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Abstract

Land use/cover (LULC) and climate change are tworfactors directly affecting regional
hydrology and water quality. In this study, theunat potential impacts of LULC and climate
change on the hydrologic regimes and water quiality/olf Bay watershed, South Alabama
were explored independently and mutually by usigSoil and Water Assessment Tool
(SWAT). Due to lack of measured data, SWAT wadbacated in a nearby watershed, and the
calibrated model parameters were transferred to\tbk Bay watershed. It was shown that using
data from nearby watersheds improves the modebipeaince under limited data conditions in the
study watershed. The choice of the parameter $ether it is the default model parameters or
those from a donor watershed, has a marginal effeatodeling the impacts of different LULC
scenarios.

SWAT with the transferred parameters was then eyepl¢o investigate the potential impacts
of LULC and climate change on the hydrology andewguality of the Wolf Bay watershed.

While four Global Circulation Models (GCMs) undarée Green House gas emission scenarios
were used to reflect variability in future climatenditions, three future LULC maps generated
mainly based on different population growth rateuasptions were used to represent the
uncertainty in future LULC conditions. In genettile Wolf Bay watershed is expected to
experience increasing precipitation in the futespecially in fall, and temperature is expected to
be higher, especially in summer and fall monthstHeu, the watershed is expected to undergo

dramatic urbanization, with percentage of urbamasresarly doubling in future.



Results showed that both climate change and LULaDgh would cause a redistribution of
streamflow. Higher flows were projected to increaskile small flows are expected to decrease.
No clear trend of extreme large flow was detectbéémonly climate change was considered.
Under combined change scenarios, a more noticealelen distribution of streamflow was
observed. Monthly average streamflow was projetdedcrease in spring, fall, and winter,
especially during the fall, while no clear trendsndbserved in summer. LULC change did not
significantly affect monthly streamflow, but chadgée partitioning of streamflow to baseflow
and surface runoff. Surface runoff was predictethtoease every month, while for baseflow an
evident decreasing trend was detected. When climasecombined with LULC effect, a more
dramatic increasing trend in monthly average stfeams was detected. Furthermore, a visible
increasing trend in surface runoff and more dracrdécreasing trend in baseflow were detected.

Monthly distribution of sediment and nutrients afeected by both flow and management
practices. Projected variations of TSS, TN, ando##dings follow the same pattern as flow. No
evident difference in annual average N:P ratio praslicted when only climate change was
considered. LULC change increased TSS loadingddreased TN loadings for all months. TP
loadings were projected to decrease in summelinbrgase in other months. N:P ratio was
projected to decrease significantly.

Results of this study indicate that if future laagh are expected/predicted to
increase/decrease under either climate or LULC ghacenario, then their combined impact is
to intensify that trend. On the other hand, if thedfects are in opposite directions, that is while
one predicts an increase and the other predicts@dse, then their mutual effect has an
offsetting impact. The combined LULC and climataiwge effect was in general synergistic, i.e.

the total effect was greater than the sum of tdevidual effects.
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Chapter |
Modeling Effects of Land Use/Cover Changes under biited Data

ABSTRACT

Watershed models are valuable tools used in thiy stiimpacts of land use/cover (LULC)
changes on hydrology. We use the Soil and Wateegsssent Tool (SWAT) to study the
impacts of LULC changes in a coastal Alabama whegtswhere flow data did not exist at the
onset of the study. We set up and calibrated theeiria the neighboring Magnolia River
watershed. Relevant model parameters were thesféraad to the Wolf Bay watershed. Impacts
of LULC changes on hydrology are studied in the VBaly watershed by running the model
with the default parameters, transferred modelrpatars (from the Magnolia River watershed),
and calibrated parameters at the Wolf Bay watershtdlimited data that became available
later during the study. The relative changes iwftluration curves (FDCs) due to differing
LULC showed a similar pattern with each paramesérBhere is a clear threshold of around 1%
probability of exceedance where the relative chasge its maximum. The relative change in
flow due to LULC change drops drastically with ieasing probability of exceedance of beyond
2% until it reaches a plateau at p D 20%. Hencallgmmmedium range flows are less sensitive
to the parameter set. Further, the impact of LUb@nge on flow gradually decreases with the

size of the storm for very large events (probabiit exceedance <1%).



INTRODUCTION

Quantifying the impacts of land use and land cgiern.C) changes on the hydrologic
processes and water balance of river basin hasdearea of interest to hydrologists in recent
years. Little is known so far if there is a welfided quantitative relationship between the LULC
properties and the runoff generation mechanisms.aslsessment of future LULC changes with
respect to their hydrological impacts is still arsalved problem (Fohrer, 2002). Several
methods were developed to study the implicationsldfC changes on hydrologic processes,
such as the paired catchments approach, time seradgsis (statistical method) and
hydrological modeling (Let al. 2009). Among these approaches, hydrological mogdias
been widely applied in many different places inwwld since it requires less resource and
provides more flexibility.

Fohreret al. (2001) assessed the hydrologic response to LUlaDgds in four meso-scale
watersheds in Germany with different LULC distriloats. Then the model performance for
changing LULC has been tested in an artificial wsdted with a single crop at a time and one
underlying soil type to eliminate the complex iafgions of natural watersheds. Simulation
results showed that LULC changes on the annualnkatance was moderate. Surface runoff
was most susceptible to LULC change at both thicaat and the natural catchment. Hundecha
and Bardoosy (2004) simulated the effect of LUL@rades on the runoff generation of Rhine
River Basin through parameter regionalization ofittyogiska Byrans Vattenbalansavdelning
(HBV) model. Results suggested that increased izhfon leads to an increase in the smaller
peak runoffs stemming from summer storms. Incr@afige larger peaks resulting from winter
rainfall was negligible. A considerable reductidrboth the peak runoff and the total runoff

volume resulted from intensified afforestation. &anet al. (2009) assessed the effects of



historical LULC change on runoff and low-flow usititge Gestion Intégrée des Bassins versants
a l'aide d’'un Systeme Informatisé (GIBSI) modetle Chaudiere River Watershed, Canada.
Simulations showed strong correlations between Lidh@nges and stream discharge at the
outlet of the watershed, especially for summerfatideasons. Simulated annual and seasonal
low flows were also strongly correlated to agriatdd and forested land. Gebal. (2008)
studied the combined effects of climate and LUL@rafe on hydrological processes using the
Soil and Water Assessment Tool (SWAT) in Poyan Ua&sin, China. They found that climate
effect is dominant to alter annual streamflow; whilJLC change may have a moderate impact
on annual streamflow. Both of them strongly infloes seasonal streamflow and alter the annual
hydrograph of the basin. M&al. (2009) also considered climate change impacts on
hydrological responses in a different watershesbuthwestern China by SWAT. Contrasting to
the results of Guet al. (2008), they found climate having a more profoeffdct on seasonal
variations in streamflow with LULC change havinghaderate impact. On the other hand, they
observed a much stronger influence by LULC chamgmean annual streamflow. Their
simulation results also showed that the impaciiofate change on surface water, baseflow and
streamflow was offset by the impact of LULC changes

As mentioned above, LULC impacts on hydrologic ceses have been thoroughly studied
through modeling. However, models are mathemasioaplifications of natural processes, with
inevitable errors and deficits. Therefore, theatality of hydrologic models should be evaluated
by the fitness between measured flow data and nsaaheilations. In this regard observed data is
quite valuable. Hydrologists often need to adjustlel variables in order to attain close to
optimal parameter values by minimizing the erramgen model simulations and observed data.

However, observed data are sometimes insufficienbbavailable at all, in which case one can



run the model without calibration by estimatinggraeter values from the literature or rely on
regionalization approaches.

The termregionalization has its roots in the process of regime classiboaind watershed
grouping. It has later been extended in the rdinedoff modeling context to refer to the transfer
of parameters from neighboring gauged watershdsis ¢alled donor watersheds) to an
ungauged watershed. Nowadays, the concept of ragiation applies to all methods aimed at
estimating model parameter values on any ungaugéershed in a definable region of
consistent hydrological response. Several methada\ailable in the literature for the
transferring of model parameters. Regionalizatiaseol on regression is the most popular
method which tries to link parameter values to aliemnand watershed physical characteristics,
such as annual rainfall, temperature, area, skme)and use/cover (LULC) in a gauged
watershed (Yokoo, et.al, 2001; Kim and Kaluarach2608). Another commonly used approach
is regionalization based on physical similarityn@eally information is transferred between
neighboring watersheds, not necessarily geogralphmannected but rather in terms of
observable watershed descriptions (Owdlial ., 2008). Parameters are transferred from one or
many donor watersheds, whose physical descriptersimilar to the ungauged one, based on
one a synthetic rank that reflects the similaritalbphysical descriptors between donors and
target. The third kind of regionalization is basedspatial proximity. It uses the parameter
values calibrated in nearby watersheds, which katfeciently long data for calibration. The
rationale of this method is that physical and ctimeharacteristics are relatively homogeneous
within a small region, thus the neighbors shouldehgimilar hydrology.

Over the past few decades, several researchersattanegpted to identify the best

regionalization approach appropriate for differeydirological models. For example Oudirel.



(2008) applied two lumped rainfall-runoff modelsdaily data over a large set of 913 French
catchments. Their research indicated that theagatximity approach provided the best
solution and the regression approach was the $asistactory in France, where a dense network
of gauging station is available. Merz and Blos&f(4) investigated the water balance dynamics
of 308 catchments in Austria using the HBV modéleyf compared regionalization methods for
estimating model parameters in ungauged catchmemésmethod based on multiple regressions
with catchment attributes performed significantboper than the other two. They found spatial
proximity being a better surrogate of unknown colston runoff dynamics than catchment
attributes. Reichl and Western (2009) compared Maghliffe efficiency and monthly relative
volume error of the SimHyd lumped conceptual rdinianoff model by averaging method,
spatial proximity approach, local calibration am@e regression in 184 Australian catchments.
Averaging method, which selects a number of candidadels from available gauged
catchments and weighs them based on likelihoodbeatonsidered as the improvement of
regionalization by physical similarity. Their reseh showed that the averaging method, while
inferior to local calibration, is superior to mettsobased on regression and spatial proximity.
This paper focuses on estimating the impacts of Cldhanges on hydrological responses in
a coastal Alabama watershed. In particular, it stigates how limited hydrological data affects
our understanding of LULC change impacts on hydyploy using the SWAT model. To
address this issue, LULC maps corresponding todifferent periods (1992 and 2005) are
utilized. Model parameters are obtained from almearatershed through regionalization based
on spatial proximity. Model efficiency is comparnaough use of time series of flow and flow

duration curves (FDC) when transferred parametaisdafault ones are utilized. The effects of



parameter transferring on modeling the impactsWif C changes on low, medium and high

flows are discussed.

METHODOLOGY
Study Area

Wolf Bay is located on the Gulf of Mexico in BaldwCounty, Alabama, nestled between
Pensacola Bay to the east and Mobile Bay to the, with a watershed covering about 126°km
It is a sub-estuary of Perdido Bay with a connectmthe Intracoastal Waterway and includes
various freshwater, nutrient and sediment inpumfseveral sub-watersheds through Wolf,
Sandy, Miflin and Hammock creeks (Fig. 1).

The watershed is primarily rural, but several mipalties exist including Foley, Elberta,
Gulf Shores, and Orange Beach. Baldwin County’'sbes, bays and rivers promote an
expanding tourism industry, which exerts substaimfluences on water extraction for human
uses. Baldwin County experienced a 43% increapepulation from 1990 to 2000. As a result
of population growth, there is an increased denfandommercial, residential, and
infrastructure development, thus bringing growtmagement issues to the forefront for local
elected officials. One of the more visible chanigethe landscape of Baldwin County is the
rapid transformation of agricultural and forestedds to residential development. These
development pressures are threatening the naagalirces which make Baldwin County a
popular place to live and visit (Stallman et.alp2p As a result, detecting the impact of potential
LULC changes is urgent and necessary, becauseviidess policy makers some valuable
suggestion which strike a balance between developaral the protection of natural resources.

There is only one flow monitoring station in thetershed on the Wolf Creek operated by
U.S. Geological Survey (USGS). However, at the cemeement of this study no flow data was

6



available yet. USGS essentially monitors flow stagd converts them to discharge through
stage-discharge curves only when they have endaginieasurements that cover range of
flows. Magnolia River watershed, which is adjadenv/olf Bay watershed to the northeast (Fig.
1), has 10 years of continuous flow and climataddsing the regionalization based on spatial
proximity, we can setup a model in Magnolia Rivextershed, calibrate it and transfer the model
parameters to Wolf Bay watershed. Besides thetiagdgaoximity, Wolf Bay and Magnolia

River watersheds also have quite similar physibatacteristics (Table 1). Although it was still
partly provisional, almost 2 years of flow data/8/2007 to 9/30/2009) later became available
from the USGS gauge on Wolf Bay Creek, which predids an opportunity to assess the

feasibility of parameter transferring from MagndRaer watershed to Wolf Bay watershed.

