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Abstract 
 
 

Land use/cover (LULC) and climate change are two main factors directly affecting regional 

hydrology and water quality. In this study, the future potential impacts of LULC and climate 

change on the hydrologic regimes and water quality in Wolf Bay watershed, South Alabama 

were explored independently and mutually by using the Soil and Water Assessment Tool 

(SWAT). Due to lack of measured data, SWAT was calibrated in a nearby watershed, and the 

calibrated model parameters were transferred to the Wolf Bay watershed. It was shown that using 

data from nearby watersheds improves the model performance under limited data conditions in the 

study watershed. The choice of the parameter set, whether it is the default model parameters or 

those from a donor watershed, has a marginal effect on modeling the impacts of different LULC 

scenarios. 

SWAT with the transferred parameters was then employed to investigate the potential impacts 

of LULC and climate change on the hydrology and water quality of the Wolf Bay watershed. 

While four Global Circulation Models (GCMs) under three Green House gas emission scenarios 

were used to reflect variability in future climate conditions, three future LULC maps generated 

mainly based on different population growth rate assumptions were used to represent the 

uncertainty in future LULC conditions. In general, the Wolf Bay watershed is expected to 

experience increasing precipitation in the future, especially in fall, and temperature is expected to 

be higher, especially in summer and fall months. Further, the watershed is expected to undergo 

dramatic urbanization, with percentage of urban areas nearly doubling in future. 
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Results showed that both climate change and LULC change would cause a redistribution of 

streamflow. Higher flows were projected to increase, while small flows are expected to decrease. 

No clear trend of extreme large flow was detected when only climate change was considered. 

Under combined change scenarios, a more noticeable uneven distribution of streamflow was 

observed. Monthly average streamflow was projected to increase in spring, fall, and winter, 

especially during the fall, while no clear trend was observed in summer. LULC change did not 

significantly affect monthly streamflow, but changed the partitioning of streamflow to baseflow 

and surface runoff. Surface runoff was predicted to increase every month, while for baseflow an 

evident decreasing trend was detected. When climate was combined with LULC effect, a more 

dramatic increasing trend in monthly average streamflows was detected. Furthermore, a visible 

increasing trend in surface runoff and more dramatic decreasing trend in baseflow were detected. 

Monthly distribution of sediment and nutrients are affected by both flow and management 

practices. Projected variations of TSS, TN, and TP loadings follow the same pattern as flow. No 

evident difference in annual average N:P ratio was predicted when only climate change was 

considered. LULC change increased TSS loadings but decreased TN loadings for all months. TP 

loadings were projected to decrease in summer, but increase in other months. N:P ratio was 

projected to decrease significantly.  

Results of this study indicate that if future loadings are expected/predicted to 

increase/decrease under either climate or LULC change scenario, then their combined impact is 

to intensify that trend. On the other hand, if their effects are in opposite directions, that is while 

one predicts an increase and the other predicts a decrease, then their mutual effect has an 

offsetting impact. The combined LULC and climate change effect was in general synergistic, i.e. 

the total effect was greater than the sum of the individual effects.  
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Chapter I 

Modeling Effects of Land Use/Cover Changes under Limited Data 

 
 

ABSTRACT 

Watershed models are valuable tools used in the study of impacts of land use/cover (LULC) 

changes on hydrology. We use the Soil and Water Assessment Tool (SWAT) to study the 

impacts of LULC changes in a coastal Alabama watershed, where flow data did not exist at the 

onset of the study. We set up and calibrated the model in the neighboring Magnolia River 

watershed. Relevant model parameters were then transferred to the Wolf Bay watershed. Impacts 

of LULC changes on hydrology are studied in the Wolf Bay watershed by running the model 

with the default parameters, transferred model parameters (from the Magnolia River watershed), 

and calibrated parameters at the Wolf Bay watershed with limited data that became available 

later during the study. The relative changes in flow duration curves (FDCs) due to differing 

LULC showed a similar pattern with each parameter set: There is a clear threshold of around 1% 

probability of exceedance where the relative change is at its maximum. The relative change in 

flow due to LULC change drops drastically with increasing probability of exceedance of beyond 

2% until it reaches a plateau at p D 20%. Hence, small to medium range flows are less sensitive 

to the parameter set. Further, the impact of LULC change on flow gradually decreases with the 

size of the storm for very large events (probability of exceedance <1%). 
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INTRODUCTION 

Quantifying the impacts of land use and land cover (LULC) changes on the hydrologic 

processes and water balance of river basin has been an area of interest to hydrologists in recent 

years. Little is known so far if there is a well defined quantitative relationship between the LULC 

properties and the runoff generation mechanisms. The assessment of future LULC changes with 

respect to their hydrological impacts is still an unsolved problem (Fohrer, 2002). Several 

methods were developed to study the implications of LULC changes on hydrologic processes, 

such as the paired catchments approach, time series analysis (statistical method) and 

hydrological modeling (Li et al. 2009). Among these approaches, hydrological modeling has 

been widely applied in many different places in the world since it requires less resource and 

provides more flexibility.   

Fohrer et al. (2001) assessed the hydrologic response to LULC changes in four meso-scale 

watersheds in Germany with different LULC distributions. Then the model performance for 

changing LULC has been tested in an artificial watershed with a single crop at a time and one 

underlying soil type to eliminate the complex interactions of natural watersheds. Simulation 

results showed that LULC changes on the annual water balance was moderate. Surface runoff 

was most susceptible to LULC change at both the artificial and the natural catchment. Hundecha 

and Bardoosy (2004) simulated the effect of LULC changes on the runoff generation of Rhine 

River Basin through parameter regionalization of Hydrologiska Byråns Vattenbalansavdelning 

(HBV) model. Results suggested that increased urbanization leads to an increase in the smaller 

peak runoffs stemming from summer storms. Increase in the larger peaks resulting from winter 

rainfall was negligible. A considerable reduction of both the peak runoff and the total runoff 

volume resulted from intensified afforestation. Savary et al. (2009) assessed the effects of 
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historical LULC change on runoff and low-flow using the Gestion Intégrée des Bassins versants 

à l’aide d’un Système Informatisé (GIBSI) model in the Chaudiere River Watershed, Canada. 

Simulations showed strong correlations between LULC changes and stream discharge at the 

outlet of the watershed, especially for summer and fall seasons. Simulated annual and seasonal 

low flows were also strongly correlated to agricultural and forested land. Guo et al. (2008) 

studied the combined effects of climate and LULC change on hydrological processes using the 

Soil and Water Assessment Tool (SWAT) in Poyan Lake basin, China. They found that climate 

effect is dominant to alter annual streamflow; while LULC change may have a moderate impact 

on annual streamflow. Both of them strongly influences seasonal streamflow and alter the annual 

hydrograph of the basin. Ma et al. (2009) also considered climate change impacts on 

hydrological responses in a different watershed in southwestern China by SWAT. Contrasting to 

the results of Guo et al. (2008), they found climate having a more profound effect on seasonal 

variations in streamflow with LULC change having a moderate impact. On the other hand, they 

observed a much stronger influence by LULC change on mean annual streamflow. Their 

simulation results also showed that the impact of climate change on surface water, baseflow and 

streamflow was offset by the impact of LULC changes.  

As mentioned above, LULC impacts on hydrologic responses have been thoroughly studied 

through modeling. However, models are mathematical simplifications of natural processes, with 

inevitable errors and deficits. Therefore, the reliability of hydrologic models should be evaluated 

by the fitness between measured flow data and model simulations. In this regard observed data is 

quite valuable. Hydrologists often need to adjust model variables in order to attain close to 

optimal parameter values by minimizing the error between model simulations and observed data. 

However, observed data are sometimes insufficient or not available at all, in which case one can 
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run the model without calibration by estimating parameter values from the literature or rely on 

regionalization approaches.  

The term regionalization has its roots in the process of regime classification and watershed 

grouping. It has later been extended in the rainfall-runoff modeling context to refer to the transfer 

of parameters from neighboring gauged watersheds (also called donor watersheds) to an 

ungauged watershed. Nowadays, the concept of regionalization applies to all methods aimed at 

estimating model parameter values on any ungauged watershed in a definable region of 

consistent hydrological response. Several methods are available in the literature for the 

transferring of model parameters. Regionalization based on regression is the most popular 

method which tries to link parameter values to climate and watershed physical characteristics, 

such as annual rainfall, temperature, area, slope, and land use/cover (LULC) in a gauged 

watershed (Yokoo, et.al, 2001; Kim and Kaluarachchi, 2008). Another commonly used approach 

is regionalization based on physical similarity. Generally information is transferred between 

neighboring watersheds, not necessarily geographically connected but rather in terms of 

observable watershed descriptions (Oudin et al ., 2008). Parameters are transferred from one or 

many donor watersheds, whose physical descriptors are similar to the ungauged one, based on 

one a synthetic rank that reflects the similarity of all physical descriptors between donors and 

target. The third kind of regionalization is based on spatial proximity. It uses the parameter 

values calibrated in nearby watersheds, which have sufficiently long data for calibration. The 

rationale of this method is that physical and climatic characteristics are relatively homogeneous 

within a small region, thus the neighbors should have similar hydrology.  

Over the past few decades, several researchers have attempted to identify the best 

regionalization approach appropriate for different hydrological models. For example Oudin et al. 
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(2008) applied two lumped rainfall-runoff models to daily data over a large set of 913 French 

catchments. Their research indicated that the spatial proximity approach provided the best 

solution and the regression approach was the least satisfactory in France, where a dense network 

of gauging station is available. Merz and Bloschl (2004) investigated the water balance dynamics 

of 308 catchments in Austria using the HBV model. They compared regionalization methods for 

estimating model parameters in ungauged catchments. The method based on multiple regressions 

with catchment attributes performed significantly poorer than the other two. They found spatial 

proximity being a better surrogate of unknown controls on runoff dynamics than catchment 

attributes. Reichl and Western (2009) compared Nash-Sutcliffe efficiency and monthly relative 

volume error of the SimHyd lumped conceptual rainfall-runoff model by averaging method, 

spatial proximity approach, local calibration and simple regression in 184 Australian catchments. 

Averaging method, which selects a number of candidate models from available gauged 

catchments and weighs them based on likelihood, can be considered as the improvement of 

regionalization by physical similarity.  Their research showed that the averaging method, while 

inferior to local calibration, is superior to methods based on regression and spatial proximity. 

This paper focuses on estimating the impacts of LULC changes on hydrological responses in 

a coastal Alabama watershed. In particular, it investigates how limited hydrological data affects 

our understanding of LULC change impacts on hydrology by using the SWAT model. To 

address this issue, LULC maps corresponding to two different periods (1992 and 2005) are 

utilized. Model parameters are obtained from a nearby watershed through regionalization based 

on spatial proximity. Model efficiency is compared through use of time series of flow and flow 

duration curves (FDC) when transferred parameters and default ones are utilized. The effects of 
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parameter transferring on modeling the impacts of LULC changes on low, medium and high 

flows are discussed.  

 

METHODOLOGY 

Study Area 

Wolf Bay is located on the Gulf of Mexico in Baldwin County, Alabama, nestled between 

Pensacola Bay to the east and Mobile Bay to the west, with a watershed covering about 126 km2. 

It is a sub-estuary of Perdido Bay with a connection to the Intracoastal Waterway and includes 

various freshwater, nutrient and sediment inputs from several sub-watersheds through Wolf, 

Sandy, Miflin and Hammock creeks (Fig. 1).  

The watershed is primarily rural, but several municipalities exist including Foley, Elberta, 

Gulf Shores, and Orange Beach. Baldwin County’s beaches, bays and rivers promote an 

expanding tourism industry, which exerts substantial influences on water extraction for human 

uses. Baldwin County experienced a 43% increase in population from 1990 to 2000. As a result 

of population growth, there is an increased demand for commercial, residential, and 

infrastructure development, thus bringing growth management issues to the forefront for local 

elected officials. One of the more visible changes in the landscape of Baldwin County is the 

rapid transformation of agricultural and forested lands to residential development. These 

development pressures are threatening the natural resources which make Baldwin County a 

popular place to live and visit (Stallman et.al, 2005). As a result, detecting the impact of potential 

LULC changes is urgent and necessary, because it provides policy makers some valuable 

suggestion which strike a balance between development and the protection of natural resources. 

There is only one flow monitoring station in the watershed on the Wolf Creek operated by 

U.S. Geological Survey (USGS). However, at the commencement of this study no flow data was 
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available yet. USGS essentially monitors flow stage and converts them to discharge through 

stage-discharge curves only when they have enough flow measurements that cover range of 

flows. Magnolia River watershed, which is adjacent to Wolf Bay watershed to the northeast (Fig. 

1), has 10 years of continuous flow and climate data. Using the regionalization based on spatial 

proximity, we can setup a model in Magnolia River watershed, calibrate it and transfer the model 

parameters to Wolf Bay watershed. Besides their spatial proximity, Wolf Bay and Magnolia 

River watersheds also have quite similar physical characteristics (Table 1). Although it was still 

partly provisional, almost 2 years of flow data (12/5/2007 to 9/30/2009) later became available 

from the USGS gauge on Wolf Bay Creek, which provided us an opportunity to assess the 

feasibility of parameter transferring from Magnolia River watershed to Wolf Bay watershed. 

 

Watershed Model 

SWAT is one of the most commonly used watershed models for assessing the impact of 

management practices and land disturbances on watershed responses. It has a solid track record 

of applications (Kalin and Hantush, 2006). SWAT has been widely used around the world, such 

as the Cottonwood River near new Ulm, Minnesota (Hanratt and Stefan, 1998); southern Alberta, 

Canada (Chanasyk et al., 2003); Jeker river basin, Belgium  (Nasr et al., 2005) to assess various 

impacts of agricultural practices and land use activities on water quantity and quality. SWAT is 

also suitable for coastal and flat areas, which have more complicated geo-hydrologic conditions 

(Wu and Xu, 2006). ArcSWAT version 2.3.4 that runs on ArcGIS® was used for preparing the 

input data and processing the output files. 

