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Abstract 

 

 

 This dissertation presents an approach for autonomously controlling a canine 

using an embedded command module with vibration and tone generation capabilities and 

an embedded control suite comprised of a microprocessor, wireless radio, GPS receiver, 

three accelerometers, three gyroscopes, and three magnetometers. In order to track the 

canine‘s motions, which inherently contain non-conventional noise characteristics, GPS, 

inertial sensor, and magnetometer measurements were integrated using a specialized 

Extended Kalman Filter (EKF), equipped with a Fuzzy Logic Controller for adaptive 

tuning of the Process Noise Covariance Matrix (Q). This allowed for rejection of 

unmodeled canine motion characteristics which tend to corrupt accelerometer bias 

tracking in a standard EKF. The EKF solution provided an optimized estimate of the 

canine position and velocity and also proved to be effective in tracking the canine‘s 

position and velocity during brief GPS outages. On average, the filter proved to track the 

canine‘s position with a 7.5 meter error and the canine‘s velocity with a 1.2 meter per 

second error after 10 seconds of simulated GPS outage. 

Using the tracking solution, a Canine Maximum Effort Controller (CMEC) was 

implemented for autonomous control of the canine. The CMEC proved to be effective at 

guiding the canine to multiple waypoints. Results from structured and non-structured 

environment two waypoint trials indicated a 97.7% success rate. Three waypoint trials 



 iii 

resulted in a success rate of 70.1%, and the overall success rate of the control system was 

found to be 86.6%. 

In order to determine the best orientation deviation threshold choice to be used in 

the CMEC in future work without resorting to trial and error, a Canine Trial Simulator 

(CTS) was developed based on a Canine Behavior Statistical Model (CBSM) and the 

CMEC. The CBSM was comprised of actual statistical information that describes a 

canine‘s behavior over time. After simulations of two and three waypoint trials and 

verification with previously conducted field trials, it was determined that for the canine 

used in this dissertation, an orientation deviation threshold between 40 and 50 degrees 

would be ideal for use in the CMEC.  
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Chapter 1 

Introduction 

 

1.1 Prior Work 

It is common knowledge that autonomous control is a subject that is of particular 

interest in the scientific community today. Robots, missiles, unmanned ground vehicles 

(e.g., military transport vehicles and farming vehicles), unmanned aerial vehicles, 

satellites, unmanned aquatic vehicles, and many other autonomous control applications 

are being investigated with notable success [1-30]. However, many engineers are 

becoming aware of the fact that the world around us is already replete with fully-

functional, superior designs that come equipped with natural sensor suites whose designs 

are beyond the capability of engineering knowledge to date. An insect neurobiologist 

from the University of Arizona in Tucson said, ―There‘s a long history of trying to 

develop micro-robots that could be sent out as autonomous devices, but I think many 

engineers have realized that they can‘t improve on Mother Nature‖ [31].  

With that in mind, the scientific community has become interested in learning 

how to remotely control living creatures—i.e., bio-robots or cyborgs. Cyborg research 

has been conducted since the 1950‘s, when Dr. Jose Delgado of Yale University 

implanted electrodes into the brains of bulls to stimulate the hypothalamus for control 
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purposes [31]. Since then, the list of remotely controlled animals using electrode 

implantation has grown to include sharks (i.e., spiny dogfish), rats, monkeys, mice, 

pigeons, cats, and even cockroaches [32-39]. Cornell University, the University of 

California at Berkeley, the University of Michigan, and Arizona State University at 

Tempe are working on developing flying insect cyborgs, including hawkmoths and green 

June beetles [40-42]. The University of Florida in Gainesville used electrodes to remotely 

control rats specifically for detection of humans (for search and rescue scenarios) and 

explosives [31]. M.I.T. used virtual fencing coupled with GPS for tracking and 

autonomously herding cows by implementing auditory cues and shock reinforcement to 

keep cows within a desirable area [46, 47]. 

Besides bio-robotic examples, there is beginning to be more interest in the 

prospect of remotely controlling canines [43]. Canines can traverse a variety of terrain 

more efficiently than humans or robots and are effective at guarding territories, carrying 

out search and rescue missions, as well as providing guidance for the visually impaired. 

They also have an amazing sense of smell that makes them capable of detecting 

explosives, narcotics, tobacco, pipeline leaks, retail contraband, and even cell phones and 

bed bugs [44]. Since engineers have not developed a device that can compare with a 

canine‘s ability to detect odors, the use of canines for these applications is appealing. 

Although other creatures, such as rats [31], have a keen sense of smell, canines are more 

appealing, especially due to their innate ability to interact with humans. Thus, using 

canines for these purposes is attractive to engineers, and the ability to remotely control a 

canine for many of these purposes is an even more attractive goal for engineers. Many 

scenarios could be envisioned to illustrate cases where the presence of a handler 
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alongside a canine would be an impossibility or undesirable (e.g., scenarios where the 

handler should not be visible or in harm‘s way). In a recent event in Afghanistan, a bomb 

detection canine detected an explosive a moment too late. The canine handler lost his left 

leg and received other serious injuries. The canine had to be euthanized due to severe 

injuries [43]. Remote control capability or autonomous guidance likely would have 

significantly altered the outcome of this unfortunate event. 

The Canine Detection and Research Institute (CDRI) at Auburn University has 

demonstrated that canines can be remotely controlled using a canine vest equipped with a 

tone and vibration generator [45]. However, many cases can easily be envisioned where 

the canine would be out of sight from the handler (e.g., moving behind a distant 

building), at which time remote control capability becomes useless. Therefore, the next 

natural step in this research is to automate this remote control capacity (i.e., autonomous 

control of the canine). Since canines can traverse a variety of terrains more efficiently 

than humans, and possess a natural array of ―sensors‖ used to detect and locate items of 

interest that robots are not readily equipped with, many aspects that pose problems to 

unmanned ground vehicles are inherently removed with the canine. Canines can execute 

the low-level decision making necessary for rerouting its local path to avoid obstacles or 

unfavorable terrain. Auburn University recently proved that autonomous control of 

canines can be done as well, using the CDRI‘s canine remote control system, a Global 

Positioning System (GPS), and machine learning algorithms [48].  

 

1.2 Overview 
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This dissertation presents a novel system for autonomous control of an odor 

detection canine to pre-defined waypoints. Figure 1.1 illustrates a high level view of the 

overall operational objective. The command station determines the end waypoint and 

develops a path to that waypoint by setting intermediary waypoints for the canine to 

follow. These waypoints are transmitted wirelessly to an embedded microprocessor 

onboard the canine. The control system then guides the canine to each successive 

waypoint. 

 

 

Figure 1.1. High-level operational overview of the project objective. 

 

Figure 1.2 is a block diagram that illustrates the components of the developed 

control system which will be discussed in this dissertation. The symbol, , represents 

canine heading. N represents the canine‘s northern position, and E represents the canine‘s 

eastern position. V represents canine velocity, and A represents its acceleration. The 

symbol, , represents canine pitch. Starting in the ―Plant,‖ the measurement devices 

Base Command Station 

 

Embedded control system 

guides canine to each 

waypoint along path 

High-Level Operational Overview 

Guided Canine 

 

 

 

 

Embedded 

Microprocessor 
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develops path 
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acquire estimates of the canine‘s true position, velocity, and orientation. However, due to 

measurement error, filtering must be done to get an optimal estimate of the canine‘s true 

motion status. These estimates are then compared to the desired position, velocity, and 

orientation of the canine, and the error is fed into the controller. The error is then 

processed, and a command is issued to the canine to guide it towards the desired 

waypoint. This process is looped until the canine‘s location status is sufficiently close to 

the desired state. 

 

 

 

 

 

 

 

Figure 1.2. Block diagram of the autonomous canine control system. 

 

In order to attain such a control system, several components must be acquired 

and/or developed. An appropriate canine must be selected and trained to respond to tone 

and vibrational cues that could be issued from an embedded computer system via a tone 

and vibration command module. Also, selection and/or development of the hardware 

necessary for tracking and controlling the canine must ensue. This would include an 

embedded microcomputer which would be responsible for computations, issuing 

commands, and perhaps, transferring data to a remote computational device. 



 6 

Measurement devices must also be selected so that the microcomputer will be able to 

track the canine‘s position, velocity, and orientation, and in turn, issue commands for 

guidance. A canine vest must be developed as well, to allow for a means to house the 

hardware onboard the canine, and software must be developed to interface all of these 

hardware components. All of these control system components will be discussed in 

Chapter 2. 

Such a control system must also include software for efficiently tracking the 

canine at all times, even during brief GPS outages, and a controller which receives the 

tracking data, processes it, and determines the appropriate command to be issued to the 

canine via the command module. These considerations will be addressed in Chapters 3 

through 6.  

With these objectives in mind, Figure 1.3 illustrates a mid-level overview, 

exhibiting the hardware components and information flow for the guidance system that 

will be discussed in this dissertation. Before the trial begins, the operator marks the 

waypoints for the controller (located onboard the microprocessor) through the wireless 

radios using the lap top. The controller can then be initiated through the lap top as well. 

After the trial has commenced, the lap top continues to be used as a data sink for saving 

trial data and allows manual override of the control algorithms. The microprocessor 

onboard the canine receives data from the sensor suite (i.e., GPS, the Inertial 

Measurement Unit or IMU, and magnetometers) and processes it, communicates with the 

lap top via the wireless radios, and issues commands to the command module. The 

command module then issues tones and vibrations to guide the canine, which in turn 

changes the output of the sensors, which is fed back into the microprocessor. 
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Figure 1.3. Mid-level overview of the hardware and information operational flow during 

an autonomous canine control trial. 

 

1.3 Contributions 

Although some of the aspects of this control system are not novel, there are 

several novel contributions to the scientific community that this control system affords.  

 

 First and foremost among the contributions is the over-all canine system. 

As was mentioned earlier, [43] illustrated the need for a remote guidance 

system to keep handlers out of harm‘s way, and the potential of visual 

obstructions between the handler and canine highlights the need for 

making the guidance system an autonomous one. The approach discussed 

in this dissertation proved to be an effective one in meeting the objective. 
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 The system includes specialized, real-time, embedded navigation 

algorithms that allow for efficiently tracking a canine‘s position, velocity, 

and orientation, in spite of the unique motion characteristics that describe 

canine motion. These algorithms use GPS/Inertial Navigation System 

(INS)/Magnetometer integration and a specialized Extended Kalman Filter 

(EKF) that utilizes fuzzy logic to adaptively tune the Process Noise 

Covariance Matrix to account for different motion characteristics that are 

not accounted for in the canine motion model. The navigation algorithms 

allow for effective tracking of the canine‘s location and motion during 

brief GPS outages. Besides the canine application, the fuzzy logic tuning 

approach that was developed could be of benefit for other applications in 

which the motion model as used in the EKF is somewhat uncertain and 

carries the potential of significant unmodeled, unanticipated motion 

characteristics which could corrupt the estimation of relevant biases by the 

EKF. 

  

 The control system also includes a threshold-based, embedded algorithm 

for autonomous control of the canine—namely, a Canine Maximum Effort 

Controller (CMEC). The controller is computationally inexpensive enough 

to run onboard the canine alongside EKF algorithms, thus eliminating the 

need for extensive wireless communication with a remote computational 

device and bypasses the need for a complicated, non-linear dynamic 
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model of the canine. The control system has potential applications beyond 

the canine scenario, having already proved to be of interest in pedestrian 

applications as well [98]. 

 

 In order to determine the optimal choice of the orientation deviation 

threshold for the CMEC in future trials, an off-line Canine Trial 

Simulator was developed based on a statistical model of a canine‘s 

behavior which takes into account a canine‘s average velocity, 

acceleration, deceleration, right and left turn rates, heading drift while 

moving, and directional command obedience success rates. The trial 

simulator allows for estimating the success rates and average trial times 

for different orientation deviation threshold choices. From these 

statistics, profiles can be developed to help a user quickly determine which 

orientation deviation threshold should be chosen to meet trial objectives. 

The simulator was found to closely approximate true trial data. 

 

 The control system allows for guiding a canine to geometrically-

complicated waypoints and multiple waypoints. 

 

 The control system is robust in its ability to handle behavioral anomalies 

in canine motion and response due to its anomaly detection features. 
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 Implementation of the control system results in high rates for trial success 

for both two and three waypoint trials. 
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Chapter 2 

Materials and Methods 

 

2.1  Introduction 

The initial stages of the control system development focused on elements of the 

plant portion of the block diagram in Figure 1.2—namely, the training of the canines, 

deciding on the hardware to use for the system, developing the packaging for the 

hardware, and developing the software to interface the equipment. 

 

2.2 The Canines 

2.2.1 Introduction 

The dogs that participated in the autonomous control experiments were Labrador 

Retrievers. Canine Major (Figure 2.1—left) was the primary canine that participated in 

the navigation and controls portions of the project, and Badealya (Figure 2.1—right) 

participated in a limited role in the project due to the status of her ongoing training. 

Both canines were trained to respond to and be guided by tones and vibrations. 

Three separate tones were used to tell the canines to go forward, stop, and return to the 

handler, respectively. Major was initially trained to turn and move in a direction 
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approximately 90 degrees from his current heading upon feeling a left or right vibrational 

command. However, upon request, the CDRI commenced training both canines to turn 

approximately 45 degrees to the right or left upon feeling a vibrational command and 

await further instruction. At this point, another vibrational command could be given or a 

forward command could be given. This allowed for finer control of the canines‘ 

headings. This training is still in progress, and its effect has not yet been totally realized. 

Due to the nature of a canine, the success rate in following right and left vibrational 

commands is not 100%, and the amount that the canine turns upon being given a 

vibrational command is not necessarily consistent. These factors will be discussed further 

in Chapter 4. 

 

 

Figure 2.1. Labrador Retrievers Major (left) and Badealya (right) 

 

2.2.2 Canine Training  

 The following section is a reproduction of the CDRI training protocols for canine 

Major that was used in this project. The same training protocols were utilized for 

Badealya. The protocols are reproduced here verbatim, with the author‘s permission. 
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2.2.2.1  The Trained Canine 

 The dog that participated in these experiments was a male Labrador Retriever 

named ―Major‖ that was approximately 4-years old and weighed 32 kg. Prior to his 

acquisition, Major had undergone the initial stages of traditional field/hunt trial training 

such that he was capable of reliably executing basic ―blind retrieves‖ (i.e., without first 

seeing the throwing of an object and without obvious visual cues, being directed by 

handler in the direction of that object through a series of voice, visual, and whistle 

commands to the object, which the dog then retrieves) of approximately 100 meters.   

 

2.2.2.2  Ethical Approval 

 The use of Major in this experiment and other ongoing canine detection 

technology development efforts was approved and monitored by the Auburn University 

Institutional Animal Care and Use Committee (IACUC), which ensures compliance with 

the Animal Welfare Act (7 USC, 2131-2156). Auburn‘s IACUC is approved by the 

Office of Laboratory Animal Welfare of the U. S. Public Health Service and Auburn‘s 

animal housing, care, and use is inspected annually and has been approved by the Animal 

Welfare Division of the Animal and Plant Health Inspection Service of the U. S. 

Department of Agriculture. Major was housed in IACUC inspected kennels at Auburn 

University controlled property at Fort McClellan, AL and his care and use were 

conducted by Auburn University personnel who had successfully completed training in 

the care and use of dogs used in research or training activities. In addition to the internal 

IACUC surveillance, the activities in which Major has participated, his housing and care, 
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and the qualifications of those performing research and training activities with Major 

were reviewed and approved by the Animal Care and Use Review Office (ACURO) of 

the U. S. Army Medical and Materiel Command (USAMRMC). 

 

2.2.2.3  Training Procedures 

 The specifics of the training procedures for the canines are discussed in Appendix 

A. 

 

2.3 Hardware and Packaging 

The goal of the hardware and packaging development phase of the project was to 

develop a guidance harness that is durable, light weight, and not bulky—durable to be 

able to withstand outdoor testing and the harsh, jarring motion characteristics of the 

canine; light weight to not overload the canine and decrease its stamina; not bulky to 

allow the canine to move into tight spaces with relative ease. The harness also needed to 

contain the necessary components to allow for determining the canine‘s position, 

orientation, and velocity, as well as issuing commands to guide the canine to the selected 

waypoints and communicating wirelessly via a remote computational device. 

Considerable time and effort was put into meeting these goals. The hardware for the final 

guidance system is comprised of three main components: the command unit, the sensor 

suite, and a remote computational device.  
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The command unit consists of an 

embedded computer system, an 

embedded wireless radio module, and 

the command module. The computer 

system is an RCM 4100 Rabbit 

microprocessor core module (see Figure 

2.2). This microprocessor is equipped 

with several serial connections, allowing 

interfacing between sensors and communication devices. It is small, low-cost, and 

requires relatively low power. However, it has limited speed and memory allocation, 

which played a major role in the navigation and 

control phases of the research (see Chapters 3 and 

4).  

The wireless radio is an XBee-Pro 

802.15.14 module (see Figure 2.3) which 

communicates wirelessly with an identical module 

attached to a lap top by means of a USB interface 

board. The embedded radio and microprocessor 

are both located in a box alongside the GPS 

receiver (discussed below), illustrated in Figure 2.4.  

Figure 2.3. XBee-Pro 

wireless module. 

 

 

Figure 2.2. Rabbit RCM 4100 

microprocessor. 
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The command module 

(Figure 2.5) was developed by 

Wyle labs (www.wyle.com) 

and issues the commands sent 

from the microprocessor in the 

form of tones and vibrations.  

The sensor choices 

were based on a desire to 

acquire accurate canine 

position, velocity, and 

orientation measurements for 

the control phase of the project, 

while also maintaining small 

size for the canine‘s benefit, low cost 

for production practicality, and low 

computational expense so that the 

microprocessor can handle the load. 

The sensor suite is comprised of a 

Novatel GPS-702L antenna (the white 

disk illustrated in Figure 2.7) attached 

to a U-Blox RCB-4H GPS receiver 

(see Figure 2.6) and an XSens MTi-X 

(the orange unit illustrated in Figures 

Figure 2.4. The battery for the guidance harness 

(left), the box containing the microprocessor, 

wireless radio module, and GPS receiver (right), 

and the inertial sensors with magnetometers 

(orange unit). 

 

Figure 2.5. The command module with 

hand-held radio for remote control 

capability. 

 

 

http://www.wyle.com/
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2.4 and 2.7), which contains a six degree of 

freedom inertial measurement unit (three 

MEMS grade accelerometers and 

gyroscopes) plus three magnetometers. The 

U-Blox GPS receiver acquires satellite data 

and processes it for the user and comes 

equipped with several settings to allow the 

user to choose his/her desired measurement outputs. Computational load on the 

microprocessor is thus lowered since the receiver does some of the necessary data 

processing.  

 

 

Figure 2.7. Canine Major wearing guidance harness. 

 

Figure 2.6. U-Blox GPS receiver. 
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The XSens unit also comes equipped with different settings for the user. It can output the 

raw data from each of the sensors, but it also has an Attitude Heading Reference System 

(AHRS) which processes and filters measurements from the sensors and outputs Euler 

angles, if so desired. This feature also reduces the computational load on the 

microprocessor. The command unit and sensor suite were attached to the canine vest, 

which was developed by Blackthorn K9 (www.blackthornk9.com) based on the canine 

team‘s specifications and wishes. The remote computational device is a Dell Inspiron 

4150 Laptop computer. 

 

2.4 Software 

 

 

Figure 2.8. High-level overview of the hardware to software interfacing architecture. 
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There are two programs running simultaneously during any trial. One program 

runs on the microprocessor onboard the canine. This program utilizes a specialized C-

based language known as Dynamic C and is responsible for interfacing all of the 

components onboard the canine (i.e., the wireless radio module, the GPS receiver, the 

IMU/magnetometers, and the command module). It also runs navigation filtering 

algorithms and the control algorithms discussed in Chapter 4. A C++ program runs on the 

lap top and serves as a data sink to store trial data. It is also used to mark waypoints 

before trials, initiate trials, and override the controller to allow for manual control of the 

canine by the handler when such is desirable. Figure 2.8 illustrates a high-level overview 

of the system architecture—namely, how the software and hardware interface with each 

other. 
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Chapter 3 

Fuzzy Logic-Tuned Navigation Algorithms  

for Canine Tracking 

 

3.1  Introduction 

The use of Global Positioning System (GPS) and Inertial Navigation System 

(INS) integration to accurately localize vehicles and robots for remote or autonomous 

control purposes is very prevalent today [49-54]. However, application of this technology 

to living systems is much less prevalent. An INS has been used in determining step 

numbers, stride lengths, and heading for pedestrians [79]. GPS/INS integration has been 

effectively utilized in tracking the motion of pedestrians and horses [55-57, 78]. 

GPS/INS/barometer/magnetometer/human pedometer integration has been used for step 

frequency, length, and direction determination for pedestrian navigation as well [80]. INS 

pedestrian tracking results in GPS-denied areas have been further improved using Zero 

Velocity Updating and Pedestrian Dead-Reckoning (PDR) approaches [81]. A hybrid 

system containing both GPS/INS and GPS/PDR integrations for pedestrian navigation 

was used in [82]. Accelerometers have also been successfully used to analyze the motion 

behaviors of cats [60], as well as sow [61] and goat motion behaviors during grazing 
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[62], but very little work has been done in using this technology to track the position, 

velocity, and orientation of canines, which tend to move in more aggressive and abrupt 

ways.  

Accelerometers have been used with wireless radios to detect canine pose for 

search and rescue applications [58, 59]. Although inertial sensors (i.e., accelerometers 

and gyroscopes) do not require GPS satellite visibility and have high frequency sampling 

rates (i.e., 25 Hertz for the canine system), small, low cost accelerometers are notorious 

for significant long-term error due to their inherent biases, scale factors, and sensitivity to 

noise. Also, since these canines are trained to scour an entire area for odors of interest 

when they reach the general destination that a handler guides them to, a certain amount of 

error in estimating the dog‘s position, velocity, and orientation may be acceptable. 