Watershed Model

SWAT is one of the most commonly used watershedatsddr assessing the impact of
management practices and land disturbances onskattresponses. It has a solid track record
of applications (Kalin and Hantush, 2006). SWAT hasen widely used around the world, such
as the Cottonwood River near new Ulm, Minnesotan(eith and Stefan, 1998); southern Alberta,
Canada (Chanasyt al., 2003); Jeker river basin, Belgium (Na&bal., 2005) to assess various
impacts of agricultural practices and land useva@s on water quantity and quality. SWAT is
also suitable for coastal and flat areas, whiclelraere complicated geo-hydrologic conditions
(Wu and Xu, 2006). ArcSWAT version 2.3.4 that ramsArcGIS® was used for preparing the
input data and processing the output files.

SWAT is a distributed, process-based watershed bdewith significant number of

empirical relationships. The physical backbonenefmodel facilitates the interpretation of



model parameters whereas the empirical simpliicatikeep data requirements low compared to
physically based models (Heuvelmans, 2004). SWA/dds a watershed into several
subwatersheds based upon drainage areas of th&atrés. Then, each subwatershed is split into
multiple hydrological response units (HRUs) based OLC and soil types. Each HRU is
assumed to be spatially uniform in LULC, soll, tgpaphy, and climate. Major hydrologic
process that can be simulated by SWAT include evapspiration (ET), surface runoff,
infiltration, percolation, shallow aquifer and desguifer flow, and channel routing (Arnodd

al., 1998). Details and the theoretical backgrounthefSWAT is beyond the scope of this paper
and can be found in Neitsehal. (2005).

In addition to streamflow, SWAT can also provide&ifow and surface runoff estimates as
model outputs. Therefore, we used a baseflow fiieplit the observed streamflow into
baseflow and surface components to better calibhatenodel. The algorithm presented by
Arnold et al. (1995) is employed for this purpose. In this alidpon, a digital filter, which is
borrowed from signal processing, is successivepliag to streamflow. Filtering surface runoff
(high frequency signals) from base flow (low freqog signals) is analogous to the filtering of
high frequency signals in signal analysis and pgsicgy. The filter can be passed over the
streamflow three times. At each pass, a slower co@pt of streamflow (less baseflow as a

percentage of total streamflow) is obtained.

Model Performance Evaluation
The statistical measures of mass balance emBE], coefficient of determinatiorRf) and

Nash-Sutcliffe (1970) efficiencyE{s) are used as indicators of model performance:
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whereQgmi andQqs; are simulated and observed flows"abbservation, respectiveli is the

number of observations. Similarl@snand Ous are average of simulated and observed flows
over the simulation period®” describes the proportion of the total variancethé@observed data
that can be explained by the model and ranges @rtonl.Eys is @ measure of how well the plot
of observed versus predicted values fit the 1:4, land can theoretically vary fromo-to 1, with

1 denoting a perfect model with respect to dataement. Althougl® andMBE values have
been used often in the past to quantitatively compaodel results with datkysis a better

representative measure for model goodness-of-8iGE 1993, Legates and McCabe 1999).

Modeling LULC changes

LULC changes affect various components of the hpdiio cycle, either directly or
indirectly. The infiltration and ET processes dre two vital components of the hydrologic cycle
directly affected by LULC changes. SWAT uses SCSemumber method to simulate

infiltration process. Each soil/LULC combinatione assigned specific curve numbers, with

9



higher values representing higher surface runafflass infiltration. Urbanization within a
watershed increases the area of impervious surfaggs Curve Number) which decreases
infiltration and increases runoff. As a result, #mount of surface runoff generated from a
specific rain event increases. Reduced infiltratesults in less groundwater recharge which
decreases baseflow contribution to streamflow, ety causing reduction in low-flows. If
change in ET is relatively small, then urbanizaiimessence redistributes baseflow and runoff
components of the streamflow.

SWAT calculates ET from potential ET (PET). One keynponent in PET calculation is the
net radiation, which is a function of the planteadb (reflectivity). Thus, change in LULC should
change net radiation and eventually PET. In SWA3dngiing LULC has little or no effect on
PET depending on the choice of the PET calculanethod (Penman Monteith, Priestley-Taylor,
and Hargreaves). In calculating the actual ET, SVe&dporates intercepted water in the canopy
first. If water intercepted in the canopy canndtilfthe PET demand (usually the case), SWAT
then calculates transpiration from plants. Trarsdmn is function of PET, leaf area index (LAI),
and soil water content. LAI changes with land comed plant growing seasons. Higher LAl
means more transpiration. Calculation of transjgineand water uptake are described in detail in
Neitschet al. (2005).

Two LULC maps representing the years 1992 and 200®mployed to investigate the
impacts of LULC changes on hydrologic response&/atf Bay watershed. The 1992 National
Land Cover Data (NLCD) is a raster data set wii® an resolution. The second LULC map is
produced by GIS specialists in Auburn Universitingsirca 2005 as references data. Circa
2005 is a vector dataset attained by trend andigsissed on LULC changes of urban and built-

up areas, utilities, and transportation from 2@92Q05 based on Color Infrared imagery of 2001

10



and 2005 from Baldwin county commissions. Since¢hit®o maps had different LULC
classifications, we reclassified them accordin@WBAT classification to make it consistent with

model’'s own database.

RESULTS AND DISCUSSION
Calibration and validation in the Magnolia River Watershed

SWAT model was first set up in the Magnolia Rivextershed, then calibrated and validated
with a split data set approach. The period fron®1A/999 to 09/30/2004 of the daily flow data
from USGS gauge #02378300 was used for calibratnohthe period from 10/01/2004 to
09/30/2009 was used for validation. Model validati® defined as the process of demonstrating
that model is capable of making accurate predistion periods outside a calibration period.
Usually, calibration of a model is based on 3-5ryed data (Sorooshiaat al. 1983; Xiaet al.
2004), and validation on another period of simiargth (Tu 2009, Mat al. 2009). Table 2
shows the calibrated model parameters along wéin trefault values. Model simulations
actually started from 10/01/1989 with measuredipretion data as input. This corresponds to a
warm-up period of 10 years. The idea behind usutl & long warm-up period was to minimize
the effect of initial unknown conditions such asemedent moisture, and initial groundwater
table height (Kalin and Hantush, 2006).

Model parameters were calibrated first at montthign at daily time scales for flow. Fig. 2a
shows the observed and simulated monthly flowsnduthie calibration and validation periods.
Monthly streamflow values match well to the obsdreaees. Model performance statistics are
shown in Table 3. Note that onWBE is shown for baseflow as suggested by Saettéi. (2001).

It is difficult to estimate the spatial and temgatestribution of ground water table. Quantifying

11



the impact of deep aquifer system on baseflow mespds also challenging (Leeal. 2005).
Therefore, it is hard to capture the temporal dyicaraf baseflow simulations. Overall SWAT’s
performance at monthly time scale is good durint lsalibration and validation periods.

Daily simulations of total streamflow are not a®da@s monthly simulations, but tEgs of
the calibration period is still acceptable. Duéhte temporal scale effect discussed in the
previous paragraph we only focus on total stream#ibdaily time scale. According to Moriasi
et al. (2007)Eys values above 0.5 with loMBE are considered satisfactory. To gain more
insight we also compared FDCs of observed and sitedflows in the Magnolia River
Watershed from 1999 to 2009 (Fig. 2b). Observedsamdlated flows have good agreement for
flows having probability of exceedance > 0.2%. thar larger flows model underestimates flow
as much as 50%, which is not uncommon in modekng Baffaut and Benson, 2009; Larese
al., 2007; Wang and Melesse, 2005).

Note that SWAT is not an event-based model. Alttioigvorks reasonably well for long
term simulations, it has limitations in extreme m@ge It cannot capture the dynamics at sub-daily
scale. For example, from 3March 2005 to 6 April 2005, there were series of several very big
storms. The total amount of rainfall in this oneekeeriod was 440 mm, which is about one
fourth of the average annual precipitation. The ehdalled to reflect these huge events properly.
The MBE of streamflow in this period was -53%. The mospiiaper simulation happened ofi 1
April 2005. Observed daily average flow was 19/&n(largest ever recorded), yet SWAT
estimated only 35ffs of flow. Such extreme events can significantigrahe performance
statistics. For instance, if we ignore the eveni®April, 2005, TheExs for monthly simulation
improves from 0.65 to 0.74 (see Table 3). Othen tha potential deficiencies of the model in

dealing with such huge events, there are two qibssible reasons for this. USGS measures

12



stage not discharge; discharge is estimated fragestlischarge relationships (i.e. regression
equations) which are known to have problems outiside range. Thus, observed flow during
such an extreme event, which is actually estimatad stage, could have serious errors. Spatial
variation in precipitation and the rain gaugeshminhg able to capture these accurately is another
source of error. Our precipitation data sourcerigim gauge located at the watershed outlet. On
1% April 2000, the USGS gauge at Magnolia River rdedra storm event where average daily
flow was 6 ni/s, up from 0.6 rfis from the day before. However, no flow is gereddity SWAT
because the rain gauge did not record any tracardfll. The most likely scenario is that it only
rained at the upstream portion of the watershetibat undetected by the rain gauge.

We tried different climate data sources to improwadel performance. However, current
rainfall data offered by the USGS station provetlédhe best data source. Two other
alternatives to the USGS gauge was a NOAA rain gangl NEXRAD radar. USGS rain gauge
is at the watershed outlet. The NOAA rain gaugsbisut 16 km away from the Magnolia River
watershed outlet and well outside its boundariasthér, it records daily rainfall from 6:00am to
6:00pm, thus does not represent a calendar dag.rm&y cause problems in daily flow
simulations if there is an overnight rain evente MOAA rain gauge also had extended periods
of missing data (e.g. the whole months of Noven2®?2, December 2002, and September 2009
were missing). Like the USGS rain gauge data wemesl inconsistencies during big rainfall
events in NOAA data. Summer rains in Alabama araidantly localized pop-up thunderstorms.
Capturing these storms requires a very dense netwfgrin gauges. Radar data seems to be a
good alternative but that has its own problems Yge.obtained NEXRAD radar data for the
Magnolia River watershed for the 2002-2008 period @ied to calibrate the model. Even

NEXRAD data did not capture rainfall accurately avelhad poorer model performance. The
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annual average precipitation from 2002 to 2008 daseNOAA rain gauge, NEXRAD and
USGS rain gauge were 1794 mm, 1520 mm and 1315espectively, which shows the
discrepancies between these three rainfall dataseétshe degree of spatial variation in this area.
Once the models were calibrated for flow, they weaidbrated subsequently for sediment
and nutrients. Since measured sediment and wadditygdata are discontinuous, USGS'’s
LOADEST (A Fortran Program for Estimating Constitt€oads in Streams and Rivers) is
applied to generate continuous loads when givémeaseries of streamflow, additional data
variables and constituent concentration based gnression analysis. By LOADEST, a
continuous monthly loadings of TSS and nutrientgeeerated as observed data.
Due to lack of sufficient measured water qualitiadanonthly sediment and nutrient was
calibrated for year 2000 and validated for yearl2®Wodel performances are shown in Table 4
and Fig. 3. Calibrated model parameters along thigir default values are shown in Table 5
From Fig 3, we found SWAT is able to predict themidy sediment and nutrient loadings with

sufficient accuracy.

Transferability of model parameters from Magnolia River to Wolf Bay watershed

In the previous section, SWAT was manually caliéddor flow in Magnolia River
watershed with the calibrated parameters showrabiel2. The next step is transferring these
parameters systematically to Wolf Bay watershedd & shows the daily model performances
with the default and transferred parameter sethofigh SWAT performed better with the
transferred parameteiSys is negative and mass balance error is above 5@¥auld parameters
resulted in a much lowetys value (compare -2.07 to -0.21). Although, to s@xtent we

expected low performance with the default paramseteving such low performance with the
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transferred parameters was surprising since wagdsshave similar physical and morphological
characteristics and are adjacent to each othee tat in spite of loviEns, R? is high. HighR?

with a lowEns means simulated values have the same trend wsiiredd values in time, but at

a disproportionate rate. In other words the moygstesnatically over/under predicts the observed
data. In this case, it is an over prediction.

Sometimes when models are run outside their caldm/@alidation periods, changing LULC
may result in poor model performance. Model wasupatising LULC map of 2005, but the
simulation period was extended to 2009. If LULCroted significantly from 2005 to 2009, then
model performance should deteriorate over time. éi@x, LULC didn’t change much in that
period. We also run SWAT with LULC map of 2008 axmipared the daily simulation results
to the ones obtained with 2005 LULC. No significdifterence was detected between the two
daily simulation results.

Based on above findings it is seen that parameetesfierring improves the predictable
capabilities of the SWAT model in the study ara#, ot necessarily at the desired level.
However, we calibrated and validated the model adeng time period (5+5 years) and tested
the model with transferred parameters over a gferod (~2 years). Whether the model
performs well at the donor watershed during thertgperiod 10/2007 - 09/2009 is not clear.
Note that although the validation period includeid period, the length of the validation period
(5 years) along with higher flows during the fiystar (2005) could potentially hinder the model
performance in the testing period. If the modelncdraccurately predict flow in this specific
period at the donor watershed, then the probldmeysnd parameter transferability. Indeed,
model performance in Magnolia River watershed dytinis testing period is not good at &f,

Ens andMBE for daily streamflow are 0.45, -0.21, and 48%pestively, quite similar to what
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we attained in Wolf Bay watershed with the transf@mparameters. Exchanging the roles of
donor and target watersheds, that is calibratiegWAT model at Wolf Bay watershed and
transferring the calibrated model parameters torddag River watershed, resulted in a different
story. Daily model performance statistics for tlegipd 10/2007 - 09/2009 w&€=0.63,Ens=

0.62, andVIBE=-2.5% at the calibration ariRf=0.54,Exs= 0.51, andMIBE=12% at the test
watersheds. This is a substantial improvement theepreviously reported values based
calibration at Magnolia River watershed. Thereftransferring parameters from neighboring

watersheds indeed improves the predictive powénemodel.

