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Abstract

The notion of a stationary subset of a regular cardinal, a set which intersects any

closed unbounded subset of that cardinal, is a useful tool in investigating certain properties

of topological spaces. In this paper we utilize stationary sets to achieve an interesting

characterization of paracompactness of a linearly ordered topological space. We also use

stationary sets to find a pair of Baire spaces whose product is not Baire.
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Chapter 1

Introduction

A stationary subset of a regular cardinal is defined to be any subset of that cardinal

which intersects every closed and unbounded subset of that cardinal. Stationary sets are

useful tools in investigating properties of linearly ordered topological spaces. An example of

this is the following theorem characterizing paracompactness in a linearly ordered topological

space (often abbreviated LOTS).

Theorem. A linearly ordered topological space X is paracompact iff X does not contain a

closed subspace homeomorphic to a stationary subset of a regular uncountable cardinal.

This result was first discovered by Engelking and Lutzer in 1977 [3], for a larger class

of “generalized ordered spaces”, spaces which are a subspace of another linearly ordered

topological space. However, as we will see, the proof developed in his paper works in a way

that could easily be extended to cover these generalized spaces as well.

Of course, stationary sets can be used in scenarios beyond LOTS. In perhaps a more

surprising application, stationary subsets of ω1 can also be used to construct a pair of non-

linearly ordered sets which are Baire, but whose product is not Baire.

Theorem. There are metrizable Baire spaces X and Y such that X × Y is not Baire.

The first discovery of this result is due to Fleissner and Kunen in 1978 [4].

The goal of this paper is to develop the tools necessary for the proof of both theorems.

In the next chapter, we will outline the basics of topology and relevant basic results in the

field, in order to accommodate the reader and serve as a reference. Readers familiar with the

field may begin at Chapter 3, wherein the basic definitions and results concerning stationary

subsets of the first uncountable ordinal ω1. In Chapter 4, these results are generalized to
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any regular cardinal by introducing some set-theoretic results. In Chapter 5, we investigate

the compactness of linearly ordered topological spaces, and in Chapter 6 we use the results

developed thus far to prove the above theorem on paracompactness. Chapter 7 changes pace

and quickly develops the tools to prove the second theorem concerning the Baire property.

It should be noted that all the theorems and lemmas in this paper were taken from

the class notes of Dr. Gary Gruenhage’s set-theoretic topology course held in Fall 2008 and

Spring 2009 at Auburn University, which the author regrettably was unable to take part in.

The proofs to these, however, are all due to the author, with no reference to the original

proofs of these results, but with the obvious assistance of Dr. Gruenhage. The basics covered

in Chapter 2 are based on the second edition of Topology by James R. Munkres [1] and Set

Theory: An Introduction to Independence Proofs by Kenneth Kunen [2].
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Chapter 2

The Basics

To begin, let’s define the basic concept of a topological space.

Definition 2.1. A topology on a set X is a collection τ ⊆ P(X) having the following

properties:

1. ∅, X ∈ τ .

2. If U ⊆ τ , then
⋃
U ∈ τ .

3. If U, V ∈ τ , then U ∩ V ∈ τ .

(Or equivalently, any finite intersection of sets in τ is in τ .)

An ordered pair 〈X, τ〉 where τ is a topology on X is known as a topological space,

although we often refer to it as simply X when τ is known by context.

The basic concepts of topology are the notions of open and closed sets.

Definition 2.2. For a topological space 〈X, τ〉, U ⊆ X is said to be open in 〈X, τ〉 (or

simply open or open in X) if U ∈ τ .

K ⊆ X is said to be closed in 〈X, τ〉 (or simply closed or closed in X) if X \K ∈ τ .

A set which is both closed and open is referred to as clopen.

Proposition 2.3. Any finite union of closed sets is closed, and any arbitrary intersection

of closed sets is closed.

The concept of a limit point is often used to identify closed sets.

Definition 2.4. x is a limit point of a set A in a topological space X if every open set

containing x intersects A at a point distinct from x.
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Proposition 2.5. A set K in a topological space X is closed if and only if K contains all

its limit points.

Any set is contained within a minimal closed set, which we call its closure.

Definition 2.6. The closure Ā of a set A in a topological space X is the intersection of all

closed sets containing A.

Two basic topologies for any arbitrary set X are the discrete and indiscrete topologies.

Definition 2.7. The discrete topology on a set X is τ = P(X). The indiscrete (or

trivial) topology on a set X is τ = {∅, X}.

It is easily seen that these indeed satisfy the criteria in Definition 2.1.

If we have a topological space and wish to investigate a subset of that space, we may

easily apply a “subspace” topology.

Definition 2.8. Let 〈X, τ〉 be a topological space and Y ⊆ X. τY = {U ∩ Y : U ∈ τ} is

known as the subspace topology on Y with respect to X.

Listing every open set in a topology can be tedious, so often topologies are described

using simpler collections called bases.

Definition 2.9. A basis on X is a collection B ⊆ P(X) such that

1. For each x ∈ X there is a basis element B ∈ B with x ∈ B.

2. If x ∈ B1 ∩B2 where B1, B2 ∈ B, then there is a basis element B3 ∈ B with x ∈ B3 ⊆

B1 ∩B2.

The topology τ generated by B is

{U ∈ P(X) : for all x ∈ U there exists B ∈ B such that x ∈ B ⊆ U}.
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It can be seen that any τ generated by a basis which satisfies these requirements satisfies

the requirements of a topology. A basis can be thought of as a collection of the basic elements

of a topology on X. Certainly, any basis element is an open set in the space. Indeed, it is a

fact that every open set in the generated topology is a union of basis elements.

Proposition 2.10. An open set of a topological space generated by the basis B is the union

of elements of B.

Definition 2.11. A local base at a point x in a topological space X is a collection of open

sets Bx, each of which contains x, such that for every open set U containing x, there is some

B ∈ Bx with x ∈ B ⊆ U .

Another example of a topological space is a product space of various topological spaces.

Definition 2.12. The Cartesian product
∏
i∈I

Xi is the set of functions f : I →
⋃
i∈I

Xi

where f(i) ∈ Xi.

In the case that there is some X with Xi = X for all i ∈ I, the cartesian product is

often written as XI .

Definition 2.13. The product topology on the cartesian product of topological spaces∏
i∈I

Xi is the topology generated by the basis of sets of the form
∏
i∈I

Ui, where Ui is open in

Xi for all i ∈ I, and Ui = Xi for all but finite i ∈ I.

Certainly, the topological spaces X = {0, 1, 2} and Y = {a, b, c} with topologies τX =

{∅, {0}, X} and τY = {∅, {a}, X} have no interesting differences other than the labels we give

the elements. We use the concept of a homeomorphism to link two topologically equivalent

spaces.

Definition 2.14. If f : X → Y is a function, S ⊆ X, and T ⊆ Y , then f ′′(S) = {f(s) ∈

Y : s ∈ S} is the image of S under f , and f−1(T ) = {s ∈ X : f(s) ∈ T} is the inverse

image of T under f .
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Definition 2.15. For two topological spaces X, Y , the function h : X → Y is a homeo-

morphism if h is a bijection and for every set U open in X and V open in Y , f ′′(U) is open

in Y (making it an open map) and f−1(V ) is open in X (making it continuous).

Proposition 2.16. A map with the property that for every point y in its range and open set

V containing y, there is an open set U in the domain with f ′′(U) ⊆ V , is continuous.

Definition 2.17. Two topological spaces X, Y are said to be homeomorphic if there exists

a homeomorphism h : X → Y . We write X ∼= Y .

Following are some properties of various topological spaces which will be referenced or

investigated in this paper.

Definition 2.18. A topological space X is said to be T3 if for every point x ∈ X, {x} is

closed, and for every open set U containing x, there is another open set V with x ⊆ V ⊆

V ⊆ U .

Definition 2.19. An open cover U of a topological space X is a collection of open sets

such that
⋃
U = X.

Definition 2.20. A topological space X is said to be compact if for every open cover U of

X, there exists some finite subcover U∗ ⊆ U .

