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In this thesis, longitudinal vehicle dynamics are researched with an emphasis on 

heavy trucks and fuel economy. Commercial vehicles display large variations in their 

parameters, and due to many current trends in transportation systems, estimating these 

parameters has been the subject of much research. Additionally, fuel economy 

enhancement has become a major issue due to man-kind’s reliance on oil. In this research 

a longitudinal truck model is developed and the longitudinal dynamics are simulated in 

various conditions. Algorithms are developed to estimate vehicle parameters and are used 

in simulation to perform an analysis of their accuracy. Simulated results show the 

difficulty of estimating individual vehicle parameters in the presence of sensor noise and 

low levels of vehicle excitation, such as with the heavy trucks at the Auburn University 

National Center for Asphalt Technology facility. Finally, a class 8 commercial vehicle is 

instrumented as a test-bed. Estimation results from the test bed support the simulation, 
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while simple parameters are shown to be identified with reasonable accuracy. Road load 

data for fuel economy evaluation was also collected on the trucks and variations over the 

asphalt sections are shown. 
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CHAPTER 1 
  

INTRODUCTION 
 

 

1.1 Motivation 
This research was first motivated by the National Center for Asphalt Technology 

(NCAT), at Auburn University. The test facility operates a trucking fleet, whose main 

goal is to perform accelerated asphalt wear experiments. The test bed includes a 1.7 mile 

oval test track located in Opelika, Alabama, on which 5 trucks drive the track 

approximately 16 hours per day, over a two year test period. During the inaugural 

construction of the NCAT pavement test track, fuel consumption of the trucks was 

measured as the two year period elapsed. A decrease in fuel consumption was seen as the 

asphalt degraded, as shown in Figure 1.1. This sparked an interested in studying the 

effect of asphalt on fuel economy. 
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Figure 1.1. NCAT Fuel Economy Vs. Pavement Roughness (Courtesy Buzz Powell 
@NCAT) 

  

During the 1970’s and 1980’s, fuel economy research took much priority due to 

widespread oil and fuel shortages. Today, emphasis is again being put on researching 

measures to reduce man-kind’s overall consumption of oil products and make use of 

alternative fuels. Vehicle researchers and manufacturers strive to increase efficiency and 

develop new technologies to reduce fuel consumption in vehicles, especially heavy 

highway transport vehicles. Approximately 28% of the energy consumed today is in the 

transportation sector, where heavy trucks consume approximately 15 to 20% of the 

nation’s highway fuel usage [EIA, 2004]. This represents a significant amount of energy 

and there is the potential to have a dramatic effect on the nation’s fuel usage by even 

small improvements. 

Much of this research to improve vehicle fuel economy is based around 

improving the tires rolling efficiency, or rolling resistance which, along with many other 

facets of vehicle research, is purely based on improving the vehicle. The motivation for 
 2
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this thesis however, is to determine the effect of pavement types and construction to 

improve efficiency. This study was performed using the heavy trucks as a test bed to 

analyze the asphalt’s influence on fuel consumption. This opportunity provides a unique 

experimental test environment as it involves measuring the truck’s vehicle dynamics to 

develop information about the longitudinal dynamics and losses. 

 

 

1.2 Back Ground and Literature Review 
Many factors effect fuel economy, such as engine efficiency, rolling resistance, 

air drag, and friction from various components. Much research has studied the reduction 

of these effects as they all promise increases in vehicle efficiency and corresponding 

increases in fuel economy. Because the interest for this research is relating the road to 

fuel economy, the direct connection to vehicle performance is through reductions in 

rolling resistance.  

Research has been produced to both measure and simulate rolling resistance 

coefficients and fuel economy effects. It has been shown that experimental tests can give 

rolling resistance coefficients that match laboratory tests by using corrections derived 

from fuel economy measurements [Knight, 1982].  The force applied to overcome rolling 

resistance losses comes from the engine which thereby affects the fuel consumption 

behavior of the powertrain. Studies have developed a relation between fuel economy and 

rolling resistance values and were validated with various road experiments [Schuring, 

1982].  Other long term studies have been performed on heavy trucks to capture the 
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engine and drive cycle behaviors for simulating the long term fuel economy benefits of 

reducing rolling resistance of heavy truck tires [LaClair, 2005]. 

Much research has been done on tire behavior and the mechanisms that contribute 

to rolling resistance and the modeling of those effects. Tire parameters that effect rolling 

resistance behavior have been accurately quantified and used to predict their effect on 

fuel economy [Glemming, 1975; Knight 1979]. More complex tire models have been 

developed to analyze the heat generation in a rolling tire with the intention of simulating 

tire temperatures and temperature gradients [Song, 1999]. Models have also been 

developed to include new parameters such as expanding the Society of Automotive 

Engineers (SAE) mathematical specification for rolling resistance forces [Grover, 1999], 

or including tire velocity transients and tire temperature effects into the rolling resistance 

coefficient [Nielsen, 2002].   

The majority of rolling resistance research is focused on examining and 

improving the tire for the benefit of fuel economy. The motivation for this research 

however, is to discover a relationship between the asphalt and fuel economy by 

examining the asphalts effect on rolling resistance. Research has provided conclusive 

results showing that asphalt indeed has a realizable impact on vehicle fuel consumption. 

Experiments using coast down tests on various road surfaces show that even with a 

simple energy based engine model, road surface had up to a 20% effect on fuel 

consumption [duPlessis, 1990]. Similar research using coast down experiments shows an 

18% effect in fuel economy between the best and worst case surfaces tested [Bester, 

1984]. Other research utilized a towed implement to measure rolling resistance forces and 

showed very distinct trends of increasing rolling resistance with increases in surface 
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texture and roughness of both micro and macro-texture. Rolling resistance coefficients in 

that research showed variations of 38%, which would yield fuel economy variations of 

9% [Descornet, 1990]. 

The available research studying the effect asphalt has on rolling resistance and 

fuel economy is somewhat limited compared to that of tire behavior research. Most 

research tests only limited numbers of asphalt types that have large variations their 

properties. The NCAT facility is an opportune test facility to do such research due to the 

controlled environment and forty-five varieties of asphalts on the track. The fuel 

economy research in this thesis had to be unobtrusive to the current pavement testing. 

This necessitates different techniques for studying rolling resistance and required the use 

of the moving truck as the measurement test bed. The research, therefore, investigated the 

estimation of rolling resistance and truck longitudinal force as the trucks are driving, a 

technique new to studying fuel economy and rolling resistance. 

Due the constraints on the test bed, the project becomes heavily reliant on the 

understanding of longitudinal vehicle dynamics and the ability to perform parameter 

estimation. Accurately identifying parameters such as vehicle mass, longitudinal losses, 

and road information, such as road grade and road friction, has been shown to provide 

useful information for systems such as intelligent cruise control, automated vehicle 

platooning, and advanced stability control systems for commercial vehicles [Bae, 2000; 

Bae, 2001; Bevly, 2000; Anderson, 2004; Peterson, 1998]. Therefore, this research uses 

such techniques, which have been shown capable for other systems, to perform road load, 

fuel economy, and rolling resistance studies. 
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1.3 Purpose of Thesis and Contribution 
The purpose of this thesis to provide a fundamental background and 

understanding of vehicle longitudinal dynamics with the intent on using such knowledge 

to perform fuel economy studies. Such a study relies on the understanding of the 

vehicle’s behavior, the vehicle’s longitudinal losses, and estimation techniques suitable 

for identifying parameter variations effected by varying rolling losses.  

This thesis presents two longitudinal vehicle dynamic models and evaluates these 

models for accuracy in an original simulation. The results are used to investigate the 

various losses and fuel economy effects that would be experienced in various dynamic 

conditions. This model is validated against commercial software and also used with a 

sensor simulation to simulate expected signals. The model is then used to perform 

sensitivity analysis on an estimation model to predict estimation errors as a function of 

sensor noise. A data acquisition system was constructed for use on the vehicles at NCAT 

and other vehicle dynamics testing. Data taken on the system was used to perform real 

world estimation schemes and provide results for the fuel economy/road load research. 

  

 

1.4  Outline of Thesis 
This thesis begins by presenting an overview of vehicle longitudinal dynamics 

with emphasis on the longitudinal losses such as rolling resistance and air drag. The 

effects are then numerically simulated in a longitudinal model. Chapter 3 presents a more 

advanced vehicle model that includes the effects of inertial losses on the vehicle. Various 

simulations are performed where the vehicle is accelerating, decelerating, and driving the 
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NCAT track. Variations in longitudinal load around the track are examined by simulating 

asphalts that would theoretically have varying levels of rolling resistance.  

After the fundamentals and analyses of the vehicle’s longitudinal dynamics are 

laid out, Chapter 4 presents a background on parameter estimation and sets out to 

perform such estimations in simulation. Various vehicle parameters are estimated and an 

in depth treatment of sensor noise is performed. Chapter 5 continues with parameter 

estimation results which are performed on the real world test-bed at the NCAT facility. 

Finally, overall conclusions and recommendations are provided in Chapter 6. 

Additionally, an overview of the vehicle properties, data acquisition system, and a 

discussion of the cruise control system can be found in the Appendices. 
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CHAPTER 2 
 

VEHICLE MODEL 
 
 

2.1 Introduction 

In this chapter a longitudinal model of a rolling vehicle is developed to provide an 

introduction to longitudinal vehicle dynamics. This model is used to describe longitudinal 

dynamics of vehicle and contains the most significant longitudinal losses that affect the 

vehicle. These losses are then mathematically and physically described in detail to outline 

the mechanisms involved in each loss. Simulations are provided to show the magnitude 

of each loss and their power requirements and how they affect overall vehicle efficiency 

and fuel economy. Finally simulations are performed on the longitudinal model to show 

vehicle motion. 

 

 

2.2  Longitudinal Model 

To describe the longitudinal motion of a vehicle, the dynamics are derived from 

the loads on the vehicle, from which position, velocity, and acceleration of the vehicle 

can be determined. Longitudinal vehicle dynamics typically include many losses such as 

rolling resistance, air drag, and road grade or slope as shown. The developed model has 



 

one degree of freedom and was derived using the equations of motion for the free body 

diagram shown in Figure 2.1. 
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Figure 2.1. Longitudinal FBD 
 The governing equation of motion is derived from Newtonian dynamics and is 

shown in Equation 2.1. 

xmFFFFFF AirDragcesisRollingSlopeBrakeDrive &&=−−−−=∑ tanRe  2.1

 

 where: 

DriveF = Drive force provided by engine 

BrakeF = Vehicle braking force 

SlopeF = Longitudinal force due to road grade 

cesisRollingF tanRe = Rolling resistance force 

AirDragF = Force due to air drag 

m = Vehicle mass 

x&& = Longitudinal Acceleration 

Θ

Frolling resistance

+ 

Fair drag

Fdrive / brake
+ 

Fbrake

+ 

Fslope



 

This model is widely accepted as a standard longitudinal vehicle dynamics model 

for modeling losses and vehicle drive behavior and is used for simulating vehicles in the 

longitudinal vehicle coordinate frame [Gillespie, 1992].  

 

 

2.3 Loss Components 

The major losses of the moving vehicle are air drag, rolling resistance, and road 

grade or slope. The following equations (2.1 through 2.5) mathematically describe each 

of these components. 