Effect of parameter transferring on hydrologic responses

In previous section we showed that transferredmatars increase model reliability as
opposed to using model default parameters. Herexpilore the implications of this on
hydrological responses. Monthly flow simulationuks using default and transferred parameters
are shown in Fig. 4. Visually there are no sigaifitdifferences. The two-sample Kolmogorov—
Smirnov (K-S) test, which is sensitive to differesan both location and shape of the empirical
cumulative distribution functions of the two sangles employed to compare the two
streamflow time series. The K-S test indicatedigaicant differences (p=0.482) in simulation
results of monthly flow due to use of two sepapEiEameter sets. However, at the daily time
scale there are striking differences. As shownabl& 7, two specific years, 2000 and 2005 are
selected to represent dry and wet conditions, adsfedy. The K-S test is employed to check if
there are any significant changes in the time saixained by the two parameter sets, both at

daily and monthly time scales. Again, no significdifferences exist at monthly time scale, both

16



in dry and wet years (p=0.518 and 0.848, respdgjividowever, if the simulation scale is
changed to daily step, significant differences ajppe both years (p<0.0001 in both).

FDCs for these two years and the whole 10-yealedexere also compared (Fig. 5a-c).
Differences are evident at high and low flows, regss of dry or wet year. Note that
simulations with default parameters always resultgaigher flows at low exceedance
probabilities (<1%). Being in a wet or dry year diok change the fact that if default parameters
are used in predicting high-flows we will end upeopredicting the flow. Similarly, default
parameter set consistently generated lower floas transferred parameter set when probability
of exceedance was larger than 3% during both diyaet years. Similar results were obtained
when the FDC for the whole period was consideredfalit parameters always resulted in

higher flows at low probability of exceedance amdér flows at high probability of exceedance.

I mpact of LULC change on hydrologic responses

Table 8 shows the LULC distributions in 1992 an020~rom 1992 to 2005 percent forest
cover has been reduced by 9%. On the contrary,udian land has increased by almost 20%.
Pasture has been lost to agricultural fields sgcéoa farming, and low density residential areas.
Same climate data and parameter set (the oneatalibn Magnolia River watershed) were
utilized as model inputs to run SWAT with both 198#1 2005 LULC maps. Simulation results
for flow for each year are summarized in table &. €ach year, we tabulated annual maximum,
minimum and mean daily flow values obtained withLU@Jof 1992 and 2005. The relative
change in mean annual flow due to LULC change sHithesvariation. Although change in
LULC did not have a big impact on streamflow, ifieated the partitioning of streamflow to

baseflow and surface runoff as evidenced by chaimg@snual maximum and minimum flows.
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In every single year annual minimum flow was présticco decrease due to LULC change with a
range from -16.8% to -36.9%, and an average of7929Annual maximum flow appears to be
most sensitive to LULC changes. It is estimateth¢oease by 40.6% to 115.3% with an average
of 58.0%. Similar results are found in other stadeg. Kauffmamt al. 2009, Rose and Peter
2001). Fig. 6 shows the variation in average mgrgtheamflows before and after LULC
changes. Flow was predicted to increase as mutB%sduring the summer months of June
through September, which is the growth season tvarighest ET rates.

Note that most of the increase in urban land wdsrim of low density residential areas
(Table 8), which are only partially covered by impeus land. SWAT assumes that parts of
urban areas not covered by impervious surfaceBaaraudagrass. Based on SWAT database,
maximum LAl for forest is 5, while for bermudagrass 4. Thus, forest to grass conversion
does not cause significant change in ET. Over thelevsimulation period, SWAT predicted
about 20% less ET from grassland compared to feddanhd. Estimated annual average ET over
the whole watershed based on the 1992 and 2005 W€ 457 and 435 mm, respectively (~
5% reduction). Low and high density residentiabarbave on average 12% and 60%
imperviousness, respectively, according to the UEofA Conservation Service (SCS)
classification. Thus, the total increase in peragatof impervious areas from 1992 to 2005 is
only 2.95%. Since LULC from 1992 to 2005 did noarbe uniformly over the whole
watershed, it is not reasonable to try to explaendlterations in flow and ET purely by changes
in forest cover and urban land use. Note that fi@®2 to 2005 pasture had also decreased by
28.3% and agricultural land increased by 15.5% rd&foee, there is a compound effect of all

these mixed LULC changes.
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I mpact of parameter transferring on modeling LULC change

Fig. 7a-c show the FDCs of daily flow simulationghe Wolf Bay watershed obtained with
each of the three parameter sets (default, traresférom Magnolia River watershed, and the
calibrated set in Wolf Bay watershed) and with1882 and 2005 LULC maps. In each figure
there are clear differences in FDCs generated themtwo LULC maps. Although the scales
differ, FDCs with default parameters look similarRDCs with transferred parameters (Fig. 7a-
b). In both cases, the flow with LULC 2005 is higtiegan the one with LULC 1992 in the
exceedance probability below 10%, and the relakignis opposite above 10%.When the
calibrated parameters are used, flows based onl19BZ never seem to exceed flow based on
2005 LULC (Fig. 7c).

To get a better insight into the effect of parameétion on the differences in FDCs due to
LULC changes, relative difference in FDC, i.e. (JEDBf 2005 LULC] — [FDC of 1992 LULC]) /
[FDC of 1992 LULC], were depicted in Fig. 8. Treratg similar in all three. Moving from left
to right, i.e. from low to high probability of exedance, the relative differences in flow due to
LULC change (from 1992 to 2005 conditions) increasgl around 1% and stays at that level
until 2%. Thus LULC change has the largest impacti@vs with 1% exceedance probability.
As flow gets larger (probability of exceedance <)1Be impact of LULC change is gradually
reduced. Beyond 2% all three parameter sets exd#diarp drop and reach a plateau again. With
the default and transferred parameter sets, thévelchange in flow becomes negative around
7-10% exceedance probabilities and stays negagiyertal that point, mostly in the -15% to -
20% range. On the contrary, with the calibratecpeater set relative change in flow becomes
negative around 20% exceedance probability and stegative until 60% exceedance

probability. Except for a short duration, the redatchange in flow during this period is around
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2%. Beyond 60% exceedance probability all the patansets show increase in relative change.
In short, Fig. 8 reveals very interesting factsst-ithe choice of the parameter set in

simulating LULC changes does not seem to play adiein relative changes of flow (it does

for absolute flows). Although there are differenasethe FDCs, trends are mostly consistent and

the differences between them are not major. SegphtlLC change influences most of the flow

in a quite steady and moderate manner. Flows witbIprobability of exceedance appear to be

most sensitive to LULC changes.

SUMMARY AND CONCLUSIONS

In this paper we explored how transferring modeépeeters from a neighbor (donor)
watershed to a target watershed affects modelingd.thanges. The regionalization based on
spatial proximity method was employed to trandhermodel parameters from the donor
Magnolia River watershed to the target Wolf Bayewvsied. For this purpose SWAT model was
first set up and calibrated in the Magnolia Rivetevshed which has 10 years of continuous
measured flow data. Calibrated model parameters then transferred to the Wolf Bay
watershed, which at the start of study had no fiata. Model performances were compared
when two different parameter sets are utilized: SWdkfault parameters and transferred
parameters. About 22 months of measured flow de¥dolf Bay watershed that later became
available was used for that purpose. Transferreanpeter set resulted in a slightly better model
performance than the default parameter set, buatr@tdesired level (both had negativg)E
The low model performance was due to the factulign using a long period of data in model
calibration the emphasis is on the whole periodtaednodel performance may not be up to the

desired level in some subsections of the entire period. Hence, extension of parameter
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transfer from donor watersheds through long terlibi@dion to target watersheds for short term
predictions requires extra caution, and most liketg versa.

Flow duration curves (FDCs) are effective toolyisualizing the whole flow range. We
created FDCs to get a better insight to the impaickoth LULC change and parameter
transferring. Simulations with default parametdvgags resulted in higher flows at low
probability of exceedance (<1%). On the contragfadlt parameter set consistently generated
lower flows than the transferred parameter set wirebability of exceedance was > 3%,
regardless of dry or wet year. Similar results waywained when the FDC for the whole period
is considered. Default parameters always resuttéuigher flows at low probability of
exceedance, and lower flows at high probabilitgxdeedance.

Two LULC maps from 1992 and 2005 were utilized $sess the effect of parameter
transferring on modeling LULC changes. The 2005 Ohad about 20% more urban classified
land than the 1992 LULC. However, the estimatedigkan impervious cover from 1992 to
2005 was only 2.95%. Average streamflow was onghdlly affected by LULC changes.
Maximum and minimum annual streamflows were foumte very sensitive to LULC changes.
Annual minimum streamflow decreased moderatelyamial maximum streamflow increased
substantially due to LULC change. Again FDCs werealioped out of model generated daily
flows based on 1992 and 2005 LULC maps. This wae dor each of the three parameter sets:
default, transferred and Wolf Bay calibrated. Télative changes in FDCs due to differing
LULC showed a similar pattern with each paramegérrelative change was highest at 1-2%
exceedance probability. The impact of LULC changeimished gradually as the event sizes got

smaller beyond the 2% probability of exceedance.
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This study clearly showed the benefits of usin@dieim nearby watersheds to improve
model performance under limited data conditionthenstudy watershed. The analysis car
out in this study further suggest thhe choice of the parameter set, whether it is diefaodel
parameters or transferred from a donor watershdg,las a marginal effect on modeling-

impacts of different LULC scenaric
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Table 1. Physical similarities between Wolf Bay anélagnolia River watersheds

Physical characters  Wolf Bay = Magnolia

Min elevation (m) 0 6
Max elevation (m) 34 36
Mean elevation (m) 16.65 25.31
Area (knf) 126.04 44.82
Rural area 2005 (%) 72.8 73.65
Urban area 2005 (%) 27.2 26.35
Soil Clay (%) 8.61 12.33
Soil Silt (%) 18.40 24.24
Soil Sand (%) 72.99 63.43
Mean slope 1.88 1.42

Table 2. Calibrated SWAT parameters (flow part) andtheir default values

Curve Soil ESCO surlag revapmn Alpha_BF Manning's

Number AWC n
Default Varies* Varies** 0.95 4 10 0.048 0.014
Calibrated 3 -0.01 1 1 500 0.015 0.114

* Varies by soil type and LULC
** Varies by soil type
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Table 3. Model performance (flow part) at MagnoliaRiver watershed

R Ens MBE (%)
Monthly streamflow
Calibration 0.84 0.82 -7.1
Validation 0.80/0.78* 0.65/0.74*  -2.0/4.7*
Monthly surface runoff
Calibration 0.88 0.83 3.6
Validation 0.83 0.68 -4.8
Monthly baseflow
Calibration - - -13.4
Validation - - 0.4
Daily streamflow
Calibration 0.51 0.50 -7.1
Validation 0.45/0.54* 0.39/0.54*  -2.0/4.7*

* Model performance after removing the extreme ¢wn04/01/2005

Table 4. Model performance (water quality part) atMagnolia River watershed

R Ens MBE (%)
Monthly TSS
Calibration 0.90 0.85 8.7
Validation 0.93 0.88 -2.2
Monthly Min-P
Calibration 0.95 0.86 9.4
Validation 0.87 0.77 -21.3
Monthly Org-P
Calibration 0.97 0.95 15.7
Validation 0.78 0.76 -1.8
Monthly Org-N
Calibration 0.93 0.92 -11.6
Validation 0.66 0.61 -7.4
Monthly Min-N
Calibration 0.74 0.60 -14.8
Validation 0.87 0.85 4.7
Monthly TP
Calibration 0.96 0.89 11.0
Validation 0.86 0.80 -16.7
Monthly TN
Calibration 0.75 0.62 -14.5
Validation 0.88 0.86 4.5

TSS: Total suspended solid
Min: Mineral nutrient
Org: Organic nutrient
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Table 5. Calibrated SWAT parameters (water qualitypart) and their default values

BC4 PSP PHOSKD BCl1 PPERCO RS5 AGRRC Sol_minP

Default  0.35 0.4 175 055 10 005 03 5
Calibrated 0.1 07 200 1 17.5 01  0.055 3
PRF BC3 P_UPDIS BC2 NPERCO RS4 RCN Mgt for AGRR
Default 1 021 20 1.1 0.2 0.05 1 A“;Z;fﬁir']iﬁe'
Calibrated 0.6 04 100 2 1 0001 2 Cotton peanut

rotation, date

Table 6. Model performance at daily time scale in WIf Bay watershed

Default Transferred Calibrated
Parameters Parameters Parameters
MBE(%) 0.478 0.516 -0.025
R 0.536 0.637 0.63
Ens -2.067 -0.208 0.618

See text for explanation of terms

Table 7. Kolmogorov—Smirnov test for daily and monily simulated streamflows generated
with different parameter sets.