Definition 2.21. A refinement V of U is a set such that for every V ∈ V , there is some

U ∈ U with V ⊆ U .

Definition 2.22. A collection of sets A in a topological space X is said to be locally finite

if for every point x ∈ X and there exists some open set U containing x such that U intersects

only finitely many members of A.

Definition 2.23. A topological space X is said to be paracompact if for every open cover

U of X there exists some refinement V of U such that V is an open cover of X and is locally

finite.
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Proposition 2.24. Any closed subspace of a paracompact space is paracompact.

Definition 2.25. A topological space X is said to be connected if there does not exist a

nonempty proper clopen subset A ⊂ X.

Definition 2.26. A metric on a space X is a function d : X ×X → R where:

1. d(x, y) = 0⇔ x = y

2. d(x, y) ≥ 0 for all x, y ∈ X

3. d(x, y) = d(y, x) for all x, y ∈ X

4. d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X

An open ball of radius r with respect to a metric d, written Br(x), is the set {y : d(x, y) <

r}.

Definition 2.27. A topological space X is said to be metrizable if there exists a metric d

such that {Br(x) : x ∈ X and r > 0} forms a basis generating the topology on X.

Proposition 2.28. Any subspace of a metrizable space is metrizable.

Definition 2.29. A collection of sets A is said to be σ-locally finite if A =
⋃
n∈N

An where

An is locally finite for all n ∈ N.

The following two results are not trivial, but are basic results from introductory topology

needed in this paper.

Proposition 2.30. Every metrizable space is paracompact.

Proposition 2.31. Every space which is T3 and has a σ-locally finite basis is metrizable.

The following definitions are needed in the final chapter.

Definition 2.32. A subset A of a topological space X is said to be dense in the space if it

intersects every open set in the space.
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Proposition 2.33. A subset A of a topological space X is dense in the space if and only if

A = X.

Definition 2.34. A topological space X is said to be Baire if every countable intersection

of dense open sets in the space is dense.

We now turn our attention to linearly ordered sets. If a set has a linear order on it,

there is a natural topology which arises from this order.

Definition 2.35. A relation < on X is called a linear order on X if it has the following

properties for all a, b, c ∈ X:

• Either a = b, a < b, or b < a. (called comparability)

• a 6< a. (called nonreflexivity)

• If a < b and b < c, then a < c. (called transitivity)

The ordered pair 〈X,<〉 is called a linearly ordered set, or just X if the order < is implied.

Definition 2.36. An upper bound of a subset S of a linearly ordered set 〈X,<〉 is a point

u ∈ X such that s ≤ u for all s ∈ S.

Similarly, a lower bound of a subset S of a linearly ordered set 〈X,<〉 is a point l ∈ X

such that s ≥ l for all s ∈ S.

Definition 2.37. The least upper bound of a subset S of a linearly ordered set 〈X,<〉 is

a point u ∈ X such that u is an upper bound of S and u ≤ v for all upper bounds v of S.

It is sometimes referred to as the supremum of S and written sup(S).

The greatest lower bound of a subset S of a linearly ordered set 〈X,<〉 is a point

l ∈ X such that l is an lower bound of S and l ≥ m for all lower bounds m of S. It is

sometimes referred to as the infimum of S and written inf(S).

Proposition 2.38. Let X be a linearly ordered set. If p ∈ S ⊆ X is an upper bound (resp.

lower bound) of S, then it is the least upper bound (resp. greatest lower bound) of S. It is

also the maximum (resp. minimum) element of S.
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Of course, it need not be that every subset of a linearly ordered set have a supremum

or infimum.

Definition 2.39. A subset S of a linearly ordered set 〈X,<〉 is bounded if it has a lower

bound and an upper bound. Otherwise, it is said to be unbounded.

Definition 2.40. Two linearly ordered sets 〈X,<X〉 , 〈Y,<Y 〉 are said to be order iso-

morphic if there exists a bijection f : X → Y which is order preserving, that is,

x1 <X x2 ⇔ f(x1) <Y f(x2). This bijection is called an order isomorphism.

Proposition 2.41. Any order-preserving map is injective.

Definition 2.42. For a linearly ordered set 〈X,<〉 and points a, b ∈ X, let the following

sets denote intervals of X:

• (a, b) = {x ∈ X : a < x < b} is an open interval of X

• [a, b) = {x ∈ X : a ≤ x < b} is a left-closed interval of X

• (a, b] = {x ∈ X : a < x ≤ b} is a right-closed interval of X

• [a, b] = {x ∈ X : a ≤ x ≤ b} is a closed interval of X

Definition 2.43. For a linearly ordered set 〈X,<〉 and points a, b ∈ X, let the following

sets denote rays of X:

• (a,→) = {x ∈ X : a < x}

• [a,→) = {x ∈ X : a ≤ x}

• (←, b) = {x ∈ X : x < b}

• (←, b] = {x ∈ X : x ≤ b}

The first and third rays are called open rays and the second and fourth rays are called

closed rays.
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It can be shown that {(a, b) : a, b ∈ X} forms a basis for a topology on X, and we call

this the order topology.

Definition 2.44. For a linearly ordered set 〈X,<〉, the order topology on 〈X,<〉 is the

topology generated by the basis of open intervals and rays {(a, b) : a, b ∈ X} ∪ {(←, b) : b ∈

X} ∪ {(a,→) : a ∈ X}. If τ is this topology, then the topological space 〈X, τ〉 is then called

a linearly ordered topological space or LOTS.

The majority of this paper investigates the order topology as applied to ordinal numbers.

We will need some (largely glossed over) set theory background.

Definition 2.45. A set α is transitive if β ∈ α implies β ⊆ α.

Definition 2.46. A linear order < on X is a well-order if for every Y ⊆ X, there is a

<-least element y ∈ Y . (y is <-least in Y if for every z ∈ Y , y ≤ z.)

Proposition 2.47. For any bounded subset S of a well-ordered space X, sup(S) exists.

Proposition 2.48. Induction and definition by recursion may be performed on any well-

ordered set.

Definition 2.49. For a linearly ordered set 〈X,<〉, the lexicographical order <L on

X ×X is given by 〈x1, x2〉 <L 〈y1, y2〉 if one of the following holds:

• x1 < y1

• x1 = y1 and x2 < y2

Proposition 2.50. <L is a linear order. If < is a well-order, then <L is also a well-order.

Definition 2.51. A set α is an ordinal if α is transitive and well-ordered by ∈.

For two ordinals α, β, if β ∈ α, we often say β < α.

Example 2.52. The following are examples of ordinals:
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• 0 = ∅

• 1 = {0}

• 2 = {0, {0}} = {0, 1}

• n = {0, 1, . . . , n− 1}

• ω = {0, 1, . . . , n, . . .} = N

• ω + 1 = {0, 1, . . . , n, . . . , ω}

• ω · 2 = {0, 1, . . . , n, . . . , ω, ω + 1, . . . , ω + n, . . .}

• ω2 = {0, . . . , ω, . . . , ω · 2, . . . , ω · 3, . . . , ω · n, . . .}

• ωω = {0, . . . , ω, . . . , ω2, . . . , ωn, . . .}

While the later ordinals in that list may seem to contain many “more” ordinals than

those above, every ordinal in that list is countable, in that there is an onto function from ω

to any ordinal in that list.

Definition 2.53. An ordinal κ is called a cardinal if for all ordinals β < κ, there is no onto

function from β to κ.

Definition 2.54. The cardinality of a set S, |S|, is the unique cardinal κ such that there

is a bijection from κ to S.

Example 2.55. The natural numbers 0, 1, . . . , n and the collection of natural numbers ω

are all cardinals.

Definition 2.56. An ordinal α is called countable if there is an onto function from ω to

α. Otherwise it’s called uncountable.

Proposition 2.57. ω1 = {α : α is a countable ordinal} is the least uncountable ordinal (and

cardinal).
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Chapter 3

ω1, the First Uncountable Ordinal

We begin by first investigating this first uncountable ordinal. As we will see in the next

chapter, these results will be easily generalized to certain higher cardinals as well. We first

establish the following convention.