However, the tracking estimate errors for canine motion using inertial sensors without 

any correction from GPS are not insignificant, as will be discussed later in this chapter. 

The use of GPS to track canines is becoming more common [63-66]. However, 

although GPS measurements do not contain biases, single antenna GPS has its own 

issues, as well. For instance, the sampling rate is relatively slow—4 Hertz for the canine 

system. The tracking solution is not smooth and is sensitive to surrounding environmental 

factors (e.g., the number of visible satellites, satellite geometry, and multi-pathing). Also, 

course measurements are unavailable when the antenna is not moving. Besides these 

factors, many of the scenarios in which the use of canines would be of interest would 

likely require tracking during brief GPS outages or loss in visibility of several satellites. 

Since GPS outages are likely in many canine tracking scenarios, it is of interest to 

improve the dead reckoning solution of the canine‘s position, velocity, and orientation 
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estimates for such cases. Thus, as with typical Unmanned Ground Vehicle (UGV) 

applications, GPS and INS can be coupled to ―take the best of both worlds‖ and improve 

the tracking solution. 

The Kalman Filter is an effective tool that can be used to integrate acquired 

measurements from a GPS sensor with acquired measurements from an Inertial 

Measurement Unit (IMU), as well as magnetometers. The aforementioned issues with 

GPS and inertial sensors when they stand alone can be eliminated or reduced by using the 

Kalman Filter, which helps to estimate errors that are inherent in inertial sensor 

measurements using the highly accurate GPS measurements. So, integrating the 

measurements from the different sensors with a Kalman Filter can help to achieve more 

accurate tracking results during GPS outages [49-53]. 

 

3.2  The Extended Kalman Filter 

The Extended Kalman Filter (EKF) allows for filtering of non-linear systems, 

such as those found in typical navigation filtering scenarios, and is described in detail 

elsewhere [67, 68]. Briefly, the EKF is composed of a measurement update and a time 

update. When GPS measurements are available, the following standard measurement 

update equations are applied. 
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 Where: P  = State Estimation Covariance Matrix before or after update 

  dC  = Output Observation Matrix 

  kR  = GPS Sensor Noise Covariance Matrix 

  x̂  = State estimate vector at current or next time step 

  ky  = Measurement vector 

  I = Identity matrix 

  L  =  Kalman gain matrix 

  k   =  Current time index 

 d  =  System is discretized  

 

The P matrix is initialized at the onset of the filter, as well as the state estimate vector.  

 In this dissertation, a linear measurement model is assumed. The general output or 

measurement equation is the following: 

 

  xCyk
ˆ  (3.4) 

 

 Where:  = Sensor noise 

 

 The EKF time update is described by: 
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 Where: c  Continuous Jacobian Matrix 

  kQ  = Process Noise Covariance Matrix 

   

  )( 1 txk 
  is calculated from the non-linearized state equations, using numerical 

integration.  

  The general state space equation is the following: 

 

 BBuxx   (3.7) 

 

 Where: B = Input observation matrix 

  B = Noise input observation matrix 

 u = Input vector 

 

The Jacobian () is used for the covariance prediction in the EKF to linearize the system 

about the operating point.  The Jacobian is found utilizing the following: 
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 Where: 
nf ...1
 = State equations 
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nx ...1
 = States 

 

The GPS Sensor Noise Covariance Matrix (R) and the Process Noise Covariance 

Matrix (Q) constitute the primary EKF tuning parameters. As explained in [69-71] and in 

the following sections, the unique motion characteristics of live biped and quadruped 

species, such as canines, require specialized tuning of Q. 

Figure 3.1 illustrates a high-level view of the Extended Kalman Filter. As 

mentioned above, the EKF consists of a time update or prediction step and a 

measurement update. 

 

Figure 3.1. Overview of the Extended Kalman Filter. 

 

According to [67], there are different variations of the EKF which can be used, 

dependent upon the application. A hybrid version of the Extended Kalman Filter was 
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utilized for the tracking algorithm described in this dissertation. This filter is partially 

discrete and partially continuous. The state time update is calculated from the continuous, 

non-linear equations using 4
th

 Order Runge-Kutta numerical integration, rather than from 

the linearized, discretized dynamic matrix (i.e., the Jacobian). The covariance matrix time 

update is calculated with the linearized, continuous Jacobian, using numerical integration. 

Using the continuous Jacobian proves to cut down on the computational expense of the 

EKF. The measurement updates (i.e., the filter gain, state estimate, and covariance 

estimate) are calculated with the discrete algorithms from the EKF.  

 

3.3  Adaptive Tuning of the Process Noise Covariance Matrix 

using Fuzzy Logic 

 It is important to capture an accurate estimate of the accelerometer bias and to do 

so quickly so that the canine tracking solution will be able to adequately hold during brief 

GPS outages. The accelerometer bias is used to correct accelerometer measurements, 

which are used in determining velocity and position solutions during GPS outages and in 

between GPS measurement arrivals. It has also been discussed in depth in [69] and [70] 

that the canine motion characteristics are such that the typical motion models that are 

used for automotive EKF‘s simply are not adequate in approximating a canine‘s 

behavior. It has been shown that using magnetometers [70] in the motion model improves 

the heading estimate during GPS outages. However, the ultimate EKF solution from these 

approaches was found to be less than ideal, especially since the EKF noise characteristics 

typically had to be manually tuned on a trial-by-trial basis. [See Appendices B and C for 

further explanation.] 
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It was verified in [71] that the standard EKF motion model, as used in vehicular 

applications, does not account for other motion characteristics that are significant in 

canine behavior. In that study, it was discovered that pitch plays a significant role in 

canine motion and accounting for it in the motion model immensely improves the canine 

tracking solution during brief GPS outages. However, other unmodeled canine motion 

characteristics are still likely present which add noise to the tracking solution, cause error 

to be lumped into the accelerometer bias estimate, and ultimately slow down or 

completely hinder the ability to accurately capture an estimate. It would be of interest to 

determine other canine motion characteristics that are significant enough to be added to 

the motion model for an improved positioning solution, but an addition of elements in the 

canine‘s motion model would add more computational burden to the already stressed 

microprocessor onboard the canine.   

 Observation of the actual canine and the EKF‘s tracking solutions of the canine 

for different trials highlights the fact that the motion characteristics of the canine change 

based upon its velocity. More specifically, the higher the canine‘s velocity, the more 

―noise‖ (i.e., unmodeled motion characteristics) there is in the accelerometer 

measurements. The approach presented in this section involves, in effect, adaptively 

adjusting the canine‘s motion model based on its velocity using a Fuzzy Logic Controller, 

thus bypassing the option of utilizing a higher-order state model as well as the need for 

further investigation of specific canine motion characteristics. 

 

3.3.1 Prior Work   
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 In 1965, Lotfi Zadeh introduced the now popular concept of fuzzy logic by 

publishing a paper entitled, ―Fuzzy Sets‖ [86]. Since then, the field has grown 

exponentially and is now being utilized in hundreds of various applications. Scenarios in 

which fuzzy control theory has been used for guidance purposes have especially 

multiplied in the last few years. In the area of missile guidance, fuzzy logic has been used 

in guiding missiles in surface-to-air and air-to-surface navigation [4], including scenarios 

utilizing vertical launching with back turning capability [28], and tracking moving targets 

[21], including those moving at high speeds [1], while minimizing computational expense 

and miss distance and ensuring stability [27] and also controlling the impact angle [19]. 

Fuzzy logic has also been used for guidance in autonomous aquatic vehicle navigation 

[3], including autonomous underwater vehicle maneuvering [5] and depth control [24]. In 

the area of autonomous aerial vehicle guidance, fuzzy logic has been used in gain 

scheduling [13], control of planetary landing vehicles [25], satellite attitude control [7, 

26], and altitude and attitude control for unmanned aerial vehicle autopiloting scenarios 

[30].  

Perhaps the most prevalent area in which fuzzy logic is being used for guidance is 

in autonomous ground vehicle applications, such as navigation using magnetic markers 

[2], leader-follower scenarios [12], navigation in unknown environments using wall-

following [17], and path planning using potential fields [15]. Fuzzy logic is being used in 

autonomous ground vehicle guidance for cruise control adaptation based on a lead 

vehicle‘s velocity, stop and go maneuvering, and steering control [6, 11, 20], as well as 

for obstacle and target detection and pursuit or avoidance [14, 16], and in order to allow 

an autonomous vehicle to pass a lead vehicle [20]. It is even being used in farming 
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applications, where fuzzy logic is used for obstacle detection and row guidance [22], as 

well as automatic adjustment of harvester settings in order to minimize grain loss [29]. 

[9] is using fuzzy logic for object tracking in airports using video images for advanced 

surface movement, guidance, and control systems, and [10] is using fuzzy logic for real-

time demand-responsive bus dispatching control. Fuzzy logic has been coupled with 

Kalman Filtering as well. Fuzzy logic and the residuals in the Kalman Filter were used in 

[5, 83-85] to adjust the noise covariance matrix values—in effect, re-modeling the noise 

characteristics of their systems in real-time. The approach presented in this chapter 

involves using fuzzy logic to adaptively re-model the canine‘s motion characteristics 

based on its velocity. 

 

3.3.2 Benefits of Fuzzy Logic Control 

The development of fuzzy logic is an attempt to improve the interface between 

humans and computers. Computers operate in a very Boolean, ―crisp,‖ ―black and white‖ 

manner, with no ―gray area.‖ For example, the number ―two‖ is either greater than one or 

it is not greater than one. However, humans sometimes communicate in a more 

ambiguous or ―fuzzy‖ manner. When a person is said to be ―tall‖ or ―short,‖ it is done 

without computing the person‘s numerical height and comparing it to a specific threshold 

number, above which a person is considered tall and below which a person is considered 

short. Communication is further clouded when vague degrees are added into the equation. 

For example, ―Tom is very tall. Sue is pretty short.‖ Fuzzy logic is an attempt to create a 

bridge in the communication between humans and computers by creating an interfacing 

mechanism which allows humans to use such ambiguous terminology when 
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communicating with a computer, while allowing the computer to still translate the 

language into the crisp information it requires for operation. In essence, fuzzy logic is a 

means to model the human brain and establish ―a harmony in communication between a 

computer and a human being on the levels of cooperative thinking, logic, language‖ [87]. 

This approach allows operators to easily customize a fuzzy logic controller to different 

applications and adjust the rule base for the controller using natural human language. 

One of the primary benefits that fuzzy logic provides is the ability to implement a 

control system effectively without the need for a precise model of the system that is to be 

controlled. Fuzzy logic proves to require less computational effort than other complicated 

non-linear control approaches and can be implemented with relative ease. Fuzzy logic 

controllers by-pass temporal issues (e.g., delay modeling and time-varying systems) and 

measurement uncertainty issues, and eliminate the issues inherent in multi-variable, 

multi-loop systems (e.g., ―complex constraints and dependencies‖ [87]). They can be 

considered more robust than PID controllers, since they can ―cover a much wider range 

of operating conditions and can operate with noise and disturbances of different natures‖ 

[87]. However, the fuzzy rule base must be comprehensive enough to consider such 

factors. 

 

3.3.3 Fuzzy Controller Components 

 Figure 3.2 is a modified version of the fuzzy controller block diagram illustrated 

in [88]. As explained in [88], fuzzy controllers consist of four components: the fuzzy rule 

base, condition interface, inference engine, and action interface. These are discussed 

briefly below. 
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Figure 3.2. Fuzzy Logic Controller diagram. 

 

3.3.3.1  Fuzzy Rule Base 

The rule base is comprised of rules that represent the expert human knowledge 

about the system. The rules are typically in the form of ―if-then‖ statements containing 

inputs, outputs, and linguistic variables which help to ―fuzzify‖ the inputs. Rules are 

usually developed based on the knowledge and experience of experts and are fixed [88]. 

However, the rules can be obtained through ―building operator models,‖ ―basing them on 

a fuzzy model of the plant,‖ and ―deriving them through learning‖ [89]. Fuzzy logic-

based learning algorithms have been developed for rule adaptation using neural networks 

or evolutionary algorithms [90-91].  

An example rule for autonomous control of vehicle speed might be the following: 

―If TRAFFIC is heavy, then SPEED is slow.‖ ―TRAFFIC‖ and ―SPEED‖ in the rule 
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are input and output fuzzy sets, respectively, that take on variable values. ―TRAFFIC‖ is 

an input to the fuzzy control system, in this case based on a user input describing the 

condition of traffic or perhaps, visual sensors, whereas ―SPEED‖ is an output from the 

fuzzy control system, in this case controlled by the accelerator and/or braking system. 

The degree to which ―TRAFFIC‖ and ―SPEED‖ are ―heavy‖ and ―slow‖ in the above 

rule is based on membership functions, described below. 

 

3.3.3.2  Condition Interface/Fuzzifier 

The condition interface fuzzifies crisp inputs to the system and/or crisp outputs 

from the system. Associated with each fuzzy set is a set of membership functions which 

transform these crisp values into a membership degree (i.e., they fuzzify the crisp values) 

or firing strength. The membership functions can be triangular, trapezoidal, Gamma, S, 

Logistic, Exponential-like, Gaussian, and step functions and are commonly determined 

based on expert knowledge [88]. Triangular and trapezoidal membership functions are 

common and are often preferred due to their simplicity and lack of computational 

expense [87].  

For the above example, membership functions for the ―TRAFFIC‖ input fuzzy 

set might include ―heavy,‖ ―light,‖ and ―average,‖ while membership functions for the 

―SPEED‖ output fuzzy set might include, ―zero,‖ ―slow,‖ ―medium,‖ and ―fast.‖ Based 

on the actual value of ―TRAFFIC‖ and the membership functions, the fuzzified input 

could be, for example, part ―heavy,‖ part ―average,‖ and not ―light‖ at all. There would 

be a membership degree for each function which would determine how likely it is that the 

fuzzified input belongs in each category. As with how humans communicate, there will 
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be some variability in whether or not a person considers traffic to be, for instance, 

―heavy‖ or ―average.‖ Thus, the membership degrees will reflect that the traffic is 

partially ―average‖ and partially ―heavy.‖ Continuing with the traffic example above, 

assume that the membership degree for ―heavy‖ is found to be 0.8, and the membership 

degree for ―average‖ is 0.2. This indicates that the traffic is 80% heavy and 20% average. 

 

3.3.3.3  Inference Engine 

 The inference engine takes the fuzzified inputs (i.e., membership degrees from 

above) and infers fuzzified outputs by mapping the inputs to the rule base. From this 

process, it is determined which rules will fire (i.e., which rules will be applicable) and the 

appropriate output membership functions based on which rules fire. The input degrees 

directly correlate to the input degree for the output membership functions. If there are 

multiple inputs, fuzzy operators (e.g., min and max functions, complement, product, and 

summation) are used to determine the applicable firing strength for the combined 

functions. 

 For the traffic example, ―heavy‖ is found to be the dominant ―TRAFFIC‖ 

characteristic, since it has a higher degree than ―average.‖ However, ―TRAFFIC‖ is not 

100% ―heavy,‖ but rather, 80%. Thus, the rule (i.e., ―If TRAFFIC is heavy, then SPEED 

is slow.‖) fires with a strength of 0.8. This value would be inserted into the output 

function and the membership function for ―slow‖ would be considered. 

 

3.3.3.4  Action Interface/Defuzzifier 
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 The action interface defuzzifies the output and thereby determines the crisp output 

which will be used in the control system. This can be done in different ways, including 

the max-min method, averaging method, root-sum-square method, and the clipped center 

of gravity method [88]. For the clipped center of gravity method, which is used in the 

current filtering system used in this work, each output membership function is clipped at 

its rule firing strength, as determined by the inference engine. The centroid of the 

resulting shape is subsequently determined and its horizontal coordinate is used as the 

output of the fuzzy logic controller for use by the control system. 

 

3.3.4 Guidance System 

 The navigation system described in Chapter 2 is used as the guidance system in 

this work. North and East positions, as well as Velocity measurements were used from 

the GPS receiver. The longitudinal accelerometer measurement, as well as the pitch and 

heading estimates from the XSens unit are used as inputs to the filtering algorithms. 

 

3.3.5 Tracking Algorithms 

3.3.5.1  Standard EKF Components 

Accurate estimates of canine position, velocity, and orientation are needed for the 

canine control problem. The navigation system needs to continue to provide a tracking 

solution during brief GPS outages, and it needs to be as computationally inexpensive as 

possible so that the algorithms will be able to run real-time on the small, low-cost 

microprocessor located onboard the canine alongside the control algorithms. Using an 

EKF in this dissertation has proved to be effective in meeting the first goal (i.e., yielding 
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a navigation solution that will hold during brief GPS outages; see [69-71]) and is used 

during this phase of the project as well. In order to meet the second goal, a loosely-

coupled, four state EKF is used for the tracking algorithm, and the Attitude Heading 

Reference System on the XSens unit is used to provide a drift-free measurement of the 

Euler angles. This allows for an accurate estimate of heading and pitch, regardless of the 

presence of GPS satellite visibility and without adding several extra estimated states to 

the EKF, thus significantly lowering the computational expense of the algorithms. These 

choices proved to meet the desired goals. 

The four state estimate vector, initialized with zeros, is the following: 

 

  Ta ENbVx ˆˆˆˆˆ   (3.9) 

 

 Where: V̂  = Estimated velocity 

   ab̂  = Estimated accelerometer bias 

   N̂  = Estimated northern position  

 Ê  = Estimated eastern position 

 

Figure 3.3 visually illustrates the notations used in determining northern and 

eastern velocities. As is common in some vehicle navigation applications, the side slip, , 

is assumed to be zero at this time. The symbol, , represents canine heading. 
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Figure 3.3.  Visual illustration of northern and eastern velocity determination. 

 

 The state equation for acceleration is illustrated in Equation (3.10) and will be 

explained in further detail in Appendix D. 

 

 am

m

x bgAV ˆ)sin(
ˆ

   (3.10) 

 

 Where: V̂    =  Acceleration estimate 

   m

xA  = Measured longitudinal acceleration from the accelerometer 

   
ab̂    =  Accelerometer bias estimate 

   m   Pitch measurement 

   g  = Acceleration due to gravity (9.81 
2s

m
) 

 

 The bias for this system is assumed to be a constant and is modeled as a random 

walk. The process noise is assumed to be zero mean, white noise (i.e.,  ~ N(0, 2

 ) ). 

Therefore, the following equation represents the change in bias for the accelerometer: 

V 

N 

E 

 

 

  
 
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aab  0̂

2s

m
 (3.12) 

 

 Where: a  =  the process noise of the accelerometer 

 

 The estimated changes in northern and eastern directions are calculated with the 

following equations, according to Figure 3.3. 

 

  ̂cosˆˆ
VN    (3.11) 

  ̂sinˆˆ
VE     

 

Note that the northern and eastern velocities are non-linear. Therefore, the Jacobian () is 

used for the covariance prediction in the EKF to linearize the system about the operating 

point. This results in the Jacobian matrix for the present system, shown below: 
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  The longitudinal acceleration is measured by an accelerometer, and pitch and 

heading estimates are provided by the XSens unit. Thus, the input vector is as follows: 
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 Where: m  =  Heading measurement 

 

Velocity (i.e., ground speed), northern position, and eastern position measurements are 

provided by GPS. Thus, the output vector, according to Equation (3.4), is as follows: 
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The GPS Sensor Noise Covariance Matrix (R) and the Process Noise Covariance 

Matrix (Q) constitute the primary EKF tuning parameters. The R matrix values are 

relatively standard and can be acquired from sensor information. 
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 Where: 
s

m
SaccGPSvel *001.0  

  mHaccGPSeastGPSnorth *0005.0  
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Sacc and Hacc are speed and position accuracy measurements, respectively, 

provided by the GPS receiver. 

 The Q matrix values are ―tuned‖ based on canine motion characteristics through 

experience and are discussed in Appendices B through D, with the exception of the 

accelerometer noise values, which are calculated adaptively and are the subject of this 

chapter. 
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 Where: 
2

001.0
s

m
bA   

  meeastnorth

6*1   

   

The state estimation covariance matrix was initialized as follows: 
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3.3.5.2  Fuzzy Logic Controller Components 
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Three prevalent fuzzy controller types are table-based controllers, Mamdani fuzzy 

controllers, and Takagi-Sugeno controllers [88]. A Mamdani fuzzy controller was used 

for this system, which involves identification of input and output linguistic variables and 

defining their numerical ranges (commonly based on expert knowledge), determining the 

desired membership functions for those variables, constructing a rule base for the control 

strategy, fuzzifying the input values, conducting inferencing to determine the firing 

strengths of activated rules, and defuzzifying to determine the action to be executed by 

the control system [88]. 

 

3.3.5.2.1 Fuzzy Rule Base 

 The fuzzy controller rule base for this phase is comprised of three rules, which are 

as follows. 

 

1) If VELOCITY is stopped, NOISE is low. (3.18) 

2) If VELOCITY is walking/detection, NOISE is medium. 

3) If VELOCITY is running, NOISE is high. 

 

As was discussed earlier, the higher the velocity of the canine, the more unmodeled 

motion is present in the tracking algorithms which is dumped into the accelerometer bias 

estimate. Therefore, the process noise on the accelerometer is adjusted accordingly using 

these rules. 

