2+oppine2+pine2) p(TOD+rain) 880 5 0.03 0.10 10 857 

λ(dev3+hdwd3+oppine3+open3) p(TOD+obs) 880 5 0.03 0.10 14 847 

λ(strml3+oppine3) p(TOD+obs) 880 5 0.03 0.09 12 852 

λ(dev2+hdwd2+oppine2+open2) p(TOD+obs) 880 5 0.02 0.09 14 847 

λ(strml2+oppine2+pine2) p(TOD+obs) 880 5 0.02 0.08 13 850 

λ(strml3+oppine3) p(TOD+rain) 881 6 0.01 0.05 9 861 
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Table 3.11.  Comparison of density (λ) and detection (p) models for wild turkey adult gobbler abundance estimation using time-lapse 

cameras in southwest Alabama, summer 2008.  For each model, values for bias corrected AIC, relative difference in AICc, model 

probability (w), model likelihood (Lik), number of estimable parameters (K), and deviance (Dev) are shown.  Only the “best” p 

models were used for λ model comparisons. 

Model AICc ΔAICc w Lik K Dev 

λ(dev2+strml2+oppine2+open2) p(TOD+rain) 881 6 0.01 0.04 11 856 

λ(dev3) p(TOD+obs) 882 7 0.01 0.04 11 857 

λ(strml3+oppine3+open3) p(TOD+obs) 882 7 0.01 0.03 13 852 

λ(dev2+hdwd2+oppine2+open2) p(TOD+rain) 882 7 0.01 0.03 11 857 

λ(strml3+oppine3+pine3) p(TOD+obs) 882 7 0.01 0.03 13 852 

λ(dev2+open2) p(TOD+rain) 883 8 0 0.02 9 863 

λ(strml3+oppine3+open3) p(TOD+rain) 883 8 0 0.02 10 861 

λ(dev2) p(TOD+rain) 883 8 0 0.02 8 866 

λ(strml3+oppine3+pine3) p(TOD+rain) 883 8 0 0.01 10 861 

λ(dev3+open3) p(TOD+obs) 884 9 0 0.01 12 857 

λ(dev3) p(TOD+rain) 885 10 0 0.01 8 867 

λ(hdwd3+oppine3) p(TOD+rain) 886 11 0 0 9 866 

λ(strml2+oppine2) p(TOD+obs) 886 11 0 0 12 858 

λ(allfor3+open3) p(TOD+obs) 887 12 0 0 12 859 



 

81 

 

Table 3.11.  Comparison of density (λ) and detection (p) models for wild turkey adult gobbler abundance estimation using time-lapse 

cameras in southwest Alabama, summer 2008.  For each model, values for bias corrected AIC, relative difference in AICc, model 

probability (w), model likelihood (Lik), number of estimable parameters (K), and deviance (Dev) are shown.  Only the “best” p 

models were used for λ model comparisons. 

Model AICc ΔAICc w Lik K Dev 

λ(hdwd3+oppine3) p(TOD+obs) 887 12 0 0 12 859 

λ(strml2+oppine2+open2) p(TOD+obs) 887 12 0 0 13 857 

λ(dev3+open3) p(TOD+rain) 887 12 0 0 9 867 

λ(strml2+oppine2+open2) p(TOD+rain) 888 13 0 0 10 865 

λ(hdwd3+oppine3+open3) p(TOD+rain) 888 13 0 0 10 865 

λ(strml2+oppine2) p(TOD+rain) 888 13 0 0 9 868 

λ(hdwd3+oppine3+pine3) p(TOD+rain) 888 13 0 0 10 866 

λ(strml3+pine3+strml3*pine3) p(TOD+obs) 888 13 0 0 13 858 

λ(allfor3+open3) p(TOD+rain) 889 14 0 0 9 869 

λ(hdwd3+oppine3+open3) p(TOD+obs) 889 14 0 0 13 859 

λ(hdwd3+oppine3+pine3) p(TOD+obs) 890 15 0 0 13 859 

λ(strml3+pine3+strml3*pine3) p(TOD+rain) 890 15 0 0 10 867 

λ(.) p(TOD+obs) 890 15 0 0 10 868 

λ(open2) p(TOD+obs) 891 16 0 0 11 866 
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Table 3.11.  Comparison of density (λ) and detection (p) models for wild turkey adult gobbler abundance estimation using time-lapse 

cameras in southwest Alabama, summer 2008.  For each model, values for bias corrected AIC, relative difference in AICc, model 

probability (w), model likelihood (Lik), number of estimable parameters (K), and deviance (Dev) are shown.  Only the “best” p 

models were used for λ model comparisons. 

