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Most mechanical systems that involve a sliding contact experience some degree of

friction induced self-excited vibration. A well known example is brake squeal which is

a top concern for automotive companies, who must spend huge amounts of money on

warranty repairs. Brake squeal occurs above 1k Hz and below 20k Hz. The phenomena

that cause brake squeal is not thoroughly understood, although a great deal of research

has been dedicated to developing a better understanding of the complex problem of brake

dynamics. This study developed a displacement dynamic equation of motion for brake

rotor’s, assuming the rotor’s to be annular plates with the same modal characteristics.

An analytical approach was used to solve the equation of motion of these annular discs

for free vibration. The Eigen values obtained through the analytical approach were then

used to obtain the natural frequencies. Experimental modal testing was also performed

to determine the natural frequencies of disc and pad with free boundary conditions.

The natural frequencies of the annular disc were also obtained using the finite dif-

ference method. An algorithm was developed to describe the dynamic response of the
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annular disc for both a constant forcing function and a time dependent forcing function

using the central difference method. The stability of the algorithm was also examined

in order to obtain the time step. The importance of the finite difference technique lies

in its ability to visualize the results and provide deeper insights into the dynamics of

brake rotors. Computer software in C programming and Matlab was developed to solve

the differential equation with the forcing function. Another advantage of this method

is that any type of forcing function which is practically possible can be applied and its

response calculated. The results revealed that an annular disc behaves non-linearly.

Finite element analysis was then performed to determine the dynamic character-

istics (natural frequency and mode shapes) and the response of the brake model. The

advantage of using this technique is that frictional forces are also taken into account. The

contact analysis applied a special type of element called CONTAC49 for 3-D surfaces.

In this thesis a four degree of freedom mathematical model of the brake system

based on friction characteristics and geometric non-linearity capable of representing the

brake dynamics is presented. Friction induced vibration was studied by using a four

degree of freedom model consisting of a disc and a pad moving in both the in-plane and

transverse directions. This system takes the form of a mathematical model with two

coupled equations and two uncoupled equation. The set of four differential equations

can then be solved using Runge Kutta’s JBM method.
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Chapter 1

Introduction

Brakes are one of the most vital safety features in motorized vehicles. However, Au-

tomotive brake noise has become an increasingly important issue for automobile manu-

facturers. Today, most manufacturers attempt to reduce the brake noise by changing the

geometry, carefully selecting the friction materials and mounting vibration shims at the

backplate of the pads. However, the mechanism that causes this noise is not yet properly

understood. This report presents a new analysis methodology which has the potential

to improve the efficiency and accuracy of the design process for disc-brake systems. This

process will allow a more accurate determination of the variable parameters influence

the brake noise and that reduces the time needed to complete the design.

1.1 Scope of the Thesis

Structural dynamics and friction play an important role in disc-brake dynamics.

For the brake system studied in this thesis, the rotor was the major cause of squeal

and radiator of sound. The natural frequency of a rotor can be obtained analytically by

solving a differential equation with boundary conditions applied. The aim of the work

presented in this thesis has been to determine natural frequency of the disc theoretically.

The thickness of the annular disc is assumed to act in such a way that its natural fre-

quencies match the actual natural frequency of the rotor of the vehicle. After verifying

the theoretical model, the dynamics of a disc subjected to nodal forces were studied. The

natural frequencies obtained theoretically were verified by comparison with the natural
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frequency obtained experimentally. Various type of static loading and dynamic loading

were applied at the different nodes and the response of the disc predicted. Finite Ele-

ment Analysis was also performed to understand the behavior as disc and brake pads

interact. To test the behavior of the model, a contact element was generated between

the two surfaces using the three dimensional contact element contac49 in ANSYS8.0.

A four degree of freedom mathematical model was also developed to simulate a disc

brake system with a cubic non-linearity. Using this model, the interaction between the

pad and rotor was investigated. Non-linear analysis was also performed to demonstrate

the unstable spiral and limit cycles in the phase space. The results showed that one of

the instability conditions depend on the initial velocity of the disc. It also provided new

insights that will enable us to understand contact and friction phenomena in the brake

pad and disk coupling.

1.2 An Overview of the Thesis

This thesis presents an in-depth study of the dynamic behavior of a brake disc using

finite difference method.

A review of the literature on disc-brake noise is presented in Chapter 2. The natural

frequencies of an annular plate are found analytically, which match the actual brake rotor

and a mathematical equation is developed for the annular plate. Due to the complex-

ity of the mathematical model, it must be solved using the Finite Difference Method.

Chapter 4 presents the theoretical modeling of a disc brake system cosidering friction and

describes the experimental work performed in order to obtain a better understanding of
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the squealing phenomena. Chapter 5 discusses the results and presents the conclusions

that can be drawn as a result of the analysis.
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Chapter 2

Background

2.1 Overview

Although, Automotive brakes have improved significantly during the last decade,

the engine power has also increased, so the energy to be dissipated in a brake is several

times larger than the power developed by the engine. However, not only the power but

also the expectations of comfort by drivers and passengers have also greatly increased

over the last decade. This means that noise levels, and in particular brake noise, which

were acceptable 20 or 30 years ago are no longer acceptable. Brake squeal is now a ma-

jor problem in vehicles leading to substantial losses for automobile companies. The disc

brake was invented in 1902 by Frederick William Lanchester in England[1]. Nowadays,

the vibration and noise produced in disc-brake systems cause discomfort for passengers

and raise their concerns over the reliablity of the vehicle. Akay[2] recently reviewed

friction-induced noise, including disk-brake squeal. He quoted an industrial source who

gave an estimate of the warranty costs due to noise, harshness and vibration (together

known as NVH problems), including disk-brake squeal, as costing the automotive indus-

try U.S. $ 1 billion in North America alone.

Brake noise is usually classified in three categories : low frequency noise, low fre-

quency squeal and high frequency squeal. Low frequency brake noise typically occurs

between 100 Hz and 1 KHz and is referred to as grunt, groan, grind and moan. It

originates in the excitation of the friction material at the rotor and lining interface. In
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Figure 2.1: Disc Brake System

disk brakes, squeal can occur when the brake pads contact the rotor while the vehicle is

moving at low speeds, causing a vibration that manifests as an annoying high-pitched

squeal. Low frequency squeal occurs in the frequency range above 1 kHz and below

the first circumferential mode of the rotor[3]. This type of noise is caused frictional

excitation and the coupling of more than two modes of various component of the brake

system. This coupling produces optimum conditions for brake squeal. High frequency

squeal is a particularly troublesome problem in brake development and typically occurs

at frequencies above 5 kHz. It has been experimentally demonstrated that the frequency

of squeal coincides with the circumferential resonance fequencies of the rotor disc[3].

A car disc brake system consists of a rotating disc, non-rotating friction pads, carrier

bracket, calliper, yoke, piston,sealing ring, guide pins and dustboot. The pads are loosely

housed in the calliper and located by the carrier bracket. The calliper itself is allowed
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to slide fairly freelyalong the two mounting guide pins in a floating calliper design. The

disc is bolted to the car wheel and thus rotates at the same speed as the wheel. When

the disk brake is applied, the two pads are brought in contact with the rotating disc sur-

faces. Most of the kinetic energy of the vehicle is converted to heat through friction but

a small part of it is converted into sound energy and generates noise.[4]. Optimizing this

automotive noise behavior is an important aspect in new vehicle designs. The purpose

of a brake is to attenuate effectively and evenly the kinetic energy of a vehicle. This is

done by converting it into heat energy which is generated due to the friction between

the brake disk and the pads. Under certain operating parameters, during the braking

process, high frequency vibrations of the brake disc can be excited. These significant

structural vibrations of the brake, which have no influence on the actual braking effect,

are heard as an undesired, acoustically perceptible squealing of brakes. The out-of-plane

vibrations are physically responsible for the noise emitted from the brake disk when

squealing occurs. In this case, the surface of the friction ring of the brake disc vibrates

at right angles to the disc plane. The decelerating braking power between pads and

brake disc has an effect in the disc plane, exciting in-plane vibrations.[5]

2.2 Literature Review

North [7] observed that the first concerted effort to study car disk brake squeal was

made at the Motor Industrial Research Association (MIRA) in the U.K. in the 1950s.

In 1970, a study on the vibration of a disc subject to a moving load was initiated. Mote
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investigated the vibration of a disc under a pointwise load and showed that the instabil-

ity is likely to occur in the supercritical range [6].

Disc brake squeal occurs when a system experiences a very large amplitude vibra-

tion. There are two theories that attempt to explain why this occurs. The first theory

states that a negative friction-velocity gradient leads to stick-slip vibration, which has

been identified as one of the major causes of brake squeal, and it occurs due to non-

linearity of the frictional force-velocity characteristics. The second theory believes that

the high level of vibration results from geometric instabilities in the brake assembly.

Both theories attribute the brake system vibration and the accompanying audible noise

to variable friction forces at the lining-rotor interface [12]. Yuan classified these mech-

anisms into two groups [13]. The friction coefficient tends to decrease as sliding starts.

This is the basis of the negative slope of friction versus relative speed, which was first

put forward as a possible mechanism responsible for generating brake squeal by Mills

and was later supported by experimental results [14]. However, North [7] thought that

it(alone) was not likely to account for squeal. The difference between the static friction

coefficient and the kinetic friction coefficient may cause stick-slip vibration, which was

first introduced to disk brake squeal studies by Mills [14]. North used a two-degree-of-

freedom model of a car disc brake to show that the different friction forces on either side

of the disc brake could lead to instability. In another study, a slider experiencing stick-

slip vibration on a vibrating disk was shown to display a rich dynamic behavior [15].

Ouyang, Cao, Mottershead and Treyde [16] believe that a good disc brake model should

include a plausible squeal mechanism, a proper treatment of the frictional contact and an

accurate description of the system dynamics. The disc is presented as an annular plate
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and the stationary components (pad, calliper, carrier and mounting pins) are described

using a finite element model, this constituting a combined numerical-analytical model.

The fricition forces acting on the surface of the disk generate pointwise bending couples

that move around the disc. Thus, the whole disk brake system must be treated as a

proper moving load problem through the moving contact at the disk/pads interface with

friction [16]. Ouyang and Mottershead [17] investigate the instability of the transverse

vibration of a disc excited by two co-rotating sliders on both sides of the disc, consid-

ering each slider as a mass-spring-damper system traveling at the same constant speed

around the disc. In this model, Frictional forces acting at the contact interface between

the disc and each of the two sliders. The bending couple and normal forces produced by

the rotating sliders are moving loads and are found to result in dynamic instability [17].

Chowdhary, Bajaj and Krousgrill [18] predict one of the mechanisms behind the disc

brake model, where the brake rotor is represented by a thin plate of equivalent modal

characterisitics and the backing plate are modeled as thin annular section plates using

the Rayleigh-Ritz approach. The two structural models are then coupled using linear

elastic springs and Coulomb friction at the interface, and langrangian approach is used

to derive the equations of motion of the coupled system [18].

Whatever the modeling method adopted to solve this problem, linear analysis is

commonly used to determine the stability of the system for various parametric condi-

tions. By performing stability analysis, the real parts of the eigenvalues can be extracted

to construct the characteristic equation of the system. If the real parts are positive then

the system is unstable, and if they are negative then the system is stable. In a disc brake

system, friction force is the main cause for the excitation of vibration and is unevenly
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distributed force between the brake disc and the brake pad on either sides of the rotor.

Research on the vibrational instabilities which lead to brake squeal has been con-

ducted for more than fifty years. Today’s better understanding of the vibrational insta-

bilities that produce brake squeal has required a great deal of detailed and sophisticated

analysis and experimental research due to the complexity of a brake system. The ability

to design a brake system and identify its causes of squealing in advance would offer a

very helpful design tool. The literature also suggests that different brake systems radiate

sound in very different ways. Murakami(1984) studied a brake system and found that

the brake calliper and pad played major role in brake squeal. Five years later, Nishiwaki

conducted a research on a different brake system and concluded that rotor was respon-

sible for the most noise. McDaniel, Moore, Chen and Clarke [19] presented a study of

acoustic radiation from the stationary brake system. The objective of this experiment

was to better understand the acoustic radiation from squealing brake systems. The re-

searchers found that the great majority of squeal mechanisms occur due to the resonant

behavior of the operating brake system. They also presented an analysis that equated

the natural frequencies and modes of mechanically-excited stationary brake systems to

those of an operating brake system. Acoustic radiation efficiencies and intensities of the

modes were computed by importing experimentally measured velocities into a BEM soft-

ware package, which revealed that for a particular brake system, the highest radiation

efficiency occurred at frequencies above 2-3kHz [19].
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Chapter 3

Mathematical Modeling of A Disc Brake

3.1 Free Vibration of Circular Disc Without Damping : An Analytical Ap-

proach

It is difficult to write a differential equation for a disc-brake model, which has a

very complicated geometry. In order to develop a mathematical model for a disc-brake

system, it is first necessary to reduce the disc into an annular plate with the same natural

frequency and mode shapes. In this case, the first nine natural frequencies are matched

with the actual rotor, which is achieved by changing the thickness of the annular plate.