Definition 3.1. A subset C of a limit ordinal α is said to be club if it is closed and

unbounded in α.

It should be noted that for the majority of this paper (until Chapter 7), all ordinals are

assumed to have the order topology.

Theorem 3.2. Let C = {Cn : n < ω} be a collection of club sets in ω1. Then
⋂
C is club.

Proof. Certainly, any intersection of closed sets is closed. Let <L be the lexicographic order

on ω×ω. To see that
⋂
C is unbounded, we take any α ∈ ω1 and fix a point c0,0 ∈ C0 greater

than c′. We then define cm,n (for m,n < ω) to be the minimum element of Cn strictly greater

than cm′,n′ for all (m′, n′) <L (m,n).

We then set c to be the least upper bound of {cm,n : m,n < ω}. Fixing n < ω, c is a

limit point of {cm,n : m < ω} ⊆ Cn, so c ∈ Cn for all n < ω, which gives a point c > α in⋂
C.

Theorem 3.3. For any closed unbounded subset C of ω1, there is a strictly increasing home-

omorphism from C to ω1.

Proof. Define f : ω1 → C such that

• f(0) = min(C)

12



• f(α) = min(C \ f ′′(α)).

We first claim that f is an order isomorphism. It’s obviously order-preserving (and thus

injective). To see that it is onto, suppose by way of contradiction that there is some γ ∈ C

such that γ 6∈ ran(f). By the definition of f , f(α) < γ for all α < ω1. Thus f ′′(ω1) ⊆ γ, a

countable set. But f ′′(ω1) is the 1-1 image of an uncountable set, and thus is an uncountable

subset of a countable set - contradiction.

Any order isomorphism is an open map. We now show that f is also a homeomorphism

by showing its continuity. Let γ < ω1 and β < f(γ). If γ is not a limit ordinal, then {γ}

is open and f ′′({γ}) ⊆ (β, f(γ) + 1). Otherwise, there is a strictly increasing sequence of

ordinals converging to γ, and their image under f is also a strictly increasing sequence of

ordinals converging into some γ′. As C is closed, γ′ ∈ C and thus f(γ) = γ′. So f(γ)

is a limit point of f ′′(γ), and there is some δ < γ such that β < f(δ) ≤ f(γ). Thus

f ′′[(δ, γ + 1)] ⊆ (β, f(γ) + 1).

Theorem 3.4. Let f : ω1 → ω1 be a function and C = {α : β < α⇒ f(β) < α} be a subset

of ω1. Then C is closed and unbounded.

Proof. Let γ be a limit point of C, and β < γ. As γ is a limit point of C, there must be

some α ∈ C with β < α ≤ γ. Note then that f(β) < α ≤ γ, so γ ∈ C. Thus C is closed.

Now suppose by way of contradiction that σ is the supremum of C. Define g : ω1 → ω1

such that g(α) = sup(f ′′(α))+1. Consider the sequence {σ+1, g(σ+1), g2(σ+1), ...}. Note

that σ + 1 6∈ C so g(σ + 1) = sup(f ′′(σ + 1)) + 1 ≥ (σ + 1) + 1 > σ + 1. Inductively, it

is easily seen that as gn(σ + 1) 6∈ C, gn+1(σ + 1) > gn(σ + 1). This is a strictly increasing

sequence, so it converges to a limit ordinal ρ.

Consider any δ < ρ. There is a minimum gn(σ + 1) such that δ < gn(σ + 1). It follows

that f(δ) < sup(f ′′(gn(σ + 1))) + 1 = g(gn(σ + 1)) = gn+1(σ + 1) < ρ. So ρ ∈ C, a

contradiction. Thus C is unbounded.
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The construction in Theorem 3.4 (and later in Theorem 4.8) is often useful in construct-

ing club sets.

In this paper we are largely concerned with the idea of a stationary set.

Definition 3.5. A subset S of a cardinal κ is said to be stationary if it intersects every

club subset of κ.

Two facts about stationary sets are evident: all club sets are stationary, and any sta-

tionary set must be unbounded. But it need not be true that every stationary set be closed,

as there are two disjoint stationary subsets of ω1, as we will see in the next chapter.

The following result is classic, and very useful.

Theorem 3.6 (Pressing Down Lemma Lite for ω1). Let S be a stationary set in ω1. If for

each ordinal α ∈ S \ {0}, we choose an ordinal βα < α, then there is some β < ω1 such that

β = βα for uncountably many α ∈ S.

Proof. Suppose by way of contradiction that for all β < ω1, {α ∈ S : βα = β} is bounded.

Then, let f : ω1 → ω1 be defined such that f(α) = sup({γ ∈ S : βγ = α}).

By the above theorem, C = {α : f(β) < α for all β < α} is closed and unbounded. Let

α ∈ S. βα < α, and f(βα) = sup({γ ∈ S : βγ = βα}) ≥ α. So α 6∈ C and S ∩ C = ∅.

Contradiction.

The “full” result states that there is a stationary set T of ω1 such that β = βα for all

α ∈ T . However, this stronger version is not needed for any result in this paper.

A direct application of stationary sets is the fact that they are never paracompact.

Theorem 3.7. If S is a stationary subset of ω1, then S is not paracompact.

Proof. Consider {(←, α+1) : α ∈ S} = {[0, α] : α ∈ S}, an open cover of S. Suppose by way

of contradiction that there exists a locally finite open refinement U . For each α < ω1 there

exists a βα such that (βα, α] intersects only finitely many sets in U . By the Pressing Down
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Lemma, there is a β such that β = βα for uncountably many α. Thus (β, ω1) intersects only

finitely many sets in U .

This means that U must be a countable collection. And as every set in U is a subset of

[0, α] for some α < ω1, U is a countable collection of countable sets. But this is a contradiction

as a countable collection of countable sets cannot cover an uncountable set.

The following lemma proves our intuition that any open set of a LOTS can be con-

structed by unioning some disjoint convex open spaces.

Lemma 3.8. Let U be an open subset of a linearly ordered topological space X. Then U is

the union of a disjoint collection of convex open spaces.

Proof. We begin by defining a relation ∼ on U . We say a ∼ b if and only if the closed

interval [min(a, b),max(a, b)] ⊆ U . We should show this is an equivalence relation.

• For a ∈ U , we note [min(a, a),max(a, a)] = {a} ⊆ U , so a ∼ a.

• If a ∼ b, we note U ⊇ [min(a, b),max(a, b)] = [min(b, a),max(b, a)] ⊆ U , so b ∼ a.

• If a ∼ b and b ∼ c, we note [min(a, c),max(a, c)] ⊆ [min(a, b),max(a, b)]∪[min(b, c),max(b, c)] ⊆

U ∪ U = U . Thus a ∼ c.

So ∼ partitions U. We should show [x], the equivalence class of some x ∈ U , is a convex

open set. Take a < b in [x]. a ∼ x ∼ b, so [min(a, b),max(a, b)] = [a, b] ⊆ U . Thus for any

c ∈ (a, b), [min(a, c),max(a, c)] = [a, c] ⊆ [a, b] ⊆ U , so c ∼ a ∼ x and c ∈ [x], making [x]

convex.

Lastly, note that for c ∈ [x], a ∈ U , and there is an open interval (a, b) ⊆ U about c.

For all y ∈ (a, c), [y, c] ⊆ (a, b) ⊆ U , and for all y ∈ (c, b), [c, y] ⊆ (a, b) ⊆ U . Either way,

y ∼ c ∼ x, so y ∈ [x], and [x] is open.

Using this lemma, we may characterize all nonstationary subsets of ω1 as metrizable

and paracompact.
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Theorem 3.9. A subspace S of ω1 is metrizable iff S is paracompact iff S is non-stationary.

Proof. It is a well-known result that all metrizable spaces are paracompact (cited in Chapter

2), whether they are a subspace of ω1 or not. In addition, paracompact implying non-

stationary is the result of Theorem 3.7.