Model AICc ΔAICc w Lik K Dev 

λ(open2) p(TOD+rain) 891 16 0 0 8 873 

λ(allfor2) p(TOD+obs) 891 16 0 0 11 866 

λ(allfor2+open2) p(TOD+obs) 892 17 0 0 12 864 

λ(.) p(TOD+rain) 892 17 0 0 7 877 

λ(allfor3) p(TOD+obs) 892 17 0 0 11 867 

λ(allfor2+open2) p(TOD+rain) 892 17 0 0 9 872 

λ(allfor2) p(TOD+rain) 893 18 0 0 8 875 

λ(hdwd2+oppine2+open2) p(TOD+rain) 893 18 0 0 10 870 

λ(open2+pine2+open2*pine2) p(TOD+rain) 893 18 0 0 10 870 

λ(open3) p(TOD+obs) 893 18 0 0 11 868 

λ(hdwd2+oppine2+pine2) p(TOD+obs) 893 18 0 0 13 863 

λ(hdwd2+oppine2+pine2) p(TOD+rain) 893 18 0 0 9 870 

λ(hdwd2+pine2+hdwd2*pine2) p(TOD+rain) 893 18 0 0 10 871 

λ(allfor3) p(TOD+rain) 893 18 0 0 8 876 
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Table 3.11.  Comparison of density (λ) and detection (p) models for wild turkey adult gobbler abundance estimation using time-lapse 

cameras in southwest Alabama, summer 2008.  For each model, values for bias corrected AIC, relative difference in AICc, model 

probability (w), model likelihood (Lik), number of estimable parameters (K), and deviance (Dev) are shown.  Only the “best” p 

models were used for λ model comparisons. 

Model AICc ΔAICc w Lik K Dev 

λ(hdwd2+pine2+hdwd2*pine2) p(TOD+obs) 893 18 0 0 13 863 

λ(open2+pine2+open2*pine2) p(TOD+obs) 894 19 0 0 13 864 

λ(hdwd2+oppine2+open2) p(TOD+obs) 894 19 0 0 13 864 

λ(open3) p(TOD+rain) 894 19 0 0 8 877 

λ(hdwd2+oppine2) p(TOD+obs) 895 20 0 0 12 867 

λ(open3+pine3+open3*pine3) p(TOD+obs) 896 21 0 0 13 865 

λ(hdwd2+oppine2) p(TOD+rain) 896 21 0 0 9 876 

λ(open3+pine3+open3*pine3) p(TOD+rain) 897 22 0 0 9 874 

λ(hdwd3+pine3+hdwd3*pine3) p(TOD+obs) 897 22 0 0 13 867 

λ(hdwd3+pine3+hdwd3*pine3) p(TOD+rain) 898 23 0 0 10 876 
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Table 3.12. Un-weighted and weighted estimates of wild turkey abundance, sex ratio, and productivity and 95% confidence intervals 

by sex and age class for the scope of inference of a time-lapse camera survey in southwest Alabama, summer 2008. 

Class Un-weighted 95% LCL 95% UCL Weighted 95% LCL 95% UCL 

Poult 384,345 13,825 2,080,844 12,042 1,271 55,475 

Hen 90,885 13,637 318,034 64,735 21,301 79,894 

Juvenile gobbler 45,738 2,375 235,217 21,407 13,529 119,293 

Adult Gobbler 1,718,817 1,755 11,193,292 15,569 4,880 203,216 

Total 2,239,785 31,592 13,827,388 113,753 40,785 457,878 

Gobblers/hen 19.4 

  

0.57 

  Poults/hen 4.23     0.19     
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Table 3.13. Un-weighted, weighted, and intercept only model estimates of wild turkey sampling unit density (per 60.8 ha) and 95% 

confidence intervals by sex and age class from a time-lapse camera survey in southwest Alabama, summer 2008.  Un-weighted and 

weighted estimates are average densities from the distribution of all potential sampling units.  

Class Weighted 95% LCL 95% UCL Un-weighted 95% LCL 95% UCL λ(.) model SE 

Poult 0.39 0.04 1.82 12.60 0.45 68.22 1.8 1.09 

Hen 2.12 0.70 2.62 2.98 0.45 10.43 2.26 1.08 

Juvenile gobbler 0.70 0.44 3.91 1.50 0.08 7.71 0.72 1.14 

Adult Gobbler 0.51 0.16 6.66 56.35 0.06 366.99 0.37 1.22 

Total 3.73 1.34 15.01 73.44 1.04 453.36     
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Table 3.14. Relationship to log density (β) and variances (
2
) for density covariates by 

wild turkey sex and age class from a time-lapse camera survey in southwest Alabama, 

summer 2008.  Betas were averaged across models using model probabilities.  Covariates 

with suffix „2‟ were extracted using 100ha circular buffers, and those with suffix „3‟ were 

1000ha. 