 

3.3.5.2.2 Condition Interface 
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 Figure 3.4 illustrates the membership functions that were chosen for the velocity 

input. The membership function that corresponds to when the canine is stopped is s. The 

w membership function corresponds to canine motion that would be considered walking 

or odor detection mode (i.e., motion characteristics present when the canine is searching 

for odors). R corresponds to canine motion that would be considered running or high 

velocity. The shape of and values corresponding to each of the membership functions was 

determined through extensive observation. One of the benefits of using a fuzzy logic 

controller is that ―designers have much freedom in selecting appropriate membership 

functions…. It is the task of the human expert of the domain to define the function that 

captures the characteristics of the fuzzy set‖ and to define relevant ―numerical ranges‖ for 

the membership functions [88]. 

 The equations that describe the membership functions in Figure 3.4 are as 

follows: 
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The velocity estimate is inserted in the membership functions and degrees are determined 

for membership in each function (i.e., the crisp velocity input is fuzzified). 

 

 

Figure 3.4. Input (Velocity) membership functions. 

 

The walking/odor detection motion was of special interest and was studied more 

extensively than the other motion scenarios due to the assumption that GPS outages are 

more likely to occur when the canine is in this motion mode or in stopped mode. When 

the canine is sitting still, the position and velocity estimates are less likely to be corrupted 

as quickly since the canine motion in this mode contains fewer unmodeled 

characteristics. Thus, studying the stopped motion mode is of less interest. When the 

canine is running, he is likely to be in more open areas where satellite visibility is higher 

and GPS outages are less likely. Thus, the running mode is of less interest as well. 

However, odor detection is more likely to occur in areas where satellite visibility would 

be less. So, walking/odor detection motion was studied extensively. 
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 Figure 3.5 illustrates the membership functions for the output, which is used in 

the process noise covariance matrix. The membership function that corresponds to low 

noise motion characteristics is L. The M membership function corresponds to motion 

characteristics that are considered medium noise, and H corresponds to canine motion 

that is considered high in noise. As with the input membership functions, the shape of 

and values corresponding to each of the membership functions was determined through 

extensive observation. 

 The equations that describe the membership functions in Figure 3.5 are as 

follows: 
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Figure 3.5. Output membership functions (not to scale). 

 

3.3.5.2.3 Inference Engine 

 The inference engine receives the input membership degrees (i.e., R(xi), w(xi), 

and s(xi)) and examines the fuzzy rules to determine which rules will fire. Membership 

degrees that are non-zero will fire their respective rules. After determining which rules 

will fire, it is determined which output membership functions will be applicable. 

 

3.3.5.2.4 Action Interface 

 Defuzzification was carried out using the ―clipped center of gravity‖ method. The 

applicable output membership functions, which were determined above, are clipped at 

their corresponding firing strengths and the centroid of the composite area is calculated. 

The horizontal coordinate of the centroid is the output of the controller. In discrete form, 

the horizontal coordinate is determined using Equation (3.21), below. 
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The output in this case is Ax, the noise on the longitudinal accelerometer, which is used 

in the process noise covariance matrix. The greatest computational burden in the fuzzy 

logic controller occurs in determining the composite, clipped membership function at 

each time step which is used in Equation (3.21). 

 

3.3.6 Experimental Results 

 Figures 3.6-3.8 illustrate the canine tracking results from an example trial using 

the fuzzy logic, adaptively tuned Extended Kalman Filter. Figure 3.6 is a plot of the 

canine‘s position. The trial length was about 43 seconds, and a simulated GPS outage is 

initiated 10 seconds before the end of the trial. The GPS position results are considered to 

be the ―true‖ solution and are plotted with blue dots for the sake of comparison. The 

position estimate using the adaptive scheme without a GPS outage is shown with a cyan 

line. The position estimates from standard and adaptive EKF schemes with the GPS 

outage are plotted in green and red lines, respectively. By the end of the ten second 

outage, the adaptive position results are within two meters of the GPS solution, while the 

standard position results yield an error of approximately six and a half meters by the end 

of the GPS outage. Note that on the eastern and western legs of the trial, the GPS solution 

is slightly ―crunched‖ together, rather than being spread out similar to the northern and 
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southern legs. This likely indicates unfavorable satellite geometry on the day of the trial 

and could have deleteriously affected the accelerometer bias estimate. However, the 

adaptive EKF solution was robust enough to maintain an accurate estimate of the position 

during the GPS outage. 

 

 

Figure 3.6. Fuzzy logic adaptively tuned EKF versus standard EKF and GPS only 

position estimates. A simulated GPS outage occurs during the last 10 seconds of the trial 

and is illustrated by the red and green lines. 
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Figure 3.7. The differences between the fuzzy logic adaptively tuned EKF and GPS 

position measurements, as well as the difference between the standard EKF and GPS 

position estimates. A simulated GPS outage occurs during the last 10 seconds of the trial. 

Commencement of the simulated GPS outage is illustrated by the black line. 

 

 Figure 3.7 illustrates the difference between the position solutions using the 

standard/adaptive EKF schemes and GPS position solution throughout the trial. As 

discussed above, the approaches deviate more from the GPS position solution between 

approximately 5 through 26 seconds due to satellite geometry issues. After the GPS 

outage at approximately 33 seconds, the standard EKF scheme difference begins a steep 

climb through the rest of the trial, ending at about six and a half meters difference 

between the EKF solution and the GPS solution. However, the fuzzy logic, adaptive 

approach yields position results that are less than two and a half meters in difference 
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throughout the outage, ultimately ending with one and a half meters in difference 

between the EKF solution and the GPS measurements. 

 

 

Figure 3.8. Fuzzy logic adaptively tuned velocity, adaptive and standard EKF 

accelerometer bias estimates, and fuzzy logic adaptively tuned noise characteristics for 

use in the Q matrix. A simulated GPS outage occurs during the last 10 seconds of the 

trial, commencing at the blue line. 

 

 Figure 3.8 illustrates the canine velocity for the same trial using the adaptive 

scheme. Accelerometer bias estimate results using the adaptive and standard schemes are 

shown, as well as the adaptively tuned noise characteristics for use in the Q matrix. An 

Fuzzy Logic-Tuned Accelerometer Noise Parameter 

Estimated Velocity 

Estimated Ax Accelerometer Bias 
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event happens at approximately six and a half seconds which causes a notable divergence 

in the bias estimations using the two approaches. The event is marked by an abrupt, 

momentary drop in velocity. A study of the heading, accelerometer, and pitch 

measurements reveals that the canine likely jerked at that moment (which happens 

frequently), injecting motion behavior that is not accounted for in the model of the canine 

that is used by the standard EKF. The fuzzy logic EKF adjusted the noise characteristics 

in the Q matrix accordingly to account for the momentary injection of excess ―noise‖ and 

continues to move towards the true bias, while the standard EKF bias estimate climbs for 

a couple seconds in response to the noise before re-commencing the necessary decline 

towards the desired bias estimate. The standard EKF approach does not recover quickly 

enough. By the GPS outage, the standard EKF‘s estimate of the accelerometer bias is 

0.07 m/s
2
, while the adaptive scheme reaches -0.09 m/s

2
, which ultimately results in a 

superior position solution over the standard approach during the outage, as illustrated in 

Figure 3.6. 

 

Table 3.1. Average canine motion tracking error comparisons using standard and 

adaptive EKF approaches after a 10 second GPS outage, as well as two-tailed, unpaired t-

test results. The canine is in odor detection mode. 

 Position Error (m) Velocity Error (m/s) 

 Standard Adaptive Standard Adaptive 

Mean 11.6 7.5 2.8 1.2 

St. Dev. 7.2 5.7 1.8 0.9 

2-Tailed P Value 0.0115 0.0001 

Significance Statistically Significant Extremely Statistically Significant 

n = 31 and 36 for constant and adaptive, respectively     

www.graphpad.com/quickcalcs/ttest1.cfm?Format=SD   

http://www.graphpad.com/quickcalcs/ttest1.cfm?Format=SD
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Table 3.1 illustrates the average motion tracking results from several trials spread 

out over three days for the canine using the adaptive, fuzzy logic EKF. The trials were 

each between 40 and 45 seconds. A simulated GPS outage occurs the last 10 seconds of 

each trial, thus allowing the EKF at least 30 seconds to estimate the accelerometer bias in 

each trial. The results from [71], where the process noise covariance matrix remained 

constant throughout each trial, are illustrated as well, for the sake of comparison. The 

navigation system using the fuzzy logic-based adaptive EKF scheme results in a 35% 

improvement in position error (i.e., the difference between the filtered results and GPS 

results) after the simulated GPS outage. The adaptive scheme resulted in a 57% 

improvement in velocity error. These results were found to be statistically significant 

using the appropriate T-tests.  

Notable is the fact that the standard deviations on the position and velocity results 

decreased significantly as well, namely 21% and 50%, respectively. This indicates that 

not only is the error smaller on average for the position and velocity results with the 

adaptive scheme, but that even when higher errors occur in trials, the results will still 

likely be closer to the average than they would have been using the previous approach. 

Also notable is the fact that the GPS solution is only known to be accurate to within a 

circle with a radius of approximately 3.5 meters (based on the horizontal accuracy 

measurement provided by the GPS receiver). If the GPS solution is off by 3.5 meters in 

the opposite direction of the EKF solution, it implies that the error in position (i.e., the 

difference between the EKF solution and the true solution, rather than the GPS solution) 
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illustrated in Table 3.1 could actually be up to 3.5 meters less than what is exhibited in 

the chart.  

 

3.4 Conclusions 

The algorithms presented in this chapter present a method to locate the canine‘s 

position, velocity, and orientation for use in the autonomous control problem in a 

computationally inexpensive way—especially without having to investigate the potential 

of other unmodeled canine motion characteristics than those discussed in [71].  

It is evident from the results that the use of fuzzy logic-based adaptive tuning of 

the process noise covariance matrix produces excellent tracking results for the canine 

application. The results would likely be even better if the trials were longer. If each trial 

were longer, the EKF would have more time to hone in on an estimate of the 

accelerometer bias to a higher degree of accuracy. In a real-world application, a GPS 

outage would not likely occur during the first minute of the navigation system‘s 

initiation. Therefore, longer trials would be a reasonable adjustment. However, in order to 

be able to compare the current scheme with the schemes presented in the appendices, the 

trial lengths were kept approximately the same.  

Suggested further work would include a more in depth analysis of canine running 

motion and subsequent improved tuning of the running and high noise membership 

functions. Also, it is always of interest to improve the GPS solution, since in the EKF it is 

assumed that GPS is ―true,‖ and biases are estimated based on GPS measurements. It was 

determined while developing the hardware packaging for this project that the radio 

transmission frequency from the Xbee affected how well the GPS antenna was able to 
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read data being transmitted from satellites in orbit. This issue affected how many 

satellites the GPS receiver was able to lock onto. In the end, the Novatel antenna was 

chosen due to its ability to read satellite data well in spite of the radio transmission issues. 

However, a different radio choice may improve the GPS solution even more.  

The use of differential GPS algorithms could also significantly improve the GPS 

solution [92], as well as moving to a tightly coupled GPS solution. However, such a 

change would also likely require switching to a more powerful microprocessor. Given 

such a change, it would also be of interest to investigate the effect of roll and slip in 

canine motion, and how they affect the EKF solution. While stopping and starting, the 

vest on the canine exhibits roll characteristics, and while the canine is moving, the vest 

tends to slide slightly to one side or the other, thus resulting in roll-like behavior. While 

stopping from a sprint, the canine also tends to exhibit slip motion, which could inject 

excessive noise into the filtering algorithms. 

Also, assuming a more powerful microprocessor was used, it could be beneficial 

to develop a Canine Attitude and Heading Reference System tuned to canine motion. 

This could allow for a more accurate determination of the Euler angles rather than those 

provided by the XSens, which has pedestrian and automotive settings but no setting 

which correlates well with the erratic motion characteristics of a canine. It would also be 

beneficial to upgrade to the XSens unit (or equivalent accelerometers and gyroscopes) 

which uses inertial sensors capable of reading higher magnitude accelerations and rates of 

turn to insure that the sensors are not saturated by the canine‘s motion. 
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Chapter 4 

Control Algorithm 

 

4.1  The Maximum Effort Controller 

4.1.1 Introduction 

As was discussed in Chapter 1, although there has been research conducted in 

developing remote control systems for living creatures, little work has been done in 

attempting to control biological entities autonomously. M.I.T. used virtual fencing 

coupled with GPS for tracking and autonomously herding cows [46, 47]. However, as 

was also discussed in Chapter 1, the autonomous control of canines is an attractive 

endeavor to reach for.  

After having trained a canine to be remotely controlled and developing the 

hardware for tracking and controlling it (see Chapter 2), as well as developing algorithms 

for tracking the canine‘s motion (see Chapter 3), the next step is to develop algorithms 

for autonomously guiding the canine to pre-determined waypoints using the 

microprocessor as the handler or brain for issuing commands. The maximum effort 

controller (MEC) was chosen as the decision maker for the autonomous canine control 

system. 
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4.1.2  Description 

 In the literature, the MEC is also known as a bang-bang controller, on-off 

controller, binary controller, two position controller, or a hysteretic controller [67, 93-97]. 

In control theory, the MEC is a non-linear controller that switches between two states 

(e.g., on and off) when a certain threshold or switching point has been reached (see 

Figure 4.1). 

 

 

Figure 4.1. Maximum effort controller output. 

 

A commonly cited MEC example is the thermal control system operating in a 

household thermostat. The oil in a furnace burns at a specific temperature. It cannot burn 

hotter or colder. There is no ―middle ground‖ on how much heat is released by it. When 

the furnace is on, it is in a state of maximum effort. Systems that allow for middle 

ground in output, like, for instance, a pressure valve, could be controlled with a fuzzy 

logic controller. However, for the case of the furnace, or the command unit that was used 

for the autonomous canine control problem, there is simply two options—on and off. In 

order to effect a particular temperature in a house, the thermostat control unit ―decides‖ 
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when to turn the furnace on or off based on a user-defined threshold. The furnace will 

burn its oil at its specific temperature until that threshold value is reached, at which time 

the furnace will turn off. 

 

4.1.3 Benefits 

Perhaps the most attractive benefit that the MEC offers is its relative ease in 

implementation. It operates without the need of an exact mathematical model for the 

canine motion. Thus, the MEC is useful for non-linear systems, such as canine motion. 

The use of the MEC for the canine application, in effect, seeks to mimic handler behavior 

and decisions (i.e., a handler‘s experience and command decisions), rather than following 

the complicated, non-linear mathematical equations that would describe canine motion. 

The canine control application lends to the use of the MEC since continuous control 

resolution is unattainable. The MEC is also an attractive choice for the canine control 

problem as it bypasses computationally expensive approximation models—a feature 

which is necessary for simultaneously embedding interfacing code, radio communication 

code, navigation and control algorithms, and potentially extensive anomaly detection and 

path planning code onboard the canine on the small, low-cost microprocessor. 

 

4.1.4 Maximum Effort Controller for the Canine 

4.1.4.1 Canine MEC Description 

Figure 4.2 illustrates a simplified version of the MEC, as tailored for the canine 

application (CMEC). The flowchart shows the basic decision structure for guiding the 

canine to one waypoint and then back to the starting point. The controller commences by 
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gathering the necessary filtered data from the EKF tracking solution and calculating ―d‖ 

and ―h‖—the distance to the waypoint (in meters) and the orientation deviation (in 

degrees), respectively. The distance to the waypoint is defined as the distance between 

the canine‘s current position, which is constantly changing, and the waypoint position 

coordinates, which are stationary. Thus, the distance to the waypoint is constantly 

recalculated each time a new EKF solution is presented (i.e., at 25 Hertz). The 

orientation deviation is recalculated at the same update rate as well. The orientation 

deviation is defined as the difference between the canine‘s orientation with respect to 

true north (i.e., ―true‖ vs. ―magnetic‖ north) and ―do”—the desired orientation (i.e., the 

orientation that would be required to move straight towards the desired waypoint). 

Equations (4.1) through (4.4) illustrate the necessary calculations for determining the 

distance to waypoint and orientation deviation. 

 

 
EposfiltBewptsEaDiff

NposfiltBnwptsNoDiff

..

..




 (in meters) (4.1) 

 

 Where: wpts.Bn = the northern coordinate of the desired waypoint 

  wpts.Be = the eastern coordinate of the desired waypoint 

  filt.Npos = the EKF northern position solution 

  filt.Epos = the EKF eastern position solution 
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Figure 4.2. Simplified CMEC flowchart for one waypoint. 
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 Headfiltdoh .  (radians) (4.4) 

 

 Table 4.1 illustrates the possible tonal and vibrational commands that can be 

issued from the microprocessor to the canine via the command module. 

 

Table 4.1. Possible commands that can be issued to the canine. 

Potential Canine Commands 

Command Type Description/Location 

Forward Tone 1500 Hz 

Stop Tone 3500 Hz 

Recall Tone 9500 Hz 

Right Vibration Vest interior; Front right; Shoulder 

Left Vibration Vest interior; Back left; Ribs 

 

 

Upon determining d, if it is found to be less than or equal to d   (i.e., the 

maximum distance (in meters) between the canine and the waypoint allowable to be 

considered a waypoint success), the stop command is initiated. When the canine‘s 

velocity is under V   m/s (i.e., the maximum canine velocity allowable to be considered 

stopped), 2d  (defined as the distance (in meters) between the canine and the starting 
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point) is calculated, and the recall command is issued until the canine‘s position is within 

d   of the starting point. 

If d is found to be greater than d  , the canine is not near enough to the desired 

waypoint, and h is determined. If the absolute value of h is under the moving orientation 

deviation threshold, h , the canine is considered to be headed sufficiently in the correct 

direction and the forward command is issued or continued. If the absolute value of h is 

found to be greater than or equal to h , the canine is headed sufficiently in the wrong 

direction to warrant a directional change. If h is above 0, the right command loop is 

initiated, and if h is less than 0, the left command loop is initiated.  

The stop command is subsequently issued until the canine‘s velocity crosses 

below the V   threshold, as discussed above. Note that 0 is not the V   threshold due to the 

fact that the velocity will rarely be 0, even when the canine is not moving, due to the 

noisy nature of the velocity measurements. After the canine has stopped, h is checked 

again, just in case the canine‘s orientation changed during the stopping process, which is 

common. If h is still sufficiently high after stopping (i.e., greater than h   radians, the 

orientation deviation threshold while stopped) to warrant a directional change, the 

relevant directional command is initiated. If the canine has fixed its orientation, a 

directional command will not be issued, but rather, the forward command will be issued. 

If the canine has changed direction in the opposite direction to such a degree that the 

opposite command should be given, the CMEC will switch commands and the 

appropriate directional command loop will be initiated. The CMEC is looped until the 

waypoint is reached, at which time, it is shut off until re-initiated. 
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4.1.4.2 CMEC Thresholds 

 Table 4.2 illustrates the thresholds that are used in the CMEC. Their meanings are 

described in depth in section 4.1.4.1. The values for d  , DELAYTHRESH, 

DELTHRESH2, DELTHRESH3, HEADCOUNTTHRESH, and MAXTURN were 

determined based on the wishes of the CDRI. MAXTURN serves as the trial failure 

criteria. If the canine reaches a waypoint having been given two or less directional 

changes, a waypoint success has been achieved. The directional command count is then 

reset, and the CMEC attempts to guide the canine to the next waypoint, if applicable. If 

the canine requires more than two directional changes before reaching a waypoint, the 

canine is recalled and the trial is considered a failure.  

According to the CDRI, after being given more than two directional commands, 

the canine becomes more confused and begins ignoring commands, partly because there 

have been too many commands issued since the canine was ―rewarded‖ by finding the 

bumper or C4 it is searching for. At that point, the canine is less likely to reach the 

waypoint in a reasonable amount of time and is more likely to start developing the bad 

habit of ignoring direction commands in the future. Therefore the canine is recalled, and 

the mission is re-attempted. Some of the reasons a canine would fail to respond properly 

to a command will be discussed in section 5.1.3. 

 The V  , h  , and DISTTHRESH thresholds are determined intuitively based on 

experience. However, the h  threshold is not necessarily intuitive. Various threshold 

values were tested in the field. A Canine Trial Simulator (CTS) was developed to assist in 

selecting this parameter in the future, which will be discussed in Chapter 5. 
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Table 4.2. Thresholds and descriptions for the CMEC. 

CMEC Thresholds 

Variable Value Units Description 

d' 7 m 
Distance between canine and wpt., under 

which is considered wpt. Success 

V' 0.3 m/s 
Canine velocity, under which is considered 

a stop. 

h' 49 deg. 

Maximum allowable orientation deviation 

between the moving canine's heading and 

the heading required for movement in the 

precise direction of the wpt. 

h'' 20 deg. 

Minimum orientation deviation that must 

be present after the canine stops in order 

for a directional command to be carried out 

DELAYTHRESH 1.5 sec. 
Minimum amount of time the stop 

command must be on when initiated 

DELTHRESH2 3 sec. 

Maximum amount of time a directional 

command will stay on before stopping and 

re-issuing the command 

DELTHRESH3 3 sec. 

Maximum amount of time the forward 

command will stay on before stopping and 

re-issuing the command 

DISTTHRESH 1 m 

Minimum amount of canine movement 

required during a forward command in 

order to bypass a command re-issue 

HEADCOUNTTHRESH 1 sec. 
Amount of time spent in the 'no command' 

loop when the MEC enters it 

MAXTURN 2 turns 
Maximum amount of issued directional 

commands allowable for each wpt. 

 

 

4.1.4.3 Other Features of the CMEC 

The CMEC also has other features which are not illustrated in Figure 4.2. First, 

the designed CMEC has the capability of guiding the canine to multiple waypoints. 