SWAT is a distributed, process-based watershed model, but with significant number of 

empirical relationships. The physical backbone of the model facilitates the interpretation of 
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model parameters whereas the empirical simplifications keep data requirements low compared to 

physically based models (Heuvelmans, 2004). SWAT divides a watershed into several 

subwatersheds based upon drainage areas of the tributaries. Then, each subwatershed is split into 

multiple hydrological response units (HRUs) based on LULC and soil types. Each HRU is 

assumed to be spatially uniform in LULC, soil, topography, and climate. Major hydrologic 

process that can be simulated by SWAT include evapotranspiration (ET), surface runoff, 

infiltration, percolation, shallow aquifer and deep aquifer flow, and channel routing (Arnold et 

al., 1998). Details and the theoretical background of the SWAT is beyond the scope of this paper 

and can be found in Neitsch et al. (2005).  

In addition to streamflow, SWAT can also provide baseflow and surface runoff estimates as 

model outputs. Therefore, we used a baseflow filter to split the observed streamflow into 

baseflow and surface components to better calibrate the model. The algorithm presented by 

Arnold et al. (1995) is employed for this purpose. In this algorithm, a digital filter, which is 

borrowed from signal processing, is successively applied to streamflow. Filtering surface runoff 

(high frequency signals) from base flow (low frequency signals) is analogous to the filtering of 

high frequency signals in signal analysis and processing. The filter can be passed over the 

streamflow three times. At each pass, a slower component of streamflow (less baseflow as a 

percentage of total streamflow) is obtained.  

 

Model Performance Evaluation 

The statistical measures of mass balance error (MBE), coefficient of determination (R2) and 

Nash-Sutcliffe (1970) efficiency (ENS) are used as indicators of model performance: 
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where Qsim,i and Qobs,i are simulated and observed flows at ith observation, respectively, N is the 

number of observations. Similarly, simO and obsO  are average of simulated and observed flows 

over the simulation period. R2 describes the proportion of the total variances in the observed data 

that can be explained by the model and ranges from 0 to 1. ENS is a measure of how well the plot 

of observed versus predicted values fit the 1:1 line, and can theoretically vary from −∞ to 1, with 

1 denoting a perfect model with respect to data agreement. Although R2 and MBE values have 

been used often in the past to quantitatively compare model results with data, ENS is a better 

representative measure for model goodness-of-fit (ASCE 1993, Legates and McCabe 1999). 

 

Modeling LULC changes 

LULC changes affect various components of the hydrologic cycle, either directly or 

indirectly. The infiltration and ET processes are the two vital components of the hydrologic cycle 

directly affected by LULC changes. SWAT uses SCS curve number method to simulate 

infiltration process. Each soil/LULC combinations are assigned specific curve numbers, with 
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higher values representing higher surface runoff and less infiltration. Urbanization within a 

watershed increases the area of impervious surfaces (high Curve Number) which decreases 

infiltration and increases runoff. As a result, the amount of surface runoff generated from a 

specific rain event increases. Reduced infiltration results in less groundwater recharge which 

decreases baseflow contribution to streamflow, eventually causing reduction in low-flows. If 

change in ET is relatively small, then urbanization in essence redistributes baseflow and runoff 

components of the streamflow. 

SWAT calculates ET from potential ET (PET). One key component in PET calculation is the 

net radiation, which is a function of the plant albedo (reflectivity). Thus, change in LULC should 

change net radiation and eventually PET. In SWAT changing LULC has little or no effect on 

PET depending on the choice of the PET calculation method (Penman Monteith, Priestley-Taylor, 

and Hargreaves). In calculating the actual ET, SWAT evaporates intercepted water in the canopy 

first. If water intercepted in the canopy cannot fulfill the PET demand (usually the case), SWAT 

then calculates transpiration from plants. Transpiration is function of PET, leaf area index (LAI), 

and soil water content. LAI changes with land cover and plant growing seasons. Higher LAI 

means more transpiration. Calculation of transpiration and water uptake are described in detail in 

Neitsch et al. (2005).  

Two LULC maps representing the years 1992 and 2005 are employed to investigate the 

impacts of LULC changes on hydrologic responses in Wolf Bay watershed. The 1992 National 

Land Cover Data (NLCD) is a raster data set with a 30 m resolution. The second LULC map is 

produced by GIS specialists in Auburn University using circa 2005 as references data. Circa 

2005 is a vector dataset attained by trend analysis focused on LULC changes of urban and built-

up areas, utilities, and transportation from 2001 to 2005 based on Color Infrared imagery of 2001 
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and 2005 from Baldwin county commissions. Since these two maps had different LULC 

classifications, we reclassified them according to SWAT classification to make it consistent with 

model’s own database.  

 

RESULTS AND DISCUSSION 

Calibration and validation in the Magnolia River Watershed 

SWAT model was first set up in the Magnolia River watershed, then calibrated and validated 

with a split data set approach. The period from 10/01/1999 to 09/30/2004 of the daily flow data 

from USGS gauge #02378300 was used for calibration and the period from 10/01/2004 to 

09/30/2009 was used for validation. Model validation is defined as the process of demonstrating 

that model is capable of making accurate predictions for periods outside a calibration period. 

Usually, calibration of a model is based on 3-5 years of data (Sorooshian et al. 1983; Xia et al. 

2004), and validation on another period of similar length (Tu 2009, Ma et al. 2009). Table 2 

shows the calibrated model parameters along with their default values. Model simulations 

actually started from 10/01/1989 with measured precipitation data as input. This corresponds to a 

warm-up period of 10 years. The idea behind using such a long warm-up period was to minimize 

the effect of initial unknown conditions such as antecedent moisture, and initial groundwater 

table height (Kalin and Hantush, 2006). 

Model parameters were calibrated first at monthly, then at daily time scales for flow. Fig. 2a 

shows the observed and simulated monthly flows during the calibration and validation periods. 

Monthly streamflow values match well to the observed ones. Model performance statistics are 

shown in Table 3. Note that only MBE is shown for baseflow as suggested by Santhi et al. (2001). 

It is difficult to estimate the spatial and temporal distribution of ground water table. Quantifying 
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the impact of deep aquifer system on baseflow response is also challenging (Lee et al. 2005). 

Therefore, it is hard to capture the temporal dynamics of baseflow simulations. Overall SWAT’s 

performance at monthly time scale is good during both calibration and validation periods.  

Daily simulations of total streamflow are not as good as monthly simulations, but the ENS of 

the calibration period is still acceptable. Due to the temporal scale effect discussed in the 

previous paragraph we only focus on total streamflow at daily time scale. According to Moriasi 

et al. (2007) ENS values above 0.5 with low MBE are considered satisfactory. To gain more 

insight we also compared FDCs of observed and simulated flows in the Magnolia River 

Watershed from 1999 to 2009 (Fig. 2b). Observed and simulated flows have good agreement for 

flows having probability of exceedance > 0.2%. For the larger flows model underestimates flow 

as much as 50%, which is not uncommon in modeling (e.g. Baffaut and Benson, 2009; Larose et 

al., 2007; Wang and Melesse, 2005).   

Note that SWAT is not an event-based model. Although it works reasonably well for long 

term simulations, it has limitations in extreme events. It cannot capture the dynamics at sub-daily 

scale. For example, from 31st March 2005 to 6th April 2005, there were series of several very big 

storms. The total amount of rainfall in this one-week period was 440 mm, which is about one 

fourth of the average annual precipitation. The model failed to reflect these huge events properly. 

The MBE of streamflow in this period was -53%. The most improper simulation happened on 1st 

April 2005. Observed daily average flow was 197m3/s (largest ever recorded), yet SWAT 

estimated only 35m3/s of flow. Such extreme events can significantly alter the performance 

statistics. For instance, if we ignore the event on 1st April, 2005, The ENS for monthly simulation 

improves from 0.65 to 0.74 (see Table 3). Other than the potential deficiencies of the model in 

dealing with such huge events, there are two other possible reasons for this. USGS measures 
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stage not discharge; discharge is estimated from stage-discharge relationships (i.e. regression 

equations) which are known to have problems outside their range. Thus, observed flow during 

such an extreme event, which is actually estimated from stage, could have serious errors. Spatial 

variation in precipitation and the rain gauges not being able to capture these accurately is another 

source of error. Our precipitation data source is a rain gauge located at the watershed outlet. On 

1st April 2000, the USGS gauge at Magnolia River recorded a storm event where average daily 

flow was 6 m3/s, up from 0.6 m3/s from the day before. However, no flow is generated by SWAT 

because the rain gauge did not record any trace of rainfall. The most likely scenario is that it only 

rained at the upstream portion of the watershed that went undetected by the rain gauge. 

We tried different climate data sources to improve model performance. However, current 

rainfall data offered by the USGS station proved to be the best data source. Two other 

alternatives to the USGS gauge was a NOAA rain gauge and NEXRAD radar. USGS rain gauge 

is at the watershed outlet. The NOAA rain gauge is about 16 km away from the Magnolia River 

watershed outlet and well outside its boundaries. Further, it records daily rainfall from 6:00am to 

6:00pm, thus does not represent a calendar day. This may cause problems in daily flow 

simulations if there is an overnight rain event. The NOAA rain gauge also had extended periods 

of missing data (e.g. the whole months of November 2002, December 2002, and September 2009 

were missing). Like the USGS rain gauge data we observed inconsistencies during big rainfall 

events in NOAA data. Summer rains in Alabama are dominantly localized pop-up thunderstorms. 

Capturing these storms requires a very dense network of rain gauges. Radar data seems to be a 

good alternative but that has its own problems too. We obtained NEXRAD radar data for the 

Magnolia River watershed for the 2002-2008 period and tried to calibrate the model. Even 

NEXRAD data did not capture rainfall accurately and we had poorer model performance. The 
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annual average precipitation from 2002 to 2008 based on NOAA rain gauge, NEXRAD and 

USGS rain gauge were 1794 mm, 1520 mm and 1315mm, respectively, which shows the 

discrepancies between these three rainfall datasets and the degree of spatial variation in this area.  

Once the models were calibrated for flow, they were calibrated subsequently for sediment 

and nutrients. Since measured sediment and water quality data are discontinuous, USGS’s 

LOADEST (A Fortran Program for Estimating Constituent Loads in Streams and Rivers) is 

applied to generate continuous loads when given a time series of streamflow, additional data 

variables and constituent concentration based on regression analysis. By LOADEST, a 

continuous monthly loadings of TSS and nutrient are generated as observed data.  

Due to lack of sufficient measured water quality data, monthly sediment and nutrient was 

calibrated for year 2000 and validated for year 2001. Model performances are shown in Table 4 

and Fig. 3. Calibrated model parameters along with their default values are shown in Table 5 

From Fig 3, we found SWAT is able to predict the monthly sediment and nutrient loadings with 

sufficient accuracy.  

 

Transferability of model parameters from Magnolia River to Wolf Bay watershed 

In the previous section, SWAT was manually calibrated for flow in Magnolia River 

watershed with the calibrated parameters shown in Table 2. The next step is transferring these 

parameters systematically to Wolf Bay watershed. Table 6 shows the daily model performances 

with the default and transferred parameter sets. Although SWAT performed better with the 

transferred parameters, ENS is negative and mass balance error is above 50%. Default parameters 

resulted in a much lower ENS value (compare -2.07 to -0.21). Although, to some extent we 

expected low performance with the default parameters, having such low performance with the 
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transferred parameters was surprising since watersheds have similar physical and morphological 

characteristics and are adjacent to each other. Note that in spite of low ENS, R
2 is high. High R2 

with a low ENS means simulated values have the same trend with observed values in time, but at 

a disproportionate rate. In other words the model systematically over/under predicts the observed 

data. In this case, it is an over prediction. 

Sometimes when models are run outside their calibration/validation periods, changing LULC 

may result in poor model performance. Model was set up using LULC map of 2005, but the 

simulation period was extended to 2009. If LULC changed significantly from 2005 to 2009, then 

model performance should deteriorate over time. However, LULC didn’t change much in that 

period. We also run SWAT with LULC map of 2008 and compared the daily simulation results 

to the ones obtained with 2005 LULC. No significant difference was detected between the two 

daily simulation results. 

Based on above findings it is seen that parameter transferring improves the predictable 

capabilities of the SWAT model in the study area, but not necessarily at the desired level. 

However, we calibrated and validated the model over a long time period (5+5 years) and tested 

the model with transferred parameters over a short period (~2 years). Whether the model 

performs well at the donor watershed during the testing period 10/2007 - 09/2009 is not clear. 

Note that although the validation period included this period, the length of the validation period 

(5 years) along with higher flows during the first year (2005) could potentially hinder the model 

performance in the testing period. If the model cannot accurately predict flow in this specific 

period at the donor watershed, then the problem is beyond parameter transferability. Indeed, 

model performance in Magnolia River watershed during this testing period is not good at all. R2, 

ENS and MBE for daily streamflow are 0.45, -0.21, and 48%, respectively, quite similar to what 
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we attained in Wolf Bay watershed with the transferred parameters. Exchanging the roles of 

donor and target watersheds, that is calibrating the SWAT model at Wolf Bay watershed and 

transferring the calibrated model parameters to Magnolia River watershed, resulted in a different 

story. Daily model performance statistics for the period 10/2007 - 09/2009 was R2=0.63, ENS= 

0.62, and MBE=-2.5% at the calibration and R2=0.54, ENS= 0.51, and MBE=12% at the test 

watersheds. This is a substantial improvement over the previously reported values based 

calibration at Magnolia River watershed. Therefore, transferring parameters from neighboring 

watersheds indeed improves the predictive power of the model.  

 

Effect of parameter transferring on hydrologic responses 

In previous section we showed that transferred parameters increase model reliability as 

opposed to using model default parameters. Here we explore the implications of this on 

hydrological responses. Monthly flow simulation results using default and transferred parameters 

are shown in Fig. 4. Visually there are no significant differences. The two-sample Kolmogorov–

Smirnov (K-S) test, which is sensitive to differences in both location and shape of the empirical 

cumulative distribution functions of the two samples, is employed to compare the two 

streamflow time series. The K-S test indicated no significant differences (p=0.482) in simulation 

results of monthly flow due to use of two separate parameter sets. However, at the daily time 

scale there are striking differences. As shown in Table 7, two specific years, 2000 and 2005 are 

selected to represent dry and wet conditions, respectively. The K-S test is employed to check if 

there are any significant changes in the time series obtained by the two parameter sets, both at 

daily and monthly time scales. Again, no significant differences exist at monthly time scale, both 
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in dry and wet years (p=0.518 and 0.848, respectively). However, if the simulation scale is 

changed to daily step, significant differences appear in both years (p<0.0001 in both). 

