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Abstract

Wireless channels, due to multipath propagation and Doppler spread, are characterized

by frequency- and time-selectivity, so-called doubly-selective wireless channels. In this disser-

tation, we concentrate on adaptive channel estimation and equalization for communications

systems over doubly selective channels, exploiting basis expansion models (BEM). Since the

time-varying nature of the channel is well captured in the complex exponential basis expan-

sion model (CE-BEM) by the known exponential basis functions, the time variations of the

(unknown) BEM coefficients are likely much slower than those of the channel and thus more

convenient to track.

First, a subblock-wise channel estimation based on CE-BEM is considered, where we

track the BEM coefficients using time-multiplexed (TM) periodic training symbols. Assum-

ing the BEM coefficients follow a first-order AR model, Kalman filtering is used to track

the BEM coefficients. This first-order AR assumption, however, is not necessarily true and

possibly incurs significant modeling errors in estimation. We then seek adaptive channel esti-

mation schemes with no a priori model for the BEM coefficients using recursive least-square

(RLS) algorithm with finite memory.

Next, taking the performance of BEM-based approach into account, we investigate an

adaptive soft-in soft-out turbo equalization for coded communication systems, exploiting CE-

BEM for the overall channel variations and AR model for the BEM coefficients. We extend

an existing turbo equalization approach based on symbol-wise AR modeling of channels to

channels based on CE-BEM.

Based on the subblock-wise approach, we also propose a decision-directed tracking based

on BEM, where we track the BEM coefficients using the information symbol decisions of a

decision feedback equalizer (DFE) as virtual training. The time gap between symbol deci-

sions and required channel estimates, arising from the decision-directed tracking, is bridged

by CE-BEM-based channel prediction using the estimated BEM coefficients. We also adopt

an exponentially-weighted (EW) RLS algorithm for our BEM-based decision-directed track-

ing scheme. Decision-directed tracking requires fewer training symbols compared to the

training-based tracking, for the same performance.

The contribution of the proposed BEM-based channel estimation and equalization schemes

is that we track the BEM coefficients in CE-BEM, not the channel taps directly, based on

ii



the subblock-wise approach and then generate the time-varying channels via CE-BEM. Sim-

ulation examples illustrate the superior performance of our approach over several existing

doubly-selective channel estimators.

Finally, we extend all the proposed channel estimation and equalization approaches to

multiple-input multiple-output (MIMO) systems.
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Chapter 1

Introduction

Wireless channels are challenging communication media with limited bandwidth, rel-

atively low capacity per unit bandwidth, random amplitude and phase fluctuations, and

inter-symbol interference (ISI). Due to multipath propagation and Doppler spread, wireless

channels are characterized by frequency- and time-selectivity [60]. To design a physical link

with data rates approaching the fundamental information capacity limits of the wireless

channel, accurate knowledge of the channel state information (CSI) becomes a prerequisite

for many physical layer approaches. At the receiver end, equalizers are usually used to com-

pensate for the signal distortion. One may design an equalizer based on a channel estimate

or directly using the received signal. Accurate modeling of the temporal evolution of the

channel plays a crucial role for estimation and tracking.

Among various models, the first-order autoregressive (AR) process is often regarded

as a tractable model to describe a time-varying channel, where the channel is assumed to

be Markovian; that is, for the current channel sample, the effect of channel samples other

than the immediately preceding one is negligible [16]. This Markovian assumption has been

justified for Rayleigh fading channels in [16] by considering the mutual information between

successive channel samples.

The AR models, however, have their own drawback. When time-multiplexed (TM)

training is used, channel tracking may not perform well during information-symbol trans-

missions (information sessions) since the information data are unknown. During information

sessions, channel estimates can only be obtained based on the results from training ses-

sions [76]. This channel prediction strategy, apparently, is not appropriate to a fast-varying

channel, where the AR model may lead to high estimation variance resulting in erroneous

symbol detections [6]. Potential solutions lie in exploiting the detected symbols for channel

tracking: In [64], a Kalman filter is used in a decision-feedback mode during information

sessions; per survivor processing (PSP) is used in [43], which embeds data-aided channel

estimation into the Viterbi algorithm; in [68], joint channel estimation and data detection

is implemented via extended Kalman filtering. Although channel tracking can be improved

by such means during information sessions, the phenomenon of error propagation can be

pronounced for fast-fading channels. More accurate channel modeling becomes necessary to

track fast-fading channels.
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Recently, basis expansion models (BEM) have been widely investigated to represent

doubly-selective channels in wireless applications [8,11,35,63,70], for which, the time-varying

channel taps are expressed as superpositions of time-varying basis functions in modeling

Doppler effects, weighted by time-invariant coefficients. Candidate basis functions include

complex exponential (Fourier) functions [11,70], polynomials [8], wavelets [35], and discrete

prolate spheroidal sequences [63], etc. In contrast to AR models that describe temporal

variation on a symbol-by-symbol update basis, a BEM depicts the evolution of the channel

over a period (block) of time. Since the time-varying nature of the channel can be well

captured in a BEM by the known basis functions, the BEM coefficients should evolve much

more slowly than the channel taps, and hence are more convenient to track in a fast-fading

environment. We will discuss the adaptive channel estimation and equalization approaches

using BEM’s.

1.1 Previous Work and Contributions

In this section, we summarize the previous research work on BEM-based channel esti-

mation, equalization, and related areas.

Doubly-selective channel estimation using a complex exponential basis expansion model

(CE-BEM) and time-multiplexed training is considered in [30, 70], where CE-BEM based

on Fourier basis functions is applied to represent the time-variant channel. However, since

the Fourier basis expansion has the major drawback that the rectangular window associated

with the discrete Fourier transform (DFT) introduces spectral leakage [20], the bit error

rate (BER) suffers an error floor [17, 62]. In [62, 63], the linear minimum mean-square-error

(MMSE) channel estimation using discrete prolate spheroidal (DPS) sequences is considered.

It is shown that DPS-BEM-based approaches outperform CE-BEM-based approaches for

doubly-selective channel estimation and data detection.

Although the CE-BEM is more convenient in theoretical analysis, its modeling error

is noticeable due to the spectral leakage. To mitigate this leakage, the over-sampled CE-

BEM has been considered in [14] where the Doppler spectrum is said to be oversampled

compared to the case in [11, 70]. In this dissertation, we will use the oversampled CE-BEM

for doubly-selective channel estimation.

To acquire the channel state information at the receiver, training symbols are usually

periodically inserted during transmission, which is known as pilot symbol aided modulation

(PSAM) [22]. Optimization of the PSAM for CE-BEM based doubly-selective channel models

has been considered in [62,70] where the time-multiplexed (TM) training sequence is designed

to minimize the channel estimation mean-square-error (MSE). In the case of CE-BEM with
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independent basis expansion coefficients, minimizing the channel estimation MSE is also

shown in [30, 70] to be equivalent to maximizing a lower bound on the estimated channel-

based average capacity. No such considerations are to be found in [62,63] where the doubly-

selective channel is represented by DPS-BEM. We adopt the TM training scheme in [30,70]

for the proposed subblock-wise tracking approach.

Decision-directed channel tracking using a polynomial BEM has been investigated in [8],

where the BEM coefficients are updated every block via the RLS algorithm within a sliding

window. Channel estimation using Kalman filtering and polynomial or CE-BEM’s for OFDM

systems has been explored in [26,41,44], among which decision-directed tracking is considered

in [26,41]. All these contributions consider block-by-block updating unlike our contribution

where we exploit subblock-wise updating. The distinction is as follows: One block comprises

several subblocks. For parameter identifiability, one needs the number of subblocks at least as

large as the number of basis functions used for channel modeling. Data in just one subblock

do not satisfy the parameter identifiability requirements. However, unlike the block-wise

schemes where the receiver has to collect the whole block of data in order to generate channel

estimates and perform equalization, in the proposed subblock-wise approaches the receiver

is able to accomplish the two tasks after every subblock.

In our subblock-wise approaches, we first assume that the BEM coefficients (rather than

the time-varying channel taps) follow a first-order AR model, and then Kalman filtering is

used to track the coefficients. This first-order AR assumption, however, is not necessarily

true for a real-world channel, and possibly incurs modeling error in estimation. We then seek

adaptive channel estimation schemes with no a priori models for the BEM coefficients. Two

adaptive filtering algorithms with finite memory are considered: the exponentially-weighted

recursive least-squares (RLS) algorithm and the sliding-window RLS algorithm.

We also consider BEM-based approach to coded modulation communication systems

using turbo equalization receiver. Turbo (iterative) equalization is a powerful suboptimal

technique used in place of the computationally prohibitive but optimal maximum likelihood

(ML) or maximum a posteriori (MAP) sequence detection based on a super trellis. By

combining a MAP equalizer and a MAP decoder, and exchanging probabilistic information

about data symbols iteratively, turbo equalization usually can achieve close-to-optimal per-

formance but with much lower complexity [1, 5]. In [71], a turbo-equalization-like system

using linear equalizers based on soft interference cancellation and linear minimum mean-

square error (MMSE) filtering is proposed as part of a multiuser detector for code division

multiple access (CDMA). Based on this work, a variety of soft-in soft-out equalizers employ-

ing linear MMSE and decision feedback equalization (DFE) are proposed in [38, 39] and so

forth.
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For doubly-selective channels, an adaptive equalizer has been presented in [68], using

extended Kalman filter (EKF) to incorporate channel estimation into the equalization pro-

cess. This adaptive soft nonlinear Kalman equalizer jointly optimizes the estimates of the

channel and data symbols in each iteration. Based on the turbo equalization approach pro-

posed in [68] and our subblock-wise or decision-directed BEM-based approach, we present

an adaptive turbo equalizer based on CE-BEM. This adaptive equalizer takes the decision

of data symbols provided by the decoder as its a priori information and the performance

can be improved iteratively. The extrinsic information transfer (EXIT) chart analyses of our

BEM-based turbo equalization approach are also provided.

Based on the subblock-wise approach, decision-directed tracking of doubly-selective

channels is presented using CE-BEM in Chapter 6. In [6], the decision-directed scheme

was proposed that relies on the AR model only. Acting as virtual training symbols, the

information symbol decisions, provided by a DFE (with delay d ≥ 0) utilizing the estimated

channel, are used in Chapter 6 to enhance the estimation of the BEM coefficients, so that

much of the spectrum resource allocated to training can be saved. Although a time gap still

exists between the available symbol decisions and the channel estimates required by the DFE,

it can be successfully bridged by the CE-BEM-based channel prediction, without incurring

much estimation variance. Our decision-directed scheme based on subblock tracking, updates

the BEM coefficients of much smaller size of block than BEM period. The periodic training

symbols are still necessary to recover the channel tracking from possible phase ambiguity due

to the error propagation. To circumvent an arbitrary modeling error incurred due to the AR

assumption for the BEM coefficients, an adaptive channel estimation scheme with no a pri-

ori model for the BEM coefficients is proposed, where the exponentially-weighted recursive

least-squares (EW-RLS) algorithm is considered for subblock-wise channel tracking.

Computer simulation examples demonstrate the superior performance of the proposed

channel estimation and equalization using CE-BEM, compared to several existing approaches.

1.2 Organization

The rest of this dissertation is organized as follows.

In Chapter 2, we provide system models and some background that we use for chan-

nel estimation and equalization in this dissertation. This chapter covers wireless channel

characteristics and representations, TM training scheme, symbol detection using Kalman fil-

ter and Minimum-Mean-Square-Error Decision-Feedback Equalizer (MMSE-DFE) and turbo

equalization.
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In Chapter 3, a subblock-wise Kalman tracking approach to doubly-selective channel

estimation is presented, exploiting the oversampled CE-BEM for the overall channel varia-

tions, and an AR model to update the BEM coefficients. The channel estimates are updated

subblock-by-subblock unlike other existing block-by-block or symbol-by-symbol schemes.

In Chapter 4, we present a doubly-selective RLS channel estimator using CE-BEM,

replacing Kalman filter in Chapter 3 with RLS filter so that we can avoid the modeling error

incurred when using the arbitrary AR(1) model for BEM coefficients.

In Chapter 5, we propose an adaptive turbo equalization for doubly-selective channels

using CE-BEM and provide EXIT chart analyses. Based on the turbo equalization approach

proposed in [68], our proposed iterative turbo equalizer with nonlinear Kalman filtering

jointly optimizes the estimates of BEM channel coefficients and data symbol detection in

each iteration.

In Chapter 6, a decision-directed tracking approach for doubly-selective channels is

considered, exploiting the CE-BEM for the overall channel variations. We track the BEM

coefficients via Kalman filtering based on an AR model to update BEM coefficients, aided

by symbol decisions from a DFE. We also present EW-RLS tracking with a forgetting factor,

a finite-memory decision-directed tracking.

We extend all the proposed algorithms to multi-input multi-output (MIMO) scenario

throughout the preceding chapters. The dissertation concludes with Chapter 7, where future

research directions are also suggested.
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Chapter 2

Wireless Channel and Background

In this chapter, we briefly review the wireless channel characteristics in Sec 2.1, that

includes Jakes’ model, which will be used as the model of the “real” channel in the simulation

examples of this dissertation. In Section 2.2, we introduce the representations of time-varying

channels, the AR models and CE-BEM, which are used for channel estimation purposes in

different schemes. We summarize the TM training scheme in Section 2.3 introduced in [30,70].

In Section 2.4, we introduce Kalman detector (KD) and MMSE-DFE that we employ for

symbol equalization at the receiver. We also present the well-known turbo equalization in

Section 2.5.

2.1 Wireless Communication Channel Characteristics

Due to multipath propagation and Doppler spread, wireless channels are characterized

by frequency- and time-selectivity [60]. A radio signal, experiencing distortions through

transmission by fading, background noises, and interferences of every sort, becomes stochastic

to an observer at the receiver. Small-scale fading, or simply fading, is the term to describe

the rapid fluctuations of the amplitudes, phases, or multipath delays of a signal over a short

period of time or travel distance, so that large-scale path loss may be ignored [60]. The goal

of channel estimation and equalization is mainly to combat small-scale fading.

Fading can be attributed to physical factors including multipath propagation, relative

motion between the transmitter and the receiver or surrounding objects, and the transmission

bandwidth of the signal, etc. [65]. The presence of reflecting objects and scatterers makes

the wireless channel constantly changing, which dissipates the signal energy and distorts the

signal in amplitude, phase, and time. Multiple versions of the transmitted signal arrive at

the receiver through different paths. The random amplitudes and phases of the different

multipath components induce fading. The relative motion between the transmitter and the

receiver, as well as the motion of the objects within the wireless channel, induces Doppler

spreads, which are typically time-varying and become a source of fading also.
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2.1.1 Rayleigh Fading

The Rayleigh distribution is commonly used to describe the statistical time-varying

nature of the received envelope of a flat fading signal, or the envelope of an individual

multipath component [60]. If we assume that many statistically independent scattering

waves with random amplitudes and phases reach the receiver with the phases uniformly

lying in [0, 2�), and there is no dominant non-fading signal component present (no line-of-

sight), by the central limit theorem, the real and imaginary parts of the sum of the scattering

waves are both Gaussian. The signal envelope A obeys a Rayleigh distribution, which has a

probability density function (pdf) given by

fA(a) :=

⎧

⎨

⎩

a
�2 exp(− a2

2�2 ) a ≥ 0,

0 a < 0
(2.1)

with �2 being the time-average power of the received signal before envelope detection. The

phase � of the received signal is uniformly distributed with pdf

fΘ(�) :=
1

2�
, � ∈ [0, 2�) . (2.2)

The autocorrelation function of the received signal for two-dimensional isotropic scattering

and an omnidirectional receiving antenna is given by [15,45]

RA(�) = �2 cos(!c�)J0(!m�) (2.3)

where !c is the carrier radian frequency, J0(⋅) is the zero-order Bessel function of the first

kind and !m is the maximum Doppler radian frequency spread. Any model that attempts

to model the Rayleigh flat fading narrow-band wireless channel has to exhibit the statistical

behaviors given by (2.1)-(2.3).

2.1.2 Jakes’ Model

Clarke summarized the important characteristics of fading channels and provided a

useful mathematical model [45]. According to this model, Jakes proposed a sum-of-sinusoids

based simulator [65] that has been widely used and studied over the past decades. The

simulator supposes the received signal S(t) to be a superposition of waves

S(t) = E0

N∑

n=1

Cn cos(!ct+ !mt cosAn + Φn) (2.4)
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where E0 is the amplitude of the transmitted cosine wave, Cn is a random variable represent-

ing the attenuation of the n-th path, An is a random variable representing the angle of arrival

of the n-th ray with respect to the direction of motion of the receiver, Φn is a random variable

representing the phase shift undergone by the n-th ray. Note that the stochastic signal S(t)

representing the flat fading signal can be characterized by N sets of triples (Cn, An,Φn). The

random variables Cn, An and Φn are assumed statistically independent.

To reduce the complexity, Jakes’ model selects

Cn =
1√
N
, An =

2�n

N
, Φn = 0, (2.5)

where n = 1, 2, . . . , N . Furthermore, N is of the form N = 4M + 2 where M is a positive

integer.

However, the simplification in (2.5) makes this simulation model deterministic and wide-

sense nonstationary [33, 75]. In [75], a modified Jakes’ simulator was proposed. It is wide-

sense stationary and its autocorrelation and cross correlation functions match the desired

reference model exactly. Following [75], the normalized low-pass fading process of the sta-

tistical sum-of-sinusoids simulation model is defined by

X(t) = Xc(t) + jXs(t), (2.6a)

Xc(t) =
2√
M

M∑

n=1

cos( n) cos(!mt cos�n + �), (2.6b)

Xs(t) =
2√
M

M∑

n=1

sin( n) cos(!mt cos�n + �). (2.6c)

with

�n =
2�n− � + �

4M
, n = 1, 2, . . . ,M

where �, � and  n are statistically independent and uniformly distributed over [−�, �) for all

n. As M → ∞, the envelope ∣X∣ is Rayleigh distributed and the phase ΘX(t) is uniformly

distributed over [−�, �), for which the pdf’s are given by

f∣X∣(x) = x exp(−x
2

2
), x ≥ 0,

fΘX
(�) =

1

2�
, � ∈ [−�, �) .

A minor defect, however, occurs in model (2.6) when !m = 0 or the Doppler spread

is small: A Rayleigh distribution cannot be guaranteed [63]. This problem can be easily
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resolved by replacing a common phase � by �n, which is also uniformly distributed over

[−�, �) for all n. The simulation model is revised as [63]:

X(t) = Xc(t) + jXs(t), (2.7a)

Xc(t) =
2√
M

M∑

n=1

cos( n) cos(!mt cos�n + �n), (2.7b)

Xs(t) =
2√
M

M∑

n=1

sin( n) cos(!mt cos�n + �n). (2.7c)

2.2 Representations of Wireless Channels

For channel estimation or tracking purposes, accurate modeling of the temporal evolu-

tion of the channel plays an important role. A parsimonious and accurate channel repre-

sentation is always preferred. Among various models for channel time variations, the AR

process, particularly the first-order AR model, is regarded as a tractable model to describe

a time-varying channel, where the channel is assumed to be Markovian, i.e., for the current

channel symbol, the effect of channel symbols other than the immediately preceding one is

negligible [16]. This Markovian assumption has been verified for Rayleigh fading channels

in [16], by considering the mutual information between channel symbols. The AR model has

been used for time varying channel estimation in [31,43,64, 68,76].

The AR model, based on symbol-by-symbol update, is suitable for sequential time-

domain processing. When we deal with block processing schemes, it is often more convenient

to use a block-based channel models such as BEM’s. The BEM that is optimal in MSE is

the discrete Karhuen-Loève BEM (DKL-BEM), which is a reduced-rank decomposition of a

certain type of Doppler spectrum [77]. The CE-BEM can be viewed as a special DKL-BEM

based on a white Doppler spectrum, and the DPS-BEM corresponds to the DKL-BEM with

a rectangular Doppler spectrum [77].

2.2.1 Autoregressive (AR) Model

It is possible to accurately represent a wide-sense stationary uncorrelated scattering

(WSSUS) channel by a large order AR model; see [6, 68] and references therein. Let

h̃(n) := [ℎ(n; 0) ℎ(n; 1) ⋅ ⋅ ⋅ ℎ(n; l)]T (2.8)
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where h̃(n) is (L+ 1)× 1 vector. Then a P -th order AR model, AR(P ) for h̃(n) is given by

h̃(n) =
P∑

i=1

Aih̃(n− i) +G0w̃(n) (2.9)

where Ais are the (L+1)× (L+1) AR coefficient matrices, G0 is also (L+1)× (L+1) and

independent and identically distributed (i.i.d.) (L+ 1)× 1 driving noise w̃(n) is zero-mean

with identity covariance matrix. Suppose that we know the correlation function Rℎ(�) =

E
{

h̃(n+ �)h̃H(n)
}

for lags � = 0, 1, ⋅ ⋅ ⋅ , P . The following Yule-Walker equation holds for

(2.9) [55]:

Rℎ(�) =
P∑

i=0

AiRℎ(� − i) +G0G
H
0 �(�). (2.10)

Using (2.10) for � = 1, 2, ⋅ ⋅ ⋅ , P , and the fact that Rℎ(−�) = RH
ℎ (�), one can estimate Ais.

Using the estimated Ais and (2.10) for � = 0, one can find G0G
H
0 , from which one can find

(non-unique) G0 by computing its “square root” [42, p.358]. In [6, 68] only AR(1) or AR(2)

models have been used.

In this dissertation, we will use AR models for some simulation comparisons where

various channel taps are assumed to be mutually statistically independent. In this case we

have an independent AR process for each channel tap. Furthermore, following [6, 68], we

consider the first-order AR models, given by

ℎ(n; l) = �̃lℎ(n− 1; l) + w̃l(n), (2.11)

where �̃l is the AR coefficient and the driving noise w̃l(n) is zero-mean white with variance

�2
w̃l. If we assume that ℎ(n; l) is also zero-mean with variance �2

ℎl, then one picks (to match

correlation functions at lags 0 and 1) [76]

�̃l =
1

�2
ℎl

E {ℎ(n; l)ℎ∗(n− 1; l)} , (2.12)

�2
w̃l = �2

ℎl(1− ∣�̃l∣2). (2.13)

It must be noted that in practice, one would not know Rℎ(�).

2.2.2 Complex Exponential Basis Expansion Model (CE-BEM)

Recently, deterministic CE-BEM have been widely investigated in wireless applications,

especially when the multipath is caused by a few strong reflectors, and path delays exhibit

variations due to the kinematics of the mobiles [11]. In these models, the time-varying taps
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are expressed as a superposition of time-varying basis functions in modeling Doppler effects,

with time-invariant coefficients. By assigning temporal variations to basis functions, rapidly

fading channels with coherence time as small as a few tens of symbols can be captured. If

the delay spread and the Doppler spread of the channel (or at least the upper bounds of

them) are known, one can infer the basis functions of the CE-BEM [70]. Treating the basis

functions as known parameters, estimation of a time-varying process is reduced to estimate

time-invariant coefficients.