However, a visualization of the flowchart for multiple waypoints is rather large and 

complex. So, the chart was developed to illustrate the basic CMEC algorithm that would 
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be used for guiding the canine to one waypoint. Secondly, to alleviate some of the 

confusion that could be caused in the mind of the canine by being oversaturated with 

commands, the CDRI requested that the stop command, when issued, be on for a period 

of at least DELAYTHRESH seconds. This provided time to allow the canine to stop and 

catch its breath for a moment so that it would be less likely to miss the next command out 

of, for instance, fatigue. 

 

Table 4.3. Summary of CMEC anomaly detection types. 

CMEC Anomaly Detection Features 

Type Description 

FORWARD FAILURE Canine fails to respond to forward command 

TURN FAILURE Canine fails to respond to directional command 

DIRECTION SWITCH Canine turns too far or in opposite direction 

'NO COMMAND' Canine changes state while in no command period 

TRIAL FAILURE 
Canine required more than MAXTURN directional 

commands before reaching wpt. 

 

 

Anomaly detection schemes were also found to be important in allowing the 

CMEC to be able to robustly respond to atypical scenarios. Table 4.3 exhibits a summary 

of the anomaly detection features of the designed CMEC. The FORWARD FAIL and 

TURN FAIL anomalies occur if a command is issued and the canine is found to have not 

moved sufficiently during a certain amount of time (i.e., it has not moved at least 

DISTTHRESH meters by DELTHRESH3 seconds for the forward command and has not 

adequately adjusted its orientation in DELTHRESH2 seconds for the directional 

commands). If these anomalies are detected, the CMEC stops issuing the command; a 
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period of no command ensues (i.e., a period lasting HEADCOUNTTHRESH seconds); 

and then the command is re-issued. This anomaly detection feature was found to be 

needed for the directional commands frequently and for the forward command rarely. 

Secondly, if a directional command is issued and the canine turns too far or turns 

in the opposite direction sufficiently enough to warrant the opposite directional 

command, the CMEC turns off the current directional command for a period of 

HEADCOUNTTHRESH seconds. The CMEC subsequently issues the opposite 

command. This anomaly detection feature was found to be beneficial at times as well 

since the CMEC would continue to issue the same turn command until the canine fixed 

its heading without the feature. This would result, for instance, in the canine having to 

turn all the way around in the opposite direction (e.g., 300 degrees) instead of turning 

towards the desired direction (e.g., 60 degrees). 

Thirdly, when the CMEC enters one of the periods of no command that are noted 

above, the next command that will be issued after the dead period is logged. However, 

the CMEC continues to keep track of d and h during the dead period, which allows the 

CMEC to initiate command changes from the pre-planned, anticipated command to a new 

command during the dead period. This feature was found to be helpful in cases where the 

canine fixed its state error during the dead period (thus eliminating the need for a 

directional command) or in cases where the canine moved in such a way that an opposite 

directional command was necessary.  

Finally, as discussed above, the CDRI determined that the canine should be 

recalled after having been issued more than MAXTURN turns between each waypoint. 

The designed CMEC contains the feature of keeping a count of how many directional 
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commands have been issued since the previous waypoint in order to meet the CDRI‘s 

wishes. After reaching a waypoint, the directional command count is reset to allow the 

canine an additional two directional cues before the next waypoint. This anomaly 

detection feature was the means by which a trial failure was determined. 

 

4.1.5 Preliminary Pedestrian-Conducted Trial Results 

4.1.5.1 Trial Setup and Description 

 Preliminary tests were conducted in order to eliminate potential ―bugs‖ in the 

CMEC algorithms. The moving orientation deviation threshold was set to 30 degrees, 

and two types of three waypoint trials were set up. One trial type contained a waypoint 

geometry that included a 90 degree directional change, and one trial type required a 45 

degree directional change. In order to test the CMEC algorithms, a pedestrian (i.e., me) 

carried the command unit and sensor suite while being guided by the control system to 

each waypoint. The following section illustrates sample results from these preliminary 

trials. 

 

4.1.5.2 Preliminary Sample Results and Discussion 

 Figures 4.3-4.6 illustrate example preliminary results for the CMEC when a 

pedestrian is carrying the control system. In order to demonstrate the control system‘s 

robustness in handling geometrically complicated waypoints, a trial was conducted in 

which a 45 degree waypoint is present. Figure 4.3 illustrates the position results from that 

trial.  
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The pedestrian begins the trial at the starting point (i.e., the magenta triangle) 

facing east. When the control system is initiated, the forward command is given and the 

pedestrian begins moving in the direction he was facing. The green line illustrates the 

portion of the trial in which the forward command was issued. When the pedestrian has 

moved within the waypoint threshold, d   (i.e., the yellow line), a waypoint success has 

been achieved, the stop command is issued (illustrated by the red line), and the next 

waypoint is set.  

 

 

Figure 4.3. Preliminary pedestrian-conducted MEC position trial results for a 45 degree 

waypoint. 
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Note that the waypoint threshold was set based on the wishes of the CDRI. When the 

canine is within 7 meters of the waypoint, the canine will typically be able to detect the 

desired odor. After stopping, the right command is issued (illustrated by the cyan colored 

triangle facing to the right). When the pedestrian has adjusted his orientation sufficiently 

enough (i.e., when the orientation deviation is under the stopped orientation deviation 

threshold), the forward command is issued and the pedestrian moves forward again. 

Upon crossing the next waypoint threshold, the stop command is issued again, and after 

stopping, the recall command is issued until the pedestrian returns to the starting point. 

 

 

Figure 4.4. Preliminary pedestrian-conducted MEC heading, orientation deviation, and 

controller output trial results for a 45 degree waypoint. 
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Figure 4.4 shows the heading, orientation deviation, and command output results 

for the same trial. From the orientation deviation results, it is evident that the pedestrian 

begins the trial at around 20 degrees of orientation deviation (i.e., under the threshold). 

Therefore, the forward command is issued (see the Controller Output). As soon as the 

pedestrian achieves waypoint success, the stop command is issued (see the Heading 

subplot). After coming to a halt, the new waypoint is set, which results in an orientation 

deviation jump to approximately 45 degrees (at approximately six seconds), which results 

in the right command being initiated (see Controller Output). As soon as the orientation 

has been sufficiently adjusted to meet the deviation threshold, the forward command is 

re-issued and the trial continues. 

 

 

Figure 4.5. Preliminary pedestrian-conducted MEC position trial results for a 90 degree 

waypoint. 
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Figures 4.5 and 4.6 illustrate similar results, but for a 90 degree waypoint. Again, 

the MEC is shown to function properly. According to Figure 4.6, the orientation 

deviation jump is closer to 90 degrees after the first waypoint has been reached. Thus, the 

right command stays on longer, until the orientation deviation has dropped below the 

threshold, before the trial continues. 

 

 

Figure 4.6. Preliminary pedestrian-conducted MEC heading, orientation deviation, and 

controller output trial results for a 90 degree waypoint. 

 

4.2  Autonomous Canine Control Results and Discussion 

4.2.1 Field Trial Descriptions 

 In order to test the effectiveness of the CMEC autonomous control system, 

several two and three waypoint field trials were conducted with canine Major. Some of 
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the trials were conducted in a structured environment, similar to what would be expected 

in the downtown area of a city (i.e., with buildings side-by-side, intersecting streets, 

sidewalks at odd angles, etc.), and some of the trials were conducted in an open field. 

Some of the three waypoint trials contained 90 degree waypoints, and some contained 

approximately 45 degree waypoints. These variables provided a broad variation for 

testing the robustness of the CMEC in handling different types of real-world scenarios.  

The set up for the structured trials is illustrated in Figure 4.7. In order to mimic a 

structured, downtown environment, the CDRI chose to pick a large field with high grass 

and cut ―streets‖ in the grass, while leaving the ―building‖ areas uncut. This emulation 

allowed for testing of the CMEC without the added potential of GPS outages due to large 

structures that could occur in real urban scenarios. Structured, two waypoint trials were 

run from the waypoints along the bottom of the illustration to the other various waypoints 

in the middle and very top of the illustration in Figure 4.7. 

 Notice from the illustration that multiple options were available for possible field 

trials, including various 45 degree and 90 degree turns, so that Major would not become 

biased in his decision making but would rather be forced to heed commands from the 

control system. The terrain at each of the intersections was slightly different, visually-

speaking. Straight line trials (i.e., two waypoint trials) were interspersed between trials 

requiring directional changes so that Major would not become too accustomed to 

stopping at certain intersections without a stop command. The straight line trials forced 

Major to run through intersections that he would often be stopped at as an intermediate 

waypoint and be given directional changes. 
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Figure 4.7. Illustration of the environment used for the structured area trials. 

  

After discussions with the CDRI, it was determined that two waypoint trials (i.e., 

a starting point and a remote waypoint) would be set up so that the waypoints would be 

separated from each other by approximately 25 meters. This distance is sufficiently large 

to be able to gage whether the canine is responding appropriately to commands, but small 

enough to allow multiple trials in one day without excessive canine fatigue. Further, 

following the protocol of the CDRI, the canine handler always oriented the canine in the 
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general direction of the first waypoint before beginning a trial, which would be a realistic 

action in real-world applications and that would significantly increase the potential that 

the canine will reach the desired waypoint.  

 

 

Figure 4.8. Three waypoint field trial types for non-structured environments. 

 

In keeping with Major‘s training, visual cues were used to highlight potential 

waypoints of interest. Poles were placed at different places with bumpers lying at their 

base. One of the poles served as the desired waypoint, and the others served as decoys.  

The unstructured three waypoint trials were also conducted in keeping with the 

wishes of the CDRI. Again, decoy poles were placed in the field in the midst of the 
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desired waypoint poles. Four different types of trials were used in order to investigate 

different possible waypoint geometry scenarios. Figure 4.8 illustrates the four trial types. 

 

4.2.2 Trial Examples 

4.2.2.1 Example Two Waypoint Autonomous Canine Guidance Trial 

Figures 4.9-4.11 illustrate typical example results from autonomously guided 

canine field trials with two waypoints present. Figures 4.9 and 4.10 illustrate results from 

a trial in a structured environment. Other potential waypoints (i.e., decoys) are marked on 

the position plot (Figure 4.9) besides the desired waypoints. However, the CMEC guides 

the canine to the appropriate waypoint efficiently, in spite of the ―decoy‖ waypoints, and 

recalls it.  

Notice from the velocity plot (Figure 4.10, top) that the velocity plateaus at 

approximately 4 m/s and then climbs again starting at about 13 seconds. This is because 

the canine held back on its velocity slightly until passing the first potential waypoint, just 

in case a stop command was going to be given. After passing the waypoint, its velocity 

climbs until the stop command is given. This was common for canine Major. Notice also 

from the orientation deviation plot (Figure 4.10, middle), the deviation spikes to nearly 

180 degrees as the canine moves past the waypoint, as should be expected since the new 

waypoint is not set until after the canine comes to a stop. The canine then turns around to 

grab the bumper and is facing towards the starting point when the next waypoint (i.e., the 

starting point) is set. Therefore, no significant ―jump‖ in orientation is visible between 

the stop and recall commands. 
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Figure 4.9. Example two waypoint trial position plot from the autonomously guided 

canine. The trial took place in a structured environment. 
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Figure 4.10. Example two waypoint trial velocity, orientation deviation, and controller 

output plots from the autonomously guided canine. The trial took place in a structured 

environment. 

 

 Figure 4.11 illustrates another example of a two waypoint field trial. The trial was 

conducted in a non-structured environment. Notice that the canine immediately begins to 

drift off course, not having locked in on the ultimate goal visually. The canine is 

subsequently stopped by the CMEC, and its orientation is adjusted before the trial 

continues with success. 
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Figure 4.11. Example two waypoint trial position plot from the autonomously guided 

canine. The trial took place in a non-structured environment. 

 

4.2.2.2 Example Three Waypoint Autonomous Canine Guidance Trial 

Figures 4.12-14 illustrate common examples of three waypoint trials. Figures 4.12 

and 4.13 illustrate the results from a trial in a structured environment and represent a 

scenario in which the canine would be required to move along the side of a building and 

then turn at the corner to reach the desired waypoint. The canine is first given the forward 

command and begins to head in a different direction from the desired heading. So, the 

stop command is issued and a directional change is made, which the canine obeys 

perfectly. 
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Figure 4.12. Example three waypoint trial position plot from the autonomously guided 

canine. The trial took place in a structured environment. 

 

After correcting its heading, the canine is given a forward command. Notice that 

the canine moves beyond the first waypoint some distance before coming to a complete 

stop. This was a factor that sometimes proved to be an issue in the structured trials. The 

canine would take different lengths of time to come to a halt throughout a day of trials 

depending on different factors (e.g., fatigue and pre-stop command velocity). If the 

corridor (representing an alley, sidewalk, or road) was relatively narrow, the canine 

would sometimes not be sitting precisely at the intersection after coming to a stop. At 

such times, after receiving a directional change, the canine could become confused since 

it would be facing, essentially, a wall after adjusting its heading. This would not be an 
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issue in real world applications, as long as the corridors were wide enough. The corridors 

developed for these trials were relatively narrow.  

 

 

Figure 4.13. Example three waypoint trial velocity, orientation deviation, and controller 

output plots from the autonomously guided canine. The trial took place in a structured 

environment. 

 

The accuracy of previously recorded waypoints generated from the GPS solution 

can cause an issue, especially when precise positioning in narrow corridors is required. 

This is due to the satellite geometry dependent random drift in GPS solution when sky 

view is limited. Since signal blockages drastically reduce the available geometry, the 

solution accuracy degrades. Research experience shows this issue when trying to stop the 

canine precisely at an intersection in narrow corridors. This complication, though 
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potentially significant in the long run of the project, did not prove to hinder the canine 

from reaching its objective in the described trials, as the example illustrated in Figures 

4.12 and 4.13 shows. This issue could be resolved using GPS techniques that allow for 

more precise GPS solutions when setting waypoints and when tracking the canine. 

Again, in spite of this issue, this trial illustrates that the CMEC is still able to 

guide the canine to the desired waypoint. After moving past the waypoint and ―missing‖ 

the corridor, the canine is given a right directional command. The canine turns to the 

right as commanded and is given a forward command. Since moving forward would 

require that the canine run through the high grass, the canine turns and moves back down 

the corridor towards the starting point and is stopped again due to its orientation deviation 

passing the threshold. This placed the canine in precisely the right spot for a left turn 

command, which the canine obeys, and then the forward command is re-issued, since the 

canine‘s orientation deviation is low enough to ―suit‖ the CMEC. The trial then continues 

without incident. The canine reaches the desired waypoint, and after receiving the recall 

command, the canine moves back to the starting position, using the most direct path that 

it can find. 

The prototype control system and canine training discussed in [48] allowed for 

right and left commands that resulted in the canine turning and moving in approximately 

90 degree angles. Figure 4.14 illustrates a typical three waypoint trial with a 45 degree 

angle present. The trial was conducted in a non-structured environment. Notice that the 

CMEC is able to maneuver the canine with ease to more geometrically-complicated 

waypoints. 
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Figure 4.14. Example three waypoint trial position plot from the autonomously guided 

canine. The trial took place in a non-structured environment. 

 

4.2.3 Results and Conclusion 

 Table 4.4 illustrates a summary of the autonomously guided canine field trial 

results. Various orientation deviation threshold values were selected for use in the 

CMEC. Trials in structured (i.e., ―Str.‖) and non-structured (i.e., ―Non-Str.‖) 

environments (see Section 4.2.1 for further descriptions), as well as two and three 

waypoint trials are shown. It should be noted that the CMEC presented in this dissertation 

worked with 100% accuracy for the trial types discussed. The navigation system, whose 

accuracy is highly contingent upon GPS (see section 4.2.2.2), only slightly affected the 
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success rates when GPS visibility was lessened. Therefore, the success rates illustrated in 

Table 4.4 are almost entirely based, not on the adequacy or inadequacy of the control 

system, but on the ability of the canine to respond correctly to the directional commands. 

The canine proved to respond with virtually 100% success to all tonal commands. 

However, vibrational command (i.e., left and right commands) adherence was 

significantly less and proved to be the limiting factor in trial success rates. Further 

discussion of this issue will take place in Chapter 5. 

 

Table 4.4. Success rate results from the autonomously guided canine trials. 

Canine Success Rate Trial Results 

h'(deg.) 2 Wpt. (Non-Str.) 2 Wpt. (Str.) 3 Wpt. (Non-Str.) 3 Wpt. (Str.) Total 

23 94.3%        

30 97.1%        

37 100.0%  77.1%     

49   100.0%   65.4%   

Total 97.7% 70.1% 86.6% 

n 105 24 35 52 216 

 

 

For the two waypoint trials, the success rates are very high for structured and non-

structured environments, since very few directional changes are required. The success 

rate for the non-structured environment was around 97%. Having decoy waypoints 

present in the open field would sometimes move the canine off course, at which time the 

potential for failed directional changes increases. Also of note is the fact that the lower 

orientation deviation threshold settings resulted in lower success rates, as the canine 
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would have to be corrected more often in order to keep it under the orientation deviation 

threshold.  

The success rate for the structured environment was 100%. Since the structured 

environment contains a corridor that requires that the canine move in the correct 

direction, one would expect the canine to have 100% accuracy, as long as the canine 

obeys the tonal commands (which the canine does with essentially 100% accuracy) and is 

in the correct corridor, which should not be a problem since the handler is with the canine 

at the commencement of a trial.  

The composite success rate for the two waypoint trials was 97.7%. The success 

rate is extremely high for at least two reasons. First, two waypoint trials do not typically 

require a directional change, unless the canine drifts off course or is visually distracted by 

another potential waypoint (in non-structured environments). The canine is near perfect 

in responding to tonal commands (i.e., the forward, stop and recall commands), which are 

the primary commands needed during a two waypoint trial. Secondly, unlike with the 

prototype approach discussed in [48], even when a directional command is needed, the 

heading of the canine is still known when the canine stops or is moving very slow. This 

means that the appropriate directional command will be given 100% of the time, and the 

canine will respond correctly based on the percentages presented in the Canine Behavior 

Statistical Model, which will be discussed in Chapter 5. 

 The non-structured three waypoint trials had a success rate of 77.1%, while the 

structured trials had a success rate of 65.4%. Although given more trials, the non-

structured trial success rate may drop to some extent, it is likely that the non-structured 

environment would still result in a higher success rate for three waypoint trials than the 
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structured environments using the same orientation deviation threshold. In the 

structured environments that were used in these trials, it was harder for the canine to see 

the possible end waypoint, due to visual obstructions. Since the canine used in these trials 

was trained to respond to visual cues, this factor could play a significant role in success 

rates. The composite success rate for the three waypoint trials was 70.1%. Again, the 

primary factor in success or failure in a three waypoint trial was ultimately the canine‘s 

success rates in correctly responding to directional commands. The overall success rate of 

the autonomously guided canine control system, over all of the field trials, was 86.6%. 
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Chapter 5 

Canine Trial Simulator for  

CMEC Threshold Selection 

 

5.1  Introduction  

5.1.1 Canine Trial Simulator Broad Description 

 A Canine Trial Simulator (CTS) was developed based upon the results presented 

in Chapter 4 to assist future canine handlers in selecting the orientation deviation 

threshold for the CMEC. The CTS is a MATLAB-based simulator that simulates a 

canine‘s decisions and movements while being autonomously guided by a CMEC to 

successive waypoints. A Canine Behavior Statistical Model (CBSM) is used to help 

mimic the canine‘s behavior. The objective of the CTS is to simulate a large amount of 

canine guidance trials in order to determine the optimal moving orientation deviation 

threshold choice for use in the CMEC. The threshold should maximize trial success rate 

and/or minimize trial time. Thus, the CTS also provides a tool to assess the potential field 

trial performance of the canine in applications where the CMEC is being used. 

 

5.1.2 Discussion of CTS Purpose 
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 As was discussed in Chapter 4, the MEC is a threshold-based controller. Although 

some thresholds can be gathered from expert experience and from intuition, some may 

not be determined as easily. For the CMEC, the optimal choice of the moving 

orientation deviation threshold was not necessarily intuitive. If the threshold is chosen 

to be too small, the canine will be stopped and corrected too often, which will gradually 

saturate its mind and lead to failed responses and lead to longer trial times. If the 

threshold is chosen to be too large, the canine could potentially move many meters (or 

even kilometers, if the waypoints are spread out far enough) in the wrong direction before 

being given a directional command. This will lead to longer trial times, canine fatigue, 

and likely, added directional commands. Success rate is of the essence. However, in 

many real-world applications of the autonomously controlled canine, trial time could be 

of prime importance as well. A few seconds could be the difference between catastrophic 

carnage from an explosion, and the saving of lives. 

 Unfortunately, gathering enough live, canine field trial data to find the true 

optimal orientation deviation threshold choice would likely take years and possibly the 

life of the canine. With these considerations in mind, the CTS was developed based on a 

CBSM to determine a range of optimal choices that should lead to high success rates and 

a range of optimal choices that should lead to low trial times. 

 

5.1.3 Canine Behavioral Inconsistency 

Recall from the block diagram of the control system discussed in this dissertation 

(i.e., Figure 1.2) that disturbances are injected into the system (i.e., the canine) which will 

alter its output. Although many systems have disturbances which can affect their output, 
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the canine is a unique system. Unlike with many systems (e.g., robots, automobiles, etc.), 

a canine‘s response to a command can be, and often is, unpredictable. Due to the nature 

of the disturbances, the canine may or may not even respond to a command, and when it 

does respond, it may or may not respond in the same way each time the same command is 

given. The effectiveness of the canine‘s response is a function of many factors. The 

canine species and breeding factors can affect consistency and success rates, as well as 

the trainer and the training protocol. However, in a more specific sense, command 

obedience can be affected by the following: 

 

 Did the canine see someone it knew or another canine that caused a distraction? 

 Is the canine tired? 

