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Abstract
The notion of a stationary subset of a regular cardinal, a set which intersects any
closed unbounded subset of that cardinal, is a useful tool in investigating certain properties
of topological spaces. In this paper we utilize stationary sets to achieve an interesting
characterization of paracompactness of a linearly ordered topological space. We also use
stationary sets to  nd a pair of Baire spaces whose product is not Baire.
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Chapter 1
Introduction
A stationary subset of a regular cardinal is de ned to be any subset of that cardinal
which intersects every closed and unbounded subset of that cardinal. Stationary sets are
useful tools in investigating properties of linearly ordered topological spaces. An example of
this is the following theorem characterizing paracompactness in a linearly ordered topological
space (often abbreviated LOTS).
Theorem. A linearly ordered topological space X is paracompact i X does not contain a
closed subspace homeomorphic to a stationary subset of a regular uncountable cardinal.
This result was  rst discovered by Engelking and Lutzer in 1977 [3], for a larger class
of \generalized ordered spaces", spaces which are a subspace of another linearly ordered
topological space. However, as we will see, the proof developed in his paper works in a way
that could easily be extended to cover these generalized spaces as well.
Of course, stationary sets can be used in scenarios beyond LOTS. In perhaps a more
surprising application, stationary subsets of !1 can also be used to construct a pair of non-
linearly ordered sets which are Baire, but whose product is not Baire.
Theorem. There are metrizable Baire spaces X and Y such that X Y is not Baire.
The  rst discovery of this result is due to Fleissner and Kunen in 1978 [4].
The goal of this paper is to develop the tools necessary for the proof of both theorems.
In the next chapter, we will outline the basics of topology and relevant basic results in the
 eld, in order to accommodate the reader and serve as a reference. Readers familiar with the
 eld may begin at Chapter 3, wherein the basic de nitions and results concerning stationary
subsets of the  rst uncountable ordinal !1. In Chapter 4, these results are generalized to
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any regular cardinal by introducing some set-theoretic results. In Chapter 5, we investigate
the compactness of linearly ordered topological spaces, and in Chapter 6 we use the results
developed thus far to prove the above theorem on paracompactness. Chapter 7 changes pace
and quickly develops the tools to prove the second theorem concerning the Baire property.
It should be noted that all the theorems and lemmas in this paper were taken from
the class notes of Dr. Gary Gruenhage?s set-theoretic topology course held in Fall 2008 and
Spring 2009 at Auburn University, which the author regrettably was unable to take part in.
The proofs to these, however, are all due to the author, with no reference to the original
proofs of these results, but with the obvious assistance of Dr. Gruenhage. The basics covered
in Chapter 2 are based on the second edition of Topology by James R. Munkres [1] and Set
Theory: An Introduction to Independence Proofs by Kenneth Kunen [2].
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Chapter 2
The Basics
To begin, let?s de ne the basic concept of a topological space.
De nition 2.1. A topology on a set X is a collection   P(X) having the following
properties:
1. ;;X2 .
2. If U  , then
[
U2 .
3. If U;V 2 , then U\V 2 .
(Or equivalently, any  nite intersection of sets in  is in  .)
An ordered pair hX; i where  is a topology on X is known as a topological space,
although we often refer to it as simply X when  is known by context.
The basic concepts of topology are the notions of open and closed sets.
De nition 2.2. For a topological space hX; i, U  X is said to be open in hX; i (or
simply open or open in X) if U2 .
K X is said to be closed in hX; i(or simply closed or closed in X) if XnK2 .
A set which is both closed and open is referred to as clopen.
Proposition 2.3. Any  nite union of closed sets is closed, and any arbitrary intersection
of closed sets is closed.
The concept of a limit point is often used to identify closed sets.
De nition 2.4. x is a limit point of a set A in a topological space X if every open set
containing x intersects A at a point distinct from x.
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Proposition 2.5. A set K in a topological space X is closed if and only if K contains all
its limit points.
Any set is contained within a minimal closed set, which we call its closure.
De nition 2.6. The closure  A of a set A in a topological space X is the intersection of all
closed sets containing A.
Two basic topologies for any arbitrary set X are the discrete and indiscrete topologies.
De nition 2.7. The discrete topology on a set X is  = P(X). The indiscrete (or
trivial) topology on a set X is  =f;;Xg.
It is easily seen that these indeed satisfy the criteria in De nition 2.1.
If we have a topological space and wish to investigate a subset of that space, we may
easily apply a \subspace" topology.
De nition 2.8. Let hX; i be a topological space and Y  X.  Y = fU\Y : U 2 g is
known as the subspace topology on Y with respect to X.
Listing every open set in a topology can be tedious, so often topologies are described
using simpler collections called bases.
De nition 2.9. A basis on X is a collection B P(X) such that
1. For each x2X there is a basis element B2B with x2B.
2. If x2B1\B2 where B1;B2 2B, then there is a basis element B3 2B with x2B3  
B1\B2.
The topology  generated by B is
fU2P(X) : for all x2U there exists B2B such that x2B Ug:
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It can be seen that any  generated by a basis which satis es these requirements satis es
the requirements of a topology. A basis can be thought of as a collection of the basic elements
of a topology on X. Certainly, any basis element is an open set in the space. Indeed, it is a
fact that every open set in the generated topology is a union of basis elements.
Proposition 2.10. An open set of a topological space generated by the basis B is the union
of elements of B.
De nition 2.11. A local base at a point x in a topological space X is a collection of open
setsBx, each of which contains x, such that for every open set U containing x, there is some
B2Bx with x2B U.
Another example of a topological space is a product space of various topological spaces.
De nition 2.12. The Cartesian product
Y
i2I
Xi is the set of functions f : I !
[
i2I
Xi
where f(i)2Xi.
In the case that there is some X with Xi = X for all i2I, the cartesian product is
often written as XI.
De nition 2.13. The product topology on the cartesian product of topological spaces
Y
i2I
Xi is the topology generated by the basis of sets of the form
Y
i2I
Ui, where Ui is open in
Xi for all i2I, and Ui = Xi for all but  nite i2I.
Certainly, the topological spaces X = f0;1;2g and Y = fa;b;cg with topologies  X =
f;;f0g;Xgand  Y =f;;fag;Xghave no interesting di erences other than the labels we give
the elements. We use the concept of a homeomorphism to link two topologically equivalent
spaces.
De nition 2.14. If f : X !Y is a function, S X, and T  Y, then f00(S) = ff(s) 2
Y : s2Sg is the image of S under f, and f 1(T) = fs2X : f(s) 2Tg is the inverse
image of T under f.
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De nition 2.15. For two topological spaces X;Y, the function h : X !Y is a homeo-
morphism if h is a bijection and for every set U open in X and V open in Y, f00(U) is open
in Y (making it an open map) and f 1(V) is open in X (making it continuous).
Proposition 2.16. A map with the property that for every point y in its range and open set
V containing y, there is an open set U in the domain with f00(U) V, is continuous.
De nition 2.17. Two topological spaces X;Y are said to be homeomorphic if there exists
a homeomorphism h : X!Y. We write X = Y.