It remains to be shown that non-stationary implies metrizable. Let Y be a nonstationary

subset of ω1. Note that it is routine to show that ω1 is T3, so Y is also T3. We should show

Y has a σ-locally finite basis.

There exists a closed, unbounded set C disjoint from Y . Let ω1 \C = D. Thus Y ⊆ D,

an open set which is the disjoint collection of convex open spaces. We partition D by these

convex open spaces, so that D =
⋃
α<ω1

Dα. (We may index these spaces by ω1 as they are

disjoint, and if there were only countably many Dα then Y is countable and the result is

trivial.)

Note that each Dα has an element δα ∈ C as an upper bound, and thus has a basis

Bα = {(β, γ) ∩Dα : β < γ < δα} (as Dα is convex) which is countable. Let us rename these

countable intervals to be Un,α for n < ω.

We then find that
⋃
n<ω

{Un,α : α < ω1} is a basis for the entire space D. Likewise,⋃
n<ω

{Un,α ∩ Y : α < ω1} is a basis for the subspace Y of D. We should show that for any

n < ω, {Un,α ∩ Y : α < ω1} is locally finite.

Let n < ω and ξ ∈ Y . As the Dα partition D ⊇ Y , ξ ∈ Dα ∩ Y for some α < ω1.

The only element of {Un,α ∩ Y |α < ω1} intersecting Dα is precisely Un,α ∩ Y . Thus every

element of Y has a neighborhood (specifically, Dα for an appropriate α < ω1) intersecting

finite elements of {Un,α ∩ Y |α < ω1}.

We conclude that Y is σ-locally finite and T3, so Y is metrizable.
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Chapter 4

Generalizing to Any Regular Cardinal κ

First, a classic cardinality result:

Lemma 4.1. For any infinite cardinal, |κ× κ| = κ.

Proof. Certainly, |κ × κ| ≥ κ, so we need only show |κ × κ| ≤ κ by constructing an onto

function from κ to κ× κ.

We define a well-order <? on κ× κ as such. (α1, β1) <? (α2, β2) if one of the following

holds:

1. max(α1, β1) < max(α2, β2)

2. max(α1, β1) = max(α2, β2) and (α1, β1) <L (α2, β2)

(where <L is the lexicographical order)

It is easily seen that this is a well-order, as it was defined based on the well orders <,<L.

We may now define a function f : κ → κ × κ where f(0) = (0, 0) and f(α) is the <?-least

element of κ × κ \ f ′′(α). Note that it is order-preserving, and thus injective. We should

show it’s an onto function.

Consider first the case that κ = ω. Suppose by way of contradiction that (a, b) is not in

the range of f for a, b < ω. Then we have an injective map from ω to some <?-predecessors

of (a, b), which in turn are a subset of (max(a, b) + 1) × (max(a, b) + 1), a finite set, which

gives us our contradiction.

Now, let us assume inductively that |λ × λ| ≤ λ for all λ < κ. Suppose by way of

contradiction that (α, β) is not in the range of f for α, β < κ. Then we have a bijection

from κ to some <?-predecessors of (α, β), which in turn are a subset of (max(α, β) + 1) ×
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(max(α, β) + 1). As max(α, β) + 1 < κ, |max(α, β) + 1| = λ < κ for some cardinal λ. Thus

|(max(α, β) + 1)× (max(α, β) + 1)| = |λ× λ| ≤ λ. But in that case, f is a bijection from κ

to a set of cardinality ≤ λ < κ, a contradiction. We’ve thus proven |κ × κ| ≤ κ, and thus

|κ× κ| = κ.

While the results of Chapter 3 are nice, the methods of these proofs can be generalized

by introducing the idea of a “regular” cardinal.

Definition 4.2. The cofinality of an ordinal α, written cf(α), is the least cardinal such

that there exists an unbounded function f from cf(α) to α. (That is, there is no element of

α which is strictly greater than every ordinal in the range of f .)

Definition 4.3. A cardinal κ is said to be regular if κ = cf(κ).

We follow with a few basic cardinality results.

Theorem 4.4.

(i) If κ is any infinite cardinal, then the union of ≤ κ-many sets, each of cardinality ≤ κ,

has cardinality ≤ κ.

(ii) If κ is a successor ordinal, then κ is regular.

(iii) For any limit ordinal λ, cf(λ) is a regular cardinal.

Proof.

(i) Consider
⋃
α∈λ

Sα where λ ≤ κ and |Sα| ≤ κ. Let fα be an injection from Sα to κ. We

define f :
⋃
α∈λ

Sα → κ× κ so that f(s) maps to (α, fα(s)) where α is the least ordinal

where s ∈ Sα. f is an injection from
⋃
α∈λ

Sα into κ× κ, so

∣∣∣∣∣⋃
α∈λ

Sα

∣∣∣∣∣ ≤ |κ× κ| = κ.

(ii) Suppose by way of contradiction that cf(κ+) ≤ κ. There is a function f : κ → κ+

whose range is unbounded in κ+. Then let gα : κ → α be an onto function for all
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α < κ+. (This is possible as |α| < κ+ ⇒ |α| ≤ κ.) We use these to define a function

g : κ× κ→ κ+ where g(α, β) = gf(α)(β). Since for any γ < κ+ we may find a δγ such

that f(δγ) > γ, we know gf(δγ) maps onto γ. Thus our g is an onto function from a set

of cardinality κ to κ+, a contradiction.

(iii) Let γ be a limit ordinal, and κ = cf(γ). There is a strictly increasing function f : κ→ γ

which is unbounded in γ.

Suppose by way of contradiction that there exists an unbounded strictly increasing

function g : λ → κ for λ < κ. Composing f and g gives us an unbounded increasing

function f ◦ g : λ→ γ, a contradiction of the definition of κ as the least cardinal which

has an unbounded map onto γ. Thus cf(κ) = κ and cf(γ) is regular.

As is shown in the following theorem, regular cardinals have many of the properties

commonly associated with “uncountable” versus “countable” sets.

Theorem 4.5. For an infinite cardinal κ, the following are equivalent:

(i) κ is regular.

(ii) For any A ⊆ κ, if |A| < κ, then sup(A) < κ.

(iii) The union of < κ-many sets, each of cardinality < κ, has cardinality < κ.

Proof.

(i) ⇒ (ii) (Shown by contrapositive.) Let A ⊆ κ such that |A| = κA < κ and sup(A) = κ. Then

i : A → κ where i is the inclusion map (i(α) = α) has an unbounded range. Let

θ : κA → A be a bijection. Then i ◦ θ : κA → κ has an unbounded range, showing

cf(κ) ≤ κA < κ and thus κ is not regular.
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(ii) ⇒ (i) Let λ < κ . Suppose by way of contradiction that there is a function f : λ→ κ whose

range was unbounded in κ, that is, sup(A) = κ for A = {f(α) : α ∈ λ}; contradiction.

Thus cf(κ) = κ.

(i) ⇒ (iii) Let λ < κ, and assume by induction that for β < λ, the union of β-many sets, each

of cardinality < κ, has cardinality < κ. Assume that for each α < λ, Uα is a set with

|Uα| < κ. As κ is regular, it follows that the function f : λ→ κ where f(β) =

∣∣∣∣∣⋃
α<β

Uα

∣∣∣∣∣
is bounded by some cardinal µ < κ. As

⋃
α<λ

Uα =
⋃
β<λ

(⋃
α<β

Uα

)
, it follows that the

cardinality of the union of λ-many sets of cardinality ≤ µ must be of cardinality

max(λ, µ) < κ.

(iii) ⇒ (i) Let λ < κ. Suppose by way of contradiction that there is a function f : λ→ κ whose

range is unbounded. Then
⋃
α<λ

f(α) = κ, and the union of less than κ-many sets each

of cardinality less than κ has cardinality κ, a contradiction.