 Is the canine out of practice in using the control system? 

 Is the canine hungry? 

 Has the canine been trained sufficiently to respond appropriately to particular 

commands? 

 Has the canine detected an odor while in the middle of receiving command 

sequences that will override the control system‘s commands? Odors are of high 

interest to a canine due to their keen sense of smell and may override the 

commands that are being given to it.  

 Is the canine in heat or aroused? This factor played a major role in testing results 

at least one day. 

 Has the canine been over-stimulated with commands? If too many commands are 

issued, the canine will stop recognizing them. 
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 Is the canine‘s breathing or heart rate high enough to cause it to not notice a 

directional command after stopping from a sprint? 

 

Due to these factors and others, a simple statistical model of the canine was 

developed for use in the CTS. The model allows for determination of how the canine will 

respond to given commands and especially the likelihood that the canine will respond 

correctly to a given command. From said model, the CTS is utilized to determine how the 

model parameters will affect trial success rates and trial times in the CTS. 

 

5.2  Canine Behavior Statistical Model 

 Several live canine autonomous control trials were conducted in order to 

determine a rough estimate of the canine‘s actual behavioral characteristics for use in the 

CTS. Table 5.1 illustrates those average canine behavioral characteristics. Velocity is the 

average velocity that the canine maintains while ―cruising‖ (i.e., not accelerating or 

decelerating). The Heading Drift characteristic accounts for the fact that the canine tends 

to not run straight, but rather, gradually drifts to the right while running. Left and Right 

Success Rate give the likelihood that the canine will turn when given a directional 

command. The rest of the characteristics are self-explanatory. 

 A relatively high standard deviation exists for some of the characteristics due to 

the fact that the characteristics change throughout a day of testing based especially on the 

canine‘s rising level of fatigue. It may be of interest in the future to gather statistics on 

individual canine behavior throughout its months of training and how those statistics 

correlate to the factors discussed in section 5.1.3 and others for use in an upgraded 
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CBSM in the future. For the current CBSM prototype, the statistics presented here are 

assumed to be Gaussian in distribution. The statistics were intentionally taken from a 

mixture of trials from throughout the testing days, in order to capture this fluctuation and 

get a more precise average for the simulator. 

 

Table 5.1. Canine behavioral statistics for simulator use. 

Characteristic Average n 

Velocity (m/s) 49.186.4   66 

Acceleration (m/s^2) 67.078.1   73 

Deceleration (m/s^2) 31.172.2   40 

Right Turn Rate (deg/s) 66.3792.57   26 

Left Turn Rate (deg/s) 13.4167.77   26 

Heading Drift (deg/s) 62.162.2   35 

Left Success Rate 0.64 45 

Right Success Rate 0.6 35 

 

 

Also of note is the fact that the forward, stop, and recall success rates were not 

included in the behavioral statistics since they are virtually 100%, according to the CDRI 

and my observations. The canine‘s sense of hearing is exceptional, and it appears to be 

able to process auditory commands with ease. The canine‘s response to directional 

commands from the vibration motors are the primary inconsistency in the canine‘s 

behavior, and when directional changes are necessary (primarily in multiple waypoint 

scenarios), the entire control system ultimately succeeds or fails based on the canine‘s 

likelihood in responding appropriately. The CDRI was in a constant process of improving 

the canine‘s consistency in adhering to vibration commands throughout the period of data 

collection. Thus, the turn success rates were in a constant state of flux and will likely 
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improve more in time. However, for the sake of getting a rough estimate to be used in the 

CTS, the turning success rates were determined and fixed approximately half-way 

through the data collection period. 

The primary canine motion characteristic that is not (and perhaps cannot be) 

accounted for in a simulator such as this, is the effect of visual cues on the canine‘s 

motion characteristics. If the canine sees an object of interest or if it tries to anticipate 

what command it will be given based on its visual surroundings, its behavior is affected, 

whether beneficially or deleteriously. However, even without accounting for the points 

discussed above, the CTS was found to be effective in producing positive results. 

Potential future improvements to the CBSM could include varying the CBSM 

characteristics based upon the handler‘s analysis of such factors in the environment 

he/she will be conducting trials in, as well as the other factors listed in section 5.1.3. 

 

5.3  The Canine Trial Simulator 

5.3.1 CTS Features 

 The CTS is equipped with several features that make it beneficial and attractive 

for use with the CMEC. First, as discussed above, the CTS utilizes actual behavioral 

statistics that describe the canine‘s motion (i.e., the CBSM). Secondly, it uses 

MATLAB‘s random number generation functions coupled with the CBSM to mimic 

probable canine behavior over multiple trials. For each trial, the probable heading drift 

while the canine is running, the average turn rate, the turn success rates, and the initial 

canine orientation are all estimated using random numbers and the CBSM. The CTS also 

accounts for canine fatigue and focus failure by using the same trial failure scheme used 
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in the CMEC. The CTS records the actual elapsed time for each successful trial, as well, 

and records the number of total commands that were issued to the canine during each 

successful trial. The CTS allows for simulation of the canine‘s behavior over a mass 

number of user-defined trials—numbers which would be impractical to carryout in actual 

field tests with the canine. The CTS also allows for an easy change of the orientation 

deviation threshold and waypoint distances/trial profiles to determine its effect in trial 

performance over time. 

 

5.3.2 CTS Description 

 The CTS uses the CMEC as the ―brain‖ for each Monte-Carlo-type simulated 

trial. The CMEC uses the Rabbit‘s Dynamic C programming language and was converted 

for use in MATLAB. After making the necessary changes to the CMEC code, the CBSM 

was used to determine the canine‘s likely response to the CMEC commands. As 

discussed previously, if a forward, stop, or recall command are given, the canine 

responds correctly with virtually 100% accuracy on the first attempt. Thus, random 

numbers are not needed to determine whether the canine will or will not respond to these 

commands. Rather, the CBSM is used to determine the canine acceleration, deceleration, 

and cruise velocity, and the appropriate calculus is used to determine what the canine‘s 

movement response would be to the commands issued from the CMEC code. The 

equations used to determine position, orientation, and velocity are described in the CMS 

(section D.6). The canine‘s initial position and velocity are set to zero, and its initial 

orientation is based on random numbers (see Equation (5.1)).  
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 Where:  )1(o  = Initial heading for a simulation 

    o  = Average initial heading 

    
o  = Average initial heading standard deviation 

    )(randn   =  MATLAB normally-distributed random number function 

    

The heading drift rate during forward movement is also determined using random 

numbers (see Equation (5.2)). 
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 Where:  )1(  = Heading drift rate for the first simulation 

      = Average heading drift rate 

      = Average heading drift rate standard deviation 

 

 If a directional command is given from the CMEC, the canine is stopped. Then, 

the likelihood of the canine responding to the turn command is considered using a 

random number function (see Equation (5.3)). Equation (5.4) shows the MATLAB code 

used in the CTS for determining whether or not the simulated canine will respond to a 
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right directional command. A similar equation is used for the left directional command. If 

Rt(i)=1, the canine will respond to the right command at time step, i. 

    

   )1,1000(randranRT   (5.3) 

 

  for i=1:1000 (5.4) 
          if ranRT(i)<=RtSR 
              Rt(i)=1; 
          else 
              Rt(i)=0; 
          end 
         end 

 

 

 Where:  ranRT = Random number used for right command response 

    RtSR = Success rate for the canine in responding to the right command 

    Rt(i) = Answer to the right response determination (1 = yes; 2 = no) 

 

If the simulated canine is found to be responsive to a directional command, the turn rate 

is used to initiate a directional change. Equation (5.5) shows the equation used for 

determining the right turn rate. A similar equation is used for a left turn. 
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 Where:  )1(R  = Right turn rate for a simulated trial 

    R  = Average right turn rate 
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R   = Average right turn rate standard deviation 

 

5.3.3 Simulated Trial Setup 

 The two waypoint trial simulations were set up like the field trials, as discussed in 

section 4.2.1. The waypoints were separated by 25 meters—namely a starting point and a 

point 25 meters north of the starting point. The initial heading deviation was set to 0 

degrees with a standard deviation of 10 degrees. 

 The three waypoint trial simulations were set up like the non-structured field trials 

discussed in section 4.2.1. The four types of trials were developed so that the total 

distance traveled in a trial (i.e., the perimeter of the triangle created by the three 

waypoints) would equal approximately 122 meters, as set by the CDRI. Two types of 

trials contained a waypoint geometry that required 90 degree turns, while two types of 

trials contained a waypoint geometry that required 45 degree turns. Figure 4.8 illustrates 

the four trial types that were used for the simulations. 

 

5.3.4 Example of a CTS Three Waypoint Trial 

 Figures 5.1 and 5.2 exhibit an example of a CTS-simulated three waypoint trial 

(Type I). As with the plots illustrated in Chapter 4, the green line indicates that the 

forward command is being issued during that portion of the trial. When the red line is 

present, the stop command is being issued. When the black line is present, the recall 

command is being issued, and when the blue line is present, no command is being issued. 

The cyan triangles indicate directional commands; the magenta-colored objects represent 

waypoints; and the yellow lines represent the waypoint thresholds. 
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 In the position plot (Figure 5.1), the simulated canine is given a forward 

command and begins traveling approximately north. Its heading gradually drifts east in 

keeping with the CBSM until its orientation deviation crosses the orientation deviation 

threshold, at which time a stop command is given, and a directional change is made. 

When the waypoint threshold is crossed, a stop command is given until the simulated 

canine stops, and the new waypoint is set. The trial continues until the simulated canine 

crosses the starting waypoint threshold. 

 

 

Figure 5.1. Example of a three waypoint trial CTS simulation position plot. 
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Figure 5.2. Velocity, orientation deviation, and controller output plots for an example 

three waypoint trial CTS simulation. 

 

 Figure 5.2 illustrates other information from the trial example illustrated in Figure 

5.1—namely the simulated canine velocity throughout the trial, the orientation deviation, 

and the commands which are being issued at each moment of the simulated trial. Notice 

that the orientation deviation threshold is crossed at around 8 seconds, and the stop 

command is issued. After coming to a complete stop (i.e., after crossing the V   threshold; 

see the velocity portion of the plot), the left command is initiated until the h   is crossed, 

at which time the forward command is initiated again until crossing the waypoint 

distance threshold. Notice that at approximately 15 seconds, the right command is 

initiated (see the Controller Output) in order to turn the simulated canine towards the next 
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waypoint. However, the simulated canine fails to obey the command due to the success 

rate from the CBSM and the random number generation functions. After the command 

has been given for three seconds (i.e., DELTHRESH2) with no response, no command is 

issued for one second (i.e., HEADCOUNTTHRESH), and then the command is re-issued. 

The simulated canine obeys the command on the second try, and when the orientation 

deviation is low enough, the forward command is issued again and the trial continues. 

 

5.3.5 Two Waypoint CTS Results 

Figure 5.3 illustrates the CTS results for various orientation deviation 

thresholds for two waypoints. The success rate and average trial time were calculated 

after carrying out 1000 Monte-Carlo simulations at each orientation deviation threshold 

(i.e., 15, 16, …, and 90 degrees). A best fit trend line for the success rate data was 

produced, and the trend line was found to have an R
2
 value of 89.1%. As is shown, the 

simulated canine achieves a 100% success rate when the orientation deviation is at 

approximately 23 degrees or above (26 degrees and above according to the trend line). 

This would be expected, as long as the canine is set to face in approximately the right 

direction from the beginning of the trial. However, when the orientation deviation is set 

lower, the simulated canine is forced to stop more often in order to adjust its heading to 

stay under the smaller threshold. This causes the trial time to rise and the success rate to 

decrease since more directional commands must be given to keep the canine under the 

orientation deviation threshold while in pursuit of the desired waypoint. Despite this 

drop, the success rate still remains above 85%. These results would imply that a choice of 
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a threshold approximately 25 degrees or above will result in excellent results. However, 

the three waypoint results adjust these findings and will be discussed later. 

 

 

Figure 5.3. Success rate and average trial time simulation results for CTS two waypoint 

trials. 

 

As was previously discussed, these simulated results are based on the actual 

waypoint distances that were used in canine trials. Note that if the distance to the 

waypoint is increased, it would be expected that there would likely be more directional 

commands required before reaching the waypoint. This would increase the average trial 

time and lower the success rate solely due to the increased distance. The diagram in 

Figure 5.4 helps to illustrate this concept. As ―y‖ increases, ―x‖ increases, which in turn 

increases the trial time. In the illustrated scenario, for a waypoint distance of 1000 
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meters, the canine could drift as far away from the waypoint to the east as approximately 

200 meters without being given stop and directional change commands, assuming the 

orientation deviation threshold is about 45 degrees. This would likely result in more 

commands being issued to the canine before reaching the waypoint on average.  

 

  

Figure 5.4. Illustration of the potential effects of larger waypoint distances. 

 

Further, it would be expected that the average trial time would increase even more 

for the higher orientation deviation thresholds, due to the fact that the simulated canine 

would be ―allowed‖ more leeway to travel several more meters off course before a 

directional command would be issued. Again examining Figure 5.4, if the orientation 

deviation threshold is larger, the canine would be allowed to travel further down the 
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 98 

dashed line before given a stop command. This fact would increase the average trial time 

that much more for the higher orientation deviation thresholds, and as was discussed 

earlier, every second counts in many real world scenarios. This growth in average trial 

time as the orientation deviation threshold is raised begins to be realized in the three 

waypoint simulations, which contain longer waypoint distances, and will be discussed 

below.  

Note also that the longer a waypoint distance is, the more likely it may be that the 

canine will have to make an unexpected deviation from the pre-planned course 

momentarily, which could require a turn. In making the turn, the orientation deviation 

threshold could be passed, thus initiating unwanted correction procedures. Initial path 

development would account for many such scenarios, but not all possibilities could be 

planned for initially. Such scenarios could be addressed in future work. 

 

5.3.6 Three Waypoint CTS Results 

 For the three waypoint simulations, 1000 trials were again conducted at each 

orientation deviation threshold (i.e., 15, 16, …, 65). Of the 1000 trials, there were 250 

simulations performed for each trial type (shown previously in Figure 4.8) in order to get 

a good mixture of possible three waypoint scenarios. Figure 5.5 illustrates the simulation 

results. A best fit trend line for the success rate data was produced, and the trend line was 

found to have an R
2
 value of 95.4%. As expected, the average trial time gradually gets 

higher as the orientation deviation threshold increases (see section 5.3.5 for further 

explanation).  
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Figure 5.5. Success rate and average trial time CTS simulation results for three waypoint 

trials. 

  

5.3.7 CTS Results Verification 

5.3.7.1 Two Waypoint CTS Verification 

The field trial results from Chapter 4 were used to check the accuracy of the CTS. 

In the field trials, three different orientation deviation thresholds were used while 

running two waypoint trials with an actual canine. Recall that for each of the three 

orientation deviation thresholds, 35 field trials were run, and for each orientation 

deviation threshold in simulation, 1000 trials were performed. 

Figure 5.6 illustrates the success rate results for the three orientation deviation 

thresholds using the CTS versus the actual trial data. Since few orientation corrections 

will be necessary in a two waypoint trial, intuition would lead to the conclusion that the 

success rates should be very high, as long as the orientation deviation threshold is not 
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chosen to be too small. Note from Figure 5.3, once again, that according to the CTS, the 

success rate remains at 100% for upper orientation deviation thresholds, then begins to 

decrease for orientation deviation thresholds below 23 degrees (below 26 degrees, 

according to the trend line). The actual trial data also indicated very high success rates 

above 23 degrees—100% at 37 degrees and 97% at 30 degrees (i.e., one trial failure). The 

23 degree threshold actual data (94%) is in keeping with the trend line (95%) of the CTS 

results, as shown in Figure 5.3. Considering the fact that the CTS does not account for 

certain effects that occur in real world canine trials (e.g., navigation system issues and 

visual disturbances), the CTS success rate results line up nicely with the actual data. 

 

 

Figure 5.6. Comparison of two waypoint success rate results for the CTS versus actual 

trial data. 
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Figure 5.7. Comparison of two waypoint average trial time results for the CTS versus 

actual trial data. 

 

 Figure 5.7 shows the average trial time results. The actual average trial times are 

higher than the simulated results by about 3 to 3.5 seconds. This difference is still within 

the actual trial standard deviation on all three orientation deviations, and with more trial 

data, this difference may decrease. However, the primary reason there is a difference 

between the actual and simulated trial times could be that the following factors are not 

taken into account in the CTS. These factors could be considered in later versions of the 

CTS. 

 

 In the actual canine trials the canine takes between 1 and 5 seconds to find and 

grab the bumper (i.e., the item the canine has been trained to find at the final 

destination) out of the grass before obeying the recall command. 
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 Unlike with the simulator, there is a small delay in actual canine response to each 

command. The delay could be a function of fatigue as well. 

 

 The actual trials were timed by human hand using an egg timer and are therefore 

often slightly higher. 

 

These factors considered, the CTS results, once again, line up with the actual results 

excellently. 

 

5.3.7.2 Three Waypoint CTS Verification 
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Figure 5.8. Comparison of three waypoint success rate and average trial time results for 

the CTS versus actual trial data. 
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 As with the two waypoint trials, the field data was utilized to check the accuracy 

of the three waypoint CTS simulations. In order to gather more data under constant 

constraints, a single orientation deviation threshold was used in the three waypoint 

field trials—namely, 49 degrees—and 52 field trials were conducted using that threshold. 

Figure 5.8 presents the CTS versus the actual results of the success rate and the average 

trial time, which again proved to be extremely close to each other. Notice that the average 

trial times are closer together in the three waypoint trials. The simulated trial results are 

deep within the standard deviation of the actual trial data. This could be due to the fact 

that the trials are longer. Therefore, there is more opportunity for the canine to ―make up‖ 

the lost time throughout each trial. It is also likely that the hand timing of each trial was 

more accurate, since the author became more accustomed to the timing procedures by the 

time the two waypoint trials took place. Plus, the three waypoint trials used for 

comparison were conducted in the structured environment, which in this case allowed for 

easier retrieval of the bumper by the canine. 

 

5.3.8 Conclusion 

 As was discussed earlier, if the orientation deviation threshold is chosen too 

small, the canine will be forced to stop and receive directional changes more often. This 

will result in longer trial times and more potential for failure, since the canine does not 

respond as readily to directional commands. If the orientation deviation threshold is 

chosen to be too large, the canine success rate may be relatively high. However, the trial 

time will also potentially be much higher, since the canine will be allowed more 

―leeway‖ to get farther off course. Taking into account these considerations, intuition and 
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expert experience says that the optimum orientation deviation threshold should be 

somewhere between 40 and 50 degrees. The CTS results verify the results expected from 

intuition. 
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Chapter 6 

Conclusions 

 

6.1 Conclusion 

 This dissertation presents a novel approach for tracking and autonomously 

controlling a guided canine to prescribed waypoints using an Extended Kalman Filter and 

a Canine Maximum Effort Controller. In order to autonomously control a canine, a 

platform was developed that would allow for the retrieval of measurements for tracking 

the canine and issuing commands to the canine. As discussed in Chapter 2, this platform 

was composed of the command unit, sensor suite, remote computational device, and a 

canine vest. This platform included the software necessary for interfacing electronic 

hardware components.  

 The next task was to develop algorithms that would grant position, velocity, and 

orientation information describing the canine‘s behavior for use in the autonomous 

control algorithms. As is shown in Figure 1.2, the control system retrieves measurements 

from inertial sensors, magnetometers, and a GPS receiver and filters the data in order to 

attain optimal state estimates of the canine‘s position, orientation, and velocity. Utilizing 

fuzzy logic to adaptively tune the Process Noise Covariance Matrix of the EKF based on 

the canine‘s motion allowed for an excellent canine tracking system during brief GPS 
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outages. After simulated 10 second GPS outages, the adaptive EKF scheme resulted in 

average position solutions 7.5 meters away from the GPS solution and average velocity 

solutions 1.2 meters per second away from the GPS solution. This proved to be a 

significant improvement over the tracking approach discussed in [71]. 

 After arriving at an optimal tracking solution, a Canine Maximum Effort 

Controller was developed to autonomously guide the canine to pre-planned, successive 

waypoints using the tracking solution. The controller proved to work effectively, 

achieving an overall 97.7% trial success rate on two waypoint trials, a 70.1% trial success 

rate on three waypoint trials, and an overall trial success rate of 86.6%. 

 In order to determine an optimal choice for the orientation deviation threshold 

to be used in the CMEC in future work without resorting to trial and error, a Canine 

Behavior Statistical Model was developed, which is comprised of actual statistical 

information that describes the canine‘s behavior over time. A Canine Trial Simulator was 

then developed to simulate different types of autonomous control trials using the CBSM 

and the CMEC and thereby determine the best orientation deviation threshold choice 

for use in the CMEC, given the statistical information about the canine provided by the 

behavioral model.  

 

6.2 Future Work 

 Several avenues are available for possible future work to make improvements on 

the control system presented in this dissertation.  
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 Hardware upgrades could be made, including moving to an IMU that is capable of 

reading higher magnitude accelerations and rates of turn. An XSens is available 

which would meet these needs, although developing an IMU with magnetometer 

integration in house would also be an attractive option.  

 

 Less bulkiness on the canine harness is always a goal worthy of attention. Moving to 

a smaller GPS antenna would be ideal. However, this would also likely require 

switching to radios that do not create satellite tracking interference.  

 

 The tracking algorithms could likely be improved if a microprocessor upgrade was 

made, as well.  

 

 With more processing power and memory, a tightly coupled EKF could be used 

which would make GPS outages less likely. 

 

 GPS position accuracy improvements could be made using, for instance, 

differential GPS [92]. 