Covariate by class β 2
 

Hen   

Developed area2 -0.413 0.009 

Hardwood area2 0.029 0.003 

Hardwood area2 x monoculture pine area2 3.32e-07 4.56e-13 

Forest area2 1.14e-08 9.35e-16 

Intercept 0.729 0.019 

Open area2 -0.046 0.004 

Open area2 x monoculture pine area2 6.78e-10 6.25e-18 

Open pine area2 0.001 6.33e-05 

Monoculture pine area2 1.38e-07 9.103e-14 

Stream length2 -0.003 6.74e-05 

Stream length2 x monoculture pine area2 5.74e-08 1.43e-14 

Poult   

Developed area2 -1.48e-10 1.27e-19 

Hardwood area2 0.116 0.010 

Hardwood area2 x monoculture pine area2 -0.621 0.031 

Forest area2 1.47e-19 1.27e-37 

Intercept 3.151 0.115 

Open area2 -6.02e-11 1.80e-20 

Open area2 x monoculture pine area2 -1.00e-17 4.47e-34 

Open pine area2 -8.95e-11 3.62e-20 

Monoculture pine area2 0.451 0.010 

Stream length2 -3.25e-11 4.97e-21 

Stream length2 x monoculture pine area2 -3.34e-19 4.96e-37 

Juvenile gobbler   

Developed area2 -0.011 0.001 
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Table 3.14. Relationship to log density (β) and variances (
2
) for density covariates by 

wild turkey sex and age class from a time-lapse camera survey in southwest Alabama, 

summer 2008.  Betas were averaged across models using model probabilities.  Covariates 

with suffix „2‟ were extracted using 100ha circular buffers, and those with suffix „3‟ were 

1000ha. 

Covariate by class β 2
 

Hardwood area2 0.000 1.77e-07 

Hardwood area2 x monoculture pine area2 -2.31e-06 3.08e-11 

Forest area2 0.001 1.36e-06 

Intercept -0.534 0.024 

Open area2 0.016 0.001 

Open area2 x monoculture pine area2 -0.001 8.10e-06 

Open pine area2 0.192 0.052 

Monoculture pine area2 0.505 0.053 

Stream length2 0.321 0.130 

Stream length2 x monoculture pine area2 0.057 0.015 

Adult Gobbler   

Developed area2 -0.146 0.062 

Developed area3 -0.357 0.232 

Hardwood area2 -0.040 0.006 

Hardwood area2 x monoculture pine area2 -0.002 9.88e-06 

Hardwood area3 -0.091 0.031 

Hardwood area3 x monoculture pine area3 -6.55e-06 1.75e-10 

Forest area2 6.18e-05 1.99e-08 

Forest area3 0.004 6.55e-05 

Intercept -1.346 0.103 

Open area2 -0.046 0.008 

Open area2 x monoculture pine area2 -2.05e-06 1.78e-10 

Open area3 0.005 0.012 

Open area3 x monoculture pine area3 4.44e-06 9.78e-11 

Open pine area2 0.031 0.007 

Open pine area3 0.357 0.135 



 

88 

 

Table 3.14. Relationship to log density (β) and variances (
2
) for density covariates by 

wild turkey sex and age class from a time-lapse camera survey in southwest Alabama, 

summer 2008.  Betas were averaged across models using model probabilities.  Covariates 

with suffix „2‟ were extracted using 100ha circular buffers, and those with suffix „3‟ were 

1000ha. 

Covariate by class β 2
 

Monoculture pine area2 0.159 0.063 

Monoculture pine area3 0.006 0.000 

Stream length2 0.049 0.026 

Stream length2 x monoculture pine area2 0.129 0.050 

Stream length3 0.197 0.054 

Stream length3 x monoculture pine area3 0.000 1.31e-07 
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Figure 3.1.  Study area covering 9 counties in southwest Alabama showing the 

distribution of primary sampling units used for clustering time-lapse camera surveys for 

estimating abundance of wild turkeys, summer 2008.  Shaded units were used first, and 

diagonal-hatched units were used as alternates. 
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Figure 3.2.  Example of a cluster of secondary sampling units from a wild turkey survey 

to estimate abundance using time-lapse cameras in southwest Alabama, summer 2008.  