The displacement equation of motion for circular plate without damping can be

written as:

D∇4w + ρhẅ = p(r, θ, t) (3.1)

where

∇2 =
∂2

∂r2
+

1
r

∂

∂r
+

1
r2

∂2

∂θ2

D =
E ∗ h3

t

12 ∗ (1− υ2)
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Figure 3.1: Annular disc brake

E is the Elastic modulus, h is the thickness,ρ is the mass desity and υ is the Poisson’s

ratio. Considering the case of free vibration when the forcing function at the right hand

side i.e. p(r,θ,0)=0 and assuming the boundary conditions to be homogeneous, the above

equation can be written as

D∇4w + ρhẅ = 0 (3.2)

The homogeneous boundary condition can take one of the forms

Vn = 0 (3.3)

or ,

Mnn = 0 (3.4)
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Thus, either

w = 0 (3.5)

or,

∂w/∂n = 0 (3.6)

Let us assume that the free vibrations are characterized by

w(r, θ, t) = W (i)(r, θ) cos(Ωit), i = 1, 2, 3 . . . (3.7)

w(r, θ, t) = W (j)(r, θ) cos(Ωjt), j = 1, 2, 3 . . . (3.8)

where Ωi is the natural frequency and Wi(r,θ) is its associated mode shape, then upon

substitution of equation 3.7 and 3.8 into 3.2 [20], we obtain

D∇4W (i) = ρhΩ2
i W

(i) (3.9)

D∇4W (j) = ρhΩ2
jW

(j) (3.10)

The equations 3.9, 3.10 resemble static equilibrium equations and therefore the

Betti-Rayleigh reciprocal theorem [20] is applicable if it is set as pi=ρ h Ω2
i Wi and pj=ρ

h Ω2
j Wj . Assuming that the present analysis is restricted to homogeneous boundary

conditions, the application of the Betti-Rayleigh reciprocal theorem to the result obtained

12



in 3.10 and 3.11, gives

∫
A

ρhΩ2
i W

(i)W (j)dA =
∫

A
ρhΩ2

jW
(j)W (i)dA

(Ω2
i − Ω2

j )
∫

A
ρhΩ2

jW
(i)W (j)dA = 0 (3.11)

If Ω2
i 6= Ω2

j , then

∫
A

ρhΩ2
jW

(i)W (j)dA = 0 (3.12)

3.1.1 Boundary Conditions

Consider the axisymmetric, harmonic vibration of the disc clamped at radius r1.

If the plate deflection is referred to in polar coordinates. We can assume the axial

symmetry, w=w(r), where r is the radial coordinate. The mode shapes W(i) must satisfy

the boundary condition, as the disc is fixed or clamped at the inner boundary.

At the inner boundary i.e at r=r1 we have,

W (i)(r) =
∂W (i)

∂r
= 0 (3.13)

Therefore,

(∇2 + λ2
i )(∇2 − λ2

i )W
(i) = 0 (3.14)

where

λ2
i = Ωi(

ρh

D
)1/2 (3.15)
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The boundary condition at the outer edge of the disc i.e at r=r2 is assumed to be

free,

Therefore, the bending moment and shear force at the outer edge is zero.

Mathematically, this can be written as follows:

Mr |(r=r2)= −D[
∂2W

∂r2
+ υ(

1
r

∂W

∂r
+

1
r2

∂2W

∂θ2
)] = 0 (3.16)

Vr |(r=r2)= −[D
∂

∂r
(∇2W ) + (1− υ)

∂

r∂θ
(
1
r

∂2W

∂r∂θ
− 1

r2

∂W

∂θ
)] = 0 (3.17)

Since λ2
i > 0,the solution of equation 3.14 can be written in the form,

W (r, θ) = (C1 cos(θ) + C2 sin(θ))(AiBesselJ(0, λir) + BiBesselY (0, λir)

+CiBesselI(0, λir) + DiBesselK(0, λir)) (3.18)

where J0 and K0 are Bessel functions, and I0 and K0 are modified Bessel functions, all of

order zero. The above assumed solution should also satisfy all the boundary conditions

as follows:

W(r=r1) = AiBesselJ(0, λir1) + BiBesselY (0, λir1) + CiBesselI(0, λir1)

+DiBesselK(0, λir1) = 0 (3.19)

∂W

∂r (r=r1)
= −AiBesselJ(0, λir1)λi −BiBesselY (0, λir1)λi + CiBesselI(0, λir1)λi

−DiBesselK(0, λir1)λi = 0
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(3.20)

The bending moment at the outer edge is given by the following equation:

M(r=r2) = −Ai[BesselJ(0, λir2)−
BesselJ(1, λir2)

λir2
]λ2

i −Bi[BesselY (0, λir2)

−BesselY (1, λir2)
λir2

]λ2
i + Ci[BesselI(0, λir2)−

BesselI(1, λir2)
λir2

]λ2
i

−Di[BesselK(0, λir2)−
BesselK(1, λir2)

λir2
]λ2

i +
1
r2

[υ(−AiBessel(1, λir2)λi

−BiBesselY (1, λir2)λi + CiBesselI(1, λir2)λi −DiBesselK(1, λir2)λi)]

+
υ

r2
[−AiBesselJ(0, λir2)−BiBesselY (0, λir2)− CiBesselI(0, λir2)

−DiBesselK(0, λir2)] = 0

(3.21)

V(r=r2) =
(1− υ)λi

r2
[AiBesselJ(1, λir) + BiBesselJ(1, λir)− CiBesselJ(1, λir)

+DiBesselJ(1, λir)] +
(1− υ)

r3
[AiBesselJ(0, λir) + BiBesselJ(0, λir)

−CiBesselJ(0, λir) + DiBesselJ(0, λir)]−Aiλ
2
i [−BesselJ(1, λir)λi

+2
BesselJ(1, λir)

λir2
− BesselJ(0, λir)

r
]−Biλ

2
i [−BesselY (1, λir)λi

+2
BesselY (1, λir)

λir2
− BesselY (0, λir)

r
] + Ciλ

2
i [BesselI(1, λir)λi

+2
BesselI(1, λir)

λir2
− BesselI(0, λir)

r
]−Diλ

2
i [BesselK(1, λir)λi

+2
BesselK(1, λir)

λir2
+

BesselK(0, λir)
r

]−Aiλ
2
i [

BesselJ(0, λir)λir −BesselJ(1, λir)
λir2

]

−Biλ
2
i [

BesselY (0, λir)λir −BesselY (1, λir)
λir2

] + Ciλ
2
i [

BesselI(0, λir)λir −BesselI(1, λir)
λir2

]

−Diλ
2
i [
−BesselK(0, λir)λir −BesselK(1, λir)

λir2
] + Ai

BesselJ(1, λir)λi

r2
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Table 3.1: Parameters of the annular plate

Parameter Value
Thickness of disc,ht 0.012 m

Inner radius of disc, r1 0.045 m
Outer radius of disc, r2 0.133 m

Young’s Modulus, E 1.2E11 Pa
Mass Density, ρ 7200 Kg/m3

Poisson’s ratio, υ 0.211

+Bi
BesselY (1, λir)λi

r2
− Ci

BesselI(1, λir)λi

r2
+ Di

BesselK(1, λir)λi

r2

−Ai
BesselJ(0, λir)

r2
−Bi

BesselY (0, λir)
r2

− Ci
BesselI(0, λir)

r2
−Di

BesselK(0, λir)
r2

= 0

(3.22)

Solving equations 3.19, 3.20, 3.21 and 3.22 for Ai, Bi, Ci and Di and substituting those

values of Ai, Bi, Ci and Di into equation 3.19, and again solving using the Maple 10

software for λ at r=r1. From equation 3.14 , the natural frequencies of vibration are

obtained by finding the roots of the equation 3.19 as follows:

λ2
i = Ωi(

ρh

D
)1/2

Ωi =
λ2

i

(ρh
D )1/2

(3.23)

The parameters given in table 3.1 were used to calculate the natural frequencies of

the disc. The natural frequencies obtained analytically listed in table 3.2
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Table 3.2: Natural frequencies of the disc obtained by analytical approach

Serial Number Value of λ Natural Frequency (Hz)
1 7.54 979
2 8.12 1135
3 8.39 1212
4 10.3 1827
5 12.98 2902
6 15.831 4316
7 19.1 6282
8 20.27 7075
9 20.45 7201

3.2 Experimental Setup

The pad and the disc were set into vibration at a fixed-point by an ICP Impulse

Force Test Hammer model 086D80, provided by PCB Piezotronics. The responses were

measured at a number of points on the surface of the structure using a piezoelectric ICP

accelerometer model number 352C15 provided by PCB Piezotronics. Two SCC-ACC01

accelerometer input modules with a fixed gain of 2 provided a 4mA current source for

the accelerometer and impulse hammer. The 2 modules accepted input signals from the

accelerometer and impulse hammer, amplified them and coupled these signals to the

data acquisition system via an SC-2345 Signal Conditioning with configurable connec-

tors. The SC-2345 carried signals from 68-pin E Series acquisition (DAQ) devices. It

was used with SCC Series modules and a shielded 68-pin cable and offered easy-to-use,

low-noise signal conditioning on a per-channel basis.

In this experiment, the signal acquisition was performed using the NI DAQ Card-6036E,

16 inputs/2 outputs, 200 kS/s and LabView software for A/D data conversion, data

processing, analysis and archival.Instruments for data recording stored data in an exist-

ing file. The diagram also contained instruments for windowing, spectrum units selection

17



Table 3.3: Natural frequencies (Hz) of the disc found experimentally

Serial Number Natural Frequency(Hz)
1 998
2 1161
3 1205
4 1840
5 2937
6 4380
7 6212
8 7026
9 7295

and immediate display of time waveforms and frequency spectra.

After the data was properly acquired and analyzed, ME’scope VES 4.0 software, Vi-

sual Modal Pro package for experimental modal testing was applied. ME’scope VES 4.0

was developed by Vibrant Technology and consists of a set of post-test analysis software

that can be used to analyze and document the dynamic behavior of mechanical struc-

tures and machines. The Visual Modal Pro package imports the FRF measurements and

generates estimates by curve fitting the modal parameters, namely the natural frequen-

cies, damping and mode shapes.

3.3 Dynamic Equation of Flexible Annular Disc

Spinning annular discs are commonly found in mechanical as well as in electrical

engineering applications such as turbine rotors, computer disc memory units, vehicle

disc-brake etc. Therefore, their dynamic analysis is of major interest to researchers [21].

It is essential to understand the flexible nature of an annular disc in order to construct
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Figure 3.2: Figure shows SC-2345, accelerometers, impact hammer, foam support, PCM-
CIA card and computer system

Figure 3.3: Disc modal peaks
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Figure 3.4: Pad modal peaks

an accurate mathematical model for the disc-brake system, which would be helpful in

controling the vibration of the disc efficiently. This kind of model can be developed

using partial differential equations to describe the dynamic behavior of a flexible disc.

The partial differential equation can then be solved by discretizing it into a finite set of

ordinary differential equations. Finite element analysis has also been used to understand

the dynamic nature of the plate. For example, A new symmetric and positive definite

boundary element formulation for lateral vibration of plates was introduced by Dav and

Milazzo [22].

Consider an annular plate that is spinning at an angular speed of Ω and is transverly

in contact with a stationary oscillating unit at the point (rp,0), where (r,θ) is a polar
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coordinate system fixed in space. The plate is clamped or fixed at the inner edge and

free at the outer boundary.

D∇4w + c(
∂w

∂t
) + ρh(

∂2w

∂t2
) = F (r, θ, t) + ht[

1
r

∂

∂r
(rσrr

∂w

∂r
) +

1
r2

σθθ
∂2w

∂θ2
] (3.24)

where :

∇4 = Biharmonic operator,

w = lateral deflection in the z direction, a function of r, θ and t.

ρ = mass density per unit area,

D = Eh3
t

(1−υ2)
flexural rigidity,

ht = thickness of the plate,

υ = Poisson’s ratio,

E = Young’s Modulus,

c = viscous damping,

∂2w
∂t2

= acceleration in the z direction,

σrr and σθθ = Initial in-plane stresses induced by rotation.

The above equation represents the equation of motion characterizing the behavior of a

flexible annular disc in lateral motion. The solution of this equation can be obtained by

considering the corresponding boundary conditions. Although the equation contains a

term for damping, this will be neglected damping at this stage when solving the above

equation. Also,the initial stresses induced due to rotation can be neglected as their effect

will be negligible compared to the other stresses present. The above equation can thus
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be rewritten as:

D∆4w + ρh(∂2w/∂t2) = F (r, θ, t) (3.25)

A numerical method approach based on finite differences can be applied to simulate the

characterising behavior of an annular disc. This above equation can also be written in

expanded form as follows:

D[
∂4w

∂r4
+

2
r

∂3w

∂r3
+

1
r3

∂w

∂r
+

2
r3

∂3w

∂θ2∂r
+

2
r2

∂4w

∂θ2∂2r

+
4
r4

∂2w

∂θ2
+

1
r2

∂2w

∂r2
+

1
r4

∂4w

∂θ4
] + ρh

∂2w

∂t2
= 0 (3.26)

3.4 Finite Difference Discretization

The difference between the analytical solution and finite difference method is that

the solution is obtained only at discrete points. Therefore, dividing the region into

small regions and assigning each region a reference index will be provide very accurate

results. Solving the circular boundary problem solved using the finite difference approach

defined in polar co-ordinates (r,θ) is more convenient than using cartesian co-ordinates as

it avoids the use of awkward differentiation formulae near the curved boundary. Defining

the mesh in the r-θ plane by the points of intersection of the circles r=r1 + i*h, where

i=0, 1, 2, 3 ..., r1 is the inner radius of the disc and h=(r2-r1)/M, M is the number of

circles defined for the mesh and the straight lines θ= j * l where j=0, 1, 2, 3.... and

l=(θ2-θ1)/N , where N is the number of divisions. These lines and circles are called grid

lines and their intersections are referred to as mesh points of the grid or nodal points.