Now that we’ve established the rules for regular cardinals, we observe that they behave

in nice ways, that is, similar to the relationship between ω and ω1. From this we can

generalize many of the theorems from the previous chapter by merely replacing ω1 with any

regular cardinal κ, replacing ω with any cardinal λ < κ, assuming “uncountable” to mean

“of cardinality κ”, and assuming “countable” to mean “of cardinality < κ”.

Theorem 4.6. Let κ be an uncountable regular cardinal and λ < κ. Let C = {Cα : α < λ}

be a collection of club sets in κ. Then
⋂
C is club.

Proof. See the proof of Theorem 3.2.

Theorem 4.7. Let κ be an uncountable regular cardinal. For any closed unbounded subset

C of κ, there is a strictly increasing homeomorphism from C to κ.

Proof. See the proof of Theorem 3.3.
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Theorem 4.8. Let f : κ → κ be a function and C = {α : β < α ⇒ f(β) < α} be a subset

of κ. Then C is closed and unbounded.

Proof. See the proof of Theorem 3.4.

Theorem 4.9 (Pressing Down Lemma Lite). Let S be a stationary set in κ. If for each

ordinal α ∈ S \{0}, we choose an ordinal βα < α, then there is some β < κ such that β = βα

for κ-many α ∈ S.

Proof. See the proof of Theorem 3.6.

Theorem 4.10. If S is a stationary subset of a regular cardinal κ, then S is not paracompact.

Proof. See the proof of Theorem 3.7.

These final results about regular cardinals, specifically ω1, will be needed in the final

chapter.

Lemma 4.11. Let C,D be closed unbounded subsets of a regular cardinal κ, and φ : κ→ D

be a strictly increasing homeomorphism. φ′′(C) is closed unbounded in κ.

Proof. Fix α ∈ κ. As D is unbounded, we may fix β ∈ D such that β > α. There is a

γ ∈ κ such that φ(γ) = β. As C is unbounded, we may fix δ ∈ C such that δ > γ, yielding

φ(δ) > φ(γ) = β > α. Thus φ′′(C) is unbounded in κ.

As φ is a homeomorphism, φ′′(C) is a closed subset of D. This means there is a closed

set E of κ such that E ∩ D = φ′′(C). As φ′′(C) is the intersection of closed sets, φ′′(C) is

closed.

Lemma 4.12. There are two disjoint stationary subsets of ω1.

Proof. Suppose not. Let Q be the set of rational numbers. Let f : ω1 → (0, 1) \ Q be

injective. (0, 1
2
) and (1

2
, 1) cannot both contain the image of stationary sets in ω1, so there is

a closed unbounded set C1 of ω1 that maps by f into an open interval of irrational numbers

of length 1
2
.
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Now assume we have, by way of induction, a chain of club sets C1 ⊇ ... ⊇ Cn such

that Ci maps by f into an open interval of irrational numbers with rational endpoints of

length 1
2i

. Let h : ω1 → Cn be a strictly increasing homeomorphism and g = f ◦ h. Assume

f ′′(Cn) ⊆ (a, b) \ Q where a, b ∈ Q and b − a = 1
2n

. g : ω1 → (a, b) \ Q is injective.

(a, a+b
2

) and (a+b
2
, b) cannot both contain the image of stationary sets in ω1, so there is a

closed unbounded set C∗ of ω1 that maps by g to either (a, a+b
2

) and (a+b
2
, b), which are

both have rational endpoints and are of length 1
2n+1 . It then follows by Lemma 4.11 that

Cn+1 = h′′(C∗) ⊆ Cn is also a club set, and f ′′(Cn+1) = f ′′(h′′(C∗)) = g′′(C∗) is a subset of

an open interval of irrational numbers with rational endpoints of length 1
2n+1 .

We then observe that for all n < ω, C =
⋂
i<ω

Ci ⊆ Cn maps injectively into a subset of

an open interval of length 1
2n

, a contradiction.
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Chapter 5

Some Theorems on the Compactness of Linearly Ordered Topological Spaces

Before moving on to the first main result of this paper, we should investigate a charac-

terization of compactness in the context of a LOTS.

Theorem 5.1. A linearly ordered topological space X is compact iff every nonempty subset

of X has a least upper bound and a greatest lower bound.

Proof. If X is compact, then suppose by way of contradiction that S ⊆ X is a set with no

least upper bound. Let T = {t ∈ X : ∀s ∈ S(t ≥ s)}. We claim

U = {(←, s) : s ∈ S} ∪ {(t,→) : t ∈ T}

is an open cover of X. If so, then there is a finite subcover {(←, si) : 0 < i < m} ∪ {(ti,→

); 0 < i < n}, but this cannot cover the rightmost si (as tj ≥ si for any tj ∈ T ), which would

yield our contradiction.

To see that {(←, s) : s ∈ S} ∪ {(t,→) : t ∈ T} is an open cover, suppose by way of

contradiction that x ∈ X was not covered by U . As x is not covered by {(←, s) : s ∈ S},

x ≥ s for all s ∈ S, which makes x an upper bound of S and places x ∈ T . It then follows

that x ≤ t for all t ∈ T as it is not covered by {(t,→) : t ∈ T}. This makes it a lower bound

of T , and since it belongs to T , x is the greatest lower bound of T .

Now note that there must be some y < x that is also an upper bound of S since S has

no least upper bound. y is not the greatest lower bound of T (as x > y is), so it must not lie

in T . This mean that there is some sy ∈ S such that sy > y. But that contradicts the fact

that y was an upper bound for S, which proves that every subset of X must have a least

upper bound.
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To see that every subset also must have a greatest lower bound, simply reverse all the

orders in the above argument. Alternately, note that we merely need to consider a “mirrored”

linear space XM = {xM : x ∈ X} with the order xM <M xM ⇔ x > y. There is an obvious

homeomorphism between the two spaces, so XM is also compact. Any subset without a

greatest lower bound in X would yield a reflection in XM without a least upper bound, a

contradiction. This finishes the forward implication.

Now conversely, assume that every subset of X has a least upper bound and greatest

lower bound. This means that X has a greatest lower bound, and minumum element, a and

a least upper bound, and maximum element, b. Let U = {(aα, bα) : α < κ} be an open

interval cover of X for some cardinal κ. Let S = {s ∈ X : there is a finite subcover of U for

[a, s]}. S is nonempty as there is a finite subcover of U for [a, a] = {a}, placing a ∈ S. We

note sup(S) ∈ S as there is an interval (aα′ , bα′) ∈ U containing sup(S), and a finite subcover

of U covering [a, aα′ ] (since aα′ < sup(S)⇒ aα′ ∈ S), so by combining them we find a finite

subcover of U covering [a, sup(S)].

We claim that sup(S) = b. To see this, assume by way of contradiction that sup(S) < b.

Let (aα′ , bα′) continue to denote a set in U covering sup(S). We now note that if (aα′ , bα′)

contains no element of X greater than sup(S), then there are no elements in X between

sup(S) and bα′ . Thus we can use any interval in U which contains bα′ , and combine that with

the finite subcover for [a, sup(S)] to get a finite subcover of U covering [a, bα′ ] ⊃ [a, sup(S)],

a contradiction.

We’ve thus seen that (aα′ , bα′) must contain an element of X greater than sup(S), which

we will call t. Of course this then means that [a, t] ⊃ [a, sup(S)] can be covered by the finite

subcover of [a, sup(S)] combined with (aα′ , bα′), which places t > sup(S) in S and yields our

contradiction.

As sup(S) = b, there exists a finite subcover of U for [a, b] = X, demonstrating the

compactness of X.
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Even if a linearly ordered set is not compact we can easily compactify it, that is, embed

it densely in a compact linearly ordered topological space.

Theorem 5.2. Every linearly ordered topological space X is a dense subset of a compact

linearly ordered topological space X̂ .

Proof. We define X̂ as such. X̂ ⊆ P(X) where A ∈ X̂ iff all of the following holds:

1. A is closed in X

2. a ∈ A and b < a⇒ b ∈ A

3. X has a least element ⇒ A 6= ∅

We shall call a set that holds for the first two conditions “left-closed”. We should show that

the partial order ⊆ is a linear order on X̂.