Following are some properties of various topological spaces which will be referenced or
investigated in this paper.
De nition 2.18. A topological space X is said to be T3 if for every point x2X, fxg is
closed, and for every open set U containing x, there is another open set V with x V  
V  U.
De nition 2.19. An open cover U of a topological space X is a collection of open sets
such that SU = X.
De nition 2.20. A topological space X is said to be compact if for every open coverU of
X, there exists some  nite subcover U  U.
De nition 2.21. A re nement V of U is a set such that for every V 2V, there is some
U2U with V  U.
De nition 2.22. A collection of setsAin a topological space X is said to be locally  nite
if for every point x2X and there exists some open set U containing x such that U intersects
only  nitely many members of A.
De nition 2.23. A topological space X is said to be paracompact if for every open cover
U of X there exists some re nementV ofU such thatV is an open cover of X and is locally
 nite.
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Proposition 2.24. Any closed subspace of a paracompact space is paracompact.
De nition 2.25. A topological space X is said to be connected if there does not exist a
nonempty proper clopen subset A X.
De nition 2.26. A metric on a space X is a function d : X X!R where:
1. d(x;y) = 0,x = y
2. d(x;y) 0 for all x;y2X
3. d(x;y) = d(y;x) for all x;y2X
4. d(x;z) d(x;y) +d(y;z) for all x;y;z2X
An open ball of radius r with respect to a metric d, written Br(x), is the setfy : d(x;y) <
rg.
De nition 2.27. A topological space X is said to be metrizable if there exists a metric d
such that fBr(x) : x2X and r> 0g forms a basis generating the topology on X.
Proposition 2.28. Any subspace of a metrizable space is metrizable.
De nition 2.29. A collection of sets A is said to be  -locally  nite if A=
[
n2N
An where
An is locally  nite for all n2N.
The following two results are not trivial, but are basic results from introductory topology
needed in this paper.
Proposition 2.30. Every metrizable space is paracompact.
Proposition 2.31. Every space which is T3 and has a  -locally  nite basis is metrizable.
The following de nitions are needed in the  nal chapter.
De nition 2.32. A subset A of a topological space X is said to be dense in the space if it
intersects every open set in the space.
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Proposition 2.33. A subset A of a topological space X is dense in the space if and only if
A = X.
De nition 2.34. A topological space X is said to be Baire if every countable intersection
of dense open sets in the space is dense.
We now turn our attention to linearly ordered sets. If a set has a linear order on it,
there is a natural topology which arises from this order.
De nition 2.35. A relation < on X is called a linear order on X if it has the following
properties for all a;b;c2X:
 Either a = b, a<b, or b<a. (called comparability)
 a6<a. (called nonre exivity)
 If a<b and b<c, then a<c. (called transitivity)
The ordered pairhX;<iis called a linearly ordered set, or just X if the order < is implied.
De nition 2.36. An upper bound of a subset S of a linearly ordered sethX;<iis a point
u2X such that s u for all s2S.
Similarly, a lower bound of a subset S of a linearly ordered sethX;<iis a point l2X
such that s l for all s2S.
De nition 2.37. The least upper bound of a subset S of a linearly ordered sethX;<iis
a point u2X such that u is an upper bound of S and u v for all upper bounds v of S.
It is sometimes referred to as the supremum of S and written sup(S).
The greatest lower bound of a subset S of a linearly ordered set hX;<i is a point
l 2 X such that l is an lower bound of S and l  m for all lower bounds m of S. It is
sometimes referred to as the in mum of S and written inf(S).
Proposition 2.38. Let X be a linearly ordered set. If p2S X is an upper bound (resp.
lower bound) of S, then it is the least upper bound (resp. greatest lower bound) of S. It is
also the maximum (resp. minimum) element of S.
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Of course, it need not be that every subset of a linearly ordered set have a supremum
or in mum.
De nition 2.39. A subset S of a linearly ordered set hX;<i is bounded if it has a lower
bound and an upper bound. Otherwise, it is said to be unbounded.
De nition 2.40. Two linearly ordered sets hX;<Xi;hY;<Yi are said to be order iso-
morphic if there exists a bijection f : X ! Y which is order preserving, that is,
x1 <X x2 ,f(x1) <Y f(x2). This bijection is called an order isomorphism.
Proposition 2.41. Any order-preserving map is injective.
De nition 2.42. For a linearly ordered set hX;<i and points a;b2X, let the following
sets denote intervals of X:
 (a;b) =fx2X : a<x<bg is an open interval of X
 [a;b) =fx2X : a x<bg is a left-closed interval of X
 (a;b] =fx2X : a<x bg is a right-closed interval of X
 [a;b] =fx2X : a x bg is a closed interval of X
De nition 2.43. For a linearly ordered set hX;<i and points a;b2X, let the following
sets denote rays of X:
 (a;!) =fx2X : a<xg
 [a;!) =fx2X : a xg
 ( ;b) =fx2X : x<bg
 ( ;b] =fx2X : x bg
The  rst and third rays are called open rays and the second and fourth rays are called
closed rays.
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It can be shown that f(a;b) : a;b2Xg forms a basis for a topology on X, and we call
this the order topology.
De nition 2.44. For a linearly ordered set hX;<i, the order topology on hX;<i is the
topology generated by the basis of open intervals and rays f(a;b) : a;b2Xg[f( ;b) : b2
Xg[f(a;!) : a2Xg. If  is this topology, then the topological spacehX; iis then called
a linearly ordered topological space or LOTS.
The majority of this paper investigates the order topology as applied to ordinal numbers.
We will need some (largely glossed over) set theory background.
De nition 2.45. A set  is transitive if  2 implies    .
De nition 2.46. A linear order < on X is a well-order if for every Y  X, there is a
<-least element y2Y. (y is <-least in Y if for every z2Y, y z.)
Proposition 2.47. For any bounded subset S of a well-ordered space X, sup(S) exists.
Proposition 2.48. Induction and de nition by recursion may be performed on any well-
ordered set.
De nition 2.49. For a linearly ordered set hX;<i, the lexicographical order <L on
X X is given by hx1;x2i<Lhy1;y2i if one of the following holds:
 x1 <y1
 x1 = y1 and x2 <y2
Proposition 2.50. <L is a linear order. If < is a well-order, then <L is also a well-order.
De nition 2.51. A set  is an ordinal if  is transitive and well-ordered by 2.
For two ordinals  ; , if  2 , we often say  < .
Example 2.52. The following are examples of ordinals:
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 0 =;
 1 =f0g
 2 =f0;f0gg=f0;1g
 n =f0;1;:::;n 1g
 ! =f0;1;:::;n;:::g= N
 ! + 1 =f0;1;:::;n;:::;!g
 ! 2 =f0;1;:::;n;:::;!;! + 1;:::;! +n;:::g
 !2 =f0;:::;!;:::;! 2;:::;! 3;:::;! n;:::g
 !! =f0;:::;!;:::;!2;:::;!n;:::g
While the later ordinals in that list may seem to contain many \more" ordinals than
those above, every ordinal in that list is countable, in that there is an onto function from !
to any ordinal in that list.