 

22
DragAir 2

1F VCVAC dffrdair == ρ  2.2

φsinFSlope mg=  2.3

mgCrr=Resistance RollingF  2.4

tireR
mechanicaldrive finalontransmissiengine

engine

NN
F

ετ
=  

2.5

where: 

airρ = Air density 

dC = Aerodynamic drag coefficient 

frA = Vehicle frontal area 

V = Vehicle speed 

dfC = Vehicle air drag coefficient 
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rrC = Rolling resistance coefficient 

g = Gravity 

engineτ = Engine torque 

ontransmissiN = Transmission reduction ratio 

drive finalN = Final gear reduction ratio 

mechanicalε = Overall mechanical efficiency 

tireR = Rear tire radius 

 

 

2.3.1 Air Drag 

Air drag force arises from two sources, form drag and viscous friction, which 

result from fluid flow around the vehicle. Air drag forces are quite significant in long 

haul truck and trailers due to their high frontal areas and poor aerodynamics [Wood, 

2003]. Air drag is a function of the vehicle’s velocity squared which is due to the 

dynamic pressure, or form drag, shown in Equation 2.6. 

2

2
1 VP airdynamic ρ=  2.6

 

This dynamic pressure, multiplied by the vehicle aerodynamic drag coefficient and 

frontal area, yields an aerodynamic drag force, as shown previously in Equation 2.2. For 

convenience, air drag force on a specific vehicle is often simplified to an air drag 

coefficient, which is the vehicle’s drag coefficient standardized with frontal area and 

 11



 

fluid properties. This results in a coefficient that can be used to easily compare the 

aerodynamic efficiencies of different vehicles.  

Power can be described as energy per time or force times distance per time. 

Equations 2.7 and 2.8 describe the power consumed for a give force in the longitudinal 

dynamics.  

distForceEnergy *=  2.7

))(( VForce
time

energyPower ==  2.8

 

Figure 2.2 shows a calculated road load of air drag for a constant vehicle mass 

and frontal area as a function of vehicle speed and air drag coefficient. The plot shows 

the non-linear velocity relationship and the significant power that can be necessary to 

overcome air drag forces in a vehicle such as a class 8 truck. 
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Figure 2.2. Model of Power Losses Involved In Air Drag 

 

 

2.3.2 Road Grade   

Road grade contributes to the longitudinal dynamics by adding a component of 

the vehicle mass (on which gravity acts) in the longitudinal direction. These forces can be 

significant especially in heavy vehicles such as long haul trucks. The force from road 

grade is proportional to the vehicle mass and the sine of the road angle, as expressed 

previously in Equation 2.3. Figure 2.3 shows the magnitude of the power consumed 

driving over different road grades at various speeds for a constant vehicle mass of 

68,000kg.  
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Figure 2.3. Model of Power Losses Involved In Road Grade 

 

 

2.3.3 Rolling Resistance 

Rolling resistance losses occur due to phenomenon of a rolling tire and comes 

from many different sources of losses within the tire. Rolling resistance is of primary 

concern due to its direct effect on vehicle longitudinal losses, and is the primary effect 

roads have on fuel consumption. Much research has been done on rolling resistance as a 

function of tire properties and asphalt composition as described in Section 1.2. An 

understanding of rolling resistance can be obtained by examining the free body diagram 

of the free rolling tire is shown in Figure 2.4. 
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Figure 2.4. Rolling Tire FBD 
 

where: 

zF  = Normal force or weight 

rrF  = Rolling resistance force 

resF  = Reaction force of road 

d  = Distance to centroid of contact pressure 

xF  = Force of tow 

zrF  = Reaction of normal force 

V  = Velocity 

loadedR  = Loaded tire radius 

d 

V Fx

Rloaded

Frr

FzRFres



 

The free body diagram is representative of a free rolling tire, defined as “one that 

is towed (or pushed) straight ahead in an upright position with all applied moments 

(internal and external) about the wheel spin axis to be nearly zero and longitudinal wheel 

slip to be negligible” [Gillespie, 1992]. Because the center of pressure of the tire’s 

contact patch is forward of the wheel centerline, a phenomenon of a rolling tire, the 

rolling resistance force and normal force also act in front of the wheel’s centerline. This 

creates a resultant force that points to the center line of the wheel, with both horizontal 

and vertical components. The horizontal component of the force denoted , is the 

rolling resistance fore that is required to tow the wheel due to rolling resistance losses. 

Fx

It is important to note that different variations of this free body diagram can be 

shown where rolling resistance is a pure couple about the wheels centerline as a product 

of the force,  and distance, . This would indicate that the rolling resistance couple 

increases linearly with either an increase in , or vehicle weight, . Figure 2.5 shows 

a calculation of power losses due to rolling resistance as a function of vehicle mass and 

speed, where the rolling resistance force is increased linearly with mass. 

Fz d

Fz mg
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Figure 2.5. Model of Power Losses Involved In Rolling Resistance 

 

Generally, rolling resistance is caused by many complicated mechanisms within 

the tire itself. Primary energy losses occur in the tire sidewall or contact area and tread 

elements as the tread travels through the contact patch with energy being dissipated in the 

hysteretic and viscoelastic friction of the rubber and carcass elements. Rubber exhibits 

viscoelastic behavior, where stress is a function of strain rate, and thus dissipates energy 

which accounts for 80-95% of total rolling resistance [LaClair, 2005]. Other losses occur 

due to tire slip in the lateral and longitudinal directions, energy loss from bumps, 

deflection of the road surface, tire temperatures, tire inflation pressure, tire design, and 

other sources [Milliken, 1995]. Because the tire construction materials are strain rate 

sensitive, meaning the materials exhibit some damping, the rolling resistance coefficient 

is usually a function of the tires rolling speed. The most common model that accounts for 
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more external parameters is described in the SAE specification J2452 that gives the 

rolling resistance force to be a function of tire inflation pressure, normal load, and 

velocity in a second order relationship, as shown in Equation 2.9. 

[ ]2cVbVaFPF ZtireRR ++= βα  2.9

 

Figure 2.6 shows the power consumed by rolling resistance using the SAE J2452 rolling 

resistance models and sample heavy truck steer tire parameters.  
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Figure 2.6. Model of Non-Linear Power Losses Involved In Rolling Resistance 

 

 

2.4 Longitudinal Turning Losses 

The generation of lateral force with a pneumatic tire produces a longitudinal drag 

force [Dixon, 1996]. 
 18



 

Velocity 
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Figure 2.7. Tire Force FBD 

 

The tire diagram in Figure 2.7, shows a tire heading vector and a tire velocity 

vector, or actual path the tire is traveling. The angle between these two vectors is called 

the tire slip angle,α , and is necessary to generate lateral force. The lateral force 

generated by the tire is produced perpendicular to the tire’s carcass or heading which 

results in a component that acts as drag force. This drag component arises due to the slip 

angle and is therefore a function of that tire’s slip angle, as shown in Equation 2.10. 

)sin(αlateralforce ForceDrag =  2.10

 

This equation can be examined to show how much energy is being put into the 

tire, or lost from longitudinal forces in order to quantify how much longitudinal drive 

force from the engine has to be applied in cornering to maintain constant speed. The total 

α

Lateral Force 
Component 

Tire Force 

α

Heading 

Drag Component 



 

energy consumed and power consumed by tire cornering forces and slip angle is shown in 

Equations 2.11 and 2.12. 

))())(sin((* dtVForcedistForceEnergy lateral α==  2.11

)))(sin(( VForce
time

energyPower lateral α==  2.12

 

Figure 2.8 shows a plot of power consumed when a class 8 truck goes around the 

corner of the National Center for Asphalt Technology. As shown in the figure, power 

losses due to lateral force can be very significant, especially at high velocities or high slip 

angles. 
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Figure 2.8. Tire Cornering Losses on a Constant Radius Turn 
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2.5 Fuel Economy Effects 

Because the losses described in this chapter contribute to longitudinal drive 

inefficiency, the engine must provide some force to overcome these forces. This force 

comes at some expense, mainly fuel consumption. The fuel consumed by an engine goes 

not only to drive forces but to many different inefficiencies, which include engine 

inefficiencies, friction and pumping losses, vehicle losses, and the losses described in the 

model developed in the chapter. The relative magnitudes of these losses are described in 

Fig 2.9.   

 

Figure 2.9. Magnitude of Energy Losses in a Vehicle (Reprinted from [LaClair, 2005]) 

 

Fuel economy effects from losses are significant. Fuel consumed can be 

approximated as being proportional to power necessary to overcome these losses which 

has been shown for each individual loss in Figures 2.2 through 2.5. Figure 2.10 shows the 

magnitudes of power consumed due to rolling resistance and air drag losses for a Class 8 
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truck at the NCAT facility, assuming pure longitudinal motion, ie: no turning, and no 

road grade. 
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Figure 2.10. Magnitude of Power Losses in a Class 8 Truck 
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Research has been done to show the realizable effect of improving rolling 

resistance has on fuel economy. Trends clearly show that an increase in road texture 

yields an increase in fuel consumption [DeRaad, 1978]. Most research assumes a linear 

energy based fuel consumption map. However, work has been done to develop an actual 

engine map to quantify engine fuel usage as a function of engine speed and load (brake 

mean effective pressure) [LaClair, 2005]. This works shows the ability to quantity fuel 

usage and the results show that the economy improvements are indeed proportional, with 

some scale factor, to the rolling resistance for a given drive cycle. For example in a 



 

 23

highway drive cycle, the most common cycle, LeClair shows a decrease of 2.3% fuel 

consumption with a decrease of 10% rolling resistance coefficient.  

 

 

2.6 Truck Simulations 

Numerically integrating the equation of motion shown in Equation 2.1, a 

simulation of longitudinal vehicle motion can be performed using known vehicle 

parameters. Figure 2.11 shows a Freightliner truck as equipped and loaded as the NCAT 

vehicles, accelerating from a standstill under full power. 
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Figure 2.11. Longitudinal Simulation Results  

 

To analyze road load at the NCAT test track in more detail, track elevation data 

was taken. Vertical survey measurements for inside and outside truck wheel-paths were 

taken at specific locations on the track. The inside and outside wheel paths were averaged 

to get an average road height as the vehicles center of gravity will tend to be positioned 

about the center of the road. The resulting surface elevation as a function of track position 
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is shown in Figure 2.12. Then a high order polynomial was fit to the data to yield a 

function representing the track surface.   
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Turns 

Straight-aways 

 

To calculate road load due to elevation changes, it is necessary to know the road 

slope. Discretely calculating slope between data points can produce noisy results, so an 

analytical polynomial fit was applied to the data. Both this analytical fit, and the original 

raw data, were differentiated to achieve a road slope measurement, as shown in Figure 

2.13. 
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Figure 2.13. NCAT Test Track Slope 

 

This road grade calculation was used to perform a road load analysis for the 

NCAT track, calculating the individual losses as described earlier in this chapter. Figure 

2.14 shows the magnitudes of each loss for a constant speed simulation of 20.11 m/s (45 

mph). Air drag force and rolling resistance force are almost equal at the simulated speed, 

where the road grade induced longitudinal force around the track causes large swings in 

the overall vehicle longitudinal loading. 
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Figure 2.14. Magnitude of Loss Components at NCAT Track 

 

The elevation data can be used to further simulate vehicle performance at the 

track. A non-constant velocity simulation was performed of an accelerating vehicle, as in 

Section 2.6, where the road grade of the test track was introduced. Figure 2.15 shows the 

vehicle’s acceleration and the influence the small elevations changes can have on the 

vehicle’s performance. It is shown to loose acceleration in the steepest section of the 

track at about 25 m/s even while under full power. 
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Figure 2.15. Class 8 Truck Acceleration Performance with NCAT Track Road Profile 

 

 

2.7 Conclusions 

A mathematical model representing the longitudinal dynamics of vehicles has 

been developed and simulated. This model includes loss terms that have been described 

individually and mathematically modeled to understand their relative magnitudes and 

impact on longitudinal vehicle dynamics. Inefficiencies and losses are shown to have 

significant impact on fuel economy and their magnitudes are simulated.  The model is 

then numerically simulated to show heavy truck longitudinal behavior and performance. 
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Further simulations of road load are applied specifically to the NCAT test track and are 

shown to have significant performance effects. 
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CHAPTER 3 
 

ADVANCED MODELING 
 

3.1 Introduction 

In this chapter, more advanced topics of longitudinal vehicle dynamics are 

discussed. A more complex longitudinal model of a rolling vehicle that includes inertias 

is developed and simulated. This chapter also includes models for sensors that are 

included in the vehicle simulations to predict sensor outputs when measuring the 

longitudinal vehicle dynamics. These models are then used to predict longitudinal truck 

behaviors in various environments, including those at the NCAT test track.  