 

 A canine AHRS could be developed that would grant Euler angle estimates 

without relying on the AHRS solution provided by the XSens, since the XSens 

was tuned for pedestrian and/or automotive applications. 
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 A higher order EKF could be used that considers the effect of roll and slip in the 

canine motion model. 

 

 It may also be of interest to further investigate canine running motion to finely tune 

the fuzzy logic adaptively tuned EKF scheme presented in Chapter 3.  

 

 Other approaches could be investigated to improve the navigation solution as well, 

other than using the adaptive tuning approach, including developing a scheme to 

estimate two separate accelerometer biases ―simultaneously‖—one that would 

represent detection mode bias and one that would represent running mode bias. The 

EKF would switch states depending upon the GPS velocity measurement.  

 

 As was discussed earlier, promising results have surfaced from navigation solutions 

based on stride lengths. Investigating the effectiveness of that approach for the canine 

application may be beneficial coupled with a frequency analysis of the accelerometer 

measurements to analyze canine step frequency. 

 

 More effective means to guide the canine are constantly being considered. As was 

discussed above, the limiting factor in the canine control problem is the canine‘s 

success rate in following directional commands. It may be of benefit to increase the 

strength of the vibration and/or use vibrations on the opposite side of the canine from 

the direction of the turn in order to tell the canine which way to not go, instead of 
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which way to go. The trainers currently use a similar approach in some of their 

training protocols.  

 

 It also should be noted that the canine‘s success rate in adhering to tonal commands is 

virtually flawless. Moving to tonal commands for directional cues may be an option 

worth investigating first. 

 

 Determining the canine‘s success rate when being guided to 4 or 5 waypoints would 

be of interest in the long run of the project, since real world applications may require 

more turns in order to reach the final destination. However, it would likely be more 

fruitful for this investigation to be carried out after one of the training changes 

mentioned above, which could significantly increase the canine‘s success rate in 

obeying directional commands. 

 

 The CDRI is currently still investigating the possibility of eliminating the need for 

visual cues altogether, which would make the canine more like a robot in following 

commands. This is attractive to engineers. However, it may be determined that the 

canine‘s ability to see potential or likely targets that handlers/computers cannot sense 

is a benefit that the canine possesses which would not be of benefit to dampen in 

many real-world applications. 

 

 Several potential avenues for future work were discussed in Chapter 5 concerning the 

Canine Trial Simulator. Of particular interest would be developing a CBSM 

comprised of many more parameters during a canine‘s training phase. This could 
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allow the CTS to consider other factors such as environment and canine fatigue when 

running simulations. However, it may be found that data gathered during the training 

phase would not represent the canine‘s behavior post-training. 

 

 The field of autonomous creature control is certainly a novel area in the 

engineering community. Autonomous control of canines is even more new. The possible 

avenues of future work in this field are many and exciting. More importantly, I am 

thankful to have had the opportunity to be a part of this work due to the potential good 

that can be done for humanity through such endeavors. 
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Appendix A 

Canine Training Procedures 

 

 This appendix describes the training protocol for the canines used in this research 

as articulated by the CDRI. The protocols are reproduced here verbatim with the author‘s 

approval. 

 

A.1  Equipment 

 A custom made harness (Blackthorn K9 Equipment, Inc.) was employed in 

training canine Major. The harness was equipped with a prototype K9 Remote Sensor 

System engineered by Joe Reiter of WYLE Laboratories, Inc. for an ongoing project 

which is sponsored by the Transportation Security Laboratory of the U. S. Department of 

Homeland Security Science and Technology Directorate. The Wyle Remote Sensor 

System was designed to provide first responders with a remotely controlled explosive 

detection capability that could also serve as a platform for a variety of other sensors (e.g., 

video, audio, radiological, air quality, and physiological monitoring of the dog), the 

output of which can be transmitted to responders in real-time. For the purpose of the 

present experiment, the important function of the Wyle Remote Sensor System was in 

delivering radio controlled auditory and vibration signals to canine Major. The canine 
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command functions were controlled by a Wyle developed tone generator worn by the dog 

and actuated by a pair of Motorola EX600 radios, one worn by the dog and the other 

controlled by the handler of the dog. The key pad of the EX600 radios served as the 

handler-dog interface and pressing different keys of the radio resulted in the presentation 

or different tones from a speaker on the harness driven by the Wyle tone generator or 

actuation of one of two vibrators mounted on the underside of harness. The commands 

used included: ―Back‖ (i.e., leave the handler and move in a straight line using the initial 

physical orientation), which was a 3,500 Hz tone issued from the speaker; ―Stop‖ (i.e., 

the dog halts and sits), which was a 9,500 Hz tone; ―Over Left‖ (i.e., the dog turns left in 

relation to its present orientation), which was a vibrational cue located on the left rear of 

the harness; ―Over Right‖ (i.e., the dog turns right in relation to its present orientation), 

which was a vibrational cue located on the right front shoulder of the harness and; 

―Recall‖ (i.e., the dog returns to the starting point of the trial or current position of 

handler), which was a 1,500 Hz tone. An electronic collar (Dogtra, Inc.) was used in 

initial training to establish and apply negative reinforcement in the form of brief (<2s) 

mild (30-80 mA) electrical stimulation and vibration (such that the vibration was 

established as a conditioned negative reinforce that could intermittently function 

effectively without presentation of the electrical stimulation) for the emission of correct 

responses signaled by voice, whistle, visual, and, later, tone and vibration commands. 

 

A.2  Training 

A.2.1 Odor Detection Training 
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 Canine Major was initially trained to ―sit‖ in the presence of odor from C-4 

explosive material by prompting him to place his nose near a box containing C-4 

explosive (target) and issuing the verbal command ―sit‖, which he already reliably 

emitted. Sitting at the target box resulted in delivery and opportunity to chase and play 

with a tennis ball or other toy. This activity was repeated until Major placed his nose near 

the opening of the box and sat in the absence of the verbal command. Next, a second 

identical box was added to the training scenario that did not contain C-4 (i.e., blank) and 

Major was prompted to sample from both boxes, the order of which was randomly 

alternated. With two boxes, one blank and one with the target, sitting at the target 

containing box was reinforced and Major was encouraged to not sit at the blank box by 

the verbal command ―No‖, which was previously established as a conditioned punisher 

by association with mild leash corrections and interruption of opportunities for 

reinforcement in obedience type training, and mild leash pressure to not allow him to 

complete the sit response. Once Major reliably discriminated between the target and 

blank box (i.e., approximately 20 contiguous errorless trials), a 3
rd

 and subsequently 4
th

 

blank box was added to the scenario. Once Major was reliably sitting at the target box 

and not sitting at any blank boxes in this, so called, ―4-hole variable‖ in typical detector 

dog training, training to search for and alert to the target odor in varied environments was 

initiated. 

Initially, the target material was placed in relatively easy to detect locations taking 

relatively a short time to encounter from the point at which Major was prompted to begin 

searching for the target odor. Again, detection of the target, was reinforced with delivery 

and opportunity to play with a ball or other toy and sitting at other locations was either 
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interrupted by the verbal command ―No‖ or resulted in the command ―No‖ and 

discontinuation of the particular trials and thus, opportunity to receive the ball for 

responding correctly. The locations of the target ―hides‖ were gradually made deeper, 

higher, or otherwise more difficult for detection of the target and the distance, and thus 

amount of time searching required, was extended. 

Finally, target odor detection training was incorporated in the context of Major‘s 

pre-existing field trial training. Initially, trials would be alternated between blind retrieves 

in which Major would be directed to an area where there was a bumper to retrieve and 

trials in which he was directed to an area where the target material was hidden. When 

Major encountered the odor from the target material, he would, as is typical, show a 

noticeable interest and begin to interrogate the area with his nose and when he was near 

the target material hide would sit, or if he did not sit, the handler would verbally 

command Major to sit, then issue intermittent whistle commands for Major to return and 

along the way be verbally praised and then thrown a ball when in range of the handler. 

This training progressed by hiding the target material in more challenging and 

unexpected places including intermittent locations along the usual routes of a field trial 

run and in and around objects, buildings, and vehicles to which major would be directed 

or come near during a trial. This phase of training was considered complete when 

Major‘s following of directional commands was reliably interrupted by encountering a 

target odor and he searched for and sat (i.e, alerted) as close to the source of the target 

odor as he was capable. 

 

A.2.2 Remote Tone and Vibration Control 
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 In the initial field trial training the dogs had received prior to inception of this 

project, voice, whistle, and visual commands were used to direct movement; the 

following describes the commands and resulting trained response: 

 

 ―back‖ -  from sitting or healing position oriented to handlers posture, dog runs 

away from handler maintaining general heading of original orientation 

 

 solid whistle – dog ceases ongoing movement and orients toward handler 

 

 intermittent whistle – dog recalls (returns) to handler 

 

 ―over‖ and handler moving slightly and casting arm high with palm open facing 

toward dog in desired left or right direction – stopped and/or sitting dog at some 

distance from handler runs in direction casted. 

 

Several steps were involved in transferring control from voice, whistle, and visual 

commands to the remotely issued tone and vibration commands delivered by equipment 

on the k9 harness. Additionally, modifications of the trained responses were made to 

accommodate remote and autonomous guidance.  

Transfer of the back and recall commands were accomplished by issuing the tone 

command to be associated with the trained response and nearly simultaneously issuing 

the respective previously trained back or recall command. Across many repetitions of this 

pairing of tone and previously trained commands, the intensity of the previously trained 
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commands (i.e., ―back‖ and solid whistle) was faded (i.e., lessened) until the requisite 

response was reliably exhibited upon issuance of only the requisite tone.  

To prepare the dogs for exhibiting left and right movements issued by the 

autonomous navigation system, the typography of their response for stop, left, and right 

required modification. The desired topography for autonomous guidance was for the dogs 

to stop and remain oriented in the direction of their previous heading, rather than turn to 

face the handler, and orient to the next desired heading in response to left or right tone 

commands rather than run in a left or right direction. Having the dog orient left or right in 

response to the left and right vibration signals on a generally stationary axis allows for 

the guidance system to sense the orientation of the dog, compare the orientation to the 

desired heading, and then issue the tone for the dog to run straight from that orientation 

or issue further left and right tones to re-orient the dog in the desired heading. For the 

purpose of the current project, training was conducted to have the dogs orient left/right 

45
0
 and 90

0 
from their previous heading.   

Training for stopping and remaining oriented to previous heading and orienting 

right and left per the requisite tones were accomplished using visual cues that would have 

been used in the dogs‘ early field trial training. Piles of retrieval bumpers and stakes to 

provide some vertical relief to the position of those piles of retrieval bumpers are used in 

early field trail training to entice the dog to run to those piles upon being issued an ―over‖ 

and right or left movement cast command. Retrieval of the bumper is a very desirable 

activity for these types of dogs and thus, the opportunity to run and retrieve a bumper, 

reinforces correct responses to the right and left commands. With a stake-identified 

bumper pile located in the direction a dog was running, the dogs were trained to stop and 
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remain oriented toward their previous heading by first pairing the stop tone with the 

continuous whistle and fading the whistle command. The presence of the stake and 

bumper pile enticed the dogs to remain oriented in their previous heading. Also, as the 

whistle signal was faded and control transferred to the stop tone being issued from the 

harness, the propensity of the dog to orient toward the source of the whistle (i.e., the 

handler) was reduced and they were prone to stopping and remaining in more or less the 

approximate orientation of their last heading. The desired response of orienting the 

canines in the direction of their previous heading upon issuance of the stop tone was 

further refined by following successive approximations of this response with the tone for 

running out (―back‖) and accessing a bumper a retrieve and issuing the recall tone if they 

did not orient in their previous heading.   

Training for orienting left or right upon issuance of right or left vibration signals 

used the stake-identified bumper pile to entice the dogs to orient toward such piles at 45
0
 

and 90
0
 from their initial orientation relative to the handlers position. Because the dogs‘ 

early training includes re-orienting based on the handlers body position, the handler could 

―nudge‖ the dog toward the desired orientation by moving their own body. Issuing the 

requisite vibration while prompting the dog with body movements toward the stake and 

bumper pile to which the dogs are inclined to orient toward in anticipation of being 

allowed to run and retrieve a bumper resulted in the right and left vibrations alone to 

begin prompting the dog to move left or right. This response was further refined by the 

handler fading their body position cues and progressively moving further away from the 

stationary dog prior to issuing right and left vibration commands. Once orienting to 45
0 

fairly consistently, at least upon multiple issuance of command, a stake and bumper pile 
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was positioned at 90
0
 without any stake or bumper pile at 45

0
 and the vibration command 

was issued for a longer duration to, together, prompt the dog to orient to 90
0
. The premise 

for this was that the autonomous system would issue the vibration command until it 

sensed the dog had reached the desired orientation. 

For both the stop and right/left commands, the bumper piles were made 

intermittent (i.e., sometimes running to the stake resulted in bumper to retrieve 

sometimes not) and then the stakes were faded such that orienting toward the last heading 

when the stop was issued and orienting left and right from that heading upon issuing right 

or left vibration commands respectively was faded to being only under the control of the 

commands and intermittently reinforced by access to bumpers to retrieve. The bumpers 

were often in medium to tall grass at a distance such that the dog could not see and thus, 

not orient based on bumper pile position. In order to combine a stop with re-orientation of 

heading away from the handler as opposed to just reorientation from original position, the 

handler would issue the back tone from at first a short distance from handler before 

issuing the stop tone and then issuing left or right orientation vibration commands and 

then progressively increasing the distance traveled by the dog before issuing the stop tone 

followed by vibration commands to reorient the dog. 

 

A.2.3 Final Training Status 

 Prior to the initiation of the experiments reported in this dissertation, canine 

Major was fully proficient at being remotely guided by tone and vibration commands and 

his ongoing following of such guidance being interrupted by the presence of target odor 

to which he would follow to its source and sit (i.e., alert). Canine Major would exhibit 
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this repertoire in a variety of environments including open fields, hard surfaces, around 

and about the exterior of buildings, and inside of large structures, such as subterranean 

mass transit (i.e., subway) venues.   

One complicating aspect of Major‘s final performance for the execution of the 

current experiments was that he tended to take shortcuts to locations he had previously 

encountered target odor and/or to structure and objects similar to those where he had 

encountered target odor in the past. This propensity to disregard movement commands to 

go to such productive (i.e., areas associated with presence of target odor in past) areas 

was considered desirable as compared to the added control afforded by more consistent 

use of negative reinforcement that would be necessary for following movement 

commands. Such added control might interfere with the precedence established for 

disregarding movement commands to respond to the presence of target odor, which was 

the immediate operational imperative of the ongoing technology development project in 

which Major was participating before, during, and after the experiments reported in the 

present paper.  
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Appendix B 

Preliminary Canine Position and Orientation Determination 

 

B.1 Introduction 

As presented in [69], in the preliminary phase of this project, a means of tracking 

the canine‘s position, velocity, and orientation was sought, in order to provide accurate 

measurements for the autonomous control problem. A slightly different navigation 

system than the one described in Chapter 2 was used to acquire tracking data for canine 

motion analysis. In order to map the location, velocity, and orientation of the canine at a 

given point, a low-cost, limited sensor suite composed of the consumer grade U-Blox 

GPS receiver mentioned above, as well as a six degree of freedom Sentera IMU 

containing three accelerometers and three gyroscopes was used.   

 

B.2 Canine Testing 

Although the approach being utilized to track the motion of the canine (i.e., 

GPS/INS integration) is not unique, the canine motion provided new challenges to 

motion tracking.  For example, unlike what is typical when analyzing a vehicle, a canine 

bounces while trotting and also tends to slightly tilt back and forth while walking. Also, 

when coming to a stop, particularly after a sprint, excessive lateral motion can occur. 
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These effects have not been modeled in the algorithms from this phase and must be 

accounted for in the EKF tuning. Also, unlike man-made machines that respond in 

relatively predictable ways, the canine exhibits behaviors that are independent of the 

inputs.  Therefore, many different possible canine motion situations must be accounted 

for in the design and tuning of the EKF algorithms.  To account for these different 

scenarios, a series of controlled tests were run to demonstrate and determine the unique 

motion of a canine and to estimate the factors that could corrupt the navigation system.   

Using a compass, estimated north and east axes were marked before running 

applicable tests to provide qualitative measures of how effective the EKF was in tracking 

the canine position (see Figure B.1).  Next, the dog was walked to illustrate typical canine 

motions.  Namely, the canine was instructed to: 

1) Walk north; turn east; u-turn and walk west; then walk south (―L‖ test). 

2) Walk east; turn and walk north, turn and walk west, then turn and walk south 

(―Box‖ test). 

Using these tests, the EKF was tuned to reject some of the typical disturbances created by 

a dog's sporadic movements, but still maintain an acceptable level of navigational 

performance.  Videos were also made to assist in checking for error. 
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Figure B.1.  North and East axes. 

 

B.3 Tracking Algorithm 

For this phase of the project, the accelerometer measuring acceleration in the 

longitudinal direction and the gyroscope measuring yaw rate are used from the IMU. The 

velocity, course, north, and east positions are measured by the GPS receiver.  These are 

all integrated by the loosely-coupled, EKF tracking algorithm described in section 3.1.2.  

The state estimate vector for this system is: 

 

  T

ga ENbbVx ]ˆˆˆˆˆˆ[ˆ    (B.1) 

 

 Where: V̂   =  Estimated velocity 

   
ab̂   =  Estimated accelerometer bias 

   ̂   =  Estimated heading 

   
gb̂   =  Estimated gyroscope bias 
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   N̂   =  Estimated northern position 

   Ê   =  Estimated eastern position 

 

Figure B.2 visually illustrates the notations used in determining northern and 

eastern velocities.  

 

 

Figure B.2.  Visual illustration of northern and eastern velocity determination. 

 

The GPS receiver outputs course (   ). However, the gyroscope outputs yaw rate, 

where the integral of yaw rate is heading.  In order to integrate the yaw rate 

measurements with the GPS course measurements, the side slip, , is assumed to be zero.  

Therefore, the estimated course (   ) becomes estimated heading ().  Canine motion 

can inject errors into the EKF when the canine does not move precisely in the direction 

that it is facing (i.e., the canine motion contains some sideslip).  However, for the initial 

development of the tracking algorithm, this variable is neglected. 

The state equations used for GPS/INS integration are as follows: 

 

V 

N 

E 

 

 

  
 
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a

m

x bAV ˆˆ
   (B.2) 

 

 Where: m

xA  = Measured longitudinal acceleration from the accelerometer 

   ab̂  = Estimated bias on the longitudinal accelerometer 

   V̂  = Estimated acceleration in the longitudinal direction 

 

 
g

m

z bg ˆˆ     (B.3) 

 

Where: m

zg  =  Measured yaw rate from the gyroscope measuring motion about 

the z-axis 

  gb̂  = Estimated bias on the longitudinal gyroscope 

 

 The biases for this system are modeled as random walks, and the process noise is 

assumed to be zero mean, white noise (i.e.,  ~ N(0, 2

 ) ). Therefore, the following 

equations represent the change in biases for the accelerometer and gyroscope: 

 

  
aab  0

2s

m
 (B.4) 

  
ggb  0

s

rad  

 

 Where:   =  Process noise 
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 The estimated changes in northern and eastern directions are calculated with the 

following equations, according to Figure B.2. 

 

  ̂cosˆˆ
VN    (B.5) 

  ̂sinˆˆ
VE     

 

Note that the northern and eastern velocities are non-linear.  Therefore, the Jacobian () 

is used for the covariance prediction in the EKF to linearize the system about the 

operating point. This results in the Jacobian matrix for the present system, shown below: 
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There are two INS inputs to the integrated system—namely, m

xA and m

zg .  

Therefore, the input vector is the following: 
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The above relationships and matrices are transferred into state space form.  
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  The measured GPS velocity, VGPSM, is equal to the actual velocity (state estimate 

number 1) plus GPS sensor noise and similarly for the other GPS measurements (see 

Equation (3.4)). So, the output equation can be reduced to the following: 
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As mentioned above, the GPS Sensor Noise Covariance Matrix (R) and the 

Process Noise Covariance Matrix (Q) constitute the primary EKF tuning parameters.   
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The Sensor Noise Covariance Matrix values are relatively standard and are acquired from 

the GPS sensor information. 
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 05.0GPSvel
s

m
 (B.11) 

 75.1GPSnorth m 

 75.1GPSeast m  

 
GPSM

GPShead
V

5.0
 radians 

 

The Process Noise Covariance Matrix values prove to be more variable due to the unique 

motion characteristics of a canine. Based on the navigation system for this phase of the 

project, these values were found to be the following: 
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These noise characteristics were trial-based and varied due to different factors, especially 

the unique motion characteristics of canines. This will be discussed further and 

compensated for later in this chapter. 

The state estimation covariance matrix was initialized as follows: 
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Equations (B.1) through (B.13) were used in the standard EKF equations discussed above 

to attain the canine position, velocity, and orientation. 

 

B.4 Challenges 

Figures B.3-B.8 illustrate the challenge in attaining accurate tracking information 

when trying to utilize GPS/INS integration to accurately track canine motion. Figures 

B.3-B.5 show raw accelerator output for automobile, pedestrian, and canine motions, 

respectively. Figures B.6-B.8 illustrate raw yaw gyroscope data for automobile, 

pedestrian, and canine motions, respectively. A comparison of these figures illustrates 

that the pedestrian gyroscope and accelerometer data have higher frequency and 

magnitude oscillations than those for automotive applications and that the raw 

accelerometer and gyroscope sensor data for canines has even higher frequency and 

magnitude oscillations than the pedestrian data due to the motions of the canine. Whereas 

in automotive applications the magnitude of the typical range in acceleration is only 

about 0.6 m/s
2
 (Figure B.3), in pedestrian applications it is common for there to be 1.5-2 

m/s
2
 magnitude oscillations in the accelerometer output (Figure B.4). Canine 

accelerometer output commonly sees magnitude fluctuations of 10-20 m/s
2
 (Figure B.5), 

and when the canine is running, 40-50 m/s
2
 changes in acceleration are common. Such 
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motion saturates the sensors and creates error which is lumped into the estimation of 

accelerometer bias. Whereas in automobile applications the magnitude of the typical 

range in yaw rate is only about 2 deg/s (Figure B.6), in pedestrian applications it is 

common for there to be oscillations between 20 and -20 deg/s in the gyroscope output 

(Figure B.7). Canine gyroscope output commonly fluctuates between 70 and -70 deg/s 

(Figure B.8).  