Let A 6= B. Without loss of generality, we can assume there is a b ∈ B \ A. We note

there is no element of A greater than or equal to b, as that would imply b ∈ A. So for all

a ∈ A, a < b, and thus a ∈ B, giving us A ⊆ B.

So the linear order ⊆ generates a topology on X̂. We then note that the subspace made

up of sets Ax = {a ∈ X|a ≤ x} for all x ∈ X is homeomorphic to the space X in the natural

way: let φ(Ax) = x. Then φ[(Ax, Ay)] = (x, y), and images and inverse images preserve basic

open sets, making φ a homeomorphism.

We now show that {Ax : x ∈ X} is dense in X̂. Take a set A ∈ X̂. Consider a basic

open set about A, (A−, A+), noting A− ⊂ A ⊂ A+. Let x ∈ A \ A−. We shall show that

Ax ∈ (A−, A+). Let a ∈ Ax. x ∈ A and a ≤ x implies a ∈ A, so Ax ⊆ A ⊂ A+. Now let

a ∈ A−. As x 6∈ A−, it follows that x > a. It then follows that as a < x, a ∈ Ax. This

means A− ⊆ Ax, and as x ∈ Ax \ A−, we see that A− ⊂ Ax, which places Ax ∈ (A−, A+).

This makes the closure of {Ax : x ∈ X} to be X̂, and {Ax : x ∈ X} is dense.

To conclude, we show that X̂ is compact. Let Ŝ be a nonempty subset of X̂. We note

that ∩Ŝ is a closed set in X and that a ∈ ∩Ŝ and b < a implies a ∈ S for all S ∈ Ŝ, and
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thus b ∈ S for all S ∈ Ŝ yielding b ∈ ∩Ŝ, and thus ∩Ŝ ∈ X̂. Also, if S ∈ Ŝ, then certainly

∩Ŝ ⊆ S, so ∩Ŝ is a lower bound of Ŝ. For any lower bound T of Ŝ, we note that t ∈ T

implies t ∈ S for any S ∈ Ŝ, and thus t ∈ ∩Ŝ, which shows T ⊆ ∩Ŝ. Thus ∩Ŝ is the greatest

lower bound of Ŝ.

Now we note that ∪Ŝ is a closed set in X and that a ∈ ∪Ŝ and b < a implies either

1. a ∈ S for some S ∈ Ŝ, so b ∈ S ⊆ ∪Ŝ ⊆ ∪Ŝ or

2. a is a limit point of ∪Ŝ but not in that union, so a ≥ s for all s ∈ ∪Ŝ, which

requires (b, a) to intersect ∪Ŝ at some s > b in some S ∈ Ŝ, which then implies that

b ∈ S ⊆ ∪Ŝ ⊆ ∪Ŝ.

So we have that ∪Ŝ ∈ X̂.

Certainly ∪Ŝ is a superset of all S ∈ Ŝ, so ∪Ŝ is an upper bound of Ŝ. And if T is

any upper bound of Ŝ, then it is closed in X and is a superset of ∪Ŝ, and as ∪Ŝ is the

intersection of all such sets, we see that ∪Ŝ ⊆ T and ∪Ŝ is the least upper bound of Ŝ.

As any arbitrary Ŝ ⊆ X̂ has both a least upper bound and greatest lower bound, we

know that X̂ is compact, finishing the proof.

It’s often a useful trick to compactify a space in order to gain some extra structure, as

we will see in a later proof.
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Chapter 6

A Characterization of the Paracompactness of a Linearly Ordered Topological Space

We’re about ready to tackle the first main result of this paper. First, we introduce

another sense of connectedness in the sense of a collection of subsets of a topological space.

Definition 6.1. For a topological space X, a collection U ⊆ P(X), and two points a, b ∈ X,

the finite sequence 〈U0, ..., Un−1〉 of sets in U is called a finite linked chain joining a, b if

a ∈ U0, b ∈ Un−1, and for all 0 ≤ i < n− 1, Ui ∩ Ui+1 6= ∅.

Definition 6.2. A collection U of subsets of a topological space X is said to be connected

if every pair of sets in U is connected by a finite linked chain in U .

Definition 6.3. For a linearly ordered topological space X, a cover U of X by open intervals,

and two points a < b ∈ X, a finite linked chain 〈(l0, r0), ..., (ln−1, rn−1)〉 of intervals in U

joining a, b is called a progressive finite linked chain if for all 0 < i ≤ n− 1, ri−1 < ri.

Lemma 6.4. For a linearly ordered topological space X and an open cover U of X by

intervals, there exists a finite linked chain in U connecting two points a < b ∈ X if and only

if there exists a progressive finite linked chain joining them.

Proof. The backwards implication is trivial. If 〈(l0, r0), ..., (ln−1, rn−1)〉 is a chain joining

a to b and isn’t already progressive, then let (li, ri) be the first link in the chain which

does not satisfy the progressive requirement, that is, ri ≤ ri−1. If b ∈ (li−1, ri−1) then

〈(l0, r0), ..., (li−1, ri−1)〉 is our progressive finite linked chain. Otherwise, as b is covered by

some (lk, rk) for k ≥ i, there must be some least j with ri−1 < rj. We note (li−1, ri−1) ∩

(lj, rj) 6= ∅ since lj < rj−1 ≤ ri−1, so 〈(l0, r0), ..., (li−1, ri−1), (lj, rj), ..., (ln−1, rn−1)〉 is another

finite linked chain with at least one less nonprogression. We may then complete this process

finitely many times until we have our progressive linked chain.
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The reader may note that the reuse of the term “connected” is appropriate as there is a

strong connection between a connected topological space and the connectedness of an open

cover of that space.

Theorem 6.5. A space X is connected iff every cover of X by nonempty open sets is

connected.

Proof. Let X be disconnected, so X = A ∪ B with A,B disjoint and clopen. Then {A,B}

is an open cover and A,B cannot be joined by a finite linked chain in that cover.

Now assume X is a topological space with an open cover U with sets A,B which cannot

be joined by a finite linked chain in U . Then let U0 = {A} and for all 0 < i < ω let

Ui+1 = {U ∈ U : U ∩ (
⋃
Ui) 6= ∅}. We note that B 6∈ Ui for any i < ω as that would give us

a finite linked chain from A to B.

Then we note that
⋃

(
⋃
i<ω Ui) is closed, for if l is a limit point of

⋃
(
⋃
i<ω Ui), then any

open set Ul ∈ U containing l intersects
⋃

(
⋃
i<ω Ui), so it intersects a member of Ui for some

i < ω, putting Ul in Ui+1 and l ∈
⋃

(
⋃
i<ω Ui).

As
⋃

(
⋃
i<ω Ui) is clopen and a strict subset of X, X is not connected.

In order to find a stationary subset of a regular cardinal, we first note that we may

compactify a LOTS to obtain a subspace homeomorphic to a regular cardinal.

Lemma 6.6. Let X be a compact linearly ordered topological space, and p ∈ X. Let κ be

the cofinality of Lp = {y ∈ X : y < p}. Then Lp contains a closed cofinal set homeomorphic

to the cardinal κ.

Proof. Let y′ : κ → Lp be a strictly increasing cofinal map. We may define a new cofinal

map y by letting y(α) = y′(α) for successor αs, and y(α) = sup({y(β) : β < α}) for limit

α. This is well-defined as the compact X must contain the supremum of any nonempty set,

and this supremum must be less than p. We claim y is a homeomorphism onto its range Y .

It is certainly an order isomorphism, and thus open. All that is left to show it is a

homeomorphism is to see is that it is continuous. Let α < κ and x < y(α) < z in Y . If α
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is not a limit ordinal, then {α} is open and y′′({α}) ⊆ (x, z). Otherwise, we note that y(α)

is the supremum of {y(β) : β < α}, so we may pick β < α with x < y(β) < y(α), giving us

y′′[(β, α + 1)] ⊆ (x, z).