 

3.2 Advanced Longitudinal Model 

The advanced longitudinal model developed in this chapter has one degree of 

freedom and was derived using the equations of motion for the free body diagrams shown 

in Figure 3.1. This figure is similar to that in Chapter 2, except Figure 3.1 includes an 

additional inertia force. 
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Figure 3.1. Advanced Longitudinal FBD 
 

To increase the model’s fidelity and more accurately simulate the longitudinal 

dynamics, the mechanical systems through which the engines power is transmitted must 

be modeled. The amount of torque delivered to the wheels in a system which is 

accelerating/decelerating is reduced by inertial losses in addition to the viscous and 

friction losses in the drivetrain. The previous model accounts for these by using an 

efficiency term, but here a more advanced model is developed.  

The advanced model which contains driveline dynamics due to inertia effects 

consists of three distinct stages, the engine ( ), transmission ( ), and final drive 

assembly ( ), as shown in Figure 3.2.  
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Figure 3.2. Drivetrain FBD 

 

The engine stage includes the vehicle’s engine, clutch, and first driving gear of 

the transmission. The transmission includes all internal gearing and equivalent inertias 

which drive the final drive and wheel axle assembly.   

Deriving the equations of motion for the three stages, including loss terms as a 

constant and function of rotational velocity, results in Equation 3.1. 
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This equation of motion contains new terms for effective mass, effective damping, and 

forces from losses. These additional mass, damping, and loss coefficients are described in 

Equations 3.4 through 3.5. 
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3.6

where: 

1III eE +=  3.7

32 IIIT +=  3.8

wD III += 4  3.9

 The effective mass term includes the effects of the various inertias in the driveline 

relating to vehicle longitudinal motion (i.e.: acceleration). Viscous losses, which act as a 

function of velocity, and constant losses are included for each stage as well. This model 

is more accurate as it will be shown that the effective mass can be significant in the 

longitudinal performance. 

 

3.3 Simulations of Vehicle Models, Simple and Complex 

3.3.1 Acceleration Simulations 

Continuing the simulations performed in Section 2.6 (mass model), a longitudinal 

simulation with the model described in Section 3.2 (inertia model) is shown in Figure 3.3. 
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Figure 3.3. Advanced Longitudinal Model Simulation, Acceleration Case 

 

The model that includes inertias and losses shows a small difference in the 

behavior of an accelerating truck from the model in the previous chapter. Velocities 

reached after thirty seconds were approximately 2% lower than that of the model that 

ignores these additional components. However, the new model does capture dynamics in 
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the drivetrain components that contribute to slowing the vehicle’s acceleration, especially 

at lower speeds when the angular accelerations of these components are higher than later 

in the run. This behavior can also be described by examining the values of 

throughout the run. In lower gears, the values of  are the highest and therefore 

have the largest effect on acceleration performance, which is shown in Figure 3.4. 
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Figure 3.4. Equivalent Masses Modeled During Acceleration Case 

 

 

3.3.2 Deceleration Simulations 

Inertias and losses can have a similar effect on vehicle deceleration. Figure 3.5 

shows a simulated truck coast-down with no drive force and only longitudinal vehicle 
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losses. The simulation assumes the transmission is in the neutral position and the only 

inertia that effects the dynamics are those of the last stage, including the wheels, rear-

end/differential, drive shaft, and the driven transmission shaft. 
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Figure 3.5. Advanced Longitudinal Model Simulation, Coast Down Case 

 

The plot shows that the vehicle decelerates slower with the inertias included in the model 

due to the increase in the term. In the above analysis the slopes of Figure 3.5 are 

representative of the and  terms, where the non-linearities are caused by losses, 

which are functions of velocity.  

effm

m effm
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3.3.3 NCAT Track Simulations 

Vehicle simulations were performed to simulate a heavy truck traveling around 

the 1.7 mile oval test track at the NCAT facility. The NCAT track surface is paved with 

45 discrete sections of asphalt which are simulated by producing a matrix of 45 varying 

rolling resistance values. The values are chosen to be +/- 5% of nominal values given in 

Appendix A. The vehicles dynamics shown in Equation 3.1 were simulated using a 

constant drive force provided by the engine. This constant force is the equivalent road 

load associated with a velocity of 20.11m/s (45mph) and an average of the rolling 

resistance values for the asphalt sections.  

Figure 3.6 shows a plot of vehicle velocity around the NCAT facility. The mass 

and inertia models are shown, with variations occurring due to the increased effective 

mass component in the inertia model. The modeled inertia acts to decrease the high 

vehicle speeds and increase the lower vehicle speeds, much like a filter.  
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Figure 3.6. Advanced Longitudinal Model Simulation, NCAT Track Velocities 

 

Figure 3.7 shows the vehicle’s acceleration behavior in the two models, and more 

clearly shows that peak accelerations are decreased in the inertia model, as decelerations 

are also reduced. 
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Figure 3.7. Longitudinal Advanced Model Simulation, NCAT Track Longitudinal 
Accelerations 

 

 

3.3.4 Model Validation 

To validate the model presented in this chapter, simulations were performed using 

the commercial software package TruckSim. This provides a comparison to a source that 

is accepted as accurate without doing experiments that would disturb existing 

experiments at the NCAT test track and provide too much wear and tear on the vehicles 

due to their aggressive nature. A TruckSim model was developed using the same engine, 

transmission, and vehicle parameters used previously and the vehicle dynamics were 
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simulated in a full acceleration run. Figure 3.8 shows the results of this simulation plotted 

against those of the model in this chapter.  
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Figure 3.8. Longitudinal Advanced Model Simulation Validation with TruckSim 

 

The simulations show very good agreement, with the largest error sources due to the 

algorithms used during gear shifts. The higher degree of freedom model of TruckSim 

shows additional dynamics in the gear changes which is most likely due to the very quick 

shifts that were simulated and modeling the dynamics involved. There are also additional 

dynamics during the acceleration portions that may be due to unmodeled drivetrain 
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dynamics from elasticity of components and tires. Overall, the differences between the 

models are small and of an acceptable magnitude. 

 

 

3.3.5 Model Variations 

Figure 3.9 shows the variations between the two models are small when 

simulating the NCAT test track. Looking at the magnitude of the velocity differences, the 

velocity result does not vary more that 1 millimeter/second. This variance remains very 

small for low dynamic situations. 
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Figure 3.9. Model Differences, NCAT Track Simulation 
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Considering the acceleration simulation case, the variance between model results 

is significantly larger than that of the NCAT track. It is quite evident that larger inertia, or 

smaller mass, results in a more significant difference between the models. To quantify 

this effect, the mass can be varied in simulation while looking at the RMS difference 

between the two models’ velocities. Figure 3.10 shows a plot of increased vehicle mass, 

holding the total inertia constant, and the difference produced by the two models. 
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Figure 3.10. Comparison of Velocity Differences Between Models While Varying Mass 

 

Figure 3.11 shows similar results with the values of inertia represented as a ratio 

to mass ( ). Again, the trends show increasing model differences with the 

increase in inertia. In simulating and experimenting with the trucks at NCAT these 

mmmeff /)( −
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simulations give an indication of how much error can be expected from a model based on 

either inertia or mass errors. 
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Figure 3.11. Model Velocity Differences as a Function of Effective Mass Ratio 

 

 

 

3.4 Noisy Sensor Models and Vehicle Sensor Simulations 

In order to analyze truck dynamics at the NCAT facility, modeling and simulating 

sensor signals is necessary. Using the simulation results of the advanced vehicle model, 

sensor signals can be simulated by adding noise characteristics of the sensors. A simple 
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sensor model contains terms that include a scale factor ( ), constant bias or offset ( ), 

moving bias ( ), and noise ( ), as shown in Equation 3.10 [Flenniken, 2005]. 

SF c

b w

wbcSFxy +++=  3.10

 

Sensor scale factor is the linear component that relates the scale of the input to 

output. Sensor noise, often called wide band noise, is of particular interest because it 

degrades the accuracy of the sensor by some magnitude. The sensor noise is typically 

modeled as a random zero-mean fashion with a standard deviation that can be found in 

sensor specifications.  

[ ] sfwE 22 σ=  3.11

 

It should be noted that the noise variance increases with the sample rate ( ) [Demoz, 

2003]. Sensor bias is typically composed of constant (stationary) and walking (non-

stationary) components. Sensor quality affects the magnitude and stability of these biases. 

The non-stationary, or moving bias is often modeled as a first order Markov Process, 

which simulates first order filtered noise with values for noise and a time constant. 

sf

Figure 3.12 shows an example of a signal corrupted by the major sensor 

inaccuracies. Each noise effect is modeled and added on a linear signal to show their 

effects on corrupting the original signal or true state. These sensor effects are important 

for accurately simulating the measurements obtained on the trucks. 
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Figure 3.12. Representative Sensor Simulation 

 

This sensor model can be included to the truck simulations to predict sensor 

outputs. Using noise statistics provided by sensor manufactures, random white noise can 

be generated and added to the true vehicle states to simulate what a sensor’s output would 

be if used in the vehicle. This simplification to the sensor model assumes a bias free and 

calibrated sensor and one that is stable enough that the moving bias errors are small.  

Figure 3.13 shows simulated velocity and acceleration measurements from the 

longitudinal acceleration simulation, using the advanced model. Using sensor specs for 

the Navcomm “Starfire” GPS, velocity noise for the measurement is modeled as 1σ = 

0.05m/s and for the Crossbow IMU the accelerometer noise is 1σ = 0.00687 m/s2.  
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Figure 3.13. Noisy Advanced Longitudinal Model, Acceleration Simulation 

 

Applying the same sensor models to the NCAT track simulation shows the larger 

influence noise has on the smaller dynamic variations involved in circling the track. 