Recall that one of the critical estimated states of interest for this study is the 

orientation of the canine (i.e., specifically heading). However, much of the high 

frequency motion illustrated in Figure B.8 is due to the unique motion characteristics of 

the canine, rather than the actual orientation change of the canine. The motions of the dog 

captured by the yaw gyroscope, for instance, are at a relatively higher frequency than the 

actual change of in the dog‘s orientation. This illustrates why tracking the biases on the 

inertial sensors is a difficult task. Standard, motion modeling equations for an EKF do not 

account for some of the motion characteristics of the canine. Therefore, more error is 

lumped into the bias estimates, which in turn, makes tracking the inertial sensor biases 

more difficult, which in turn, makes tracking the canine motion difficult, especially 

during GPS outages. 

Consider also that almost any moving object is going to have accelerations 

inherent in its movements. However, in most scenarios, it is known that the average 

acceleration during a given period of time is going to be zero [76]. The measurements of 

said accelerations will, over a sufficient amount of time, yield an average acceleration of 

0 m/s
2
 plus a very small bias due to the nature of low cost, inertial sensors. However, in 

canine motion applications, the average acceleration does not turn out to be zero. In fact, 
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the average accelerometer data from a trial can routinely be above 1 m/s
2
, even though 

the actual canine acceleration does not actually reflect such data.  

There are different factors that are coming into play that add excess ―noise‖ to the 

accelerometer measurements and in turn corrupt the bias estimates. For instance, the 

sensor suite is attached to a vest, which is attached to the back of the canine. However, 

the vest is not fixed rigidly there. There is relative motion between the vest and the 

canine. The vest essentially moves with the canine‘s skin, which is not always moving 

precisely in sync with the rest of the dog. In the same way that you can move the skin on 

your arm relative to the bones beneath, a dog‘s skin moves also relative to its back, and 

even more so than our skin relative to our bones, especially considering the weight of its 

skin and the vest. This causes pack jarring to occur as the canine moves. If the canine 

pushes off the ground with its front paws at the same instance that the pack is moving 

forward, there will be a subsequent collision and jarring of the XSens unit. This happens 

often and results in very high accelerometer measurement spikes—sometimes over 20 

m/s
2
. As noted above, such jarring saturates the accelerometers and causes a lumping of 

error in the accelerometer bias estimate.  

The effect of pitch in canine motion can also be significant and will be discussed 

later in this chapter. When pitch is present in the canine‘s motion, the longitudinal 

accelerometer measurement will be significantly affected and cause further error in the 

bias estimates. 
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Figure B.3. Raw accelerometer measurements in automotive applications. 
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Figure B.4. Raw accelerometer measurements in pedestrian applications. 
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Figure B.5.  Raw accelerometer measurements in canine applications. 



 147 

 

Figure B.6. Raw yaw rate measured from the IMU gyroscope in automotive applications. 
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Figure B.7. Raw yaw rate measured from the IMU gyroscope in pedestrian applications. 
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Figure B.8.  Raw yaw rate measured from the IMU gyroscope in canine applications. 

 

B.5 Experimental Results 

Figures B.9-B.11 illustrate the results acquired when the canine is instructed to 

travel north, turn and travel east, U-turn and travel west, and then turn and travel south.  

Figure B.9 illustrates measured GPS velocity, EKF estimated velocity, and the velocity 

acquired from pure dead reckoning of the IMU without sensor biases taken into account. 

The pure dead reckoning velocity profile (green) drifts away from the GPS measurement 

and EKF estimate immediately and significantly. During the first 15-20 seconds of the 

trial, a ―saw tooth‖ appearance is present in the EKF estimate while the filter is 
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approximating the inertial sensor biases. After approximately 20 seconds, the EKF 

estimate tracks the velocity more smoothly.    
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Figure B.9.  Velocity profile for GPS measurements versus EKF estimate versus dead 

reckoning when the canine travels north, turns and travels east, U-turns and travels west, 

and then turns and travels south. 

 

The EKF position estimate for the same trial (see Figure B.10) adheres to the GPS 

measurements, then diverges when the dog velocity approaches zero meters per second at 

the U-turn around 16-18 seconds. When approaching zero meters per second, the GPS 

course measurements become inaccurate, thus corrupting the bias estimates. Also, the 

filter has not had sufficient time to accurately estimate the inertial sensor biases by that 
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time. Then, when the canine velocity increases, the positions merge again towards the 

end of the test.   
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Figure B.10.  GPS measurement versus EKF estimated position results when the canine 

travels north, turns and travels east, U-turns and travels west, and then turns and travels 

south. 

 

As seen in Figure B.11, it is evident that the inertial sensor bias estimates level 

out over time—especially the gyroscope bias estimate—and the velocity and heading 

track the GPS very well. Again, the heading drifts slightly when the canine velocity 

approaches zero meters per second at the U-turn (see Figure B.10).   
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Figure B.11.  Velocity, accelerometer bias, heading, and gyroscope bias EKF estimate 

results when the canine travels north, turns and travels east, U-turns and travels west, and 

then turns and travels south. 

 

Figures B.12 and B.13 illustrate the results acquired when the dog is instructed to 

travel north, turn and travel east, turn and travel south, and then turn and travel west to 

the approximate starting position. For this illustration, GPS is artificially removed around 

15 seconds to demonstrate loss of GPS and simulate pure dead reckoning. The EKF 

estimate at this point is based on the IMU alone, plus the last bias estimate acquired 

before GPS was turned off. The EKF estimated velocity profile shows the 

commencement of a drift away from the actual GPS measurements towards the end of the 

test (see Figure B.12). This is partially due to the relatively small length of time the filter 
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had to estimate the accelerometer bias and the number and geometry of the GPS satellites 

in view. However, it is believed that this is also due to unmodeled canine motion 

characteristics which are corrupting the accelerometer bias estimate. This will be 

addressed in later appendices and is discussed in Chapter 3. Notice that although the 

velocity drifts, the heading estimate continues to stay close to the actual GPS course 

measurements, since the gyroscope bias was sufficiently estimated by the EKF before the 

outage.   
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Figure B.12.  Velocity, accelerometer bias, heading, and gyroscope bias EKF estimate 

results when the canine travels north, turns and travels east, turns and travels south, and 

then turns and travels west.  GPS measurements are turned off in the EKF estimate at 

approximately 15 seconds (marked with a red vertical line). 
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The position plot (Figure B.13) shows the measured GPS position and EKF 

estimated position of the canine during this trial. The EKF estimate drifts away from the 

GPS measurements towards the end of the test. This would be expected during the 

simulated GPS outage since the accelerometer bias had not been estimated effectively by 

the outage. The accelerometer bias term significantly affects the velocity estimates, 

which in turn, according to Equation (B.5), affects the position estimate. 
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Figure B.13. GPS measurement versus EKF estimated position results when the canine 

travels north, turns and travels east, turns and travels south, and then turns and travels 

west.  GPS measurements are turned off in the EKF estimate at approximately 15 seconds 

(marked with a red line). 



155 

 

B.6 Conclusions 

This preliminary phase of the tracking algorithm development showed that 

GPS/INS integration can be utilized effectively to achieve adequate position, velocity, 

and orientation results with the Extended Kalman Filter, in spite of the unique motion 

characteristics of a canine. However, it was also clear that standard GPS/INS integration 

models do not adequately account for all of the significant canine behavioral 

characteristics. Unmodeled motion characteristics corrupted the EKF bias estimates, 

especially for the accelerometer, which will be addressed later in the chapter. In spite of 

these issues, the canine‘s estimated position for the above trial was still within odor 

detecting range for a canine after a 15 second GPS outage. 
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Appendix C 

Canine Heading Estimation Improvements using 

Magnetometers 

 

C.1 Introduction 

In this phase of the navigation algorithm developments (as reported in [70]), the 

author sought to improve the heading estimation portion of the tracking algorithms using 

magnetometers. Unlike automobiles, canines stop and go frequently. When the canine 

stops, GPS course measurements become unstable, thus corrupting the estimate of the 

gyroscope bias. However, magnetometers can be used to offset this corrupting influence. 

 

C.2 Guidance System 

The guidance system for this phase is comprised of the hardware discussed in 

Chapter 2. Of the available measurements, the accelerometer measuring acceleration in 

the longitudinal direction, the gyroscope measuring yaw rate, and the magnetometers 

measuring the magnetic field strength in the east and north directions were used. As in 

the previous section, by combining the measurements from the GPS receiver, 
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accelerometer, gyroscope, and magnetometers using the Extended Kalman Filter, it was 

determined that the navigation solution could be improved upon. 

 

C.3 Canine Testing 

In order to provide qualitative measures of how effective the EKF is in tracking 

the canine orientation, the dog was walked in box patterns to illustrate typical canine 

motions. Using these tests, the EKF was tuned to reject some of the typical disturbances 

created by a dog's sporadic movements, but still maintain an acceptable level of 

navigational performance. Videos were also made to assist in checking for error. For 

comparison, similar tests were run using pedestrians. 

 

C.4 Improvements 

In order to improve the heading estimates during a GPS outage, improvements 

were made to the algorithms discussed in [69] and were utilized in acquiring the 

estimates. First, the sensor model was adjusted to include pre-calibration of the raw 

accelerometer and gyroscope data in the form of a minor scale factor, which helped to 

compensate for unmodeled factors in the canine‘s motion. Equations (C.1) and (C.2) give 

the new state equations for acceleration and yaw rate as used in this phase. 

 

  a

m

xa bASFV ˆˆ
   (C.1) 

  g

m

zg bgSF ˆˆ    (C.2) 
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 Where: V̂    =  Acceleration estimate 

   aSF  = Accelerometer scale factor (0.95) 

   m

xA  = Measured longitudinal acceleration from the accelerometer 

   
ab̂    =  Accelerometer bias estimate 

   ̂    =  Yaw rate estimate 

   gSF  = Gyroscope scale factor (0.9) 

  m

zg  = Measured yaw rate from the gyroscope measuring motion about 

the z-axis 

   gb̂   = Gyroscope bias estimate 

 

As before, the biases for this system are modeled as random walks, and the process noise 

is assumed to be zero mean white noise (i.e.,  ~ N(0, 2

 ) ). Thus, Equation (B.4) holds.  

  Secondly, magnetometers were added to the sensor suite. As verified in pedestrian 

applications [72], magnetometers coupled with gyroscopes can provide improved heading 

results during GPS outages, especially since magnetometers continue to yield heading 

measurements during GPS outages. Magnetometers measure the strength of the magnetic 

field in a given direction. The XSens IMU contains magnetometers oriented in a tri-axis 

formation. Under the assumption that there is no change in pitch in the canine‘s motion 

(an assumption that will be discussed further in the chapter), the following holds true. 

 

  
m

E

m

N
MagM

M

M1tan   (C.3) 
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 Where: MagM  = Measured heading from longitudinal and lateral magnetometers 

   m

NM  = Measured strength of the magnetic field in the longitudinal 

direction 

   m

EM  = Measured strength of the magnetic field in the lateral direction 

 

Although extensive care must be taken in magnetometer calibration in many applications 

due to severe biasing caused from the presence of ferrous materials in the immediate 

vicinity of the magnetometer location (e.g., attachment to robots and vehicles) [73-75], 

applying the use of magnetometers with canines proved to bypass much of this inherent 

biasing problem.   

Finally, as discussed in the previous section, the unique motion characteristics of 

living biped and quadruped species, such as canines, require specialized tuning of the 

Process Noise Covariance (Q) Matrix in the EKF. These parameters were re-tuned for 

this phase after the implementation of the magnetometers to further improve the heading 

estimates during a GPS outage.   

 

C.5 Tracking Algorithms 

 In this system, the longitudinal acceleration is measured by an accelerometer, and 

the yaw rate is measured by a gyroscope. The velocity, course, north, and east positions 

are measured by the GPS receiver. These measurements are all integrated by the tracking 

algorithm. As explained in the previous section, according to Equation (3.4), the new 

output equation can be reduced to the following: 
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The state estimate vector for this system is: 

 

  Tmga bENbbVx ˆˆˆˆˆˆˆˆ    (C.5) 

 

 Where: V̂   =  Estimated velocity 

   
ab̂   =  Estimated accelerometer bias 

   ̂   =  Estimated course 

   
gb̂   =  Estimated gyroscope bias 

   N̂   =  Estimated northern position 

   Ê   =  Estimated eastern position 

   mb̂  = Estimated magnetometer bias 

 

Figure B.2 still holds as a visual illustration of the notations used in determining 

northern and eastern velocities. Side slip () is assumed to be zero as well. Therefore, 

GPS course is still assumed to be equal to heading () since course is equal to (   ).   

After the appropriate linearizations (discussed previously), the following Jacobian 

matrix results for this system: 
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 Equations (B.5) and (B.6) still hold from Appendix B and will not be repeated 

here. As before, the GPS Sensor Noise Covariance Matrix (R) and the Process Noise 

Covariance Matrix (Q) constitute the primary EKF tuning parameters. The R matrix 

values are relatively standard and can be acquired from the sensor information. 
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The Sensor Noise Covariance Matrix values used for both the pedestrian as well as the 

canine data are as follows. 
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 1.0GPSvel
s

m
  (C.9) 

 01.0GPSnorth m 

 01.0GPSeast m  

 
GPSM

GPShead
V

1.0
 radians 

 
MagHead  = 10 radians (Canine) 

  = 0.1 radians (Pedestrian) 

 

The Process Noise Covariance Matrix (Q) values once again proved to be unique for 

pedestrian and canine applications (i.e., when compared to vehicle data) under the current 

model. 

 

 6*1  ebg
2s

m
  (C.10) 

 
s

rad
g 08.0  

 5*1  eeastnorth  m 

  

The other values used in the Q matrix proved to be different for pedestrian versus canine 

data (see Table C.1).  The noise on the longitudinal accelerometer for the canine is 

significantly higher to account for more unmodeled effects. 
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Table C.1. Various Process Noise Covariance Matrix (Q) values for pedestrian and 

canine applications. 

 Pedestrian Canine 

A  
175

2s

m
 550

2s

m
 

bA  
25

2s

m
 8

2s

m
 

bm  0.001 rad 0.1 rad
 

 

  

Note that the determined values of the noise characteristics on the accelerometer and the 

gyroscope illustrated here were based upon the particular pedestrian and canine being 

tested. Changing the person/canine being tested could cause different results due to 

unmodeled effects in the current, simple dynamic model. Tests where sprinting occurred 

also yielded different tuning results. A model for coping with such variation will be 

discussed later in this chapter. 

The state estimation covariance matrix was initialized as follows for the canine. 
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The pedestrian state estimation covariance matrix was the same, except for the initial 

confidence in the accelerometer bias, which was set to 1 and the confidence in the 

accuracy of the heading, which was set to 1000.   

 

C.6 Experimental Results 
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Figure C.1. EKF pedestrian heading results when magnetometers are not used. 

Simulation GPS outage occurs at approximately the green line. 

 

Figure C.1 illustrates typical heading results of the EKF for a pedestrian scenario 

when magnetometers are not present. The blue dots represent the GPS measurements. 
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The red line represents the EKF position estimate. The black line represents the EKF 

position results when a simulated GPS outage occurs approximately ½ of the way 

through the test. [Note that heading wrapping occurs during the first two seconds of the 

trial since the heading is set to stay between +/-180 degrees.] Notice that when the GPS 

outage occurs, the heading estimate immediately begins to drift in comparison to the EKF 

and GPS course measurements.   

Figure C.2 illustrates the heading results of the EKF for a pedestrian scenario 

when magnetometers are used. Again, a GPS outage is simulated ½ way through the trial. 

For both cases (i.e., with and without magnetometers), for the sake of comparison, the 

tuning parameters are kept constant, and the magnetometer tuning parameters are merely 

added to the relevant matrices. [Note again that heading wrapping occurs during the first 

two seconds of the trial since the heading is set to stay between +/-180 degrees.] Notice 

that when magnetometers are in use, the heading estimate post-GPS outage is visibly 

closer to the EKF and GPS course readings. Comparing the mean differences between the 

EKF heading estimate (with the GPS outage in place) and GPS course measurements for 

this test revealed a 10.2% improvement in the pedestrian heading estimate when 

magnetometers are in use. 
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Figure C.2. EKF pedestrian heading results when magnetometers are used. Simulation 

GPS outage occurs at approximately the green line. 

 

Figure C.3 illustrates the typical EKF estimate of the canine heading when 

magnetometers are not used in the algorithms. Notice that after the GPS outage is 

simulated, there is an immediate drifting of the heading estimate from the EKF solution 

and GPS course measurements. 
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Figure C.3. EKF canine heading results when magnetometers are not used. Simulation 

GPS outage occurs at approximately the green line. 

 

Figure C.4 illustrates the EKF heading estimates for a canine when 

magnetometers are present. Again, the corresponding tuning parameters are kept constant 

and the magnetometer tuning parameters are merely added to the relevant matrices. As in 

the previous examples, the black line represents the EKF position estimate after a 

simulated GPS outage ½ of the way through the test. A drift from the EKF solution and 

GPS course measurements is apparent again. However, a comparison of the mean 

difference between the EKF heading estimate (with the GPS outage in place) and GPS 
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course measurements for this test revealed a 6.3% improvement in the heading estimate 

when magnetometers are used. 
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Figure C.4. EKF canine heading estimate when magnetometers are used. Simulation 

GPS outage occurs at approximately the green line. 

 

C.7 Conclusions 

Although extensive testing considering many different variables would be 

required to determine the extent to which magnetometers improve the heading estimate 

during GPS outages, it is clear that when magnetometers are used to bolster the heading 

estimate, the results are improved during a GPS outage. Magnetometers keep the heading 
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estimate from diverging from the EKF and GPS course measurements as quickly. This 

confirms the results stated in [72]. An optimized and more reliable system can be 

obtained by coupling gyroscopes and magnetometers in obtaining the pedestrian heading 

estimate during GPS outages. This applies to canine tracking scenarios as well. 

This phase of the tracking algorithm development illustrated that 

GPS/INS/Magnetometer integration using an EKF can be utilized effectively to achieve 

improved orientation results over GPS/INS integration alone for some canine 

applications. However, the motion characteristics of a canine inject significant error into 

the tracking estimates. Whereas in automotive situations many unmodeled factors can be 

neglected due to, for instance, minimal slip and stationary sensors, canine motion 

contains significant slip, incline, and jostle that affects estimates. The assumption that 

GPS course measurements can be integrated with the yaw rate gyro (i.e., that slip can be 

neglected) injects error into the estimates, as well as the assumption that there is no 

incline in the motion of the canine (i.e., gravity is neglected). The velocity estimate 

diverges significantly under the current model, which results in undesirable position error 

during GPS outages. 

Areas where there is a high ferrous content would temporarily bias the 

magnetometers. Thus it may be necessary in future work to compensate for the 

magnetometer bias that would occur when the canine enters into areas with a high ferrous 

content. Magnetometer calibration would be necessary in such scenarios. [72] 

demonstrated that the heading derived from the gyroscope ―can be used to identify 

magnetic disturbances, while the magnetic compass can determine the bias of the gyro 

and the initial orientation.‖ 
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Appendix D 

Canine Position and Velocity Estimate Improvements by 

Accounting for Pitch in a Canine’s Motion 

 

D.1 Introduction 

 As discussed in Appendix C and as presented in [71], the standard modeling 

equations that are used in an EKF for, for instance, automotive applications, are not 

sufficient to account for all of the motion characteristics of a canine. The result is that 

more error is lumped into the estimate of the inertial sensor biases by the EKF, and the 

Process Noise Covariance Matrix must be tuned to account for these unmodeled factors. 

The goal of this phase of the tracking algorithm development is to determine how 

significant the affect of pitch is in canine motion, and if it is found to be significant, 

remove its effects in the estimate of the longitudinal accelerometer‘s bias estimate by 

including pitch in the canine motion model. This will, in turn, cause less error to be 

lumped into the accelerometer bias estimate, which will allow for a quicker and more 

accurate estimate of the bias. When the accelerometer bias is estimated better, a better 

position and velocity estimate of the canine can be attained during GPS outages. 

 Also, as was mentioned briefly in Chapter 2, the small, low-cost, embedded 

microprocessor has limitations that a standard lap top computer does not have. 
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Computational expense must be considered in the development of the filtering 

algorithms. Thus, a second goal of this phase is to determine a filtering approach that will 

be computationally inexpensive enough to run onboard the microprocessor side-by-side 

with the controller that was discussed in Chapter 4. 

 

D.2 Guidance System 

 The navigation system described in Chapter 2 is used for this phase of the 

tracking algorithm development. North and East positions, as well as Velocity 

measurements were used from the GPS receiver. The longitudinal accelerometer 

measurement and pitch and heading estimates from the XSens unit are used as inputs to 

the filtering algorithms.  

 

D.3 Canine Testing 

In order to capture the effect of pitch in canine motion, data was captured while 

the canine was being walked by a handler. Walking motion closely approximates canine 

motion while it is in odor detection mode. It is this type of motion that is most likely to be 

occurring during GPS outages, since the surrounding environment could limit satellite 

visibility in such scenarios. This observation made canine walking motion of special 

interest during this project. 