Consider a time-varying channel with impulse response ℎ(t; �) (response at time t to a

unit impulse at time t− �) which includes transmit-receive filters as well as doubly-selective

propagation effects. Let s(t) denote the complex baseband, continuous-time input signal

(with symbol duration Ts), and x(t) denote the complex baseband, continuous-time received

signal. The noise-free received signal x(t) is the convolution of s(t) and ℎ(t; �) [19]:

x(t) =
∫ ∞

0
ℎ(t; �)s(t− �)d�. (2.14)

Let H(f ; �) =
∫−∞
∞ ℎ(t; �)e−j2�ftdt be the Fourier transform of ℎ(t; �). If ∣H(f ; �)∣ ≈ 0

for ∣� ∣ > �d, then �d is defined as the delay-spread of the channel; if ∣H(f ; �)∣ ≈ 0 for

∣f ∣ > fd, then fd is defined as the Doppler spread of the channel [70]. Sampling s(t), x(t)

and ℎ(t; �) in (2.14) at the symbol rate, then for t = nTs ∈ [t0, t0 + TTs), the sampled signal

x(n) := x(t)∣t=nTs has the representation

x(n) =
L∑

l=0

ℎ(n; l)s(n− l). (2.15)

Over the block interval of [t0, t0 + TTs), the channel impulse response {ℎ(n; l)}T−1
n=0can be

represented by Q coefficients {ℎq(l)}Qq=1 (which remain invariant throughout this block but

are allowed to change at the next block) and the corresponding Q Fourier basis functions

that are common for each block. Then over the interval [t0, t0 + TTs), the discrete-time

baseband equivalent channel model for the block can be described as [69,70]:

ℎ(n; l) =
Q
∑

q=1

ℎq(l)e
j!qn, l = 0, 1, ⋅ ⋅ ⋅ , L (2.16)
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where n = (i− 1)TB, (i− 1)TB + 1, ⋅ ⋅ ⋅ , iTB − 1 and one chooses (Λ is an integer)

T := ΛTB, Λ ≥ 1, (2.17)

Q ≥ 2 ⌈fdTTs⌉+ 1, (2.18)

!q :=
2�

T
[q − (Q+ 1) /2] , q = 1, 2, ⋅ ⋅ ⋅ , Q (2.19)

L := ⌊�d/Ts⌋ , (2.20)

�d and fd are respectively the delay spread and the Doppler spread, and Ts is the symbol

duration. The BEM coefficients ℎq(l)’s remain invariant during this block, but are allowed

to change at the next consecutive block; the Fourier basis functions {ej!qn} (q = 1, 2, ⋅ ⋅ ⋅ , Q)

are common for every block. If the delay spread and the Doppler spread (or at least their

upper bounds) are known, one can infer the basis functions of the CE-BEM [70]. Treating

the basis functions as known, estimation of a time-varying process is reduced to estimating

the invariant coefficients over a block of TB symbols.

If Λ > 1 (e.g. Λ = 2 or 3), then the Doppler spectrum is said to be oversampled [14]

compared to the case Λ = 1 where the Doppler spectrum is said to be critically sampled.

In [11, 70] only Λ = 1 (henceforth called CE-BEM) is considered whereas [14] considers

Λ ≥ 2 (henceforth called over-sampled CE-BEM). For Λ = 1, the rectangular window of

this truncated discrete Fourier transform (DFT)-based model introduces spectral leakage.

To mitigate this leakage, the over-sampled CE-BEM with Λ = 2 or 3 has been considered

in [14] although the basis functions are no longer orthogonal by over-sampling.

The model (2.16) is periodic with period T . Later we will use it for all time n (not just

the block size TB) by allowing the BEM coefficients ℎq (l)s to change with time. So long as

the effective “memory” of the “processors” used later is less than the model period (recall

that the channel is by no means periodic), there are no deleterious effects due to the use of

(2.16) for all time.

2.3 Block-Adaptive Channel Estimation using CE-BEM [30,70]

In this section, we summarize the time-multiplexed (TM) training scheme in [30,70] that

we employ in our subblock-wise tracking approach. Each transmitted block of symbols s(n)

of length TB symbols is segmented into P̄ subblocks of length mb := TB/P̄ symbols, which

has the time-multiplexed md information symbols and mt training symbols (mb = md +mt).

If s denotes a column-vector composed of {s (n)}iTB−1
n=(i−1)TB

for i-th block, then it is arranged

as

s :=
[

bT
0 cT0 bT

1 cT1 ⋅ ⋅ ⋅ bT
P̄−1 cTP̄−1

]T
(2.21)
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where bp is a column of md information symbols and cp is a column of mt training symbols

for p = 0, 1, ⋅ ⋅ ⋅ , P̄ − 1. Based on CE-BEM (2.16), [70] has shown that for Λ = 1 (the

critically-sampled CE-BEM) and P̄ ≥ Q, the optimal session contains an impulse guarded

by zeros (silent periods), which has the structure

cp :=
[

0T
L  0T

L

]T
,  > 0 (2.22)

with mt = 2L + 1. Thus, given a transmission block of size TB, (2L + 1)P̄ symbols have

to be devoted for training and the remaining are available for information symbols. Let

np := pmb +md + L, (p = 0, 1, ⋅ ⋅ ⋅ , P̄ − 1), denote the unique locations of (nonzero) ’s in

the cp’s in the P̄ subblocks. Let np := pmb + md + L, (p = 0, 1, ⋅ ⋅ ⋅ , P̄ − 1), denote the

unique locations of (nonzero) ’s in the cp’s in the P̄ subblocks.

For multiple users, let {sk(n)} denote k-th user’s information sequence for k = 1, 2, ⋅ ⋅ ⋅ , K.

If sk denotes a column-vector composed of {sk (n)}iTB−1
n=(i−1)TB

for i-th block, then it is arranged

as

sk :=
[

bT
k,0 cTk,0 bT

k,1 cTk,1 ⋅ ⋅ ⋅ bT
k,P̄−1 cTk,P̄−1

]T
(2.23)

where bk,p is a column of md information symbols and ck,p is a column of mt training

symbols for p = 0, 1, ⋅ ⋅ ⋅ , P̄ − 1. We clearly have TB = P̄mb. The training session for each

user contains an impulse guarded by zeros (silent periods), which for the k-th user has the

structure ( > 0)

ck,p :=
[

0T
(k−1)(L+1)+L  0T

(K−k)(L+1)+L

]T
. (2.24)

Therefore, mt = K (L+ 1) + L symbols, which have to be devoted for training and the

remaining are available for information symbols. Let nk,p := pmb +md + (k− 1)(L+1)+L,

(p = 0, 1, ⋅ ⋅ ⋅ , P̄ − 1) denote the unique locations of (nonzero) ’s in the ck,p’s in the P̄

subblocks for k-th user.

As shown in [18,70], one needs to satisfy number of subblocks P̄ ≥ Q to uniquely identify

the unknown BEM parameters. By (2.18), as T increases, Q = 2 ⌈fdTTs⌉ + 1 increases (in

discrete steps) for a given value of fdTs. Since the subblock size mb = TB/P̄ , therefore,

P̄ = TB/mb = T/(Λmb), as T increases, P̄ also increases. Typically, one would first pick

TB (which would fix T = ΛTB with Λ = 2 for oversampled CE-BEM), and then pick mb to

satisfy P̄ ≥ Q for a given value of T or TB, Q does not depend upon P̄ . If mb turns out

to be “too small”, training overhead is large since 2L + 1 symbols out of mb are needed for

training. On the other hand, suppose one first picks mb to achieve a certain training overhead

(= (2L + 1)/mb). Then in order to have parameter identifiability, one needs P̄ ≥ Q, i.e.,

T/(Λmb) ≥ 2 ⌈fdTTs⌉ + 1. For example, under Ts = 25�s, fd = 400Hz and mb = 40, there
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exists no integer T with Λ = 2 for which we can satisfy T/(Λmb) ≥ 2 ⌈fdTTs⌉ + 1 whereas

T = 400 satisfies this inequality when Λ = 1 (TB = 400, P̄ = 10 and Q = 9). This implies

that for block-wise updating, we cannot always use oversampled CE-BEM, only the less

accurate critically sampled CE-BEM.

2.4 Useful Equalization Techniques

In communication systems, the channel estimates given by a channel estimator are fed

into an equalizer for symbol detection. In this section, we introduce two equalizers, Kalman

detector (KD) and Minimum Mean Square Error (MMSE) Decision Feedback Equalizer

(DFE), that we employ in this paper to detect the transmitted symbols using the channel

estimates. We consider a multi-input multi-output (MIMO) system with K inputs and N

outputs for both equalizers; one can adapt easily to single-input single-output (SISO) or

single-input multi-output (SIMO) systems.

Let {sk (n)} denote k-th user’s information sequence that is input to the time-varying

channel with discrete-time response {hk (n; l)} (channel response for the k-th user at time

instance n to a unit input at time instance n−l). We assume {sk (n)} is mutually independent

and identically distributed (i.i.d.) with zero mean and variance E{sk (n) s∗k (n)} = �2
sk

= �2
s

for k = 1, 2, ⋅ ⋅ ⋅ , K. Then the symbol-rate noisy N -column channel output vector is given

by (n = 0, 1, . . .)

y (n) =
K∑

k=1

L∑

l=0

hk (n; l) sk (n− l) + v (n) (2.25)

where the N -column vector v (n) is zero-mean, white, uncorrelated with sk (n), complex

Gaussian noise, with the autocorrelation E{v (n+ �)vH (n)} = �2
vIN� (�). Define

s(n) :=
[

s1(n) s2(n) ⋅ ⋅ ⋅ sK(n)
]T

h(n; l) :=
[

h1(n; l) h2(n; l) ⋅ ⋅ ⋅ hK(n; l)
]

.

and we may rewrite (2.25) as

y (n) =
L∑

l=0

h (n; l) s (n− l) + v (n) . (2.26)

2.4.1 Kalman Detector (KD)

The Kalman filter, together with a quantizer, act as the symbol detector at the receiver

end. We transform the Kalman filter for joint channel estimation and equalization in [68] to
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KD only for symbol equalizaton. The state and the measurement equations are given by

Sd (n) = ΦSd (n− 1) + Γs̄ (n) + Γs̃ (n) , (2.27)

y (n) = H̃d (n)Sd (n) + v (n) , (2.28)

with the following definitions

Sd(n) :=
[

sT (n) sT (n− 1) ⋅ ⋅ ⋅ sT (n− d)
]T
,

s̄(n) := E {s (n)} , s̃ (n) := s (n)− s̄ (n) ,

Φ :=

⎡

⎣
0T
d 0

Id 0d

⎤

⎦⊗ IK , Γ :=
[

1 0T
d

]T ⊗ IK ,

H̃d (n) :=
[

ĥ (n; 0) ĥ (n; 1) ⋅ ⋅ ⋅ ĥ (n;L) 0N×K(d−L)

]

where s(n) is K-column vector of symbols, ĥ(n; l) is the estimated N ×K channel matrix

and integer d ≥ L; it will also be the equalization delay. Assume data symbols are zero-mean

and white. If s(n) is a data symbol, we have s̄(n) = 0, s̃(n) = s(n) and �2
s(n) = �2

s ; if s(n)

is a training symbol, s̄(n) = s(n), s̃(n) = 0 and �2
s(n) = 0.

Kalman filtering for the system described by (2.27) and (2.28) is initialized with

Ŝd (−1 ∣ −1) = 0K(d+1) and P (−1 ∣ −1) = ΓΓT ,

where Ŝd (p ∣ m) denotes the estimate of Sd (p) given the observations {y (n)}mn=0, and

P (p ∣ m) denotes the error covariance matrix of Ŝd (p ∣ m), defined as

P (p ∣ m) := E{[Ŝd (p ∣ m)− Sd (p)][Ŝd (p ∣ m)− Sd (p)]
H}.

Then recursive filtering (for n = 0, 1, ⋅ ⋅ ⋅ ) is applied via the following steps:

1. Time update:

Ŝd (n ∣ n− 1) = ΦŜd (n− 1 ∣ n− 1) + Γs̄(n),

P (n ∣ n− 1) = ΦP (n− 1 ∣ n− 1)ΦT + �2
s(n)ΓΓ

T ;

2. Kalman gain:

P�(n) = �2
vIN + H̃d(n)P(n ∣ n− 1)H̃H

d (n),

K(n) = P(n ∣ n− 1)H̃H
d (n)P

−1
� (n);
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3. Measurement update:

Ŝd (n ∣ n) = Ŝd (n ∣ n− 1) +K (n)
{

y (n)− H̃d(n)Ŝd(n ∣ n− 1)
}

,

P (n ∣ n) =
{

IK(d+1) −K (n) H̃d(n)
}

P (n ∣ n− 1) .

After Kalman filtering for every n, the estimated vector is given as

Ŝd(n ∣ n) =
[

ŝT (n ∣ n) ŝT (n− 1 ∣ n) ⋅ ⋅ ⋅ ŝT (n− d ∣ n)
]T

and we extract its last (K-column vector) term ŝ(n− d ∣ n) as the desired equalized output

for K-users. Finally, we hard-quantize ŝ(n− d ∣ n) to acquire the detected symbols.

Using the estimated channel, one may rewrite the received signal as

y (n) =
L∑

l=0

ĥ (n; l) s (n− l) +
L∑

l=0

[

h (n; l)− ĥ (n; l)
]

s (n− l) + v (n)

︸ ︷︷ ︸

=:ṽ(n)

(2.29)

where the “effective” noise is ṽ(n) instead of v(n). In order to compensate for this channel

estimation error, that is because the channel estimates
{

ĥ(n; l)
}

obtained by a channel

estimator is not equal to the “true” channel response {h(n; l)}, we take the variance of ṽ (n)

in (2.29) to be �2
v + 0.01�2

s instead of the variance of v(n), �2
v , for simulations presented in

Section 3.3.2.

2.4.2 Mimimum Mean Square Error Decision Feedback Equalizer (MMSE-

DFE) [40]

Figure 2.1: Decision-feedback equalizer (DFE).

The DFE structure is shown in Fig. 2.1 to equalize the delayed symbols s(n− d), with

the feed-forward (FF) and feed-back (FB) filters. Since each measurement y(n) contains

inter-symbol-interference (ISI) caused by prior symbols, DFE is designed to reduce ISI and
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to recover s(n) using FIR filters. The FF filter takes current and prior measurements yf as

its input to get information correlated with ISI and to remove its effect.

Stack the inputs of the FF filter with lf taps at time n into a “tall” vector

yf (n) :=
[

yT (n) yT (n− 1) ⋅ ⋅ ⋅ yT (n− lf + 1)
]T
,

where y(n) is N -column vector and also define vf (n) likewise. Then, the received signal is

given as

yf (n) = H (n) sf (n) + vf (n) , (2.30)

with

H (n) :=

⎡

⎢
⎢
⎢
⎣

h (n; 0) ⋅ ⋅ ⋅ h (n;L)
. . . . . . . . .

h (n− lf + 1; 0) ⋅ ⋅ ⋅ h (n− lf + 1;L)

⎤

⎥
⎥
⎥
⎦

sf (n) :=
[

sT (n) sT (n− 1) ⋅ ⋅ ⋅ sT (n− lf − L+ 1)
]T
.

where h (n; l) is N ×K matrix channel response at time n to a unit input at time n− l and

s (n) is K-column vector.

As shown in Fig. 2.1, the input to the FB filter comes from the decision output, denoted

by s̆f (n−d). The FB filter uses prior symbol decisions to cancel the trailing ISI by mapping

the estimate ŝf (n− d) to the closest point in the symbol constellation. We define the input

vector of FB filter with lb taps as

sb (n) :=
[

s̆T (n− d) s̆T (n− d− 1) ⋅ ⋅ ⋅ s̆T (n− d− lb)
]T
.

The estimate of the information symbol, ŝ(n− d) is obtained by combining the outputs

of FF and FB filters and can be written at time n with delay d as

ŝ (n− d) =
lf−1
∑

i=0

FT
i (n)y (n− i)−

lb∑

j=1

Bj (n) s̆ (n− d− j) , (2.31)

where Fi (n)’s (that are N × K matrices) and Bj (n)’s (that are K × K matrices) are the

taps of FF and FB time-varying filters at time n, and s̆ (n− d− j) is the hard decision of

ŝ (n− d− j). The estimate ŝ (n− d) is also fed into the quantizer to obtain the symbol

decision s̆ (n− d).
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Let F (n) and B (n) denote the vectors of time-varying taps of FF and FB filters,

F (n) :=
[

FT
0 (n) FT

1 (n) ⋅ ⋅ ⋅ FT
lf−1 (n)

]T
,

B (n) :=
[

I B1 (n) B2 (n) ⋅ ⋅ ⋅ Blb (n)
]T
,

then the error signal is given by

s̃(n− d) = s(n− d)− ŝ(n− d)

= B(n)sb(n)− F(n)yf (n). (2.32)

Assuming the decisions {s̆ (n)} are correct and equal to {s (n)}, we can solve a nonlinear

optimization problem which mininmizes the variance of the error signal in (2.32),

min
{F(n),B(n)}

E
{

∣B(n)sb(n)− F(n)yf (n)∣2
}

. (2.33)

Solve a standard linear least-mean-squares estimation problem over F(n) with B(n) fixed

and then we have a constrained optimization problem; note that the leading entry of B(n)

is the identity matrix. Therefore, the FF and the FB time-varying filters of the MMSE-DFE

are given by [40]

BMMSE (n) = R−1
� Ψ

(

ΨTR−1
� Ψ

)−1
, (2.34)

FMMSE (n) = R−1
yy (n)RH

sy (n)BMMSE (n) , (2.35)

where

Ψ :=
[

1 0 0 ⋅ ⋅ ⋅ 0
]T ⊗ IK ,

R� := Rss (n)−Rsy (n)R
−1
yy (n)RH

sy (n)

= Φ

[

1

�2
v

H (n)HH (n) +
1

�2
s

INlf

]−1

ΦH .

By the assumption that {s (n)} are independent and identically distributed (i.i.d.) with

variance �2
s , and based on (2.30), we have

Rss (n) := E
{

sb (n) s
H
b (n)

}

= �2
sIK(lb+1),

Rsy (n) := E
{

sb (n)y
H
f (n)

}

= �2
sΦHH (n) ,

Ryy (n) := E
{

yf (n)y
H
f (n)

}

= �2
sH (n)HH (n) + �2

vINlf
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where

sb(n) = Φsf (n), Φ :=
[

0(lb+1)×d Ilb+1 0(lb+1)×(lf+L−d−lb−1)

]

⊗ IK .

Using (2.34), (2.35) in (2.31), we have the symbol estimate {ŝ (n− d)}. Since the “true”

channel response {h (n; l)} is not available at the receiver, we use the channel estimates

{ĥ (n; l)} obtained by a channel estimator to design the MMSE-DFE [See (2.29) in 2.4.1 for

a formal equation]. In order to compensate for this channel estimation error in (2.30), for

simulations where we use MMSE-DFE, we increased the variance of v (n) in (2.30) from �2
v

to �2
v + 0.01�2

s in our simulation presented later.

2.5 Turbo Equalization

In digital communications, a turbo equalizer is a type of receiver used to detect a

message corrupted by a communication channel with ISI. It approaches the performance

of a maximum a posteriori (MAP) receiver via iterative message passing between a soft-in

soft-out (SfiSfo) equalizer and a SfiSfo decoder [46]. It is closely related to turbo codes, as a

turbo equalizer may be considered a turbo decoder if the channel is viewed as a convolutional

code.

The optimal equalization methods for minimizing sequence error rate or the bit error rate

(BER) are based on maximum likelihood (ML) estimation, which turns into MAP estimation

in the presence of a priori information about the transmitted data. For instance, see Viterbi

algorithm (VA) [13, 19, 54] for MAP/ML sequence estimation and BCJR algorithm [29] for

MAP/ML symbol estimation.

Communicating soft information probability distribution between the equalizer and the

decoder, instead of hard information (symbol estimates only), improves the BER performance

but usually requires more complex decoding algorithms. State-of-the-art systems for a variety

of communication channels employ convolutional codes and ML equalizers together with an

interleaver after the encoder and a deinterleaver before the decoder [66, 74]. Interleaving

shuffles symbols within a given time frame or block of data and thus decorrelates error

events introduced by the equalizer betweeen neigboring symbols.

An optimal joint processing of the equalization and decoding steps is usually impossible

due to complexity considerations. A number of iterative receiver algorithms repeat the

equalization and decoding tasks on the same set of received data, where feedback information

from the decoder is incorporated into the equalization process. This method, called turbo

equalization, was originally developed for concatenated convolutional codes (turbo code [4])

and is now adapted to various communication problems.
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The MAP/ML-based solutions often suffer from high computational load for channels

with long memory or large constellation sizes (expensive equalizer) or convolutional codes

with long memory (expensive decoder). This situation is exacerbated by the need to perform

equalization and decoding several times for each block of data. A major research issue is

thus the complexity reduction of such iterative algorithms.

2.5.1 Principle of Turbo Equalization [39]

Figure 2.2: A turbo equalization receiver

We consider a simple transmitter where a sequence of data b(n′) = [b1(n′), b2(n′), ⋅ ⋅ ⋅ , bk0(n′)] ∈
{1, 0}k0 is encoded to the code symbols c(n′) = [c1(n′), c2(n′), ⋅ ⋅ ⋅ , cn0(n′)] ∈ {1, 0}n0 with a

code rate Rc = k0/n0, which is interleaved in a block and then mapped into binary phase shift

keying (BPSK) symbols. Fig. 2.2 depicts the receiver structure for turbo equalization [5],

where both the SfiSfo equalizer and SfiSfo decoder are of the MAP type. The extrinsic

log-likelihood ratios (LLR’s), Le {c(⋅)} are transfered iteratively between the equalizer and

decoder. [The subscript “e” for representing “extrinsic”, the superscript “E” and “D” for out-

put of “Equalizer” and “Decoder” respectively.] The MAP equalizer computes the a posteriori

probabilities (APP’s) given Tr received symbols, P {ci(n) = b ∣ y(l), 1 ≤ l ≤ Tr} , b ∈ {1, 0}
and generates the extrinsic LLR as (a posteriori LLR – a priori LLR)

LE
e

{

ci(n)
}

:= ln
P{ci(n) = 1 ∣ y(l), 0 ≤ l < Tr}
P{ci(n) = 0 ∣ y(l), 0 ≤ l < Tr}

− ln
P{ci(n) = 1}
P{ci(n) = 0}

︸ ︷︷ ︸

=:L{ci(n)}

. (2.36)

The a priori LLR of the MAP equalizer, L {ci(n)} is provided by the interleaved output of the

MAP decoder at the previous iteration but L {ci(n)} = 0 for the first iteration. The extrinsic

LLR’s LE
e {c(n)} produced by the MAP demodulator is sent to the MAP decoder as the a

priori LLR’s for channel decoding. Based on the a priori LLR’s and the channel code con-

straints, the MAP decoder computes the APPs P
{

ci(n′) = b ∣ LE
e {c(l)} , 1 ≤ l ≤ Tr

}

, b ∈
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{1, 0} and generates the extrinsic LLR as

LD
e

{

ci(n′)
}

:= ln
P{ci(n′) = 1 ∣ L {c(l)} , 0 ≤ l < Tr}
P{ci(n′) = 0 ∣ L {c(l)} , 0 ≤ l < Tr}

− ln
P{ci(n′) = 1}
P{ci(n′) = 0}

︸ ︷︷ ︸

=:L{ci(n′)}

. (2.37)

The extrinsic output of the MAP decoder is fedback to the MAP equalizer iteratively. Note

that (2.36) and (2.37) are valid only if the a posteriori outputs are independent of the a

priori inputs for the equalizer and the decoder. Assuming ideal interleaver between the

equalizer and the decoder, we can apply the turbo principle and the correct ordering of

the LLRs L {c(n′)} = �−1
[

LE
e {c(n)}

]

and L {c(n)} = �
[

LD
e {c(n′)}

]

, which are input to

the MAP decoder and the MAP equalizer repectively. The MAP decoder also compute

the a posteriori probabilities of the input data bit and then the data estimate b̂(n′) =

[b̂1(n′), b̂2(n′), ⋅ ⋅ ⋅ , b̂k0(n′)] as

b̂i(n′) = arg max
b∈{1,0}

P
{

bi(n′) = b ∣ L {c(l)} , 1 ≤ l ≤ Tr
}

. (2.38)

2.5.2 Maximum A Posteriori (MAP) Decoding Algorithm for Convolutional

Codes [72]

In this section we introduce a recursive forward and backward algorithm for the MAP

decoding that operates on a trellis description for the code, based on BCJR algorithm [29].