Kolmogorov—Smirnov test

car KSa KSa Daily average  Daily Max
y daily p-daily monthly p-monthly rainfall (mm) rainfall (mm)
(233()) 11.421 <0.0001 0.816 0.518 1.1 192.8
2005 2.924 <0.0001 0.612 0.848 4.8 50.5
(wet)

The significance of KSa is 0.95
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Table 8. Land use/cover (LULC) change in Wolf Bay atershed

Land Use 1992(%) 2005(%) Change(%)
Forest 29.80 20.70 -9.10
Hay 41.20 12.90 -28.30
Wetland 11.20 13.40 2.20
Agricultural 13.30 28.80 15.50
Residential low density 3.50 21.60 18.10
Residential high density 1.10 2.40 1.30

Table 9. Annual statistics of streamflow under diferent LULC conditions

Maximum flow (n?s?) Minimum flow (n’s?) Mean flow (nfs?)
Year 1992 2005 Change(%) 1992 2005 Change(%) 1992 2005 Change(%)
1999 7.26 11.74 61.7 0.266 0.194 -27.2 0.835 0.793 -5.01
2000 1.15 2.48 115.3 0.071 0.054 -24.6 0.175 0.193 10.08
2001 1.30 2.67 104.7 0.127 0.105 -16.8 0.255 0.253 -0.65
2002 14.25 21.67 52.1 0.078 0.062 -20.1 0.428 0.509 18.80
2003 8.53 13.63 59.8 0.317 0.243 -23.3 1.003 1.036 3.32
2004 11.30 17.66 56.3 0.438 0.276 -36.9 0.876 0.901 2.85
2005 18.09 25.43 40.6 0.529 0.411 -22.4 1.247 1.213 -2.78
2006 2.81 5.48 95.0 0.196 0.138 -29.3 0.458 0.481 5.19
2007 8.40 13.70 63.1 0.250 0.175 -29.9 0.592 0.620 4.63
2008 4.21 6.94 64.9 0.515 0.331 -35.8 0.855 0.866 1.33
2009 484 8.41 73.8 0.510 0.327 -35.9 0.799 0.810 1.38
Mean 7.47 11.80 58.0 0.300 0.211 -29.7 0.684 0.698 1.98
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Chapter II
Responses of Hydrological Processes and Water Quglio LULC and Climate Change in
Wolf Bay Watershed, Southern Alabama
ABSTRACT
Land use/cover (LULC) and climate change are twnifectors affecting watershed
hydrology and water quality. In this chapter, theividual and combined impacts of LULC and
climate change on flow and water quality were anatypby SWAT model by simulating the
future changes under different LULC and climatengeascenarios in the Wolf Bay watershed.
Global Circulation Models (GCM) predict slight iease in precipitation in the Wolf Bay
watershed, which is projected to experience subatancrease in urban percentage in the
future. A redistribution of daily streamflow isqpected when either climate or LULC change
was considered. High flows are predicted to inaeashile low flows are expected to decrease.
Combined change effect results in more noticeabéyen distribution of daily streamflow.
Monthly average streamflow and surface runoff agggeted to increase in spring and winter,
but especially in fall, under normal future climatnditions. LULC change does not have a
significant effect on monthly average streamflowt &ffect partitioning of streamflow, causing
higher surface runoff and lower baseflow. Combia#dct led to more dramatic increasing trend
in monthly average streamflow with a stronger iasieg trend in surface runoff and decreasing
trend in baseflow. Monthly distribution and progdtvariation of TSS followed the pattern of

flow. Monthly distribution and projected variatioh nutrients are complicated, which are
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influenced by flow as well as management practisesh as tillage, fertilization and harvesting.
Under the climate change scenarios, the variatidriNoand TP generally followed the trend of
flow. No significant difference in N:P ratio wasgpected. Under the LULC change scenarios,
TN was projected to decrease for all months, wiiaghduced by shrinkage of croplands. TP
was projected to increase in fall and winter, simd®n areas are also source for TP. The N:P
ratio showed a strong decreasing trend with LUL@ngeslUnder the combined change
scenario, LULC and climate change effect were aersid simultaneously. Results indicate that
if future loadings are expected to increase/deeraaser either climate or LULC change
scenarios, combined change scenario intensifiegrérad synergistically. On the other hand, if

their effects are in opposite directions, thendbbined change has an offsetting effect.

INTRODUCTION

Alteration in flow regimes and water quality deteation due to land use/cover (LULC) and
climate change are of great concern all over thedvbULC changes, mostly caused by human
activities including changes in vegetation typed, groperties, land use practices and spatial
patterns of interactions among these factors, affater quantity and quality, often negatively.
Many studies have been conducted to explore ttoagtnfluence. Zhang and Schilling (2006)
found that conversion of perennial vegetation &ssaal row crops in the Mississippi River
basin has partly contributed to the increasingdreibaseflow and streamflow. Ouyaeical.
(2010) studied soil erosion dynamics in respondartdscape pattern and found that landscape
pattern plays an important role in soil erosiorr. iigtance, smaller patch size and more patch

edge led to lower sediment loads in grasslands.
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The most commonly observed LULC change is duelianization, which has been
intensively studied in recent years. Urbanizateadk to an increase in impervious areas which
decrease the amount of water that infiltrates théosoil. Thus, while baseflow contribution to
streamflow reduces, runoff increases, which resaltaore frequent and intense flooding (Rose
and Peter, 2001; Huamgal., 2008). Urbanization also affects water qualityexdely. It causes
increase in sediment and nutrient loads, heavyls)dtlmoming of toxic algae which can reduce
dissolved oxygen levels in waters (Ba#trael. 2008; Susanet al. 2008). Kimet al. (2002)
modeled the changes in average annual runoff dugbimization in the Indian River Lagoon
Watershed of Florida. They found that the averagwial runoff increased by more than 113%
between 1920 and 1990. Ouyast@l. (2006) assessed the impact of urbanization om weager
quality in the Peral River delta zone, China. Theynd that urbanization and urban activities
had a significant negative impact on the river watelity with significant increase in nutrient
loadings and turbidity.

Studies show that climate change leads to inteagifin of the global hydrological cycle and
has a major impact on regional water resources;iwdiifects both the distribution and
availability of water resources and in turn inflaes processes controlling water quality, such as
erosion, sediment transport and deposition, sgtdimutrient and pollutions (Dam, 1999; Oki
and Kanaet al., 2006; Konikow and Kendy, 2005). Not only deteaitton in water quality is a
problem by itself, but also it contributes to thelgem of water scarcity. Fickliet al. (2009)
assessed the climate change effect on San JoaglleyWatershed in California and found that
under future scenarios, streamflow will increas@By6%. Marshall and Randhir (2008)
investigated the effect of climate change in ther@&zticut River watershed, New England, by

employing two downscaled GCM model outputs. Thaynfbthat due to warming in climate
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water storage will decrease during the winter menthhey further predicted increased sediment
loadings in summer months in spite of a declinsurface runoff rate. This was because of
antecedent moisture conditions, variability in seelnt transport capacity resulting from soll
characteristics, and detachment process causeigtwriprecipitation. N:P ratio was projected

to increase, resulting in the watershed becomingemirogen limited. Cruiset al. (1999)

coupled the United Kingdom Hadley Center climatedeiavith a regional stochastic approach
and a physically based soil moisture model in theleastern U.S. Results of their study
revealed that several basins located in regiomstense agricultural activity or in proximity to

the gulf coast are projected to have reductiorireasflow over the next 30-50 years, thus
exacerbating water quality problems, such as hifgbgen concentration levels.

From the past studies it is obvious that both LUHI@ climate change play key roles for
water resources and water quality, yet their coetbieffect and relative importance is still not
very clear, difficult to separate empirically, araties from case to case. Several studiest(Qi
al., 2009; Liuet al., 2010; D’Agostincet al., 2010) explored the combined effect from both
LULC and climate change. Mangbal. (2010) used modeling to determine the impacts of
LULC and climate change scenarios on the waterdfutke upper Mara River, Africa. They
found that deforestation resulted in a slightly enerratic discharge while rainfall and air
temperature changes had a more predictable impatteadischarge and water balance
components. Guet al. (2008) studied the combined effects of climate BddC change to
hydrological processes in Poyan Lake basin, Chihay found that climate change is more
likely to alter annual streamflow, while LULC chamay have a moderate impact. Both of
them strongly influenced seasonal variation inastrfow. Olivera and Defee (2007) studied

urbanization effects on a 223 kmvatershed located in the northwest suburbs of tdoud X.
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They found that runoff depths and peak flows hanedased by 146% and 159%, respectively,
since early 1970s. Urbanization was responsibl@786 and 32% of the increase, respectively,
while variation in precipitation accounted for tleenaining increase of 69% and 127%.

As a valuable tool for studying the processes gumgrimpacts of climate and LULC change
on water quantity and quality, modeling is an irgmely probabilistic exercise (Praskievicz and
Chang, 2009). Generally, there are three diffeaspects of uncertainty in assessing impacts on
hydrology and water quality. The first source o€ertainty is from future climate. This could
come from (i) choice of the Global Circulation Mé&l€GCMs) and future greenhouse gas
emissions scenarios, and (ii) representation ofatiblogy at regional scales, including
differences between dynamical and statistical doatirsg methods. The second source is
associated with future LULC conditions, which atgte hard to predict and are often affected by
land use policy, economic development, populatrmngasing rate and natural environment.
The third source of uncertainty stems from hydradagodels, such as model parameter
estimation and model structure, like mathematiepte@sentation of the physical processes,
which require many assumptions and simplificatiédheen projecting the impacts from
potential future changes, uncertainty is inevitabsld amplifies at each stage of the modeling
process. Therefore, addressing uncertainties stegifroam modeling potential LULC and
climate change impacts and their combined effeessential.

Although there are several studies in the litemtacusing on the combined effects of LULC
and climate change on water quantity/quality, tieiving research gaps remains still exist:

1. Most of the previous studies are confined inasgect of water quantity (M#al., 2009;

Li et al., 2009; Cucet al., 2009), with few studies addressing the effecboth water quality and

guantity. Those studies concerned with the combeftstts of climate and LULC change on
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sediment or nutrients involved very limited wateality indices. For example, Tu (2010)
assessed the seasonal distribution and annualgageo@ nitrogen loadings in eastern
Massachusetts, USA. Similarly, Asselnaal. (2003) estimated the potential effects of climate
combined with LULC changes on the mobilizationiokfsediment and the net transport of wash
load from the upstream basin to the lower Rhinégadélowever, influences on nutrient were not
stated in their paper.

2. Compared to future climate change scenariog;iwisually contain various GCM outputs
under different green house gas emission scen&atilsC change scenarios are too simplistic
and do not consider the factors affecting LULCrdes, such as land use policy, economic
development, and natural environment. For exanidetenegro and Ragab (2010) explored the
hydrological response of a Brazilian semi-arid batent to combined effect of LULC and
climate change. However, their land use changeasicewas hypothetical and overly simplified,
replacing different amounts of catinga forest va#stor beans.

3. The uncertainties of model results are not featierily addressed in most of the studies.
As stated before, the uncertainty in the model @udpiginates from many sources. Some studies
only acknowledged the uncertainty caused by clinrgiats. For example, Wilbst al. (2006)
studied climate change impacts on water resour@svater quality in a British lowland
catchment by 3 GCMs and 2 green house emissiomsosnTheir results confirmed the large
uncertainty in climate change scenarios and fremimpacts due to the choice of GCM.
However, there are limited studies dealing withuheertainties from climate combined with
LULC change.

In this study, a process-based hydrologic and watality model, Soil and Water

Assessment Tool (SWAT) was utilized to simulatevilsediment and nutrient (N and P)
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loadings under future climate and LULC conditiondVolf Bay watershed, which drains to the
Gulf of Mexico. The specific objectives are: (1)eplore the hydrologic and water quality
responses to combined effects of climate and LUh&nhge, (2) to examine whether climate
change exacerbates or offsets the impacts of LUlabhge and vice versa. Uncertainties caused

by climate and LULC change are also analyzed foh bbjectives.

METHODOLOGY

Study Area

Wolf Bay and its watershed (Fig. 1) is located lo& Gulf of Mexico in Baldwin County,
Alabama, nestled between Pensacola Bay to thewedd¥lobile Bay to the west, with a
watershed covering about 126 kms an estuary where freshwater and saltwater imixeates
a diverse environment that fosters a rich arrgglafit and animal life, including several
federally listed species, such as bald eaglesustes, Gulf sturgeons, American alligators and
Eastern indigo snakes. Wolf Bay and its surrounéiaters are the most pristine estuarine
waters in Alabama, which was granted “OutstanditapAma water” status by Alabama
Department of Environmental management in ApriD20The beautiful waters attract many
people to coastal Baldwin County, contributing ¢iseto the economic base of coastal
communities through tourism, commercial and reaeat fishing and aquaculture.
Wolf Bay watershed is primarily rural, but sevaralnicipalities exist including Foley, Elberta,
Gulf Shores, and Orange Beach (Fig. 1). The basmeigtes various nutrient and sediment
inputs from several sub-watersheds through WolhdgaMiflin and Hammock creeks, which

finally drain to the Wolf Bay. Alteration in vegéitans, management practices of the watershed
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can change hydrology and water quality, and in tam significantly affect the water resource
and ecologic health of the bay.