Figure 3.14 shows that, due to the small relative velocity differences between asphalt 

sections, the noise is very dominant over the true signals.  
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Figure 3.14. Noisy Advanced Longitudinal Model Simulation, NCAT Track Velocities 

 

Additionally, Figure 3.15 shows the small changes in acceleration between the asphalt 

sections because rolling resistance changes are overwhelmed by accelerometer noise. 
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Figure 3.15. Noisy Longitudinal Advanced Model Simulation, NCAT Track Accelerations 

 

Static sensor data was taken to verify the bounds on the random noise the sensors’ 

outputs. GPS and accelerometer data was taken in the cab of the NCAT truck and 

analyzed for the one sigma bounds. Figure 3.16 shows static GPS velocity noise taken 

with the truck’s engine running. The noise on the “Starfire” velocity had a standard 

deviation of 0.0411 m/s. 
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Figure 3.16. Static GPS Velocity, Analyzed for One σ Bounds 
 

Static accelerometer data was taken using the Crossbow manufactured IMU 

mounted on the trucks, as shown in Appendix A. Figure 3.17 shows the data that was 

taken and its standard deviation on what should be a static signal. It is important to note 

that the noise values shown, 0.2118 m/s2, are higher than the values printed in the sensor 

data sheets. This is primarily due to the inclusion of process noise which is inserted into 

the measurement from unknown dynamics, which in this case, is primarily cab vibrations 

from the vehicle’s running engine.  
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Figure 3.17. Static Accelerometer Data, Analyzed for One σ Bounds 
 

Purely static data was taken with the accelerometer and is shown in Figure 3.18. 

Looking at the plot, the data is so clean that most error is discritization error and the noise 

standard deviation is approximately seventy times smaller than when mounted in the 

trucks, at 0.002975 m/s2. 
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Figure 3.18. Static Accelerometer Data, Analyzed for One σ Bounds 
 

Because such a large amount of noise is injected into the accelerometer measurement 

when mounted on the trucks, another alternative measurement can be used by 

differentiating GPS velocity. This results in an estimate of acceleration which is actually 

slightly cleaner than that shown in Figure 3.17, with a standard deviation on the noise of 

0.1416 m/s2 . 
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Figure 3.19. Static GPS Acceleration, Analyzed for One σ Bounds 
 

This increase in noise characteristics will have an effect on the vehicle measurements and 

will be analyzed in more detail in the following chapter. 

 

 

3.5 Modeling Conclusions 

This chapter presents a more extensive and slightly more accurate longitudinal 

vehicle dynamic model compared to what was presented in Chapter 2. This new model 

contains additional dynamic effects that act on the vehicle, mainly inertias. The model is 

shown in simulation and a discussion of the differences between the model presented in 
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Chapter 2. The model is also compared to that in a commercial vehicle dynamics 

modeling package and showed good agreement. Analytical sensor models are presented 

and then applied to the vehicle simulations. Sensor noise was small when looking at high 

dynamic truck measurements but the noise had a large impact when analyzing small 

variations in velocity and acceleration.  

The vehicle models presented capture similar dynamics with small differences in 

the overall vehicle behavior, with the most significant difference occurring in high 

dynamic situations. Sensor noise is shown to have a significant effect on what can be 

expected of measurements in real world tests, especially those which experience low 

dynamic excitation and will be analyzed more in depth in Chapter 4. 
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CHAPTER 4 
 

IDENTIFICATION IN SIMULATION 
 

 

4.1 Introduction 

This chapter investigates, in simulation, the feasibility of identifying various 

vehicle parameters in the presence of sensor noise. First, identification algorithms are 

presented mathematically and are then applied to the vehicle models shown in Chapters 

2&3. Simulated data is presented in a unique way to show the parameters to be identified 

and the noise on the measurements for two different models. Estimations are performed 

on the simulations with and without sensor noise. Finally, a sensitivity analysis of how 

noise affects the estimation accuracy is performed and conclusions are drawn based on 

the results.   

 

 

4.2 Identification Background 

There are several methods that can be used for identifying parameters such as 

Least Squares, Recursive Least Squares, and the Kalman Filter. These numerical 

techniques are based on determining the states that minimize a cost function [Stengel, 



 

1994]. When the states are parameters of a mathematical model, this technique is 

commonly called parameter estimation. 

Parameter estimation frequently uses a method that is based on the minimization 

of a quadratic cost function, known as Least Squares. This technique gets its name from 

the linear system defined by Equation 4.1. 

ny

nHxz

+=

+=
 

4.1

where: 

z = Measurements 

H = Observation matrix 

x = Constant state vector 

y = Error-free output vector

n = Error  

 

The goal is to compute estimates of the states, contained in the vector denoted  , from 

the measurements in z. This leads to Equation 4.2 below that describes the estimate of the 

output. 

x̂

vxHy += ˆˆ  4.2

where: 

ŷ = Estimates of the output

x̂ = State estimate vector 

v = Measurement Noise 
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The state residual error is defined by Equation 4.3 below. 

xxx ˆ−=∈  4.3

 

The measurement residual error is defined by the following equation. 

zzz ˆ−=∈  4.4

 

The state residual error, , represents the difference between the actual state and the 

estimated state, while the measurement residual, 

x∈

z∈ , represents the difference between 

the measured (ie: noisy) state and the (calculated) output.  As previously mentioned, the 

least squares technique requires the minimization of a quadratic cost function. Ideally, a 

cost function would be defined such that the state residual error, , is minimized. 

However, this is not feasible as the true states are unknown, hence the need for an 

estimation algorithm. This cost function is therefore defined to contain terms of the 

measurements and the output vector, as shown in Equation 4.5. This equation can be 

solved without prior knowledge of the systems true states or noise values. Assuming that 

the noise is zero mean, minimizing the cost function in z also minimizes the state residual 

error. 

x∈
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Equation 4.5 above can be simplified to the following shown in Equation 4.6. 

)ˆˆˆˆ(
2
1)( xHHxzHxxHzzzzJ TTTTTT +−−=  4.6

 

To solve  for its minimum, the gradient of the cost function is set to equal zero, as in 

Equation 4.7. 

)(zJ

 

0)ˆ(
ˆ

)(
=−=

∂
∂ TTT zHxHH

x
zJ  4.7

 

This can be solved for  to result in the least square estimator, as shown below in 

Equation 4.8. 

x̂

zHHHx TT 1)(ˆ −=  4.8

 

In the solution for , the term x̂ [ ] TT HHH 1−  is called the pseudoinverse, which reduces to 

LH  as shown in Equation 4.9. 

 

zHx L=ˆ  4.9

 

The derivation above is typically called Batch Least Squares which refers to the 

process being performed on a complete set of data. However on real systems, it becomes 

beneficial to perform real time estimates. The recursive least squares (RLS) algorithm is 

one that propagates, or calculates the estimates, through discrete time steps. It is possible 
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to append measurements to the measurement matrix as they are received and recalculate 

the least squares estimates. However, recursive least squares uses a more computationally 

efficient algorithm that uses the previous estimates as its starting point and propagates the 

estimates through time. The RLS equations are [Stengel, 1994]:  

)ˆ(ˆˆ 11 −+ −+= kkkkkk xHzKxx  4.10

1
11 )( −

−− += k
T
kkk

T
kkk RHPHHPK  4.11

111
1 )( −−−

− += kk
T
kkk HRHPP  4.12

 

 Where: 

x̂  = State estimates 

kK  = Recursive least squares gain matrix

kP  = State estimate covariance matrix 

 

 

4.3 Estimation Modeling 

It has been shown that least squares is a suitable and practical method to provide 

estimates for simple vehicle parameters [Bae, 2001]. Applying the longitudinal model 

from Chapter 3 to a least squares structure (Equation 4.13) results in the following model: 
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This satisfies the least squares form in Equation 4.2. In estimating the air drag and rolling 

resistance the individual components cannot be distinguished when the vehicle system is 

not sufficiently excited (i.e. when the vehicle travels at constant speed, which is similar to 

the operations performed by the trucks at NCAT). Therefore this necessitates a different 

estimation model form if the air drag and rolling resistance components are not 

distinguishable, which is shown in Equation 4.14 below. 

[ ] ⎥
⎦

⎤
⎢
⎣

⎡
=

const
Drive loss

m
xF

ˆ
1&&  

4.14

 

As the vehicle travels around the NCAT test track, it travels through turns at the 

east and west ends of the track. This correspondingly increases the longitudinal force on 

the trucks proportional to that of the slip angle and lateral forces generated by the tires as 

described in Section 2.4. This force is neglected in the estimation algorithm and will be 

lumped into the total losses. Thus, this force is not distinguished from the rolling 

resistance and air drag losses of the vehicle in the turns on the track. 

Because system Model 1 contains three parameters to be estimated, plotting a 3-D 

representation of these parameters shows a planar spread of data, as shown in Figure 4.1. 
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Figure 4.1. Representation of 3-D Data Plane (Model 1), Indicating of Mass, Air Drag, 
and Rolling Resistance Coefficients 

 

The data for Model 2 can also be represented in a plot that reduced the plane of Model 1 

to a line as shown in Figure 4.2.  

 

Figure 4.2. Representation of 2-D Data Line (Model 2), Indicating Coefficients of Mass 
and Losses 
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4.4 Mass and Loss Estimation In Simulation 

4.4.1 Simulations and Data Treatment 

Further investigation of system excitation and sensor accuracies were performed 

using a longitudinal tractor trailer simulation. Trucks were simulated accelerating from a 

stand-still as in Chapter 3.  

Parameter estimates were performed using the simulation data to verify the ability 

to estimate parameters in simulation. Estimates of mass, air-drag, and rolling resistance 

values were obtained using the least squares technique and were accurate to the values 

used to produce the simulation data, given the noise free states. The following figure, 4.3, 

represents the three dimensional planar view of the simulated data without noise, 

showing the distinct forces in each gear as the vehicle speed increases and drive force 

decreases. 
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Figure 4.3. Longitudinal Acceleration Simulation in 3-D Format 
 

The vehicle acceleration simulation provides a good range of drive forces, 

velocities, and accelerations on which to perform identification. Noisy signals were 

generated based on noise statistics found from static data tests performed in the trucks, as 

shown in Section 3.4. Using these noise values a simulation of the vehicle is performed 

with results shown in Figure 4.4.  
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Figure 4.4. Noisy Longitudinal Acceleration Simulation Data for Identification 
 

Reapplying the 3-view technique to the simulated noisy data in Figure 4.4 results in the 

plots shown in Figure 4.5. The background planes shown in the figure represent the 

planes upon which clean data would lie. This gives an indication in each view how the 

noise effects the measurement of each vehicle state. 
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Figure 4.5. Noisy Longitudinal Acceleration Simulation, 3-D with Theoretical Data Plane 
Background 

 

Re-plotting this data with background planes that represent the fits of Model 1 

and Model 2 allows visualization of the effect the velocity squared term has on losses, as 

shown in Figure 4.6. The velocity squared term in Model 1 represents a significant slope 

difference in these planes and, therefore, model 2 is not valid for this condition where 

velocity contains significant excitation.  
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Figure 4.6. 3-D Planar Data Showing Background Planes Representing Model 1 and 
Model 2. 