The distance between two nodal points is the grid size. In some cases, the accuracy of
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Figure 3.5: Representation of grid points using a 13 node mesh in FDM

the solution can be improved by reducing the mesh size. Figure 3.5 shows a nodal point

at the center of a small shaded region that has the index (i, j) and its neighbouring points

have node indices (i+1, j), (i-1, j),(i, j+1), (i, j-1), (i+1, j+1) and so on. In the case of

a flexible annular plate, a three dimensional coordinate system is considered. Here, the

third dimension is time, t. The time axis is represented with reference index k, where

t=k*∆t. For each nodal point at the interior of the grid (ri, θj , tk) where i=0, 1, 2, ...m,

j=0, 1, 2, ...n, k=1, 2, ....q. A Taylor series expansion is used to generate the central

finite difference for the partial derivative terms of the lateral deflection, w(r, θ, t)= wi,j,k

The above equation for the free vibration of the disc without damping can be ex-

panded using the central difference method and can be written as,

[
∂4w

∂r4
]i,j,k =

1
(r1 + i ∗ h)4

[wi+2,j,k − 4wi+1,j,k + 6wi,j,k − 4wi−1,j,k + wi−2,j,k] (3.27)

1
r4

[
∂4w

∂θ4
]i,j,k =

1
(l)4(r1 + i ∗ h)4

[wi,j+2,k−4wi,j+1,k +6wi,j,k−4wi,j−1,k +wi,j−2,k] (3.28)
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2
r
[
∂3w

∂r4
]i,j,k =

2
h3 ∗ (r1 + i ∗ h)

[wi+2,j,k − 2wi+1,j,k + 2wi−1,j,k − wi−2,j,k] (3.29)

1
r3

[
∂w

∂r
]i,j,k =

1
h ∗ (r1 + i ∗ h)3

[wi+1,j,k − wi−1,j,k] (3.30)

2
r3

[
∂3w

∂θ2∂r
]i,j,k =

2
(l)2 ∗ h ∗ (r1 + i ∗ h)3

[wi+1,j+1,k − wi−1,j+1,k − 2wi+1,j,k

+2wi−1,j,k + wi+1,j−1,k − wi−1,j−1,k] (3.31)

2
r2

[
∂4w

∂θ2∂r2
]i,j,k =

2
(l)2 ∗ h2 ∗ (r1 + i ∗ h)2

[4wi,j,k − 2wi+1,j,k

−2wi−1,j,k − 2wi,j+1,k − 2wi,j−1,k + wi+1,j+1,k

+wi+1,j−1,k + wi+1,j+1,k + wi+1,j+1,k] (3.32)

4
r4

[
∂2w

∂θ2
]i,j,k =

4
(l)2 ∗ (r1 + i ∗ h)4

[wi,j+1,k − 2wi,j,k + wi,j−1,k] (3.33)

1
r2

[
∂2w

∂r2
]i,j,k =

1
(h)2 ∗ (r1 + i ∗ h)2

[wi+1,j,k − 2wi,j,k + wi−1,j,k] (3.34)

ρh[
∂2w

∂t2
]i,j,k =

ρh

∆t2
[wi,j,k+1 − 2wi,j,k + wi,j,k−1] (3.35)

Substituting ∂4w
∂r4 , 1

r4
∂4w
∂θ4 , 2

r [∂3w
∂r4 ], 1

r3 [∂w
∂r ], 2

r3 [ ∂3w
∂θ2∂r

], 2
r2 [ ∂4w

∂θ2∂r2 ], 4
r4 [∂2w

∂θ2 ], 1
r2 [∂2w

∂r2 ],

ρh[∂2w
∂t2

] from equations (3.25-3.33) into equation (2.16) and simplifying yields:

wi,j,k+1 = −D ∗∆t2

ρ ∗ ht
(Pwi,j,k + Qwi+1,j,k + Rwi−1,j,k + S(wi,j+1,k + wi,j−1,k)

+T (wi+1,j+1,k + wi+1,j−1,k) + U(wi−1,j+1,k + wi−1,j−1,k)

+V (wi+2,j,k + wi−2,j,k) + W (wi,j+2,k + wi,j−2,k)) + 2wi,j,k

−wi,j,k−1 +
∆t2F (r, θ, t)

ρht
(3.36)
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where

P = [
6
h4

+
6

((r1 + i ∗ h)4 ∗ (∆θ4)
+

8
(r1 + i ∗ h)2 ∗ (h2) ∗ (∆θ2)

− 8
(r1 + i ∗ h)4 ∗ (∆θ2)

− 2
(r1 + i ∗ h)2 ∗ (h2)

],

Q = [− 4
h4
− 4

(r1 + i ∗ h) ∗ (h)3
+

1
(r1 + i ∗ h)3 ∗ h

− 4
r1 + i ∗ h)3 ∗ h ∗ (∆θ2)

− 4
(r1 + i ∗ h)2 ∗ (h2) ∗ (∆θ2)

+
1

(r1 + i ∗ h)2 ∗ (h2)
]− 8

(r1 + i ∗ h)4 ∗ (∆θ2)

− 2
(r1 + i ∗ h)2 ∗ (h2)

],

R = [− 4
h4

+
4

(r1 + i ∗ h) ∗ (h)3
− 1

(r1 + i ∗ h)3 ∗ h
+

4
r1 + i ∗ h)3 ∗ h ∗ (∆θ2)

− 4
(r1 + i ∗ h)2 ∗ (h2) ∗ (∆θ2)

+
1

(r1 + i ∗ h)2 ∗ (h2)
]− 8

(r1 + i ∗ h)4 ∗ (∆θ2)

− 2
(r1 + i ∗ h)2 ∗ (h2)

],

S = [− 4
((r1 + i ∗ h)4 ∗ (∆θ4)

− 4
(r1 + i ∗ h)2 ∗ (h2) ∗ (∆θ2)

+
4

(r1 + i ∗ h)4 ∗ (∆θ2)
]

− 8
(r1 + i ∗ h)4 ∗ (∆θ2)

− 2
(r1 + i ∗ h)2 ∗ (h2)

],

T = [
2

((r1 + i ∗ h)3 ∗ h ∗ (∆θ2)
+

2
(r1 + i ∗ h)2 ∗ (h2) ∗ (∆θ2)

]− 8
(r1 + i ∗ h)4 ∗ (∆θ2)

− 2
(r1 + i ∗ h)2 ∗ (h2)

],
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U = [− 2
((r1 + i ∗ h)3 ∗ h ∗ (∆θ2)

+
2

(r1 + i ∗ h)2 ∗ (h2) ∗ (∆θ2)
]− 8

(r1 + i ∗ h)4 ∗ (∆θ2)

− 2
(r1 + i ∗ h)2 ∗ (h2)

],

V = [
1
h4

+
2

((r1 + i ∗ h) ∗ h3)
]− 8

(r1 + i ∗ h)4 ∗ (∆θ2)
− 2

(r1 + i ∗ h)2 ∗ (h2)
],

W = [
1

((r1 + i ∗ h)4 ∗ (∆θ4)
]− 8

(r1 + i ∗ h)4 ∗ (∆θ2)
− 2

(r1 + i ∗ h)2 ∗ (h2)
]

The equation 3.26 must be satisfied at every nodal point of the grid within the

boundary of the plate. When using the Finite Difference Method to solve a partial

differential equation of an annular disc, more accurate results can be obtained by using

higher-order FD approximations than by decreasing the mesh width [8]. Here, a 13 node

finite difference approximation was used in which each node is connected to 13 nodes

other, as shown in figure 3.5. Figure

3.5 Initial and Boundary Conditions

To run a simulation it is first necessary to define the initial and boundary conditions.

It is reasonable to assume that initially the annular plate has no deflection, so the forces

and moments of the plate due to its weight can be neglected [9]. Therefore the initial

conditions of the plate is:

wi,j,k = 0 (3.37)

wi,j,k−1 = 0 (3.38)
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Table 3.4: Natural frequencies of the disc obtained by the finite difference method

Serial Number Natural Frequency (Hz)
1 979
2 1135
3 1212
4 1827
5 12.98
6 15.831
7 19.1
8 7075
9 7201

It is assumed that the annular disc is clamped at its inner radius, r=r1:

wi,j,k

∣∣∣(r=r1)

∣∣∣ = 0 (3.39)

∂w

∂r

∣∣∣(r=r1)

∣∣∣ = 0 (3.40)

The boundary condition at the outer edge of the disc, i.e at r=r2 is assumed to

be free, so the bending moment and shear force at the outer edge will both be zero.

Mathematically, this can be written as follows:

Vr(r = r2) = −[D
∂

∂r
(∇2w) + (1− υ)

∂

r∂θ
(
1
r

∂2w

∂r∂θ
− 1

r2

∂w

∂θ
)] = 0 (3.41)

Mr(r = r2) = −D[
∂2w

∂r2
+ υ(

1
r

∂w

∂r
+

1
r2

∂2w

∂θ2
)] = 0 (3.42)

The magnitude of the forcing function is taken to be 5*10(−4) Newton in the static as

well as in the dynamic analysis.
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Figure 3.6: Response due to a force applied at node 4 of 5X5 grid points

Figure 3.7: Response due to a force applied at node 16 of 5X5 grid points
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Figure 3.8: Response due to a force applied at node 22 of 5X5 grid points

Figure 3.9: Response due to a force applied at nodes 2,7,12 and 22 of 5X5 grid points
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Figure 3.10: Response due to a force applied at nodes 3,8,13,18 and 23 of 5X5 grid points

Figure 3.11: Response due to a force applied at nodes 18,19,23 and 24 of 5X5 grid points
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3.6 Stability of the Algorithm

The stability of the algorithm can be tested by determining whether the iterative

scheme described in equation 3.36 converges to a solution. Discretizing equation 3.26

using equations 3.27-3.35, with zero external force and simplifiying yields:

c[P˙wi,j,k + Q˙wi+1,j,k + R˙wi−1,j,k + S˙(wi,j+1,k + wi,j−1,k) + T˙(wi+1,j+1,k + wi+1,j−1,k)

+U˙(wi−1,j+1,k + wi−1,j−1,k) + V ˙(wi+2,j,k + wi−2,j,k) + W˙(wi,j+2,k + wi,j−2,k)]

= −wi,j,k+1 + 2wi,j,k − wi,j,k−1

(3.43)

where

P˙ = [6(∆θ)4 +
6

(r1/h + i)4
+

8(∆θ)2

(r1/h + i)2
− 8(∆θ)2

(r1/h + i)4
− 2(∆θ)4

(r1/h + i)2
]

(3.44)

Q˙ = [−4(∆θ)4 − 4(∆θ)4

(r1/h + i)
+

(∆θ)4

(r1/h + i)3
− 4(∆θ)2

(r1/h + i)3
− 4

(∆θ)2

(r1/h + i)2
]

(3.45)

R˙ = [−4(∆θ)4 +
4(∆θ)4

(r1/h + i)
− (∆θ)4

(r1/h + i)3
+

4(∆θ)2

(r1/h + i)3
− 4

(∆θ)2

(r1/h + i)2
]

(3.46)

S˙ = [− 4
(r1/h + i)4

− 4(∆θ)2

(r1/h + i)2
+

4(∆θ)2

(r1/h + i)4
] (3.47)
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T˙ = [
2(∆θ)2

(r1/h + i)3
+

2(∆θ)2

(r1/h + i)2
] (3.48)

U˙ = [− 2(∆θ)2

(r1/h + i)3
+

2(∆θ)2

(r1/h + i)2
] (3.49)

V ˙ = [(∆θ)4 +
2(∆θ)4

(r1/h + i)
] (3.50)

W˙ = [
1

(r1/h + i)4
] (3.51)

The deflection wi,j,k can be expressed as:

wi,j,k = Φ(t)eiαReiβθ (3.52)

where α and β are the spatial frequencies in R and θ, respectively, and i =
√
−1.