De nition 2.53. An ordinal  is called a cardinal if for all ordinals  < , there is no onto
function from  to  .
De nition 2.54. The cardinality of a set S, jSj, is the unique cardinal  such that there
is a bijection from  to S.
Example 2.55. The natural numbers 0;1;:::;n and the collection of natural numbers !
are all cardinals.
De nition 2.56. An ordinal  is called countable if there is an onto function from ! to
 . Otherwise it?s called uncountable.
Proposition 2.57. !1 =f :  is a countable ordinalgis the least uncountable ordinal (and
cardinal).
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Chapter 3
!1, the First Uncountable Ordinal
We begin by  rst investigating this  rst uncountable ordinal. As we will see in the next
chapter, these results will be easily generalized to certain higher cardinals as well. We  rst
establish the following convention.
De nition 3.1. A subset C of a limit ordinal  is said to be club if it is closed and
unbounded in  .
It should be noted that for the majority of this paper (until Chapter 7), all ordinals are
assumed to have the order topology.
Theorem 3.2. Let C =fCn : n<!g be a collection of club sets in !1. Then TC is club.
Proof. Certainly, any intersection of closed sets is closed. Let <L be the lexicographic order
on ! !. To see that TC is unbounded, we take any  2!1 and  x a point c0;0 2C0 greater
than c0. We then de ne cm;n (for m;n<!) to be the minimum element of Cn strictly greater
than cm0;n0 for all (m0;n0) <L (m;n).
We then set c to be the least upper bound of fcm;n : m;n < !g. Fixing n < !, c is a
limit point of fcm;n : m < !g Cn, so c2Cn for all n < !, which gives a point c >  in
TC.
Theorem 3.3. For any closed unbounded subset C of !1, there is a strictly increasing home-
omorphism from C to !1.
Proof. De ne f : !1 !C such that
 f(0) = min(C)
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 f( ) = min(Cnf00( )).
We  rst claim that f is an order isomorphism. It?s obviously order-preserving (and thus
injective). To see that it is onto, suppose by way of contradiction that there is some  2C
such that  62ran(f). By the de nition of f, f( ) < for all  <!1. Thus f00(!1)  , a
countable set. But f00(!1) is the 1-1 image of an uncountable set, and thus is an uncountable
subset of a countable set - contradiction.
Any order isomorphism is an open map. We now show that f is also a homeomorphism
by showing its continuity. Let  < !1 and  < f( ). If  is not a limit ordinal, then f g
is open and f00(f g)  ( ;f( ) + 1). Otherwise, there is a strictly increasing sequence of
ordinals converging to  , and their image under f is also a strictly increasing sequence of
ordinals converging into some  0. As C is closed,  0 2 C and thus f( ) =  0. So f( )
is a limit point of f00( ), and there is some  <  such that  < f( )  f( ). Thus
f00[( ; + 1)] ( ;f( ) + 1).
Theorem 3.4. Let f : !1 !!1 be a function and C =f :  < )f( ) < g be a subset
of !1. Then C is closed and unbounded.
Proof. Let  be a limit point of C, and  <  . As  is a limit point of C, there must be
some  2C with  <   . Note then that f( ) <   , so  2C. Thus C is closed.
Now suppose by way of contradiction that  is the supremum of C. De ne g : !1 !!1
such that g( ) = sup(f00( ))+1. Consider the sequencef +1;g( +1);g2( +1);:::g. Note
that  + 1 62C so g( + 1) = sup(f00( + 1)) + 1  ( + 1) + 1 >  + 1. Inductively, it
is easily seen that as gn( + 1) 62C, gn+1( + 1) > gn( + 1). This is a strictly increasing
sequence, so it converges to a limit ordinal  .
Consider any  < . There is a minimum gn( + 1) such that  <gn( + 1). It follows
that f( ) < sup(f00(gn( + 1))) + 1 = g(gn( + 1)) = gn+1( + 1) <  . So  2 C, a
contradiction. Thus C is unbounded.
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The construction in Theorem 3.4 (and later in Theorem 4.8) is often useful in construct-
ing club sets.
In this paper we are largely concerned with the idea of a stationary set.
De nition 3.5. A subset S of a cardinal  is said to be stationary if it intersects every
club subset of  .
Two facts about stationary sets are evident: all club sets are stationary, and any sta-
tionary set must be unbounded. But it need not be true that every stationary set be closed,
as there are two disjoint stationary subsets of !1, as we will see in the next chapter.
The following result is classic, and very useful.
Theorem 3.6 (Pressing Down Lemma Lite for !1). Let S be a stationary set in !1. If for
each ordinal  2Snf0g, we choose an ordinal   < , then there is some  <!1 such that
 =   for uncountably many  2S.
Proof. Suppose by way of contradiction that for all  < !1, f 2S :   =  g is bounded.
Then, let f : !1 !!1 be de ned such that f( ) = sup(f 2S :   =  g).
By the above theorem, C =f : f( ) < for all  < g is closed and unbounded. Let
 2S.   <  , and f(  ) = sup(f 2S :   =   g)   . So  62C and S\C = ;.
Contradiction.
The \full" result states that there is a stationary set T of !1 such that  =   for all
 2T. However, this stronger version is not needed for any result in this paper.
A direct application of stationary sets is the fact that they are never paracompact.
Theorem 3.7. If S is a stationary subset of !1, then S is not paracompact.
Proof. Considerf( ; +1) :  2Sg=f[0; ] :  2Sg, an open cover of S. Suppose by way
of contradiction that there exists a locally  nite open re nement U. For each  <!1 there
exists a   such that (  ; ] intersects only  nitely many sets in U. By the Pressing Down
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Lemma, there is a  such that  =   for uncountably many  . Thus ( ;!1) intersects only
 nitely many sets in U.
This means thatU must be a countable collection. And as every set inU is a subset of
[0; ] for some <!1,U is a countable collection of countable sets. But this is a contradiction
as a countable collection of countable sets cannot cover an uncountable set.
The following lemma proves our intuition that any open set of a LOTS can be con-
structed by unioning some disjoint convex open spaces.
Lemma 3.8. Let U be an open subset of a linearly ordered topological space X. Then U is
the union of a disjoint collection of convex open spaces.
Proof. We begin by de ning a relation  on U. We say a  b if and only if the closed
interval [min(a;b);max(a;b)] U. We should show this is an equivalence relation.
 For a2U, we note [min(a;a);max(a;a)] =fag U, so a a.
 If a b, we note U [min(a;b);max(a;b)] = [min(b;a);max(b;a)] U, so b a.
 Ifa bandb c, we note [min(a;c);max(a;c)] [min(a;b);max(a;b)][[min(b;c);max(b;c)] 
U[U = U. Thus a c.
So partitions U. We should show [x], the equivalence class of some x2U, is a convex
open set. Take a<b in [x]. a x b, so [min(a;b);max(a;b)] = [a;b] U. Thus for any
c2 (a;b), [min(a;c);max(a;c)] = [a;c]  [a;b]  U, so c a x and c2 [x], making [x]
convex.