FDCs for these two years and the whole 10-year-period were also compared (Fig. 5a-c). 

Differences are evident at high and low flows, regardless of dry or wet year. Note that 

simulations with default parameters always resulted in higher flows at low exceedance 

probabilities (<1%). Being in a wet or dry year did not change the fact that if default parameters 

are used in predicting high-flows we will end up over predicting the flow. Similarly, default 

parameter set consistently generated lower flows than transferred parameter set when probability 

of exceedance was larger than 3% during both dry and wet years. Similar results were obtained 

when the FDC for the whole period was considered. Default parameters always resulted in 

higher flows at low probability of exceedance and lower flows at high probability of exceedance.  

 

Impact of LULC change on hydrologic responses  

Table 8 shows the LULC distributions in 1992 and 2005. From 1992 to 2005 percent forest 

cover has been reduced by 9%. On the contrary, total urban land has increased by almost 20%. 

Pasture has been lost to agricultural fields such as sod farming, and low density residential areas. 

Same climate data and parameter set (the one calibrated in Magnolia River watershed) were 

utilized as model inputs to run SWAT with both 1992 and 2005 LULC maps. Simulation results 

for flow for each year are summarized in table 9. For each year, we tabulated annual maximum, 

minimum and mean daily flow values obtained with LULC of 1992 and 2005. The relative 

change in mean annual flow due to LULC change shows little variation. Although change in 

LULC did not have a big impact on streamflow, it affected the partitioning of streamflow to 

baseflow and surface runoff as evidenced by changes in annual maximum and minimum flows. 
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In every single year annual minimum flow was predicted to decrease due to LULC change with a 

range from -16.8% to -36.9%, and an average of -29.7%. Annual maximum flow appears to be 

most sensitive to LULC changes. It is estimated to increase by 40.6% to 115.3% with an average 

of 58.0%. Similar results are found in other studies (e.g. Kauffman et al. 2009, Rose and Peter 

2001). Fig. 6 shows the variation in average monthly streamflows before and after LULC 

changes. Flow was predicted to increase as much as 12% during the summer months of June 

through September, which is the growth season with the highest ET rates. 

Note that most of the increase in urban land was in form of low density residential areas 

(Table 8), which are only partially covered by impervious land. SWAT assumes that parts of 

urban areas not covered by impervious surfaces are bermudagrass. Based on SWAT database, 

maximum LAI for forest is 5, while for bermudagrass it is 4. Thus, forest to grass conversion 

does not cause significant change in ET. Over the whole simulation period, SWAT predicted 

about 20% less ET from grassland compared to forested land. Estimated annual average ET over 

the whole watershed based on the 1992 and 2005 LULC were 457 and 435 mm, respectively (~ 

5% reduction). Low and high density residential areas have on average 12% and 60% 

imperviousness, respectively, according to the USDA Soil Conservation Service (SCS) 

classification. Thus, the total increase in percentage of impervious areas from 1992 to 2005 is 

only 2.95%. Since LULC from 1992 to 2005 did not change uniformly over the whole 

watershed, it is not reasonable to try to explain the alterations in flow and ET purely by changes 

in forest cover and urban land use. Note that from 1992 to 2005 pasture had also decreased by 

28.3% and agricultural land increased by 15.5%. Therefore, there is a compound effect of all 

these mixed LULC changes. 
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Impact of parameter transferring on modeling LULC change 

Fig. 7a-c show the FDCs of daily flow simulations in the Wolf Bay watershed obtained with 

each of the three parameter sets (default, transferred from Magnolia River watershed, and the 

calibrated set in Wolf Bay watershed) and with the 1992 and 2005 LULC maps. In each figure 

there are clear differences in FDCs generated from the two LULC maps. Although the scales 

differ, FDCs with default parameters look similar to FDCs with transferred parameters (Fig. 7a-

b). In both cases, the flow with LULC 2005 is higher than the one with LULC 1992 in the 

exceedance probability below 10%, and the relationship is opposite above 10%.When the 

calibrated parameters are used, flows based on 1992 LULC never seem to exceed flow based on 

2005 LULC (Fig. 7c).  

To get a better insight into the effect of parameterization on the differences in FDCs due to 

LULC changes, relative difference in FDC, i.e. ([FDC of 2005 LULC] – [FDC of 1992 LULC]) / 

[FDC of 1992 LULC], were depicted in Fig. 8. Trends are similar in all three. Moving from left 

to right, i.e. from low to high probability of exceedance, the relative differences in flow due to 

LULC change (from 1992 to 2005 conditions) increase until around 1% and stays at that level 

until 2%. Thus LULC change has the largest impact on flows with 1% exceedance probability. 

As flow gets larger (probability of exceedance < 1%) the impact of LULC change is gradually 

reduced. Beyond 2% all three parameter sets exhibit a sharp drop and reach a plateau again. With 

the default and transferred parameter sets, the relative change in flow becomes negative around 

7-10% exceedance probabilities and stays negative beyond that point, mostly in the -15% to -

20% range. On the contrary, with the calibrated parameter set relative change in flow becomes 

negative around 20% exceedance probability and stays negative until 60% exceedance 

probability. Except for a short duration, the relative change in flow during this period is around 
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2%. Beyond 60% exceedance probability all the parameter sets show increase in relative change.  

In short, Fig. 8 reveals very interesting facts. First, the choice of the parameter set in 

simulating LULC changes does not seem to play a big role in relative changes of flow (it does 

for absolute flows). Although there are differences in the FDCs, trends are mostly consistent and 

the differences between them are not major. Secondly, LULC change influences most of the flow 

in a quite steady and moderate manner. Flows with 1-2% probability of exceedance appear to be 

most sensitive to LULC changes.  

 

SUMMARY AND CONCLUSIONS 

In this paper we explored how transferring model parameters from a neighbor (donor) 

watershed to a target watershed affects modeling LULC changes. The regionalization based on 

spatial proximity method was employed to transfer the model parameters from the donor 

Magnolia River watershed to the target Wolf Bay watershed. For this purpose SWAT model was 

first set up and calibrated in the Magnolia River watershed which has 10 years of continuous 

measured flow data. Calibrated model parameters were then transferred to the Wolf Bay 

watershed, which at the start of study had no flow data. Model performances were compared 

when two different parameter sets are utilized: SWAT default parameters and transferred 

parameters. About 22 months of measured flow data in Wolf Bay watershed that later became 

available was used for that purpose. Transferred parameter set resulted in a slightly better model 

performance than the default parameter set, but not at a desired level (both had negative ENS). 

The low model performance was due to the fact that when using a long period of data in model 

calibration the emphasis is on the whole period and the model performance may not be up to the 

desired level in some subsections of the entire time period. Hence, extension of parameter 
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transfer from donor watersheds through long term calibration to target watersheds for short term 

predictions requires extra caution, and most likely vice versa.  

Flow duration curves (FDCs) are effective tools in visualizing the whole flow range. We 

created FDCs to get a better insight to the impacts of both LULC change and parameter 

transferring. Simulations with default parameters always resulted in higher flows at low 

probability of exceedance (<1%). On the contrary, default parameter set consistently generated 

lower flows than the transferred parameter set when probability of exceedance was > 3%, 

regardless of dry or wet year. Similar results were obtained when the FDC for the whole period 

is considered. Default parameters always resulted in higher flows at low probability of 

exceedance, and lower flows at high probability of exceedance.  

Two LULC maps from 1992 and 2005 were utilized to assess the effect of parameter 

transferring on modeling LULC changes. The 2005 LULC had about 20% more urban classified 

land than the 1992 LULC. However, the estimated change in impervious cover from 1992 to 

2005 was only 2.95%. Average streamflow was only slightly affected by LULC changes. 

Maximum and minimum annual streamflows were found to be very sensitive to LULC changes. 

Annual minimum streamflow decreased moderately and annual maximum streamflow increased 

substantially due to LULC change. Again FDCs were developed out of model generated daily 

flows based on 1992 and 2005 LULC maps. This was done for each of the three parameter sets: 

default, transferred and Wolf Bay calibrated. The relative changes in FDCs due to differing 

LULC showed a similar pattern with each parameter set: relative change was highest at 1-2% 

exceedance probability. The impact of LULC change diminished gradually as the event sizes got 

smaller beyond the 2% probability of exceedance. 



 

This study clearly showed the benefits of using data from nearby watersheds to improve the 

model performance under limited data conditions in the study watershed. The analysis carried 

out in this study further suggest that t

parameters or transferred from a donor watershed, only has a marginal effect on modeling the 

impacts of different LULC scenarios. 
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This study clearly showed the benefits of using data from nearby watersheds to improve the 

model performance under limited data conditions in the study watershed. The analysis carried 

out in this study further suggest that the choice of the parameter set, whether it is default model 

parameters or transferred from a donor watershed, only has a marginal effect on modeling the 

impacts of different LULC scenarios.  
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Table 1. Physical similarities between Wolf Bay and Magnolia River watersheds 

Physical characters Wolf Bay Magnolia 
Min elevation (m) 0 6 

Max elevation (m) 34 36 

Mean elevation (m) 16.65 25.31 

Area (km2) 126.04 44.82 

Rural area 2005 (%) 72.8 73.65 

Urban area 2005 (%) 27.2 26.35 

Soil Clay (%) 8.61 12.33 

Soil Silt (%) 18.40 24.24 

Soil Sand (%) 72.99 63.43 

Mean slope 1.88 1.42 

 
 

 

Table 2. Calibrated SWAT parameters (flow part) and their default values 

  Curve  Soil  
ESCO surlag revapmn Alpha_BF 

Manning's  

Number AWC n 

Default Varies* Varies** 0.95 4 10 0.048 0.014 
Calibrated 3 -0.01 1 1 500 0.015 0.114 
* Varies by soil type and LULC 
** Varies by soil type 
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Table 3. Model performance (flow part) at Magnolia River watershed 

R2 ENS MBE (%) 
Monthly streamflow  
       Calibration 0.84 0.82 -7.1 
       Validation 0.80/0.78* 0.65/0.74* -2.0/4.7* 
Monthly surface runoff  
       Calibration 0.88 0.83 3.6 
      Validation 0.83 0.68 -4.8 
Monthly baseflow  
      Calibration - - -13.4 
      Validation - - 0.4 
Daily streamflow  
     Calibration 0.51 0.50 -7.1 
     Validation 0.45/0.54* 0.39/0.54* -2.0/4.7* 

* Model performance after removing the extreme event on 04/01/2005 

Table 4. Model performance (water quality part) at Magnolia River watershed 

  R2 Ens MBE (%) 
Monthly TSS  
Calibration 0.90 0.85 8.7 
Validation 0.93 0.88 -2.2 
Monthly Min-P  
Calibration 0.95 0.86 9.4 
Validation 0.87 0.77 -21.3 
Monthly Org-P 
Calibration 0.97 0.95 15.7 
 Validation 0.78 0.76 -1.8 
Monthly Org-N  
Calibration 0.93 0.92 -11.6 
Validation 0.66 0.61 -7.4 
Monthly Min-N  
Calibration 0.74 0.60 -14.8 
Validation 0.87 0.85 4.7 
Monthly TP  
Calibration 0.96 0.89 11.0 
Validation 0.86 0.80 -16.7 
Monthly TN  
Calibration 0.75 0.62 -14.5 
Validation 0.88 0.86 4.5 
TSS: Total suspended solid 
Min: Mineral nutrient 
Org: Organic nutrient 
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Table 5. Calibrated SWAT parameters (water quality part) and their default values 

 
 
 

Table 6. Model performance at daily time scale in Wolf Bay watershed 

 
 
 
 
 
 
 
 

See text for explanation of terms 
 
 
Table 7. Kolmogorov–Smirnov test for daily and monthly simulated streamflows generated 

with different parameter sets. 