The MAP decoder updates the extrinsic LLR’s LD
e {c(n′)} of the coded bits at each iteration

and generates the a posteriori LLR’s L {b(n′)} of the information bits at last iteration, based

on the a priori LLR’s L {c(n′)} and code trellis structure.

A convolutional code with memory length lm has finite 2lm states and its trellis struc-

ture describes the transitions between states at time n and n + 1. In Chapter 5, we con-

sider a recursive systematic convolutional encoder with lm = 2 (constraint length of 3), a

4-state machine. Denote the input information bits at time n that cause the state tran-

sition from Ψ(n − 1) =  ′ to Ψ(n) =  by b(n; ′ →  ) and the corresponding output

coded bits by c(n; ′ →  ). The MAP decoder computes the state transition probability

P {Ψ(n− 1) =  ′,Ψ(n) =  } using the a priori probabilities of the coded bits.

Assume that the encoder starts in state Ψ(0) = 0 and also ends in state Ψ(�) = 0, � =

Tr + lm, where we have at least lm additional zero inputs following the information bit
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sequence {b(n)}Tr

n=1. Then the state transition probability can be given as

P {Ψ(n− 1) =  ′,Ψ(n) =  } = �(n− 1; ′)�(n; )P {c(n; ′ →  )} , (2.39)

= �(n− 1; ′)�(n; )
n0∏

j=1

P
{

cj(n; ′ →  )
}

,

where �(n; ) denotes the total probability of all path segments starting from the origin of

the trellis that terminate in state  at time n; and �(n; ) denotes the total probability of

all path segments terminating at the end of the trellis that originate from state  at time

n. The probability �(n; ) and �(n; ) can be computed through the following forward and

backward recursions:

�(n; ) =
∑

Ψ′

�(n− 1; ′)P {c(n; ′ →  )} , n = 1, 2, ⋅ ⋅ ⋅ , �, (2.40)

�(n; ) =
∑

Ψ′

�(n+ 1; ′)P {c(n+ 1; →  ′)} , n = � − 1, � − 2, ⋅ ⋅ ⋅ , 0, (2.41)

where initial conditions are given as

�(0,0) = 1, �(0,  ) = 0 for  ∕= 0,

�(�,0) = 1, �(�,  ) = 0 for  ∕= 0,

and Ψ′ is a set of the state  ′ for all possible transition from  ′ to  . At each recursion,

since �(n,  ) and �(n; ) are the probabilities for  and time n, we can normalize as

�(n; ) =
�(n; )

∑

Ψ �(n; )
, �(n; ) =

�(n; )
∑

Ψ �(n; )
,

where Ψ is a set of all the possible state  .
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Given the a priori LLR’s L {c(n′)} and the trellis structure of convolution code, we

have the extrinsic a posteriori LLR for the coded bit ci(n′) as

LD
e

{

ci(n′)
}

= log
P {ci(n′) = 1 ∣ L {c(n′)}}
P {ci(n′) = 0 ∣ L {c(n′)}} − log

P {ci(n′) = 1}
P {ci(n′) = 0}

= log

∑

Ψ(i,1) P {Ψ(n′ − 1) =  ′,Ψ(n′) =  } /P {ci(n′) = 1}
∑

Ψ(i,0) P {Ψ(n′ − 1) =  ′,Ψ(n′) =  } /P {ci(n′) = 0}

= log

∑

Ψ(i,1) �(n
′ − 1; ′)�(n′; )P {c(n′; ′ →  )} /P {ci(n′) = 1}

∑

Ψ(i,0) �(n′ − 1; ′)�(n′; )P {c(n′; ′ →  )} /P {ci(n′) = 0}

= log

∑

Ψ(i,1) �(n
′ − 1; ′)�(n′; )

∏n0
j=1 P {cj(n′; ′ →  )} /P {ci(n′) = 1}

∑

Ψ(i,0) �(n′ − 1; ′)�(n′; )
∏n0

j=1 P {cj(n′; ′ →  )} /P {ci(n′) = 0}

= log

∑

Ψ(i,1) �(n
′ − 1; ′)�(n′; )

∏n0
j=1,j ∕=i P {cj(n′) = cj( ′ →  )}

∑

Ψ(i,0) �(n′ − 1; ′)�(n′; )
∏n0

j=1,j ∕=i P {cj(n′) = cj( ′ →  )}

where Ψ(i, b) is a set of all possible state pairs ( ′,  ) for ci( ′ →  ) = b ∈ {1, 0}.
The MAP decoder also generates the decoded bits b̂(n′) at the last iteration. We can

compute the a posteriori LLR of the information bit by

L
{

bi(n′)
}

= log

∑

U(i,1) �(n
′ − 1; ′)�(n′; )

∏n0
j=1 P {cj(n′) = cj( ′ →  )}

∑

U(i,0) �(n′ − 1; ′)�(n′; )
∏n0

j=1 P {cj(n′) = cj( ′ →  )} , (2.42)

where U(i, b) is a set of all possible state pairs ( ′,  ) for bi( ′ →  ) = b ∈ {1, 0}. Counting

on the sign of LLR, L {bi(n′)} in (2.42), we can decide the information bit b̂i(n′) ∈ {1, 0}.
[See more details in [72].]

2.6 Conclusions

In this chapter, we reviewed characteristics and representations of wireless channels.

We will use the Jakes’ model that follows [75] (with a correction in the appendix of [63]) as

the model of the “real” channel in all the simulations in this dissertation. To describe the

temporal variation of the channel for the purpose of channel estimation, we will use CE-BEM,

a block-based channel model that is often more convenient than the symbol-based AR models.

We also provided some background that we use for channel estimation and equalization in

the following chapters. We summarized the TM training scheme in [30,70] which is useful to

estiamte channel in subblock-wise tracking approaches in Chapter 3 and 4. We will employ

the Kalman detector (KD) and MMSE-DFE to detect the transmitted symbols using channel

estimates provided by a channel estimator. For the coded communication systems, the turbo

equalization is a powerful technique that we will investigate in Chapter 5.
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Chapter 3

Doubly-selective Adaptive Channel Estimation Using Exponential Basis

Models and Subblock Tracking

We present a subblock-wise tracking approach to doubly-selective channel estimation,

exploiting the oversampled CE-BEM for the overall channel variations, and an AR model to

update the BEM coefficients. The time-varying nature of the channel is well captured by the

CE-BEM while the time-variations of the (unknown) BEM coefficients are likely much slower

than that of the channel. We track the BEM coefficients via Kalman filtering, based on time-

multiplexed periodically transmitted training symbols. Simulation examples demonstrate its

superior performance over some existing doubly-selective channel tracking schemes.

3.1 Introduction

The first-order AR model, which has been very popular to describe a time-varying

channel, is not appropriate for a fast-fading channel, since the channel estimates can only

be obtained from training symbols [76]. Potential solutions lie in exploiting the detected

symbols for channel tracking [6, 43, 64], where error propagation due to incorrect detections

can be pronounced for fast-fading channels. Recently, BEM has been widely investigated to

represent doubly-selective channels in wireless applications [8, 11, 35, 63, 70], for which, the

time-varying channel taps are expressed as superpositions of time-varying basis functions in

modeling Doppler effects, weighted by time-invariant coefficients. In contrast to AR models

that describe temporal variation on a symbol-by-symbol update basis, a BEM depicts the

evolution of the channel over a period (block) of time. Intuitively, the BEM coefficients are

more convenient to track in a fast-fading environment, since they evolve much more slowly

in time (based on a block-by-block update) than the real channel.

We propose a subblock-wise tracking approach for doubly-selective channels using time-

multiplexed (TM) training. It exploits the CE-BEM for the overall channel variations of

each (overlapping) block and a first-order AR model to describe the evolutions of the BEM

coefficients. The time-varying nature of the channel can be well captured in the CE-BEM

by (known) Fourier basis functions, and the slow-varying BEM coefficients are updated via

Kalman filtering at each training session; during information sessions, channel estimates are

generated by CE-BEM using the estimated BEM coefficients. This approach achieves better
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performance in fast-fading environments, than using conventional symbol-wise AR models

or block-wise BEM representations.

Channel tracking based on BEMs has been considered in [8,26,41] using block-by-block

updating, unlike our contribution where we exploit subblock-wise updating. The distinction

is as follows. One block comprises several subblocks. For parameter identifiability, one needs

the number of subblocks at least as large as the number of basis functions used for channel

modeling. Unlike the block-wise schemes where the receiver has to collect the whole block

of data in order to generate channel estimates and perform equalization, in the proposed

approaches the receiver is able to accomplish the two tasks after every subblock.

3.2 Subblock-wise Channel Estimation using CE-BEM

Figure 3.1: Subblock-wise channel estimation: overlapping blocks and subblocks, where one
block comprises several subblocks and each subblock has an information session followed by
a training session.

Suppose that we collect the received signal over a time period T̃ symbols. We wish

to estimate the time-variant channel using a useful channel model and time-multiplexed

training, and then detect the information symbols using this estimated channel. For the

CE-BEM, if we choose T̃ as the block size, then in general by (3.4) we have a large number

of basis functions to be estimated, thereby degrading the channel estimation performance.

If we divide T̃ into blocks of (much smaller) size TB each, and then fit the CE-BEM block by

block, we have smaller Q; however, estimation of ℎq(l)’s is now based on shorter observation

size of TB symbols which might also degrade channel estimation performance. Thus one has

to strike a balance between the estimation variance and the block size. Such considerations

do not apply to the symbol-wise AR channel model fitting. In the sequel, we propose a novel

subblock-wise tracking approach to CE-BEM channel estimation where we update estimates

of ℎq(l)’s every subblock based on all past training sessions.

25



As we shall see later, use of subblock updating avoids some of the limitations of blockwise

estimation. In subblock tracking there is no longer a strict definition of the block size TB

unlike blockwise estimation, allowing for a more flexible choice of parameters such as subblock

size and training overhead. Intuitively, updating more often as in subblock tracking should

be superior to (or at least as good as) less frequent updating as in block-wise estimation. As

noted earlier in Section 2.3, the parameter identifiability requirement of P̄ ≥ Q for block-

wise approach impose certain restrictions on the selection of the block and subblock sizes,

which, in turn, may preclude the use oversampled CE-BEM, only the less accurate critically

sampled CE-BEM may be used. Our simulation results will illustrate this fact together with

the fact that subblock-wise updating encounters no such problem.

We also note that the same considerations as above prevent the use of TB = mb in the

block-wise scheme because this would lead to P̄ = 1. Alternatively, to make the block-wise

scheme update the BEM parameters as frequently as the subblock-wise schemes, one may

take TB = mb but to achieve parameter identifiability, one has to insert at least Q “clusters”

of zero-padded training impulses (as Section 2.3). To make this more concrete, let us consider

an example where we take mb = 80, fdTs = 0.0025 and L = 8. With TB = mb = 80, one

obtains Q = 3; note that for doubly selective channels, when using CE-BEM, minimum

Q = 3. Thus, we need 3 clusters of zero-padded training impulses with each cluster of

length 2L + 1 = 17. Therefore, one assigns 51 symbols out 80 for training leaving just 29

information symbols - a poor choice resulting in poor spectral efficiency. Such a design has

63.75% training overhead whereas our proposed subblock schemes have a training overhead

of 21.25% (17 out of 80 symbols for training).

By exploiting the invariance of the coefficients of CE-BEM over each block (and hence

each of the P̄ subblocks per block of length TB symbols), we seek subblock-wise tracking of

the BEM coefficients of the doubly-selective channel. Consider two overlapping blocks (each

of TB symbols) that differ by only one subblock of size mb: the “past” block and “current”

block begin at time n0 and n0+mb respectively. Since the two blocks overlap so significantly,

one would expect the BEM coefficients to vary only a little from the past block to the current

one. Therefore, we can track ℎq (l) in (3.2) subblock-by-subblock via a first-order AR model

for their variations, rather than the anew with every non-overlapping block as in [70]. See

Fig. 3.1 that illustrates the overlapping blocks and subblocks in our approach.

3.2.1 Subblock-wise Kalman Tracking [52]

Consider a doubly-selective (time- and frequency-selective), single-input multi-output

(SIMO), finite impulse response (FIR) linear channel with N outputs. Let {s(n)} denote

a scalar information sequence that is input to the time-varying channel with discrete-time
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response {ℎ (n; l)} (N -column vector channel response at time instance n to a unit input at

time instance n − l). We assume {s(n)} is independent and identically distributed (i.i.d.)

with zero mean and variance �2
s . Then the symbol-rate noisy N -column channel output

vector is given by (n = 0, 1, . . .)

y (n) =
L∑

l=0

h (n; l) s (n− l) + v (n) (3.1)

where the N -column vector v (n) is zero-mean, white complex Gaussian noise, with variance

�2
vIN . We assume that {h (n; l)} represents a wide-sense stationary uncorrelated scattering

(WSSUS) channel [60].

The time-varying channel with discrete-time response {h (n; l)} is represented by CE-

BEM as (n = (i− 1)TB, (i− 1)TB + 1, ⋅ ⋅ ⋅ , iTB − 1 for i-th block and l = 0, 1, ⋅ ⋅ ⋅ , L )

h(n; l) =
Q
∑

q=1

hq(l)e
j!qn, (3.2)

where hq (l) is the N -column time-invariant BEM coefficient vector and one chooses (Λ is

an integer)

T := ΛTB, Λ ≥ 1, (3.3)

Q ≥ 2 ⌈fdTTs⌉+ 1, (3.4)

!q :=
2�

T
[q − (Q+ 1) /2] , q = 1, 2, ⋅ ⋅ ⋅ , Q (3.5)

L := ⌊�d/Ts⌋ , (3.6)

�d and fd are respectively the delay spread and the Doppler spread, and Ts is the symbol

duration.

Let ℎr,q(l) denote the r-th component of the N column vector hq(l). Stack the BEM

coefficients in (3.2) into vectors as

h(l)
r :=

[

ℎr,1 (l) ℎr,2 (l) ⋅ ⋅ ⋅ ℎr,Q (l)
]T

(3.7)

hr :=
[

h(0) T
r h(1) T

r ⋅ ⋅ ⋅ h(L) T
r

]T
(3.8)

h :=
[

hT
1 hT

2 ⋅ ⋅ ⋅ hT
N

]T
(3.9)

of size Q,M := Q(L+ 1) and NQ(L+ 1) respectively. The coefficient vectors in (3.7), (3.8)

and (3.9) of the p-th overlapping block (p = 0, 1, ⋅ ⋅ ⋅ ) will be denoted by h(l)
r (p), hr (p), and

27



h (p) respectively. Note that the p-th block and the following (p + 1)-st block differ by just

one subblock. Since a fading channel can follow well a Markov model [16], we further assume

that the BEM coefficients over each overlapping block are also Markovian. Although one

could fit a general AR model of (high) order P (as in Section 2.2.1), here we seek a “simple”

formulation given by the first-order AR model, i.e.,

h (p) = A1h (p− 1) +w (p) , (3.10)

where we assume A1 = �INQ(L+1) is the AR coefficient matrix (implying that all taps have

the same Doppler spectrum), and the driving noise vector w (p) is zero-mean white complex

Gaussian with variance �2
wINQ(L+1) and statistically independent of h (p− 1). We provide a

details about this simple AR(1) model and choice of � in Section 3.4. Assuming the channel

is wide-sense stationary (WSS) and coefficients ℎr,q (l)’s are independent, we have

�2
w = �2

ℎ(1− ∣�∣2)/Q (3.11)

where �2
ℎ := E {ℎr (n; l)ℎ∗r (n; l)}.

Under this formulation, we do not need a “strict” definition of the block size TB —

although the channel is still represented by (3.2) for arbitrary time n, the BEM coefficients

ℎr,q(l)’s are updated every subblock based on the training symbols. A key parameter now is

the CE-BEM period T , not the block size TB. Later we use (3.2) for all times n, not just

the particular block of size TB symbols, by allowing the coefficients ℎr,q(l)’s to change with

time (subblock-wise).

Based on CE-BEM given by (3.2), define

퓔 (n) :=
[

e−j!1n e−j!2n ⋅ ⋅ ⋅ e−j!Qn
]T
,

s (n) :=
[

s (n) s (n− 1) ⋅ ⋅ ⋅ s (n− L)
]T
,

and then the received signal can be written as

y (n) = [s (n)⊗ IN ]
T
[

IN(L+1) ⊗ 퓔 (n)
]H

h (p) + v (n) (3.12)

when the p-th subblock is being received at time n, by (3.1), (3.2)-(3.6) and (3.7)-(3.9).

Treating (3.10) and (3.12) as the state and the measurement equations respectively, Kalman

filtering can be applied to track the BEM coefficient vector h (p) for each subblock.

We will employ the time-multiplexed (TM) training scheme in Section 2.3 [30] where

each subblock (of equal length mb symbols) consist of a data session (of length md symbols)

28



and a succeeding training session (of lengthmt = 2L+1 symbols). Then the received signal at

r-th output at time np+ l with l = 0, 1, ⋅ ⋅ ⋅ , L is given by (assuming timing synchronization)

yr (np + l) = ℎr (np + l; l) + vr (np + l) . (3.13)

for r = 1, 2, ⋅ ⋅ ⋅ , N . Using CE-BEM (3.2) in these yr (np + l)’s, one can uniquely solve for

ℎr,q(l)’s via a least-square approach. Then the channel estimates are given by the CE-BEM

(3.2) using the estimated BEM coefficients. Using CE-BEM in (3.2) and (3.7)-(3.9), we can

simplify (3.12) at time np + l as (p = 0, 1, ⋅ ⋅ ⋅ and l = 0, 1, ⋅ ⋅ ⋅ , L)

yr (np + l) = 퓔H (np + l)h(l)
r (p) + vr (np + l) (3.14)

Note that each (sub-)channel at r-th output can be tracked using r-th received signal in (3.14)

respectively without interference. We intend to use only training sessions for subblock-wise

channel tracking regardless of data sessions. Further define

yr (p) :=
[

yr (np) yr (np + 1) ⋅ ⋅ ⋅ yr (np + L)
]T
,

vr (p) :=
[

vr (np) vr (np + 1) ⋅ ⋅ ⋅ vr (np + L)
]T
,

and

Ψ (p) :=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

퓔 (np)

퓔 (np + 1)
. . .

퓔 (np + L)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

H

.

Then by (3.14),

yr (p) = Ψ (p)hr (p) + vr (p) , (3.15)

which gives us a formulation to estimate the BEM coefficients using training symbols (ses-

sions).

Thus we have obtained a linear discrete-time system represented by (3.10) and (3.15),

with which Kalman filtering can be applied to track the BEM coefficient vector hr (p) for

each subblock. Kalman tracking in the training mode is initialized with

ĥr (−1 ∣ −1) = 0M and Rℎr (−1 ∣ −1) = �2
wIM ,
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where ĥr (p ∣ m) denotes the estimate of hr (p) given the observations {yr (n)}mn=0, and

Rℎr (p ∣ m) denotes the error covariance matrix of ĥr (p ∣ m), defined as being equal to

E{[ĥr (p ∣ m)− hr (p)][ĥr (p ∣ m)− hr (p)]
H}.

Kalman recursive filtering (for p = 0, 1, ⋅ ⋅ ⋅ ) one by one (for each r-th output) via the

following steps [32] (we have omitted the subscript r in the following steps):

1. Time update:

ĥ (p ∣ p− 1) = �ĥ (p− 1 ∣ p− 1) ,

Rℎ (p ∣ p− 1) = ∣�∣2Rℎ (p− 1 ∣ p− 1) + �2
wIM ;

2. Kalman gain:

R� (p) = ∣∣2 Ψ (p)Rℎ (p ∣ p− 1)ΨH (p) + �2
vIL+1,

K (p) = Rℎ (p ∣ p− 1)ΨH (p)R−1
� (p) ;

3. Measurement update:

ĥ (p ∣ p) = ĥ (p ∣ p− 1) +K (p)
[

y (p)− Ψ (p) ĥ (p ∣ p− 1)
]

,

Rℎ (p ∣ p) = [IM − K (p)Ψ (p)]Rℎ (p ∣ p− 1) .

After Kalman filtering for every p, we generate the channel for the p-th subblock by the

estimate ĥ (p ∣ p) via the CE-BEM (3.2) as

ℎ̂r (n; l) = 퓔
H (n) ĥ(l)

r (p ∣ p) (3.16)

for n = pmb, pmb + 1, ⋅ ⋅ ⋅ , (p+ 1)mb − 1. The definition of ĥ(l)
r (p ∣ p) is similar to (3.7).

3.2.2 Simulation Examples

Example 1

A random time- and frequency-selective Rayleigh fading channel is considered. We

assume h (n; l) are zero-mean, complex Gaussian, and spatially white. We take L = 2 (3

taps) in (3.1), and �2
ℎ = E {ℎr(n; l)ℎ∗r(n; l)} = 1/ (L+ 1). For different l’s, h (n; l)’s are
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Figure 3.2: Subblock-wise Kalman channel estimation: performance comparison for SNR’s
under N = K = 1, fdTs = 0.01,mb = 20.

mutually independent and satisfy Jakes’ model. To this end, we simulate each single tap

following [75] (with a correction in the appendix of [63]).

We consider a communication system with carrier frequency of 2GHz, data rate of

40kBd (kilo-Bauds), therefore Ts = 25�s, and a varying Doppler spread fd in the range

of 0 to 400Hz, or the normalized Doppler spread fdTs from 0 to 0.01 (corresponding to a

maximum mobile velocity from 0 to 216km / h). The additive noise is zero-mean complex

white Gaussian. The (receiver) SNR refers to the average energy per symbol over one-sided

noise spectral density.