Lastly, we should show that Y is closed. Let x < p be a limit point of Y . There is a

least α such that x < y(α), so we may assume (z, x) intersects Y for any z < x. We then

note that x = sup({y(β) : β < α}, and α must be a limit ordinal, so x ∈ Y .

For convenience, we will partition our linearly ordered set into portions based on the

open cover of our space.

Lemma 6.7. If for an open cover U of a topological space X and sets U, V ∈ U we have a

relation ∼ such that U ∼ V if they are joined by a finite linked chain in U , then ∼ is an

equivalence relation.

Proof. We note U ∼ U as 〈U〉 is a finite linked chain from U to U .

If U ∼ V , then there is a finite linked chain 〈U, ..., V 〉, which by reversal gives a finite

linked chain 〈V, ..., U〉, showing V ∼ U .

Lastly, if U ∼ V and V ∼ W , then by combining the finite linked chains 〈U, ..., V 〉 and

〈V, ...,W 〉 we get the chain 〈U, ..., V, ...,W 〉, which shows U ∼ W .

This proves that ∼ is an equivalence relation.

Definition 6.8. If U is an open cover of a topological space X and U ∈ U , let [U ] be the

equivalence class with respect to the above-defined ∼ for U . We call [U ] the connected

extension of U from U .
⋃

[U ] ⊆ X is said to be the U-component of X.

Lemma 6.9. For an open cover U of a topological space X, ∼ partitions X into clopen

U-components
⋃

[U ]. That is, for each x ∈ X there is a unique [U ] such that x ∈
⋃

[U ].

Proof. Certainly, for any x ∈ X there is a set U in the open cover U which covers x, so

x ∈
⋃

[U ].

Now, if x ∈ U and x ∈ V for U, V ∈ U , then U ∩ V 6= ∅. Thus 〈U, V 〉 is a finite linked

chain, and U ∼ V ⇒ [U ] = [V ]. Thus the
⋃

[U ] covering x is unique.
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Lastly, we note that
⋃

[U ] is open as it is the union of open sets. We then note that

X \
⋃

[U ] =
⋃
U \ [U ] as U must cover all of X and any element V ∈ U which covers

⋃
[U ]

must be in [U ]. This complement is also open, so
⋃

[U ] is also closed.

When considering paracompactness, we may focus our attention onto the [U ]-components

of the space.

Lemma 6.10. A topological space X is paracompact iff for any open cover U and any set

U ∈ U , there is a locally finite open refinement of [U ] covering
⋃

[U ].

Proof. For the forward implication, start with the open cover U and fix U∗ as its locally finite

refinement covering X. Fix U ∈ U . The subset V = {V : V ∈ U∗ and V ⊆
⋃

[U ]} of U is also

a locally finite refinement. In addition V covers
⋃

[U ], as for x ∈
⋃

[U ], we have a W ∗ ∈ U∗

covering it, and since W ∗ ⊆ W for some W ∈ U , and W intersects
⋃

[U ], W ⊆
⋃

[U ] and

W ∗ ⊆
⋃

[U ], so W ∗ ∈ V .

Conversely, we may assume that we may find a locally finite refinement [U ]∗ of each [U ].

We’ve seen that for each x ∈ X, x is covered by a unique [U ] ⊆ U . So we may find an open

set W containing x within
⋃

[U ] that intersects only finitely many elements of [U ]∗. If W

intersects any element of some [V ]∗, that admits a finite linked chain 〈U, ...,W, ..., V 〉 which

means [V ]∗ = [U ]∗. Thus
⋃
U∈U [U ]∗ is a locally finite refinement of U , and covers X.

With this we are finally ready to approach the first main result. It should be noted

that the forward implication is largely trivial as we observe that any closed subspace of a

paracompact space is paracompact. The other direction is much less obvious; however, by

carefully examining the [U ]-components generated by a particular cover of the space, we can

construct a locally finite refinement by grabbing a copy of a regular uncountable cardinal in

the compactification of the [U ]-component and using the fact that within a [U ]-component,

any two sets in the cover is connected by a progressive finite linked chain.

Theorem 6.11. A linearly ordered topological space X is paracompact iff X does not contain

a closed subspace homeomorphic to a stationary subset of a regular uncountable cardinal.
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Proof. We first note that if X contains a closed subspace Y homeomorphic to a stationary

subset of a regular uncountable cardinal, then Y is a closed subspace of X which is not

paracompact. Thus X cannot be paracompact.

We now assume thatX does not contain a closed subspace homeomorphic to a stationary

subset of a regular uncountable cardinal. Let U be a collection of open intervals covering X.

Fix U ∈ U . By Lemma 6.10, we need only show a locally finite refinement of the connected

extension [U ] covering
⋃

[U ]. Let Y =
⋃

[U ] and x0 ∈ Y .

If the cofinality of Y is n < ω, then there is a greatest element y ∈ Y , and we may

pick a progressive finite linked chain in [U ] beginning with a set which covers x0 and ending

with a set which covers y, which is a finite refinement of [U ] covering [x0,→) ∩ Y . Call this

refinement Y→.

Now, if the cofinality of Y is κ = ω, there is some increasing map f with f(0) = x0

which is cofinal in Y. We may then, for each n < ω, find a progressive finite linked chain

Cn in [U ] joining f(n) and f(n + 1). We may then define C ′n = {L ∩ (f(n − 1), f(n + 2)) :

L is a link in Cn} where f(−1) is assumed to represent ←.
⋃
n<ω

C ′n then covers [x0,→) ∩ Y .

In addition, each point in (x0,→) ∩ Y lies in some [f(n), f(n + 1)] and thus the open set

(f(n − 1), f(n + 2)) could only intersect the finite elements of the five sets C ′n−2 through

C ′n+2, making the union a locally finite refinement. Again, call this refinement Y→.

Finally, consider when the cofinality of Y is κ > ω. Let Ŷ be the compactification of Y

from Theorem 5.2. Ŷ adds a greatest element p not in Y since Y had uncountable cofinality.

Lemma 6.6 gives us that Ŷ \ {p} contains some closed cofinal subset K homeomorphic to

the cofinality κ′ of Ŷ \ {p}.

We note that if f : κ′ → Ŷ \ {p} is a cofinal map, then the density of Y in Ŷ \ {p} gives

a point of Y in the open set (f(α), f(α+ 1)) in Ŷ , so the cofinality κ of Y is ≤ κ′. Of course,

if g : κ → Y is cofinal, then its inclusion map ig : κ → Ŷ \ {p} is cofinal in Ŷ , so κ′ ≤ κ.

Thus κ′ = κ.
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Now observe that K ∩ Y cannot be a stationary subset of K by our assumption that

Y does not contain a closed subset homeomorphic to a stationary subset of any regular

uncountable cardinal such as κ. This gives us a subset of K\Y which is closed and unbounded

in K, call it K̂. We may assume without loss of generality that all elements of K̂ are greater

than x0 as any final interval of a closed unbounded set is also a closed unbounded set.

K̂ is homeomorphic to κ, so suppose φ : κ → K̂ is a homeomorphism. We may first

construct a finite refinement of [U ] on [x0, φ(0)) ∩ Y by using any progressive finite linked

chain connecting x0 to any point of Y greater than φ(0), with each element intersected with

the open set (←, φ(0))∩Y in the subspace Y of Ŷ (dropping any empty sets). Similarly, for

each α < κ, we can similarly construct a finite refinement of [U ] for (φ(α), φ(α+1)) by using

any progressive finite linked chain connecting x0 to any point of Y greater than φ(α + 1),

with each element of the chain intersected with (φ(α), φ(α+ 1))∩Y . The union of these is a

locally finite refinement of [U ] covering [x0,→) ∩ Y . Of course we’ll call this refinement Y→

as well.

We note that Y→ is locally finite at x0, so only finite elements of it can extend left of

x0. We can then use similar arguments to generate a locally finite refinement Y← which

covers (←, x0] ∩ Y and only has finitely many elements which extend right of x0. Lastly,

Y = Y← ∪ Y→ is then a locally finite refinement of [U ] covering Y , finishing the proof.
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Chapter 7

Stationary Sets and the Baire Property

Slightly changing pace, we shall investigate how we may use stationary subsets of ω1

to construct two Baire spaces whose product is not Baire. It should be noted that in this

chapter we assume ω1 has the discrete topology.