 
Kolmogorov–Smirnov test 

Daily average 
rainfall (mm) 

Daily Max 
rainfall (mm) 

year 
KSa 
daily p-daily 

KSa 
monthly p-monthly 

2000 
(dry) 

11.421 <0.0001 0.816 0.518 1.1 192.8 

2005 
(wet) 

2.924 <0.0001 0.612 0.848 4.8 50.5 

The significance of KSa is 0.95 

 

 

 

 

  BC4 PSP PHOSKD BC1 PPERCO RS5 AGRRC Sol_minP 

Default 0.35 0.4 175 0.55 10 0.05 0.3 5 

Calibrated 0.1 0.7 200 1 17.5 0.1 0.055 3 

PRF BC3 P_UPDIS BC2 NPERCO RS4 RCN Mgt for AGRR 

Default 1 0.21 20 1.1 0.2 0.05 1 Auto fertilize,  
heat unit 

Calibrated 0.6 0.4 100 2 1 0.001 2 Cotton peanut  
rotation, date 

 

Default Transferred Calibrated 

Parameters Parameters Parameters 

MBE(%) 0.478 0.516 -0.025 

R2 0.536 0.637 0.63 

ENS -2.067 -0.208 0.618 
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Table 8. Land use/cover (LULC) change in Wolf Bay watershed 

Land Use 1992(%) 2005(%) Change(%) 

Forest 29.80 20.70 -9.10 

Hay 41.20 12.90 -28.30 

Wetland 11.20 13.40 2.20 

Agricultural 13.30 28.80 15.50 

Residential low density 3.50 21.60 18.10 

Residential high density 1.10 2.40 1.30 

 

 

 

Table 9. Annual statistics of streamflow under different LULC conditions 

Year 

Maximum flow (m3s-1) Minimum flow (m3s-1) Mean flow (m3s-1) 

1992 2005 Change(%) 1992 2005 Change(%) 1992 2005 Change(%) 

1999 7.26 11.74 61.7 0.266 0.194 -27.2 0.835 0.793 -5.01 
2000 1.15 2.48 115.3 0.071 0.054 -24.6 0.175 0.193 10.08 
2001 1.30 2.67 104.7 0.127 0.105 -16.8 0.255 0.253 -0.65 
2002 14.25 21.67 52.1 0.078 0.062 -20.1 0.428 0.509 18.80 
2003 8.53 13.63 59.8 0.317 0.243 -23.3 1.003 1.036 3.32 
2004 11.30 17.66 56.3 0.438 0.276 -36.9 0.876 0.901 2.85 
2005 18.09 25.43 40.6 0.529 0.411 -22.4 1.247 1.213 -2.78 
2006 2.81 5.48 95.0 0.196 0.138 -29.3 0.458 0.481 5.19 
2007 8.40 13.70 63.1 0.250 0.175 -29.9 0.592 0.620 4.63 
2008 4.21 6.94 64.9 0.515 0.331 -35.8 0.855 0.866 1.33 
2009 4.84 8.41 73.8 0.510 0.327 -35.9 0.799 0.810 1.38 
Mean 7.47 11.80 58.0 0.300 0.211 -29.7 0.684 0.698 1.98 
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Fig.1 Geographical location of Wolf Bay and Magnolia River watersheds 
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Fig.2 Simulated streamflow compared with observed data from 1999 to 2009 in Magnolia 

river watershed , (a) monthly time series (b) daily flow duration curve 
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Fig.3 Simulated monthly sediment and nutrient compared with observed data (LOADEST) 

from 2000 to 2001 in Magnolia River watershed 
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Fig.4 Monthly simulation streamflow for different parameter sets in Wolf Bay watershed 
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Fig.5 Flow duration curve using different parameter sets in Wolf Bay watershed, (a) dry 
year 2000, (b) wet year 2005, (c)whole period 1999-2009 
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Fig.6 Average monthly flow before and after land use change 
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Fig.7 Flow duration curve using different land use maps in Wolf Bay watershed by 
(a)default (b)transferred (c)calibrated parameters 
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Fig.8 Relative change in simulated streamflows due to different LULC for different 
parameters in Wolf Bay watershed (1999-2009) 
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Chapter II 

Responses of Hydrological Processes and Water Quality to LULC and Climate Change in 
Wolf Bay Watershed, Southern Alabama 

 
 

ABSTRACT 

Land use/cover (LULC) and climate change are two main factors affecting watershed 

hydrology and water quality. In this chapter, the individual and combined impacts of LULC and 

climate change on flow and water quality were analyzed by SWAT model by simulating the 

future changes under different LULC and climate change scenarios in the Wolf Bay watershed. 

Global Circulation Models (GCM) predict slight increase in precipitation in the Wolf Bay 

watershed, which is projected to experience substantial increase in urban percentage in the 

future.  A redistribution of daily streamflow is projected when either climate or LULC change 

was considered. High flows are predicted to increase, while low flows are expected to decrease.  

Combined change effect results in more noticeable uneven distribution of daily streamflow. 

Monthly average streamflow and surface runoff are projected to increase in spring and winter, 

but especially in fall, under normal future climate conditions. LULC change does not have a 

significant effect on monthly average streamflow, but affect partitioning of streamflow, causing 

higher surface runoff and lower baseflow. Combined effect led to more dramatic increasing trend 

in monthly average streamflow with a stronger increasing trend in surface runoff and decreasing 

trend in baseflow. Monthly distribution and projected variation of TSS followed the pattern of 

flow. Monthly distribution and projected variation of nutrients are complicated, which are 
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influenced by flow as well as management practices, such as tillage, fertilization and harvesting.  

Under the climate change scenarios, the variation of TN and TP generally followed the trend of 

flow. No significant difference in N:P ratio was projected. Under the LULC change scenarios, 

TN was projected to decrease for all months, which is induced by shrinkage of croplands. TP 

was projected to increase in fall and winter, since urban areas are also source for TP. The N:P 

ratio showed a strong decreasing trend with LULC changes. Under the combined change 

scenario, LULC and climate change effect were considered simultaneously. Results indicate that 

if future loadings are expected to increase/decrease under either climate or LULC change 

scenarios, combined change scenario intensifies that trend synergistically. On the other hand, if 

their effects are in opposite directions, then the combined change has an offsetting effect.  

 

INTRODUCTION 

Alteration in flow regimes and water quality deterioration due to land use/cover (LULC) and 

climate change are of great concern all over the world. LULC changes, mostly caused by human 

activities including changes in vegetation types, soil properties, land use practices and spatial 

patterns of interactions among these factors, affect water quantity and quality, often negatively. 

Many studies have been conducted to explore this strong influence.  Zhang and Schilling (2006) 

found that conversion of perennial vegetation to seasonal row crops in the Mississippi River 

basin has partly contributed to the increasing trend of baseflow and streamflow. Ouyang et al. 

(2010) studied soil erosion dynamics in response to landscape pattern and found that landscape 

pattern plays an important role in soil erosion. For instance, smaller patch size and more patch 

edge led to lower sediment loads in grasslands.   
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The most commonly observed LULC change is due to urbanization, which has been 

intensively studied in recent years. Urbanization leads to an increase in impervious areas which 

decrease the amount of water that infiltrates into the soil. Thus, while baseflow contribution to 

streamflow reduces, runoff increases, which results in more frequent and intense flooding (Rose 

and Peter, 2001; Huang et al., 2008). Urbanization also affects water quality adversely. It causes 

increase in sediment and nutrient loads, heavy metals, blooming of toxic algae which can reduce 

dissolved oxygen levels in waters (Bakri et al. 2008; Susana et al. 2008).  Kim et al. (2002) 

modeled the changes in average annual runoff due to urbanization in the Indian River Lagoon 

Watershed of Florida. They found that the average annual runoff increased by more than 113% 

between 1920 and 1990. Ouyang et al. (2006) assessed the impact of urbanization on river water 

quality in the Peral River delta zone, China. They found that urbanization and urban activities 

had a significant negative impact on the river water quality with significant increase in nutrient 

loadings and turbidity.  

Studies show that climate change leads to intensification of the global hydrological cycle and 

has a major impact on regional water resources, which affects both the distribution and 

availability of water resources and in turn influences processes controlling water quality, such as 

erosion, sediment transport and deposition, settling of nutrient and pollutions (Dam, 1999; Oki 

and Kanae et al., 2006; Konikow and Kendy, 2005).  Not only deterioration in water quality is a 

problem by itself, but also it contributes to the problem of water scarcity. Ficklin et al. (2009) 

assessed the climate change effect on San Joaquin Valley watershed in California and found that 

under future scenarios, streamflow will increase by 23.5%. Marshall and Randhir (2008) 

investigated the effect of climate change in the Connecticut River watershed, New England, by 

employing two downscaled GCM model outputs. They found that due to warming in climate 
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water storage will decrease during the winter months.  They further predicted increased sediment 

loadings in summer months in spite of a decline in surface runoff rate. This was because of 

antecedent moisture conditions, variability in sediment transport capacity resulting from soil 

characteristics, and detachment process caused by higher precipitation. N:P ratio was projected 

to increase, resulting in the watershed becoming more nitrogen limited. Cruise et al. (1999) 

coupled the United Kingdom Hadley Center climate model with a regional stochastic approach 

and a physically based soil moisture model in the southeastern U.S. Results of their study 

revealed that several basins located in regions of intense agricultural activity or in proximity to 

the gulf coast are projected to have reduction in streamflow over the next 30-50 years, thus 

exacerbating water quality problems, such as high nitrogen concentration levels.   

From the past studies it is obvious that both LULC and climate change play key roles for 

water resources and water quality, yet their combined effect and relative importance is still not 

very clear, difficult to separate empirically, and varies from case to case. Several studies (Qi et 

al., 2009; Liu et al., 2010; D’Agostino et al., 2010) explored the combined effect from both 

LULC and climate change. Mango et al. (2010) used modeling to determine the impacts of 

LULC and climate change scenarios on the water flux of the upper Mara River, Africa. They 

found that deforestation resulted in a slightly more erratic discharge while rainfall and air 

temperature changes had a more predictable impact on the discharge and water balance 

components. Guo et al. (2008) studied the combined effects of climate and LULC change to 

hydrological processes in Poyan Lake basin, China. They found that climate change is more 

likely to alter annual streamflow, while LULC change may have a moderate impact. Both of 

them strongly influenced seasonal variation in streamflow. Olivera and Defee (2007) studied 

urbanization effects on a 223 km2 watershed located in the northwest suburbs of Houston, TX. 
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They found that runoff depths and peak flows have increased by 146% and 159%, respectively, 

since early 1970s.  Urbanization was responsible for 77% and 32% of the increase, respectively, 

while variation in precipitation accounted for the remaining increase of 69% and 127%. 

As a valuable tool for studying the processes governing impacts of climate and LULC change 

on water quantity and quality, modeling is an inherently probabilistic exercise (Praskievicz and 

Chang, 2009). Generally, there are three different aspects of uncertainty in assessing impacts on 

hydrology and water quality. The first source of uncertainty is from future climate. This could 

come from (i) choice of the Global Circulation Models (GCMs) and future greenhouse gas 

emissions scenarios, and (ii) representation of climatology at regional scales, including 

differences between dynamical and statistical downscaling methods. The second source is 

associated with future LULC conditions, which are quite hard to predict and are often affected by 

land use policy, economic development, population increasing rate and natural environment.  

The third source of uncertainty stems from hydrologic models, such as model parameter 

estimation and model structure, like mathematical representation of the physical processes, 

which require many assumptions and simplifications. When projecting the impacts from 

potential future changes, uncertainty is inevitable and amplifies at each stage of the modeling 

process. Therefore, addressing uncertainties stemming from modeling potential LULC and 

climate change impacts and their combined effect is essential. 

Although there are several studies in the literature focusing on the combined effects of LULC 

and climate change on water quantity/quality, the following research gaps remains still exist: 

1. Most of the previous studies are confined in the aspect of water quantity (Ma et al., 2009; 

Li et al., 2009; Cuo et al., 2009), with few studies addressing the effect on both water quality and 

quantity. Those studies concerned with the combined effects of climate and LULC change on 
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sediment or nutrients involved very limited water quality indices. For example, Tu (2010) 

assessed the seasonal distribution and annual averages of nitrogen loadings in eastern 

Massachusetts, USA. Similarly, Asselman et al. (2003) estimated the potential effects of climate 

combined with LULC changes on the mobilization of fine sediment and the net transport of wash 

load from the upstream basin to the lower Rhine delta. However, influences on nutrient were not 

stated in their paper.  

2. Compared to future climate change scenarios, which usually contain various GCM outputs 

under different green house gas emission scenarios, LULC change scenarios are too simplistic 

and  do not consider the factors affecting LULC changes, such as land use policy, economic 

development, and natural environment. For example, Montenegro and Ragab (2010) explored the 

hydrological response of a Brazilian semi-arid catchment to combined effect of LULC and 

climate change. However, their land use change scenario was hypothetical and overly simplified, 

replacing different amounts of catinga forest with castor beans. 

3. The uncertainties of model results are not satisfactorily addressed in most of the studies. 

As stated before, the uncertainty in the model output originates from many sources. Some studies 

only acknowledged the uncertainty caused by climate inputs. For example, Wilby et al. (2006) 

studied climate change impacts on water resources and water quality in a British lowland 

catchment by 3 GCMs and 2 green house emission scenarios. Their results confirmed the large 

uncertainty in climate change scenarios and freshwater impacts due to the choice of GCM. 

However, there are limited studies dealing with the uncertainties from climate combined with 

LULC change. 

In this study, a process-based hydrologic and water quality model, Soil and Water 

Assessment Tool (SWAT) was utilized to simulate flow, sediment and nutrient (N and P) 
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loadings under future climate and LULC conditions in Wolf Bay watershed, which drains to the 

Gulf of Mexico. The specific objectives are: (1) to explore the hydrologic and water quality 

responses to combined effects of climate and LULC change, (2) to examine whether climate 

change exacerbates or offsets the impacts of LULC change and vice versa. Uncertainties caused 

by climate and LULC change are also analyzed for both objectives.    

 

METHODOLOGY 

Study Area 

Wolf Bay and its watershed (Fig. 1) is located on the Gulf of Mexico in Baldwin County, 

Alabama, nestled between Pensacola Bay to the east and Mobile Bay to the west, with a 

watershed covering about 126 km2. As an estuary where freshwater and saltwater mix, it creates 

a diverse environment that fosters a rich array of plant and animal life, including several 

federally listed species, such as bald eagles, sea turtles, Gulf sturgeons, American alligators and 

Eastern indigo snakes. Wolf Bay and its surrounding waters are the most pristine estuarine 

waters in Alabama, which was granted “Outstanding Alabama water” status by Alabama 

Department of Environmental management in April, 2007. The beautiful waters attract many 

people to coastal Baldwin County, contributing greatly to the economic base of coastal 

communities through tourism, commercial and recreational fishing and aquaculture.   

Wolf Bay watershed is primarily rural, but several municipalities exist including Foley, Elberta, 

Gulf Shores, and Orange Beach (Fig. 1). The basin generates various nutrient and sediment 

inputs from several sub-watersheds through Wolf, Sandy, Miflin and Hammock creeks, which 

finally drain to the Wolf Bay. Alteration in vegetations, management practices of the watershed 
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can change hydrology and water quality, and in turn can significantly affect the water resource 

and ecologic health of the bay. 

Baldwin County experienced a 43% increase in population from 1990 to 2000. As a result of 

this population growth, there has been an increased demand for commercial, residential, and 

infrastructure development, thus bringing growth management issues to the forefront for local 

elected officials. One of the more visible changes in the landscape of Baldwin County is the 

rapid transformation of agricultural and forested lands to residential development. Such LULC 

change is deemed to affect water quantity and quality, usually negatively. Considering the 

potential climate change effects, the situation becomes more complicated. Their potential effects 

can be reflected in: 

(1) Water quality: Increased soil erosion can change the shoreline from sandy to muddy, 

which could destroy the fish stock and damage the benthos and habitats. Increased turbidity also 

degrades the ecosystem by decreasing the light available for photosynthesis.  Further, excessive 

nutrients can lead to water quality degradation, which reduce dissolved oxygen, causing hypoxia 

or anoxia. This may destruct the whole ecosystem by blooming harmful algae and therefore 

causing massive fish kills.  