The TM training scheme of [70], which is optimal for channels satisfying the critically

sampled CE-BEM representation, is adopted, where each subblock of equal length mb sym-

bols consists of an information session of md symbols and a succeeding training session of mt

symbols (mb = md +mt). We assume that each information symbol has unit power, while

at every training session given by (2.22), we set  =
√
2L+ 1 so that the average power per

symbol at training sessions is equal to that of information sessions. In the simulations, we

set  =
√
5 for mb = 20 (md = 15 and mt = 5) or mb = 40 (md = 35 and mt = 5).

We compared the following five schemes:

1. The block-adaptive channel estimation in [70], where the transmitted symbols are

segmented into consecutive blocks of TB symbols each. Every block consists of P̄ (≥ Q)

subblocks as introduced in Section 2.3. For each non-overlapping block, we estimate the

BEM coefficients anew via a least-squares approach, and obtain the channel estimates
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Figure 3.3: Subblock-wise Kalman channel estimation: performance comparison for Doppler
spread under N = K = 1, SNR = 20 dB,mb = 20.

over this block by the CE-BEM. We consider two models corresponding to T = 200

and 400 respectively, so that Q = 5 and 9 by (3.4). We use an oversampled CE-BEM

with TB = T/2 for mb = 20 in order to suppress spectral leakage; whereas for mb = 40,

since an oversampled CE-BEM is not possible to satisfy P̄ ≥ Q, we take TB = T .

[For parameter identifiability, one needs P̄ ≥ Q, i.e., T/(Λmb) ≥ 2 ⌈fdTTs⌉ + 1. With

Ts = 25�s, fd = 400Hz and mb = 40, there exists no integer with Λ = 2 for which we

can satisfy T/(Λmb) ≥ 2 ⌈fdTTs⌉ + 1. This implies that for blockwise updating with

mb = 40, we cannot use oversampled CE-BEM, only the less accurate critically sampled

CE-BEM.] Considering the oversampled CE-BEM basis functions are not orthogonal,

we apply a regularized least-square approach with a regularization parameter � = 1

to estimate of BEM coefficients, and then obtain the channel estimates over this block

via the CE-BEM. Furthermore, the results were worse in the oversampled CE-BEM

case when no regularization was used, caused by possible ill-conditioning of certain

matrices when the basis functions are not orthogonal. For i-th (non-overlapping) block

which has P̄ subblocks, the estimate of M × 1 BEM coefficient vector ĥ(i) is given by

(M = Q(L+ 1) is the number of unknown BEM coefficients)

ĥ(i) =
[

2ΨH
B (i)ΨB(i) + �IM

]−1
ΨH

B (i)yB(i), (3.17)
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Figure 3.4: Subblock-wise Kalman channel estimation: performance comparison for SNR’s
under N = K = 1, fdTs = 0.01,mb = 40.

where

yB(i) = ΨB(i)h(i) + vB(i), (3.18)

defining

yB(i) =
[

ys

(

P̄
)

ys

(

P̄ − 1
)

⋅ ⋅ ⋅ ys (1)
]T
,

ΨB(i) =
[

Ψ
(

P̄
)

Ψ
(

P̄ − 1
)

⋅ ⋅ ⋅ Ψ (1)
]T
,

and then obtain the channel estimates over this block by the CE-BEM. In the figures,

this scheme is denoted by “BA-LS”.

2. The channel tracking scheme in [76] using the symbol-wise first-order AR model and

Kalman filtering. Channel tracking is performed at training sessions only. For the

information sessions, the receiver updates the channel via ℎ̂ (n; l) = �cℎ̂ (n− 1; l). We

assume that only the upper-bound of the Doppler spread is known. Then for Jakes’

model, �c = J0 (2�fdTs) = 0.999 for fdTs = 0.01, where J0 (⋅) denotes the zero-th

Bessel function of the first kind. This scheme is denoted by “AR(1)-KF”.

3. We also compared the approach of joint channel estimation and data detection via

extended Kalman filtering (EKF) in [68], where the channel taps are also described

by AR(1) model. For fairness, the turbo equalization (and channel coding) procedure

in [68] is omitted. This scheme is denoted by “Joint-KF”.
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Figure 3.5: Subblock-wise Kalman channel estimation: performance comparison for Doppler
spread under N = K = 1, SNR = 20 dB,mb = 40.

4. Our subblock-wise tracking using CE-BEM, which is denoted by “SB-KF”, takes T =

200 and 400 for two different settings of CE-BEM, and Q = 5 and 9 correspondingly.

We also take AR coefficient � = 0.99 for T = 200 and � = 0.9944 for T = 400 when

mb = 20, while � = 0.94 for T = 200 and � = 0.9667 for T = 400 when mb = 40(these

values were selected empirically via simulations).

5. Perfect channel estimates are available at the receiver, which is denoted by “TrueCH”.

We evaluate the performances of various schemes by considering their normalized chan-

nel mean square error (NCMSE) and their bit error rates (BER). The NCMSE is defined

as

NCMSE :=

∑Mr
i=1

∑TN−1
n=0

∑L
l=0

∥
∥
∥ĥ(i) (n; l)− h(i) (n; l)

∥
∥
∥

2

∑Mr
i=1

∑TN−1
n=0

∑L
l=0 ∥h(i) (n; l)∥2

where h(i) (n; l) is the true channel and ĥ(i) (n; l) is the estimated channel at the i-th Monte

Carlo run, among total Mr runs, and TN is the total observation length in symbols. The

Kalman detector in Section 2.4.1 with delay d = 5 is used using the channel estimates

obtained by each scheme. In each run, a symbol sequence of length TN = 4000 is modulated

by QPSK and the first 200 symbols are discarded in evaluations. All the simulation results

are based on 500 runs.

In Fig. 3.2, the performances of the five schemes with mb = 20 (md = 15 and mt =

5) are compared for different SNR’s under normalized Doppler spread fdTs = 0.01. The
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block-adaptive scheme with the regularized LS approach (BA-LS) and subblock-wise Kalman

tracking (SB-KF), based on CE-BEM, has better performance than the symbol-wise schemes,

AR(1)-based Kalman filtering (AR(1)-KF) and joint channel estimation and data detection

(Joint-KF). For CE-BEM-based schemes, more basis functions (T = 400, Q = 9) in (3.2)

translate into better performance although the larger block size (TB = 200) may increase

estimation variance.

In Fig. 3.3, the performances are compared for different Doppler spread fd’s under fixed

SNR = 20 dB. It is clear that the symbol-wise AR(1)-KF and Joint-KF deteriorate sharply

due to the modeling inadequacies of the symbol-wise AR representation. In contrast, the

NCMSE’s and BER’s of the CE-BEM-based BA-LS and SB-KF vary more gradually with

increasing Doppler spreads, because the modeling error of the CE-BEM is much smaller.

Noting that the CE-BEM used in the schemes is based solely on the maximum Doppler

shift fdTs = 0.01, it follows that the performances of the CE-BEM-based schemes are not

sensitive to the “actual” Doppler spread if it is no larger than the assumed maximum value.

That is, we do not have to know the exact Doppler spread of the channel — an upper

bound of it suffices. Since more unknown parameters are involved in the CE-BEM-based

schemes and hence result in higher estimation variance, these schemes are slightly inferior to

the symbol-wise AR-based schemes for small fd’s; but as fd increases, the CE-BEM-based

schemes outperform the AR-based schemes.

In Fig. 3.4, we have longer information sessions to achieve a more spectrally-efficient

transmission, where the subblock size mb = 40 (md = 35 and mt = 5) so that only 12.5%

of the transmitted symbols are dedicated to training; for the small subblock with mb = 20,

25% of the transmitted symbols are dedicated to training. Similarly, symbol-wise AR(1)-KF

and Joint-KF cannot capture the fast-varying channel even with high SNR’s. For the BA-

LS, we cannot use the oversampled CE-BEM with this longer subblock and hence results in

worse performance in NCMSE’s and BER’s due to the spectral leakage. [It is when we use

the oversampled CE-BEM that block-adaptive LS has similar performance as our proposed

subblock-wise Kalman tracking.] However, our proposed subblock-wise Kalman tracking

is insensitive to this problem and maintain satisfactory performances. In Fig. 3.5, four

schemes with mb = 40 are compared over different Doppler spread fd’s. Definitely, block-

adaptive scheme based on critically-sampled CE-BEM deteriorates except for small (nearby

zero) Doppler spread; the spectral leakage is also small with small fd. Our subblock-wise

Kalman tracking, where it updates the channel estimates subblock-by-subblock using CE-

BEM, outperforms other existing schemes.
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Figure 3.6: Subblock-wise Kalman channel estimation: performance comparison for SNR’s
under K = 1, fdTs = 0.0025,mb = 80.

Example 2

The random Rayleigh fading channel in this example is as in Example 1, except that

we change the channel length L from 2 to 8 leading to 9 taps, and the power delay profile

is exponential satisfying E {∣ℎr(n : l)∣2} = �2
ℎ(l) = ae−l/L where the constant a is picked

to satisfy
∑L

l=0 �
2
ℎ(l) = 1. We consider a communication system with carrier frequency of

2GHz, data rate of 0.1MBd (mega-Bauds), therefore Ts = 10�s, and a varying Doppler

spread fd = 250Hz, or the normalized Doppler spread fdTs = 0.0025 (corresponding to

a maximum mobile velocity of 135km / h). The training session is described by (2.22) of

length mt = 2L + 1 = 17 symbols with  =
√
2L+ 1 so that the average symbol power of

training sessions is equal to that of information sessions. We select the period of the CE-

BEM T = 800 symbols, and hence Q = 5 by (3.4) and a block size TB = 400 for oversampled

CE-BEM.

Four estimation and tracking schemes are compared: block-adaptive channel estimation

in [70] using the regularized LS approach (“BA-LS”), channel tracking scheme in [76] using

a first-order AR model (“AR(1)-KF”), joint channel estimation and data detection via EKF

in [68] (“Joint-KF”) and our subblock-wise Kalman tracking (“SB-KF”). The BER’s are eval-

uated by employing the Kalman detector with delay d = 10, using the channel estimates

obtained by each scheme.

In Figs. 3.6, the performances of the four schemes with the subblock size mb = 80 are

compared for different SNR’s. For the subblock-wise Kalman tracking, we picked the AR
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Figure 3.7: Subblock-wise Kalman channel estimation: performance comparison for SNR’s
under K = 1, fdTs = 0.0025,mb = 100.

coefficient � = 0.993. Based on CE-BEM, block-adaptive scheme [70] with regularized LS

approach and subblock-wise Kalman filtering has superior performance to the symbol-wise

AR-based AR(1)-KF [76] and Joint-KF [68]. It is sure that CE-BEM is more effective to

estimate channel than AR model, especially in fast-varying channel. We also consider single-

input multiple-output system with 2 receivers to distinguish the performances of BA-LS and

SB-KF. Due to the assumption that the channel is spatially uncorrelated for different outputs,

the NCMSE curves forN = 1 and 2 coincide with each other but Joint-KF estimating channel

and data symbols jointly. It is worth pointing out that superior average channel NCMSE does

not necessarily translate into superior BER since a monotone relationship between average

NCMSE and BER does not necessarily exist. The BER’s with multi-receivers show the

proposed subblock-wise Kalman filtering outperforms block-adaptive LS approach. [One can

replace Kalman detector with MMSE-DFE in Section 2.4.2 that makes more distinguishable

BER performances. We will use DFE later.]

In Figs. 3.7, we have a little longer information sessions, where we set the subblock

size mb = 100 and the AR coefficient � = 0.992 for the subblock-wise Kalman tracking.

Admitting the worse performance with the less training overhead (21.3% for mb = 80 and

17% for mb = 100), the deteriorations of BA-LS in NCMSE and BER are severe due to

the identifiability problem. For the block-adaptive schemes, we consider the oversampling

(Λ = 2), although parameter identifiability does not hold for oversampling since the number

of subblocks (P̄ = TB/mb = (T/Λ)/mb = 4) is less than one of unknown parameters (Q = 5).
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[One can use the critically-sampling (Λ = 1) to satisfy the parameter identifiability. However,

our experiments for this example show the BA-LS solution with critically-sampled CE-BEM

is even worse than with oversampled one.] Our proposed subblock-wise Kalman tracking

updates the channel estimates subblock-by-subblock and hence the block size TB is not a

key parameter as in BA-LS. As a result shown in Figs, the subblock-wise approach has more

advantages than block-wise or symbol-wise ones.

3.3 Subblock-wise MIMO Channel Estimation using CE-BEM

3.3.1 Subblock-wise Kalman Tracking for MIMO Channel

Consider a doubly-selective multi-input multi-output (MIMO), finite impulse response

(FIR) linear channel with K inputs and N outputs. Let {sk (n)} denote k-th user’s in-

formation sequence that is input to the time-varying channel with discrete-time response

{hk (n; l)} (channel response for the k-th user at time instance n to a unit input at time

instance n − l). We assume {sk (n)} is mutually independent and identically distributed

(i.i.d.) with zero mean and variance E{sk (n) s∗k (n)} = �2
sk

= �2
s for k = 1, 2, ⋅ ⋅ ⋅ , K. Then

the symbol-rate noisy N -column channel output vector is given by (n = 0, 1, . . .)

y (n) =
K∑

k=1

L∑

l=0

hk (n; l) sk (n− l) + v (n) (3.19)

where the N -column vector v (n) is zero-mean, white, uncorrelated with sk (n), complex

Gaussian noise, with the autocorrelation E{v (n+ �)vH (n)} = �2
vIN� (�). We assume that

{hk (n; l)} represents a wide-sense stationary uncorrelated scattering (WSSUS) channel [60],

independent for different k’s. Define

s(n) :=
[

s1(n) s2(n) ⋅ ⋅ ⋅ sK(n)
]T

h(n; l) :=
[

h1(n; l) h2(n; l) ⋅ ⋅ ⋅ hK(n; l)
]

.

and we may rewrite (3.19) as

y (n) =
L∑

l=0

h (n; l) s (n− l) + v (n) . (3.20)

In CE-BEM [11, 14, 70], over the i-th block consisting of an observation window of

TB symbols, the channel is represented as (n = (i − 1)TB, (i − 1)TB + 1, ⋅ ⋅ ⋅ , iTB − 1 and
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l = 0, 1, ⋅ ⋅ ⋅ , L )

hk(n; l) =
Q
∑

q=1

hk,q(l)e
j!qn, (3.21)

where hk,q (l) is the N -column time-invariant BEM coefficient vector for k-th user and one

chooses (Λ is an integer)

T := ΛTB, Λ ≥ 1, (3.22)

Q ≥ 2 ⌈fdTTs⌉+ 1, (3.23)

!q :=
2�

T
[q − (Q+ 1) /2] , q = 1, 2, ⋅ ⋅ ⋅ , Q (3.24)

L := ⌊�d/Ts⌋ , (3.25)

�d and fd are respectively the delay spread and the Doppler spread, and Ts is the symbol

duration.

Now extend the proposed subblock-wise approach in Section 3.2 to MIMO systems. Let

ℎrk,q(l) denote the r−th component of the column hk,q(l). Stack the BEM coefficients in

(3.21) into vectors as

h(l)
rk :=

[

ℎrk,1(l) ℎrk,2(l) ⋅ ⋅ ⋅ ℎrk,Q(l)
]T

(3.26)

hrk :=
[

h
(0) T
rk h

(1) T
rk ⋅ ⋅ ⋅ h

(L) T
rk

]T
(3.27)

h :=
[

h T
11 ⋅ ⋅ ⋅ h T

N1 ⋅ ⋅ ⋅ h T
1K ⋅ ⋅ ⋅ h T

NK

]T
(3.28)

of size Q, M := Q(L+ 1) and NKQ (L+ 1), respectively. The coefficient vectors in (3.26),

(3.27) and (3.28) of the p-th subblock will be denoted by h
(l)
rk (p), hrk (p), and h (p). Since

a fading channel can follow well a Markov model [16], we further assume that the BEM

coefficients over each overlapping block are also Markovian. A simplified formulation is

given by the first-order AR model, i.e.,

h (p) = A1h (p− 1) +w (p) , (3.29)

where we assume A1 = �INKQ(L+1) is the AR coefficient matrix, and the driving noise vector

w (p) is zero-mean white complex Gaussian with variance �2
wINKQ(L+1) and statistically inde-

pendent of h (p− 1). Assuming the channel is wide-sense stationary (WSS) and coefficients

ℎrk,q(l)’s are independent, we have

�2
w = �2

ℎ(1− ∣�∣2)/Q (3.30)

39



where �2
ℎ := E {ℎrk (n; l)ℎ∗rk (n; l)}.

Based on CE-BEM given by (3.21), define (where s (n) is K-column vector)

퓔 (n) :=
[

e−j!1n e−j!2n ⋅ ⋅ ⋅ e−j!Qn
]T
, (3.31)

S (n) :=
[

sT (n) sT (n− 1) ⋅ ⋅ ⋅ sT (n− L)
]T
, (3.32)

and then the received signal can be written as

y (n) = [S (n)⊗ IN ]
T
[

INK(L+1) ⊗ 퓔 (n)
]H

h (p) + v (n) (3.33)

when the p-th subblock is being received at time n, by (3.20), (3.21)-(3.25) and (3.26)-(3.28).

Treating (3.29) and (3.33) as the state and the measurement equations respectively, Kalman

filtering can be applied to track the BEM coefficient vector h (p) for each subblock.

We will employ the TM training scheme proposed in Section 2.3 [30]. Then by design,

a given user’s training does not affect that of any other user during training session. Hence

the received signal between r-th output and k-th input can be written as (assuming timing

synchronization)

yr (nk,p + l) = ℎrk (nk,p + l; l) + vr (nk,p + l) (3.34)

for l = 0, 1, ⋅ ⋅ ⋅ , L, k = 1, 2, ⋅ ⋅ ⋅ , K and r = 1, 2, ⋅ ⋅ ⋅ , N . Using (3.21) in these yr (nk,p + l)’s,

one can uniquely solve for ℎrk,q(l)’s via a least-square (LS) approach. Then the channel

estimates are given by the CE-BEM (3.21) using the estimated BEM coefficients. Therefore,

every element of N ×K channel matrix,

h (n; l) =

⎡

⎢
⎢
⎢
⎣

ℎ11 (n; l) ℎ12 (n; l) ⋅ ⋅ ⋅ ℎ1K (n; l)
...

... ℎrk (n; l)
...

ℎN1 (n; l) ℎN2 (n; l) ⋅ ⋅ ⋅ ℎNK (n; l)

⎤

⎥
⎥
⎥
⎦
,

can be tracked independently one by one. Using (3.34), in order to track every (sub-)channel

between N outputs and K inputs respectively, we can simplify (3.33) at time nk,p + l as

(p = 0, 1, ⋅ ⋅ ⋅ and l = 0, 1, ⋅ ⋅ ⋅ , L)

yr (nk,p + l) = 퓔H (nk,p + l)h
(l)
rk (p) + vr (nk,p + l) (3.35)
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We intend to use only training sessions for subblock-wise channel tracking regardless of data

sessions. Further define

yr (p) :=
[

yr (nk,p) yr (nk,p + 1) ⋅ ⋅ ⋅ yr (nk,p + L)
]T
,

vr (p) :=
[

vr (nk,p) vr (nk,p + 1) ⋅ ⋅ ⋅ vr (nk,p + L)
]T
,

Ψ (p) :=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

퓔 (nk,p)

퓔 (nk,p + 1)
. . .

퓔 (nk,p + L)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

H

.

Then by (3.35),

yr (p) = Ψ (p)hrk (p) + vr (p) . (3.36)

Thus we have obtained a linear discrete-time system represented by (3.29) and (3.36).

Kalman filtering can be applied to track hrk (p), each (sub-)channel’s BEM coefficients be-

tween r-th receiver and k-th user. Since Kalman recursive filtering (for p = 0, 1, ⋅ ⋅ ⋅ ) is

applied one by one (for each pair rk) independently, we can just follow the same algorithms

in Section 3.2. After Kalman filtering for every p, we generate the channel for the p-th

subblock by the estimate ĥ (p ∣ p) via the CE-BEM (3.21) as

ℎ̂rk (n; l) = 퓔
H (n) ĥ

(l)
rk (p ∣ p) (3.37)

for n = pmb, pmb + 1, ⋅ ⋅ ⋅ , (p+ 1)mb − 1. The definition of ĥ
(l)
rk (p ∣ p) is similar to (3.26).

Thus we obtain the entire N ×K channel matrix for the current subblock.

Computational Complexity

Here we consider computational complexity of channel estimation algorithm using the

floating point operation (flop) count for the channel estimation algorithm of each simulation

program. One floating point multiply/divide and associated adds/subtracts is called a flop

since the number of multiplies and divides often determines the CPU time; general multi-

plication of (m× p) matrix A and (p× n) matrix B has mnp flops. For the explicit inverse

of (n × n) matrix A with (n × p) or (p × n) matrix B, i.e., A−1B or BA−1 is solved by

LU factorization using Gaussian elimination with partial pivoting and hence has n3/3+ pn2

flops.

The detailed flops counts for one iteration of subblock-wise tracking algorithm are shown

in Table 3.1. Note that we have P̄ = TB/mb iterations for one block length of TB. Defining
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the number of flops for one cycle of subblock-wise tracking and block-wise LS one as (M =

Q(L+ 1), Lp = L+ 1)

fc(SB-KF) =M3 +M2(3Lp + 3) +M(2L2
p + 5Lp + 1) + L3

p/3 + L2
p,

fc(BA-LS) =M3/3 +M2(2P̄Lp + 1) +M(P̄Lp + 1),

we compare the overall flops counting for T = 200, Q = 5 and T = 400, Q = 9 with a block

of length Ta = 400 in Table 3.2. We set the overall flops for BA-LS(T = 200, Q = 5) to be

one and take TB = T/Λ,Λ = 2(oversampling),mb = 20, P̄ = TB/mb, Lp = L+ 1 = 3.

Note that the computational complexity of MIMO channels with K inputs and N out-

puts is obtained by simply NK times of its single-input single-output (SISO) case since

the algorithm for MIMO channels are implemented one-by-one independently for every pair

between r-th output and k-th input by the design of TM training scheme.

Table 3.1: Subblock-wise Kalman filtering: flop count for channel estimation over one sub-
block of mb symbols.

Operation Number of flops

ĥ (p ∣ p− 1) = �ĥ (p− 1 ∣ p− 1) M

Rℎ (p ∣ p− 1) = ∣�∣2Rℎ (p− 1 ∣ p− 1) + �2
wIM M2(2)

R� (p) = ∣∣2 Ψ (p)Rℎ (p ∣ p− 1)ΨH (p) + �2
vIL+1 M2Lp +M(L2

p + Lp) + L2
p

K (p) = Rℎ (p ∣ p− 1)ΨH (p)R−1
� (p) M2(Lp + 1) +ML2

p + L3
p/3

ĥ (p ∣ p) = ĥ (p ∣ p− 1) +K (p)
[

y (p)− Ψ (p) ĥ (p ∣ p− 1)
]

M(3Lp)

Rℎ (p ∣ p) = [IM − K (p)Ψ (p)]Rℎ (p ∣ p− 1) M3 +M2Lp +MLp

Total : M3 +M2(3Lp + 3) +M(2L2
p + 5Lp + 1) + L3

p/3 + L2
p

Table 3.2: Block-wise least-square and subblock-wise Kalman filtering: comparative flop
count for channel estimation over one block of Ta = 400 symbols.