Substituting for wi,j,k from equation 3.52 into equation 3.43 and simplifying yields;

(cΦ(t))(P˙ + Q˙(eiα∆R) + R˙(e−iα∆R) + S˙(eiβ∆θ + e−iβ∆θ) + T˙(ei(α∆R+βθ) + ei(α∆R−βθ))

+U˙(ei(−α∆R+βθ) + e−(iα∆R+βθ)) + V ˙(ei2α∆R + e−i2α∆R) + W˙(ei2β∆θ + e−i2β∆θ))

= −Φ(t + ∆t) + 2Φ(t)− Φ(t−∆t)

(3.53)

Using Euler’s identity, eiθ = cos(θ) + isin(θ) in the above equation gives

(cΦ(t))(P˙ + Q˙(cos(α∆R)) + R˙(cos(α∆R)) + S˙(2 cos(β∆θ)) + T˙(2 cos(α∆R)

cos(β∆θ)) + U˙(2 cos(α∆R) cos(β∆θ)) + V ˙(2 cos(2α∆R)) + W˙(2 cos(2β∆θ)))

= −Φ(t + ∆t) + 2Φ(t)− Φ(t−∆t)
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(3.54)

2− c[(P˙− 2V ˙− 2W˙ + Q˙(cos(α∆R)) + R˙(cos(α∆R)) + S˙(2 cos(β∆θ)) + T˙(2 cos(α∆R)

cos(β∆θ)) + U˙(2 cos(α∆R) cos(β∆θ)) + V ˙(4 cos2(α∆R)) + W˙(4 cos2(β∆θ)))]

=
Φ(t + ∆t) + Φ(t−∆t)

Φ(t)

(3.55)

In general, the solution is assumed to be in the form wi,j,k in equation 3.52 and contains

all multiples of the spatial frequency. Even if these are not present in the initial conditions

or imposed by the boundary conditions, they are likely to be introduced by rounding

errors. This means that the unbounded amplification of Φ(t) must be guarded against

all α[10]. The original error component will not grow in time , provided that

∣∣∣ei(t)
∣∣∣ ≤ 1

This is a well-known Von neumann stability condition[10, 11]. Therefore, denoting

Φ(t)=ei(t),the right hand side of the equation can be simplified as:

Φ(t + ∆t) + Φ(t−∆t)
Φ(t)

=
ei(t+∆t) + ei(t−∆t)

ei(t)
= ei∆t + e−i∆t

Using Euler’s identity to expand the right hand side of the above equation gives

ei∆t = cos(∆t) + i sin(∆t)and

e−i∆t = cos(∆t)− i sin(∆t)
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which leads to

ei∆t + e−i∆t = 2 cos(∆t)

The minimum and maximum value of ei∆t +e−i∆t will be -2 and 2 and cos(∆t) will have

minimum and maximum values of -1 and +1, respectively. Since | 2 cos(∆t) | can only

take a maximum value of 2, the following holds:

Φ(t + ∆t) + Φ(t−∆t)
Φ(t)

≤ 2

Therefore:

| 2− c[(P˙− 2V ˙− 2W˙) + Q˙(cos(α∆R)) + R˙(cos(α∆R)) + S˙(2 cos(β∆θ)) + T˙(2 cos(α∆R)

cos(β∆θ)) + U˙(2 cos(α∆R) cos(β∆θ)) + V ˙(4 cos2(α∆R)) + W˙(4 cos2(β∆θ))] |≤ 2

(3.56)

The maximum value each cosine function (cos(α∆R))(cos(β∆θ)), cos2(α∆R), cos2(β∆θ)

can have is 1, when (cos(α∆R))=(cos(β∆θ))= -1. Therefore, the above equation can be

written as

| 2− c[(P˙− 2V ˙− 2W˙)−Q˙−R˙− 2S˙ + 2T˙ + 2U˙ + 4V ˙ + 4W˙] |≤ 2

(3.57)
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Figure 3.12: Forcing Function

Substituting for c, P ,̇Q,̇R,̇ S ,̇ T ,̇ U ,̇ V ˙andW˙ into the above equation yields:

| 2− c[16∆θ4 +
16

(r1/h + i)4
+ 32

∆θ2

(r1/h + i)2
− 16

∆θ2

(r1/h + i)4
+ 2

∆θ4

(r1/h + i)2
] |≤ 2

(3.58)

The sampling time ∆ t =0.04263 seconds, which satisfies the stability requirement

and is suffcient to cover a broad range of dynamics of the flexible annular plate. The

response of the annular plate is considered over 4.5 seconds.

3.7 Extraction of Eigenvalues and Eigenvectors: Finite Element Approach

Modal analysis can be used to determine the natural frequencies and mode shapes

of a structure. The natural frequencies and modeshapes are important parameters in

the design of a structure for dynamic loading conditions. The eigenvalue and eigenvector
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Figure 3.13: Dynamic response in transverse direction due to force applied at point 20
of 10X5 grid points

Figure 3.14: Dynamic response in transverse direction due to force applied at point 23
of 10X5 grid points
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Figure 3.15: Dynamic response in transverse direction due to force applied at point 28
of 10X5 grid points

must therefore be solved for mode-frequency analyses. It takes the following form

[K][φi] = λi[M ][φi] (3.59)

where:

[K]= structure stiffness matrix

[φi]=eigenvector

λi=eigenvalue

[M ]= structure mass matrix

ANSYS 8.0 offers several different algorithms to solve the eigenvalue problem like

reduced, block Lanczos, subspace, unsymmetric, damped and QR damped methods.
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3.7.1 Block Lanczos Method

This method is very commonly used to extract natural frequencies. It uses the

Lanczos algorithm, where the Lanczos recursion is performed for a block of vectors

using a sparse matrix solver. This method is especially powerful when searching for

eigenfrequencies in a defined part of the eigenvalue spectrum of a given system.

3.7.2 Contact Analysis

The contact problem in this study of brake rotor and pad is highly nonlinear. Con-

sequently, it is very important to understand the physics of the problem in order to

run the model more efficiently for accurate results. Two significant problem arose ini-

tially: the region of contact was unknown and the contact problem needed to account

for friction. Friction responses can be chaotic, making solution convergence difficult. In

addition the finite element models of the contacting bodies were generated in such a

way that node-to-node contact was neither achievable nor desirable when contact was

established. For solving this contact type problem, the finite element software ANSYS

makes use of a special type of element CONTAC49 to obtain accurate results. This

element also takes care of the friction between the disc and pad surfaces and can be used

to represent contact and sliding in three dimensions. This element has five nodes and

each node has three degrees of freedom: translations in the nodal x, y and z directions.

This type of element supports elastic coulomb friction and rigid coulomb friction. Both

type of analyses were performed for static as well as dynamic systems. The two po-

tential contact surfaces are referred to as the target surface or the contact surface. The

target surface was represented by target nodes I, J, K and L, and the contact surface

was represented by the contact node M.
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Table 3.5: Natural frequencies (Hz) of the disc using finite element analysis

Serial Number Natural Frequency,ωmn(Hz)
1 998
2 1161
3 1205
4 1840
5 2937
6 4380
7 6212
8 7026
9 7295

Figure 3.16: Another view of the meshed brake rotor model

Figure 3.17: Equivalent disc model
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Figure 3.18: Modeshape of a disc at natural frequency of 1205 Hz

Figure 3.19: Modeshape of a disc at natural frequency of 1840 Hz

Figure 3.20: Modeshape of a disc at natural frequency of 2937 Hz
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Figure 3.21: The generation of contact element Contac49 at the disc and pad interface
in ANSYS 8.0

Figure 3.22: Pressurized brake disc model in ANSYS 8.0
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Chapter 4

Theoretical Modeling of Disc-Brake System

4.1 Lagrange Formulation and Equation of Motion

Although a brake pad and rotor have many modes of vibration, only a single mode

of the complete system contributes to instability and hence noise. In this case only a few

modes of vibration are required to model the system. In this chapter, a simulation model

for the disc-brake system and frictional forces at the disc-pad interface is developed.

Stability analysis has been performed to determine under what parametric condition the

system becomes unstable, assuming that the existence of a limit cycle represents the

noisy state of disc brake system [24]. In order to study the nonlinear behavior of the

brake system and its stability, a mathematical model with the pad and disk modeled as

an idealized mass-spring-damper system was constructed. Considering the disc-rotor to

be an annular disc, it can be characterized by a dynamic system of differential equations

of order four. Therefore, a mathematical model with 4 degrees of freedom is presented.

The degrees of freedom x1, y1, x2, y2 are the inplane and transverse displacements of the

pad and disk, respectively, in the cartesian co-ordinate system as shown in figure 4.1.

This is a minimal DOF model that includes both in-plane and transverse vibrations of the

brake components in order to obtain phase portraits and time histories in a reasonable

amount of time. The resilience and the dissipation of the disk and the pad materials are

modeled by linear springs and dampers. The linear springs and dampers for the pad are

denoted by k1 and C1, respectively, and same for the disc by k2 and C2, respectively.
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The contact between the disc and pad is modeled by a transverse spring and damper

denoted by kT and CT as shown in figure 4.1.

In order to derive the equations of motion, the kinetic energy T, the potential energy

V and the dissipative energy D of the system, can be written as:

T =
1
2
m1x

2
1 +

1
2
m1y

2
1 +

1
2
m2x

2
2 +

1
2
m2y

2
2 (4.1)

V =
1
2
k1x

2
1 +

1
2
k1x

2
2 +

1
2
kT (y1 − y2)2 (4.2)

D =
1
2
C1ẋ

2
1 +

1
2
C2ẋ

2
2 +

1
2
CT (ẏ1 − ẏ2)2 (4.3)

where m1 and m2 are the masses of the pad and disc respectively.

The generalized co-ordinates are taken to be q1= x1, q2=y1 for the pad and q3=x2,

q4=y2 for the disc.

The general Lagrange formulation used to derive equations of motion with respect

to generalized co-ordinates is:

d

dt
(
∂T

∂q̇i
) +

∂D

∂q̇i
+

∂V

∂qi
= Qi, (4.4)

where Qi is the generalized force associated to the ith generalized coordinate. The

generalized forces can thus be expressed as : Q1 = Ff , Q2 = Nstatic, Q3 = -Ff , Q4 =0,

where Ff is the friction force and Nstatic is the initial force acting on the system.

Finally, the equations of motion can be written as:

m1ẍ1 + C1ẋ1 + k1x1 = Ff (4.5)
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Figure 4.1: Four degrees of freedom model

m1ÿ1 + CT (ẏ1 − ẏ2) + kT (y1 − y2) + kT (y1 − y2)3 = Nstatic (4.6)

m2ẍ2 + C2ẋ2 + k2x2 = −Ff (4.7)

m2ÿ2 − CT (ẏ1 − ẏ2)− kT (y1 − y2)− kT (y1 − y2)3 = 0 (4.8)

The cubic non-linearity is added in the above two equation with reference to Jear-

siripongkul and Hagedorn.[23].

During braking the system experiences both in-plane and out-of-plane vibrations. To

take into account the transverse vibration of the system, the normal force acting on the

system is considered to be [12] :

N = Nstatic + Ndynamic (4.9)
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where the static normal force depends on the pressure applied by the piston on the pad,

Nstatic = P ∗ S and the dynamic component is modeled as:

Ndynamic = kT (y1 − y2) + CT (ẏ1 − ẏ2) (4.10)

4.1.1 Friction Models

To analyze the behavior of the two systems two friction models were considered.

The first was a Coulomb type friction force independent of the magnitude of velocity

and always opposing the relative motion. Suppose the friction force comes from the

dynamic coefficient (the relative movement between pad and disc, expressed by the

relative velocity vr 6= 0), then one can write:

Ff = −µd(Nstatic + Ndynamic)sgn(vr) (4.11)

A more realistic model for the friction takes into consideration the variation of the

dynamic coefficient with the relative velocity using the formula µd=µs - βvr. In the

stick phase, as the relative velocity (vr=0) between the pad and disc approaches zero,

the friction force is modeled as the minimum value between the in-plane applied force FT

and the static friction force Fs=µs Nstatic. It cannot be bigger than the applied in-plane

force FT and must oppose it.

Considering the relative motion between pad and disc, the applied in-plane force is

evaluated as [24]
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FT = −k1x1 − c1x
˙
1 + k2x2 + c2x

˙
2 (4.12)

In the slip phase, where the relative movement is significant (vr 6= 0), the friction force

is µdN sgn(vr), a coulomb type friction force. Finally, the stick-slip friction model that

induces excitation in the system is

if vr=0, stick condition

Ff=-min(| FT ,Fs |)sgn(FT )

and if, vr 6= 0, slip condition

Ff=(µs - β vr)(Nstatic+Ndynamic)sgn(vr)

4.2 Numerical Simulation and Stability Analysis

The equations of motion are coupled differential equations of second order:

r̈ = F (t, r, s, ṙ, ṡ)

s̈ = G(t, r, s, ṙ, ṡ)

where ˙ denotes differentiation with respect to time.