(2) Water quantity: Due to climate and urbanization, it is anticipated that peak flows will 

increase and dry season flows will decrease, thus exacerbating flooding in wet seasons and 

droughts in dry seasons. This will also affect water quality indirectly. For example, if the estuary 

is slowly flushed, the extra load of nutrients and pollutants will cause degradation in water 

quality, ecological services and biodiversity. Also, fluctuations in freshwater discharge to the bay 

affect the salinity of water, which affects the health and incubation of fishes. For example, a 
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slight change in salinity can cause fish, frog or shrimp eggs to float too much (high salinity) or 

not enough (low salinity), thus reducing or eliminating their chances of development into adults. 

Because of all these, we found a unique opportunity to study the potential impacts of LULC 

and climate changes on hydrologic responses and water quality in the Wolf Bay watershed. 

Findings from this study should benefit local stakeholders and decision makers in the Wolf Bay 

area.  

 

Watershed model  

The Soil and Water Assessment Tool (SWAT) version 2005 (Neitsch et.al, 2005) was used in 

this study. SWAT is one of the most widely used models for assessing the impact of 

management practices and land disturbances on watershed responses, and has a solid track record 

of applications (Kalin and Hantush, 2006 ; Gul and Rosbjerg, 2010; Pisinaras V et al., 2010). 

SWAT has been widely used around the world, such as  Nzoia catchment, Kenya (Githui et al., 

2009), Rocky Mountain Watershed, Montana, USA (Ahl et al., 2008), Kielstau catchment in 

North German lowlands (Lam et al.,2010), etc.,  to assess various impacts of agricultural 

practices and land use activities on water quantity and quality.  SWAT is also suitable for coastal 

and flat areas, which has more complicated geo-hydrologic conditions (Wu and Xu, 2006). 

SWAT is a distributed, process-based watershed model. It is partly physical-based with number 

of empirical relationships. The physical backbone of the model facilitates the interpretation of 

model parameters whereas the empirical simplifications keep data requirements low compared to 

fully physical based models (Heuvelmans, 2004). SWAT divides a watershed into several 

subwatersheds based upon drainage areas of the tributaries. Each subwatershed is split into 

multiple hydrological response units (HRUs) based on LULC and soil types. Each HRU is 
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assumed to be spatially uniform in LULC, soil, topography, and climate. SWAT simulates eight 

major components: hydrology, weather, sediment, soil temperature, crop growth, nutrients, 

pesticides, and agricultural management (Neitsch et al., 2005). Major hydrologic process that can 

be simulated by the model include evapotranspiration, surface runoff, infiltration, percolation, 

shallow aquifer and deep aquifer flow, and channel routing (Arnold et al., 1998). Erosion and 

sediment yield are estimated for each HRU with the Modified Universal Soil Loss Equation 

(MUSLE) (Williams, 1975). Sediment routing is also considered based on deposition and 

degradation processes. SWAT also tracks the movement and transformation of several forms of 

nutrients (phosphorus and nitrogen) in the soil. Nutrient may be introduced to the main channel 

by surface or subsurface runoff, nutrient routing in the stream is then controlled by the in-stream 

water quality component adapted from QUAL2E (Brown and Barnwell, 1987).  Detailed 

description of processes modeled in SWAT can be found in Neitsch et al. (2005). 

 

LULC data 

In order to explore the LULC change effect on hydrology and water quality in the Wolf Bay 

watershed, present and projected LULC maps are needed. LULC map circa 2005 is used to 

represent the current period. It is a vector dataset attained by trend analysis from Baldwin County 

Planning Commission. This vector dataset is focused on changes in urban and built-up areas, 

utilities, and transportation from 2001 to 2005 based on Color Infrared imagery 2001 and 2005 

for the whole Baldwin County. Using this trend map as a reference, GIS specialists at Auburn 

University improved its accuracy and produced LULC map of 2005. This map is a product of an 

interdisciplinary project “Impact of Human Activities and Climate Change on Water Resources 

and Ecosystem Health in Wolf Bay Basin: A Coastal Diagnostic and Forecast System (CDFS) 
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for Integrated Assessment”. Based on this map, Wolf Bay watershed is dominated by agricultural 

land (30%) followed by urban area (26.4%) and forest (20.9%). High percentage of urban area 

and crop land is due to conversion from forest and pasture land in the past 10-15 years. 

Future LULC of the Wolf Bay watershed was projected by members of the same 

interdisciplinary project at Auburn University. They developed an advanced  LULC model by 

linking GIS techniques and remotely sensed images creating a hybrid model. The predicted 

LULC change is driven by land demands, physical properties such as topography and distance to 

major facilities, and disturbances such as extreme climate events (hurricanes, storms and 

droughts). The LULC prediction model can simply be described as: 
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Based on this modeling framework, historical LULC data sets and the derived spatial data 

sets from DEM and survey data were used to generate preliminary simulation results on the 

projected urban distributions from 2008 to 2040.  With the validated LULC model and relevant 

data sets, projected urban expansions with different population growth scenarios are provided.   

Three LULC scenarios (Fig. 2) were generated for 2030 assuming high, medium and low 

population increasing rates (HPR, MPR and LPR). Higher population increase rate causes higher 

urban fraction and vice versa.  Compared with the most recent land use map of 2005, there is a 

clear trend of urban sprawl. Even with the least aggressive growth scenario, 50% of the 

watershed is projected to be urban land in 2030 (Table 1). Other LULC types are projected to 

decline by 2030 owing to the urbanization effect. For example, by comparing LULC map of 
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2005 with LPR future projected map of 2030, the evident increase of urban area (around 25%) is 

mainly contributed by decreases of forest, agriculture land, wetland and pasture.  The percent 

reduction in forest cover is around 5%, which does not represent a typical deforestation trend in 

future. The disparity in some of the LULC types among the three projected LULC maps of 2030 

is not so significant, especially for forest, pasture and wetland. The main difference is in 

percentages of urban and agricultural land.  Higher population increase rate causes higher urban 

fraction and lower cropland percentage. For example, the increase of urban fraction is 25%, 32% 

and 39% for LPR, MPR and HPR, respectively while the reductions in cropland are 5%, 10% 

and 15%, respectively.  

 

Climate data  

Monthly precipitation and temperature for future scenarios  

In order to demonstrate the variability of future climate, outputs from four Global Circulation 

Models (GFDL_cm2_0 (Delworth et al., 2006), GISS_model_e_r (Russell et al., 2000), 

NCAR_ccsm3_0 (Collins et al., 2006), UKMO_hadcm3 (Gordon et al., 2000)) under 3 green 

house gas emission scenarios (A2, A1B, B1) were utilized to attain potential monthly 

precipitation and temperature estimates in the Wolf Bay watershed for the period 2016-2040. 

This corresponds to a 25 year period, which is long enough to explore the potential responses 

due to climate change. Further, the future LULC map of 2030 roughly falls in the middle of this 

time period, which presents a more realistic set up for exploring the combined effects of climate 

and LULC change. 

All climate projections were provided by "the World Climate Research Programme's 

(WCRP's) Coupled Model Intercomparison Project phase 3 (CMIP3) multi-model dataset" which 
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was referenced in the Intergovernmental Panel on Climate Change Fourth Assessment Report.  

CMIP3 data is bias-corrected and spatially downscaled by Maurer et al. (2007) to a finer spatial 

resolution (1/8 degree). Spatially downscaled monthly rainfall and surface air temperature data 

(available at: http://gdo-dcp.ucllnl.org/downscaled_cmip3_projections/) were further downscaled 

to daily time scale as explained below.  

Since there is no observed data for future scenarios, ensuring the reliability of GCMs 

projection is quite important. Generally, GCMs also provide simulated precipitation and 

temperature for historic periods, which should compare well with observed climate data. In most 

of the cases, those historic GCM outputs match well with observed data at large spatial scales 

(e.g. global or continent scale). However, once spatially downscaled, those products could 

become quite different from historic data at smaller scales, such as watershed level, which is 

often the required scale for hydrologic modeling. Therefore, even spatially downscaled climate 

projections cannot be directly utilized as climate input for hydrologic modeling.  Refinement of 

those spatially downscaled data is often necessary.  

The method recommended by Tung et al. (2006) was used to determine monthly temperature 

and precipitation for different climate scenarios: 
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where � ! and + ! are mean monthly temperature (0C) and precipitation (mm) for future periods 

(2016-2040); � !
" and + !

" are observed historic mean monthly temperature (0C) and precipitation 

(mm) for the baseline period (1984-2008); %&!
" and ,&!

" are mean monthly temperature and 

precipitation coming from GCM predictions for the baseline period ; and %&!
' and ,&!

' are GCM 

projected mean monthly temperature and precipitation for appropriate future periods. The 
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subscript k in each term represents the month. Note that future period spans from 1/1/2016 to 

12/31/2040 and the baseline period spans from 1/1/1984 to 12/31/2008. Therefore, while k =1 

represents Jan 1984 in the baseline period, it represents Jan 2016 in the future period. In other 

words, there is a one to one correspondence between the months of baseline and future periods. 

For example, May 2020 in the future period corresponds to may 1988 of the baseline period.  

Equations (1) and (2) assume that the difference in monthly averages of GCM projections 

between the future and baseline periods are the same as the change between observed historic 

monthly averages and the future monthly averages. Finally, since there are 4 GCMs and 3 green 

house gas emission scenarios, 12 groups of future monthly precipitation and temperature data 

were generated.  

 

Daily precipitation and temperature  

Since SWAT simulates flow and nutrients at daily time scale, monthly climate projections 

still need to be downscaled to daily time scale in order to study the climate change effects on 

hydrology and water quality. Hence, SWAT model’s stochastic weather generator, WXGEN 

(Sharpley and Williams, 1990) was used to generate daily rainfall from monthly statistics, such 

as mean monthly rain and number of wet days in that month, etc, to downscale monthly 

precipitation data to daily time scale. Those statistics are often estimated from historic weather 

records. SWAT has a built in database for such statistics compiled from long term NOAA 

rainfall data. For the same monthly parameters, weather generator may produce hundreds of 

different daily rainfall patterns, which reflects the variation of daily rainfall. In general, 20 sets is 

the minimum number to obtain a representative distribution of possible weather scenarios given 
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the predicted probabilities (Neitsch et al., 2005). Therefore 21 sets of daily rainfall patterns were 

generated by WXGEN. 

For a given month m, future daily precipitation was calculated as follows: 
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Where nm is the number of days in a given month m, in this study the total number of months is 

25*12=300; i is any day in the given month; +.,/ reflects projected daily precipitation of day i in 

the given month m; �.,/ is the generated daily rainfall for day i in the given month m by 

WXGEN; ∑ �.,/
14
/50  is the total precipitation in the given month m;  + . is the future mean 

monthly precipitation coming from equation (1). Since there are 12 groups of + . for each month 

m reflecting different combinations of GCMs and green gas emission scenarios, and 21 sets of 

�.,/ generated by WXGEN, in total, 12*21=252 sets of daily precipitation data were generated. 

Compared with daily variation of precipitation, which may substantially affect flow and 

water quality, daily temperature does not fluctuate substantially in a given month. In this study, 

daily patterns of daily temperature were not generated; rather daily maximum and minimum 

temperatures for future were estimated as follows: 
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where �.,/
.78  and �.,/

./1 are respectively daily maximum and minimum temperatures for future 

period (2016-2040) of a given day i in a given month m; �.,/
",.78 and �.,/

",./1 are daily observed 

maximum and minimum temperatures, respectively, for the baseline period (1984-2008); %&."  is 

the mean monthly temperature from GCM predictions for the baseline period; and %&.
'  is the 

GCM projected mean monthly temperature for the future period. Obviously, the number of daily 
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temperature patterns is consistent with the number of GCM and green house gas emission 

scenario combinations, which is 12 as stated before. Lastly, although each GCM under a specific 

green house gas emission scenario have 21 sets of daily precipitation patterns, it has only one set 

of daily temperature pattern as SWAT input. For instance, SWAT simulated the GFDL_cm2_0 

under A1B scenario 21 times with different daily precipitation, but with the same daily 

temperature data. 

 

Model experiment set up: 

The SWAT simulations were performed for two 25-year time periods. First one was the 

baseline period, 1984-2008, for which calibration and validation for flow, sediment and nutrient 

were performed. Since there was no sufficient measured data in the Wolf Bay watershed, SWAT 

was calibrated and validated in the nearby data rich Magnolia River watershed. Relevant model 

parameters were then transferred to the Wolf Bay watershed (Wang and Kalin, 2010). This 

method is called regionalization approach based on spatial proximity and is widely used when 

there is no enough observed data in a target watershed to ensure model reliability (Merz and 

Bloschl, 2004; Oudin et al., 2008; Reichl et al., 2009). The second period is to simulate future 

climate from 2016 to 2040, for which the 3 projected LULC map and the 4 downscaled GCM 

under 3 green house gas emission scenarios for climate conditions were used.  Parameter set was 

assumed to be the same as the one used for the baseline period. In order to detect the marginal 

and joint effects of LULC and climate change, the approach of one factor at a time was used (Li 

et al., 2009). This approach changes one factor at a time while holding others constant. We 

designed the model experiments based on that, as outlined below: 
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i) Baseline run: Most recent LULC map of 2005 and daily measured climate data (1984-

2008) from NOAA station at Robertsdale (Fig. 1) was used as SWAT input. 

ii)  Only climate change effect: Current LULC map of 2005 and future daily climate data 

(2016-2040) downscaled from 4 GCM under 3 green house gas emission scenarios were 

used. Model had 4*3*21=252 ensemble of outputs. 

iii)  Only LULC change effect: Three projected LULC maps for year 2030 and historic 

climate data (1984-2008) from NOAA station at Robertsdale were used as input.  

iv) Combined change effect: Three projected LULC maps for year 2030 and future daily 

climate data (2016-2040) downscaled from 4 GCM under 3 green house gas emission 

scenarios were used. Model had 252*3=756 ensemble of outputs. 