 

 

4.4.2 Investigating Sensor Noise in Estimations 

Sensor noise was shown in Chapter 3 and in the previous section to have a 

significant effect on expected measurements in real world tests, especially those which 

experience low dynamic excitation. The heavy trucks at the NCAT facility drive repeated 

laps for extended periods which can present an opportunity to increase measurement 

accuracy by reducing noise through averaging repetitive measurements. This technique 

uses simulated vehicle measurements of a heavy truck driving repeated laps around the 

NCAT facility. This simulated noisy data of velocity and acceleration is taken at specific 

points on the track. These repeated data points can then be averaged, effectively reducing 

the random noise content. This creates a cleaner signal through averaging the random 
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noise at each point due to the characteristic that the noise is zero mean. Taking the data 

points from each lap and lining them up as a function of distance around the track 

removes process noise that would otherwise be introduced if averaging data that occurred 

at different points on the track.   

Figure 4.7 and 4.8 show these simulated vehicle measurements in blue and the 

vehicle’s true state in black. These noisy sensor signals can then be averaged at the points 

on the track to reduce noise level, as shown in red.  
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Figure 4.7. Averaging of GPS Measured Velocity 
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Figure 4.8. Averaging of Measured Acceleration 

 

These averaged signals represent the confidence that can be had if repeated runs 

are created and measurements are averaged to filter noise.  A specific analysis was 

performed to show the reduction in noise as more laps were repeated and averaged to 

reduce noise. Track simulations were performed to generate noisy data. This data was 

then averaged and a noise value over the true state was calculated. This noise value is 

plotted against the number of laps, or simulation loops, in Figure 4.9. 

There is a clear trend reducing the noise as a function of laps whose data points 

were averaged. This empirical simulation has an analytical fit described in Equation 4.21 

which is derived by using the propagation of uncertainty, shown in Equation 4.15. 
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The average signal is defined by Equation 4.16. 

∑
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Expanding the signal’s average to include noise is shown in Equation 4.17. 

avetrueave vxx +=  4.17

 

The average noise is defined as follows. 
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The partial derivative of the average signal with respect to the signal is shown in 

Equation 4.19. 

Nx
x

j
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=

∂
∂

 
4.19

 

Finally, the propagation or uncertainty is simplified to Equation 4.20. 
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Equation 4.21 shows the analytical solutions that represents the decrease in the original 

noise, σ , as a function of number of laps. 

lapsave #

2σσ =  
4.21

 

 

Figure 4.9. Plot of Accuracy vs. Number of Iterations, or Loops Performed 
 

In the truck acceleration simulation, various levels of GPS velocity noise statistics 

can be injected into the system and estimations can be performed to evaluate how the 

 69



 

 70

noise effects the estimation accuracy. The longitudinal simulation was looped many 

times, each time increasing the GPS velocity noise statistics. Errors on the state estimates 

were calculated and plotted for each loop so that accuracy as a function of noise can be 

analyzed. The results from estimating the three parameters of Model 1 are shown in 

Figure 4.10. These plots show a very distinct trend of a decrease in estimation accuracy 

with increasing noise in the velocity measurement. With perfect measurements, near 

perfect estimates can be obtained with slight inaccuracies due to the aliasing effect a 5Hz 

GPS measurement can have on the dynamics during the vehicle’s gear changes. 

However, this effect could be reduced in with the inclusion of a Kalman filter technique 

using additional measurements or a recursive least squares with a forgetting factor 

[Vahidi, 2003]. Increasing the noise statistics just beyond the point of our known GPS 

accuracies, it is shown that estimate errors become large very quickly. The mass estimate 

shows the best performance of all three terms, and shows promise as it is of the most 

interest in vehicle estimation scheme. 

 



 

 

Figure 4.10. Estimation Accuracy as a Function of GPS Sensor Noise 
 

A similar analysis can be performed using the longitudinal simulation without 

adding velocity noise but with noise on the drive force from the CAN data. Figure 4.11 

shows how the noise on the force measurements affects errors in the state estimates. 

Again, the mass estimate is the most accurate and overall these estimates are less affected 

by noise on the force measurement than that on the other inertial sensors. 

Figure 4.10 showed biased estimates with the inclusion of GPS noise. However, 

Figure 4.11 shows a zero-mean error is produced in the estimates with the inclusion of 

noise on the force measurement. The trends shown in Figure 4.11 also show that 

increasing the standard deviation on the drive force noise increases the standard deviation 

on the estimate error. Recalling the Equation 4.2, the GPS noise enters into the H  
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matrix, resulting in the growing errors in the state estimate matrix, . However, drive 

force noise enters into the systems estimate of the output, , which produces the zero 

mean error on the system, hence the zero mean trend in the state estimates . 

x̂

ŷ

x̂

 

Figure 4.11. Estimation Accuracy as a Function of Longitudinal Force Noise 
 

 

4.5 Conclusions 

This chapter provides a foundation for performing estimation techniques in real 

vehicles by analyzing these techniques’ performance in simulation. A background was 

given on various estimation techniques and these techniques were applied to the 

mathematical longitudinal vehicle dynamics models shown in the previous chapters.  A 

unique visual data treatment was provided to show the effects of sensor noise and 
 72
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modeling differences. Simulations results provide estimation results for longitudinal 

vehicle estimate techniques and simulate the expectations of their accuracy. Estimates 

were shown to vary significantly depending on the excitation of the system and the 

quality of measurements taken. This shows that the estimation variability should be taken 

into consideration for any long term vehicle estimation schemes.  
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CHAPTER 5 
 

IDENTIFICATION ON TRACK 
 
 
 

5.1 Introduction 

This chapter investigates, using real experiments, the feasibility of identifying 

various vehicle parameters in the presence of sensor noise. A background on the test 

facility is given and road grade estimation around the facility is performed for future use 

in the parameter estimation data. Another technique for parameter estimation, known as 

Kalman Filtering, is presented and used to validate measurements from the on-board 

vehicle computer. Test data is presented in the format shown in previous chapters and 

parameter estimation is performed on driving, accelerating, and coasting data sets. 

Results are discussed regarding parameter estimation quality and further longitudinal 

loading data is analyzed for the benefit of studying road load and its effects at the NCAT 

facility. 

 

 

5.2 NCAT Facility 

The test bed for this research is an instrumented class 8 truck on Auburn 

University’s National Center for Asphalt Technology (NCAT) oval test track. The NCAT 
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facility is a civil engineering research facility whose primary function is to perform 

accelerated asphalt testing and wear studies. This is accomplished on a 1.7 mile oval test 

track on which there are various types of asphalt test mixes and constructions. Five 

Freightliner trucks travel the track 16 hours per day in two shifts, five days a week. 

Historically the track has had two year test sessions with a small downtime between them 

for track reconstruction. These trucks give an opportunity to validate the accuracy, 

performance, and practicality of various estimation methods in heavy vehicles. 

The track is broken into 200-foot sections of different pavement types and has 

near zero-grade through the straight-aways. This gives many different asphalt varieties to 

test on and also allows the verification, if necessary, of rolling resistance estimations 

using the straight-aways. Detailed information on each section of the track is monitored 

including rut depth and coefficient of friction.  Additionally, influence of temperature and 

humidity on the data can be can be minimized by comparing data collected under similar 

testing conditions and/or analyzing existing weather station data.  

Data collection hardware was installed on the trucks and is outlined in Appendix 

A. Figure 5.1 below shows GPS data recorded on the 1.7 mile oval test track and Figure 

5.2 outlines the asphalt section layout. 

 



 

 

Figure 5.1. NCAT Test Track Layout from GPS 
 

 

Figure 5.2. NCAT Test Track Asphalt Section Layout 
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5.3 Road Grade Estimation 

It has been shown that a bias free estimate of road grade can be obtained by 

comparing the vertical and heading velocities measured by a single GPS unit [Bae, 2001; 
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Ryu, 2004]. This method is favorable over a dual antenna unit because it does not contain 

biases from vehicle pitch and it has no initialization bias. Vehicle bounce motions can 

however, be a factor in this type of measurement. Because the road grade dynamics are 

typically much slower than road dynamics that effect the vehicle’s vertical suspension 

dynamics, vehicle bounce motions can be reasonably filtered using simple low pass 

filters or more complex techniques such as a Kalman Filter [Bae, 2001].  

Using a single GPS antenna, a track profile can be generated using the lateral, 

longitudinal, and vertical measurements. The test track was designed and constructed 

with the goal of minimizing road grade. Results from test track elevation data in Section 

2.6 shows that the track is quite level in the straight-aways, with approximately a 3 meter 

elevation difference between the north and south straight-aways, which results in a small 

slope through the turns. The estimation results using vertical and heading velocities are 

shown in Figure 5.3. Due to a relatively small data set and the type of GPS receiver used, 

a single antenna non-differential unit, the data is noisy and inaccurate during the straight-

aways. The GPS unit’s velocity accuracy is approximately 10 cm/s vertically and 5 cm/s 

horizontally. Because the slope estimation is a function of the inverse tangent of the ratio 

of vertical and horizontal velocities, the overall accuracy becomes a function of the 

magnitude of the heading velocity. Based on other research, more accurate receivers are 

needed for precise vehicle state measurements using GPS [Bevly, 2001]. Therefore, for 

this research, the elevation data provided by NCAT was deemed more accurate and 

therefore used later to remove road grade effects from the road load.  
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Figure 5.3. Road Grade Estimation 
 

 

5.4 Kalman Filter Background 

The Kalman Filter is a set of equations used in estimation, to provide an estimate 

of the states of a system by minimizing a quadratic cost function, like least squares 

presented in the previous chapter. A Kalman Filter minimizes the estimate error 

probability density which is a cost function subject to dynamic constraints [Stengel, 

1994].   

The Kalman Filter estimates the states of a system that are defined by the 

following discretized state-space dynamic equation, shown in Equation 5.1.  

111 −−− ++= kkdxdk wuBxAx  5.1
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The system’s output,  is as shown in Equation 5.2. ky

kkdk vxCy +=  5.2

 

The variables  and  represent process and measurement noise respectively. Their 

noise statistics are assumed to be zero mean, white, normally distributed, and 

uncorrelated as shown in Equations 5.3 through 5.9.  

w v
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There are five distinct steps to the recursive algorithm that makes up the Kalman 

Filter, which are given in Equations 5.10 through 5.14. The first step of the Kalman Filter 

is to compute the state estimate extrapolation shown in Equation 5.10. 

( ) ( )
kdkdk uBxAx += +−

+ ˆˆ 1  5.10
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Along with the state estimate is the state error covariance matrix extrapolation shown in 

Equation 5.11. 

( ) ( )
k

T
dkdk QAPAP += +−

+1  5.11

 

The next step of the Kalman Filter is to compute the filter gain, or Kalman gain, using the 

following equation. 

( ) ( )[ ] 1−−− += k
T
dkd

T
dkk RCPCCPL  5.12

 

This gain is then used in a linear combination of ( )−
kx̂  and a weighted difference between 

the actual measurement and a predicted measurement. This value of ( )( )−− kdk xCy ˆ  is 

known as the measurement innovation and is multiplied by the Kalman gain calculated in 

the previous step to produce the state estimate update as shown in Equation 5.13. 