Baldwin County experienced a 43% increase in pdajaudrom 1990 to 2000. As a result of
this population growth, there has been an incredsathnd for commercial, residential, and
infrastructure development, thus bringing growtmagement issues to the forefront for local
elected officials. One of the more visible chanigethe landscape of Baldwin County is the
rapid transformation of agricultural and forestadds to residential development. Such LULC
change is deemed to affect water quantity and yyaually negatively. Considering the
potential climate change effects, the situatiorob@es more complicated. Their potential effects
can be reflected in:

(1) Water quality: Increased soil erosion can changesttoreline from sandy to muddy,
which could destroy the fish stock and damage #mhos and habitats. Increased turbidity also
degrades the ecosystem by decreasing the lightbleafor photosynthesis. Further, excessive
nutrients can lead to water quality degradationgciviheduce dissolved oxygen, causing hypoxia
or anoxia. This may destruct the whole ecosystemldgming harmful algae and therefore
causing massive fish Kills.

(2) Water quantity: Due to climate and urbanizatioms génticipated that peak flows will
increase and dry season flows will decrease, thasegbating flooding in wet seasons and
droughts in dry seasons. This will also affect watgality indirectly. For example, if the estuary
is slowly flushed, the extra load of nutrients gdlutants will cause degradation in water
quality, ecological services and biodiversity. Alflactuations in freshwater discharge to the bay

affect the salinity of water, which affects the lie@nd incubation of fishes. For example, a
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slight change in salinity can cause fish, frogloirap eggs to float too much (high salinity) or
not enough (low salinity), thus reducing or elinting their chances of development into adults.
Because of all these, we found a unique opportuaistudy the potential impacts of LULC
and climate changes on hydrologic responses arel waality in the Wolf Bay watershed.
Findings from this study should benefit local staddeders and decision makers in the Wolf Bay

area.

Watershed model

The Soil and Water Assessment Tool (SWAT) versiod=2(Neitsch et.al, 2005) was used in
this study. SWAT is one of the most widely used eisdor assessing the impact of
management practices and land disturbances onskatéresponses, and has a solid track record
of applications (Kalin and Hantush, 2006 ; Gul &wakbjerg, 2010; Pisinaraseétal., 2010).
SWAT has been widely used around the world, suchNasia catchment, Kenya (Githetial.,
2009), Rocky Mountain Watershed, Montana, USA (&fdl., 2008), Kielstau catchment in
North German lowlands (Laset al.,2010), etc., to assess various impacts of adguill
practices and land use activities on water quaatty quality. SWAT is also suitable for coastal
and flat areas, which has more complicated geodiggic conditions (Wu and Xu, 2006).
SWAT is a distributed, process-based watershed mibde partly physical-based with number
of empirical relationships. The physical backbohthe model facilitates the interpretation of
model parameters whereas the empirical simplificestikeep data requirements low compared to
fully physical based models (Heuvelmans, 2004). SVdivides a watershed into several
subwatersheds based upon drainage areas of tbatids. Each subwatershed is split into

multiple hydrological response units (HRUs) based. OLC and soil types. Each HRU is

a7



assumed to be spatially uniform in LULC, soll, tgpaphy, and climate. SWAT simulates eight
major components: hydrology, weather, sedimenttsgiperature, crop growth, nutrients,
pesticides, and agricultural management (Neieseh., 2005). Major hydrologic process that can
be simulated by the model include evapotranspmasarface runoff, infiltration, percolation,
shallow aquifer and deep aquifer flow, and chanoeting (Arnoldet al., 1998). Erosion and
sediment yield are estimated for each HRU withNteelified Universal Soil Loss Equation
(MUSLE) (Williams, 1975). Sediment routing is alsonsidered based on deposition and
degradation processes. SWAT also tracks the moveanentransformation of several forms of
nutrients (phosphorus and nitrogen) in the soitridat may be introduced to the main channel
by surface or subsurface runoff, nutrient routinghie stream is then controlled by the in-stream
water quality component adapted from QUALZ2E (Braand Barnwell, 1987). Detailed

description of processes modeled in SWAT can bedon Neitschet al. (2005).

LULC data

In order to explore the LULC change effect on hyolyg and water quality in the Wolf Bay
watershed, present and projected LULC maps aresde&t)LC map circa 2005 is used to
represent the current period. It is a vector dai@sained by trend analysis from Baldwin County
Planning Commission. This vector dataset is focusedhanges in urban and built-up areas,
utilities, and transportation from 2001 to 2005dzhen Color Infrared imagery 2001 and 2005
for the whole Baldwin County. Using this trend neega reference, GIS specialists at Auburn
University improved its accuracy and produced LUh&p of 2005. This map is a product of an
interdisciplinary project “Impact of Human Actiwas and Climate Change on Water Resources

and Ecosystem Health in Wolf Bay Basin: A Coastalgbostic and Forecast System (CDFS)
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for Integrated Assessment”. Based on this map, \Ba\f watershed is dominated by agricultural
land (30%) followed by urban area (26.4%) and fof28.9%). High percentage of urban area
and crop land is due to conversion from forest @asture land in the past 10-15 years.

Future LULC of the Wolf Bay watershed was projeddgdnembers of the same
interdisciplinary project at Auburn University. Thdeveloped an advanced LULC model by
linking GIS techniques and remotely sensed imagestiog a hybrid model. The predicted
LULC change is driven by land demands, physicaperties such as topography and distance to
major facilities, and disturbances such as extrelmeate events (hurricanes, storms and
droughts). The LULC prediction model can simplydascribed as:

LULC = f(land demand, spatial allocation, random)
Land demand = f (population, economy, land policy, energy price)

Spatial allocation
= f(topography, land price, distance to highways, shoreline, roads, rivers, the city proper)

Random = f(hurricane, storm,rising sea level)

Based on this modeling framework, historical LUL&alsets and the derived spatial data
sets from DEM and survey data were used to genpralieninary simulation results on the
projected urban distributions from 2008 to 2040itHthe validated LULC model and relevant
data sets, projected urban expansions with diftggepulation growth scenarios are provided.
Three LULC scenarios (Fig. 2) were generated f@&02&ssuming high, medium and low
population increasing rates (HPR, MPR and LPR)hEigoopulation increase rate causes higher
urban fraction and vice versa. Compared with tlestmecent land use map of 2005, there is a
clear trend of urban sprawl. Even with the leagfragsive growth scenario, 50% of the
watershed is projected to be urban land in 2030I€Td). Other LULC types are projected to

decline by 2030 owing to the urbanization effectt €&xample, by comparing LULC map of

49



2005 with LPR future projected map of 2030, thedewt increase of urban area (around 25%) is
mainly contributed by decreases of forest, agnicaltand, wetland and pasture. The percent
reduction in forest cover is around 5%, which doetsrepresent a typical deforestation trend in
future. The disparity in some of the LULC types angohe three projected LULC maps of 2030
is not so significant, especially for forest, pastand wetland. The main difference is in
percentages of urban and agricultural land. Higlogulation increase rate causes higher urban
fraction and lower cropland percentage. For exanpgincrease of urban fraction is 25%, 32%
and 39% for LPR, MPR and HPR, respectively whikerdductions in cropland are 5%, 10%

and 15%, respectively.

Climate data
Monthly precipitation and temperature for future scenarios

In order to demonstrate the variability of fututenate, outputs from four Global Circulation
Models (GFDL_cm2_0 (Delwortét al., 2006), GISS_model_e_r (Russetlal., 2000),
NCAR_ccsm3_0 (Collinst al., 2006), UKMO_hadcm3 (Gordast al., 2000)) under 3 green
house gas emission scenarios (A2, A1B, B1) welzedi to attain potential monthly
precipitation and temperature estimates in the \Balf watershed for the period 2016-2040.
This corresponds to a 25 year period, which is lemgugh to explore the potential responses
due to climate change. Further, the future LULC mBp030 roughly falls in the middle of this
time period, which presents a more realistic sefouexploring the combined effects of climate
and LULC change.

All climate projections were provided by "the Wofldimate Research Programme's

(WCRP's) Coupled Model Intercomparison Project pf&aéCMIP3) multi-model dataset" which
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was referenced in the Intergovernmental Panel ana@é Change Fourth Assessment Report.
CMIP3 data is bias-corrected and spatially dowresthly Maureet al. (2007) to a finer spatial
resolution (1/8 degree). Spatially downscaled migntinfall and surface air temperature data
(available at: http://gdo-dcp.uclinl.org/downscaledhip3_projections/) were further downscaled
to daily time scale as explained below.

Since there is no observed data for future scesagrmsuring the reliability of GCMs
projection is quite important. Generally, GCMs gisovide simulated precipitation and
temperature for historic periods, which should carepvell with observed climate data. In most
of the cases, those historic GCM outputs match witl observed data at large spatial scales
(e.g. global or continent scale). However, onceialpdownscaled, those products could
become quite different from historic data at smalmles, such as watershed level, which is
often the required scale for hydrologic modelingefiefore, even spatially downscaled climate
projections cannot be directly utilized as climiaigut for hydrologic modeling. Refinement of
those spatially downscaled data is often necessary.

The method recommended by Tusi@l. (2006) was used to determine monthly temperature

and precipitation for different climate scenarios:

T, =TP + (z] - ) (1)

P =P{ + (pl — 1}) (2)

whereT, andP, are mean monthly temperatuP€) and precipitation (mm) for future periods
(2016-2040)T? andP? are observed historic mean monthly temperafi@e4nd precipitation
(mm) for the baseline period (1984-2008);andp? are mean monthly temperature and
precipitation coming from GCM predictions for thaseline period ; anf{ andﬁ,f are GCM

projected mean monthly temperature and precipiteto appropriate future periods. The
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subscripk in each term represents the month. Note thatdyteriod spans from 1/1/2016 to
12/31/2040 and the baseline period spans from 98%/10 12/31/2008. Therefore, whike=1
represents Jan 1984 in the baseline period, iesgmts Jan 2016 in the future period. In other
words, there is a one to one correspondence betikeenonths of baseline and future periods.
For example, May 2020 in the future period corresisato may 1988 of the baseline period.
Equations (1) and (2) assume that the differeneeanthly averages of GCM projections
between the future and baseline periods are the sarthe change between observed historic
monthly averages and the future monthly averagesll¥, since there are 4 GCMs and 3 green
house gas emission scenarios, 12 groups of futarghty precipitation and temperature data

were generated.

Daily precipitation and temperature

Since SWAT simulates flow and nutrients at dailgeiscale, monthly climate projections
still need to be downscaled to daily time scalerater to study the climate change effects on
hydrology and water quality. Hence, SWAT model@csiastic weather generator, WXGEN
(Sharpley and Williams, 1990) was used to genetailg rainfall from monthly statistics, such
as mean monthly rain and number of wet days inrtfatth, etc, to downscale monthly
precipitation data to daily time scale. Those sta are often estimated from historic weather
records. SWAT has a built in database for suclssitzs compiled from long term NOAA
rainfall data. For the same monthly parametersthesagenerator may produce hundreds of
different daily rainfall patterns, which reflectsetvariation of daily rainfall. In general, 20 sits

the minimum number to obtain a representativeibigion of possible weather scenarios given
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the predicted probabilities (Neitsch et al., 200%)erefore 21 sets of daily rainfall patterns were
generated by WXGEN.

For a given montim, future daily precipitation was calculated asdols:

Tm,i
Ppni=

= _}l—x T X Py (3)

Whereny, is the number of days in a given monthin this study the total number of months is

25*12=300;i is any day in the given montR,, ; reflects projected daily precipitation of diay

the given montim; r,, ; is the generated daily rainfall for day the given montim by

WXGEN; Zl ! i 1S the total precipitation in the given momth B, is the future mean

monthly precipitation coming from equation (1). Grthere are 12 groups Bf for each month

m reflecting different combinations of GCMs and grems emission scenarios, and 21 sets of

Tm,; generated by WXGEN, in total, 12*21=252 sets ofydarecipitation data were generated.
Compared with daily variation of precipitation, whimay substantially affect flow and

water quality, daily temperature does not fluctuisatbstantially in a given month. In this study,

daily patterns of daily temperature were not geieeraather daily maximum and minimum

temperatures for future were estimated as follows:

Tmex = Thmex 4 (7] — zb) (4)

Tmin = hmin 4 (g — 7h) (5)

whereT ' andT,’,ﬁf” are respectively daily maximum and minimum tempees for future

period (2016-2040) of a given dajn a given montm; 7,.7*** andT,,7"" are daily observed
maximum and minimum temperatures, respectivelytferbaseline period (1984-20085; is
the mean monthly temperature from GCM predictiangtie baseline period; arigi is the

GCM projected mean monthly temperature for thertuperiod. Obviously, the number of daily

53



temperature patterns is consistent with the nurab&CM and green house gas emission
scenario combinations, which is 12 as stated bel@#tly, although each GCM under a specific
green house gas emission scenario have 21 seddypkecipitation patterns, it has only one set
of daily temperature pattern as SWAT input. Fotanse, SWAT simulated the GFDL_cm2_0
under A1B scenario 21 times with different daileg@pitation, but with the same daily

temperature data.