 

RESULTS AND DISSCUSSION 

Climate change effects on precipitation and temperature. 

Fig. 3 shows variations in average seasonal precipitation and temperature for the future 

period (2016-2040) relative to the baseline period (1984-2008). The horizontal axes in each 

panel indicate changes in average precipitation, while vertical axes denote changes in average 

temperature. The 12 dots in each panel correspond to 12 different future scenarios (4 GCMs*3 

emission scenarios) with the cross indicating the average of 12 scenarios. It is clear that future 

climate predictions are quite different from each other, and the uncertainty range exhibit a 

seasonality behavior. Based on Fig. 3, all future projections indicate a rising trend in temperature, 

but distinct magnitudes are detected according to seasons. For summer and fall, the range is from 

+0.4 to +2.0 0C, while for spring and winter, the range is from +0.2 to +1.6 0C.  Annual increase 

of mean temperature varies from +0.4 to +1.4 0C.  Precipitation has a different pattern than 
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temperature. Although there is no clear trend of increase or decrease in average monthly 

precipitation for spring, summer and winter, in fall, 11 of the 12 scenarios show increase in 

precipitation, with an average of 10% for fall months. This is potentially a good thing as fall is 

typically the driest season in the Southeast U.S. At the annual scale, 8 of the 12 future 

projections predicted increase in precipitation, approximately 4% on average. Generally, based 

on Fig. 3, Wolf Bay watershed will more likely experience increased precipitation in future, 

especially in fall months. Temperature is expected to increase for all seasons, especially in 

summer and fall.  

Fig. 3 provides some general information about the potential changes in precipitation in the 

future in the Wolf Bay watershed, such as averages and seasonal differences. However, the 

change in frequency and magnitude of daily rainfall is not shown.  Fig. 4 reflects exceedance 

probabilities for daily precipitation, which provides more insight. Probability of exceedance (PE) 

in the figure reflects the possibility of having rainfall amount of that magnitude or higher in a 

given day. Therefore, what is shown in the figure are complimentary cumulative distribution 

functions (CCDF). Out of the 252 complimentary CDFs generated from 252 sets of future daily 

precipitation data, Fig. 4 shows only the 95th and 5th percentiles (90% confidence interval). 

Median of the CCDF’s is also shown in the figure. It can be seen that the relative positions of 

projected precipitation curves and baseline curve differs with PE.  Baseline fluctuates around the 

median curve when PE< 0.001, then falls below the 90% confidence interval from around 

PE=0.0015 to around PE=0.03. After PE=0.03, relative position of baseline is rising again until it 

becomes higher than the upper limit around PE=0.15. This means large rain events will be more 

intense in the future. On the contrary, the rainfall intensity of smaller events (PE<0.15) will be 
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reduced. Combining Fig. 3 with Fig. 4 one can conclude that in the future there will be a shift in 

rainfall pattern with large events getting more intense and smaller events becoming less intense. 

 

Climate change effects only  

SWAT was run at annual, monthly and daily time scales 252 times to simulate flow, 

sediment and nutrient loadings under future scenarios. From this ensemble of model outputs 5th 

and 95th percentiles were calculated to represent dry and wet conditions, respectively, in future. 

Median of the ensemble of model outputs was also used to represent normal conditions.  Results 

are discussed below.  

 

Annual and monthly flow 

The projected annual average daily streamflow for the future period was 3.19, 4.87, and 

6.81m3/s, under dry, normal and wet conditions, respectively. Compared to average daily 

streamflow in the baseline period, which was 4.57 m3/s, it is hard to judge if there is an 

increasing trend in average daily streamflow under normal conditions. We conducted a t-test for 

two independent samples between baseline group and future normal condition group. One-sided 

p-value (pooled) of 0.16 indicates no significant difference between the two groups. Therefore, 

the projected increase in annual average daily streamflow is statistically insignificant. For 

baseflow and surface runoff, the projected daily average values under the normal condition were 

2.55 m3/s and 2.29 m3/s, respectively. For baseline, the corresponding annual average daily 

discharges were 2.33 and 2.24 m3/s, respectively. The t-test resulted in p-values of 0.07 and 0.37 

for surface runoff and baseflow, respectively. Therefore, no trend was detected for baseflow 

under the normal condition. On the other hand, the p-value of 0.07 obtained for surface runoff is 
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not that big. Although at 5% level there is no statistical difference, at 10% there is an increase in 

surface runoff.  

Compared with Cruise’s (1999) study, our results doesn’t reflect strong decreasing trend in 

streamflow. Since Cruise’s conclusion was only based on the United Kingdom Hadley Center 

climate model and focused on the whole Southeast U.S., it is not surprising to have different 

predictions in streamflow.   

Fig. 5 shows the 5th and 95th percentiles along with the median of average monthly 

streamflow, surface runoff and baseflow by running SWAT with the 252 climate inputs. Under 

wet conditions, streamflow, direct runoff and baseflow are all showing a rising trend for all 

months when compared to the baseline. For dry conditions, all three reflect a declining trend, 

though in September and October the difference is marginal. Under the normal conditions, 

consistent with the rainfall, streamflow and surface runoff are projected to increase in fall 

months (September, October and November). Winter (December, January, and February) and 

spring (March, April, and May) will experience moderate increase in streamflow and surface 

runoff.  In summer (June, July, August), no significant difference is predicted in streamflow and 

direct runoff. Baseflow is projected to decrease slightly in spring and summer, while increase 

marginally in winter.  

 

Daily flow for the whole period 

Fig. 6a shows the 90% confidence interval along with the median of the FDCs generated 

from daily streamflow by running the SWAT model with the 252 precipitation inputs. In the 

figure, upper and lower limit represents the wet and dry conditions, while median reflects the 

normal conditions in the future. According to different probability of exceedance, future daily 
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discharge illustrates substantial differences when compared to baseline. Furthermore, positions 

of future FDCs relative to the baseline FDC are quite similar to the precipitation CCDFs shown 

in Fig. 4. This is not quite surprising as precipitation is the main driver for flow. 

To get a better insight into the effect of climate change on daily flow responses, the relative 

difference of future conditions from the baseline, i.e.  ([FDC of future conditions] – [FDC of 

baseline situation]) / [FDC of baseline situation], were generated and depicted in Fig. 6b.  Based 

on this figure, under wet conditions (upper confidence limit), the relative change of flow is 

always a positive value. It fluctuates between 75% and 10% when PE<0.01. It reaches at a 

plateau at 40% until PE arrives at 0.1, and then reduces to 10%. Under normal condition (median 

of 90% confidence interval), relative change fluctuates around 0 when PE<0.001, and reaches a 

maximum of about 30% around PE=0.01. It then decreases gradually from 30% to 5%, until 

PE=0.9. After PE=0.9, it drops drastically all the way to -30%. The shapes of these two curves 

are quite similar, only shifting in relative positions. Under dry conditions, as PE increases from 0 

to 0.01, the relative change grows consistently from -40% to 20%. The relative change is 0 when 

PE is around 0.002. After PE=0.01, it decreases gradually from 20% to -15% until it reaches 

PE=0.85.  From PE=0.85 till the end it drops drastically to -60%. When 0.002<PE<0.3, the 

relative changes are always positive, which indicates great possibility (90% confidence) of 

increasing trend in daily flow even under dry conditions in the future. Flows in that range are 

moderate to large (return period from 3 days to 500 days).  

 

Seasonality effect 

From the earlier discussions, it was evident that responses of rainfall and temperature to 

climate change show strong seasonality. Therefore, it is believed that seasonality exists in the 
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responses of streamflow as well.  Similar to FDC for the whole period, 252 sets of daily flows 

were categorized by seasons, and then sorted. Upper limit, lower limit, and median for the 90% 

confidence interval were calculated. Comparing with the baselines in different seasons, relative 

changes were also attained to detect seasonal responses of daily streamflows. As shown in Fig. 7, 

under wet conditions in future, all seasons, especially winter and fall, indicate increase in flow. 

Under normal conditions, variation of high and medium flows in winter differs from those in 

other seasons. Large (0.001<PE<0.1) and extreme large flows (PE<0.001) show a significant 

increasing trend only in winter. While for spring, summer, and fall, decrease in extreme large 

flows were predicted. When PE is larger than 0.1, relative change from baseline in winter 

becomes zero when PE is around 0.15, then becomes negative till the end, while the threshold of 

PE is around 0.3 for flow in spring, it is around 0.6 for both summer and fall. When PE is bigger 

than ~0.75, relative change from the baseline become negative for all seasons under normal 

conditions, which means reduction of low flows in the future. Under dry conditions, spring and 

summer are predicted to experience lower flows for all range of flows, while in fall, large flows 

will increase, indicating that fall is going to have higher large flows in the future, even under 

extreme dry conditions.  

 

Water quality 

Monthly distribution of TSS, TP and TN (Fig. 8a,b,c) are consistent with surface runoff, with 

higher loadings in March, April, July and September. The consistent pattern between flow and 

TSS can be linked to the MUSLE equation used in SWAT to simulate erosion and sediment 

transport. In MUSLE runoff volume and peak runoff rate are utilized to calculate sediment yield. 

During channel routing, deposition or degradation may happen depending on the maximum 
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concentration of sediment that can be transported by flow. Monthly distribution pattern of TN 

and TP follow the average monthly surface runoff trends as well. For example, TN and TP peaks 

occur in March, June, July and September like flow.  

In terms of projected variation (Fig. 8d,e,f), TSS, TP and TN also reflect similar patterns to 

flow. Loadings are expected to decrease for all months under dry condition, while all show 

increasing trend under wet conditions. The magnitude of increase or decrease is bigger in spring 

and fall, while smaller in summer. Under normal condition, TN has an increasing trend in all 

months; the magnitude of increase in summer is smaller than those in other seasons. TP is 

projected to decrease in summer, while increase in other seasons under normal condition.  

SWAT has a comprehensive nutrient cycling component. It calculates and provides as output 

the organic and mineral forms of nutrients. In order to get a better insight on nutrient loadings, 

we analyzed the monthly distribution and projected variation of organic and mineral forms of N 

and P (Fig. 9). From the figures it is apparent that Min-N is the dominant component of TN, 

therefore monthly distribution and projected variation of TN is mainly decided by Min-N. For 

phosphors, loadings of mineral and organic forms are comparable. Thus, TP is influenced by 

both Min-P and Org-P. 

Org-P and Org-N illustrate similar patterns as expected: peaks appear in March and 

November, and lowest loadings happen in summer. This is related to agricultural management 

practices. Tillage and harvesting, usually applied in spring and fall, provide large amounts of 

organic matter. Lower loadings of organic matter in summer are due to higher vegetation cover, 

which retain the organic matter, and also due to higher temperatures, which convert organic 

matters into mineral forms. Mineral forms of N and P follow the monthly pattern of flow. 

Mineral forms of nutrients are also affected by management practices. For example, higher 
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values of mineral N, and P in June are due to fertilization of mineral N, P as well. In terms of 

projected variation, the relative change of four forms (Org-P, Min-P, Org-N, Min-N) follow the 

flow variation. If flow is projected to increase, they show increasing trend and vice versa. For 

example, in fall, under wet condition, the relative change of streamflow is +40%. Accordingly, 

the relative change is around +80% for Org-N, +40% for Min-N, +70% for Org-P, and +50% for 

Min-P.   

Since shift in the N:P ratio of the loads entering coastal waters can contribute to an alteration 

in species dominance in the phytoplankton population, N:P ratio under climate change scenarios 

was also studied. Through simulation, the expected N:P ratio was found to vary from 46 to 50. 

Compared to the baseline N:P ratio of 47.6, this does not indicate any shift in N:P ratio. 

 

Land use change effects only 

Annual and monthly flow 

The projected average daily streamflow for the future period were 4.67, 4.70 and 4.73 m3/s, 

under LPR, MPR and HPR growth scenarios, respectively. Compared to the baseline period 

value of 4.57 m3/s, there is an increase in streamflow under any future conditions. For baseflow, 

the projected average daily values are 2.12, 2.11 and 2.10 m3/s for LPR, MPR and HPR. Future 

projected baseflow under different LULC scenarios are quite similar to each other, yet the 

decreasing trend is apparent when compared to the baseline baseflow, which was 2.33 m3/s. 

Future predicted surface runoff values are also quite close to each other: 2.54, 2.59 and 2.63 m3/s 

for LPR, MPR and HPR. Compared with the baseline value of 2.24 m3/s, there is an evident 

increasing trend.   
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Fig. 10 displays average monthly distribution and projected variation of streamflow, surface 

runoff, and baseflow from the Wolf Bay watershed.  Due to LULC change, they exhibit different 

or similar responses from each other. The total volume of future streamflow does not change 

appreciably compared to the baseline period, but significant differences are detected in some 

months with high flows, like July. Monthly streamflows for three future scenarios are quite close 

to each other. The partitioning of streamflow to baseflow and surface runoff is significantly 

affected as shown in Fig. 10. Surface runoff shows an increasing trend while baseflow decreases 

for all months. Although average monthly surface runoff and baseflow are quite close to each 

other for the three different future LULC scenarios, the trend is clear: urbanization results in 

higher direct runoff and lower baseflow, and vice versa.  

 

Daily flow  

Fig. 11 illustrates the daily FDC for baseline period (pre-urbanization) and 3 different future 

land use scenarios (post-urbanization). Although not significant, differences exist between 

baseline FDC and future FDCs. Compared to the FDC in the pre-urbanization period, future 

FDCs are a little steeper. When PE<0.3, baseline flows are always lower than future flows. After 

PE=0.3, future flows become lower. That means medium to high flows are projected to increase, 

while medium and low flows are projected to decrease. No evident differences are detected in 

FDCs among different future scenarios, which is due to quite similar urban percentages (see 

Table 1) for the three future LULC scenarios. Consistent with other researches (e.g. Rose and 

Peter, 2001), this indicates one important effect of LULC change in the future: the hydrologic 

regime is altered, which increases large flows and reduces small flows. However, this 

redistribution trend is not so evident if the extent of urbanization is not so serious.  
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Relative change curves for different future scenarios to baseline are also shown in Fig. 11 

bottom panel. All three curves reflect the same trend. Moving from left to right, the relative 

change is a positive value and increase from 2% to 7% till PE reaches around 0.01. Then it stays 

in a stable status around 7%, until PE=0.1. After that, the relative change drops to zero when PE 

reaches 0.3. The dropping trend continues and relative changes stay negative till the end, with the 

maximum negative relative change around -8% when flows are extremely small. It seems that 

urbanization has more evident effect on extremes, both at the high and low flow end.  