( ) ( ) ( )( )−−+ −+= kdkkkk xCyLxx ˆˆˆ  5.13

 

Finally, the state error covariance matrix is updated using Equation 5.14. 

( ) ( ) ( )−+ −= kdkk PCLIP  5.14

 

If the measurement noise covariance matrix, R , goes to zero the Kalman Gain, , 

approaches values of . In this limit, the actual measurement is trusted completely and 

the predicted measurement thrown out. If the state estimation error covariance, 

kL

1−
dC

( )−
kP , 
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approaches zero, the Kalman Gain approaches values of zero. If this occurs, the predicted 

measurement (state estimate) is trusted more. 

 

 

5.5 Drive Force Estimation/CAN Data Verification 

Engine torque is available on the controller area network (CAN) bus of the 

Freightliner trucks used in this research. It is however, an estimate of torque that is 

calculated by the engine computer. Because the accuracy of the CAN force data is 

unknown, adding additional sensors and using a Kalman filter allows the estimation of a 

clean or more accurate drive force as well as verifying the CAN measurement’s quality.  

For this more accurate drive force estimation, the CAN drive force, longitudinal 

acceleration, and vehicle mass must all be known. Because mass is typically unknown or 

would vary significantly in use, this wouldn’t have applications in real world vehicle 

systems. However, for the sake of this research, using the known mass will allow the 

quality of the CAN data to be verified using a preliminary data set. 

The engine force can be described by Equation 5.15.  

tireR
mechanicaldrive finalontransmissiengine

engine

NN
F

ετ
=  

5.15
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Because the trucks have a manual transmission and use only one transmission gear for 

these verification experiments the reductions, , shown in Equation 5.16 can be 

found from data sheets or empirically.  

totalN

ncecircumfereenginevelocity CtotalNV ω=  5.16

 

The tire radius in the above equation is 0.5311m as equipped from the manufacturer. 

Therefore using vehicle speed and engine speed from the CAN, the total reduction 

was determined to be 3.904 using Equation 5.16. 

totalN  

Using a Kalman filter, a cleaner, higher fidelity drive force can be estimated for 

later use in the vehicle parameter estimation schemes.  The Kalman filter model used is 

arranged as shown in Equations 5.17 through 5.18. 
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As shown in Equation 5.17 above, the outputs are measured CAN drive force and 

measured longitudinal acceleration, and the estimated state is drive force. 

The longitudinal acceleration measurement in the system can be first run through 

a Kinematic Kalman filter to remove the sensor bias using GPS velocity [Bevly, 2001]. 

An understanding of the noise statistics for both the CAN drive force and the longitudinal 
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accelerometer are necessary to obtain good force estimates. The CAN drive force noise 

statistics used for the Kalman Filter are chosen in simulation to obtain good quality 

estimates and filtering of the signal. The accelerometer noise statistics were obtained 

from the static tests discussed in Section 3.4.  

The Kalman filter noise statistics are normally distrubted zero mean with variance 

summarized in Equations 5.19 and 5.20. 
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Figure 5.4 shows the results of the Kalman Filter drive force estimate compared 

with the actual measurement on the CAN bus from the engine computer. The noise 

covariance for the sensors and initial uncertainties were chosen to give good estimator 

performance without effecting the higher dynamics of the data. As seen in Figure 5.4 the 

CAN force estimate does not vary significantly from the measured force, which indicates 

the force estimate from the engine computer is fairly accurate. It may, however, be 

possible to increase the accuracy of the force estimate with a higher precision 

accelerometer. However, from this experiment, the raw force measurement from the 

engine computer was deemed sufficient for the following estimation schemes in this 

thesis. 
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Figure 5.4. Measured and Estimated Longitudinal Drive Force 
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5.6 Test Data Estimation 

5.6.1 Data Treatment 

Truck data was sampled during a normal shift, where the trucks drive the track at 

a 45 mph target speed under the action of the vehicle’s cruise controller. Very long 

sessions of data of up to 24 hours were taken and a sample of this data is shown in Figure 

5.5. Lap repetitions are clearly shown by the test data, where approximately fifty laps of 

the trucks were sampled in this test, shown below. 
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Figure 5.5. Truck Test Data 
 

Applying the data shown above to the 3-view format first presented in Section 4.3, allows 

for the visualization of the quality of the data. The top right plot of Figure 5.6 shows the 

extended track session data plotted in 3-view, where the noise free data would lie on a 

plane. Viewing this three dimensional data from each side of the plot shows specific 

information about various parameters and the excitation in those parameters. The upper 

left hand plot shows the excitation in the air drag parameter to be identified. Ideally, this 

plot would yield a line, given significant excitation in the parameter and noise free 

measurements. The lower right hand plot shows the excitation and noise in the mass 

parameter. It too would ideally yield a line, whose slope would be the mass of the 
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vehicle.  Finally the lower left hand plot shows a view of overall excitation in terms of 

velocity and acceleration and should have a slope of the air drag coefficient divided by 

the vehicle mass, with an offset of constant losses.  
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Figure 5.6. Truck Test Data, 3-D Representation 
 

The figure above visually shows the magnitude of the noise on the sensors and how they 

corrupt the shape of the line to be estimated. Figure 5.7 below shows a closer view of 

what lies in the lower right hand plot of the figure above. The slope of a linear data fit of 

this figure would represent the mass of the truck. Again, noise has a distinct effect in the 

clarity of any linear fit that may be applied to this data, resulting in poor mass estimates. 

 86



 

-0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04
0

5000

10000

15000

D
riv

e 
Fo

rc
e 

(N
)

Acceleration (m/s2)

Figure 5.7. Truck Test Data, 2-D Representation 
 

5.6.2 Identification of Sampled Data 

Using both Models 1 & 2 as detailed in Section 4.3, least squares parameter 

identification was performed on the experimental truck data. These models are again 

shown in Equations 5.21 and 5.22. 
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Model 2:          [ ] ⎥
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The results using model 1 for identification showed very poor estimates (>50%) of mass, 

air drag, and rolling resistance/constant losses.  Performing a fit of Model 2 to the truck 

data resulted in a reasonable quality fit with approximately 10% error on the mass 

estimate and 10% error on the constant losses, when compared to known values.  

This accuracy can be attributed to the simple linear model and the abundant 

amounts of data which least squares can average the noise effects. The equivalent results 

of doing the least squares fit can be plotted as a linear fit of the data shown in Figure 5.7 

above. The results are shown in Figure 5.8, where the slope represents the mass 

parameter and the y intercept represents the constant losses. 
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Figure 5.8. Truck Test Data, 2-D Representation with Linear Fit 
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Similar analysis can be performed on acceleration data taken on the trucks at the 

NCAT facility. The data shown in Figure 5.9 was taken during a truck accelerating at 

near full capability to NCAT track speed.  
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Figure 5.9. Truck Test Data, Acceleration 
 

As with the regular driving data, the results for Model 1 show poor agreement 

with that of known values. However, Model 2 shows again, reasonable agreement with 

mass error of 15% and constant loss values of approximately 15%. This again can be 

attributed to using the simpler model, as shown in Figure 5.10 below. 
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Figure 5.10. Truck Acceleration Test Data with Linear Fit 

 

 

5.7 Test Data Road Load Results 

Data was taken with the intention of analyzing the total road load on the vehicle 

as they travel the NCAT test track. Interest in studying the individual asphalt sections for 

their effect on fuel economy has led to the analysis of longitudinal load as a function of 

track position. Data in Figure 5.11 shows the applied drive force of the trucks in 3-view 

as a function of track position. The plane indicated in red represents the average percent 

load, while red circles indicate the location of changes in the asphalt sections. 
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Figure 5.11. Uncorrected Road Load Measurements 
 

To accurately analyze the truck data, the exact location of the GPS antenna must be taken 

into account. The GPS antenna is mounted just behind the roof of the truck’s cab so an 

algorithm must be written to translate this measurement to the vehicles longitudinal 

center. It is also necessary to consider the trucks length in any analysis as data is sampled 

where the truck is passing over asphalt transitions and is therefore on two sections at one 

time. This data that has truck measurements on two surfaces should not be considered 

when analyzing average road load per section. Figure 5.12 below compensates for both 

GPS antenna offset and truck length and calculates an average longitudinal load for each 

asphalt section, shown in black. Figure 5.13 shows only the averaged road load per 

section for more clarity. 
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Figure 5.12. Road Load Measurements with Section Averages 
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Figure 5.13. Road Load Averages by Section 

 

Road load is impacted by the road slope as discussed in Section 2.6. As the vehicle 

travels the track the cruise controller varies the engine’s torque, or drive force in an 

attempt to maintain a constant vehicle speed. Using the track elevation data presented in 
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Section 2.6, a road grade for each section is computed, and a corresponding longitudinal 

force is calculated based on the known vehicle mass during the experiments. Figure 5.14 

shows the average longitudinal load per asphalt section after the force due to the road 

grade is removed. As is shown, the average loading deviates from the raw measurements, 

indicating the significance road grade has on the trucks, even at such small amplitudes as 

the NCAT test track. 
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Figure 5.14. Corrected Road Load Measurements and Averages 

 

 

Figure 5.15 compares the original averaged road load to the road load shown previously 

in Figure 5.13 where the forces due to slope are removed. The load shows small 

differences on the track’s straight sections, as would be expected with a quite flat surface. 
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However, the uphill climb through the west end shows reduced loading when the slope is 

removed. The opposite effect happens in the east end of the track, where the vehicle 

travels on a downhill slope to the north side of the track. This corrected force represents 

an estimate of the magnitude of the sum of the losses due to the air drag, rolling 

resistance, and driveline of the vehicle. 
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Figure 5.15. Slope Corrected Road Load Comparison 

 

Figure 5.16 shows the magnitudes of both the averaged measurements and the slope 

corrected measurements as a function of track surface. The force due to the slope of the 

road is also shown.  
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Figure 5.16. Road Load and Asphalt Sections 

 

 

Analyzing the road load results shows the impact the road grade has on the 

vehicle loading around the track. Removing the road grade from the force measurement 

should show the magnitude of the remaining losses in the vehicle. This however does not 

explain trends seen in the curves, where the correct road load values are increased over 

the average in the west end turn, and decreased over average in the east curve. In other 

words, the results show increased losses in the west curve and decreased losses in the east 

curve. This trend in the plot actually has the behavior that the road grade in the turns was 

underestimated which would indicate that the accuracy of the survey data is suspect. 
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However, this is not likely the case, as the average slope based on the elevation change 

between the north and south ends and the radius of the turn supports the average slope 

seen in the corners. This data can be verified in the future by taking dedicated GPS 

vertical measurements as discussed in Section 5.3. The irregularity in the force could also 

be due to a south wind. To account for the differences seen in the force, which are 

approximately 2000N, would require a 10.6 m/s (23.7 mph) wind speed. This wind would 

also have to remain fairly constant due to the repeatability of the data over the 4 hour test 

session. This is possible and should be considered in future tests and may require 

additional sensors on the vehicle, such as dynamic pressure sensors. The average force 

irregularity could also be partially due to the behavior of the truck’s electronic fuel and 

cruise controller behavior and would require adding cruise controller dynamics to better 

validate the behavior of the truck’s controller. 