Scheme Number of flops relative flops

BA-LS(T=200,Q=5) fc(BA-LS)(Ta/TB) 1.00

BA-LS(T=400,Q=9) fc(BA-LS)(Ta/TB) 3.11

SB-KF(T=200,Q=5) P̄ fc(SB-KF)(Ta/TB), P̄ = 5 3.96

SB-KF(T=400,Q=9) P̄ fc(SB-KF)(Ta/TB), P̄ = 10 17.61

42



3.3.2 Simulation Examples

Example 1
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Figure 3.8: Subblock-wise Kalman MIMO channel estimation: performance comparison for
SNR’s under N = K = 2, fdTs = 0.01,mb = 20.

A random time- and frequency-selective Rayleigh fading MIMO channel is considered.

We assume h (n; l) are zero-mean, complex Gaussian, and spatially white. We take L = 2

(3 taps) in (3.20), and �2
ℎ = E {ℎrk(n; l)ℎ∗rk(n; l)} = 1/ (L+ 1) between k-th user and r-th

receiver. For different l’s, h (n; l)’s are mutually independent and satisfy Jakes’ model. To

this end, we simulate each single tap following [75] (with a correction in the appendix of [63]).

We consider a communication system with carrier frequency of 2GHz, data rate of

40kBd (kilo-Bauds), therefore Ts = 25�s, and a varying Doppler spread fd in the range

of 0 to 400Hz, or the normalized Doppler spread fdTs from 0 to 0.01 (corresponding to a

maximum mobile velocity from 0 to 216km / h). The additive noise is zero-mean complex

white Gaussian. The (receiver) SNR refers to the average energy per symbol over one-sided

noise spectral density.

The TM training scheme of [30], which is optimal for channels satisfying critically sam-

pled CE-BEM representation, is adopted, where each subblock of equal length mb symbols

consists of an information session of md symbols and a succeeding training session of mt

symbols (mb = md+mt). We assume that each information symbol has unit power, while at

every training session given by (2.24), we set  =
√

K (L+ 1) + L so that the average power

per symbol at training sessions is equal to that of information sessions. In the simulations,
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Figure 3.9: Subblock-wise Kalman MIMO channel estimation: performance comparison for
Doppler spread under N = K = 2, SNR = 20 dB,mb = 20.

we consider a simple two-receiver and two-user scenario, i.e., N = 2, K = 2 with the same

transmitted power. We set mb = 20, md = 12 and mt = 8 with  =
√
8 for every user

following the TM training scheme.

We compared the following five schemes:

1. The block-adaptive channel estimation in [30], where the transmitted symbols are

segmented into consecutive blocks of TB symbols each. Every block consists of P̄ (≥ Q)

subblocks as introduced in Section 2.3. We consider two models corresponding to

T = 200 and 400 respectively, so that Q = 5 and 9 by (3.23). We use an oversampled

CE-BEM with TB = T/2 for mb = 20 since the over-sampled CE-BEM approximates

WSSUS channels much better than critically sampled CE-BEM [14]; whereas for mb =

40, since an oversampled CE-BEM is not possible to satisfy P̄ ≥ Q, we take TB = T .

Considering the oversampled CE-BEM basis functions are not orthogonal, we apply a

regularized least-square approach with a regularization parameter � = 1; furthermore,

the results were worse in the oversampled CE-BEM case when no regularization was

used, caused by possible ill-conditioning of certain matrices when the basis functions

are not orthogonal. In the figures, this scheme is denoted by “BA-LS”.

2. The channel tracking scheme in [76] using a first-order AR model. Channel tracking is

performed at training sessions only. For data sessions, the receiver updates the channel

via ĥ (n; l) = �cĥ (n− 1; l). We assume that only the upper-bound of the Doppler
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Figure 3.10: Subblock-wise Kalman MIMO channel estimation: performance comparison for
SNR’s under N = K = 2, fdTs = 0.01,mb = 40.

spread is known. Then for Jakes’ model, �c = J0 (2�fdTs) = 0.999 for fdTs = 0.01,

where J0 (⋅) denotes the zero-th Bessel function of the first kind. This scheme is denoted

by “AR(1)-KF”.

3. We also compared the approach of joint channel estimation and data detection via

extended Kalman filtering (EKF) in [68] without the turbo equalization (and channel

coding) procedure, using an AR(1) model for channel taps as above. This scheme is

denoted by “Joint-KF”.

4. Our subblock-wise tracking using CE-BEM, which is denoted by “SB-KF”, takes T =

200 and 400 for two different settings of CE-BEM, and Q = 5 and 9 correspondingly.

We also take AR coefficient, � = 0.99 for T = 200 and � = 0.9944 for T = 400.

5. Perfect channel estimates are available at the receiver, which is denoted by “TrueCH”.

We evaluate the performances of various schemes by considering their normalized chan-

nel mean square error (NCMSE) and their bit error rates (BER). The NCMSE is defined

as

NCMSE :=

∑Mr
i=1

∑TN−1
n=0

∑L
l=0

∥
∥
∥ĥ(i) (n; l)− h(i) (n; l)

∥
∥
∥

2

∑Mr
i=1

∑TN−1
n=0

∑L
l=0 ∥h(i) (n; l)∥2

where h(i) (n; l) is the true channel and ĥ(i) (n; l) is the estimated channel at the i-th Monte

Carlo run, among total Mr runs. The Kalman detector in Section 2.4.1 with delay d = 5 is
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Figure 3.11: Subblock-wise Kalman MIMO channel estimation: performance comparison for
Doppler spread under N = K = 2, SNR = 20 dB,mb = 40.

used using the channel estimates obtained by each scheme. In each run, a symbol sequence

of length, TN = 4000 for each user is modulated by QPSK and the first 200 symbols are

discarded in evaluations. All the simulation results are based on 500 runs.

In Fig. 3.8, the performances of the five schemes are compared for different SNR’s under

fixed normalized Doppler spread fdTs = 0.01. It is seen that the CE-BEM-based tracking

schemes, BA-LS [30] and SB-KF, have superior performance compared to the symbol-wise

AR-based AR(1)-KF and Joint-KF. The symbol-wise AR-model cannot capture the fast-

varying channel even with high SNR’s. Using the oversampled CE-BEM, more basis functions

(T = 400, Q = 9) in (3.21) result in better performance. For the block-adaptive scheme,

larger block size (TB = 200 = T/Λ,Λ = 2 for oversampled CE-BEM) may induce larger

estimation variance. However, this strategy can well improve the performance of the proposed

SB-KF scheme since all past data are implicitly utilized in Kalman filtering-based subblock

tracking and we also update every subblock.

In Fig. 3.9, we compare the same schemes over different Doppler spread fd’s with SNR =

20 dB. For slowly fading channels, the CE-BEM-based trackings are slightly inferior to the

symbol-wise AR(1)-KF or Joint-KF, since more unknown parameters (BEM coefficients) are

involved in and therefore result in higher estimation variance. As fd increases, the BA-LS

and SB-KF gradually outperforms the AR(1)-model-based schemes, since the time variations

of the channel have been well captured in CE-BEM while AR(1)-KF and Joint-KF schemes

cannot track the fast channel variations. Since the CE-BEM used in the schemes is based
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solely on the maximum Doppler shift fdTs = 0.01, the performances of the CE-BEM-based

schemes are not sensitive to the “actual” Doppler spread if it is no larger than the assumed

maximum value. For the purpose of channel estimation, we need not the exact Doppler

spread but an upper bound of it when using CE-BEM.

In Fig. 3.10, we increase the subblock size mb = 20 to 40 and hence reduce the training

ratio 40% to 20%, so that we can save the transmitted symbols used for the additive training.

For the block-adaptive LS approach, the critically-sampled CE-BEM is considered and we

have TB = T (Λ = 1), P̄ = TB/mb ≥ Q. Note that, for this longer subblock size mb =

40, BA-LS scheme with the oversampled CE-BEM cannot satisfy the unknown parameter

identifiability condition. The performances in NCMSE and BER of BA-LS with critically-

sampled CE-BEM deteriorate significantly due to the spectral leakage. However, unlike

block-adaptive scheme, the proposed subblock-wise approach has no identifiability condition

to estimate unknown BEM coefficients since we update subblock-by-subblock and the block

size TB is not a strict factor.

Fig. 3.5 show the performances of this longer subblock size mb = 40 over different

Doppler spread fd’s. It is seen that CE-BEM is more adequate to keep track of the wire-

less channel than symbol-wise AR model; AR(1)-KF and Joint-KF deteriorate as fd in-

creases. The block-adaptive LS based on the critically-sampled CE-BEM also deteriorates

with Doppler spread; it has a good performance only when fd ≈ 0. [One can try BA-LS with

the oversampled CE-BEM, neglecting the identifiability. However, the latter performances

is similar as the former ones.] On the other hand, while SB-KF has some variations and

slightly goes worse as fd increases, the overall performance is satisfactory.

Example 2

The random Rayleigh fading MIMO channel in this example is as in Example 1, except

that we change the channel length L from 2 to 8 leading to 9 taps, and the power delay

profile is exponential satisfying E {∣ℎrk(n : l)∣2} = �2
ℎ(l) = ae−l/L between k-th user and r-th

receiver where the constant a is pick to satisfy
∑L

l=0 �
2
ℎ(l) = 1. We consider a communication

system with carrier frequency of 2GHz, data rate of 0.1MBd (mega-Bauds), therefore Ts =

10�s, and a varying Doppler spread fd = 250Hz, or the normalized Doppler spread fdTs =

0.0025 (corresponding to a maximum mobile velocity of 135km / h). The training session is

described by (2.24) of length mt = K (L+ 1)+L = 26 symbols with  =
√

K (L+ 1) + L so

that the average symbol power of training sessions is equal to that of information sessions.

We select the period of the CE-BEM T = 800 symbols, and hence Q = 5 by (3.23) and a

block size TB = 400 for oversampled CE-BEM.
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Figure 3.12: Subblock-wise Kalman MIMO channel estimation: performance comparison for
SNR’s under K = 2, fdTs = 0.0025,mb = 80.

Four estimation and tracking schemes are compared: block-adaptive channel estimation

in [30] using the regularized LS approach (“BA-LS”), channel tracking scheme in [76] using

a first-order AR model (“AR(1)-KF”), joint channel estimation and data detection via EKF

in [68] (“Joint-KF”) and our subblock-wise Kalman tracking (“SB-KF”). The BER’s are eval-

uated by employing the Kalman detector with delay d = 10, using the channel estimates

obtained by each scheme.

In Fig. 3.12, the performances of the above schemes with the subblock size mb = 80 are

compared for different SNR’s. For the subblock-wise Kalman tracking, we picked the AR

coefficient � = 0.993. Similarly as Example 1, the symbol-wise AR(1)-KF [76] and Joint-

KF [68] approaches is not appropriate for the fast-varying channels. Using the oversampled

CE-BEM, the block-adaptive scheme [30] with regularized LS approach (BA-LS) has similar

performances as the subblock-wise Kalman filtering (SB-KF). Clearly, the CE-BEM-based

schemes, where BEM coefficients slowly change block by block, outperform AR-based ones.

To compare BA-LS and SB-KF schemes more clearly, we also have the examples with N = 3

receivers. Since we assume the channel is spatially uncorrelated for different outputs, the

NCMSE curves show the same performances for N = 2 and N = 3. [Joint-KF has different

NCMSE curves for N = 2 and N = 3 since it estimates channel and data symbols jointly.]

The superiority in NCMSE does not guarantee the superiority in BER since NCMSE and

BER have no monotone relationship each other. When increasing the number of receivers,
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Figure 3.13: Subblock-wise Kalman MIMO channel estimation: performance comparison for
SNR’s under K = 2, fdTs = 0.0025,mb = 100.

we have better performance in BER’s. In particular, the proposed subblock-wise Kalman

filtering outperforms block-adaptive LS approach with more receivers.

In Fig. 3.13, we increase the subblock size mb = 80 to mb = 100 and hence have more

spectrally-efficient transmission; the training overhead decreases from 15% to 12%. We set

the AR coefficient � = 0.992 for the subblock-wise Kalman tracking. The performances of

all schemes become worse due to the lower frequency of training sessions. But the relative

superiority of the subblock-wise schemes over block-wise schemes is unchanged.

3.4 AR(1) Coefficient � for Subblock-wise Kalman Tracking

Here we discuss choice of the AR coefficient � for subblock-wise channel estimation

using Kalman filter investigated in this chapter for a class of (true) channel models. We

assume that the components of the MIMO channel h (n; l) are mutually independent and

identically distributed (i.i.d.) with zero-mean, complex Gaussian, and spatially white with

autocorrelation E
{

h (n; l)hH (n; l)
}

= �2
ℎIN . Then a simplified AR(1) model for the BEM

coefficient vector is given by

h (p) = A1h (p− 1) +w (p) , (3.38)
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where A1 is the AR coefficient matrix, and the driving noise vector w (p) is zero-mean white

complex Gaussian with variance �2
wI and statistically independent of h (p− 1). Defining

hB(n; l) := [h(n; l) h(n+ 1; l) ⋅ ⋅ ⋅ h(n+ TB − 1; l)]T , (3.39)

consider two overlapping blocks that differ by just one subblock: hB(pmb; l) and hB((p +

1)mb; l) with h(l)(p) and h(l)(p+1) as the corresponding BEM coefficient vector respectively.

Further define

E(n) :=
[

퓔(n) 퓔(n+ 1) ⋅ ⋅ ⋅ 퓔(n+ TB + 1)
]H ⊗ INK , (3.40)

Γ := diag
{

ej!1mb , ej!2mb , ⋅ ⋅ ⋅ , ej!Qmb

}

⊗ INK , (3.41)

where E(n) is NKTB ×NKQ and Γ is NKQ×NKQ. It follows that

hB(pmb; l) = E(pmb)h
(l)(p), (3.42)

hB((p+ 1)mb; l) = E(pmb)Γh
(l)(p+ 1). (3.43)

Defining

h̃B(n) :=
[

hT
B(n; 0) hT

B(n; 1) ⋅ ⋅ ⋅ hT
B(n;L)

]T
, (3.44)

we have

h̃B(pmb) = Ẽ(pmb)h(p), (3.45)

h̃B((p+ 1)mb) = Ẽ(pmb)Γ̃h(p+ 1), (3.46)

where Ẽ(pmb) := diag {E(pmb), E(pmb), ⋅ ⋅ ⋅ E(pmb)} , and Γ̃ := diag {Γ, Γ, ⋅ ⋅ ⋅ , Γ}.
If (3.38) holds, then using the Yule-Walker equation

A1 = E
{

h(p+ 1)hH(p)
} [

E
{

h(p)hH(p)
}]−1

, (3.47)

where using (3.45) and (3.46) we have

E
{

h(p+ 1)hH(p)
}

= Γ̃−1Ẽ†(pmb)E
{

h̃B((p+ 1)mb)h̃
H

B
(pmb)

}

Ẽ†H(pmb), (3.48)

E
{

h(p)hH(p)
}

= Ẽ†(pmb)E
{

h̃B(pmb)h̃
H

B
(pmb)

}

Ẽ†H(pmb), (3.49)

and E
{

h̃B((p+ 1)mb)h̃
H
B (pmb)

}

and E
{

h̃B(pmb)h̃
H
B (pmb)

}

can be calculated using (3.39)

and (3.44) if we know the channel correlation function Rℎ(�).
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Since typically Rℎ(�) will not be available, in order to simplify we assumed A1 = �I

and E
{

w(p)wH(p)
}

= �2
wI, leading to

h(p) = �h(p− 1) +w(p). (3.50)

If the channel is wide-sense stationary uncorrelated scattering (WSSUS) and coefficients

ℎq(l)’s are independent (as assumed in [70]), then by (3.50) and Yule-Walker equations, we

have

� =

⎛

⎝
E
{

hH(p+ 1)h(p)
}

E {hH(p)h(p)}

⎞

⎠

∗

=
tr
{

Γ̃−1Ẽ†(pmb)E
{

h̃B((p+ 1)mb)h̃
H
B (pmb)

}

Ẽ†H(pmb)
}

tr
{

Ẽ†(pmb)E
{

h̃B(pmb)h̃H
B (pmb)

}

Ẽ†H(pmb)
} , (3.51)

and �2
w = �2

ℎ(1 − ∣�∣2)/Q. Assuming for different l’s, h (n; l)’s are mutually independent

and satisfy Jakes’ model, we know the correlation of ℎ(n; l) and then we can calculate � via

(3.51). For the over-sampled CE-BEM, Ẽ(n) may be ill-conditioned since the basis functions

are not orthogonal. Note that (3.51) also requires knowledge of Rℎ(�). In order to avoid

this, one can somewhat arbitrarily pick a value of �; this has been done in, e.g. [28] (in a

different but similar context). Since the coefficients evolve slowly, we will have � ≈ 1 (but

� < 1 for tracking uses). The results of (3.51) are similar to (2.12) in Section 2.2.1 except

that in the former changes occur every subblock whereas in the latter the changes occur

every symbol.

To gain more insight, let us consider a specific channel tap ℎ(n; l) following the Jakes’

spectrum (also used in all simulation examples in this paper). When T = 400, TB = 200, Q =

9, and fdTs = 0.01, one gets � = 0.9814 and 0.9425 for mb = 20 and 40, respectively; i.e.,

dependence between subblocks decreases with increasing mb. With fdTs held at 0.01, when

T and TB are halved to 200 and 100, respectively, (leading to Q = 5), one gets � = 0.9605

and 0.8791 for mb = 20 and 40, respectively; i.e., as TB increases, � increases, and vice versa.

When T = 400, TB = 200, and fdTs = 0.005 (leading to Q = 5), one gets � = 0.9893 and

0.9605 for mb = 20 and 40, respectively; i.e., as fd decreases, � increases and vice versa.

These numerical results are consistent with one’s intuition: faster channel variations call for

smaller � values (less dependence), and vice versa.

In Figs. 3.14, the performances of subblock-wise Kalman tracking are shown for different

values of � based on 500 Monte Carlo runs with the same environment as the simulation

example in Section 3.2.2 and 3.3.2. In our simulations, we picked the AR(1) coefficient

� = 0.9944 and 0.9667 for mb = 20 and 40 respectively, where T = 400, Q = 9 in CE-BEM.
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It is seen that while the performance is not sensitive to the value of � over a relatively wide

range of values, it does deteriorate as � approaches one. Note that � is close to one (� ≈ 1)

but it is not one since � = 1 in AR(1) model implies time-invariance and � < 1 permits

tracking by discounting older values of the channel BEM coefficients.
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Figure 3.14: Subblock-wise Kalman channel estimation: performances for AR(1) coefficient
�’s, under N = K = 1, fdTs = 0.01, SNR = 20dB,mb = 20 and 40.

3.5 Conclusions

We presented a subblock-wise tracking approach to doubly-selective channel estimation,

exploiting the oversampled complex exponential basis expansion model (CE-BEM) for the

overall channel variations, and an autoregressive (AR) model to update the BEM coefficients.

We tracked the BEM coefficients via Kalman filtering, based on time-multiplexed periodically

transmitted training symbols. Rather than track each channel tap gain, we estimated the

BEM coefficients subblock by subblock, and then (re-)generated the channel via the CE-BEM

with the estimated BEM coefficients. In this way, the modeling mismatch introduced by the

conventionally used symbol-wise AR channel model can be greatly reduced, and hence better

performance can be achieved in fast-fading environments. We also extended the subblock-

wise tracking to MIMO systems. Simulation examples demonstrated its superior performance

over some existing doubly-selective channel tracking schemes, over a wide range of Doppler

spreads.
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Chapter 4

Recursive Least-squares Doubly-selective Channel Estimation Using

Exponential Basis Models and Subblock-wise Tracking

We present the subblock-wise channel estimation scheme, exploiting the oversampled

complex exponential basis expansion model (CE-BEM) for the overall channel variations.

The time-varying nature of the channel is well captured by the CE-BEM while the time-

variations of the (unknown) BEM coefficients are likely much slower than that of the channel.

We apply the exponentially-weighted (EW) and sliding-window (SW) recursive least-squares

(RLS) algorithms to track the BEM coefficients, using time-multiplexed periodically trans-

mitted training symbols. Simulation examples demonstrate its superior performance over

the conventional block-wise channel estimator.

4.1 Introduction

In Chapter 3, a subblock-wise tracking approach was proposed for doubly-selective chan-

nels using time-multiplexed (TM) training. It exploits the CE-BEM for the overall channel

variations, and a first-order AR model to describe the evolutions of the BEM coefficients.

The slow-varying BEM coefficients, rather than the fast-varying channel, are tracked and up-

dated at each training session; during information sessions, channel estimates are generated

by the CE-BEM using the estimated BEM coefficients. The BEM coefficients are updated

via Kalman filtering at each training session; during information sessions, channel estimates

are generated by the CE-BEM using the estimated BEM coefficients. The subblock-wise

approaches achieve better performance in fast-fading environments, than using conventional

symbol-wise AR models [6] or block-wise BEM representations [30,70].

However, the approach in Chapter 3 used the first-order AR model for BEM coefficients,

which is not necessarily suited to a real channel environment, and possibly causes modeling

error in estimation. To solve this problem, we propose an adaptive channel estimation

scheme without an arbitrary a priori model for the BEM coefficients. Two finite-memory

adaptive filtering algorithms, the EW- and SW-RLS algorithm, are considered for subblock-

wise channel tracking.

A decision-directed channel tracking via the RLS algorithm within a sliding window

using polynomial BEM has been investigated in [8] and channel estimation via Kalman

filtering using polynomial or complex exponential BEM for OFDM systems has been explored
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in [26, 41, 44]; all these approaches use block-by-block updating (for single input systems).

Our contribution exploits subblock-wise updating, where several subblocks comprise one

block. For parameter identifiability one needs the number of subblocks at least as large as

the number of basis functions used for channel modeling. Data in just one subblock do not

satisfy the parameter identifiability requirements. We also extend the proposed schemes to

multi-input multi-output (MIMO) systems.

4.2 Subblock-wise RLS Channel Estimation using CE-BEM [23]

Suppose that we collect the received signal over a time period TB, a block size. We esti-

mate the time-variant channel using the useful channel models and time-multiplexed training,

and then detect the information symbols using this estimated channel. By exploiting the

invariance of the coefficients of CE-BEM over each block, hence, each of the P̄ subblocks per

block of length TB symbols, we seek to adaptively estimate the doubly-selective channel via

subblock-wise tracking.