Lastly, note that for c2 [x], a2U, and there is an open interval (a;b)  U about c.
For all y2 (a;c), [y;c]  (a;b)  U, and for all y2 (c;b), [c;y]  (a;b)  U. Either way,
y c x, so y2[x], and [x] is open.
Using this lemma, we may characterize all nonstationary subsets of !1 as metrizable
and paracompact.
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Theorem 3.9. A subspace S of !1 is metrizable i S is paracompact i S is non-stationary.
Proof. It is a well-known result that all metrizable spaces are paracompact (cited in Chapter
2), whether they are a subspace of !1 or not. In addition, paracompact implying non-
stationary is the result of Theorem 3.7.
It remains to be shown that non-stationary implies metrizable. Let Y be a nonstationary
subset of !1. Note that it is routine to show that !1 is T3, so Y is also T3. We should show
Y has a  -locally  nite basis.
There exists a closed, unbounded set C disjoint from Y. Let !1nC = D. Thus Y  D,
an open set which is the disjoint collection of convex open spaces. We partition D by these
convex open spaces, so that D =
[
 <!1
D . (We may index these spaces by !1 as they are
disjoint, and if there were only countably many D then Y is countable and the result is
trivial.)
Note that each D has an element   2 C as an upper bound, and thus has a basis
B =f( ; )\D :  < <  g (as D is convex) which is countable. Let us rename these
countable intervals to be Un; for n<!.
We then  nd that
[
n<!
fUn; :  < !1g is a basis for the entire space D. Likewise,
[
n<!
fUn; \Y :  < !1g is a basis for the subspace Y of D. We should show that for any
n<!, fUn; \Y :  <!1g is locally  nite.
Let n < ! and  2 Y. As the D partition D  Y,  2 D \Y for some  < !1.
The only element of fUn; \Yj < !1g intersecting D is precisely Un; \Y. Thus every
element of Y has a neighborhood (speci cally, D for an appropriate  < !1) intersecting
 nite elements of fUn; \Yj <!1g.
We conclude that Y is  -locally  nite and T3, so Y is metrizable.
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Chapter 4
Generalizing to Any Regular Cardinal  
First, a classic cardinality result:
Lemma 4.1. For any in nite cardinal, j   j=  .
Proof. Certainly, j   j  , so we need only show j   j  by constructing an onto
function from  to    .
We de ne a well-order <? on    as such. ( 1; 1) <? ( 2; 2) if one of the following
holds:
1. max( 1; 1) < max( 2; 2)
2. max( 1; 1) = max( 2; 2) and ( 1; 1) <L ( 2; 2)
(where <L is the lexicographical order)
It is easily seen that this is a well-order, as it was de ned based on the well orders <;<L.
We may now de ne a function f :  !   where f(0) = (0;0) and f( ) is the <?-least
element of    nf00( ). Note that it is order-preserving, and thus injective. We should
show it?s an onto function.
Consider  rst the case that  = !. Suppose by way of contradiction that (a;b) is not in
the range of f for a;b<!. Then we have an injective map from ! to some <?-predecessors
of (a;b), which in turn are a subset of (max(a;b) + 1) (max(a;b) + 1), a  nite set, which
gives us our contradiction.
Now, let us assume inductively that j   j  for all  <  . Suppose by way of
contradiction that ( ; ) is not in the range of f for  ; <  . Then we have a bijection
from  to some <?-predecessors of ( ; ), which in turn are a subset of (max( ; ) + 1) 
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(max( ; ) + 1). As max( ; ) + 1 < , jmax( ; ) + 1j=  < for some cardinal  . Thus
j(max( ; ) + 1) (max( ; ) + 1)j=j   j  . But in that case, f is a bijection from  
to a set of cardinality   <  , a contradiction. We?ve thus proven j   j  , and thus
j   j=  .
While the results of Chapter 3 are nice, the methods of these proofs can be generalized
by introducing the idea of a \regular" cardinal.
De nition 4.2. The co nality of an ordinal  , written cf( ), is the least cardinal such
that there exists an unbounded function f from cf( ) to  . (That is, there is no element of
 which is strictly greater than every ordinal in the range of f.)
De nition 4.3. A cardinal  is said to be regular if  = cf( ).
We follow with a few basic cardinality results.
Theorem 4.4.
(i) If  is any in nite cardinal, then the union of   -many sets, each of cardinality   ,
has cardinality   .
(ii) If  is a successor ordinal, then  is regular.
(iii) For any limit ordinal  , cf( ) is a regular cardinal.
Proof.
(i) Consider
[
 2 
S where    and jS j  . Let f be an injection from S to  . We
de ne f :
[
 2 
S !   so that f(s) maps to ( ;f (s)) where  is the least ordinal
where s2S . f is an injection from
[
 2 
S into    , so
  
  
 
[
 2 
S 
  
  
  j   j=  .
(ii) Suppose by way of contradiction that cf( +)   . There is a function f :  ! +
whose range is unbounded in  +. Then let g :  !  be an onto function for all
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 <  +. (This is possible as j j<  + )j j  .) We use these to de ne a function
g :    ! + where g( ; ) = gf( )( ). Since for any  < + we may  nd a   such
that f(  ) > , we know gf(  ) maps onto  . Thus our g is an onto function from a set
of cardinality  to  +, a contradiction.
(iii) Let be a limit ordinal, and = cf( ). There is a strictly increasing functionf :  ! 
which is unbounded in  .
Suppose by way of contradiction that there exists an unbounded strictly increasing
function g :  ! for  <  . Composing f and g gives us an unbounded increasing
function f g :  ! , a contradiction of the de nition of  as the least cardinal which
has an unbounded map onto  . Thus cf( ) =  and cf( ) is regular.
As is shown in the following theorem, regular cardinals have many of the properties
commonly associated with \uncountable" versus \countable" sets.
Theorem 4.5. For an in nite cardinal  , the following are equivalent:
(i)  is regular.
(ii) For any A  , if jAj< , then sup(A) < .
(iii) The union of < -many sets, each of cardinality < , has cardinality < .
Proof.
(i) ) (ii) (Shown by contrapositive.) Let A  such that jAj=  A < and sup(A) =  . Then
i : A !  where i is the inclusion map (i( ) =  ) has an unbounded range. Let
 :  A !A be a bijection. Then i  :  A ! has an unbounded range, showing
cf( )  A < and thus  is not regular.
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(ii) ) (i) Let  < . Suppose by way of contradiction that there is a function f :  ! whose
range was unbounded in  , that is, sup(A) =  for A =ff( ) :  2 g; contradiction.
Thus cf( ) =  .
(i) ) (iii) Let  <  , and assume by induction that for  <  , the union of  -many sets, each
of cardinality < , has cardinality < . Assume that for each  < , U is a set with
jU j< . As  is regular, it follows that the function f :  ! where f( ) =
  
  
 
[
 < 
U 
  
  
 
is bounded by some cardinal  <  . As
[
 < 
U =
[
 < 
 [
 < 
U 
!