Figure 5.17 shows the road load and asphalt roughness data collected at the test 

track. The middle plot represnts asphalt roughness, starting at section N1, in the 

Internation Roughness Index (IRI) scale. The IRI value is representative of large scale 

irregularities which are typically described as those felt in the vehicle. The bottom plot 

represents the Mean Texture Depth (MTD), which is shorter wavelength irregularities 

more commonly heard in the vehicle. When comparing the roughness data with the road 

force data no distinct relation can be shown with either macro or micro texture, which 

also doesn’t account for the large road force trends seen in the trucks. 
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Figure 5.17. Road Load and Asphalt Roughness 
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5.8 Conclusions 

This chapter has presented an overview of the test bed and experimental testing of 

the methods proposed in this thesis. A new estimation technique was presented and used 
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to verify unknown measurements available on the trucks. This measurement was then 

used in combination with others to measure the trucks vehicle dynamics under various 

tests. This data was used to estimate heavy truck parameters and a discussion of the 

results is given. Much inaccuracy in the estimation results was seen due to various 

reasons, including lack of dynamic excitation and sensor noise and accuracy.  

The estimation results provided poor estimates in the experimental data, except 

when applying the simplest of fits. Recall that Chapter 4 showed under adequate 

excitation, the accuracy of estimating parameters in the presence of sensor noise. In the 

estimation performed in this chapter, the excitation levels were consistently low. In the 

case of the acceleration and deceleration experiments, the amount of data points available 

were not adequate to provide accurate results. This shows the necessity of a direct study 

on excitation in the presence of sensor noise, which is inherently described by the signal 

to noise ratio. 



 

 99

 
 
 
 
 

CHAPTER 6 
 

CONCLUSIONS 
 
 
 

6.1 Summary 

An investigation of vehicle longitudinal dynamics in simulation and experimental 

tests has been presented. A vehicle model was developed and validated for studying 

longitudinal vehicle dynamics and the losses therein. The vehicle dynamics model was 

used to studying the effects and magnitudes of the various losses with in the moving 

vehicle with the intention of quantifying the energy losses and therefore fuel economy 

effects. Estimation techniques were used on the vehicle models in a unique test bed that 

involved performing estimation in a non-typical environment. A sensitivity analysis was 

performed in simulation showing the effects various sensor noise statistics have on 

estimation accuracy. A heavy truck test bed was instrumented and data was used for 

performing estimation results. Long term test longitudinal force data was also analyzed 

for evaluating road load around a test track to deduce the losses involved with the asphalt 

sections. 

The following paragraphs summarize the information provided in the chapters of 

this thesis. Chapter 2 presented a simple vehicle model that is widely used to describe the 

longitudinal vehicle motion on forces on the vehicle. The model was simulated with 
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results showing vehicle behavior and performance. The individual losses were simulated 

for their magnitudes on losses and in depth discussions of each are given.  

Chapter 3 presented a more advanced derivation of longitudinal vehicle dynamics 

that includes inertial effects of the driveline. More advanced simulations were performed, 

which included acceleration, deceleration, and constant speed driving in varying 

parameters as would be expected and the NCAT test track. Sensor modeling is also 

presented and used in the vehicle simulations to produce results to mimics those that 

would be measured in a real world test. 

Using the models and simulations developed in Chapter 3, Chapter 4 gave a 

background on parameter estimation techniques using least squares, and presents models 

for estimating the major vehicle parameters involved in longitudinal vehicle dynamics. 

These estimation models were used with the results from simulating various vehicle 

maneuvers to perform parameter estimates in simulation. The simulated sensor outputs 

were used to perform parameter estimates and a sensitivity analysis was performed to see 

the effects of sensor noise on estimation accuracy. 

Chapter 5 then described the vehicle test facility and shows real world tests on the 

work shown in the previous chapters. Road grade around the track and its influences 

discussed in previous chapters is backed up with real world measurements. An alternative 

estimation technique utilizing a Kalman Filter is presented and applied to verify the 

accuracy of the load measurement available from the vehicle on board electronics. 

Estimation is then performed on various experiments and the results show the feasibility 

of identifying mass and difficulty distinguishing the various longitudinal losses. Test data 
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is also analyzed for road load behavior for the direct comparison of road load to asphalt 

section, or track position. 

 

   

6.2 Recommendations for Future Work 

Ultimately, the work in this thesis should be extended to include vehicle 

estimation results in test environments other than that of the test track. As shown in 

Chapter 4, the amount of data and the quality of data has a very large effect on the 

estimation algorithms’ performance. Having access to more high quality data will 

improve the quality of the results presented in this thesis. 

System excitation, or the magnitude of dynamic excitation, is also essential to 

providing accurate estimation results. This effect is amplified by the inclusion of sensor 

process and measurement noise. Direct studies on system excitation will yield more 

comprehensive sensitivity to noise analysis. This will add more dimensions to 

understating the estimation algorithms performance.  

Much work has been done on correlating asphalt roughness to fuel economy 

effects [duPlessis, 1990; Bester, 1984; Descornet, 1990]. However, this work is 

somewhat limited in the amount of surfaces tested, and doesn’t always have a means to 

validate the measurements taken. The NCAT test facility is an excellent resource for 

continuing the work started in this thesis. However, some simple recommendations can 

be made for improving the existing test bed. Because road grade has such a large effect 

on the longitudinal loading of the vehicle, a GPS system capable of very accurate vertical 

measurements should be used to estimate the road grade. This could be inserted into more 
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advanced estimation schemes that will allow the varying rolling resistance estimates to be 

performed. Higher accuracy GPS will also be capable of providing more accurate 

acceleration measurements and position for averaging data over a test section.  

To fully understand and simulate fuel economy benefits, a more accurate engine 

map should also be considered. This can be done by measuring various engine parameters 

while driving under significant excitation. A fuel consumption map can be generated 

using measurements of brake mean effective pressure (fuel flow as a function of output), 

engine load, and engine rpm. This allows the individual engine’s characteristics to be 

analyzed as part of the complex vehicle system and true fuel efficiency benefits 

estimated. Understanding the engine control system also involves characterizing the 

vehicle’s cruise controller. It is important to understand its control behavior as this will 

effect fuel use outside of road loading. Appendix C shows a sample cruise control and the 

effect it can have on the vehicle. 

Another option for continuing the research is the construction of a dedicated 

rolling resistance test rig. Typically rolling resistance measurements are made using a 

towed implement with a force measuring device. The current estimation schemes could 

be adapted to estimate rolling resistance in a fully instrumented test rig that could be 

towed around the track on a regular basis. This device could also be made to measure the 

rod irregularities directly, and therefore provide a direct rolling resistance versus surface 

quality measurement. 
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APPENDIX A 
 

VEHICLE PROPERTIES 
 

A.1  Introduction 

  

 Appendix A contains a list and description of the vehicle properties used in the 

vehicle model developed in Chapter 2 and 3.  
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A.2 Simulation Vehicle Properties 

Table A.1 contains a list and value of the vehicle properties used in this thesis, 

unless otherwise stated.  

Table A.1: Vehicle Parameters 
Description Value Units 

Total Vehicle Mass 68000 kg 
Air Drag Coefficient 0.6 unitless 
Rolling Resistance Coefficient (ave.) 0.0058 unitless 
Front Area 10.3 m2

Tire Rolling Radius 0.504 m 
10.5 
7.37 
5.21 
3.78 
2.76 
1.95 
1.38 
1.0 

Gear Ratios (Low; 1-8) 

0.73 

unitless 

Final Drive Reduction 3.70 unitless 
Inertias: 
Engine Inertia 0.35 kg-m2=N-m-s2

Clutch 0.15 kg-m2

Transmission (each gear, 1 side) 0.005 kg-m2

Rear Axle and Input Gear 0.015 kg-m2

Differential 0.005 kg-m2

Tire & Wheel 11.1 kg-m2

Efficiencies: 
Driveline Overall 0.85 unitless 
Driveline Each Stage (Transmission, 
final drive, brake losses, ea.) 

0.95 unitless 

Engine Torque Approximation tq = -1.81*10^-3*RPM^4 
+1.56*10^-7*RPM^3 
-1.217*10^-3*RPM^2 
+2.571*RPM 

lbf-ft 
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APPENDIX B 
 

NCAT FACILITY: EXPERIMENTAL SETUP AND DATA 
ACQUISITION  

 
 

 
B.1 Introduction 

 Appendix B contains information about the National Center for Asphalt 

Technology, the hardware, and the experimental setup.    

 

 

 

 

 

 

 

 

 

 

 



 

B.2 Experimental Setup & Data Acquisition 

Using the National Center for Asphalt Technology’s test track and the 

Freightliner vehicles as a test bed, instrumentation was setup to do real world estimations 

and fuel economy studies.  

For the data collection, a PC/104 computer based data acquisition system was 

developed. This small form factor computer provides a robust solution to on-board data 

acquisition. The computer is housed in an extruded aluminum case that serves to isolate 

the computer hardware from harsh environments, while allowing quick access to 

computer functions and connections. The operating system used is real-time Unix based 

QNX, primarily chosen for its stability, low memory and processing requirements, and 

real-time functionality. Software was written using C++ to interface and data log the 

various sensors in the system, shown in Figure B.1.  

Figure B.1. Data Acquisition Layout 
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Sensors include a 6 DOF inertial measurement unit, “Starfire” GPS, and CAN 

data from the Freightliner’s engine computer. The PC, corresponding hardware, and 

inertial sensors were mounted in the vehicle’s cab under the passenger seat, as shown in 

Figure B.2. 

 

Figure B.2. Data Acquisition and Sensors Inside Vehicle Cab 
 

The NavComm manufactured Starfire GPS unit was mounted by attaching a 

bracket to the vehicle structure just rear of the cab out of necessity for adequate satellite 

view. This placed the receiver high enough to clear obstructions and placed the unit on 

the vehicle’s centerline as shown in Figure B.3. 
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Figure B.3. NCAT Test Truck with Starfire GPS Unit Indicated 
 

To solve issues of powering the complete data acquisition unit, without draining 

the trucks battery when the truck is not running, a unique switching solid state power 

management device was used. All the sensors are powered directly from switched (key) 

power on the vehicle, but the computer needed to stay on at all times.  

A power management device, made up of rectifier diodes, is used to switch 

between the backup battery when the engine is off and the vehicle charging system when 

the engine is on. It is also capable of recharging the separate backup battery using a 

recharging circuit when the vehicles charging system is functional. This allowed the data 
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acquisition unit to be left unattended to take data, without requiring any user input or 

necessity for restarting the computer. The total power system is outlined in Figure B.4. 

 

 
Figure B.4. Data Acquisition Power Schematic 
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B.3 Hardware Manufacturer Summary 
The following table, B.1, outlines the hardware used in data acquisition and the 

corresponding manufactures.  

  

Table B.1: Hardware Summary 
Device Manufacturer 

Bobcat Data Aq Computer w/Enclosure Versalogic Corp 
Computer LCD/keyboard Earth Computer Technologies, Inc 
DC to AC Power Inverter Sima  
Data Aq Computer Power Supply Tri-M 
IMU-400CD Crossbow Technology Inc. 
Starfire GPS Receiver Navcomm 

CAN Controller Lawicel 
12 Volt Lead Acid Battery PowerSource 

Solid State Power Management West Mountain Radio 
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B.4 Measurement Capability Summary 

The following table shown below outlines the measurement capability of the data 

acquisition system. 