 

D.4 Tracking Algorithms 

As has been previously discussed, accurate estimates of canine position, velocity, 

and orientation are needed for the canine control problem. That tracking solution needs to 
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be able to hold during brief GPS outages, and it needs to be as computationally 

inexpensive as possible so that the algorithms will be able to run real-time on the small, 

low-cost microprocessor located onboard the canine alongside the control algorithms. 

Using an EKF in this project has proved to be effective in yielding a navigation solution 

that will hold during brief GPS outages and is used during this phase as well. In order to 

meet the second goal, a loosely-coupled, four state EKF is used for the tracking 

algorithm, and for this stage of the project the Attitude Heading Reference System on the 

XSens unit is used to provide a drift-free measurement of the Euler angles. This allows 

for an accurate estimate of heading and pitch, regardless of the presence of GPS satellite 

visibility and without adding several extra estimated states to the EKF, thus significantly 

lowering the computational expense of the algorithms. These choices proved to meet the 

goals stated above. 

The four state estimate vector, initialized with zeros, is the following: 

 

  Ta ENbVx ˆˆˆˆˆ   (D.1) 

 

 Where: V̂  = Estimated velocity 

   ab̂  = Estimated accelerometer bias 

   N̂  = Estimated northern position  

 Ê  = Estimated eastern position 

 

 The state equation for acceleration is illustrated in Equation (D.2) and will be 

explained in further detail later. 
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 a

m

x bgAV ˆ)sin(
ˆ

   (D.2) 

 

 Where: V̂    =  Acceleration estimate 

   m

xA  = Measured longitudinal acceleration from the accelerometer 

   
ab̂    =  Accelerometer bias estimate 

      Pitch measurement 

   g  = Acceleration due to gravity (9.81 
2s

m
) 

 

Equation (B.5) still holds as the state equation for northern and eastern velocities. Also as 

before, the bias for this system is modeled as a random walk, and the process noise is 

assumed to be zero mean white noise (i.e.,  ~ N(0, 2

 ) ). Thus, Equation (B.4) holds. 

  After the appropriate linearizations discussed above, the following Jacobian 

matrix results for this system: 
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  As before, the longitudinal acceleration is measured by a longitudinal 

accelerometer, and pitch and heading estimates are provided by the XSens unit. Thus, the 

input vector is as follows: 
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 Where: m = Pitch measurement 

   m = Heading measurement 

 

Velocity (i.e., ground speed), northern position, and eastern position measurements are 

provided by GPS. Thus, the output vector, according to Equation (3.4), is as follows: 
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As before, the GPS Sensor Noise Covariance Matrix (R) and the Process Noise 

Covariance Matrix (Q) constitute the primary EKF tuning parameters. The R matrix 

values are relatively standard and can be acquired from sensor information. 
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 Sacc and Hacc are speed and position accuracy measurements, respectively, 

provided by the GPS receiver.  

The state estimation covariance matrix was initialized as follows: 
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D.5 Pitch Effects 

 Figures D.1 and D.2 illustrate typical raw pitch motion data that results from 

canine behavior. Figure D.1 is data from a trial where the canine is in odor detection 
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mode. Figure D.2 is data from a trial where the canine is sprinting. From Figure D.1, it is 

evident that canine odor detection motion exhibits nearly instantaneous 5-10 degree pitch 

fluctuations on average, and sometimes shifts in pitch of 15-18 degrees. From Figure D.2, 

it is evident that canine sprinting motion often exhibits magnitude changes of 40-60 

degrees. 

 

 

Figure D.1. Raw pitch measurement from XSens unit while canine is in odor detection 

mode. 
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Figure D.2. Raw pitch measurement from XSens unit while canine is sprinting. 

 

In vehicle applications, if the automobile is known to be on level ground (i.e., 

there is zero road grade), it would be expected that the average of the pitch measurements 

would be approximately zero degrees or very close to it, especially since care could be 

taken to ensure that the measuring devices are positioned in such a way on the 

automobile as to eliminate false inclination measurements. However, this is not the case 

in canine motion. An examination of Figure D.1 clearly shows that the average of the 

pitch measurements for the illustrated trial is not 0 degrees, but is rather -8 or -9 degrees. 

There are several factors that can cause this phenomenon. For instance, if the 

canine spends a significant amount of time sitting, the XSens unit will register the 

presence of pitch or incline, which will affect the average pitch over time. Also, the 
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canine‘s spine is not level [77]. This results in the presence of pitch even when the canine 

is standing flat on level ground. Further, if the inertial sensors are not positioned precisely 

level on the back of the canine, a pitch can register. This scenario is common, since the 

vest and consequently, the sensor suite, unavoidably slide a few degrees to the side of the 

canine over time. Also, canine motion, in and of itself, inherently contains significant 

pitch behavior as well, since the back two legs do not move at the same time as the front 

two legs. This causes a ―rocking horse‖-like motion. Plus, if the canine‘s front or back 

legs are stronger than the others or push off the ground harder than the others, a pitch bias 

can register over time. Needless to say, in some applications, pitch can be neglected in 

the motion model. However, this is not the case with a canine scenario. 

If perfectly level and motionless, a longitudinal accelerometer will read 

approximately 0 m/s
2
, plus some small bias and noise. However, the moment pitch is 

present, the accelerometer will begin to read the effect of gravity in its measurements and 

indicate that there is a longitudinal acceleration, even when the canine is sitting still. This 

is due to the fact that accelerometers measure all acceleration vectors, including gravity. 

In many typical vehicular motion models and in previous phases of this tracking 

algorithm evolution, the model did not take gravity into account and assumes that the 

integral of the accelerometer measurement in the longitudinal direction corresponds to 

the GPS measurement for velocity or ground speed (i.e., it did not consider the effect of 

incline or pitch). Thus, when incline was present, the longitudinal accelerometer would 

output a value due to the role of gravity, even when there was no motion present in the 

longitudinal direction. This significantly corrupted the accelerometer bias estimate, and in 

turn, the velocity estimate. This factor also deleteriously effected the canine position 



 179 

estimate (which is also based on the velocity estimate—see Equation (B.5)). Recall from 

Figure B.5 that raw accelerometer data for canine motion often registers a significant 

bias. This is due, in part, to the presence of pitch in the canine motion and pack position. 

The effect of pitch in the level of accelerometer ―noise‖ can be removed by accounting 

for pitch in the motion model, which is done for this phase of the tracking solution (see 

Equation (D.2)). 

 

D.6 Canine Motion Simulator 

D.6.1  Trial Profile 

 In order to visualize more specifically how the presence of pitch or incline affects 

an EKF canine tracking solution, a Canine Motion Simulator (CMS) was developed using 

MATLAB. An acceleration, yaw rate, and pitch profile were designed first. In the 

simulator, the canine starts its trial moving due north (0 degrees, yaw) on flat terrain (0 

degrees, pitch) from a velocity of 0 m/s. It accelerates at 1 m/s
2
 for three seconds, then 

changes heading for one second at a yaw rate of 90 deg/s. During the change in heading, 

a deceleration of -1 m/s
2
 occurs, as would be expected to occur in a real world turning 

scenario. The canine then moves due east at a steady velocity of 3 m/s for 15 seconds. 

However, a 10 degree incline is present during this eastward movement. From this trial 

profile, the canine‘s position, velocity, and yaw were determined at discrete times using 

the appropriate calculus equations, illustrated below. 

   

  oVAdtV    (D.9) 
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 Where: V = Velocity 

   A = Acceleration 

   Vo = Initial velocity 

 

   ordt     (D.10) 

 

 Where:   eading (yaw) 

   r = Yaw rate 

   o = Initial heading 

  

 From Equations (B.5), (D.9), and (D.10), the northern and eastern velocities were 

calculated. Then, as Equation (D.11) indicates, northern and eastern positions can be 

calculated by integrating northern and eastern velocities with respect to time. 

 

    oNdtNN   (D.11) 

    oEdtEE   

 

D.6.2  Noise Characteristics 

Using the trial profile information, the GPS measurements and inertial sensor 

measurements were developed. In order to mimic these sensor measurements, white noise 

was added to each of the measurements developed above using MATLAB‘s random 
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number generator function, randn(.). Biases were also added to the inertial sensors, as 

would be the case with actual inertial sensor measurements.  

The GPS noise characteristics that were chosen are given in Equation (D.12). 

 

 mGPSpos 1.0  (D.12) 

 
s

m
GPSvel 05.0  

 deg
)(

)(
iV

i GPSvel

GPS


    -or- 61)( eiGPS  deg, if velocity is 0 m/s 

 

 The yaw gyroscope noise and bias values that were chosen are given in Equation 

(D.13), respectively. 
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 The longitudinal accelerometer noise and bias values that were chosen are given 

in Equation (D.14), respectively. 
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D.6.3 Measurement Equations 

 The equations that were used to generate the ―noisy‖ measurements are as 

follows. The GPS measurement equations for each discreet time, i, are given in Equation 

(D.15). 

 

  )1(*)()( randniNiN GPSposGPS   (D.15) 

  )1(*)()( randniEiE GPSposGPS   

  )1(*)()( randniViV GPSvelGPS   

  )1(*)()()( randniii GPSGPS    

 

The gyroscope measurement equation is shown in Equation (D.16). 

 

  )1(*)()( randnbirig Gzg

m

z   (D.16) 

 

The accelerometer measurement equation is given in Equation (D.17). Note that the 

effect of incline or pitch is included in the accelerometer measurement. 

 

    )1(*)(*)(sin)()( randnbgiiAiA Axa

m

x    (D.17) 

 

From these equations, a text file of the trial was created. Then, a six-state EKF like the 

one described in section B.3 was used to examine the adverse effect of pitch in the EKF 
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tracking solution. The ground speed or velocity, longitudinal accelerometer bias, yaw, 

yaw rate gyroscope bias, northern, and eastern positions were calculated from the 

integration of an accelerometer and gyroscope measurement with GPS velocity, course, 

northern position, and eastern position measurements. As is the case in section B.3, pitch 

is not accounted for in this motion model so that the error in the position and velocity 

solution can be examined. 

 

D.6.4  Results and Discussion 

When the trial profile does not include the road grade, the EKF position and 

velocity estimates track excellently. This is evident upon examination of the first portion 

of the trial, before the simulated canine begins movement on the inclined surface. 

However, as Figures D.3 and D.4 illustrate, as soon as the canine enters the inclined 

region, the EKF estimate is corrupted. In the position plot (Figure D.3), an offset from the 

GPS measurements ensues along with a ―saw tooth‖-like behavior. In between GPS 

measurements, only inertial sensor measurements are available. Since position estimates 

are based on the estimate of velocity (see Equation (B.5)), which are in turn based on the 

accelerometer measurement and the estimated bias on that accelerometer when the EKF 

is in between GPS measurements, and since the accelerometer is registering the effect of 

inclination and the EKF is not accounting for it, the position estimate begins to diverge 

immediately after a GPS measurement. In the EKF the GPS measurements are weighted 

with higher confidence due to their excellent accuracy. Therefore, as GPS measurements 

become available, the estimated position snaps back towards the GPS measurement. This 

results in a ―saw tooth‖-like appearance in the position. 
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Figure D.3. Canine motion simulation EKF position estimate results when incline is 

present after the turn. Approximate initiation of incline is marked with a green 

line.  
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Figure D.4. Canine motion simulation EKF velocity and accelerometer bias estimate 

results when incline is present after approximately 5 seconds. Approximate 

initiation of incline is marked with a green line. 

 

 This ―saw tooth‖-like appearance is also present in the EKF velocity estimate (see 

Figure D.4) for the same reason. The GPS velocity measurement is weighted with higher 

confidence in the EKF. However, notable is the fact that the ―saw tooth‖ projections get 

smaller and smaller and nearly disappear towards the end of the trial, at which time the 

EKF tracks the velocity well. This is due to the fact that the EKF lumped the effect of 

incline into the estimate of the accelerometer bias and consequently removed it. 
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However, the accelerometer bias which the EKF estimated is not the true bias of 0.1 m/s
2
 

(see Equation (D.14)). Thus, when the canine moves into an area with a different road 

grade or a zero road grade, the bias will be off. A GPS outage at such a time would result 

in a very quick divergence in position and velocity estimates. 

 

D.6.5  Conclusions 

 It is clear that the presence of pitch or incline in a trial will significantly corrupt 

the standard EKF tracking estimates. It is also clear from Section D.5 that pitch is a major 

component of canine motion. Therefore, it can be inferred that pitch and inclination must 

be accounted for in the EKF canine motion model. 

 

D.7 Experimental Results 

 Figures D.5-D.8 illustrate sample motion results when a canine is in odor 

detection mode. The blue dots represent straight GPS measurements and are used as 

―truth‖ measurements for the sake of comparison to the EKF results. The GPS position 

measurements are known to be within 3.5 meters of the actual canine position, based on 

the real-time horizontal accuracy measurements provided by the GPS receiver. The red 

lines represent the four state EKF results when pitch is or is not accounted for in the 

motion model. The green lines represent the EKF results when a simulated GPS outage is 

put in place ¾ of the way into the trial. 

 Figures D.5 and D.6 illustrate results when pitch is not accounted for in the 

motion model for the EKF. The velocity motion results in Figure D.5 exhibit a swift 

deviation of the EKF estimate from the GPS measurements. This is due to an inaccurate 
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estimate of the accelerometer bias by the EKF because of the unmodeled motion 

characteristics of the canine. After a GPS outage of about 20 seconds, the velocity 

estimate is off by about 4 m/s. 

 

 

Figure D.5. EKF canine velocity estimate when pitch is not accounted for in the motion 

model. The canine is in odor detection mode. A simulated GPS outage occurs 

after ¾ of the trial. 

 

The position results (Figure D.6) also exhibit significant error during the GPS 

outage. After the 20 second outage, the position results are off by about 50 meters. This is 

due, again, to the inaccurate estimate of the accelerometer bias, since the position results 

are based on the velocity estimate, according to Equation (B.5). Notice that when the 

estimated velocity incorrectly drops below 0 m/s (Figure D.5), the canine is observed to 

do an ―about face‖ in the position results, which in turn results in significant deviation in 

the position estimate in a short amount of time. This shows the importance of accurately 

estimating the accelerometer bias as soon as possible before a GPS outage occurs. 
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Figure D.6. EKF canine position estimate when pitch is not accounted for in the motion 

model. The canine is in odor detection mode. A simulated GPS outage occurs 

after ¾ of the trial. 

 

 Figures D.7 and D.8 illustrate canine motion results when pitch is accounted for 

in the motion model for the EKF. The velocity results (Figure D.7) show that the EKF 

velocity solution remains close to the GPS measurements throughout the simulated 

outage. After the approximate 20 second GPS outage, the velocity deviation is about 0.5 

m/s. 
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Figure D.7. EKF canine velocity estimate when pitch is accounted for in the motion 

model. The canine is in odor detection mode. A simulated GPS outage occurs 

after ¾ of the trial. 

 

 The position results (Figure D.8) illustrate that the EKF solution stays within 1 

meter of the GPS measurements. By the end of the simulated GPS outage, the EKF 

position estimate is about 1 meter away from the GPS solution. 

 Figures D.9-D.10 illustrate sample motion results of a canine when it is sprinting. 

Notable is the fact that canine running motion clearly exhibits ―noisier‖ results than the 

results from when the canine is in odor detection mode. The EKF solutions with and 

without pitch being accounted for exhibit ―saw tooth‖-like behavior at times. This 

indicates that canine running motion contains other unmodeled noise characteristics 

which should be addressed in the future. The solution that was chosen was discussed in 

Chapter 3.  
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Figure D.8. EKF canine position estimate when pitch is accounted for in the motion 

model. The canine is in odor detection mode. A simulated GPS outage occurs 

after ¾ of the trial. 

 

The results illustrated in Figures D.9 and D.10 show results when pitch is not 

accounted for in the motion model of the EKF. As in the previous examples, the EKF 

position and velocity solutions deviate swiftly and significantly from the GPS solutions. 

After a simulated GPS outage of only about 7 or 8 seconds, the velocity estimate is off by 

some 18 m/s, and the position estimate is off by approximately 55 meters. As in the 

above example, since the accelerometer bias has not been estimated effectively by the 
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outage, the velocity solution is becoming more and more erroneous by the moment. Thus, 

as is implied by Equation (B.5), the position solution error increases even faster. 

 

 

Figure D.9. EKF canine velocity estimate when pitch is not accounted for in the motion 

model. The canine is sprinting. A simulated GPS outage occurs after ¾ of the 

trial. 

 

 Figures D.11 and D.12 illustrate the canine motion results when pitch is 

accounted for in the motion model. Although the sprinting results are noisy and clearly 

contain unmodeled motion characteristics, it is evident that accounting for pitch in the 

motion model significantly improves the solution during the GPS outage. The velocity 

solution remains close to the GPS velocity measurements throughout the outage, and the 

position solution is off by only 5 meters by the end of the outage. 
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Figure D.10. EKF canine position estimate when pitch is not accounted for in the motion 

model. The canine is sprinting. A simulated GPS outage occurs after ¾ of the trial. 

 

 

Figure D.11. EKF canine velocity estimate when pitch is accounted for in the motion 

model. The canine is sprinting. A simulated GPS outage occurs after ¾ of the trial. 
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Figure D.12. EKF canine position estimate when pitch is accounted for in the motion 

model. The canine is sprinting. A simulated GPS outage occurs after ¾ of the trial. 

 

As a final visual comparison, Figure D.13 illustrates another example of the 

position solution for a canine in odor detection mode. The GPS solution (dark blue dots) 

is nearly covered up by the two EKF solutions. The cyan colored line is the EKF solution 

without pitch in the motion model, and the red colored line represents the EKF solution 

when pitch is considered in the motion model. Notable in this plot is the non-GPS 

solution (i.e., the green line). When the inertial sensors and magnetometers are used alone 

in determining the canine position (i.e., without corrections provided from GPS 
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measurements), the final position error is about 300 meters. This illustrates the value of 

integrating the inertial sensors, magnetometers, and GPS. 

 

 

Figure D.13. Canine position results for various sensor configurations when the canine is 

in odor detection mode. A simulated GPS outage occurs the final 10 seconds of 

the trial. 

 

 Table D.1 illustrates average motion tracking results for a canine in odor detection 

mode after a 10 second GPS outage. The trials are approximately 40 seconds each. The 
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given sensor configurations are compared to GPS measurements, which are known to be 

accurate to within 3.5 meters, according to the horizontal accuracy measurements 

provided by the GPS receiver. As reported in [45], the results were found to be 

statistically significant using the two-tailed, paired samples T-test. Table D.2 illustrates 

the results of the T-testing.  

As is illustrated in Figure D.13, Table D.1 compares results from different sensor 

configurations. Obviously, if GPS alone were used in tracking the canine, the moment 

GPS is lost, the position and velocity of the canine would be unknown until GPS was 

restored. When GPS is not used to correct the error on the longitudinal accelerometer and 

the accelerometer and heading measurements are alone used to determine the position 

and velocity of the canine, by the end of a trial the position error is 340.4 meters on 

average. The velocity error at the end of such a trial is 39.6 m/s on average. When a 

standard-type EKF is used, and the measurement from the accelerometer, the heading 

measurement, and GPS velocity and position measurements are used together, the 

position error by the end of the trial is reduced to 21.5 meters on average, and the 

velocity error is cut to 5.1 m/s on average. However, when the GPS measurements are 

coupled with the accelerometer, heading, and a pitch measurement, the errors are nearly 

cut in half. On average, the position error is reduced to 11.6 meters, and the velocity error 

is reduced to 2.8 m/s by the end of the GPS outage. Notable also is the fact that the 

standard deviation is lowered significantly as well, thus providing more confidence in the 

EKF solutions. 
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Table D.1. Average canine motion tracking error results for various sensor 

configurations after a 10 second GPS outage. The canine is in odor detection 

mode. 

Configuration Position Error (m) Velocity Error (m/s) 

  Mean Std. Dev. Mean Std. Dev. 

Acc., Head. 340.4 355.1 39.6 25.1 

GPS, Acc., Head. 21.5 17.2 5.1 4.6 

GPS, Acc., Head, Pitch 11.6 7.2 2.8 1.8 

 

 

Table D.2. Two-tailed, paired samples T-tests for canine position and velocity. 

Configuration pairing Position Error (m) Velocity Error (m/s) 

  t Sig. t Sig. 

Acc., Head.—GPS, Acc., Head. 4.889 p < 0.001 7.685 p < 0.001 

Acc., Head.—GPS, Acc., Head., Pitch 5.129 p < 0.001 8.212 p < 0.001 

GPS, Acc., Head.—GPS, Acc., Head., Pitch 2.948 p = 0.006 2.832 p = 0.008 

31 trials (df = 30) 

 

  

D.8 Conclusions 

 Both intuition and the evidence indicate that pitch plays a significant role in a 

canine‘s motion characteristics. Failing to account for it in the EKF motion model 

accounts for a significant source of corruption in the estimate of the accelerometer bias, 

which is needed for tracking in cases where GPS outages occur. Accounting for pitch 

effects in the motion model, however, reduces the position and velocity errors to a 

palatable level and reduces the standard deviation significantly, leading to more 

confidence in the EKF solution.  
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However, as articulated above, the ―noise‖ level and ―saw tooth‖-like behavior, 

especially in running scenarios, indicates that there are other unmodeled canine behaviors 

still present in the EKF solution. Accounting for these could lead to a better estimate of 

the accelerometer bias and a better tracking solution during GPS outages. Chapter 3 

presents an effective approach to compensate for such unmodeled noise characteristics. 

 

 

 

 

 

 

 

 

 

 

 

 

 