Consider two overlapping blocks (each consisting of sequences of TB symbols) that differ

by only one subblock of length mb: the “past” block beginning at time n0 and the “current”

block beginning at time n0 +mb. Since the two blocks overlaps so significantly, one would

expect the BEM coefficients to vary only a little from the past block to the current over-

lapping block. Therefore, we propose a subblock-wise channel tracking as in [52] where we

estimate hq (l) in (4.2) subblock-by-subblock for their variations, rather than the anew with

every non-overlapping block as in [70].

Consider a doubly-selective (time- and frequency-selective), single-input multi-output

(SIMO), finite impulse response (FIR) linear channel with N outputs. Let {s(n)} denote

a scalar information sequence that is input to the time-varying channel with discrete-time

response {h (n; l)} (N -column vector channel response at time instance n to a unit input at

time instance n− l), assuming {s(n)} is independent and identically distributed (i.i.d.) with

zero mean and variance �2
s . Then the symbol-rate noisy N -column channel output is given

by (n = 0, 1, . . .)

y (n) =
L∑

l=0

h (n; l) s (n− l) + v (n) (4.1)

where the N -column vector v (n) is zero-mean, white complex Gaussian noise, with variance

�2
vIN . We assume that {h (n; l)} represents a wide-sense stationary uncorrelated scattering

(WSSUS) channel [60].
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The time-varying channel with discrete-time response {h (n; l)} is represented by CE-

BEM as (n = (i− 1)TB, (i− 1)TB + 1, ⋅ ⋅ ⋅ , iTB − 1 for i-th block and l = 0, 1, ⋅ ⋅ ⋅ , L )

h(n; l) =
Q
∑

q=1

hq(l)e
j!qn, (4.2)

where hq(l) is the N -column time-invariant BEM coefficient and one chooses (Λ is an integer)

T := ΛTB, Λ ≥ 1, (4.3)

Q ≥ 2 ⌈fdTTs⌉+ 1, (4.4)

!q :=
2�

T
[q − (Q+ 1) /2] , q = 1, 2, ⋅ ⋅ ⋅ , Q (4.5)

L := ⌊�d/Ts⌋ , (4.6)

�d and fd are respectively the delay spread and the Doppler spread, and Ts is the symbol

duration.

Let ℎr,q(l) denote the r-th component of the N column vector hq(l). Stack the BEM

coefficients in (4.2) into vectors as

h(l)
r :=

[

ℎr,1 (l) ℎr,2 (l) ⋅ ⋅ ⋅ ℎr,Q (l)
]T

(4.7)

hr :=
[

h(0) T
r h(1) T

r ⋅ ⋅ ⋅ h(L) T
r

]T
(4.8)

h :=
[

hT
1 hT

2 ⋅ ⋅ ⋅ hT
N

]T
(4.9)

of size Q,M := Q(L+ 1) and NQ(L+ 1) respectively. The coefficient vectors in (4.7), (4.8)

and (4.9) of the p-th subblock will be denoted by h(l)
r (p) ,hr (p) and h (p).

Based on CE-BEM given by (4.2), define

퓔 (n) :=
[

e−j!1n e−j!2n ⋅ ⋅ ⋅ e−j!Qn
]T
,

s (n) :=
[

s (n) s (n− 1) ⋅ ⋅ ⋅ s (n− L)
]T
,

and then the received signal can be written as

y (n) = [s (n)⊗ IN ]
T
[

IN(L+1) ⊗ 퓔 (n)
]H

h (p) + v (n) (4.10)

when the p-th subblock is being received at time n, by (4.1), (4.2)-(4.6) and (4.7)-(4.9).

We will employ the time-multiplexed (TM) training scheme as Section 2.3, proposed

in [70]. Then the received signal at r-th output at time np + l with l = 0, 1, ⋅ ⋅ ⋅ , L is given
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by (assuming timing synchronization)

yr (np + l) = ℎr (np + l; l) + vr (np + l) . (4.11)

for r = 1, 2, ⋅ ⋅ ⋅ , N . We also can simplify (4.10) at time np + l as (l = 0, 1, ⋅ ⋅ ⋅ , L)

yr (np + l) = 퓔H (np + l)h(l)
r (p) + vr (np + l) (4.12)

Note that each (sub-)channel at r-th output can be tracked using r-th received signal in (4.12)

respectively without interference. We intend to use only training sessions for subblock-wise

channel tracking regardless of data sessions. Further define

yr (p) :=
[

y (np) y (np + 1) ⋅ ⋅ ⋅ y (np + L)
]T
,

vr (p) :=
[

v (np) v (np + 1) ⋅ ⋅ ⋅ v (np + L)
]T
,

and

Ψ (p) :=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

퓔 (np)

퓔 (np + 1)
. . .

퓔 (np + L)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

H

.

Then by (4.12),

yr (p) = Ψ (p)hr (p) + vr (p) . (4.13)

Since CE-BEM is periodic with period T in (4.2), the algorithm memory should be less

than T in order to avoid periodicity of the BEM coefficients. Note that the real channel is

not periodic. Therefore, an adaptive algorithm with “finite-memory” is preferred which we

implement via either exponentially-weighted RLS or sliding-window RLS approaches.

4.2.1 Exponentially-Weighted RLS Tracking

Given an (L+1)×1 measurement vector yr (p), a training impulse  and an (L+1)×M
basis function matrix Ψ (p) in (4.13), we can apply exponentially-weighted regularized RLS

(EW-RLS) algorithm [2, Chapter 12] to track an unknown M × 1 BEM coefficient vector

hr (p). Choose hr (p) to minimize the cost function

�p+1� ∥hr∥2 +
p
∑

i=0

�p−i ∥yr(i)− Ψ(i)hr∥2 (4.14)
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where � > 0 is a regularization parameter and 0 < � < 1 is the forgetting factor. Note

that the forgetting factor is used to give more weight to recent data and less weight to past

data. For the subblock-wise updating, we take � to be (much) smaller than one (e.g., 0.65)

although it is very close to one (e.g., 0.99) for the symbol-wise updating.

EW-RLS tracking is initialized with ĥr (−1) = 0M×1 and Pℎr (−1) = �−1IM . Mimicking

[2, Algorithm 12.3.1], EW-RLS recursion (for p = 0, 1, ⋅ ⋅ ⋅ ) is applied one by one for each

r-th output via the following steps (we have omitted the subscript r for convenience):

Γ(p) = �IL+1 + 2Ψ(p)P(p− 1)ΨH(p),

G(p) = P(p− 1)ΨH(p)Γ−1(p),

ĥ(p) = ĥ(p− 1) +G(p)
[

ys(p)− Ψ(p)ĥ(p− 1)
]

,

P(p) = �−1 [IM − G(p)Ψ(p)]P(p− 1)

where ĥ (p) denotes the estimate of h (p) given the observations {y (0) ,ys (1) , ⋅ ⋅ ⋅ ,ys (p)}.
After RLS recursion for every p, we generate the channel for the p-th subblock by the

estimate ĥr (p) via the CE-BEM (4.2) as

ℎ̂r (n; l) = 퓔
H (n) ĥ(l)

r (p) (4.15)

for n = pmb, pmb + 1, ⋅ ⋅ ⋅ , (p+ 1)mb − 1. The definition of ĥ(l)
r (p) is similar to (4.7).

4.2.2 Sliding-Window RLS Tracking

Compared with EW-RLS algorithm that weakens the effects of all past data using the

exponential weights, the sliding-window RLS (SW-RLS) algorithm removes the effect of

earlier data using the “downdating” least-squares recursions. The downdating removes the

oldest received subblock sample from the window and the updating inserts the next received

subblock sample into the window. Combining the update and downdate procedures, SW-

RLS algorithm only utilizes the data in a sliding window of length W , a fixed length of

data [2, Chapter 12].

Since the BEM coefficients are invariant within a block of TB symbols in (4.2), we set

W = ⌊TB/mb⌋ subblocks so that only the current subblock and the past (W − 1) subblocks

within one block are used for adaptation. The cost function for SW-RLS is given by

� ∥hr∥2 +
p
∑

i=p−W+1

∥yr(p)− Ψ(i)hr∥2 (4.16)

where if p−W + 1 < 0, we set i = 0.
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SW-RLS tracking is initialized using EW-RLS algorithm with � = 1 to get the first

sliding window for p = 0, 1, ⋅ ⋅ ⋅ ,W−1. Then set ĥr,u(W−1) = ĥr(W−1) and Pℎr,u(W−1) =

Pℎr(W − 1). Mimicking [2, Problem 12.7], SW-RLS recursion (for p = W,W + 1, ⋅ ⋅ ⋅ ) is

applied independently for each r-th output via the following steps (we have omitted the

subscript r since the following steps are common for every output):

1. Downdating:

Γd(p− 1) = IL+1 − 2Ψ(p−W )Pu(p− 1)ΨH(p−W ),

Gd(p− 1) = Pu(p− 1)ΨH(p−W )Γ−1
d (p− 1),

ĥd(p− 1) = ĥu(p− 1)−Gd(p− 1)
[

y(p−W )− Ψ(p−W )ĥu(p− 1)
]

,

Pd(p− 1) = [IM + Gd(p− 1)Ψ(p−W )]Pu(p− 1)

2. Updating:

Γu(p) = IL+1 + 2Ψ(p)Pd(p− 1)ΨH(p),

Gu(p) = Pd(p− 1)ΨH(p)Γ−1
u (p),

ĥu(p) = ĥd(p− 1) +Gu(p)
[

y(p)− Ψ(p)ĥd(p− 1)
]

,

Pu(p) = [IM − Gu(p)Ψ(p)]Pd(p− 1).

Now ĥr,u (p) is the estimate of hr (p) based on the observations {yr (i)}pi=p−W+1. The channel

estimates for every p-th subblock are also generated using (4.15) by setting ĥr(p) = ĥr,u(p).

4.2.3 Simulation Examples

Example 1

A random time- and frequency-selective Rayleigh fading channel is considered. We

assume h (n; l) are zero-mean, complex Gaussian, and spatially white. We take L = 2 (3

taps) in (4.1), and �2
ℎ = E {ℎr(n; l)ℎ∗r(n; l)} = 1/ (L+ 1). For different l’s, h (n; l)’s are

mutually independent and satisfy Jakes’ model. To this end, we simulate each single tap

following [75] (with a correction in the appendix of [63]).

We consider a communication system with carrier frequency of 2GHz, data rate of

40kBd (kilo-Bauds), therefore Ts = 25�s, and a varying Doppler spread fd in the range

of 0 to 400Hz, or the normalized Doppler spread fdTs from 0 to 0.01 (corresponding to a

maximum mobile velocity from 0 to 216km / h). The additive noise is zero-mean complex
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white Gaussian. The (receiver) SNR refers to the average energy per symbol over one-sided

noise spectral density.

The TM training scheme of [70], which is optimal for channels satisfying critically sam-

pled CE-BEM representation, is adopted, where each subblock of equal length mb symbols

consists of an information session of md symbols and a succeeding training session of mt

symbols (mb = md +mt). We assume that each information symbol has unit power, while

at every training session, we set  =
√
2L+ 1 so that the average power per symbol at

training sessions is equal to that of information sessions. In the simulations, we set  =
√
5

for mb = 20 (md = 15 and mt = 5) or mb = 40 (md = 35 and mt = 5).

For CE-BEM, we select the period T = 400 and hence Q = 9 by (4.4). In Chap-

ter 3, we see that, for the fast-fading channels, the symbol-wise approaches based on AR

model (AR(1)-KF and Joint-KF in Section 3.2.2) have worse performances than block-wise

or subblock-wise ones based on CE-BEM (BA-LS and SB-KF in Section 3.2.2). Here we

compared the following four schemes:

1. The block-adaptive channel estimation in [70], where the transmitted symbols are

segmented into consecutive blocks of TB symbols each. Every block consists of P̄ (≥
Q) subblocks as introduced in Section 2.3. We use an oversampled CE-BEM with

TB = T/2 for mb = 20 in order to suppress spectral leakage; whereas for mb = 40,

since an oversampled CE-BEM is not possible to satisfy P̄ ≥ Q, we take TB = T .

Considering the oversampled CE-BEM basis functions are not orthogonal, we apply

a regularized least-square approach with a regularization parameter � = 1; so it is

fair to compare with our proposed schemes. In the figures, this scheme is denoted by

“BA-LS”.

2. Our subblock-wise Kalman filtering in Chapter 3, which uses the first order AR model

as a priori model for BEM coefficients. We take the AR coefficient � = 0.9944 and

0.9667 for mb = 20 and 40 respectively. In the figures, this scheme is denoted by

“SB-KF”.

3. Proposed subblock-wise EW-RLS algorithm with � = 1. For mb = 20 and 40, we

take the forgetting factor � = 0.65 and 0.5 respectively (those values were determined

empirically : see the Section 4.4 for the choices). In the figures, this scheme is denoted

by “SB-EWRLS”.

4. Proposed subblock-wise SW-RLS algorithm with � = 1. We take TB = T/2 = 200, so

that for mb = 20 and 40, the window size W = 10 and 5 respectively. In the figures,

this scheme is denoted by “SB-SWRLS”.
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We evaluate the performances of those schemes by considering their normalized channel

mean square error (NCMSE) and their bit error rates (BER). The NCMSE is defined as

NCMSE :=

∑Mr
i=1

∑TN−1
n=0

∑L
l=0

∥
∥
∥ĥ(i) (n; l)− h(i) (n; l)

∥
∥
∥

2

∑Mr
i=1

∑TN−1
n=0

∑L
l=0 ∥h(i) (n; l)∥2

where h(i) (n; l) is the true channel and ĥ(i) (n; l) is the estimated channel at the i-th Monte

Carlo run, among total Mr runs, and TN is the total observation length in symbols. For each

of the above four schemes, the MMSE-DFE described in Section 2.4.2 [40] is employed at

the receiver, using the obtained channel estimates, with lf = 8, lb = 2 and the delay d = 5

symbols. In each run, a symbol sequence of length, TN = 4000 for each user is modulated

by QPSK and the first 200 symbols are discarded in evaluations. All the simulation results

are based on 500 runs.
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Figure 4.1: Subblock-wise RLS channel estimation: performance comparison for SNR’s under
N = K = 1, fdTs = 0.01.

In Fig. 4.1, the performances of the four schemes are compared for different SNR’s

under the normalized Doppler spread fdTs = 0.01. Since we use only training session for

channel estimation, the smaller subblock with more training (mb = 20) results in better

performance than the larger subblock (mb = 40). Since the subblock-wise approaches update

every subblock, they have superior performance to the block-wise estimation scheme in

[70]. Assuming no a priori models of the BEM coefficients, the two proposed subblock-wise

RLS tracking schemes (SB-EWRLS and SB-SWRLS) outperform the subblock-wise Kalman
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Figure 4.2: Subblock-wise RLS channel estimation: performance comparison for Doppler
spread under N = K = 1, SNR = 20 dB.

tracking scheme (SB-KF) we proposed earlier in Chapter 3 and they have similar NCMSE

and BER performances. Noting that when mb = 20, the subblock-wise Kalman tracking

scheme is better than the block-wise LS scheme when BER is the performance criterion and

is worse when average channel MSE is the performance criterion, superior average channel

MSE does not necessarily translate into superior average BER since a monotone relationship

between average MSE (averaged over all taps and runs) and average BER does not necessarily

exist. [To further investigate this “counter-intuitive” behavior, we plotted histograms (not

shown here) of the channel MSE and the BER for the two schemes (BA-LS and SB-KF)

with mb = 20 for a specific case corresponding to SNR = 28 dB in Fig. 4.1a and 4.1b. The

histograms show that the channel MSE of the BA-LS scheme has a spread around the mean

value that is more than twice that for the SB-KF scheme. This, in turn, translates into a

larger BER for the BA-LS scheme in quite a few runs, compared to the SB-KF scheme.]

In Fig. 4.2, we compare the same schemes over different Doppler spread fd’s under

SNR = 20 dB, the subblock size mb = 20. Since all these schemes are based on CE-BEM,

their performances are not sensitive to the actual Doppler spread. However, the proposed

SB-EWRLS and SB-SWRLS have more stable and reliable performance than BA-LS and

SB-KF over all the range of Doppler spread. Note that an arbitrary model for channel is

not necessarily suited to a real channel. The SB-KF assume the BEM coefficients follow the

first-order AR process, which may introduce additional errors in channel estimation.
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Example 2

The random Rayleigh fading channel in this example is as in Example 1, except that

we change the channel length L from 2 to 8 leading to 9 taps, and the power delay profile

is exponential satisfying E {∣ℎr(n : l)∣2} = �2
ℎ(l) = ae−l/L where the constant a is pick to

satisfy
∑L

l=0 �
2
ℎ(l) = 1. We consider a communication system with carrier frequency of

2GHz, data rate of 0.1MBd (mega-Bauds), therefore Ts = 10�s, and a varying Doppler

spread fd = 250Hz, or the normalized Doppler spread fdTs = 0.0025 (corresponding to

a maximum mobile velocity of 135km / h). The training session is described by (2.22) of

length mt = 2L + 1 = 17 symbols with  =
√
2L+ 1 so that the average symbol power of

training sessions is equal to that of information sessions. We select the period of the CE-

BEM T = 800 symbols, and hence Q = 5 by (4.4) and a block size TB = 400 for oversampled

CE-BEM.

Five estimation and tracking schemes are compared: block-adaptive channel estimation

in [70] using the regularized LS approach (“BA-LS”), the subblock-wise Kalman tracking

(“SB-KF”) introduced in Chapter 3, the proposed subblock-wise EW-RLS tracking (“SB-

EWRLS”) and SW-RLS tracking (“SB-SWRLS”). With the subblock size mb = 80, we take

the AR coefficient � = 0.993 for SB-KF, the forgetting factor � = 0.5 for SB-EWRLS and

the window size W = TB/mb = 5 for SB-SWRLS. [See Section 3.4 and 4.4 for the choices of

the AR coefficient � and the forgetting factor � respectively.] We also consider the perfect

channel estimates(“TrueCH”). The BER’s are evaluated by employing the MMSE-DFE with

lf = 14, lb = 8 and the delay d = 10, using the channel estimates obtained by each scheme.

In Figs. 4.3, the performances of the five schemes are compared for different SNR’s. Due

to the assumption that the channel is spatially uncorrelated for different outputs, the NCMSE

curves for N = 1 and 2 coincide with each other. The three subblock-wise schemes (SB-

KF, SB-EWRLS and SB-SWRLS) outperform the block-wise LS estimation (BA-LS) in [70].

Definitely, the proposed two finite-memory RLS schemes, SB-EWRLS and SB-SWRLS, have

similar NCMSE and BER performance, and they are slightly better than the subblock-wise

Kalman tracking scheme since the latter scheme assumes the BEM coefficients follow a first-

order AR model and this may introduce additional modeling errors. Note that SB-EWRLS

and SB-SWRLS schemes track the channel subblock-by-subblock using the regularized least-

square solution with no a priori models for the BEM coefficients.
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Figure 4.3: Subblock-wise RLS channel estimation: performance comparison for SNR’s under
K = 1, fdTs = 0.0025, mb = 80.

4.3 Subblock-wise RLS MIMO Channel Estimation using CE-BEM

4.3.1 RLS Tracking for MIMO Channel

Consider a doubly-selective multi-input multi-output (MIMO), finite impulse response

(FIR) linear channel with K inputs and N outputs. Let {sk (n)} denote k-th user’s in-

formation sequence that is input to the time-varying channel with discrete-time response

{hk (n; l)} (channel response for the k-th user at time instance n to a unit input at time

instance n− l), assuming {sk (n)} is mutually independent and identically distributed (i.i.d.)

with zero mean and variance E{sk (n) s∗k (n)} = �2
sk

= �2
s for k = 1, 2, ⋅ ⋅ ⋅ , K. Then the

symbol-rate noisy N -column channel output vector is given by (n = 0, 1, . . .)

y (n) =
K∑

k=1

L∑

l=0

hk (n; l) sk (n− l) + v (n) (4.17)

where the N -column vector v (n) is zero-mean, white, uncorrelated with sk (n), complex

Gaussian noise, with the autocorrelation E{v (n+ �)vH (n)} = �2
vIN� (�). We assume that

{hk (n; l)} represents a wide-sense stationary uncorrelated scattering (WSSUS) channel [60],
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independent for different k’s. Define

s(n) :=
[

s1(n) s2(n) ⋅ ⋅ ⋅ sK(n)
]T

h(n; l) :=
[

h1(n; l) h2(n; l) ⋅ ⋅ ⋅ hK(n; l)
]

.

and we may rewrite (4.17) as

y (n) =
L∑

l=0

h (n; l) s (n− l) + v (n) . (4.18)

In CE-BEM [11, 14, 70], over the i-th block consisting of an observation window of

TB symbols, the channel is represented as (n = (i − 1)TB, (i − 1)TB + 1, ⋅ ⋅ ⋅ , iTB − 1 and

l = 0, 1, ⋅ ⋅ ⋅ , L )

hk(n; l) =
Q
∑

q=1

hk,q(l)e
j!qn, (4.19)

where hk,q (l) is the N -column time-invariant BEM coefficient vector for k-th user and one

chooses (Λ is an integer)

T := ΛTB, Λ ≥ 1, (4.20)

Q ≥ 2 ⌈fdTTs⌉+ 1, (4.21)

!q :=
2�

T
[q − (Q+ 1) /2] , q = 1, 2, ⋅ ⋅ ⋅ , Q (4.22)

L := ⌊�d/Ts⌋ , (4.23)

�d and fd are respectively the delay spread and the Doppler spread, and Ts is the symbol

duration.

Now extend the proposed RLS subblock-wise approach in Section 4.2 to MIMO systems.

Let ℎrk,q(l) denote the r−th component of the column hk,q(l). Stack the BEM coefficients in

(4.19) into vectors as

h(l)
rk :=

[

ℎrk,1(l) ℎrk,2(l) ⋅ ⋅ ⋅ ℎrk,Q(l)
]T

(4.24)

hrk :=
[

h
(0) T
rk h

(1) T
rk ⋅ ⋅ ⋅ h

(L) T
rk

]T
(4.25)

h :=
[

h T
11 ⋅ ⋅ ⋅ h T

N1 ⋅ ⋅ ⋅ h T
1K ⋅ ⋅ ⋅ h T

NK

]T
(4.26)

of size Q, M := Q(L+ 1) and NKQ (L+ 1), respectively. The coefficient vectors in (4.24),

(4.25) and (4.26) of the p-th subblock will be denoted by h
(l)
rk (p), hrk (p), and h (p).
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Based on CE-BEM given by (4.19), define (where s (n) is K-column vector)

퓔 (n) :=
[

e−j!1n e−j!2n ⋅ ⋅ ⋅ e−j!Qn
]T
,

S (n) :=
[

sT (n) sT (n− 1) ⋅ ⋅ ⋅ sT (n− L)
]T
,

and then the received signal can be written as

y (n) = [S (n)⊗ IN ]
T
[

INK(L+1) ⊗ 퓔 (n)
]H

h (p) + v (n) (4.27)

when the p-th subblock is being received at time n, by (4.18), (4.19)-(4.23) and (4.24)-(4.26).

We will employ the time-multiplexed training scheme in Section 2.3 [30]. Then by

design, a given user’s training does not affect that of any other user during training session.