Assuming

ṙ = u

ṡ = v
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Therefore

u̇ = F (t, r, s, u, v)

v̇ = G(t, r, s, u, v)

reducing the second order differential equations to a system of four simultaneous equa-

tions of first order. A single integration step, h of time t, is then given by,

rn+1 = rn + (1/6) ∗ k1 + (1/3) ∗ k2 + (1/3) ∗ k3 + (1/6) ∗ k4 + O(h5)

sn+1 = sn + (1/6) ∗ l1 + (1/3) ∗ l2 + (1/3) ∗ l3 + (1/6) ∗ l4 + O(h5)

un+1 = un + (1/6) ∗m1 + (1/3) ∗m2 + (1/3) ∗m3 + (1/6) ∗m4 + O(h5)

vn+1 = vn + (1/6) ∗ p1 + (1/3) ∗ p2 + (1/3) ∗ p3 + (1/6) ∗ p4 + O(h5)

where

k1 = h ∗ u (4.13)

k2 = h ∗ (u + m1/2)

k3 = h ∗ (u + m2/2)

k4 = h ∗ (u + m3)

l1 = h ∗ v

l2 = h ∗ (v + p1/2)

l3 = h ∗ (v + p2/2)

l4 = h ∗ (v + p3)
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Figure 4.2: (a)Motion & (b)Time history of the disc (Force N=1 and b=0.1)respectively

m1 = h ∗ F (t, r, s, u, v)

m2 = h ∗ F (t + h/2, r + k1/2, s + l1/2, u + m1/2, v + p1/2)

m3 = h ∗ F (t + h/2, r + k2/2, s + l2/2, u + m2/2, v + p2/2)

m4 = h ∗ F (t + h, r + k3, s + l3/2, u + m3, v + p3/2)

p1 = h ∗G(t, r, s, u, v)

p2 = h ∗G(t + h/2, r + k1/2, s + l1/2, u + m1/2, v + p1/2)

p3 = h ∗G(t + h/2, r + k2/2, s + l2/2, u + m2/2, v + p2/2)

p4 = h ∗G(t + h, r + k3, s + l3, u + m3, v + p3)

The above method to solve the coupled differential equation is known as Runge-Kutta’s

JBM method. A C-program can be written to run the simulation and various parameters

are used to predict the behavior. For this study, various simulations were run to obtain

the stability and instability conditions as shown in figures 4.2 to 4.12. A parametric

study was done using different values of static coefficient of friction, damping , initial

velocity, dynamic coefficient of friction, force magnitudes and damping of disc & pad. In

figures 4.2-4.3 the various parameters used are mass m1=m2=1, damping c1=c2=0.1 &

cT =0.5, stiffness k1=k2=kT =1, initial velocity u=1, force magnitude N=1 and µs=0.01

and for various values of β. In figures 4.4-4.5 the various parameters used are mass
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Figure 4.3: (a)Motion & (b)Time history of the disc (Force N=1 and b=1)respectively

Figure 4.4: (a)Motion & (b)Time history of the disc (Force N=1 and
us=0.01)respectively

m1=m2=1 damping c1=c2=0.1 & cT =0.5, stiffness k1=k2=kT =1, initial velocity u=1,

force magnitude N=1, β=0.01 and various values of µs.

Figure 4.5: (a)Motion & (b)Time history of the disc respectively (Force N=1 and us=0.1)
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Chapter 5

Results and Conclusions

5.1 Summary of Results

5.1.1 Analytical Method

The natural frequencies obtained through the analytical method were in generally

good with the natural frequencies obtained through other methods given in table 5.1.

Table 5.2 shows the percentage differences of the natural frequencies of the various

Table 5.1: Natural frequencies of the disc obtained through all methods
Serial Number Analytical Finite Difference Finite Element Experimental

1 979 952 998 963
2 1135 1152 1161 1184
3 1212 1198 1205 1235
4 1827 1879 1840 1901
5 2902 3012 2937 2933
6 4316 4287 4380 4358
7 6282 6159 6212 6104
8 7075 6995 7026 7098
9 7201 7197 7295 7310

methods with respect to the analytical method.

5.2 Finite Difference Method

A numerical method of solution of the governing partial differential equation de-

scribing the characteristic behavior of a flexible annular plate has been presented and

discussed. A simulation algorithm characterizing the behavior of a flexible annular plate
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Table 5.2: Percentage deviation of natural frequencies of the disc with respect to the
experimental method
Serial Number Analytical Finite Difference Finite Element

1 -1.661 1.142 -3.634
2 4.138 2.702 1.942
3 1.862 2.995 2.429
4 3.892 1.157 3.208
5 1.056 -2.693 -0.136
6 0.963 1.629 -0.504
7 -2.916 -0.901 -1.769
8 0.324 1.451 1.014
9 1.491 1.545 0.205

with inner edge clamped or fixed and outer edges free has been developed in C pro-

gramming and Matlab environment. The simulation results has been presented in time

domain. The deflection of annular disc has been studied by varying the number of sec-

tions, n in the radial direction and m in the circumferential direction and the results

have been validated by comparing these with previously reported results using other

techniques. The stability of the algorithm has been analyzed and sufficient condition for

stability of the algorithm has been obtained.

5.2.1 Case I

Figure 5.1 indicates the response in the form of displacement. Various mesh grids

generated using the finite difference method and the disc model were simulated for dif-

ferent constant forcing functions. An example of 5X5 grid points and a constant force of

magnitude 5*10(−4)Newton applied at node 17 of the disc is shown here. It was found

that the maximum reponse occurs at this point on the disc. The main advantage of this

method is that the response can be found at any point of the disc.
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Figure 5.1: Response due to a force applied at node 17 of 5X5 grid points

5.2.2 Case II

The plot shown in figure 5.3 indicates the response in the form of displacement.

Various mesh grids were generated using the central difference method and the disc

model was simulated for different time varying forces. The example of 10X5 grid points

and a time varying forces of magnitude 5*10(−4) newton applied at node 17 of the disc

is shown here. The plot of the forcing function is shown in figure 5.2 and the response is

shown below in figure 5.3. The advantage of this method is that any practically possible

time varying forcing function can be applied to the disc and the response determined.

In the above two cases using the finite difference method, friction was not taken into

account.

5.3 Finite Element Method

Friction was, however, taken into account for the contact analysis. A specific type of

element CONTAC49, was used to conduct this analysis. This element supports friction

52



Figure 5.2: Forcing Function

Figure 5.3: Dynamic response in transverse direction due to a force applied at point 17
of 10X5 grid points
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Figure 5.4: Nodal displacement of the disc in the z direction

and the results obtained are shown in the figure 5.4 below. The light blue color in the

figure 5.4 shows the maximum displacement of disc in z direction and figure 5.5 shows

the reponse of disc in the z direction with respect to time. It was found that all of the

disc nodes which were in contact with the pad had almost the same displacement in the

z direction.

5.4 Four Degrees of Freedom Model

A four degree-of-freedom model was used to investigate the basic mechanisms of an

instability that is one of the causes of disc brake noise. The damping of disc and pad

are of equally importance as it reduces the chances of instability. The model was also

used to determine the conditions necessary to prevent this instability. The numerical

analysis suggests that when the natural frequency of disc and pad are close then a brake

is more likely to be noisy. A non-linear analysis of the coupled equation was conducted to

investigate the dynamical behavior of model for various system and friction parameters.
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Figure 5.5: Reponse in the z direction with repect to time

The numerical analysis suggested that the initial velocity of the disc also plays a major

role in the instability of the disc brake system.

5.5 Conclusions

An analytical method was developed and is reported here that can be used to predict

the natural frequencies of an annular disc with boundary conditions. A new methodol-

ogy has been presented for studying the non-linear dynamics of the annular disc. An

important advantage of the new methodology is that it does not require the often dif-

ficult task of inducing squeal in the laboratory. The analysis presented using the finite

difference method is independent of the laws of friction.

Finite element analysis was used to incorporate the sliding friction between the rotor

and pad surfaces and the dynamic response obtained through this analysis has impor-

tant implications. The results obtained through this analysis identify the locations of

maximum deflection in a pressurized brake system. The reduction of these deflections
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either partially or completely can thus eliminate the instability in a disc brake system.

An analytical four degrees of freedom model has been used to identify the necessary

conditions for stability. The initial velocity, the dynamic coefficient of friction, damping

of the disc and pad and the magnitude of the force all play major roles in the stability

of the disc brake system.
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Appendix A

C-program to solve nonlinear differential equation using finite

difference method

Program to solve the differential equation
include< stdio.h >
include< math.h >
include< stdlib.h >
define pi 3.147
define v 10
define w 5