Primary sampling units consisted of 10 randomly chosen square secondary sampling unit 

(60.8 ha).  Units indicated with solid lines were used first, and those indicated with 

dashed lines were used as alternates. 

 



 

91 

 

Figure 3.3.  Relationships among time of day and daily rainfall, and detection for wild turkey hen abundance estimation using time-

lapse cameras in southwest Alabama, summer 2008. 
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Figure 3.4.  Relationships among time of day, observer, and detection for wild turkey poult abundance estimation using time-lapse 

cameras in southwest Alabama, summer 2008. 
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Figure 3.5.  Relationships among time of day, observer, and detection for wild turkey juvenile gobbler abundance estimation using 

time-lapse cameras in southwest Alabama, summer 2008. 
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Figure 3.6.  Relationships among time of day, time since camera deployment, and detection for wild turkey juvenile gobbler 

abundance estimation using time-lapse cameras in southwest Alabama, summer 2008. 
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Figure 3.7.  Relationships among time of day, observer, and detection for wild turkey adult gobbler abundance estimation using time-

lapse cameras in southwest Alabama, summer 2008. 
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Figure 3.8.  Relationships among time of day, daily rainfall, and detection for wild turkey adult gobbler abundance estimation using 

time-lapse cameras in southwest Alabama, summer 2008. 
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Figure 3.9.  Relationship of wild turkey hen density to percent of developed area within a 100ha circular buffer around time-lapse 

cameras in southwest Alabama, summer 2008. 
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Figure 3.10.  Relationship of wild turkey poult abundance to percentage of hardwoods and percentage of monoculture pines within a 

100ha circular buffer surrounding time-lapse cameras in southwest Alabama, summer 2008.  The effect of percent of hardwoods is 

shown at varying percentages of monoculture pines as labeled. 
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Figure 3.11.  Relationship of wild turkey juvenile gobbler abundance to percentage of monoculture pine within a 100ha circular buffer 

around time-lapse cameras in southwest Alabama, summer 2008. 
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Figure 3.12.  Relationship o f wild turkey juvenile gobbler density to length of streams within a 100ha circular buffer surrounding 

time-lapse cameras in southwest Alabama, summer 2008. 
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Figure 3.13.  Relationship of wild turkey juvenile gobbler density to percentage of open pine within a 100ha circular buffer 

surrounding time-lapse cameras in southwest Alabama, summer 2008. 
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Figure 3.14.  Relationship of wild turkey adult gobbler density to percentage of open pine within 100ha and 1000ha circular buffer 

surrounding time-lapse cameras in southwest Alabama, summer 2008. 
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Figure 3.15.  Relationship of wild turkey adult gobbler density to stream length within a 100ha and 1000ha circular buffer surrounding 

time-lapse cameras in southwest Alabama, summer 2008. 
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Figure 3.16.  Relationship of wild turkey adult gobbler density to percentage of developed area within a 100ha and 1000ha circular 

surrounding time-lapse cameras in southwest Alabama, summer 2008. 
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CHAPTER IV: CONCLUSION 

Precise and accurate estimates of demographics such as age structure, 

productivity, and density are necessary for determining habitat and harvest management 

strategies for wildlife populations.   The importance of incorporating detection rates into 

these demographic estimates cannot be overstated, as failure to include detection can lead 

to underestimated parameters.   

We established the necessity for modeling camera detection when using PIR 

sensors in population demographic estimation, as variation in the odds of detection for 

our cameras was rampant.  Assuming detection is modeled and surveyed areas are 

representative, we found automated cameras show great promise for estimating large-

scale population demographics precisely and accurately.  In addition, after cost associated 

with initial purchase of equipment, automated camera surveys can easily and 

inexpensively be repeated across space and time. 

We successfully developed and tested a method for estimating wild turkey 

(Meleagris gallopavo) population size and structure in Alabama at a relatively large scale 

using time lapse cameras.  Quality large scale spatial habitat data seems crucial to 

adequately modeling wild turkey distribution across the landscape.  Prior to 

implementing this method as a monitoring tool, modeling of hypotheses should be 

improved for fitting wild turkey count data, and additional density hypotheses should be 

explored to explain extra variation in counts.  While some flaws became apparent 
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throughout this research, our estimates of density were comparable to those found in 

previous literature from the southeast, leading us to believe the method showed promise 

for estimating unbiased, precise wild turkey densities. 