Definition 7.1. For σ ∈ ω<ω1 , let [σ] = {f ∈ ωω1 : σ ⊆ f}

Definition 7.2. For any countable α and f ∈ ωα1 , let f ∗ = sup(ran(f)). For A ⊆ ω1, let

A∗ = {f ∈ ωω1 : f ∗ ∈ A}.

Lemma 7.3. For all f ∈ ωω1 , {[f � n] : n < ω} is a local base at f . {[f � n] : n < ω, f ∈ ωω1 }

is a basis for ωω1 .

Proof. By the definition of the product topology, a basic open set in our space is

{α0} × ...× {αn−1} × ω1 × ...

where αi ∈ ω1.

Thus for an arbitrary function f ∈ ωω1 contained in that open set, f(i) = αi for i < n

and [f � n] is exactly that set, establishing our local base.

In addition, for any such basic open set, we may pick any function f such that f(i) = αi

for i < n, yielding a [f � n] which is exactly equal to that set. Thus the collection {[f � n] :

n < ω, f ∈ ωω1 } is exactly the normal basis for the product topology.

Theorem 7.4. If A ⊆ ω1 is uncountable, then A∗ is dense in ωω1 .

Proof. For any basic open set [g � n], there is an α ∈ A with (g � n)∗ ≤ α. Thus (g �

n)_ 〈α, α, ...〉 ∈ A∗ ∩ [g � n].
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Theorem 7.5. If A and B are uncountable disjoint subsets of ω1, then A∗×B∗ is not Baire.

Proof. For any two functions α, β ∈ ω<ω1 and any uncountable X ⊆ ω1, let σnα,β ∈ ωn1 be

the constant function mapping to max(α∗, β∗), and let τXα,β ∈ ωω1 be the constant function

mapping to the least element of X greater than max(α∗, β∗). Then, let

En =
⋃

06=α,β∈ω<ω1

[α_σnα,β]× [β_σnα,β]

for each n < ω. As it is the union of basic open sets, En is open.

To see that En is dense in A∗×B∗, consider a basic open set [f � i]× [g � j] for f, g ∈ ωω1 ,

and the ordered pair of functions

〈
(f � i)_(σnf�i,g�j)

_(τAf�i,g�j), (g � j)_(σnf�i,g�j)
_(τBf�i,g�j)

〉
.

This ordered pair of functions lies in En, A∗ × B∗, and [f � i] × [g � j], showing that En is

dense.

If our space were Baire, it would follow that the intersection of countably many of the

En’s would be itself an open dense set. However, we will show a countable intersection which

is in fact completely empty. Consider
⋂
n<ω

E2n. Indeed, if 〈f, g〉 was in
⋂
n<ω

E2n, then consider

f ∗ and g∗. We note that for each n < ω, there are functions αn, βn ∈ ω<ω1 such that α_n σ
2n
αn,βn

is an initial restriction of f of domain> 2n and β_n σ
2n
αn,βn

is an initial restriction of g of domain

> 2n. Thus f(n) = (α_n σ
2n
αn,βn

)(n) ≤ max(α∗n, β
∗
n) and g(n) = (β_n σ

2n
αn,βn

)(n) ≤ max(α∗n, β
∗
n).

This tells us that f ∗ = sup({max(α∗n, β
∗
n)|n < ω}) = g∗, giving that 〈f, g〉 cannot be in

A∗ ×B∗ as A,B are disjoint.

We have thus observed a product which is not Baire, regardless of whether or not its

component spaces are Baire. We proceed to show that, indeed, we may find two uncountable

subsets A,B of ω1 such that A∗, B∗ are Baire, by utilizing stationary sets.
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Lemma 7.6. Let U be dense open in ωω1 . For each σ ∈ ω<ω1 , there exists an extension

σU ∈ ω<ω1 such that [σU ] ⊆ U .

Proof. As U is dense, the open set [σ] intersects U at some function Σ. As U is open, there

is some basic open neighborhood [Σ � n] which is a subset of U . Let σU = (Σ � n) ∪ σ.

σU ⊇ σ and [σU ] ⊆ [Σ � n] ⊆ U .

Lemma 7.7. Let U be dense open in ωω1 . For each σ ∈ ω<ω1 , let σU be defined as above.

Then

CU = {α < ω1 : σ ∈ α<ω ⇒ σU ∈ α<ω}

is closed and unbounded.

Proof. Let γ be a limit point of CU . If σ ∈ γ<ω, σ ∈ δ<ω for some δ < γ. Thus σ ∈ α<ω for

some α ∈ (δ, γ) ∩ CU . As α ∈ CU , σU ∈ α<ω ⊂ γ<ω. Thus γ ∈ CU and CU is closed.

Let f : ω1 → ω1 be defined such that f(β) = sup({σ∗U : σ ∈ β<ω}). Let D be the set of

limit ordinals in ω1. Then (by Theorems 4.8 and 4.6)

C = {α < ω1 : β < α⇒ f(β) < α} ∩D

is unbounded (and closed). Let α ∈ C. If σ ∈ α<ω, then as α is a limit ordinal, σ ∈ β<ω for

some β < α. σ∗U ≤ sup({σ∗U : σ ∈ β<ω}) = f(β) < α, so σU ∈ α<ω and α ∈ CU . C ⊆ CU

implies CU is unbounded.

Theorem 7.8. Let A be a stationary subset of ω1. Then A∗ is Baire.

Proof. Let Vn be dense open in A∗ for n < ω. Vn is dense in ωω1 . In addition, for each n < ω,

Vn = Un ∩ A∗ for some open Un in ωω1 . Since Vn is dense in ωω1 and Vn ⊆ Un, Un is dense as

well as open. Let CUn be defined as above.
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Let σ ∈ ω<ω1 and consider the basic open set [σ] ∩ A∗ in A∗. To show A∗ is Baire, we

must show that
⋂
n<ω

Vn is dense in A∗, that is, there exists a function in

[σ] ∩ A∗ ∩

(⋂
n<ω

Vn

)
= [σ] ∩ A∗ ∩

(⋂
n<ω

Un

)
.

This function must then have an initial segment of σ, a supremum in A, and be in Un for all

n < ω.

Start by fixing an ordinal α in the intersection of the closed unbounded set [σ∗+1, ω1)∩⋂
n<ω

CUn and the stationary set A and an increasing sequence αn → α. Note that σ ∈ α<ω.

Let σ0 = (σU0)
_ 〈α0〉 and in general, σn+1 = ((σn)Un+1)

_ 〈αn+1〉 for all n < ω. It follows by

the definition of α that each σn ∈ α<ω.

Consider Σ =
⋃
n<ω

σn. Σ ∈ ωω1 since the length of the σn was increased by at least one at

each step. Σ has σ as an initial segment. Also, Σ ∈ [σU0 ] ⊆ U0 and Σ ∈ [σnUn+1
] ⊆ Un+1 for

all n < ω. Lastly, α ∈ A is an upper bound of the range of Σ as α is an upper bound for the

range of σn, and thus an upper bound of the range of σn+1 = (σnUn+1
)_ 〈αn+1〉 as α ∈ Cn+1

(and similarly for σ and σ0). α is the least upper bound of the range of Σ as for any ordinal

β < α, we may find some αn with β < αn < α in the range of Σ.

Observing from Chapter 4 that we may find two disjoint stationary subsets of ω1, this

wraps up our final result.

Corollary 7.9. There are metrizable Baire spaces X and Y such that X × Y is not Baire.

Proof. Let A,B be disjoint stationary subsets of ω1. By Theorem 7.8, A∗, B∗ are Baire

spaces, and by Theorem 7.5 A∗×B∗ is not Baire. Finally, we note that A∗, B∗ are subspaces

of the metrizable space ωω1 and are thus are metrizable themselves.
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