, it follows that the
cardinality of the union of  -many sets of cardinality   must be of cardinality
max( ; ) < .
(iii) ) (i) Let  < . Suppose by way of contradiction that there is a function f :  ! whose
range is unbounded. Then
[
 < 
f( ) =  , and the union of less than  -many sets each
of cardinality less than  has cardinality  , a contradiction.
Now that we?ve established the rules for regular cardinals, we observe that they behave
in nice ways, that is, similar to the relationship between ! and !1. From this we can
generalize many of the theorems from the previous chapter by merely replacing !1 with any
regular cardinal  , replacing ! with any cardinal  <  , assuming \uncountable" to mean
\of cardinality  ", and assuming \countable" to mean \of cardinality < ".
Theorem 4.6. Let  be an uncountable regular cardinal and  < . Let C =fC :  < g
be a collection of club sets in  . Then TC is club.
Proof. See the proof of Theorem 3.2.
Theorem 4.7. Let  be an uncountable regular cardinal. For any closed unbounded subset
C of  , there is a strictly increasing homeomorphism from C to  .
Proof. See the proof of Theorem 3.3.
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Theorem 4.8. Let f :  ! be a function and C =f :  < )f( ) < g be a subset
of  . Then C is closed and unbounded.
Proof. See the proof of Theorem 3.4.
Theorem 4.9 (Pressing Down Lemma Lite). Let S be a stationary set in  . If for each
ordinal  2Snf0g, we choose an ordinal   < , then there is some  < such that  =   
for  -many  2S.
Proof. See the proof of Theorem 3.6.
Theorem 4.10. If S is a stationary subset of a regular cardinal  , then S is not paracompact.
Proof. See the proof of Theorem 3.7.
These  nal results about regular cardinals, speci cally !1, will be needed in the  nal
chapter.
Lemma 4.11. Let C;D be closed unbounded subsets of a regular cardinal  , and  :  !D
be a strictly increasing homeomorphism.  00(C) is closed unbounded in  .
Proof. Fix  2  . As D is unbounded, we may  x  2 D such that  >  . There is a
 2 such that  ( ) =  . As C is unbounded, we may  x  2C such that  > , yielding
 ( ) > ( ) =  > . Thus  00(C) is unbounded in  .
As  is a homeomorphism,  00(C) is a closed subset of D. This means there is a closed
set E of  such that E\D =  00(C). As  00(C) is the intersection of closed sets,  00(C) is
closed.
Lemma 4.12. There are two disjoint stationary subsets of !1.
Proof. Suppose not. Let Q be the set of rational numbers. Let f : !1 ! (0;1)nQ be
injective. (0; 12) and (12;1) cannot both contain the image of stationary sets in !1, so there is
a closed unbounded set C1 of !1 that maps by f into an open interval of irrational numbers
of length 12.
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Now assume we have, by way of induction, a chain of club sets C1  :::  Cn such
that Ci maps by f into an open interval of irrational numbers with rational endpoints of
length 12i. Let h : !1 !Cn be a strictly increasing homeomorphism and g = f h. Assume
f00(Cn)  (a;b)nQ where a;b 2 Q and b a = 12n. g : !1 ! (a;b)nQ is injective.
(a;a+b2 ) and (a+b2 ;b) cannot both contain the image of stationary sets in !1, so there is a
closed unbounded set C of !1 that maps by g to either (a;a+b2 ) and (a+b2 ;b), which are
both have rational endpoints and are of length 12n+1 . It then follows by Lemma 4.11 that
Cn+1 = h00(C ) Cn is also a club set, and f00(Cn+1) = f00(h00(C )) = g00(C ) is a subset of
an open interval of irrational numbers with rational endpoints of length 12n+1 .
We then observe that for all n<!, C =
\
i<!
Ci Cn maps injectively into a subset of
an open interval of length 12n, a contradiction.
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Chapter 5
Some Theorems on the Compactness of Linearly Ordered Topological Spaces
Before moving on to the  rst main result of this paper, we should investigate a charac-
terization of compactness in the context of a LOTS.
Theorem 5.1. A linearly ordered topological space X is compact i every nonempty subset
of X has a least upper bound and a greatest lower bound.
Proof. If X is compact, then suppose by way of contradiction that S X is a set with no
least upper bound. Let T =ft2X :8s2S(t s)g. We claim
U =f( ;s) : s2Sg[f(t;!) : t2Tg
is an open cover of X. If so, then there is a  nite subcover f( ;si) : 0 <i<mg[f(ti;!
); 0 <i<ng, but this cannot cover the rightmost si (as tj si for any tj2T), which would
yield our contradiction.
To see that f( ;s) : s2Sg[f(t;!) : t2Tg is an open cover, suppose by way of
contradiction that x2X was not covered by U. As x is not covered by f( ;s) : s2Sg,
x s for all s2S, which makes x an upper bound of S and places x2T. It then follows
that x t for all t2T as it is not covered byf(t;!) : t2Tg. This makes it a lower bound
of T, and since it belongs to T, x is the greatest lower bound of T.
Now note that there must be some y <x that is also an upper bound of S since S has
no least upper bound. y is not the greatest lower bound of T (as x>y is), so it must not lie
in T. This mean that there is some sy 2S such that sy >y. But that contradicts the fact
that y was an upper bound for S, which proves that every subset of X must have a least
upper bound.
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To see that every subset also must have a greatest lower bound, simply reverse all the
orders in the above argument. Alternately, note that we merely need to consider a \mirrored"
linear space XM =fxM : x2Xg with the order xM <M xM ,x>y. There is an obvious
homeomorphism between the two spaces, so XM is also compact. Any subset without a
greatest lower bound in X would yield a re ection in XM without a least upper bound, a
contradiction. This  nishes the forward implication.
Now conversely, assume that every subset of X has a least upper bound and greatest
lower bound. This means that X has a greatest lower bound, and minumum element, a and
a least upper bound, and maximum element, b. Let U = f(a ;b ) :  <  g be an open
interval cover of X for some cardinal  . Let S =fs2X : there is a  nite subcover of U for
[a;s]g. S is nonempty as there is a  nite subcover of U for [a;a] =fag, placing a2S. We
note sup(S)2S as there is an interval (a 0;b 0)2U containing sup(S), and a  nite subcover
of U covering [a;a 0] (since a 0 < sup(S))a 0 2S), so by combining them we  nd a  nite
subcover of U covering [a;sup(S)].
We claim that sup(S) = b. To see this, assume by way of contradiction that sup(S) <b.
Let (a 0;b 0) continue to denote a set in U covering sup(S). We now note that if (a 0;b 0)
contains no element of X greater than sup(S), then there are no elements in X between
sup(S) and b 0. Thus we can use any interval inU which contains b 0, and combine that with
the  nite subcover for [a;sup(S)] to get a  nite subcover of U covering [a;b 0] [a;sup(S)],
a contradiction.