Model experiment set up:

The SWAT simulations were performed for two 25-ytawe periods. First one was the
baseline period, 1984-2008, for which calibration &alidation for flow, sediment and nutrient
were performed. Since there was no sufficient nrealsdata in the Wolf Bay watershed, SWAT
was calibrated and validated in the nearby dataMagnolia River watershed. Relevant model
parameters were then transferred to the Wolf Bagmshed (Wang and Kalin, 2010). This
method is called regionalization approach basespatial proximity and is widely used when
there is no enough observed data in a target West@t® ensure model reliability (Merz and
Bloschl, 2004; Oudirmet al., 2008; Reichét al., 2009). The second period is to simulate future
climate from 2016 to 2040, for which the 3 projectdJLC map and the 4 downscaled GCM
under 3 green house gas emission scenarios foatelioonditions were used. Parameter set was
assumed to be the same as the one used for tHenbgsiod. In order to detect the marginal
and joint effects of LULC and climate change, thpraach of one factor at a time was used (Li
et al., 2009). This approach changes one factor at avilmie holding others constant. We

designed the model experiments based on that,tlsenlbelow:
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) Baseline run: Most recent LULC map of 2005 and daily measuledate data (1984-
2008) from NOAA station at Robertsdale (Fig. 1) waed as SWAT input.

i) Only climate change effect: Current LULC map of 2005 and future daily climdtga
(2016-2040) downscaled from 4 GCM under 3 greersb@as emission scenarios were
used. Model had 4*3*21=252 ensemble of outputs.

i) Only LULC change effect: Three projected LULC maps for year 2030 and histo
climate data (1984-2008) from NOAA station at Rebdale were used as input.

iv) Combined change effect: Three projected LULC maps for year 2030 and itlaily
climate data (2016-2040) downscaled from 4 GCM uBdgreen house gas emission

scenarios were used. Model had 252*3=756 ensenfloletputs.

RESULTS AND DISSCUSSION

Climate change effects on precipitation and temperature.

Fig. 3 shows variations in average seasonal ptatipm and temperature for the future
period (2016-2040) relative to the baseline pe(idB4-2008). The horizontal axes in each
panel indicate changes in average precipitationlewlertical axes denote changes in average
temperature. The 12 dots in each panel correspmhd different future scenarios (4 GCMs*3
emission scenarios) with the cross indicating trexage of 12 scenarios. It is clear that future
climate predictions are quite different from eadtien, and the uncertainty range exhibit a
seasonality behavior. Based on Fig. 3, all futumgetions indicate a rising trend in temperature,
but distinct magnitudes are detected accordingas@ns. For summer and fall, the range is from
+0.4 to +2.0°C, while for spring and winter, the range is frof2to +1.6°C. Annual increase

of mean temperature varies from +0.4 to T4 Precipitation has a different pattern than
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temperature. Although there is no clear trend ofease or decrease in average monthly
precipitation for spring, summer and winter, in,fall of the 12 scenarios show increase in
precipitation, with an average of 10% for fall miesit This is potentially a good thing as fall is
typically the driest season in the Southeast Ut3hé& annual scale, 8 of the 12 future
projections predicted increase in precipitatiorpragimately 4% on average. Generally, based
on Fig. 3, Wolf Bay watershed will more likely exjgnce increased precipitation in future,
especially in fall months. Temperature is expetteiticrease for all seasons, especially in
summer and fall.

Fig. 3 provides some general information aboutpthiential changes in precipitation in the
future in the Wolf Bay watershed, such as averagesseasonal differences. However, the
change in frequency and magnitude of daily raingatiot shown. Fig. 4 reflects exceedance
probabilities for daily precipitation, which prodad more insight. Probability of exceedance (PE)
in the figure reflects the possibility of havingnall amount of that magnitude or higher in a
given day. Therefore, what is shown in the figuiee @mplimentary cumulative distribution
functions (CCDF). Out of the 252 complimentary Cfemerated from 252 sets of future daily
precipitation data, Fig. 4 shows only thé"agd &' percentiles (90% confidence interval).
Median of the CCDF'’s is also shown in the figutecdn be seen that the relative positions of
projected precipitation curves and baseline curfferd with PE. Baseline fluctuates around the
median curve when PE< 0.001, then falls below 0 8onfidence interval from around
PE=0.0015 to around PE=0.03. After PE=0.03, redgpi@sition of baseline is rising again until it
becomes higher than the upper limit around PE=0'hE means large rain events will be more

intense in the future. On the contrary, the ralnfaénsity of smaller events (PE<0.15) will be
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reduced. Combining Fig. 3 with Fig. 4 one can codelthat in the future there will be a shift in

rainfall pattern with large events getting moreeimge and smaller events becoming less intense.

Climate change effects only

SWAT was run at annual, monthly and daily time es&52 times to simulate flow,
sediment and nutrient loadings under future scesaFirom this ensemble of model outptfs 5
and 98" percentiles were calculated to represent dry agtccanditions, respectively, in future.
Median of the ensemble of model outputs was alsd ts represent normal conditions. Results

are discussed below.

Annual and monthly flow

The projected annual average daily streamflowHerftiture period was 3.19, 4.87, and
6.81n/s, under dry, normal and wet conditions, respebtivCompared to average daily
streamflow in the baseline period, which was 4.5%nit is hard to judge if there is an
increasing trend in average daily streamflow umaemal conditions. We conducted a t-test for
two independent samples between baseline groufutumg normal condition group. One-sided
p-value (pooled) of 0.16 indicates no significaifitedence between the two groups. Therefore,
the projected increase in annual average dailpisiflew is statistically insignificant. For
baseflow and surface runoff, the projected dailgrage values under the normal condition were
2.55 ni/s and 2.29 fis, respectively. For baseline, the correspondimyial average daily
discharges were 2.33 and 2.2¥snrespectively. The t-test resulted in p-value8.67 and 0.37
for surface runoff and baseflow, respectively. Efere, no trend was detected for baseflow

under the normal condition. On the other handptivalue of 0.07 obtained for surface runoff is
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not that big. Although at 5% level there is noistatal difference, at 10% there is an increase in
surface runoff.

Compared with Cruise’s (1999) study, our resultssiét reflect strong decreasing trend in
streamflow. Since Cruise’s conclusion was only basethe United Kingdom Hadley Center
climate model and focused on the whole Southe&st, il.is not surprising to have different
predictions in streamflow.

Fig. 5 shows the'sand 9%' percentiles along with the median of average mgnth
streamflow, surface runoff and baseflow by runrBWAT with the 252 climate inputs. Under
wet conditions, streamflow, direct runoff and bésefare all showing a rising trend for all
months when compared to the baseline. For dry tiondi all three reflect a declining trend,
though in September and October the differenceargimal. Under the normal conditions,
consistent with the rainfall, streamflow and suefagnoff are projected to increase in fall
months (September, October and November). Wintecéihber, January, and February) and
spring (March, April, and May) will experience madte increase in streamflow and surface
runoff. In summer (June, July, August), no sigraht difference is predicted in streamflow and
direct runoff. Baseflow is projected to decreasghsly in spring and summer, while increase

marginally in winter.

Daily flow for the whole period

Fig. 6a shows the 90% confidence interval alongy Wit median of the FDCs generated
from daily streamflow by running the SWAT model wthe 252 precipitation inputs. In the
figure, upper and lower limit represents the wet dry conditions, while median reflects the

normal conditions in the future. According to dréat probability of exceedance, future daily
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discharge illustrates substantial differences wdwnpared to baseline. Furthermore, positions
of future FDCs relative to the baseline FDC ardegsimilar to the precipitation CCDFs shown
in Fig. 4. This is not quite surprising as pre@pan is the main driver for flow.

To get a better insight into the effect of climat@nge on daily flow responses, the relative
difference of future conditions from the baseline, ([FDC of future conditions] — [FDC of
baseline situation]) / [FDC of baseline situationgre generated and depicted in Fig. 6b. Based
on this figure, under wet conditions (upper conficke limit), the relative change of flow is
always a positive value. It fluctuates between % 10% when PE<0.01. It reaches at a
plateau at 40% until PE arrives at 0.1, and thenges to 10%. Under normal condition (median
of 90% confidence interval), relative change flatas around 0 when PE<0.001, and reaches a
maximum of about 30% around PE=0.01. It then dea®gradually from 30% to 5%, until
PE=0.9. After PE=0.9, it drops drastically all thay to -30%. The shapes of these two curves
are quite similar, only shifting in relative positis. Under dry conditions, as PE increases from 0
to 0.01, the relative change grows consistentlinfrd0% to 20%. The relative change is 0 when
PE is around 0.002. After PE=0.01, it decreasedugildy from 20% to -15% until it reaches
PE=0.85. From PE=0.85 till the end it drops dcadly to -60%. When 0.002<PE<0.3, the
relative changes are always positive, which in@isa@jreat possibility (90% confidence) of
increasing trend in daily flow even under dry cdiaghis in the future. Flows in that range are

moderate to large (return period from 3 days to &&yx).

Seasonality effect
From the earlier discussions, it was evident tagponses of rainfall and temperature to

climate change show strong seasonality. Therefoiebelieved that seasonality exists in the
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responses of streamflow as well. Similar to FDCthe whole period, 252 sets of daily flows
were categorized by seasons, and then sorted. Uppgdower limit, and median for the 90%
confidence interval were calculated. Comparing il baselines in different seasons, relative
changes were also attained to detect seasonahs=pof daily streamflows. As shown in Fig. 7,
under wet conditions in future, all seasons, egigavinter and fall, indicate increase in flow.
Under normal conditions, variation of high and nuadiflows in winter differs from those in
other seasons. Large (0.001<PE<0.1) and extreme tenws (PE<0.001) show a significant
increasing trend only in winter. While for spriregimmer, and fall, decrease in extreme large
flows were predicted. When PE is larger than @ltive change from baseline in winter
becomes zero when PE is around 0.15, then becoagasive till the end, while the threshold of
PE is around 0.3 for flow in spring, it is aroun@ @r both summer and fall. When PE is bigger
than ~0.75, relative change from the baseline becwgative for all seasons under normal
conditions, which means reduction of low flows e future. Under dry conditions, spring and
summer are predicted to experience lower flowsfiorange of flows, while in fall, large flows
will increase, indicating that fall is going to lekigher large flows in the future, even under

extreme dry conditions.

Water quality

Monthly distribution of TSS, TP and TN (Fig. 8abace consistent with surface runoff, with
higher loadings in March, April, July and Septemfére consistent pattern between flow and
TSS can be linked to the MUSLE equation used in S\WAsimulate erosion and sediment
transport. In MUSLE runoff volume and peak runeiter are utilized to calculate sediment yield.

During channel routing, deposition or degradatiayrappen depending on the maximum
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concentration of sediment that can be transporyeitbty. Monthly distribution pattern of TN
and TP follow the average monthly surface runahtls as well. For example, TN and TP peaks
occur in March, June, July and September like flow.

In terms of projected variation (Fig. 8d,e,f), TI®, and TN also reflect similar patterns to
flow. Loadings are expected to decrease for alltonder dry condition, while all show
increasing trend under wet conditions. The mageitoidncrease or decrease is bigger in spring
and fall, while smaller in summer. Under normaldition, TN has an increasing trend in all
months; the magnitude of increase in summer islsemélan those in other seasons. TP is
projected to decrease in summer, while increas¢ghier seasons under normal condition.

SWAT has a comprehensive nutrient cycling companenalculates and provides as output
the organic and mineral forms of nutrients. In ortdeget a better insight on nutrient loadings,
we analyzed the monthly distribution and projectadation of organic and mineral forms of N
and P (Fig. 9). From the figures it is apparent Mim-N is the dominant component of TN,
therefore monthly distribution and projected vaoatof TN is mainly decided by Min-N. For
phosphors, loadings of mineral and organic fornescamparable. Thus, TP is influenced by
both Min-P and Org-P.

Org-P and Org-N illustrate similar patterns as exp& peaks appear in March and
November, and lowest loadings happen in summes iShelated to agricultural management
practices. Tillage and harvesting, usually appiresipring and fall, provide large amounts of
organic matter. Lower loadings of organic mattesummer are due to higher vegetation cover,
which retain the organic matter, and also due gbér temperatures, which convert organic
matters into mineral forms. Mineral forms of N ddiollow the monthly pattern of flow.

Mineral forms of nutrients are also affected by agement practices. For example, higher
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values of mineral N, and P in June are due tdifeation of mineral N, P as well. In terms of
projected variation, the relative change of founte (Org-P, Min-P, Org-N, Min-N) follow the
flow variation. If flow is projected to increaségly show increasing trend and vice versa. For
example, in fall, under wet condition, the relatochenge of streamflow is +40%. Accordingly,
the relative change is around +80% for Org-N, +4688in-N, +70% for Org-P, and +50% for
Min-P.

Since shift in the N:P ratio of the loads entemmogstal waters can contribute to an alteration
in species dominance in the phytoplankton poputafMiP ratio under climate change scenarios
was also studied. Through simulation, the expeltt&dratio was found to vary from 46 to 50.

Compared to the baseline N:P ratio of 47.6, thissdwot indicate any shift in N:P ratio.