Differences among the three future curves are not evident when PE is extremely small, but 

visible when PE is between 0.05 and 0.3. This indicates large flows show different sensitivities 

even LULC change rates are close.  

 

Water quality 

Variations in average monthly TSS loads (Fig. 12) are closely related to monthly distribution 

of direct runoff. Peaks for TSS are found in April, July and September, which is consistent with 

surface runoff. Tillage loosening the soil and breaking up large aggregates to fine particles, and 

harvesting providing residues, contribute to TSS peaks in spring and fall. In general, TSS is 

projected to increase in future, and the amounts of increases are quite close to each other for 

different future LULC scenarios.   

In terms of nutrient loads, the situation is quite different. TN loadings were predicted to 

decline for all months under all future LULC scenarios. Differences among future average 

monthly loads are evident. TP was projected to increase in spring, fall and winter, but decrease in 

summer. Fig. 13 shows average monthly loads of Org-N, Min-N, Org-P and Min-P. Higher 

predicted Org-N and Org-P loadings found in spring and fall are due to increase of surface runoff 
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after urbanization. Since the management practices in spring and fall provide enough sources of 

organic matters, surface runoff, which picks up nutrients along its way, becomes the main driver 

to affect average monthly loadings. The larger the volume of surface runoff, the bigger the 

organic loadings in spring and fall is. Some of the organic matter gets mineralized in time; 

especially at increased rates in summer due to high temperatures. This process converts organic 

N and P to mineral forms resulting in higher min-N and min-P in summer, but lower org-N and 

org-P. Therefore, organic N, and P loadings are projected to decrease in summer months, with 

the largest decrease predicted under the high population growth scenario, which has the lowest 

fraction of croplands. 

Min-N is projected to decrease in all months. The largest decrease is projected under HPR, 

while smallest decrease is expected under the LPR scenario. This variation is again due to 

diminishing cropland and consequently decreases in Min-N fertilization, which is an important 

source of Min-N loadings. Based on future LULC scenarios, the percentages of crop land are 

29.9%, 23.1%, 19.6% and 15.3% respectively for baseline, LPR, MPR and HPR scenarios, 

which shows a gradually decreasing trend consistent with the decline in average monthly Min-N 

loadings.  

The projected variation in average monthly Min-P follows Min-N in summer, but is quite 

different in fall and winter, where increasing trend in Min-P was predicted. The LULC scenario 

based on HPR is expected to result in higher increase of Min-P loadings in those months. 

Increasing trend of Min-P after urbanization in fall and winter months is due to the increase of 

urban areas, because urban is an important source as Min-P. Unlike other land use types, SWAT 

employs USGS linear regression model (Driver and Tasker, 1988) to calculate loadings in urban 

areas. Loadings generated by urban areas are positively related to the fraction of the total area 
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that is impervious. Therefore, urbanization results in increase of Min-P loadings. Mineral 

nitrogen is projected to decline for the whole period, because usage of N fertilizer is expected to 

decrease due to reduction in cropland in future.  

Due to land use change, N:P ratio also changes. Projected N:P ratios are 39.5,38.1 and 36.7 

for LPR, MPR and HPR, respectively. Compared with the baseline value of 47.6, this indicates 

towards an evident decrease in N:P ratio. Scenarios with higher urban fractions causes largest 

drop in N:P ratio and vice versa. Compared to the climate change effect, LULC change have a 

more dramatic influence on the N:P ratio.   

 

Combined change effects  

Based on 252 climate inputs and 3 future LULC scenarios, SWAT was run in annual, 

monthly and daily time scales 756 times, to obtain model outputs of flow, sediment and nutrient 

loadings. Again, from the ensemble of model outputs the 95th and 5th percentiles were 

determined to obtain a 90% confidence interval, as upper and lower limit for future conditions. 

Median of 90% confidence interval reflects normal condition in future.  Results are discussed 

below:  

 

Annual and monthly flow 

The projected average daily discharges for the future period were 3.26, 5.01 and 7.03  m3/s, 

respectively for the lower limit, median, and upper limit. To simplify the analysis only median 

flows will be compared to baseline flows under the combined change effect. Compared to the 

average daily streamflow of 4.57 m3/s during the baseline period, an increasing trend in 

streamflow is expected, which corresponds to 9.6%. When compared to the median value (4.87 
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m3/s) obtained from the only climate change scenario, which correspond to a relative change of 

6.6%, higher streamflow is expected under the combined change scenarios.  For baseflow and 

surface runoff, the median of the projected average daily values are 2.06 m3/s and 2.92 m3/s, 

respectively. Compared to the baseline values of 2.33 m3/s and 2.23 m3/s these represent 

substantial increase for surface runoff and decrease for baseflow. The relative change from the 

baseline is +31% and -12%, respectively for surface runoff and baseflow. We conducted t- test 

for two independent samples between annual baseline data and future normal condition data for 

surface runoff and baseline. Under the combined change scenarios both show significant 

differences, where p values are 0.002 and 0.004, respectively, for surface runoff and baseflow. 

Therefore, under the combined change effect scenarios, higher annual streamflow is 

expected/predicted relative to the baseline.  When compared with the scenarios where only 

climate change was considered, that increasing trend is more evident The partitioning of annual 

streamflow is significantly affected under combined change scenarios, which substantially 

increase surface runoff and decrease baseflow.  

Fig.14 shows the average monthly distribution of flow, caused by climate combined with 

LULC change. For streamflow, the monthly distribution is quite similar to Fig.5, which only 

reflects climate change effect. Peaks occur in April, July and September, but shift a little bit 

upwards, which indicates stronger increasing trend of streamflow for all months. Baseline stays 

between the median and lower limit of 90% confidence interval, closer to median curve in winter, 

spring and summer, but gets closer to the upper limit in fall, which again indicates higher 

possibility of streamflow increase in fall. 

In terms of surface runoff and baseflow, monthly distribution is again quite similar to the one 

shown in Fig. 5, but the gap between the future predicted values and the baseline values are 
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widened. Baseline for surface runoff is closer to the lower limit of 90% confidence interval, and 

is outside the band in fall, which indicates a very strong increasing trend. On the contrary, 

baseline for baseflow is quite close to the upper limit for future prediction, indicating reduction 

in baseflow in the future is highly likely under the combined effect scenario. 

 

Daily flow 

Fig. 15 shows the 90% confidence interval along with the median of the FDCs generated 

from the ensemble of daily streamflow time series obtained by running SWAT with 252 climate 

inputs and 3 future LULC scenarios. According to different probability of exceedance, future 

daily discharge for combined change scenario reflects substantial differences compared to the 

baseline. When PE is less than 0.001, baseline fluctuates along the median curve, and then it falls 

below the 90% confidence band until PE reaches 0.3. Baseline stays between the median and the 

lower limit until PE reaches 0.5. Beyond that point, baseline is always above the median curve 

getting closer to upper limit till the end. Compared to Fig. 6, which only captures the climate 

change effect, one can see that the general trends of these two are quite similar, but FDCs in Fig. 

15 are somewhat steeper, which means large flows increase and small flows decrease more. For 

example, from Fig. 15, upper limit for the 90% confidence interval varies from around 310 to 1.0 

m3/s. However, if only climate change effect is considered, the range is from 300 to 1.3 m3/s. 

Similar circumstances occur for median FDC and the lower limit as well.  

Fig. 15 also depicts the relative differences in flow between the future and the baseline 

conditions. Similar to Fig. 6, extreme large flows fluctuate until PE=0.01. When PE is between 

0.01 and 0.1, they reach at a stable status, where the relative change is around 55%, 40% and 30% 
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for the upper limit, median and the lower limit, respectively. When PE exceeds 0.1, all three 

curves go down and finally arrive at values around 0%, -35% and -65% when PE is near 1.  

Based on the FDCs and the relative changes of flow from the baseline, combined change 

effect results in more noticeable uneven distribution of streamflow, when compared to “only 

climate change” or “only LULC change” scenarios (Fig. 6 and Fig. 11). The combined effect 

increases high flows and decreases low flows, which caused steeper FDCs. 

 

Seasonality effects on daily flow 

Fig. 16 illustrates the seasonal FDCs and relative changes between FDCs from future and 

baseline scenarios. When compared to seasonal FDCs only reflecting climate change effects, 

these FDCs are all steeper due to the combined effect, which again means large flows will get 

even larger, while small flows will become smaller. Such a trend is also clear when relative 

changes (lower panels in Fig. 16) for combined effect are compared to the ones reflecting only 

climate change in Fig. 7. When PE is smaller than 0.1, it is clearly seen that the relative positions 

of all three curves in Fig. 16 shift a little bit upwards compared to those in Fig. 7, which indicates 

seasonal higher flows due to the combined effect. For small flows, the curves shift downwards. 

Those shifts are detected in all four seasons, pointing out to the fact that more uneven 

distribution of streamflow caused by combined change is not confined in any specific season, but 

dispersed over all seasons. 

 

Water quality 

Monthly distribution of TSS is compatible with variation of surface runoff (Fig.17). 

Compared to Fig. 8, the 90% confidence band shift upwards, making the baseline stay between 
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the median and the lower limit. This indicates a stronger trend in TSS increase for all months, 

even in summer.  No clear trend was detected when only climate change effect was considered in 

summer. Comparing the relative change in TSS for each month, it is evident that the combined 

change effect leads to a larger relative change than the LULC or climate change alone scenarios 

(Fig. 8, Fig. 12 and Fig. 17).  

Monthly distributions of nutrients are more complex when combined effect is considered 

(Fig. 17). Nutrients were again divided into organic and mineral parts as shown in Fig. 18, for in 

debt discussion. Org-N and Org-P represent similar behavior for monthly distribution. Compared 

to Fig. 8, which only reflects climate change, the 90% confidence bands of predicted Org-N and 

Org-P shift upwards in spring, fall and winter, which is mainly caused by strong increase in 

direct runoff. However, there is a downward shift in summer, which is primarily due to the 

decrease of agriculture land that serves as the source of organic matters.  

Future predicted Min-P shift upwards in spring, fall and winter, but downwards in summer. 

When compared to Fig. 8, which only reflects the effect of climate change, the increasing trend 

in spring, fall and winter under the combined effect is intensified by LULC change, while the 

decreasing trend in summer shows offsetting effect.  

Under combined scenarios, min-N was projected to decrease in all months. The baseline 

values were above the median of the 90% confidence interval in summer, which indicates a big 

possibility for decrease in min-N. The decreasing trend of min-N is caused by the shrinking of 

agriculture land. Since N fertilization is applied in early summer, diminishing crop land results in 

less input of min-N.   

The annual average N:P ratio, under the combined change scenarios, is projected to decrease 

under all conditions. The projected N:P ratio was 35.1, 37.7 and 39.8 for the upper, median and 
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lower limit of 90% confidence, respectively. Compared to the baseline value of 47.6, they all 

indicate toward reduction in the N:P ratio, which are smaller than both the climate change only 

and LULC change only scenarios.  

In summary, under the combined change scenarios, since LULC and climate change effect 

were considered simultaneously, water quality was affected by both. If future loadings are 

expected to increase/decrease under either climate or LULC change scenarios, combined change 

scenario intensifies that trend. On the other hand, if their effects are in opposite directions, then 

the combined change has an offsetting effect.  

 

Relative importance of LULC and climate change effects  

We have shown that both climate and LULC change affect watershed hydrology and water 

quality, not only the annual averages loadings but also their seasonal, monthly and daily 

distributions. When LULC was combined with climate change, the compound effect was either 

intensification or offsetting of the effects caused by either climate or LULC change.  Projected 

variations in flow and water quality loadings due to the combined change effect are not simply 

the summation of the results caused by the individual factors. In other words, the marginal 

effects are not additive. To identify the relative importance of LULC and climate change when 

they act jointly, average monthly percentage change in streamflow, TSS, TN and TP loadings 

were compared (Fig. 19). For convenience, we only focused on the results under normal 

condition (median of the 90% confidence interval).  The relative increase/decrease caused by the 

combined effect is contributed by three factors: Effect of LULC change only, effect of climate 

change only and the synergistic effect.  The synergistic effect, thus, can be determined as 

follows: 
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From Fig. 19a, it is seen that average monthly percentage change in streamflow is mainly due 

to climate change in spring, fall and winter. In summer, the effect of LULC and climate change 

on streamflow is close to each other.  In July they have opposite effects. Compared with LULC 

and climate effect, synergistic effect has very slight influences on streamflow, which can be 

ignored. From Fig. 19b, the relative importance of climate and LULC change effect on TSS 

follows the flow pattern. Climate change is still the dominant factor for all seasons except 

summer. Another interesting observation is that the synergistic effect on TSS is more evident 

compared to the synergistic effect on flow. The synergistic effect on TSS even exceeds LULC 

effect in several months. Therefore, unlike streamflow, there is a nonlinear interaction between 

LULC and climate for TSS, and the combined change effect intensifies the increase in TSS 

loadings. Figures 19.c and 19.d summarize the same effects for TP and TN. Similar to TSS, there 

is a nonlinear interaction between climate and LULC for TP and TN, especially in fall months. In 

general, LULC change is the main driver, while climate change affects TP moderately. 

Combined change intensifies the TP loading in most of the months. In the case of TN, LULC is 

relatively important in winter and summer, but in spring and fall, climate change becomes the 

main factor affecting the TN loadings. Since the effects of climate and LULC change are in 

opposite directions, the combined change has an offsetting effect in TN. 