Hence the received signal between k-th input and r-th output can be written as (assuming

timing synchronization)

yr (nk,p + l) = ℎrk (nk,p + l; l) + vr (nk,p + l) (4.28)

for l = 0, 1, ⋅ ⋅ ⋅ , L, k = 1, 2, ⋅ ⋅ ⋅ , K and r = 1, 2, ⋅ ⋅ ⋅ , N . The (unknown) MIMO channel

between K inputs and N outputs can be tracked independently one by one. Using (4.28),

in order to track every (sub-)channel between K inputs and N outputs respectively, we can

simplify (4.27) at time nk,p + l as (p = 0, 1, ⋅ ⋅ ⋅ and l = 0, 1, ⋅ ⋅ ⋅ , L)

yr (nk,p + l) = 퓔H (nk,p + l)h
(l)
rk (p) + vr (nk,p + l) (4.29)

We intend to use only training sessions for subblock-wise channel tracking regardless of data

sessions. Further define

ỹr (p) :=
[

yr (nk,p) yr (nk,p + 1) ⋅ ⋅ ⋅ yr (nk,p + L)
]T
,

vr (p) :=
[

vr (nk,p) vr (nk,p + 1) ⋅ ⋅ ⋅ vr (nk,p + L)
]T
,

and

Ψ (p) :=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

퓔 (nk,p)

퓔 (nk,p + 1)
. . .

퓔 (nk,p + L)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

H

.

Then by (4.29),

ỹr (p) = Ψ (p)hrk (p) + vr (p) . (4.30)
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Given an (L+1)×1 measurement vector ỹr (p), a training impulse  and an (L+1)×M
basis function matrix Ψ (p) in (4.30), we can apply exponentially-weighted regularized RLS

(EW-RLS) algorithm [2, Chapter 12] to track an unknown M × 1 BEM coefficient vector

hrk (p) between r-th receiver and k-th user. Choose hrk (p) to minimize the cost function

�p+1� ∥hrk∥2 +
p
∑

i=0

�p−i ∥ỹr(i)− Ψ(i)hrk∥2 (4.31)

where � > 0 is a regularization parameter and 0 < � < 1 is the forgetting factor.

EW-RLS tracking is initialized with ĥrk (−1) = 0M×1 and Pℎrk
(−1) = �−1IM . Mim-

icking [2, Algorithm 12.3.1], EW-RLS recursion (for p = 0, 1, ⋅ ⋅ ⋅ ) is applied one-by-one for

each pair between r-th receiver and k-th user independently via the same steps in Section

4.2.1. After RLS recursion for every p, we generate the channel for the p-th subblock by the

estimate ĥ (p) via the CE-BEM (4.19) as

ℎ̂rk (n; l) = 퓔
H (n) ĥ

(l)
rk (p) (4.32)

for n = pmb, pmb +1, ⋅ ⋅ ⋅ , (p+ 1)mb − 1. The definition of ĥ
(l)
rk (p) is similar to (4.24). Thus

we obtain the entire N ×K channel matrix for the current subblock.

Similarly, the cost function for SW-RLS is given by

� ∥hrk∥2 +
p
∑

i=p−W+1

∥ỹr(p)− Ψ(i)hrk∥2 (4.33)

where if p−W + 1 < 0, we set i = 0.

SW-RLS tracking is initialized using EW-RLS algorithm with � = 1 to get the first

sliding window for p = 0, 1, ⋅ ⋅ ⋅ ,W −1. Then set ĥrk,u(W −1) = ĥrk(W −1) and Pℎrk,u(W −
1) = Pℎrk

(W − 1). Mimicking [2, Problem 12.7], SW-RLS recursion (for p = W,W + 1, ⋅ ⋅ ⋅ )
has the same algorithm in Section 4.2.2 since it is applied for each pair rk independently.

Now ĥu (p) is the estimate of h (p) based on the observations {y (i)}pi=p−W+1. The channel

estimates for every p-th subblock are also generated using (4.32) by setting ĥ(p) = ĥu(p).

Computational Complexity

We compare computational complexity of each scheme using flops counting for the

channel estimation algorithm of each simulation program. We use the same flops counting

for multiplication and inverse as in Section 3.3.1. The detailed flops for one iteration of EW-

RLS tracking algorithm is shown in Table 4.1 and the overall flop counts for each scheme

are compared in Table 4.2 (M = Q(L + 1), P̄ = TB/mb, Lp = L + 1). We also calculate
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the relative complexity for specific examples in Table 4.3. Note that subblock-wise EW-RLS

scheme appears to provide a good complexity-vs-performance trade-off at higher SNR’s at

the cost of an increase of flop counts whereas at lower SNR values such an increase in flop

count may not warrant the use of subblock-wise tracking schemes.

Table 4.1: Subblock-wise EW-RLS channel estimation: flop count over one subblock of mb

symbols.

Operation Number of flops

Γ(p) = �IL+1 + 2Ψ(p)P(p− 1)ΨH(p) M2Lp +M(L2
p + Lp) + L2

p

G(p) = P(p− 1)ΨH(p)Γ−1(p) M2(Lp + 1) +ML2
p + L3

p/3

ĥ(p) = ĥ(p− 1) +G(p)
[

y(p)− Ψ(p)ĥ(p− 1)
]

M(3Lp)

P(p) = �−1 [IM − G(p)Ψ(p)]P(p− 1) M3 +M2(Lp + 1) +MLp

Total : M3 +M2(3Lp + 2) +M(2L2
p + 5Lp) + L3

p/3 + L2
p

Table 4.2: Block-wise least-square and subblock-wise RLS: flop count for channel estimation
over one block of TB symbols.

Scheme Number of flops

BA-LS M3/3 +M2(2P̄Lp + 1) +M(P̄Lp + 1)

EW-RLS P̄
{

M3 +M2(3Lp + 2) +M(2L2
p + 5Lp) + L3

p/3 + L2
p

}

SW-RLS 2P̄
{

M3 +M2(3Lp + 1) +M(2L2
p + 5Lp) + L3

p/3
}

4.3.2 Simulation Examples

Example 1

A random time- and frequency-selective Rayleigh fading MIMO channel is considered.

We assume h (n; l) are zero-mean, complex Gaussian, and spatially white. We take L = 2

(3 taps) in (4.18), and �2
ℎ = E {ℎrk(n; l)ℎ∗rk(n; l)} = 1/ (L+ 1). For different l’s, h (n; l)’s

are mutually independent and satisfy Jakes’ model. To this end, we simulate each single tap

following [75] (with a correction in the appendix of [63]).

We consider a communication system with carrier frequency of 2GHz, data rate of

40kBd (kilo-Bauds), therefore Ts = 25�s, and a varying Doppler spread fd in the range

of 0 to 400Hz, or the normalized Doppler spread fdTs from 0 to 0.01 (corresponding to a

maximum mobile velocity from 0 to 216km / h). The additive noise is zero-mean complex
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Table 4.3: Block-wise least-square and subblock-wise RLS: comparative flop count for chan-
nel estimation over one block of TB symbols.

Example 1: T = 400, Q = 9, TB = 200,mb = 20, P̄ = 10, L = 2

Number of flops BA-LS EW-RLS SW-RLS

actual 51,867 286,110 557,460

relative 1.00 5.52 10.75

Example 2: T = 800, Q = 5, TB = 400,mb = 80, P̄ = 5, L = 8

Number of flops BA-LS EW-RLS SW-RLS

actual 216,720 797,445 1,573,830

relative 1.00 3.68 7.26

white Gaussian. The (receiver) SNR refers to the average energy per symbol over one-sided

noise spectral density.

The TM training scheme of [30], which is optimal for channels satisfying critically sam-

pled CE-BEM representation, is adopted, where each subblock of equal length mb symbols

consists of an information session of md symbols and a succeeding training session of mt

symbols (mb = md +mt). We assume that each information symbol has unit power, while

at every training session, we set  =
√

K (L+ 1) + L so that the average power per symbol

at training sessions is equal to that of information sessions. In the simulations, we consider

a simple two-receiver and two-user scenario, i.e., N = 2, K = 2 with the same transmitted

power. We set mb = 20 or 40 with mt = 8 and  =
√
8 for every user following the TM

training scheme. For CE-BEM, we select the period T = 400 and hence Q = 9 by (4.21).

We compared the following four schemes:

1. The block-adaptive channel estimation in [30], where the transmitted symbols are

segmented into consecutive blocks of TB symbols each. Every block consists of P̄ (≥ Q)

subblocks as in Section 2.3. We use an oversampled CE-BEM with TB = T/2 for mb =

20 since the over-sampled CE-BEM approximates WSSUS channels much better than

critically sampled CE-BEM [14]; whereas for mb = 40, since an oversampled CE-BEM

is not possible to satisfy P̄ ≥ Q, we take TB = T . Considering the oversampled CE-

BEM basis functions are not orthogonal, we apply a regularized least-square approach

with a regularization parameter � = 1; so it is fair to compare with our proposed

schemes. In the figures, this scheme is denoted by “BA-LS”.
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2. Our subblock-wise Kalman filtering in Chapter 3, which uses the first order AR model

as a priori model for BEM coefficients. We take the AR coefficient � = 0.9944 and

0.9667 for mb = 20 and 40 respectively. In the figures, this scheme is denoted by

“SB-KF”.

3. Proposed subblock-wise EW-RLS algorithm with � = 1. For mb = 20 and 40, we

take the forgetting factor � = 0.65 and 0.5 respectively (those values were determined

empirically : see the Section 4.4 for the choices). In the figures, this scheme is denoted

by “SB-EWRLS”.

4. Proposed subblock-wise SW-RLS algorithm with � = 1. We take TB = T/2 = 200, so

that for mb = 20 and 40, the window size W = 10 and 5 respectively. In the figures,

this scheme is denoted by “SB-SWRLS”.

We evaluate the performances of those schemes by considering their normalized channel

mean square error (NCMSE) and their bit error rates (BER). The NCMSE is defined as

NCMSE :=

∑Mr
i=1

∑TN−1
n=0

∑L
l=0

∥
∥
∥ĥ(i) (n; l)− h(i) (n; l)

∥
∥
∥

2

∑Mr
i=1

∑TN−1
n=0

∑L
l=0 ∥h(i) (n; l)∥2

where h(i) (n; l) is the true channel and ĥ(i) (n; l) is the estimated channel at the i-th Monte

Carlo run, among total Mr runs, and TN is the total observation length in symbols. For each

of the above four schemes, the MMSE-DFE described in Section 2.4.2 [40] is employed at

the receiver, using the obtained channel estimates, with lf = 8, lb = 2, and the delay d = 5

symbols. In each run, a symbol sequence of length, TN = 4000 for each user is modulated

by QPSK and the first 200 symbols are discarded in evaluations. All the simulation results

are based on 500 runs.

In Fig. 4.4, the performances of the four schemes are compared for different SNR’s

with the normalized Doppler spread fdTs = 0.01 fixed. Since we use only training session

for channel estimation, the smaller subblock with more training (mb = 20) results in better

performance than the larger subblock (mb = 40). All the subblock-wise schemes including

Kalman tracking outperform the block-wise one in [30] and the proposed SB-EWRLS and SB-

SWRLS approach have superior performances to the subblock-wise Kalman tracking that has

an arbitrary model for BEM coefficients (e.g., AR model) and this may incur modeling errors.

The proposed subblock-wise EW-RLS and SW-RLS schemes track the channel subblock-by-

subblock using the regularized least-square solution, assuming no a priori models for the

BEM coefficients.
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Figure 4.4: Subblock-wise RLS MIMO channel estimation: performance comparison for
SNR’s under N = K = 2, fdTs = 0.01.

In Fig. 4.5, we compare the same schemes with the subblock size mb = 20 over the wide

range of Doppler spread fd’s under SNR = 20 dB. It is cleat that the subblock-wise RLS

approaches have more stable and better performance than BA-LS and SB-KF over all the

range of Doppler spread.

Example 2

The random Rayleigh fading MIMO channel in this example is as in Example 1, except

that we change the channel length L from 2 to 8 leading to 9 taps, and the power delay

profile is exponential satisfying E {∣ℎrk(n : l)∣2} = �2
ℎ(l) = ae−l/L where the constant a is

pick to satisfy
∑L

l=0 �
2
ℎ(l) = 1. We consider a communication system with carrier frequency

of 2GHz, data rate of 0.1MBd (mega-Bauds), therefore Ts = 10�s, and a varying Doppler

spread fd = 250Hz, or the normalized Doppler spread fdTs = 0.0025 (corresponding to a

maximum mobile velocity of 135km / h). The training session is described by (2.24) of length

mt = K (L+ 1) + L = 26 symbols with  =
√

K (L+ 1) + L so that the average symbol

power of training sessions is equal to that of information sessions. We select the period of

the CE-BEM T = 800 symbols, and hence Q = 5 by (4.21) and a block size TB = 400 for

oversampled CE-BEM.

Five estimation and tracking schemes are compared: block-adaptive channel estimation

in [30] using the regularized LS approach (“BA-LS”), the subblock-wise Kalman tracking
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Figure 4.5: Subblock-wise RLS MIMO channel estimation: performance comparison for
Doppler spread under N = K = 2, SNR = 20 dB.

(“SB-KF”) introduced in Chapter 3, the proposed subblock-wise EW-RLS tracking (“SB-

EWRLS”) and SW-RLS tracking (“SB-SWRLS”). With the subblock size mb = 80, we take

the AR coefficient � = 0.993 for SB-KF, the forgetting factor � = 0.5 for SB-EWRLS and

the window size W = TB/mb = 5 for SB-SWRLS. [See Section 3.4 and 4.4 for the choices of

the AR coefficient � and the forgetting factor � respectively.] We also consider the perfect

channel estimates (“TrueCH”). The BER’s are evaluated by employing the MMSE-DFE with

lf = 14, lb = 8 and the delay d = 10, using the channel estimates obtained by each scheme.

In Figs. 4.6, the performances of the five schemes are compared for different SNR’s.

The NCMSE curves for N = 2 and 3 coincide with each other since we assume the chan-

nel is spatially uncorrelated for different outputs. The subblock-wise Kalman filtering and

RLS tracking schemes outperform the block-wise LS estimation in [30]. In particular, the

proposed two finite-memory RLS schemes, SB-EWRLS and SB-SWRLS, have better perfor-

mances in NCMSE and BER than the subblock-wise Kalman tracking scheme. Note that

SB-KF assumes the BEM coefficients follow a first-order AR process, which is not neces-

sarily true in the real channel environment. This AR modeling for the BEM coefficients

may introduce the modeling errors in channel estimation. The subblock-wise EW-RLS and

SW-RLS schemes update the channel estimates subblock-by-subblock using the regularized

least-square solution without any a priori models, which makes the channel tracking more

practical and effective.
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Figure 4.6: Subblock-wise RLS MIMO channel estimation: performance comparison for
SNR’s under K = 2, fdTs = 0.0025, mb = 80.

4.4 Forgetting Factor � for Subblock-wise EW-RLS Tracking

Here we analyze the theoretical choices of � for subblock-wise channel estimation using

EW-RLS algorithm in this chapter. Consider only one pair of channel hrk between r-th input

and k-th output, since we track the channel of every pair independently for N receivers and

K users by design of time-multiplexed (TM) training in Section 2.3 [30]. The cost function

for EW-RLS algorithm is given as (4.14), which we can rewrite for “large” (p→ ∞) as

C =
∞∑

i=0

�i ∥ỹr(p− i)− Ψ(p− i)hrk∥2 . (4.34)

Let L̄ the number of subblocks in which we would like to have the estimate of BEM

coefficient hrk. It is clear that Ψ(i) is periodic with period T/mb as CE-BEM is periodic

with period T , that is Ψ(p ± jT/mb) = Ψ(p) for any integer j. In practice, we would like

to have the memory length (in symbols) to be less than the model period (recall that the

channel is by no means periodic) so that there are no deleterious effects due to the use of

(4.2) for all time, i.e., mbL̄ ≤ T in order to avoid this periodicity. Let us pick L̄ = T/mb.

What other restriction should we impose on L̄?

A least-square solution for hrk to minimize C (with p→ ∞) is given by [50, p. 796]

ĥrk = A−1B, (4.35)
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where

A =
∞∑

i=0

�i2ΨH(p− i)Ψ(p− i), (4.36)

B =
∞∑

i=0

�iΨH(p− i)ỹr(p− i). (4.37)

In order to analyze the behavior of hrk we need a model for ỹr(i) for all subblocks, i =

p, p− 1, ⋅ ⋅ ⋅ . To this end, for the analysis presented in this section, we assume the following

“simplified” model (recall (4.13)):

ỹr(p− i) = Ψ(p− i)h
(tr)
rk (p− i) + vr(p− i), (4.38)

where h
(tr)
rk (p− i) is the “true” BEM coefficient vector satisfying (m = 1, 2, ⋅ ⋅ ⋅ )

h
(tr)
rk (p− i) := h

(tr)
rk,m for (m− 1)L̄ ≤ p− i < mL̄. (4.39)

That is, there exist some true BEM parameters that are “fixed” over one BEM period of T

symbols (therefore, L̄ = T/mb subblocks), and are allowed to change over non-overlapping

periods. In this set-up, we are trying to estimate the most recent true BEM coefficient vector

h
(tr)
rk,1 via ĥrk without it being unduly influenced by h

(tr)
rk,m,m ≥ 2.

Using the periodicity, Ψ(p− (i+(m− 1)L̄)) = Ψ(p− i) for i = 0, 1, ⋅ ⋅ ⋅ , L̄− 1 and m =

1, 2, ⋅ ⋅ ⋅ , we can rewrite (4.36) as (for � < 1)

A = 2
∞∑

m=1

�(m−1)L̄

⎡

⎣

L̄−1∑

i=0

�iΨH(p− i)Ψ(p− i)

⎤

⎦

=
2

1− �L̄

L̄−1∑

i=0

�iΨH(p− i)Ψ(p− i). (4.40)
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Similarly, using (4.38) and (4.39), after some manipulations, we obtain

B = 
∞∑

i=0

�iΨH(p− i)
[

Ψ(p− i)h
(tr)
rk (p− i) + vr(p− i)

]

= 2
∞∑

i=0

�iΨH(p− i)Ψ(p− i)h
(tr)
rk (p− i) + 

∞∑

i=0

�iΨH(p− i)vr(p− i)

= 2
∞∑

m=1

�(m−1)L̄
L̄−1∑

i=0

�iΨH(p− i)Ψ(p− i)h
(tr)
rk,m + 

∞∑

i=0

�iΨH(p− i)vr(p− i)

= 2
∞∑

m=1

�(m−1)L̄h
(tr)
rk,m

⎡

⎣

L̄−1∑

i=0

�iΨH(p− i)Ψ(p− i)

⎤

⎦

︸ ︷︷ ︸

=:D

+ 
∞∑

i=0

�iΨH(p− i)vr(p− i)

︸ ︷︷ ︸

=:w̃

. (4.41)

Then using (4.40) and (4.41), we can rewrite (4.35) as

ĥrk =

[

1− �L̄

2
D−1

] [

2D
∞∑

m=1

�(m−1)L̄h
(tr)
rk,m + w̃

]

= (1− �L̄)
∞∑

m=1

�(m−1)L̄h
(tr)
rk,m + (1− �L̄)(2D)−1w̃. (4.42)

For memory length considerations, we will consider only the noise− free case, and hence

we set w̃ = 0 in (4.40). With this restriction together with �L̄ ≪ 1, we obtain

ĥrk = (1− �L̄)
∞∑

m=1

�(m−1)L̄h
(tr)
rk,m

= (1− �L̄)
[

h
(tr)
rk,1 + �L̄h

(tr)
rk,2 + �2L̄h

(tr)
rk,3 + ⋅ ⋅ ⋅

]

≈ h
(tr)
rk,1 + �L̄h

(tr)
rk,2. (4.43)

For WSSUS channel, h
(tr)
rk,1 and h

(tr)
rk,2 have the same statistics, E

{∥
∥
∥h

(tr)
rk,1

∥
∥
∥

2
}

= E
{∥
∥
∥h

(tr)
rk,2

∥
∥
∥

2
}

.

The normalized error norm in estimating h
(tr)
rk,1 via ĥrk is therefore given by

enorm :=

√

E
{∥
∥
∥�L̄h

(tr)
rk,2

∥
∥
∥

2
}

√

E
{∥
∥
∥h

(tr)
rk,1

∥
∥
∥

2
} = �L̄. (4.44)

We would like to keep enorm ≤ � where � is pre-specified for the desired performance. This

leads to

� ≤ �1/L̄ = �mb/T . (4.45)
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Given the CE-BEM period T = 400, some theoretical choices of � are shown in Table

4.4. In Figs. 4.7a and 4.7b, the performances of EW-RLS algorithm are shown for different

values of � based on 500 Monte Carlo runs with the same environment as the simulation

examples in Section 4.2.3 and 4.3.2. In our simulations, we picked the forgetting factor

� = 0.65 and 0.5 for mb = 20 and 40 respectively, which satisfy the theoretical condition in

(4.45). Indeed, � = 0.001 yields values of � = �mb/T that are close to the values suggested

by the minima in Fig. 4.7.

Table 4.4: Theoretical � for subblock-wise EW-RLS channel estimation.

� T mb �

0.01 400
20 ≤ 0.794

40 ≤ 0.631

0.001 400
20 ≤ 0.71

40 ≤ 0.50
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Figure 4.7: Subblock-wise EW-RLS channel estimation: performances for forgetting factor
�’s, under fdTs = 0.01, SNR = 20dB,mb = 20 and 40.
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4.5 Conclusions

The subblock-wise finite-memory recursive least-squares (RLS) tracking approach is

presented, exploiting the oversampled complex exponential basis expansion model (CE-

BEM) for the overall channel variations. We apply the exponentially-weighted and sliding-

window recursive least-squares (RLS) algorithms to track the BEM coefficients, using time-

multiplexed periodically transmitted training symbols. The proposed subblock-wise RLS

schemes, which have no a priori model for the BEM coefficients, outperform the subblock-

wise Kalman tracking in Chapter 3, since the AR assumption for the BEM coefficients used

in the latter scheme may introduce additional modeling errors. Simulation examples illus-

trate the superior performance of our subblock-wise scheme to the conventional block-wise

channel estimator and the subblock-wise Kalman tracking in Chapter 3.
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Chapter 5

Turbo Equalization for Doubly-Selective Channels Using Nonliner

Kalman Filtering and Basis Expansion Models

We present a turbo equalization receiver with nonlinear Kalman filtering, exploiting the

complex exponential basis expansion model (CE-BEM) for the overall channel variations and

the autoregressive (AR) model to update the BEM coefficients. The time-varying nature of

the channel is well captured by the CE-BEM while the time-variations of the (unknown)

BEM coefficients are likely much slower than those of the channel. In the proposed receiver,

an adaptive equalizer using nonlinear Kalman filters with delay is coupled with a soft-in

soft-out (SfiSfo) module to perform the reception process iteratively. The proposed adaptive

equalizer jointly optimizes the estimation of BEM channel coefficients and data symbols,

thereby automatically accounting for the correlation between the channel estimates and

data symbols in the equalization process. Simulation examples demonstrate our CE-BEM

based approach has superior performance over an existing AR-only-based turbo equalizer.