int jadeja(int M, int N, int p, int q,double x,double r1,double r2,int **stcl,
double **val);
int main()
( FILE ∗vijay1, ∗vijaya;
int inx,p=0,q=0,z=0,r=0,b=0;
int ix, jx, ix, jx, i, j, xp, y, yp;
int k=0;
int l=0;
int M=0; //Number of divisions//
int N=0; //Number of circles//
double r1,r2,x;
int mnx=0,nnx=0,jy = 0;
int inx = 0, jnx = 0;
int px=0,qx=0, row = 0, col = 0;
vijay1=fopen(“h://maharaja//raheja.txt”,“r”);
vijaya=fopen(“h://maharaja//vishu.txt”,“w”);
fscanf(vijay1,“d/n/d/n/lf/nlf/n”,&M,&N,&r1,&r2);
printf(“M=d/tN=d/tr1=lf/tr2=lf/n”,M,N,r1,r2);
int *stcl=NULL;
double *val=NULL; double **anx=NULL;
x=(r2-r1)/M;
anx=(double**)malloc((129)*sizeof(double*));
for(inx = 1;inx <= 129;inx + +)
(
anx[inx]=(double*)malloc((129)*sizeof(double));
)
for(r=1;r<=50;r++)
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(
for(y=1;y<=50;y++)
(
anx[r][y]=0.0;
)
)
for(p=1;p<=N;p++)
(
for(q=1;q<=M;q++)
(
free (stcl);
free (val);
val = NULL;
stcl = NULL;
jadeja(M,N,p,q,x,r1,r2,&stcl,&val);
row=(p-1)*M+q;
for ( i=1;i<27;i=i+2 )
(
col=(stcl[i]-1)*M+stcl[i+1];
anx[row][col] =+ val[(i/2)+1];
if(q==1)
(
printf(“lf/tnode[d][d]/t”,val[(i/2)+1],stcl[i],stcl[i+1]);
anx[row][col]=0;
)
else if(q==2 && anx[row][col]==val[1])
(
anx[row][col]=val[1]+val[7];
)
else if(q==M-1 && anx[row][col]==val[1])
(
anx[row][col]=val[1]+val[18];
)
else if(q==M-1 && anx[row][col]==val[8])
(
anx[row][col]=val[8]+val[15];
)
else if(q==M-1 && anx[row][col]==val[10])
(
anx[row][col]=val[10]+val[16];
)
else if(q==M-1 && anx[row][col]==val[13])
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(
anx[row][col]=val[13]+val[17];
)
else if(q==M && anx[row][col]==val[1])
(
anx[row][col]=+val[15];
)
else if(q==M && anx[row][col]==val[2])
(
anx[row][col]=+val[16];
)
else if(q==M && anx[row][col]==val[4])
(
anx[row][col]=+val[17];
)
else if(q==M && anx[row][col]==val[6])
(
anx[row][col]=+val[18];
)
)
for(r=1;r<=M*N;r++)
(
for(y=1;y<=M*N;y++)
(
printf(“lf/t”,anx[r][y]);
)
printf(“/n”);
)
)
)
fclose(vijay1);
fclose(vijaya);
)
int jadeja(int M, int N, int p,int q,double x,double r1,double r2,
int **stcl,double **val)
(
int i,j,k,z;
int ip;
val=(double*)malloc((29)*sizeof(double));
int I=0;
double dta=(2*pi/N);
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double rho=7800,deltaT=0.1,c=0,omega=1,mu=0.3;
stcl=(int*)malloc((26)*sizeof(int));
if(p==1 && q==1)
(
(*stcl)[1]=p;(*stcl)[2]=q;(*stcl)[3]=p+1;(*stcl)[4]=q;(*stcl)[5]=p+2;
(*stcl)[6]=q;(*stcl)[7]=N;(*stcl)[8]=q;(*stcl)[9]=N-1;(*stcl)[10]=q;
(*stcl)[11]=-10;(*stcl)[12]=-10;(*stcl)[13]=-10;(*stcl)[14]=-10;
(*stcl)[15]=p;(*stcl)[16]=q+1;(*stcl)[17]=p;(*stcl)[18]=q+2;
(*stcl)[19]=p+1;(*stcl)[20]=q+1;(*stcl)[21]=-10;(*stcl)[22]=-10;
(*stcl)[23]=-10; (*stcl)[24]=-10; (*stcl)[25]=N; (*stcl)[26]=q+1;
)
else if(p==1 && q==2)
(
(*stcl)[1]=p;(*stcl)[2]=q;(*stcl)[3]=p+1;(*stcl)[4]=q;(*stcl)[5]=p+2;
(*stcl)[6]=q;(*stcl)[7]=N;(*stcl)[8]=q;(*stcl)[9]=N-1;(*stcl)[10]=q;
(*stcl)[11]=p;(*stcl)[12]=q-1;(*stcl)[13]=-1;(*stcl)[14]=-1;
(*stcl)[15]=p;(*stcl)[16]=q+1;(*stcl)[17]=p;(*stcl)[18]=q+2;
(*stcl)[19]=p+1;(*stcl)[20]=q+1;(*stcl)[21]=p+1;(*stcl)[22]=q-1;
(*stcl)[23]=N; (*stcl)[24]=q-1; (*stcl)[25]=N; (*stcl)[26]=q+1;
)
else if( p==N && q==1)
(
(*stcl)[1]=p;(*stcl)[2]=q;(*stcl)[3]=1;(*stcl)[4]=q;(*stcl)[5]=2;
(*stcl)[6]=q;(*stcl)[7]=p-1;(*stcl)[8]=q;(*stcl)[9]=p-2;(*stcl)[10]=q;
(*stcl)[11]=-1;(*stcl)[12]=-1;(*stcl)[13]=-1;(*stcl)[14]=-1;(*stcl)[15]=p;
(*stcl)[16]=q+1;(*stcl)[17]=p;(*stcl)[18]=q+2;(*stcl)[19]=1;(*stcl)[20]=q+1;
(*stcl)[21]=-1;(*stcl)[22]=-1;(*stcl)[23]=-1;(*stcl)[24]=-1;(*stcl)[25]=p-1;
(*stcl)[26]=q+1;
)
else if( p==N-1 && q==1)
(
(*stcl)[1]=p;(*stcl)[2]=q;(*stcl)[3]=p+1;(*stcl)[4]=q;(*stcl)[5]=1;
(*stcl)[6]=q;(*stcl)[7]=p-1;(*stcl)[8]=q;(*stcl)[9]=p-2;(*stcl)[10]=q;
(*stcl)[11]=-1;(*stcl)[12]=-1;(*stcl)[13]=-1;(*stcl)[14]=-1;(*stcl)[15]=p;
(*stcl)[16]=q+1;(*stcl)[17]=p;(*stcl)[18]=q+2;(*stcl)[19]=N;(*stcl)[20]=q+1;
(*stcl)[21]=-1;(*stcl)[22]=-1;(*stcl)[23]=-1;(*stcl)[24]=-1;(*stcl)[25]=p-1;
(*stcl)[26]=q+1;
)
else if(p==1 && q>2)
(
if(q>2 && q ¡=(M-2))
(
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(*stcl)[1]=p;(*stcl)[2]=q;(*stcl)[3]=p+1;(*stcl)[4]=q;(*stcl)[5]=p+2;
(*stcl)[6]=q;(*stcl)[7]=N;(*stcl)[8]=q; (*stcl)[9]=N-1;(*stcl)[10]=q;
(*stcl)[11]=p;(*stcl)[12]=q-1;(*stcl)[13]=p;(*stcl)[14]=q-2;(*stcl)[15]=p;
(*stcl)[16]=q+1;(*stcl)[17]=p; (*stcl)[18]=q+2;(*stcl)[19]=p+1;
(*stcl)[20]=q+1;(*stcl)[21]=p+1;(*stcl)[22]=q-1;(*stcl)[23]=N;
(*stcl)[24]=q-1;(*stcl)[25]=N; (*stcl)[26]=q+1;
)
else if(p==1 && q==M)
(
(*stcl)[1]=p;(*stcl)[2]=q;(*stcl)[3]=p+1;(*stcl)[4]=q;(*stcl)[5]=p+2;
(*stcl)[6]=q;(*stcl)[7]=N;(*stcl)[8]=q; (*stcl)[9]=N-1;(*stcl)[10]=q;
(*stcl)[11]=p;(*stcl)[12]=q-1;(*stcl)[13]=p;(*stcl)[14]=q-2;(*stcl)[15]=-1;
(*stcl)[16]=-1;(*stcl)[17]=-2;(*stcl)[18]=-2;(*stcl)[19]=-1;(*stcl)[20]=-1;
(*stcl)[21]=p+1;(*stcl)[22]=q-1;(*stcl)[23]=N;(*stcl)[24]=q-1;(*stcl)[25]=-1;
(*stcl)[26]=-1;
)
else if (p==1 && q==(M-1))
(
(*stcl)[1]=p;(*stcl)[2]=q;(*stcl)[3]=p+1;(*stcl)[4]=q;(*stcl)[5]=p+2;
(*stcl)[6]=q;(*stcl)[7]=N;(*stcl)[8]=q; (*stcl)[9]=N-1;(*stcl)[10]=q;
(*stcl)[11]=p;(*stcl)[12]=q-1;(*stcl)[13]=p;(*stcl)[14]=q-2;(*stcl)[15]=p;
(*stcl)[16]=q+1;(*stcl)[17]=-1;(*stcl)[18]=-1;(*stcl)[19]=p+1;(*stcl)[20]=q+1;
(*stcl)[21]=p+1;(*stcl)[22]=q-1;(*stcl)[23]=N;(*stcl)[24]=q-1;(*stcl)[25]=N;
(*stcl)[26]=q+1;
)
)
else if(p>=1 && q==M)
(
if(p==2 && q==M)
(
(*stcl)[1]=p;(*stcl)[2]=q;(*stcl)[3]=p+1;(*stcl)[4]=q;(*stcl)[5]=p+2;(*stcl)[6]=q;
(*stcl)[7]=p-1;(*stcl)[8]=q; (*stcl)[9]=N;(*stcl)[10]=q;(*stcl)[11]=p;(*stcl)[12]=q-1;
(*stcl)[13]=p;(*stcl)[14]=q-2;(*stcl)[15]=-1;(*stcl)[16]=-1; (*stcl)[17]=-1; (*stcl)[18]=-1;
(*stcl)[19]=-2;(*stcl)[20]=-2;(*stcl)[21]=p+1;(*stcl)[22]=q-1;(*stcl)[23]=p-1;
(*stcl)[24]=q-1;(*stcl)[25]=-1; (*stcl)[26]=-1;
)
else if(p>2 && p<=(N-2))
(
(*stcl)[1]=p;(*stcl)[2]=q;(*stcl)[3]=p+1;(*stcl)[4]=q;(*stcl)[5]=p+2;(*stcl)[6]=q;
(*stcl)[7]=p-1;(*stcl)[8]=q; (*stcl)[9]=p-2;(*stcl)[10]=q;(*stcl)[11]=p;(*stcl)[12]=q-1;
(*stcl)[13]=p;(*stcl)[14]=q-2;(*stcl)[15]=-1;(*stcl)[16]=-1;(*stcl)[17]=-1;(*stcl)[18]=-1;
(*stcl)[19]=-2;(*stcl)[20]=-2; (*stcl)[21]=p+1;(*stcl)[22]=q-1;(*stcl)[23]=p-1;
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(*stcl)[24]=q-1;(*stcl)[25]=-1;(*stcl)[26]=-1;
)
else if(p==(N-1) && q==M)
(
(*stcl)[1]=p;(*stcl)[2]=q;(*stcl)[3]=p+1;(*stcl)[4]=q;(*stcl)[5]=1;(*stcl)[6]=q;
(*stcl)[7]=p-1;(*stcl)[8]=q; (*stcl)[9]=p-2;(*stcl)[10]=q;(*stcl)[11]=p;(*stcl)[12]=q-1;
(*stcl)[13]=p;(*stcl)[14]=q-2;(*stcl)[15]=-1;(*stcl)[16]=-1;(*stcl)[17]=-1;(*stcl)[18]=-1;
(*stcl)[19]=-1;(*stcl)[20]=-1;(*stcl)[21]=p+1;(*stcl)[22]=q-1;(*stcl)[23]=p-1;
(*stcl)[24]=q-1;(*stcl)[25]=-1; (*stcl)[26]=-1;
)
else if(p==N && q==M)
(
(*stcl)[1]=p;(*stcl)[2]=q;(*stcl)[3]=1;(*stcl)[4]=q;(*stcl)[5]=2;(*stcl)[6]=q;
(*stcl)[7]=p-1;(*stcl)[8]=q; (*stcl)[9]=p-2;(*stcl)[10]=q;(*stcl)[11]=p;(*stcl)[12]=q-1;
(*stcl)[13]=p;(*stcl)[14]=q-2;(*stcl)[15]=-1;(*stcl)[16]=-1;(*stcl)[17]=-1;
(*stcl)[18]=-1;(*stcl)[19]=-1;(*stcl)[20]=-1;(*stcl)[21]=1;(*stcl)[22]=q-1;
(*stcl)[23]=p-1;(*stcl)[24]=q-1;(*stcl)[25]=-1; (*stcl)[26]=-1;
)
)
else if(p>=2 && q>=1 && q<(M-2))
(
if(p¿2 && p¡(N-2) && q¿2)
(
(*stcl)[1]=p;(*stcl)[2]=q;(*stcl)[3]=p+1;(*stcl)[4]=q;(*stcl)[5]=p+2;(*stcl)[6]=q;
(*stcl)[7]=p-1;(*stcl)[8]=q; (*stcl)[9]=p-2;(*stcl)[10]=q;(*stcl)[11]=p;(*stcl)[12]=q-1;
(*stcl)[13]=p;(*stcl)[14]=q-2;(*stcl)[15]=p;(*stcl)[16]=q+1;(*stcl)[17]=p;(*stcl)[18]=q+2;
(*stcl)[19]=p+1;(*stcl)[20]=q+1;(*stcl)[21]=p+1;(*stcl)[22]=q-1;(*stcl)[23]=p-1;
(*stcl)[24]=q-1; (*stcl)[25]=p-1; (*stcl)[26]=q+1;
)
else if(p==2 && q==2)
(
(*stcl)[1]=p;(*stcl)[2]=q;(*stcl)[3]=p+1;(*stcl)[4]=q;(*stcl)[5]=p+2;(*stcl)[6]=q;
(*stcl)[7]=p-1;(*stcl)[8]=q; (*stcl)[9]=N;(*stcl)[10]=q;(*stcl)[11]=p;(*stcl)[12]=q-1;
(*stcl)[13]=-1;(*stcl)[14]=-1;(*stcl)[15]=p;(*stcl)[16]=q+1;(*stcl)[17]=p;(*stcl)[18]=q+2;
(*stcl)[19]=p+1;(*stcl)[20]=q+1;(*stcl)[21]=p+1;(*stcl)[22]=q-1;(*stcl)[23]=p-1;
(*stcl)[24]=q-1; (*stcl)[25]=p-1; (*stcl)[26]=q+1;
)
else if(p>2 && p<=(N-2) && q==2)
(
(*stcl)[1]=p;(*stcl)[2]=q;(*stcl)[3]=p+1;(*stcl)[4]=q;(*stcl)[5]=p+2;(*stcl)[6]=q;
(*stcl)[7]=p-1;(*stcl)[8]=q; (*stcl)[9]=p-2;(*stcl)[10]=q;(*stcl)[11]=p;(*stcl)[12]=q-1;
(*stcl)[13]=-1;(*stcl)[14]=-1;(*stcl)[15]=p;(*stcl)[16]=q+1;(*stcl)[17]=p;(*stcl)[18]=q+2;