Land use change effects only
Annual and monthly flow

The projected average daily streamflow for therferfperiod were 4.67, 4.70 and 4.7%sm
under LPR, MPR and HPR growth scenarios, respdgti@@mpared to the baseline period
value of 4.57 ni's, there is an increase in streamflow under ahyduconditions. For baseflow,
the projected average daily values are 2.12, 2n#i12a10 ni/s for LPR, MPR and HPR. Future
projected baseflow under different LULC scenariasguite similar to each other, yet the
decreasing trend is apparent when compared toaselibe baseflow, which was 2.33/m
Future predicted surface runoff values are alstequidse to each other: 2.54, 2.59 and 2.3 m
for LPR, MPR and HPR. Compared with the baselideevaf 2.24 n¥s, there is an evident

increasing trend.
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Fig. 10 displays average monthly distribution angjgcted variation of streamflow, surface
runoff, and baseflow from the Wolf Bay watershé&le to LULC change, they exhibit different
or similar responses from each other. The totalma of future streamflow does not change
appreciably compared to the baseline period, lpmifstant differences are detected in some
months with high flows, like July. Monthly streammf¥s for three future scenarios are quite close
to each other. The partitioning of streamflow tedféow and surface runoff is significantly
affected as shown in Fig. 10. Surface runoff shawgcreasing trend while baseflow decreases
for all months. Although average monthly surfaceaffiand baseflow are quite close to each
other for the three different future LULC scenayite trend is clear: urbanization results in

higher direct runoff and lower baseflow, and viegsa.

Daily flow

Fig. 11 illustrates the daily FDC for baseline pdr{pre-urbanization) and 3 different future
land use scenarios (post-urbanization). Althoudhsignificant, differences exist between
baseline FDC and future FDCs. Compared to the FDi@a pre-urbanization period, future
FDCs are a little steeper. When PE<0.3, baselowesflare always lower than future flows. After
PE=0.3, future flows become lower. That means madahigh flows are projected to increase,
while medium and low flows are projected to deceed& evident differences are detected in
FDCs among different future scenarios, which is wuguite similar urban percentages (see
Table 1) for the three future LULC scenarios. Cstesit with other researches (e.g. Rose and
Peter, 2001), this indicates one important effétttdl C change in the future: the hydrologic
regime is altered, which increases large flowsraadices small flows. However, this

redistribution trend is not so evident if the extehurbanization is not so serious.
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Relative change curves for different future scessato baseline are also shown in Fig. 11
bottom panel. All three curves reflect the samedréoving from left to right, the relative
change is a positive value and increase from 2%/4dill PE reaches around 0.01. Then it stays
in a stable status around 7%, until PE=0.1. Ahet,tthe relative change drops to zero when PE
reaches 0.3. The dropping trend continues andvelahanges stay negative till the end, with the
maximum negative relative change around -8% whmndlare extremely small. It seems that
urbanization has more evident effect on extremeth &t the high and low flow end.

Differences among the three future curves are videat when PE is extremely small, but
visible when PE is between 0.05 and 0.3. This etei large flows show different sensitivities

even LULC change rates are close.

Water quality

Variations in average monthly TSS loads (Fig. I2)dosely related to monthly distribution
of direct runoff. Peaks for TSS are found in Apdilly and September, which is consistent with
surface runoff. Tillage loosening the soil and Breg up large aggregates to fine particles, and
harvesting providing residues, contribute to TS&kpen spring and fall. In general, TSS is
projected to increase in future, and the amounisaréases are quite close to each other for
different future LULC scenarios.

In terms of nutrient loads, the situation is quitéerent. TN loadings were predicted to
decline for all months under all future LULC sceanar Differences among future average
monthly loads are evident. TP was projected toeiase in spring, fall and winter, but decrease in
summer. Fig. 13 shows average monthly loads of Qrigin-N, Org-P and Min-P. Higher

predicted Org-N and Org-P loadings found in spand fall are due to increase of surface runoff
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after urbanization. Since the management practicegring and fall provide enough sources of
organic matters, surface runoff, which picks ugrieats along its way, becomes the main driver
to affect average monthly loadings. The largenibleme of surface runoff, the bigger the
organic loadings in spring and fall is. Some of dhganic matter gets mineralized in time;
especially at increased rates in summer due toteigiperatures. This process converts organic
N and P to mineral forms resulting in higher mirahd min-P in summer, but lower org-N and
org-P. Therefore, organic N, and P loadings argepted to decrease in summer months, with
the largest decrease predicted under the high atpalgrowth scenario, which has the lowest
fraction of croplands.

Min-N is projected to decrease in all months. Tdrgést decrease is projected under HPR,
while smallest decrease is expected under the IcéRasio. This variation is again due to
diminishing cropland and consequently decreas®&&inAN fertilization, which is an important
source of Min-N loadings. Based on future LULC saéws, the percentages of crop land are
29.9%, 23.1%, 19.6% and 15.3% respectively forlbssd.PR, MPR and HPR scenarios,
which shows a gradually decreasing trend consistéhtthe decline in average monthly Min-N
loadings.

The projected variation in average monthly Min-RBofes Min-N in summer, but is quite
different in fall and winter, where increasing ten Min-P was predicted. The LULC scenario
based on HPR is expected to result in higher isered Min-P loadings in those months.
Increasing trend of Min-P after urbanization irl tdd winter months is due to the increase of
urban areas, because urban is an important sosiidenaP. Unlike other land use types, SWAT
employs USGS linear regression model (Driver anskég 1988) to calculate loadings in urban

areas. Loadings generated by urban areas arevebsitelated to the fraction of the total area
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that is impervious. Therefore, urbanization resutsicrease of Min-P loadings. Mineral
nitrogen is projected to decline for the whole pdyibecause usage of N fertilizer is expected to
decrease due to reduction in cropland in future.

Due to land use change, N:P ratio also changegd®ed N:P ratios are 39.5,38.1 and 36.7
for LPR, MPR and HPR, respectively. Compared whih lbaseline value of 47.6, this indicates
towards an evident decrease in N:P ratio. Scenaiithshigher urban fractions causes largest
drop in N:P ratio and vice versa. Compared to timate change effect, LULC change have a

more dramatic influence on the N:P ratio.

Combined change effects

Based on 252 climate inputs and 3 future LULC saesaSWAT was run in annual,
monthly and daily time scales 756 times, to obtaodel outputs of flow, sediment and nutrient
loadings. Again, from the ensemble of model outpgs9% and &' percentiles were
determined to obtain a 90% confidence intervay@gser and lower limit for future conditions.
Median of 90% confidence interval reflects normatdition in future. Results are discussed

below:

Annual and monthly flow

The projected average daily discharges for theréuperiod were 3.26, 5.01 and 7.03/sn
respectively for the lower limit, median, and upperit. To simplify the analysis only median
flows will be compared to baseline flows under ¢benbined change effect. Compared to the
average daily streamflow of 4.57ts during the baseline period, an increasing tiend

streamflow is expected, which corresponds to 9\84ten compared to the median value (4.87

66



mS/s) obtained from the only climate change scenarfoch correspond to a relative change of
6.6%, higher streamflow is expected under the castbchange scenarios. For baseflow and
surface runoff, the median of the projected averaily values are 2.06 s and 2.92 rifs,
respectively. Compared to the baseline values3# &t/s and 2.23 rits these represent
substantial increase for surface runoff and deeréasbaseflow. The relative change from the
baseline is +31% and -12%, respectively for surfaceff and baseflow. We conducted t- test
for two independent samples between annual basdditeeand future normal condition data for
surface runoff and baseline. Under the combinedghdacenarios both show significant
differences, where p values are 0.002 and 0.08pergively, for surface runoff and baseflow.
Therefore, under the combined change effect saadrigher annual streamflow is
expected/predicted relative to the baseline. Wdmenpared with the scenarios where only
climate change was considered, that increasingl tis,emore evident The partitioning of annual
streamflow is significantly affected under combirgnge scenarios, which substantially
increase surface runoff and decrease baseflow.

Fig.14 shows the average monthly distribution oWl caused by climate combined with
LULC change. For streamflow, the monthly distriloatis quite similar to Fig.5, which only
reflects climate change effect. Peaks occur inlApuly and September, but shift a little bit
upwards, which indicates stronger increasing tingtreamflow for all months. Baseline stays
between the median and lower limit of 90% confideimterval, closer to median curve in winter,
spring and summer, but gets closer to the uppét ilinfall, which again indicates higher
possibility of streamflow increase in fall.

In terms of surface runoff and baseflow, monthkstalbution is again quite similar to the one

shown in Fig. 5, but the gap between the futurdipted values and the baseline values are
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widened. Baseline for surface runoff is closerht lower limit of 90% confidence interval, and
is outside the band in fall, which indicates a v&rgng increasing trend. On the contrary,
baseline for baseflow is quite close to the upett for future prediction, indicating reduction

in baseflow in the future is highly likely undeetibiombined effect scenario.

Daily flow

Fig. 15 shows the 90% confidence interval alondnhe median of the FDCs generated
from the ensemble of daily streamflow time seribamed by running SWAT with 252 climate
inputs and 3 future LULC scenarios. According tibedent probability of exceedance, future
daily discharge for combined change scenario reflegbstantial differences compared to the
baseline. When PE is less than 0.001, baselinaufitees along the median curve, and then it falls
below the 90% confidence band until PE reachesBaS8eline stays between the median and the
lower limit until PE reaches 0.5. Beyond that ppb#seline is always above the median curve
getting closer to upper limit till the end. Compéte Fig. 6, which only captures the climate
change effect, one can see that the general tdriiese two are quite similar, but FDCs in Fig.
15 are somewhat steeper, which means large floevease and small flows decrease more. For
example, from Fig. 15, upper limit for the 90% ddehce interval varies from around 310 to 1.0
mS/s. However, if only climate change effect is cadesed, the range is from 300 to 1.3sn
Similar circumstances occur for median FDC anddler limit as well.

Fig. 15 also depicts the relative differences anfbetween the future and the baseline
conditions. Similar to Fig. 6, extreme large floflgtuate until PE=0.01. When PE is between

0.01 and 0.1, they reach at a stable status, whereelative change is around 55%, 40% and 30%
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for the upper limit, median and the lower limitspectively. When PE exceeds 0.1, all three
curves go down and finally arrive at values aroQ#ig -35% and -65% when PE is near 1.
Based on the FDCs and the relative changes offfionv the baseline, combined change
effect results in more noticeable uneven distrdoubf streamflow, when compared to “only
climate change” or “only LULC change” scenariosy(Fé and Fig. 11). The combined effect

increases high flows and decreases low flows, wbéelsed steeper FDCs.

Seasonality effects on daily flow

Fig. 16 illustrates the seasonal FDCs and relathanges between FDCs from future and
baseline scenarios. When compared to seasonal 6Dl seflecting climate change effects,
these FDCs are all steeper due to the combinedtgfbich again means large flows will get
even larger, while small flows will become smallguch a trend is also clear when relative
changes (lower panels in Fig. 16) for combinedatféee compared to the ones reflecting only
climate change in Fig. 7. When PE is smaller thani@is clearly seen that the relative positions
of all three curves in Fig. 16 shift a little bppwards compared to those in Fig. 7, which indicates
seasonal higher flows due to the combined effemtshall flows, the curves shift downwards.
Those shifts are detected in all four seasonstipgiout to the fact that more uneven
distribution of streamflow caused by combined cleisgnot confined in any specific season, but

dispersed over all seasons.

Water quality
Monthly distribution of TSS is compatible with vation of surface runoff (Fig.17).

Compared to Fig. 8, the 90% confidence band shiftaxds, making the baseline stay between
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the median and the lower limit. This indicatesrargger trend in TSS increase for all months,
even in summer. No clear trend was detected whnotimate change effect was considered in
summer. Comparing the relative change in TSS foln @@onth, it is evident that the combined
change effect leads to a larger relative change i@ LULC or climate change alone scenarios
(Fig. 8, Fig. 12 and Fig. 17).

Monthly distributions of nutrients are more compleixen combined effect is considered
(Fig. 17). Nutrients were again divided into orgaand mineral parts as shown in Fig. 18, for in
debt discussion. Org-N and Org-P represent sirhgaiavior for monthly distribution. Compared
to Fig. 8, which only reflects climate change, 8@86 confidence bands of predicted Org-N and
Org-P shift upwards in spring, fall and winter, winis mainly caused by strong increase in
direct runoff. However, there is a downward smfsummer, which is primarily due to the
decrease of agriculture land that serves as thesatfl organic matters.

Future predicted Min-P shift upwards in springl &dd winter, but downwards in summer.
When compared to Fig. 8, which only reflects tHeafof climate change, the increasing trend
in spring, fall and winter under the combined effiesantensified by LULC change, while the
decreasing trend in summer shows offsetting effect.

Under combined scenarios, min-N was projected toedese in all months. The baseline
values were above the median of the 90% confidertieesal in summer, which indicates a big
possibility for decrease in min-N. The decreasimegd of min-N is caused by the shrinking of
agriculture land. Since N fertilization is appliedearly summer, diminishing crop land results in
less input of min-N.

The annual average N:P ratio, under the combinadga#scenarios, is projected to decrease

under all conditions. The projected N:P ratio wasl337.7 and 39.8 for the upper, median and
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lower limit of 90% confidence, respectively. Comgxto the baseline value of 47.6, they all
indicate toward reduction in the N:P ratio, whick amaller than both the climate change only
and LULC change only scenarios.

In summary, under the combined change scenariosg $ilULC and climate change effect
were considered simultaneously, water quality whescted by both. If future loadings are
expected to increase/decrease under either cliondtd LC change scenarios, combined change
scenario intensifies that trend. On the other hdrideir effects are in opposite directions, then

the combined change has an offsetting effect.