 

SUMMARY AND DISCUSSION 
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LULC and climate change are the two main factors affecting hydrologic regimes and in turn 

influencing water quality. In this study, SWAT model was utilized to analyze the responses of 

hydrological processes and water quality to LULC and climate change effects in Wolf Bay 

watershed, southern Alabama. Four downscaled GCMs outputs under three green house gas 

emission scenarios were used to reflect the uncertainty of future climate; three LULC scenarios 

based on different population increasing rates represented the future LULC scenarios. Their 

effects were explored both separately and jointly. Results revealed the following conclusions: 

1. Under climate change scenarios, Wolf Bay watershed will more likely experience 

increasing precipitation in future, especially in fall, and temperature is expected to rise, 

especially in summer and fall. Rainfall amount for large events are expected to increase, 

while rainfall amounts for small events tend to decrease. 

2. The Wolf Bay watershed is expected to experience dramatic urbanization. The percentage 

of urban areas is projected to double by 2030. The increase in urban areas will be 

compensated by reductions in forest, pasture, cropland and wetland.  

3. A redistribution of streamflow is projected when only climate change effect is considered: 

high flows are predicted to increase, while low flows are expected to decrease. No clear 

trend is detected for medium and extreme large flows. This redistribution trend is same 

for LULC change effect, but extreme large flows are projected to increase substantially 

under the LULC change scenarios. Combined change effect results in more noticeable 

uneven distribution of streamflow, which generates steeper flow duration curves.   

4. Daily flows show seasonality under climate change. In general, large flows are projected 

to increase for all seasons under the wet and normal conditions, especially for fall and 

winter. Even under dry conditions, fall shows increasing trend in large flows. Small flows 
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are expected to decrease for all seasons under dry and normal conditions. Compared with 

climate change effect, steeper FDCs are projected for all four seasons under the combined 

change effect.  

5. When considering climate change effect, monthly average streamflow and surface runoff 

are projected to increase in spring, fall and winter, especially in fall, while no clear trend 

was observed in summer, under normal future climate situations. Although the LULC 

change does not have significant effect on monthly average streamflow, increasing trends 

are still detected in high flow months, such as July and September. The partitioning of 

streamflow to baseflow and surface runoff is significantly affected. Surface runoff is 

predicted to increase every month, while for baseflow, an evident decreasing trend was 

detected.  When climate change is combined with LULC change, it leads to more 

dramatic increasing trend in monthly average streamflow than when the climate or LULC 

change alone is considered. Further, more visible increasing trend in surface runoff and 

more dramatic decreasing trend in baseflow were detected for combined effect.  

6. When only climate change effect is considered, monthly TSS and nutrient loadings 

follow the flow pattern. No evident difference in annual average N:P ratio is detected.  

LULC change increases TSS loadings but decreases TN loadings for each month. This is 

due to reduction of cropland in future, which reduces areas applying min-N fertilization, 

and in turn affects TN loadings. TP loading, which is decided by both Min-P and Org-P, 

is projected to decrease in summer, but increase in other months. The projected variation 

of Min-P follows the pattern of Min-N expect in fall. Min-P is projected to increase 

accompanying urbanization. Org-P is predicted to increase in spring and fall due to 

surface runoff increasing, but decrease in summer mainly due to the diminishing of crop 



75 
 

land which contains abundant organic matters, and transformation to min-P. N:P ratio is 

projected to decrease significantly under all LULC change scenarios. When LULC 

change is combined with climate change, future predicted TSS loadings are expected to 

increase for each month, which is similar to the responses of direct runoff. Monthly 

distribution and projected variation of nutrient reflect characteristics from both climate 

change and LULC change effects. In general TN loadings are projected to increase 

slightly in spring and fall, which indicates that the reduction in TN due to shrinking of 

crop lands is offset by increase in flow. TN and TP loadings are projected to decrease in 

summer, which means LULC change effect (cropland diminishing) becomes the 

dominant factor when flows are higher in those months. TP loadings are expected to have 

a more dramatic increasing trend in spring and summer, which indicates climate change 

effect is aggregated by management practices (tillage and harvesting). N:P ratio is 

projected to further decrease under the combined change scenarios. 

7. Both climate and LULC change affect monthly distribution of flow and water quality. 

However, their effects are not additive. There is a nonlinear interaction between LULC 

and climate change when considering their joint effects. This is more evident in water 

quality than streamflow. Under the combined change effect scenario, climate change is 

the dominant factor influencing streamflow and TSS. In the case of TP, LULC change 

becomes relatively more important. For TN, while LULC has more influence in winter 

and summer, climate change is more influential during spring and fall.  

Based on the simulation results from this research, a complex situation in flow and water 

quality is projected. Change in distribution of streamflow will likely lead to more flooding and 

drought in the future. This is supported by the fact that less baseflow and more surface runoff is 
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projected. The increases runoff is also linked to the projected increase in soil erosion. Nitrogen 

and phosphorus loadings will also be affected and a decreased N:P ratio is projected, which 

could potentially contribute to an alteration in species dominance in the phytoplankton 

population. 

Lessons learned from this study could be quite valuable for stakeholders and decision makers 

in the Wolf Bay area. Carrying out some best management practices (BMPs) in crop land and 

storm control measures (SCMs) in urban areas are necessary to protect the health and integration 

of the Wolf Bay watershed.  
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Table 1 Land use/cover in Wolf Bay watershed for baseline (2005) and 3 future scenarios (2030) 

  
2005 

2030  
LPR MPR HPR 

Water 1.2% 0.2% 0.1% 0.1% 
Urban 26.4% 50.2% 57.4% 64.2% 
Forest 20.9% 15.7% 14.0% 12.4% 
Pasture 9.7% 1.9% 1.5% 1.2% 
Cropland 29.9% 24.1% 19.6% 15.3% 
Wetland 11.9% 8.0% 7.4% 6.8% 

 
LPR: low population increasing rate 
MPR: medium population increasing rate 
HPR: high population increasing rate 
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Fig.1 Geographical location of Wolf Bay and Magnolia River Watersheds 
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Fig. 2 Land use maps for Wolf Bay watershed: (a) Baseline: year 2005, (b) Projected future 
scenario based on LPR, year 2030, (c) Projected future scenario based on MPR, year 2030, 

(d) projected future scenario based on HPR, year 2030 

 

 

 

 



86 
 

 

 

Fig. 3 Seasonal mean temperature and precipitation variation from baseline (1984-2008) 
period according to 4 GCMs under 3 emission scenarios in wolf Bay watershed 
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Fig. 4 Exceedance probabilities of daily precipitation in Wolf Bay watershed 
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Fig. 5 Monthly responses of flow and respective relative changes from the baseline (only 
climate change effect) 
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Fig. 6 a.25-years flow duration curves(FDCS) under projected future climate and 
current(baseline) climate, and b. Relative changes of future FDCs from the baseline (only 

climate change effect) 
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Fig. 7 Seasonal future and baseline FDCs, and seasonal relative changes of future FDCs 
from the baseline period (only climate change effect) 
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Fig. 8 Monthly responses of TSS, TN, TP and respective relative change from the baseline 
period (only climate change effect) 
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Fig. 9 Monthly responses of organic and mineral nutrient, and respective relative change 
from the baseline period (only climate change effect) 
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Fig. 10 Monthly responses of flow and respective relative change from the baseline LULC 
(only LULC change effect) 
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Fig. 11 a. 25-years flow duration curves (FDCs) under projected future LULC and current 
(baseline) LULC, and b. Relative changes of future FDCs from the baseline (only LULC 

change effect) 
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Fig. 12 Monthly responses of TSS, TN, TP and respective relative change from the baseline 
(only LULC change effect) 
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Fig. 13 Monthly responses of organic and mineral nutrient and respective relative changes 
from the baseline (only LULC change effect) 
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Fig. 14 Monthly responses of flow and respective relative change from the baseline 
(combined change effect) 
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Fig. 15 a.25-years flow duration curves (FDCs) under projected future situations and 
current (baseline) situation, and b. Relative changes of future FDCs from the baseline 

(combined change effect) 
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Fig. 16 Seasonal future and baseline FDCs; seasonal relative changes of future FDCs from 
the baseline (combined change effect) 
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Fig. 17 Monthly responses of TSS, TN, TP and respective relative changes from the 
baseline (combined change effect) 
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Fig. 18 Monthly responses of organic and mineral nutrient, and respective relative changes 
from the baseline LULC (Only LULC change effect) 
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Fig. 19 LULC, climate, combined and synergic effect on average monthly percentage 
change of (a) streamflow, (b) TSS, (c) TP, (d) TN. 
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CHAPTER III 

Summary and Conclusions 
 
 

Environment change induced by natural variability and human activities influences both 

water quantity and quality at global, regional and local scales. Land use/cover (LULC) and 

climate change are two main factors directly affecting regional hydrology and water quality. 

Wolf Bay watershed, which is located in southern Alabama along the coast of Gulf of Mexico, 

has been experiencing heavy urbanization due to population growth and this trend is expected to 

continue in the near future. Combined with the projected changes in climate, such as 

increase/decrease in temperature and precipitation, such changes could have serious affects on 

the water resource and water quality of the region, which could impair the ecological services 

and biodiversity. In this study, the future potential impacts of LULC and climate changes on the 

hydrologic and water quality of the Wolf Bay watershed were explored independently and 

mutually by the Soil and Water Assessment Tool (SWAT). 

Model calibration and validation is a standard procedure in most modeling studies to ensure 

model credibility. This is especially the case with empirical and semi-physically-based models 

such as SWAT. Due to lack of observed data to calibrate the SWAT model in the target 

watershed, i.e Wolf Bay watershed, SWAT was calibrated in the nearby Magnolia River 

watershed, and calibrated model parameters were transferred to the Wolf Bay watershed.  

Although inferior to direct calibration in target watershed, results indicate that transferred 

parameters improved model performance when compared to simulations carried out with default 
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parameters which come from the built in SWAT database. Therefore, when observed data is 

limited, regionalization method based on proximity is an acceptable alternative to ensure model 

reliability. Next, the effects of parameter transferring on modeling LULC changes were assessed. 

Two LULC maps from 1992 and 2005 and three parameter sets (default, transferred and 

calibrated) were utilized. The relative changes in FDCs due to differing LULC showed a similar 

pattern with each parameter set: relative change was highest at 1-2% exceedance probability. The 

impact of LULC change diminished gradually as the event sizes got smaller beyond the 2% 

probability of exceedance. Results suggested that the choice of the parameter set only has a 

marginal effect on modeling the impacts of different LULC scenarios.  

At the next level transferred parameter set was employed in the SWAT model to explore 

future climate and LULC change effects in the Wolf Bay watershed. Four GCMs under three 

green house gas emission scenarios were used to capture climate uncertainty, while three 

projected LULC maps based on different population growth rates were used to reflect LULC 

uncertainty. Results revealed the followings: 

(1) Under the only climate change scenario, high flows were predicted to increase during all 

seasons under wet and normal conditions, especially during fall and winter. Even under 

dry conditions, flow showed increasing trend with large flows in fall. Small flows are 

expected to decrease in all seasons under the dry and normal conditions. No clear trend 

was found for extreme large flows. Monthly average streamflow and surface runoff were 

projected to increase in spring, fall and winter, especially during fall, while no clear trend 

is expected in summer.  The monthly distribution of sediment and nutrients are affected 

by flow and management practices. Projected variations of TSS, TN and TP loadings 
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followed the same pattern with flow. No evident difference in annual average N:P ratio 

was predicted.   

(2) Under the only LULC change scenario, redistribution of streamflow was similar to the 

climate change effect. The only difference was that extreme large flows are expected to 

increase accompanying urbanization. LULC change did not appear to have a significant 

effect on monthly average streamflows, while increasing trends were still detected in high 

flow months, such as July and September. However, the partitioning of streamflow to 

baseflow and surface runoff was considerably affected. Surface runoff was predicted to 

increase in every month, while an evident decreasing trend was detected for baseflow. 

LULC change increased TSS loadings but decreased TN loadings in each month. TP 

loadings were projected to decrease in summer, but increase in other months. The N:P 

ratio was projected to decrease significantly. 

(3) Under the combined change scenarios, a more noticeable uneven distribution of 

streamflow was predicted, which indicated toward steeper flow duration curves for all 

four seasons. The combined scenario also led to a more dramatic increasing trend in 

monthly average streamflows than when climate or LULC change alone was considered. 

Further, more visible increasing trend in surface runoff and more dramatic decreasing 

trend in baseflow were detected. Under the combined scenario, TSS loadings are 

expected to increase for each month. Since LULC and climate change effect are 

considered simultaneously, water quality is affected by both. If future loadings are 

expected to increase/decrease under either climate or LULC change scenarios, combined 

change scenario intensifies that trend. On the other hand, if their effects are in opposite 

directions, then the combined change has an offsetting effect. The synergistic effect 
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coming from the interaction of LULC and climate change showed that there is a 

nonlinear interaction between them as their combined effects were not additive. This 

nonlinear interaction was more evident in water quality than flow.  

FUTURE PROSPECTIVE 

Several potential new ideas originate from this study: 

1. The feasibility of model parameter transferring based on spatial proximity was 

confined to flow only in this study.  Regionalization could be extended to a larger 

parameter set that includes water quality parameters, if observed sediment and 

nutrient data is available from nearby watersheds.  

2. The quality of precipitation data is one of the most important aspects in watershed 

modeling. In areas like Alabama, precipitation patterns show large spatial variation, 

especially in summer months. Radar technology presents an opportunity to capture 

such variations, in spite of its known deficiencies. It is worth exploring how better 

representation of spatial variation in precipitation would impact some of the 

conclusions drawn out of this work. 

3. In this study, monthly outputs of GCMs were spatially downscaled by a statistical 

approach and then temporally downscaled by a weather generator. The impacts of 

using a dynamic downscaling technique, such as a regional climate model, on some 

of the results obtained in this study remain to be explored. 

4. The uncertainty analysis in this study was limited to climate inputs (precipitation and 

temperature) and LULC senarios. Uncertainties originating from model structure and 

model parameters were not studied. Inclusion of those uncertainties would provide a 
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more comprehensive and complete analysis of the impacts of climate and LULC 

change on water quality and quantity.   