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(*stcl)[19]=p+1;(*stcl)[20]=q+1;(*stcl)[21]=p+1;(*stcl)[22]=q-1;(*stcl)[23]=p-1;
(*stcl)[24]=q-1;(*stcl)[25]=p-1; (*stcl)[26]=q+1;
)
else if(p==N && q==2)
(
(*stcl)[1]=p;(*stcl)[2]=q;(*stcl)[3]=1;(*stcl)[4]=q;(*stcl)[5]=2;(*stcl)[6]=q;
(*stcl)[7]=p-1;(*stcl)[8]=q; (*stcl)[9]=p-2;(*stcl)[10]=q;(*stcl)[11]=p;(*stcl)[12]=q-1;
(*stcl)[13]=-1;(*stcl)[14]=-1;(*stcl)[15]=p;(*stcl)[16]=q+1;(*stcl)[17]=p;(*stcl)[18]=q+2;
(*stcl)[19]=1;(*stcl)[20]=q+1;(*stcl)[21]=1;(*stcl)[22]=q-1;(*stcl)[23]=p-1;
(*stcl)[24]=q-1;(*stcl)[25]=p-1; (*stcl)[26]=q+1;
)
else if(p==2 && q==1)
(
(*stcl)[1]=p;(*stcl)[2]=q;(*stcl)[3]=p+1;(*stcl)[4]=q;(*stcl)[5]=p+2;(*stcl)[6]=q;
(*stcl)[7]=p-1;(*stcl)[8]=q; (*stcl)[9]=N;(*stcl)[10]=q;(*stcl)[11]=-1;(*stcl)[12]=-1;
(*stcl)[13]=-1;(*stcl)[14]=-1;(*stcl)[15]=p;(*stcl)[16]=q+1;(*stcl)[17]=p;(*stcl)[18]=q+2;
(*stcl)[19]=p+1;(*stcl)[20]=q+1;(*stcl)[21]=-1;(*stcl)[22]=-1;(*stcl)[23]=-1;
(*stcl)[24]=-1;(*stcl)[25]=p-1; (*stcl)[26]=q+1;
)
else if(p>2 && p<=(N-2) && q==1)
(
(*stcl)[1]=p;(*stcl)[2]=q;(*stcl)[3]=p+1;(*stcl)[4]=q;(*stcl)[5]=p+2;(*stcl)[6]=q;
(*stcl)[7]=p-1;(*stcl)[8]=q; (*stcl)[9]=p-2;(*stcl)[10]=q;(*stcl)[11]=-1;(*stcl)[12]=-1;
(*stcl)[13]=-1;(*stcl)[14]=-1;(*stcl)[15]=p;(*stcl)[16]=q+1;(*stcl)[17]=p;
(*stcl)[18]=q+2;(*stcl)[19]=p+1;(*stcl)[20]=q+1;(*stcl)[21]=-1;(*stcl)[22]=-1;
(*stcl)[23]=-1;(*stcl)[24]=-1;(*stcl)[25]=p-1;(*stcl)[26]=q+1;
)
else if (p<=(N-2) && q>2 && q<M-2)
(
(*stcl)[1]=p;(*stcl)[2]=q;(*stcl)[3]=p+1;(*stcl)[4]=q;(*stcl)[5]=p+2;(*stcl)[6]=q;
(*stcl)[7]=p-1;(*stcl)[8]=q; (*stcl)[9]=p-2;(*stcl)[10]=q;(*stcl)[11]=p;(*stcl)[12]=q-1;
(*stcl)[13]=p;(*stcl)[14]=q-2;(*stcl)[15]=p;(*stcl)[16]=q+1;(*stcl)[17]=p;(*stcl)[18]=q+2;
(*stcl)[19]=p+1;(*stcl)[20]=q+1;(*stcl)[21]=p+1;(*stcl)[22]=q-1;(*stcl)[23]=p-1;
(*stcl)[24]=q-1;(*stcl)[25]=p-1; (*stcl)[26]=q+1;
)
)
else if(p>=2 && p<=(N-2) && q>2 && q<=(M-2))
(
if(p==2)
(
(*stcl)[1]=p;(*stcl)[2]=q;(*stcl)[3]=p+1;(*stcl)[4]=q;(*stcl)[5]=p+2;(*stcl)[6]=q;
(*stcl)[7]=p-1;(*stcl)[8]=q; (*stcl)[9]=N;(*stcl)[10]=q;(*stcl)[11]=p;(*stcl)[12]=q-1;
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(*stcl)[13]=p;(*stcl)[14]=q-2;(*stcl)[15]=p;(*stcl)[16]=q+1;(*stcl)[17]=p;(*stcl)[18]=q+2;
(*stcl)[19]=p+1;(*stcl)[20]=q+1;(*stcl)[21]=p+1;(*stcl)[22]=q-1;(*stcl)[23]=p-1;
(*stcl)[24]=q-1;(*stcl)[25]=p-1;(*stcl)[26]=q+1;
)
else if(p>2)
(
(*stcl)[1]=p;(*stcl)[2]=q;(*stcl)[3]=p+1;(*stcl)[4]=q;(*stcl)[5]=p+2;(*stcl)[6]=q;
(*stcl)[7]=p-1;(*stcl)[8]=q; (*stcl)[9]=p-2;(*stcl)[10]=q;(*stcl)[11]=p;(*stcl)[12]=q-1;
(*stcl)[13]=p;(*stcl)[14]=q-2;(*stcl)[15]=p;(*stcl)[16]=q+1;(*stcl)[17]=p;(*stcl)[18]=q+2;
(*stcl)[19]=p+1;(*stcl)[20]=q+1;(*stcl)[21]=p+1;(*stcl)[22]=q-1;(*stcl)[23]=p-1;
(*stcl)[24]=q-1;(*stcl)[25]=p-1; (*stcl)[26]=q+1;
)
)
else if (p>(N-2) && q>2 && q<=M)
(
if(p==N-1 && q>2 && q<=(M-2))
(
(*stcl)[1]=p;(*stcl)[2]=q;(*stcl)[3]=p+1;(*stcl)[4]=q;(*stcl)[5]=1;(*stcl)[6]=q;
(*stcl)[7]=p-1;(*stcl)[8]=q; (*stcl)[9]=p-2;(*stcl)[10]=q;(*stcl)[11]=p;(*stcl)[12]=q-1;
(*stcl)[13]=p;(*stcl)[14]=q-2;(*stcl)[15]=p;(*stcl)[16]=q+1;(*stcl)[17]=p;(*stcl)[18]=q+2;
(*stcl)[19]=p+1;(*stcl)[20]=q+1;(*stcl)[21]=p+1;(*stcl)[22]=q-1;(*stcl)[23]=p-1;
(*stcl)[24]=q-1; (*stcl)[25]=p-1; (*stcl)[26]=q+1;
)
else if(p==N && q>2 && q<=(M-2))
(
(*stcl)[1]=p;(*stcl)[2]=q;(*stcl)[3]=1;(*stcl)[4]=q;(*stcl)[5]=2;(*stcl)[6]=q;
(*stcl)[7]=p-1;(*stcl)[8]=q; (*stcl)[9]=p-2;(*stcl)[10]=q;(*stcl)[11]=p;(*stcl)[12]=q-1;
(*stcl)[13]=p;(*stcl)[14]=q-2;(*stcl)[15]=p;(*stcl)[16]=q+1;(*stcl)[17]=p;
(*stcl)[18]=q+2;(*stcl)[19]=1;(*stcl)[20]=q+1;(*stcl)[21]=1;(*stcl)[22]=q-1;
(*stcl)[23]=p-1; (*stcl)[24]=q-1; (*stcl)[25]=p-1; (*stcl)[26]=q+1;
)
else if(p==(N-1) && q==(M-1))
(
(*stcl)[1]=p;(*stcl)[2]=q;(*stcl)[3]=p+1;(*stcl)[4]=q;(*stcl)[5]=1;(*stcl)[6]=q;
(*stcl)[7]=p-1;(*stcl)[8]=q; (*stcl)[9]=p-2;(*stcl)[10]=q;(*stcl)[11]=p;(*stcl)[12]=q-1;
(*stcl)[13]=p;(*stcl)[14]=q-2;(*stcl)[15]=p;(*stcl)[16]=q+1;(*stcl)[17]=-1;(*stcl)[18]=-1;
(*stcl)[19]=p+1;(*stcl)[20]=q+1;(*stcl)[21]=p+1;(*stcl)[22]=q-1;(*stcl)[23]=p-1;
(*stcl)[24]=q-1; (*stcl)[25]=p-1; (*stcl)[26]=q+1;
(
else if(p==N && q==(M-1))
(
(*stcl)[1]=p;(*stcl)[2]=q;(*stcl)[3]=1;(*stcl)[4]=q;(*stcl)[5]=2;(*stcl)[6]=q;
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(*stcl)[7]=p-1;(*stcl)[8]=q; (*stcl)[9]=p-2;(*stcl)[10]=q;(*stcl)[11]=p;(*stcl)[12]=q-1;
(*stcl)[13]=p;(*stcl)[14]=q-2;(*stcl)[15]=p;(*stcl)[16]=q+1;(*stcl)[17]=-1;(*stcl)[18]=-1;
(*stcl)[19]=1;(*stcl)[20]=q+1;(*stcl)[21]=1;(*stcl)[22]=q-1;(*stcl)[23]=p-1;
(*stcl)[24]=q-1;(*stcl)[25]=p-1; (*stcl)[26]=q+1;
)
)
for(I=0;I<= M ;I++)
(
if(I==(q-1))
(
printf(“r1=lf/t dta=lf/n”,r1,dta);
(*val)[1]=(6)/(pow(x,4))-(2)/((r1+I*x)*(r1+I*x)*pow(x,2))
+(6)/((r1+I*x)*(r1+I*x)*(r1+I*x)*(r1+I*x)*pow(dta,4))
+(8)/((r1+I*x)*(r1+I*x)*pow(x ,2)*pow(dta,2))
-(8)/((r1+I*x)*(r1+I*x)*(r1+I*x)*(r1+I*x)*pow(dta,2));
printf(“val[1]=lf/n”,(*val)[1]);
(*val)[2]=-(4)/(pow(x,4))-(4)/((r1+I*x)*pow(x,3))
+(1)/(x*(r1+I*x)*(r1+I*x)*(r1+I*x))-(4)/(x*(r1+I*x)
(r1+I*x)*(r1+I*x)*pow(dta,2))-(4)/((r1+I*x)*(r1+I*x)*pow(x,2)*pow(dta,2))
+(1)/((r1+I*x)*(r1+I*x)*pow(x,2));
printf(“val[2]=lf/n”,(*val)[2]);
(*val)[3]=(1)/(pow(x,4))+(2)/((r1+I*x)*pow(x,3));
printf(“val[3]=lf/n”,(*val)[3]);
(*val)[4]=-(4)/(pow(x,4))+(4)/((r1+I*x)*pow(x,3))
-1/(x*(r1+I*x)*(r1+I*x)*(r1+I*x))+(4)/(x*(r1+I*x)*
(r1+I*x)*(r1+I*x)*pow(dta,2))-(4)/((r1+I*x)*(r1+I*x)*pow(x,2)*pow(dta,2))
+1/((r1+I*x)*(r1+I*x)*pow(x,2));
printf(“val[4]=lf/n”,(*val)[4]);
(*val)[5]=1/(pow(x,4))+(2)/((r1+I*x)*pow(x,3));
printf(“val[5]=lf/n”,(*val)[5]);
(*val)[6]=-(4)/((r1+I*x)*(r1+I*x)*(r1+I*x)*(r1+I*x)*pow(dta,4))
-(4)/((r1+I*x)*(r1+I*x)*pow(x,2)*pow(dta,2))
+(4)/((r1+I*x)*(r1+I*x)*(r1+I*x)*(r1+I*x)*pow(dta,2))-(c*omega)/(2*dta);
printf(“val[6]=lf/n”,(*val)[6]);
(*val)[7]= 1/((r1+I*x)*(r1+I*x)*(r1+I*x)*(r1+I*x)*pow(dta,4));
printf(“val[7]=lf/n”,(*val)[7]);
(*val)[8]=-(4)/((r1+I*x)*(r1+I*x)*(r1+I*x)*(r1+I*x)*pow(dta,4))
-(4)/((r1+I*x)*(r1+I*x/2)*pow(x,2)*pow(dta,2))+(c*omega)/(2*dta);
printf(“val[8]= lf/n”,(*val)[8]);
(*val)[9]=(1)/((r1+I*x)*(r1+I*x)*(r1+I*x)*(r1+I*x)*pow(dta,4));
printf(“val[9]=lf/n”,(*val)[9]); (*val)[10]=(2)/(x*(r1+I*x)*(r1+I*x)*(r1+I*x)*pow(dta,2))
+(2)/((r1+I*x)*(r1+I*x)*pow(x,2)*pow(dta,2));
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printf(“val[10]= lf/n”,(*val)[10]);
(*val)[11]=(2)/(x*(r1+I*x)*(r1+I*x)*(r1+I*x)*pow(dta,2))
+(2)/((r1+I*x)*(r1+I*x)*pow(x,2)*pow(dta,2));
printf(“val[11]= lf/n”,(*val)[11]); (*val)[12]=-(2)/(x*(r1+I*x)*(r1+I*x)*(r1+I*x)*pow(dta,2.0))
+(2)/((r1+I*x)*(r1+I*x)*pow(x,2.0)*pow(dta,2.0));
printf(“val[12]= lf/n”,(*val)[12]);
(*val)[13]=-(2)/(x*(r1+I*x)*(r1+I*x)*(r1+I*x)*pow(dta,2))
+(2)/((r1+I*x)*(r1+I*x)*pow(x,2)*pow(dta,2));
printf(“val[13]= lf/n”,(*val)[13]);
(*val)[14]=(rho*x)/(pow(deltaT,2));
printf(“val[14]= lf/n”,(*val)[14]);
)
)
(*val)[15]=(2*pow(dta,2)*pow(r2,2)+2*mu*pow(x,2))/(pow(x,2));
printf(“val[15]=lf/n”,(*val)[15]);
(*val)[16]=-(r2*pow(dta,2)*(r2+mu*x))/(pow(x,2));
printf(“val[16]=lf/n”,(*val)[16]);
(*val)[17]=-(r2*pow(dta,2)*(r2-mu*x))/(pow(x,2));
printf(“val[17]=lf/n”,(*val)[17]);
(*val)[18]=-1.00;
printf(“val[18]=lf/n”,(*val)[18]);
(*val)[19]=(-1/pow(x,2)-(mu/pow(r2,2.0)*x)+(2/pow(x,3))+(1/r2*pow(x,2))
-(1/pow(r2,2.0))-(2*(1-mu)/r2*x*pow(dta,2.0)))/(-2/pow(x,2.0)
-2*mu/pow(r2,2)*pow(dta,2.0)+2/r2*x-2*(1-mu)/pow(r2,3.0)*pow(dta,2.0));
printf(“val[19]=lf/n”,(*val)[19]);
(*val)[20]=(-1/pow(x,2.0)+(mu/pow(r2,2.0)*x)-(2/pow(x,3.0))
+(1/r2*pow(x,2.0))+(1/pow(r2,2.0))+(2*(1-mu)/r2*x*pow(dta,2.0)));
printf(“val[20]=lf/n”,(*val)[20]);
(*val)[21]=(-mu/pow(r2,2.0)*pow(dta,2.0)+(1/pow(r2,2)*pow(dta,2.0))
-((1-mu)/pow(r2,3.0)));
printf(“val[21]=lf/n”,(*val)[21]);
(*val)[22]=(-mu/pow(r2,2.0)*pow(dta,2.0)+(1/pow(r2,2)*pow(dta,2.0))
-((1-mu)/pow(r2,3.0)));
printf(“val[22]=lf/n”,(*val)[22]);
(*val)[23]=(1/pow(x,3.0));
printf(“val[23]=lf/n”,(*val)[23]);
(*val)[24]=(-1/pow(x,3.0));
printf(“val[24]=lf/n”,(*val)[24]);
(*val)[25]=((1-mu)/r2*x*pow(dta,2.0));
printf(“val[25]=lf/n”,(*val)[25]);
(*val)[26]=((1-mu)/r2*x*pow(dta,2.0));
printf(“val[26]=lf/n”,(*val)[26]);
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(*val)[27]=-((1-mu)/r2*x*pow(dta,2.0));
printf(“val[27]=lf/n”,(*val)[27]);
(*val)[28]=-((1-mu)/r2*x*pow(dta,2.0));
printf(“val[28]=lf/n”,(*val)[28]);