 

Table B.2: Measurement Summary 
Measurement Source Data Format 
Longitudinal 
Acceleration 

Xbow IMU Serial RS-232 Data Packets 

Lateral Acceleration Xbow IMU Serial RS-232 Data Packets 
Vertical Acceleration Xbow IMU Serial RS-232 Data Packets 
Pitch Rotation Rate Xbow IMU Serial RS-232 Data Packets 
Yaw Rotation Rate Xbow IMU Serial RS-232 Data Packets 
Roll Rotation Rate Xbow IMU Serial RS-232 Data Packets 

Latitude Starfire GPS NMEA-RMC Serial GPS Message 
Longitude Starfire GPS NMEA-RMC Serial GPS Message 

Ground Speed Starfire GPS NMEA-RMC Serial GPS Message 
Heading Starfire GPS NMEA-RMC Serial GPS Message 

Time Starfire GPS NMEA-RMC Serial GPS Message 
Electronic Engine 

Controller 3 
Freightliner Engine 
Computer 

SAEJ1939 CAN Specification: 
Parameter Group Number 61247 

Electronic Engine 
Controller 2 

Freightliner Engine 
Computer 

SAEJ1939 CAN Specification: 
Parameter Group Number 61443 

Electronic Engine 
Controller 1 

Freightliner Engine 
Computer 

SAEJ1939 CAN Specification: 
Parameter Group Number 61444 

Cruise 
Control/Vehicle 

Speed  

Freightliner Engine 
Computer 

SAEJ1939 CAN Specification: 
Parameter Group Number 65265 

Fuel Economy Freightliner Engine 
Computer 

SAEJ1939 CAN Specification: 
Parameter Group Number 65266 

 
  

The information in Table B.3 shown below represents the measurements 

contained in the data packets logged in this research. The Society of Automotive 

Engineers publishes and maintains the SAE J1939, Truck and Bus Control and 

Communications Network Standards Manual. This manual describes the controller area 
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network (CAN) protocol used in many heavy vehicle systems and provides a standard 

format and communications protocol for the manufactures if the choose to utilize them. 

On the Freightliner trucks at the NCAT facility the CAN protocol has been unlocked and 

made available to us for this research. Within the SAE specification are different 

Parameter Group Numbers (PGNs) which describe the data packets being sent and 

received and are functionally organized. Not all available PGNs on the vehicle were used 

but the following data shown below outlines the PGNs which were used in this research. 

 
 

Table B.3: SAEJ1939 Measurement Summary 
Parameter Group 

Number 
Name Data Available 

Nominal Friction % Torque 65247 Electronic Engine Controller 3 
Engine’s Desired Operating 
Speed 
Selected Gear 
Actual Gear Ratio 
Current Gear 
Transmission Requested Range 

61443 Electronic Engine Controller 2 

Transmission Current Range 
Driver’s Demand Engine % 
Torque 
Actual Engine % Torque 

61444 Electronic Engine Controller 1 

Engine Speed 
Wheel based Vehicle Speed 65265 Cruise Control/Vehicle Speed 
Cruise Control Set Speed 
Fuel Rate 
Instantaneous Fuel Economy 
Average Fuel Economy 

65266 Fuel Economy 

Throttle Position 
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APPENDIX C 
 

GPS&INS Heavy Truck Cruise Control  
 
 

 
C.1 Introduction 

  
Appendix C contains a model derivation and simulation of a state-space vehicle 

velocity (cruise) controller.  This has applications to the Freightliner National Center for 

Asphalt Technology Trucks because they travel the track under the action of the 

Freightliner cruise control system. It has been shown previously in this thesis that is 

important to understand the behavior of the control system and how it effects fuel 

consumption. 

This appendix investigates a cruise control that uses GPS and inertial sensors as 

the inputs instead of the traditional wheel speed sensors. The system to be controlled is 

the trucks longitudinal dynamics while rolling over asphalts of varying rolling resistance.  



 

C.2 Cruise Control Model and Simulation 

Typical cruise control systems are fairly simple in that their only input is usually a 

wheel speed sensor. Their control variable is throttle position up to certain limits, usually 

utilizing a proportional-integral-derivative controller. This simulation however, will use a 

state feedback control. Longitudinal load variations from surface variations, turns 

scrubbing off speed, and bank angle on the track, necessitate cruise control to vary the 

throttle (or the engine control unit’s engine load calculation in this case, due to the diesel 

engines lack of  engine air flow throttle mechanisms). A GPS unit’s velocity 

measurement and longitudinal acceleration are the inputs. Combining the sensors creates 

an essentially cleaner, faster, and more accurate input to control the longitudinal 

dynamics. 

 
The system dynamics for this simulation are described as follows: 

 
xmFFFF AirDragcesisRollingDrive &&=−−=∑ tanRe  C.1

 
 

 
where: 

DriveF =Drive force provided by engine 

cesisRollingF tanRe = Rolling resistance force 

AirDragF = Force due to air drag 

m = Vehicle mass 

x&& = Longitudinal Acceleration 
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It is generally assumed that air drag is related to velocity squared via an air drag 

coefficient, labeled as follows in Equation C.2. 

 
2

1VCFAirDrag =  C.2

 
Rolling resistance is related to mass with a linear coefficient as shown in Equation C.3. 

ccesisRolling mgCF 2tanRe =  C.3

 
This simplifies the assumed model to: 

xmVCmgCF cDrive &&=−− 2
12  C.4

 
 

Note that this system includes nonlinear dynamics. In order to put this plant into 

state space format we’ll have to linearize about some reference point. This is also 

necessary to calculate the state feedback control gains. In the case of our cruise control 

system we’ll linearize about the target velocity and . This assumes prior knowledge 

of the rolling resistance and air drag coefficients as shown below: 

DriveF

21 =C  C.5

01.02 =C  C.6

 
Which results in: 

M
Vg

M
F

x c
d

2201.0 −−=&&  
C.7

 
Using the Jacobian to linearize Equation C.7: 
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Looking at u  indicated in Equation C.7 at steady state : 0==Vx &&&
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Taking: 

g
M
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M
uf 01.02 2
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C.9

 
Results in: 
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C.10

 
Arranging the plant into state space format results in the following: 

Vy

F
M

V
M

Vx

where
DuCxy
BuAxx

d
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=
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14
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C.11

 
Therefore our plant matrices are:  
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Using the Matlab “place” command, the system poles can be placed to be 

however fast we like. The state-space control poles were placed such that the system had 

a response resembling the longitudinal dynamics of a ground vehicle (settling time of 10 

seconds) and a limit was put on the Fdrive command to a value of force equating to 

0.5g’s of longitudinal acceleration. Also, to make the system more accurate, the plant 

model in the simulation is that of the second order system, where the linearized system 

was only used to pick the feedback gains. The following is the block diagram for the 

simple state feedback cruise control with noise added to the system output. 

 

 

Figure C.1. Block Diagram of State Feedback Cruise Control 
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The next step is to add an observer to the system, which will allow the use of both 

GPS and a longitudinal accelerometer to estimate a cleaner velocity to serve as the input 

to the controller. The typical form a state space controller and estimator is as follows in 

Figure C.2. 

 
 

 
Figure C.2. Block Diagram of Typical State Space Controller and Estimator 

 
 

For the system studied in this thesis, the truck plant and estimator plant are 

different and therefore the standard estimator model will not function, as the state matrix 

varies between the two. The first option is to create two separate systems, a plant and 

estimator and feed the estimator output to the input of the truck plant. However, this can 

be simplified to the following system, which  will be used for the GPS/INS cruise 

control. 

For the estimator: 
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With the following system matrices: 
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C.14

 

The estimator gains are found similarly to the state feedback gains with the 

matlab pole placement function, but settle time is chosen to be about 10 times faster than 

that of the plant. The estimator above is essentially taking an acceleration input, 

subtracting the accelerometer bias and integrating to add a correction to the GPS velocity 

measurement. Both the accelerometer and velocity have random noise added to them, 

with specs obtained from sensor data sheets. The accelerometer also has a constant turn 

on bias modeled. The system block diagram is shown in Figure C.3. 

 

 123



 

 
Figure C.3. Block Diagram of State Space Controller and Estimator 

 

Simulations were run to verify the performance of the cruise controller and to 

assure that the estimator was providing some measurement benefits and removing the 

sensor bias. 
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Figure C.4. State Space Controller and Estimator Results 

 
 

The controller also seems to be giving very good response with no overshoot and zero 

steady state error, discounting the noise. The following plots provide a closer look at the 

raw velocity measurement and the estimated velocity.  
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Figure C.5. State Space Estimator Velocity Results 

 
 

Next, random rolling resistance variation was added to the system. This will serve 

as a disturbance much like the NCAT trucks experience on their test track as they pass 

over various asphalts and small slope changes. The technique for this was essentially 

generating different random calculations of rolling resistance that each lasted for 20 

seconds. The system block diagram is in the following figure.  
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Figure C.6. Block Diagram of State Space Controller and Estimator with Rolling Resistance 

Disturbance 
 

 

Figure C.7 shows a simulation of very small changes in rolling resistance and the 

velocity response. 

 127



 

0 50 100 150 200 250
19

19.5

20

20.5

21

Time (sec)

V
el

oc
ity

 (m
/s)

Clean/Estimated Velocity

GPS Velocity

0 50 100 150 200 250
-0.0102

-0.01

-0.0098

Time (sec)R
ol

lin
g 

R
es

ist
an

ce
 C

oe
ffi

ci
en

t

Small Longitudinal Disturbance, Mean Value: 0.01, 10% variance

0 50 100 150 200 250
0

2000

4000

6000

8000

10000

Time (sec)

D
riv

e 
Fo

rc
e 

(N
)

 
Figure C.7. State Space Controller and Estimator Results with Small Rolling Resistance 

Disturbance 
 

  
Figure C.8 shows a much larger disturbance in the rolling resistance parameter. 

This causes the controller to command larger force variations to try to maintain the target 

speed. It’s also interesting to note, that due to the large variance of rolling resistance 

coefficients, some actually went to positive values, indicating that the loss was actually a 

gain, or a force propelling the vehicle. An example would be a down-hill situation. In this 

case, the controller obeyed its limits, commanding zero drive force. 
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Figure C.8. State Space Controller and Estimator Results with Large Rolling Resistance 

Disturbance 
 

 

This cruise control is an interesting study on the state feed back/state space 

control techniques and gives the opportunity to use sensor fusion in a common 

application. The controller/estimator implemented performs very well. The controller 

tracked disturbances well within the realm of vehicle longitudinal dynamics. The 

linearization to design the feedback gains didn’t seem to have any measurable effect on 

the controller’s performance. The estimator improved the GPS reading as well as quickly 
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estimated out the accelerometer bias, within the time frame of what’s necessary upon 

initializing a cruise control.   

There exists opportunities to verify the drive force commands and estimated 

velocity measurements accuracy on the trucks to make this cruise control’s behavior 

match that of the real trucks to further other research. It is important to understand the 

controller properties and behaviors if looking at the vehicle dynamics. Certain under and 

overshoot of the controller may skew results for fuel economy studies. 