We?ve thus seen that (a 0;b 0) must contain an element of X greater than sup(S), which
we will call t. Of course this then means that [a;t] [a;sup(S)] can be covered by the  nite
subcover of [a;sup(S)] combined with (a 0;b 0), which places t> sup(S) in S and yields our
contradiction.
As sup(S) = b, there exists a  nite subcover of U for [a;b] = X, demonstrating the
compactness of X.
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Even if a linearly ordered set is not compact we can easily compactify it, that is, embed
it densely in a compact linearly ordered topological space.
Theorem 5.2. Every linearly ordered topological space X is a dense subset of a compact
linearly ordered topological space ^X .
Proof. We de ne ^X as such. ^X P(X) where A2 ^X i all of the following holds:
1. A is closed in X
2. a2A and b<a)b2A
3. X has a least element )A6=;
We shall call a set that holds for the  rst two conditions \left-closed". We should show that
the partial order  is a linear order on ^X.
Let A6= B. Without loss of generality, we can assume there is a b2BnA. We note
there is no element of A greater than or equal to b, as that would imply b2A. So for all
a2A, a<b, and thus a2B, giving us A B.
So the linear order generates a topology on ^X. We then note that the subspace made
up of sets Ax =fa2Xja xgfor all x2X is homeomorphic to the space X in the natural
way: let  (Ax) = x. Then  [(Ax;Ay)] = (x;y), and images and inverse images preserve basic
open sets, making  a homeomorphism.
We now show that fAx : x2Xg is dense in ^X. Take a set A2 ^X. Consider a basic
open set about A, (A ;A+), noting A  A A+. Let x2AnA . We shall show that
Ax 2 (A ;A+). Let a2Ax. x2A and a x implies a2A, so Ax  A A+. Now let
a2A . As x62A , it follows that x > a. It then follows that as a < x, a2Ax. This
means A  Ax, and as x2AxnA , we see that A  Ax, which places Ax 2 (A ;A+).
This makes the closure of fAx : x2Xg to be ^X, and fAx : x2Xg is dense.
To conclude, we show that ^X is compact. Let ^S be a nonempty subset of ^X. We note
that \^S is a closed set in X and that a2\^S and b < a implies a2S for all S2 ^S, and
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thus b2S for all S2 ^S yielding b2\^S, and thus \^S2 ^X. Also, if S2 ^S, then certainly
\^S  S, so \^S is a lower bound of ^S. For any lower bound T of ^S, we note that t2T
implies t2S for any S2 ^S, and thus t2\^S, which shows T  \^S. Thus\^S is the greatest
lower bound of ^S.
Now we note that [^S is a closed set in X and that a2[^S and b<a implies either
1. a2S for some S2 ^S, so b2S [^S [^S or
2. a is a limit point of [^S but not in that union, so a  s for all s 2 [^S, which
requires (b;a) to intersect [^S at some s > b in some S2 ^S, which then implies that
b2S [^S [^S.
So we have that [^S2 ^X.
Certainly [^S is a superset of all S 2 ^S, so [^S is an upper bound of ^S. And if T is
any upper bound of ^S, then it is closed in X and is a superset of [^S, and as [^S is the
intersection of all such sets, we see that [^S T and [^S is the least upper bound of ^S.
As any arbitrary ^S  ^X has both a least upper bound and greatest lower bound, we
know that ^X is compact,  nishing the proof.
It?s often a useful trick to compactify a space in order to gain some extra structure, as
we will see in a later proof.
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Chapter 6
A Characterization of the Paracompactness of a Linearly Ordered Topological Space
We?re about ready to tackle the  rst main result of this paper. First, we introduce
another sense of connectedness in the sense of a collection of subsets of a topological space.
De nition 6.1. For a topological space X, a collectionU P(X), and two points a;b2X,
the  nite sequence hU0;:::;Un 1i of sets in U is called a  nite linked chain joining a;b if
a2U0, b2Un 1, and for all 0 i<n 1, Ui\Ui+1 6=;.
De nition 6.2. A collectionU of subsets of a topological space X is said to be connected
if every pair of sets in U is connected by a  nite linked chain in U.
De nition 6.3. For a linearly ordered topological space X, a coverU of X by open intervals,
and two points a < b 2 X, a  nite linked chain h(l0;r0);:::;(ln 1;rn 1)i of intervals in U
joining a;b is called a progressive  nite linked chain if for all 0 <i n 1, ri 1 <ri.
Lemma 6.4. For a linearly ordered topological space X and an open cover U of X by
intervals, there exists a  nite linked chain in U connecting two points a<b2X if and only
if there exists a progressive  nite linked chain joining them.
Proof. The backwards implication is trivial. If h(l0;r0);:::;(ln 1;rn 1)i is a chain joining
a to b and isn?t already progressive, then let (li;ri) be the  rst link in the chain which
does not satisfy the progressive requirement, that is, ri  ri 1. If b 2 (li 1;ri 1) then
h(l0;r0);:::;(li 1;ri 1)i is our progressive  nite linked chain. Otherwise, as b is covered by
some (lk;rk) for k  i, there must be some least j with ri 1 < rj. We note (li 1;ri 1)\
(lj;rj)6=;since lj <rj 1  ri 1, soh(l0;r0);:::;(li 1;ri 1);(lj;rj);:::;(ln 1;rn 1)iis another
 nite linked chain with at least one less nonprogression. We may then complete this process
 nitely many times until we have our progressive linked chain.
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The reader may note that the reuse of the term \connected" is appropriate as there is a
strong connection between a connected topological space and the connectedness of an open
cover of that space.
Theorem 6.5. A space X is connected i every cover of X by nonempty open sets is
connected.
Proof. Let X be disconnected, so X = A[B with A;B disjoint and clopen. Then fA;Bg
is an open cover and A;B cannot be joined by a  nite linked chain in that cover.
Now assume X is a topological space with an open coverU with sets A;B which cannot
be joined by a  nite linked chain in U. Then let U0 = fAg and for all 0 < i < ! let
Ui+1 =fU2U : U\(SUi)6=;g. We note that B62Ui for any i<! as that would give us
a  nite linked chain from A to B.
Then we note that S(Si<!Ui) is closed, for if l is a limit point of S(Si<!Ui), then any
open set Ul2U containing l intersects S(Si<!Ui), so it intersects a member ofUi for some
i<!, putting Ul in Ui+1 and l2S(Si<!Ui).
As S(Si<!Ui) is clopen and a strict subset of X, X is not connected.
In order to  nd a stationary subset of a regular cardinal, we  rst note that we may
compactify a LOTS to obtain a subspace homeomorphic to a regular cardinal.
Lemma 6.6. Let X be a compact linearly ordered topological space, and p2X. Let  be
the co nality of Lp =fy2X : y<pg. Then Lp contains a closed co nal set homeomorphic
to the cardinal  .
Proof. Let y0 :  !Lp be a strictly increasing co nal map. We may de ne a new co nal
map y by letting y( ) = y0( ) for successor  s, and y( ) = sup(fy( ) :  <  g) for limit
 . This is well-de ned as the compact X must contain the supremum of any nonempty set,
and this supremum must be less than p. We claim y is a homeomorphism onto its range Y.