Relative importance of LULC and climate change effects

We have shown that both climate and LULC changecaiivatershed hydrology and water
quality, not only the annual averages loadingsatsd their seasonal, monthly and daily
distributions. When LULC was combined with climateange, the compound effect was either
intensification or offsetting of the effects causgdeither climate or LULC change. Projected
variations in flow and water quality loadings dodlie combined change effect are not simply
the summation of the results caused by the indalitactors. In other words, the marginal
effects are not additive. To identify the relatigortance of LULC and climate change when
they act jointly, average monthly percentage chang&reamflow, TSS, TN and TP loadings
were compared (Fig. 19). For convenience, we amyged on the results under normal
condition (median of the 90% confidence intervalje relative increase/decrease caused by the
combined effect is contributed by three factorde&fof LULC change only, effect of climate
change only and the synergistic effect. The syegcgeffect, thus, can be determined as

follows:
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Synergistic ef fect
= (combined ef fect) — (climate change ef fect only

+ LULC change ef fect only)

From Fig. 19a, it is seen that average monthlygr@ege change in streamflow is mainly due
to climate change in spring, fall and winter. Imsuer, the effect of LULC and climate change
on streamflow is close to each other. In July thaye opposite effects. Compared with LULC
and climate effect, synergistic effect has verghlinfluences on streamflow, which can be
ignored. From Fig. 19b, the relative importancelohate and LULC change effect on TSS
follows the flow pattern. Climate change is stiétdominant factor for all seasons except
summer. Another interesting observation is thatstreergistic effect on TSS is more evident
compared to the synergistic effect on flow. Theesgistic effect on TSS even exceeds LULC
effect in several months. Therefore, unlike strdamfthere is a nonlinear interaction between
LULC and climate for TSS, and the combined charffgeeintensifies the increase in TSS
loadings. Figures 19.c and 19.d summarize the sdi@ets for TP and TN. Similar to TSS, there
is a nonlinear interaction between climate and LUGCTP and TN, especially in fall months. In
general, LULC change is the main driver, while @imxchange affects TP moderately.
Combined change intensifies the TP loading in nmbghe months. In the case of TN, LULC is
relatively important in winter and summer, but priag and fall, climate change becomes the
main factor affecting the TN loadings. Since thie&f of climate and LULC change are in

opposite directions, the combined change has aettifig effect in TN.

SUMMARY AND DISCUSSION
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LULC and climate change are the two main factofscéihg hydrologic regimes and in turn
influencing water quality. In this study, SWAT moaes utilized to analyze the responses of
hydrological processes and water quality to LUL@ alimate change effects in Wolf Bay
watershed, southern Alabama. Four downscaled GGM=its under three green house gas
emission scenarios were used to reflect the unogrtaf future climate; three LULC scenarios
based on different population increasing ratesasgnted the future LULC scenarios. Their
effects were explored both separately and joifRlsults revealed the following conclusions:

1. Under climate change scenarios, Wolf Bay watersti#anore likely experience
increasing precipitation in future, especially afl, fand temperature is expected to rise,
especially in summer and fall. Rainfall amountlinge events are expected to increase,
while rainfall amounts for small events tend toréese.

2. The Wolf Bay watershed is expected to experienaendtic urbanization. The percentage
of urban areas is projected to double by 2030.imtease in urban areas will be
compensated by reductions in forest, pasture, angpand wetland.

3. A redistribution of streamflow is projected whenyalimate change effect is considered:
high flows are predicted to increase, while lowoare expected to decrease. No clear
trend is detected for medium and extreme largedldvhnis redistribution trend is same
for LULC change effect, but extreme large flows prejected to increase substantially
under the LULC change scenarios. Combined charigeteésults in more noticeable
uneven distribution of streamflow, which generateper flow duration curves.

4. Dalily flows show seasonality under climate changeeneral, large flows are projected
to increase for all seasons under the wet and naonaitions, especially for fall and

winter. Even under dry conditions, fall shows iragiag trend in large flows. Small flows
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are expected to decrease for all seasons undandrgormal conditions. Compared with
climate change effect, steeper FDCs are projectedllffour seasons under the combined
change effect.

. When considering climate change effect, monthlyaye streamflow and surface runoff
are projected to increase in spring, fall and wirgepecially in fall, while no clear trend
was observed in summer, under normal future cliregibations. Although the LULC
change does not have significant effect on mordlkiBrage streamflow, increasing trends
are still detected in high flow months, such ay amd September. The partitioning of
streamflow to baseflow and surface runoff is siigaifitly affected. Surface runoff is
predicted to increase every month, while for baseflan evident decreasing trend was
detected. When climate change is combined with Cldhange, it leads to more
dramatic increasing trend in monthly average stfEawthan when the climate or LULC
change alone is considered. Further, more visitdeeasing trend in surface runoff and
more dramatic decreasing trend in baseflow werectied for combined effect.

. When only climate change effect is considered, mgntSS and nutrient loadings
follow the flow pattern. No evident difference inraial average N:P ratio is detected.
LULC change increases TSS loadings but decreasdeddihgs for each month. This is
due to reduction of cropland in future, which reelsiareas applying min-N fertilization,
and in turn affects TN loadings. TP loading, whiglklecided by both Min-P and Org-P,
is projected to decrease in summer, but increasthegr months. The projected variation
of Min-P follows the pattern of Min-N expect in faMin-P is projected to increase
accompanying urbanization. Org-P is predicted toaase in spring and fall due to

surface runoff increasing, but decrease in sumnagnlgndue to the diminishing of crop
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land which contains abundant organic matters, eaxstormation to min-P. N:P ratio is
projected to decrease significantly under all LUtl&ange scenarios. When LULC
change is combined with climate change, futureipted TSS loadings are expected to
increase for each month, which is similar to trepomses of direct runoff. Monthly
distribution and projected variation of nutrienfi@éet characteristics from both climate
change and LULC change effects. In general TN lugglare projected to increase
slightly in spring and fall, which indicates thaetreduction in TN due to shrinking of
crop lands is offset by increase in flow. TN andld&dings are projected to decrease in
summer, which means LULC change effect (croplamirdshing) becomes the
dominant factor when flows are higher in those menTP loadings are expected to have
a more dramatic increasing trend in spring and semwhich indicates climate change
effect is aggregated by management practicesggiléand harvesting). N:P ratio is
projected to further decrease under the combinadgdhscenarios.

7. Both climate and LULC change affect monthly diattibn of flow and water quality.
However, their effects are not additive. There i®alinear interaction between LULC
and climate change when considering their joirg&f. This is more evident in water
quality than streamflow. Under the combined chagffect scenario, climate change is
the dominant factor influencing streamflow and T8She case of TP, LULC change
becomes relatively more important. For TN, whilel@has more influence in winter
and summer, climate change is more influentialrduspring and fall.

Based on the simulation results from this reseaa@domplex situation in flow and water

guality is projected. Change in distribution oestmflow will likely lead to more flooding and

drought in the future. This is supported by the that less baseflow and more surface runoff is
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projected. The increases runoff is also linkechtorojected increase in soil erosion. Nitrogen
and phosphorus loadings will also be affected addcaeased N:P ratio is projected, which
could potentially contribute to an alteration iresggs dominance in the phytoplankton

population.

Lessons learned from this study could be quitealdkifor stakeholders and decision makers
in the Wolf Bay area. Carrying out some best mameage practices (BMPs) in crop land and
storm control measures (SCMs) in urban areas aeseary to protect the health and integration

of the Wolf Bay watershed.
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Table 1 Land use/cover in Wolf Bay watershed for bseline (2005) and 3 future scenarios (2030)

2030
2005 LPR MPR HPR
Water 1.2% 0.2% 0.1% 0.1%
Urban 26.4% 50.2% 57.4% 64.2%
Forest 209% 15.7% 14.0% 12.4%
Pasture 9.7% 1.9% 1.5% 1.2%
Cropland 29.9% 24.1% 19.6% 15.3%
Wetland 11.9%  8.0% 7.4% 6.8%

LPR: low population increasing rate
MPR: medium population increasing rate
HPR: high population increasing rate
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CHAPTER IlI

Summary and Conclusions

Environment change induced by natural variabilitg &iuman activities influences both
water quantity and quality at global, regional &chl scales. Land use/cover (LULC) and
climate change are two main factors directly affectegional hydrology and water quality.
Wolf Bay watershed, which is located in southerab@ma along the coast of Gulf of Mexico,
has been experiencing heavy urbanization due talpbpn growth and this trend is expected to
continue in the near future. Combined with the ¢ctgd changes in climate, such as
increase/decrease in temperature and precipitaimm, changes could have serious affects on
the water resource and water quality of the regndnch could impair the ecological services
and biodiversity. In this study, the future potahimpacts of LULC and climate changes on the
hydrologic and water quality of the Wolf Bay wateed were explored independently and
mutually by the Soil and Water Assessment Tool (SWA

Model calibration and validation is a standard pohae in most modeling studies to ensure
model credibility. This is especially the case wathpirical and semi-physically-based models
such as SWAT. Due to lack of observed data to itthe SWAT model in the target
watershed, i.e Wolf Bay watershed, SWAT was caldatan the nearby Magnolia River
watershed, and calibrated model parameters wersfétaied to the Wolf Bay watershed.
Although inferior to direct calibration in targetwershed, results indicate that transferred

parameters improved model performance when compargidhulations carried out with default
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parameters which come from the built in SWAT das&b& herefore, when observed data is
limited, regionalization method based on proxinmtyan acceptable alternative to ensure model
reliability. Next, the effects of parameter tramsafeg on modeling LULC changes were assessed.
Two LULC maps from 1992 and 2005 and three paransets (default, transferred and
calibrated) were utilized. The relative changeBDCs due to differing LULC showed a similar
pattern with each parameter set: relative changehighest at 1-2% exceedance probability. The
impact of LULC change diminished gradually as therg sizes got smaller beyond the 2%
probability of exceedance. Results suggested tigathoice of the parameter set only has a
marginal effect on modeling the impacts of diffdrebLC scenarios.

At the next level transferred parameter set wasl@yed in the SWAT model to explore
future climate and LULC change effects in the \\Rdfy watershed. Four GCMs under three
green house gas emission scenarios were usedttoeapmate uncertainty, while three
projected LULC maps based on different populatimwgh rates were used to reflect LULC
uncertainty. Results revealed the followings:

(1) Under the only climate change scenario, high flexese predicted to increase during all
seasons under wet and normal conditions, espediatlgg fall and winter. Even under
dry conditions, flow showed increasing trend wahgle flows in fall. Small flows are
expected to decrease in all seasons under thendrgamal conditions. No clear trend
was found for extreme large flows. Monthly averageamflow and surface runoff were
projected to increase in spring, fall and wintspeially during fall, while no clear trend
is expected in summer. The monthly distributios@diment and nutrients are affected

by flow and management practices. Projected vanatof TSS, TN and TP loadings
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followed the same pattern with flow. No evidenfeli€nce in annual average N:P ratio
was predicted.

(2) Under the only LULC change scenario, redistributbdstreamflow was similar to the
climate change effect. The only difference was éxateme large flows are expected to
increase accompanying urbanization. LULC changendicappear to have a significant
effect on monthly average streamflows, while insneg@ trends were still detected in high
flow months, such as July and September. Howekerpartitioning of streamflow to
baseflow and surface runoff was considerably adiizcBurface runoff was predicted to
increase in every month, while an evident decrggsand was detected for baseflow.
LULC change increased TSS loadings but decreaseldddiings in each month. TP
loadings were projected to decrease in summelinbrgase in other months. The N:P
ratio was projected to decrease significantly.

(3) Under the combined change scenarios, a more nbteceaaeven distribution of
streamflow was predicted, which indicated towaegper flow duration curves for all
four seasons. The combined scenario also led tora dramatic increasing trend in
monthly average streamflows than when climate okCldhange alone was considered.
Further, more visible increasing trend in surfageoiff and more dramatic decreasing
trend in baseflow were detected. Under the combswedario, TSS loadings are
expected to increase for each month. Since LULCclinthte change effect are
considered simultaneously, water quality is affddig both. If future loadings are
expected to increase/decrease under either cliondtgLC change scenarios, combined
change scenario intensifies that trend. On therdtaed, if their effects are in opposite

directions, then the combined change has an affgettfect. The synergistic effect
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coming from the interaction of LULC and climate nlga showed that there is a
nonlinear interaction between them as their contbaféects were not additive. This

nonlinear interaction was more evident in wateriguthan flow.

FUTURE PROSPECTIVE
Several potential new ideas originate from thislgtu

1. The feasibility of model parameter transferringdzhen spatial proximity was
confined to flow only in this study. Regionalizaticould be extended to a larger
parameter set that includes water quality paramseifesbserved sediment and
nutrient data is available from nearby watersheds.

2. The quality of precipitation data is one of the mmaogportant aspects in watershed
modeling. In areas like Alabama, precipitation @ais show large spatial variation,
especially in summer months. Radar technology ptssen opportunity to capture
such variations, in spite of its known deficiencikss worth exploring how better
representation of spatial variation in precipitatiwould impact some of the
conclusions drawn out of this work.

3. In this study, monthly outputs of GCMs were spétidbwnscaled by a statistical
approach and then temporally downscaled by a wegtreerator. The impacts of
using a dynamic downscaling technique, such agiamal climate model, on some
of the results obtained in this study remain tekglored.

4. The uncertainty analysis in this study was limitedlimate inputs (precipitation and
temperature) and LULC senarios. Uncertainties oatjng from model structure and

model parameters were not studied. Inclusion adeéhamcertainties would provide a
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more comprehensive and complete analysis of thaatsf climate and LULC

change on water quality and quantity.
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