)

70



Appendix B

Matlab program to predict the response of the disc

Matlab program to get the displacement in transverse direction clear all;
clc;
int i;
int a;
int b;
i=1;
c=0.0002*eye(25,25)
R=0.045:0.0036666666666666666667:.133;
THETA=0:2*pi/24:2*pi;
[r, theta]=meshgrid(R,THETA);
x=r.*cos(theta);
y=r.*sin(theta);
A=[0 0.0005 0 0 0 0 0.0005 0 0 0 0 0.0005 0 0 0 0 0 0 0 0 0 0.0005 0 0 0];
F=diag(A);
load new55.txt;
f=new55;
fprintf(’f’,f);
s=f-c;
z=inv(s)*F;
fprintf(’the value of x=f/ty=/f/tz=/f/n’,x,y,z);
surf(x,y,z);
grid on
figure
plot(z)

71



Appendix C

C-program to solve Coupled Differential Equation

include < stdio.h >
include < math.h >
double mass(double u,double v,double y1, double y2);
double full(double u,double v,double y1, double y2);
int main(void)
( FILE *sucfile11,*sucfile12,*sucfile13,*sucfile14;
double y1,y2,u,v,y1new,y2new,h,m1,m2,m3,m4,p1,p2,p3,p4,k1,k2,k3,k4,l1,l2,l3,l4,unew,vnew,f,g;
int t=0;
sucfile11=fopen(“c:/success11/success1.txt”,“w”);
sucfile12=fopen(“c:/success11/success2.txt”,“w”);
sucfile13=fopen(“c:/success11/success3.txt”,“w”);
sucfile14=fopen(“c:/success11/success4.txt”,“w”);
y1=0;
y2=0;
u=0;
v=0;
for(t=0;t< 800;t++)
(
h=0.1;
m1=h*mass(u,v,y1,y2);
printf(“m1=lf/n”,m1);
p1=h*full(u,v,y1,y2);
printf (“check in main : d/t mass1=lf/t ”,t,mass(u,v,y1,y2));
k1=h*u;
l1=h*v;
m2=h*mass(u+m1/2.0,v+p1/2.0,y1+k1/2.0,y2+l1/2.0);
p2=h*full(u+m1/2.0,v+p1/2.0,y1+k1/2.0,y2+l1/2.0);
printf(“check in main : d/tmass2=lf/t”,t,mass(u+m1/2.0,v+p1/2.0,y1+k1/2.0,y2+l1/2.0));
k2=h*(u+m1/2);
l2=h*(v+p1/2);
m3=h*mass(u+m2/2.0,v+p2/2.0,y1+k2/2.0,y2+l2/2.0);
p3=h*full(u+m2/2.0,v+p2/2.0,y1+k2/2.0,y2+l2/2.0); k3=h*(u+m2/2.0);
l3=h*(v+p2/2.0);
m4=h*mass(u+m3,v+p3,y1+k3,y2+l3);
p4=h*full(u+m3,v+p3,y1+k3,y2+l3);
k4=h*(u+m3);
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l4=h*(v+p3);
y1new=y1+k1*(1/6.0)+k2*(1/3.0)+k3*(1/3.0)+k4*(1/6.0);
y2new=y2+l1*(1/6.0)+l2*(1/3.0)+l3*(1/3.0)+l4*(1/6.0);
printf(“y1=lf /n”,y1new);
fprintf(sucfile11,“lf /n”,y1new);
fprintf(sucfile12,“lf /n”,y2new);
unew=u+m1*(1/6.0)+m2*(1/3.0)+m3*(1/3.0)+m4*(1/6.0);
vnew=v+p1*(1/6.0)+p2*(1/3.0)+p3*(1/3.0)+p4*(1/6.0);
fprintf(sucfile13,“lf/n”,unew);
fprintf(sucfile14,“lf/n”,vnew);
printf (“new values : d/tlf/tlf/tlf/tlf/n”,t,y1new, y2new, unew, vnew);
y1=y1new;
y2=y2new;
u=unew;
v=vnew;
)
fclose(sucfile11);
fclose(sucfile12);
fclose(sucfile13);
fclose(sucfile14);
)
double mass(double u,double v,double y1, double y2)
(
double Nstatic=10;
double M1=2.5;
double c=0.1;
double k=20;
double f;
f=((Nstatic-c*(u-v)-k*(y1-y2)-k*pow((y1-y2),3.0))/M1);
printf (“check in function mass= : lf/n”,f );
return f;
)
double full(double u,double v,double y1, double y2)
(
double M2=0.25;
double c=0.1;
double k=20;
double g;
g=((c*(u-v)+k*(y1-y2)+k*pow((y1-y2),3.0))/M2);
return g;
)
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C-program to solve Coupled Differential Equation Continued
include < stdio.h >
include < math.h >
define N 10
double dev(double x1,double x2,double r,double s,double y1,double y2,double u,
double v);
double devi(double x1,double x2,double r,double s,double y1,double y2,double u,
double v);
int main()
(
FILE *successfile11,*successfile12,*successfile13,*successfile14,
gsuccessfile11,*gsuccessfile12,*gsuccessfile13,*gsuccessfile14;
int t=0;
double y1[800],y2[800],u[800],v[800];
gsuccessfile11=fopen(“c://success11//success01.txt”,“w”);
gsuccessfile12=fopen(“c://success11//success02.txt”,“w”);
gsuccessfile13=fopen(“c://success11//success03.txt”,“w”);
gsuccessfile14=fopen(“c://success11//success04.txt”,“w”);
successfile11=fopen(“c://success11//success1.txt”,“r”);
successfile12=fopen(“c://success11//success2.txt”,“r”);
successfile13=fopen(“c://success11//success3.txt”,“r”);
successfile14=fopen(“c://success11//success4.txt”,“r”);
for (t=0;t< 800;t++)
(
fscanf(successfile11,“lf”,y1[t]);
fscanf(successfile12,“lf”,y2[t]);
fscanf(successfile13,“lf”,u[t]);
fscanf(successfile14,“lf”,v[t]);
)
fclose(successfile11);
fclose(successfile12);
fclose(successfile13);
fclose(successfile14);
)
double h,k1[800],k2[800],k3[800],k4[800],l1[800],l2[800],l3[800],
l4[800],x1[800],x2[800],r[800],s[800];
double m1[800],m2[800],m3[800],m4[800],p1[800],p2[800],p3[800],p4[800];
r[0]=0;
s[0]=0;
x1[0]=0;
x2[0]=0;
for(t=0;t< 800;t++)
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(
h=0.1;
printf(“recheck the values:lf/nlf/n”,y1[t],y2[t]);
k1[t]=h*r[t];
printf(“k1=lf/n”,k1[t]);
l1[t]=h*s[t];
printf(“l1=lf/n”,l1[t]);
m1[t]=h*dev(x1[t],x2[t],r[t],s[t],y1[t],y2[t],u[t],v[t]);
printf(“m1=lf/n”,m1[t]);
p1[t]=h*devi(x1[t],x2[t],r[t],s[t],y1[t],y2[t],u[t],v[t]);
printf (“check in main d/tdev1=lf/tdevi1=lf/n”,t,dev(x1[t],x2[t],r[t],s[t],
y1[t],y2[t],u[t],v[t]),devi(x1[t],x2[t],r[t],s[t],y1[t],y2[t],u[t],v[t]));
k2[t]=h*(r[t]+0.5*m1[t]);
l2[t]=h*(s[t]+0.5*p1[t]);
m2[t]=h*dev(x1[t]+0.5*k1[t],x2[t],r[t]+0.5*m1[t],s[t],y1[t],y2[t],u[t],v[t]);
p2[t]=h*devi(x1[t],x2[t]+0.5*l1[t],r[t],s[t]+0.5*p1[t],y1[t],y2[t],u[t],v[t]);
k3[t]=h*(r[t]+0.5*m2[t]);
l3[t]=h*(s[t]+0.5*p2[t]);
m3[t]=h*dev(x1[t]+0.5*k2[t],x2[t],r[t]+0.5*m2[t],s[t],y1[t],y2[t],u[t],v[t]);
p3[t]=h*devi(x1[t],x2[t]+0.5*k2[t],r[t],s[t]+0.5*p2[t],y1[t],y2[t],u[t],v[t]);
k4[t]=h*(r[t]+m3[t]);
l4[t]=h*(s[t]+p3[t]);
m4[t]=h*dev(x1[t]+ k3[t],x2[t],r[t]+ m3[t],s[t],y1[t],y2[t],u[t],v[t]);
p4[t]=h*devi(x1[t],x2[t]+ k3[t],r[t],s[t]+ p3[t],y1[t],y2[t],u[t],v[t]);
printf(“check: lf/nlf/n”,k1[t],k2[t]);
x1[t+1]=(x1[t]+0.167*k1[t]+0.334*k2[t]+0.334*k3[t]+0.167*k4[t]);
x2[t+1]=(x2[t]+0.167*l1[t]+0.334*l2[t]+0.334*l3[t]+0.167*l4[t]);
s[t+1]=s[t]+0.167*p1[t]+0.334*p2[t]+0.334*p3[t]+0.167*p4[t];
printf(“check the values lf/nlf/nlf/nlf/n”,x1[t+1],x2[t+1],r[t+1],s[t+1]);
fprintf(gsuccessfile11,“lf/n”,x1[t+1]);
fprintf(gsuccessfile12,“lf/n”,x2[t+1]);
fprintf(gsuccessfile13,“lf/n”,r[t+1]);
fprintf(gsuccessfile14,“lf/n”,s[t+1]);
x1[t]=x1[t+1];
x2[t]=x2[t+1];
r[t]=r[t+1];
s[t]=s[t+1];
)
fclose(gsuccessfile11);
fclose(gsuccessfile12);
fclose(gsuccessfile13);
fclose(gsuccessfile14);
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)
double dev(double x1,double x2 ,double r,double s,double y1 ,double y2,double u,
double v)
(
double Nstatic=;
double M1=2.5;
int c1=1,c=1,c2=0.01;
double k1=0.01,k=20,k2=1;
double w,vr,Fric1,Fric2,Ff;
double vo=1;
double ud,us=0.3,b=0.12;
vr=vo+s-r;
ud=us-b*vr;
scanf(“vo=lf/n”,vo);
vr=vo+s-r;
printf(“vr=lf/n”,vr);
Fric1=-k1*x1-c1*r+k2*x2+c2*x2;
if (Fric1 < 0)
(
Fric1= -Fric1;
)
else
(
Fric1= Fric1;
)
printf(“Fric1.1=lf/n”,Fric1);
Fric2=us*Nstatic;
if (Fric2 < 0)
(
Fric2= -Fric2;
)
else
(
Fric2= Fric2;
)
if (vr==0)
(
if (Fric1 ≤ Fric2 && Fric1 ≥ 0)
(
Ff=-Fric1;
)
else if (Fric1 < Fric2 && Fric1 ≤ 0)
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(
Ff=Fric1;
)
else if (Fric1 > Fric2 && Fric2 ≤ 0)
(
Ff=Fric2;
)
else if (Fric1 > Fric2 && Fric2 ≥ 0)
(
Ff=-Fric2;
)
w=(Ff-c1*r-k1*x1)/M1;
)
else if(vr > 0)
(
w=(-ud*(Nstatic+c*(u-v)+k*(y1-y2)+k*pow((y1-y2),3.0))-c1*r-k1*x1)/M1;
printf(“slip001=lf/n”,w);
)
else
(
w=(ud*(Nstatic+c*(u-v)+k*(y1-y2)+k*pow((y1-y2),3.0))-c1*r-k1*x1)/M1;
printf(“slip002=lf/n”,w);
)
return w;
)

double devi(double x1,double x2,double r, double s, double y1, double y2,double u,
double v)
(
double Nstatic=10;
double M2=1;
double c1=.01,c=0.1,c2=0.01;
double k1=1,k=20,k2=1;
double z,vr,Fric1,Fric2;
double vo=1;
double us=0.3;
double ud,Ff,b=0.12;
vr=vo+s-r;
ud=us-b*vr;
Fric1=-k1*x1-c1*r+k2*x2+c2*x2;
printf(“Fric2=lf/n”,Fric1);
if (Fric1 < 0)
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(
Fric1= -Fric1;
)
else
(
Fric1= Fric1;
)
printf(“Fric1=lf/n”,Fric1);
Fric2=us*Nstatic;
if (Fric2 < 0)
(
Fric2= -Fric2;
)
else
(
Fric2= Fric2;
)
printf(“Fric2.2=lf/n”,Fric2);
if (vr==0)
(
if (Fric1 ≤ Fric2 && Fric1 ≥ 0)
(
Ff=-Fric1;
)
else if (Fric1 < Fric2 && Fric1 ≤ 0)
(
Ff=Fric1;
)
else if (Fric1 > Fric2 && Fric2≤0)
(
Ff=Fric2;
)
else if (Fric1 > Fric2 && Fric2 ≥ 0)
(
Ff=-Fric2;
)
z=(-Ff-c2*s-k2*x2)/M2;
printf(“stick01=lf/n”,z);
)
else if (vr > 0)
(
z=(-ud*(Nstatic+c*(u-v)+k*(y1-y2)+k*pow((y1-y2),3.0)-c2*s-k2*x2))/M2;
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printf(“slip01=lf/n”,z);
)
else
(
z=ud*(Nstatic+ c*(u-v)+ k*(y1-y2)+ k*(y1-y2)*(y1-y2)*(y1-y2))/M2;
printf(“slip02=lf/n”,z);
)
return z;
)
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