It is certainly an order isomorphism, and thus open. All that is left to show it is a
homeomorphism is to see is that it is continuous. Let  <  and x < y( ) < z in Y. If  
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is not a limit ordinal, then f g is open and y00(f g) (x;z). Otherwise, we note that y( )
is the supremum of fy( ) :  < g, so we may pick  < with x<y( ) <y( ), giving us
y00[( ; + 1)] (x;z).
Lastly, we should show that Y is closed. Let x < p be a limit point of Y. There is a
least  such that x < y( ), so we may assume (z;x) intersects Y for any z < x. We then
note that x = sup(fy( ) :  < g, and  must be a limit ordinal, so x2Y.
For convenience, we will partition our linearly ordered set into portions based on the
open cover of our space.
Lemma 6.7. If for an open cover U of a topological space X and sets U;V 2U we have a
relation  such that U  V if they are joined by a  nite linked chain in U, then  is an
equivalence relation.
Proof. We note U U as hUi is a  nite linked chain from U to U.
If U  V, then there is a  nite linked chain hU;:::;Vi, which by reversal gives a  nite
linked chain hV;:::;Ui, showing V  U.
Lastly, if U V and V  W, then by combining the  nite linked chains hU;:::;Vi and
hV;:::;Wi we get the chain hU;:::;V;:::;Wi, which shows U W.
This proves that  is an equivalence relation.
De nition 6.8. If U is an open cover of a topological space X and U 2U, let [U] be the
equivalence class with respect to the above-de ned  for U. We call [U] the connected
extension of U from U. S[U] X is said to be the U-component of X.
Lemma 6.9. For an open cover U of a topological space X,  partitions X into clopen
U-components S[U]. That is, for each x2X there is a unique [U] such that x2S[U].
Proof. Certainly, for any x 2 X there is a set U in the open cover U which covers x, so
x2S[U].
Now, if x2U and x2V for U;V 2U, then U\V 6=;. Thus hU;Vi is a  nite linked
chain, and U V )[U] = [V]. Thus the S[U] covering x is unique.
29
Lastly, we note that S[U] is open as it is the union of open sets. We then note that
XnS[U] = SUn[U] as U must cover all of X and any element V 2U which covers S[U]
must be in [U]. This complement is also open, so S[U] is also closed.
When considering paracompactness, we may focus our attention onto the [U]-components
of the space.
Lemma 6.10. A topological space X is paracompact i for any open cover U and any set
U2U, there is a locally  nite open re nement of [U] covering S[U].
Proof. For the forward implication, start with the open coverU and  xU as its locally  nite
re nement covering X. Fix U2U. The subsetV =fV : V 2U and V  S[U]gofU is also
a locally  nite re nement. In addition V covers S[U], as for x2S[U], we have a W 2U 
covering it, and since W  W for some W 2U, and W intersects S[U], W  S[U] and
W  S[U], so W 2V.
Conversely, we may assume that we may  nd a locally  nite re nement [U] of each [U].
We?ve seen that for each x2X, x is covered by a unique [U] U. So we may  nd an open
set W containing x within S[U] that intersects only  nitely many elements of [U] . If W
intersects any element of some [V] , that admits a  nite linked chain hU;:::;W;:::;Vi which
means [V] = [U] . Thus SU2U[U] is a locally  nite re nement of U, and covers X.
With this we are  nally ready to approach the  rst main result. It should be noted
that the forward implication is largely trivial as we observe that any closed subspace of a
paracompact space is paracompact. The other direction is much less obvious; however, by
carefully examining the [U]-components generated by a particular cover of the space, we can
construct a locally  nite re nement by grabbing a copy of a regular uncountable cardinal in
the compacti cation of the [U]-component and using the fact that within a [U]-component,
any two sets in the cover is connected by a progressive  nite linked chain.
Theorem 6.11. A linearly ordered topological space X is paracompact i X does not contain
a closed subspace homeomorphic to a stationary subset of a regular uncountable cardinal.
30
Proof. We  rst note that if X contains a closed subspace Y homeomorphic to a stationary
subset of a regular uncountable cardinal, then Y is a closed subspace of X which is not
paracompact. Thus X cannot be paracompact.
We now assume thatX does not contain a closed subspace homeomorphic to a stationary
subset of a regular uncountable cardinal. LetU be a collection of open intervals covering X.
Fix U2U. By Lemma 6.10, we need only show a locally  nite re nement of the connected
extension [U] covering S[U]. Let Y = S[U] and x0 2Y.
If the co nality of Y is n < !, then there is a greatest element y 2 Y, and we may
pick a progressive  nite linked chain in [U] beginning with a set which covers x0 and ending
with a set which covers y, which is a  nite re nement of [U] covering [x0;!)\Y. Call this
re nement Y!.
Now, if the co nality of Y is  = !, there is some increasing map f with f(0) = x0
which is co nal in Y. We may then, for each n < !,  nd a progressive  nite linked chain
Cn in [U] joining f(n) and f(n + 1). We may then de ne C0n =fL\(f(n 1);f(n + 2)) :
L is a link in Cng where f( 1) is assumed to represent  .
[
n<!
C0n then covers [x0;!)\Y.
In addition, each point in (x0;!)\Y lies in some [f(n);f(n + 1)] and thus the open set
(f(n 1);f(n + 2)) could only intersect the  nite elements of the  ve sets C0n 2 through
C0n+2, making the union a locally  nite re nement. Again, call this re nement Y!.
Finally, consider when the co nality of Y is  >!. Let ^Y be the compacti cation of Y
from Theorem 5.2. ^Y adds a greatest element p not in Y since Y had uncountable co nality.
Lemma 6.6 gives us that ^Y nfpg contains some closed co nal subset K homeomorphic to
the co nality  0 of ^Y nfpg.
We note that if f :  0! ^Ynfpgis a co nal map, then the density of Y in ^Ynfpggives
a point of Y in the open set (f( );f( + 1)) in ^Y, so the co nality  of Y is  0. Of course,
if g :  !Y is co nal, then its inclusion map ig :  ! ^Y nfpg is co nal in ^Y, so  0  .
Thus  0 =  .
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Now observe that K\Y cannot be a stationary subset of K by our assumption that
Y does not contain a closed subset homeomorphic to a stationary subset of any regular
uncountable cardinal such as  . This gives us a subset of KnY which is closed and unbounded
in K, call it ^K. We may assume without loss of generality that all elements of ^K are greater
than x0 as any  nal interval of a closed unbounded set is also a closed unbounded set.
^K is homeomorphic to  , so suppose  :  ! ^K is a homeomorphism. We may  rst
construct a  nite re nement of [U] on [x0; (0))\Y by using any progressive  nite linked
chain connecting x0 to any point of Y greater than  (0), with each element intersected with
the open set ( ; (0))\Y in the subspace Y of ^Y (dropping any empty sets). Similarly, for
each  < , we can similarly construct a  nite re nement of [U] for ( ( ); ( +1)) by using
any progressive  nite linked chain connecting x0 to any point of Y greater than  ( + 1),
with each element of the chain intersected with ( ( ); ( + 1))\Y. The union of these is a
locally  nite re nement of [U] covering [x0;!)\Y. Of course we?ll call this re nementY!
as well.
We note that Y! is locally  nite at x0, so only  nite elements of it can extend left of
x0. We can then use similar arguments to generate a locally  nite re nement Y which
covers ( ;x0]\Y and only has  nitely many elements which extend right of x0. Lastly,
Y =Y [Y! is then a locally  nite re nement of [U] covering Y,  nishing the proof.
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Chapter 7
Stationary Sets and the Baire Property
Slightly changing pace, we shall investigate how we may use stationary subsets of !1
to construct two Baire spaces whose product is not Baire. It should be noted that in this
chapter we assume !1 has the discrete topology.
De nition 7.1. For  2!<!1 , let [ ] =ff2!!1 :   fg
De nition 7.2. For any countable  and f 2! 1 , let f = sup(ran(f)). For A !1, let
A =ff2!!1 : f 2Ag.
Lemma 7.3. For all f2!!1 , f[f  n] : n<!gis a local base at f. f[f  n] : n<!;f2!!1g
is a basis for !!1 .
Proof. By the de nition of the product topology, a basic open set in our space is
f 0g ::: f n 1g !1 :::
where  i2!1.
Thus for an arbitrary function f 2!!1 contained in that open set, f(i) =  i for i < n
and [f  n] is exactly that set, establishing our local base.
In addition, for any such basic open set, we may pick any function f such that f(i) =  i
for i<n, yielding a [f  n] which is exactly equal to that set. Thus the collection f[f  n] :
n<!;f2!!1g is exactly the normal basis for the product topology.
Theorem 7.4. If A !1 is uncountable, then A is dense in !!1 .
Proof. For any basic open set [g  n], there is an  2 A with (g  n)   . Thus (g  
n)_h ; ;:::i2A \[g  n].
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Theorem 7.5. If A and B are uncountable disjoint subsets of !1, then A  B is not Baire.
Proof. For any two functions  ; 2!<!1 and any uncountable X  !1, let  n ; 2!n1 be
the constant function mapping to max(  ;  ), and let  X ; 2!!1 be the constant function
mapping to the least element of X greater than max(  ;  ). Then, let
En =
[
06= ; 2!<!1
[ _ n ; ] [ _ n ; ]
for each n<!. As it is the union of basic open sets, En is open.
To see that En is dense in A  B , consider a basic open set [f  i] [g  j] for f;g2!!1 ,
and the ordered pair of functions
 (f  i)_( n
f i;g j)
_( A
f i;g j);(g  j)
_( n
f i;g j)
_( B
f i;g j)
 :
This ordered pair of functions lies in En, A  B , and [f  i] [g  j], showing that En is
dense.
If our space were Baire, it would follow that the intersection of countably many of the
En?s would be itself an open dense set. However, we will show a countable intersection which
is in fact completely empty. Consider
\
n<!
E2n. Indeed, ifhf;giwas in
\
n<!
E2n, then consider
f and g . We note that for each n<!, there are functions  n; n2!<!1 such that  _n  2n n; n
is an initial restriction off of domain> 2nand _n  2n n; n is an initial restriction ofg of domain
> 2n. Thus f(n) = ( _n  2n n; n)(n) max(  n;  n) and g(n) = ( _n  2n n; n)(n) max(  n;  n).
This tells us that f = sup(fmax(  n;  n)jn < !g) = g , giving that hf;gi cannot be in
A  B as A;B are disjoint.
We have thus observed a product which is not Baire, regardless of whether or not its
component spaces are Baire. We proceed to show that, indeed, we may  nd two uncountable
subsets A;B of !1 such that A ;B are Baire, by utilizing stationary sets.
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Lemma 7.6. Let U be dense open in !!1 . For each  2 !<!1 , there exists an extension
 U 2!<!1 such that [ U] U.
Proof. As U is dense, the open set [ ] intersects U at some function  . As U is open, there
is some basic open neighborhood [  n] which is a subset of U. Let  U = (  n)[ .
 U   and [ U] [  n] U.
Lemma 7.7. Let U be dense open in !!1 . For each  2!<!1 , let  U be de ned as above.
Then
CU =f <!1 :  2 <!) U 2 <!g
is closed and unbounded.
Proof. Let  be a limit point of CU. If  2 <!,  2 <! for some  < . Thus  2 <! for
some  2( ; )\CU. As  2CU,  U 2 <!  <!. Thus  2CU and CU is closed.
Let f : !1 !!1 be de ned such that f( ) = sup(f  U :  2 <!g). Let D be the set of
limit ordinals in !1. Then (by Theorems 4.8 and 4.6)
C =f <!1 :  < )f( ) < g\D
is unbounded (and closed). Let  2C. If  2 <!, then as  is a limit ordinal,  2 <! for
some  <  .   U  sup(f  U :  2 <!g) = f( ) <  , so  U 2 <! and  2CU. C  CU
implies CU is unbounded.
Theorem 7.8. Let A be a stationary subset of !1. Then A is Baire.
Proof. Let Vn be dense open in A for n<!. Vn is dense in !!1 . In addition, for each n<!,
Vn = Un\A for some open Un in !!1 . Since Vn is dense in !!1 and Vn Un, Un is dense as
well as open. Let CUn be de ned as above.
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Let  2!<!1 and consider the basic open set [ ]\A in A . To show A is Baire, we
must show that
\
n<!
Vn is dense in A , that is, there exists a function in
[ ]\A \
 \
n<!
Vn
!
= [ ]\A \
 \
n<!
Un
!
:
This function must then have an initial segment of  , a supremum in A, and be in Un for all
n<!.
Start by  xing an ordinal  in the intersection of the closed unbounded set [  +1;!1)\
\
n<!
CUn and the stationary set A and an increasing sequence  n! . Note that  2 <!.
Let  0 = ( U0)_h 0i and in general,  n+1 = (( n)Un+1)_h n+1i for all n<!. It follows by
the de nition of  that each  n2 <!.
Consider  =
[
n<!
 n.  2!!1 since the length of the  n was increased by at least one at
each step.  has  as an initial segment. Also,  2[ U0] U0 and  2[ nUn+1] Un+1 for
all n<!. Lastly,  2A is an upper bound of the range of  as  is an upper bound for the
range of  n, and thus an upper bound of the range of  n+1 = ( nUn+1)_h n+1i as  2Cn+1
(and similarly for  and  0).  is the least upper bound of the range of  as for any ordinal
 < , we may  nd some  n with  < n < in the range of  .
Observing from Chapter 4 that we may  nd two disjoint stationary subsets of !1, this
wraps up our  nal result.
Corollary 7.9. There are metrizable Baire spaces X and Y such that X Y is not Baire.
Proof. Let A;B be disjoint stationary subsets of !1. By Theorem 7.8, A ;B are Baire
spaces, and by Theorem 7.5 A  B is not Baire. Finally, we note that A ;B are subspaces
of the metrizable space !!1 and are thus are metrizable themselves.
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