5.1 Introduction

Among various models for channel time-variations, the AR process, particularly the first-

order AR model, is regarded as a tractable formulation to describe a time-varying channel

on a symbol-by-symbol basis [6,16,68]. In fast time-varying channel environments, however,

channel prediction using an AR model may lead to high estimation variance resulting in

erroneous symbol decisions [6]. The BEM depicts evolutions of the channel over a period

(block) of time, in which the time-varying channel taps are expressed as superpositions of

time-varying basis functions in modeling Doppler effects, weighted by time-invariant coeffi-

cients [70].

In Chapter 3, a subblock-wise tracking approach was investigated for doubly-selective

channels using time-multiplexed (TM) training. It exploits the complex exponential BEM

for the overall channel variations of each (overlapping) block, and a first-order AR model

to describe the evolutions of the BEM coefficients. The slow-varying BEM coefficients are

updated via Kalman filtering at each training session; during information sessions, chan-

nel estimates are generated by the CE-BEM using the estimated BEM coefficients. This

approach achieves better performance in fast-fading environments, than using conventional

symbol-wise AR models.
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In this chapter, we propose BEM-based approach to coded modulation communication

systems using turbo equalization receiver. Turbo (iterative) equalization is a powerful sub-

optimal technique used in place of the computationally prohibitive but maximum-likelihood

(ML) or maximum a posteriori (MAP) sequence detection based on a super trellis. Although

originally proposed for parallel concatenated error correction codes, the turbo principle is

shown to be applicable to the detection problem for coded systems with ISI in [5]. By com-

bining a MAP equalizer and a MAP decoder, and exchanging probabilistic information about

data symbols iteratively, turbo equalization usually can achieve close-to-optimal performance

but much lower complexity [1,5]. In [71], a turbo-equalization-like system using linear equal-

izers based on soft interference cancellation and linear minimum mean-square error (MMSE)

filtering is proposed as part of a multiuser detector for CDMA. Based on this work, a variety

of SfiSfo equalizers employing linear MMSE and decision feedback equalization (DFE) are

proposed in [38,39].

For doubly-selective channels, an adaptive SfiSfo equalizer has been presented in [68],

using extended Kalman filter (EKF) to incorporate channel estimation into the equalization

process. This adaptive soft nonlinear Kalman equalizer takes the soft decisions of data

symbols from the SfiSfo decoder as its a priori information, and performs equalization process

iteratively. With such an approach, the proposed scheme jointly optimizes the estimates of

the channel and data symbols in each iteration. This avoids the common drawback in

separate channel estimation and equalization/detection approach in that the correlation

between channel estimate and data symbol decision is considered. The complexity of [68]

is comparable to that of the turbo equalizers using linear filters [36, 48, 57], and is usually

much lower than that of the ML/MAP based joint channel estimation and data detection

schemes.

Based on the turbo equalization approach proposed in [68] and CE-BEM, we present

an adaptive turbo equalizer with nonlinear Kalman filtering. The channel variations can be

well captured by the CE-BEM since the time-variations of the BEM coefficients are likely

much slower than those of real channel. This adaptive SfiSfo equalizer takes the decision of

data symbols provided by SfiSfo decoder as its a priori information and the performance can

be improved iteratively. The proposed adaptive equalizer jointly optimizes the estimates of

BEM channel coefficients and data symbols in each equalization process since the correlation

between the estimates of the channel and data symbols is considered. Simulation examples

demonstrate our CE-BEM based scheme has superior performance over the turbo equalizer

in [68] that relies on the AR modeling of channel. [It has been shown in [68] that their

approach has better performance than any other turbo approaches of [36, 48, 57]; hence we

compare our approach only with [68].]
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5.2 Turbo Equalization using Extended Kalman Filter (EKF) and CE-BEM

Unlike the prior works [11,14,70], we will now allow the blocks of TB symbols to overlap.

By exploiting the invariance of the coefficients of the CE-BEM over each block, we consider

two overlapping blocks (each of TB symbols) that differ by just one symbol: the “past” block

beginning at time n0 and the “present” block beginning at time n0 +1. Since the two blocks

overlap so significantly, one would expect the BEM coefficients to vary only “a little” from

the past block to the present overlapping one. We propose to track the BEM coefficients

(rather than the channel tap gains) symbol-by-symbol using a first-order AR model for their

variations, where we will use (5.2) for all times n, not just the particular block of size TB

symbols, by allowing the coefficients ℎq(l)’s to change with time.

5.2.1 System Model and Turbo Equalization Receiver

Consider a doubly-selective (time- and frequency-selective) single-input single-output

(SISO), finite impulse response (FIR) linear channel. Let {s (n)} denote a scalar sequence

that is input to the time-varying channel with discrete-time response {ℎ (n; l)} (channel

response at time n to a unit input at time n− l). Then the symbol-rate noisy channel output

is given by (n = 0, 1, . . .)

y (n) =
L∑

l=0

ℎ (n; l) s (n− l) + v (n) (5.1)

where v (n) is zero-mean white complex Gaussian noise, with variance �2
v . We assume that

{ℎ (n; l)} represents a wide-sense stationary uncorrelated scattering (WSSUS) channel [60].

We also assume that s (n) is mutually independent and identically distributed (i.i.d.) with

zero mean and variance E{s (n) s∗ (n)} = �2
s .

We use the oversampled CE-BEM for channel modeling comparing AR model in [68]. In

CE-BEM [11,14,70], over the i-th block consisting of an observation window of TB symbols,

the channel is represented as

ℎ(n; l) =
Q
∑

q=1

ℎ(l)q e
j!qn, (5.2)
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Figure 5.1: Bit-interleaved coded modulation system model for doubly-selective fading chan-
nel

where n = n̄i, n̄i + 1, ⋅ ⋅ ⋅ , n̄i + TB − 1 with n̄i := (i− 1)TB, l = 0, 1, ⋅ ⋅ ⋅ , L and one chooses

(Λ is an integer)

T := ΛTB, Λ ≥ 1, (5.3)

Q := 2 ⌈fdTTs⌉+ 1, (5.4)

!q :=
2�

T
[q − (Q+ 1) /2] , q = 1, 2, ⋅ ⋅ ⋅ , Q (5.5)

L := ⌊�d/Ts⌋ (5.6)

�d and fd are respectively the delay spread and the Doppler spread, and Ts is the symbol

duration. The BEM coefficients ℎ(l)q ’s remain invariant during this block, but are allowed to

change at the next consecutive block; the Fourier basis functions {ej!qn} (q = 1, 2, ⋅ ⋅ ⋅ , Q)

are common for every block. If the delay spread and the Doppler spread (or at least their

upper bounds) are known, one can infer the basis functions of the CE-BEM [70]. Treating

the basis functions as known, estimation of a time-varying process is reduced to estimating

the invariant coefficients over a block of TB symbols.

Bit-Interleaved Coded Modulation (BICM)

We consider a BICM transmitter (as in [67]) for a doubly-selective fading channel as

shown in Fig. 5.1. A sequence of independent data vector b(n′) = [b1(n′), b2(n′), ⋅ ⋅ ⋅ , bk0(n′)] ∈
{1, 0}k0 are fed into a convolutional encoder with a code rate Rc = k0/n0. The coded output

c(n′) = [c1(n′), c2(n′), ⋅ ⋅ ⋅ , cn0(n′)] ∈ {1, 0}n0 is passed through a bit-wise random interleaver

�, generating the interleaved coded bit sequence c(n) = �[c(n′)]. The binary coded bits are

then mapped to a signal sequence d(n) over a 2-dimensional signal constellation X of cardi-

nality ℳ = 2m by a ℳ-ary modulator with an one-to-one binary map � : {1, 0}m → X . In

this section, we only consider the case of phase-shift keying (PSK) or quadrature amplitude

modulation (QAM) with the average energy of the constellation X to be unity. That is,

the signal d(n) drawn from X has mean E[d(n)] = 0 and variance E[∣d(n)∣2] = 1. After

modulation, we periodically insert short training sequences into the data symbol sequence.

The training symbols t(n), which are known to the receiver, are randomly drawn from the
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Figure 5.2: Turbo equalization receiver. Following [10, 49, 68] and contrary to the original
turbo principle, a posteriori LLR La {c(n)} = LM

e {c(n)}+LD
e {c(n)} instead of the extrinsic

LLR LD
e {c(n)} can be input to the LLR-to-symbol block. Inclusion of LM

e {c(n)} to create
a posteriori LLR is shown via dashed line. For our proposed approach we follow [10,49,68].

signal constellation X with equal probabilities. The symbol {s(n)} will be used to denote

the symbol sequence after training({t(n)}) insertion into data symbol sequence({d(n)}).

Receiver Structure

A turbo equalization structure, as depicted in Fig. 5.2, is employed in the receiver,

as in [68] except that [68] uses symbol-wise AR models. The adaptive SfiSfo equalizer

is embedded into the iterative decoding (ID) process of the BICM transmission system

(BICM-ID) [67]. In each decoding iteration, the equalizer takes the training symbols and

the soft decision information about data symbols supplied by the SfiSfo decoder from the

previous iteration as its a priori information to perform joint adaptive channel estimation

and equalization. The equalizer produces the soft-valued extrinsic estimate of the data

symbols, which are independent of their a priori information. The output of the equalizer is

an updated sequence of soft estimates d̂(n) and its error variance �2(n). Using the adaptive

SfiSfo equalizer in Section 5.2.2, we have extrinsic information for the data symbols d(n).

The training symbols are removed at the SfiSfo equalizer output and the iterative process

that follows is only for data symbols. The SfiSfo equalizer based on the CE-BEM is described

in Section 5.2.2. The SfiSfo demodulator follows [67] whereas the SfiSfo decoder follows the

MAP decoding algorithm (“BCJR”) [72, Section 6.2].

The data symbol estimates d̂(n) and its error variance �2(n) are passed to the SfiSfo

demodulator to generate extrinsic log-likelihood ratios (LLR’s) LM
e {c(n)} for the coded bits

c(n) given Ti received symbols {y(l), 0 ≤ l < Ti} (only for the information symbols, not the

training), denoted by

LM
e {c(n)} =

[

LM
e

{

ci(n)
}

, i = 1, 2 ⋅ ⋅ ⋅ , n0

]

, (5.7)
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where Ti is the information block size after mapping the interleaved coded bits to the signal

sequence,

LM
e

{

ci(n)
}

:= ln
P{ci(n) = 1 ∣ y(l), 0 ≤ l < Ti}
P{ci(n) = 0 ∣ y(l), 0 ≤ l < Ti}

− ln
P{ci(n) = 1}
P{ci(n) = 0}

︸ ︷︷ ︸

=:L{ci(n)}

, (5.8)

and L{ci(n)} is the a priori LLR. In (5.8), P{ci(n) = b ∣ y(l), 0 ≤ l < Ti}, b ∈ {0, 1}, is

approximated as

P{ci(n) = b ∣ y(l), 0 ≤ l < Ti} ≈ P{ci(n) = b ∣ d̂(n)} (5.9)

by replacing the data {y(l), 0 ≤ l < Ti} with the soft estimate d̂(n). Since P{ci(n) = b ∣
d̂(n)} = P{d̂(n) ∣ ci(n) = b}P{ci(n) = b}/P{d̂(n)}, it follows from (5.8) and (5.9) that

LM
e

{

ci(n)
}

= ln
P{d̂(n) ∣ ci(n) = 1}
P{d̂(n) ∣ ci(n) = 0}

. (5.10)

The soft estimate d̂(n) of d(n) follows from the fixed-lag SfiSfo Kalman equalizer discussed

later in Section 5.2.2 (following [68]), and it and its variance are given by (5.51) and (5.52),

respectively. We assume that d̂(n) is complex Gaussian distributed with mean d ∈ X and

variance �2(n) and follow [67] to calculate (5.10). Let ci ⟨d⟩ denote the i-th coded bit in

the block of coded bits [c1 ⟨d⟩ , c2 ⟨d⟩ , ⋅ ⋅ ⋅ , cn0 ⟨d⟩] that is mapped to the symbol d; therefore

� ([c1, c2, ⋅ ⋅ ⋅ , cn0 ]) = d. It then follows that

P
{

d ∣ ci
}

=
n0∏

j=1,j ∕=i

P{cj = cj ⟨d⟩}. (5.11)

Furthermore, under the assumptions on d̂(n), we have

P
{

d̂(n) ∣ d
}

=
1

��2(n)
exp

(

−∣ d̂(n)− d ∣2
�2(n)

)

. (5.12)

Recall that we used X to denote the set of all possible data symbols. Let X (i, b) =

{� ([c1, c2, ⋅ ⋅ ⋅ , cn0 ]) ∣ ci = b}, with b ∈ {1, 0} and i ∈ {1, 2, ⋅ ⋅ ⋅ , n0}, denote the collection
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of all data symbols whose corresponding i-th coded bit is “fixed” as b. Then using (5.10)-

(5.12) one obtains

LM
e

{

ci(n)
}

= ln

∑

d∈X (i,1)

[

exp
(

− ∣d̂(n)−d∣2

�2(n)

)
∏n0

j=1,j ∕=i P{cj(n) = cj ⟨d⟩}
]

∑

d∈X (i,0)

[

exp
(

− ∣d̂(n)−d∣2

�2(n)

)
∏n0

j=1,j ∕=i P{cj(n) = cj ⟨d⟩}
] . (5.13)

The output extrinsic bit LLR’s of the SfiSfo demodulator are bit-wise de-interleaved as

LM
e {c(n′)} = �−1[LM

e {c(n)}], which are then input to the SfiSfo convolutional decoder. In

SfiSfo decoder, the MAP decoding algorithm for convolutional codes (see Section 2.5.2 [72,

Section 6.2]) is applied to update the LLR’s of the coded bits {c(n)} as well as the LLR’s

of the information bits {b(n)}, based on the code constraints. The decoder computes the

extrinsic LLR for coded bits

LD
e {c(n′)} =

[

LD
e

{

ci(n′)
}

, i = 1, 2 ⋅ ⋅ ⋅ , n0

]

, (5.14)

where

LD
e

{

ci(n′)
}

:= ln
P{ci(n′) = 1 ∣ LM

e {c(l)}, 0 ≤ l < Ti}
P{ci(n′) = 0 ∣ LM

e {c(l)}, 0 ≤ l < Ti}
− LM

e {ci(n′)}
︸ ︷︷ ︸

=:L{ci(n′)}

. (5.15)

The output bit LLR’s of SfiSfo decoder are bit-wise interleaved as LD
e {c(n)} = �[LD

e {c(n′)}].
The SfiSfo demodulator performs symbol-by-symbol MAP demodulation using LLR’s LD

e {c(n)}
for the coded bits generated by SfiSfo decoder in the previous iteration as its a priori informa-

tion: L{ci(n)} = LD
e {ci(n)} . We set LD

e {ci(n)} = 0 for the initial step (first iteration). The

LLR for use in LLR-to-symbol block is computed via La {c(n)} = LM
e {c(n)} + LD

e {c(n)},
which is the the a posteriori LLR. [It is claimed in [10] that, unlike the original turbo principle

where one takes La {c(n)} = LM
e {c(n)}, usage of the full SfiSfo decoder’s soft information

embodied in the a posteriori LLR La {c(n)} enhances performance compared to using only

LD
e {c(n)}; [68] also uses this set-up. This has also been our experience in the simulations

presented; therefore, we have followed this approach.] The bit probabilities (converted from

the corresponding LLR La {c(n)}) at time n are used (following [67]) to compute the mean

d̄(n) and variance d(n) for data symbols d(n) as

d̄(n) = E[d(n)] =
∑

d∈X

dP {d(n) = d} =
∑

d∈X

d
n0∏

j=1

Pa

{

cj(n) = cjd
}

, (5.16)

d(n) = var[d(n)] =
∑

d∈X

∣d(n)− d̄(n)∣2P {d(n) = d} = 1− d̄ 2(n), (5.17)
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where

Pa

{

cj(n) = 1
}

=
1

1 + exp (−La{cj(n)})
, Pa

{

cj(n) = 0
}

=
1

1 + exp (La{cj(n)})
.

(5.18)

Then d̄(n) and d(n) are fed back to the equalizer as a priori information, along with the

training symbols.

5.2.2 Adaptive Soft-In Soft-Out Nonlinear Kalman Equalizer

Using a symbol-wise AR-model for channel variations, an adaptive SfiSfo equalizer using

fixed-lag EKF was presented in [68] for joint channel estimation and equalization where their

correlation was (implicitly) considered. In this section, we present a CE-BEM model-based

SfiSfo nonlinear Kalman equalizer for turbo equalization.

State-Space Model using CE-BEM and a Priori Information

Stack the channel coefficients in (5.2) into vectors

hl :=
[

ℎ1 (l) ℎ2 (l) ⋅ ⋅ ⋅ ℎQ (l)
]T
, (5.19)

h :=
[

hT
0 hT

1 ⋅ ⋅ ⋅ hT
L

]T
(5.20)

of size Q and Q(L + 1) respectively. We will allow h in (5.20) to change with “time” n, in

which case it will be denoted by h(n). We assume that the channel BEM coefficients follow

an AR model. One could fit a general AR(P ) model with a high value of P , but we seek a

“simple” AR(1) model given by

h (n) = A1h (n− 1) +w (n) (5.21)

where A1 is the time-invariant AR coefficient matrix and the driving noise vector w (n) is

zero-mean white with identity covariance. Collecting all channel tap gains over one block,

further define the [(L+ 1)TB]× 1 vector

h̃B(n) :=
[

ℎ(n; 0) ℎ(n− 1; 0) ⋅ ⋅ ⋅ ℎ(n− TB + 1; 0) ℎ(n; 1) ℎ(n− 1; 1)

⋅ ⋅ ⋅ ℎ(n− TB + 1; 1) ⋅ ⋅ ⋅ ℎ(n;L) ⋅ ⋅ ⋅ ℎ(n− TB + 1;L)
]T
. (5.22)

Define

퓔 (n) :=
[

e−j!1n e−j!2n ⋅ ⋅ ⋅ e−j!Qn
]T
. (5.23)
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Using (5.23), we further define

B (n) :=
[

퓔 (n) 퓔 (n− 1) ⋅ ⋅ ⋅ 퓔 (n− TB + 1)
]H
, Γ := diag

{

ej!1 , ej!2 , . . . , ej!Q

}

,

(5.24)

where B(n) is TB ×Q and Γ is Q×Q. Consider two overlapping blocks that differ by just

one symbol: g(n) and g(n+ 1), with h (n) and h (n+ 1), respectively, as the corresponding

BEM coefficients. It then follows that

h̃B(n) = B̃(n)h(n), h̃B(n+ 1) = B̃(n)Γ̃h(n+ 1) (5.25)

where (B̃ is [(L+ 1)TB]× [(L+ 1)Q] and Γ̃ is [(L+ 1)Q]× [(L+ 1)Q])

B̃(n) := diag{B(n), B(n), ⋅ ⋅ ⋅ , B(n)}, Γ̃ := diag{Γ, Γ, ⋅ ⋅ ⋅ , Γ}. (5.26)

If (5.21) holds, then using the Yule-Walker equation we have

A1 = E
{

h(n+ 1)hH(n)
} [

E
{

h(n)hH(n)
}]−1

(5.27)

where using (5.25) we have

E
{

h(n+ 1)hH(n)
}

= Γ̃−1B̃†(n)E
{

h̃B(n+ 1)h̃H
B (n)

}

B̃†H(n), (5.28)

E
{

h(n)hH(n)
}

= B̃†(n)E
{

h̃B(n)h̃
H
B (n)

}

B̃†H(n), (5.29)

and E
{

h̃B(n)h̃
H
B (n)

}

and E
{

h̃B(n+ 1)h̃H
B (n)

}

can be calculated using (5.22) if we know

the channel correlation function Rℎ(�). This procedure results in matching the correlation

function of h (n) at lags 0 and 1.

Typically Rℎ(�) will not be available. Therefore, to simplify we will assume that A1 =

�I (implying that all tap gains have the same Doppler spectrum), and E{w(n)wH(n)} =

�2
wIQ(L+1), leading to

h (n) = �h (n− 1) +w (n) . (5.30)

If the channel is stationary (WSSUS) and coefficients ℎq(l)’s are independent (as assumed

in [70]), then by (5.30) and Yule-Walker equations, we can estimate � as

� =

⎛

⎝
E
{

hH(n+ 1)h(n)
}

E {hH(n)h(n)}

⎞

⎠

∗

=
tr
{

Γ̃−1B̃†(n)E
{

h̃B(n+ 1)h̃H
B (n)

}

B̃†H(n)
}

tr
{

B̃†(n)E
{

h̃B(n)h̃H
B (n)

}

B̃†H(n)
} , (5.31)
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and �2
w = E{∣ℎ(n; l)∣2}(1 − ∣�∣2)/Q where �2

ℎ = E{∣ℎ(n; l)∣2}. Note that (5.31) requires

knowledge of Rℎ(�). In order to avoid this, one can somewhat arbitrarily pick a value of

� such that � ≈ 1 but � < 1; this has been done in, e.g. [28] (in a different but similar

context). Besides, for tracking, one needs � < 1 [28]. To gain more insight, let us consider

a mutually independent channel tap ℎ(n; l) for different l’s following the Jakes’ spectrum

(also used in Section 5.2.3 in simulation examples). When T = 200, TB = 100, Q = 5, and

fdTs = 0.01, one gets � =0.99989 using (5.31). We compared it with A1 obtained via (5.27)-

(5.29), yielding the normalized difference ∥A1 − �I∥F/∥A1∥F =0.0095 where ∥.∥F denotes

the Frobenius norm. [As we will see later in Section 5.2.3 (Fig. 5.8 and 5.9), this value of �

is too close to one to permit tracking; we used � = 0.996 in Section 5.2.3.] Thus, for channel

taps following the Jakes’ spectrum, A1 = �I is an excellent choice.

Under this formulation, we do not need a “strict” definition of the block size TB. A key

parameter now is the CE-BEM period T , not the block size TB. Later we use (5.2) for all

times n, not just the particular block of size TB symbols, by allowing the coefficients ℎq(l)’s

to change with time (symbol-wise). Note that model (5.2) is periodic with period T whereas

the channel is by no means periodic. So long as the effective “memory” of the Kalman filter

used later is less than the model period T , there are no deleterious effects due to the use of

(5.2) for all time.

We will perform equalization with a delay � > 0. Define a parameter

�̄ := max {� + 1, L+ 1} (5.32)

and the data vector

z (n) :=
[

s (n) s (n− 1) ⋅ ⋅ ⋅ s
(

n− �̄ + 1
)]T

. (5.33)

Consider (5.30). In order to apply (extended) Kalman filtering to joint channel estimation

and equalization, we stack h (n) and data vector z (n) together into a J × 1 state vector

x (n) at time n as

x (n) :=
[

zT (n) hT (n)
]T
, J := �̄ +Q (L+ 1) . (5.34)

As in [68] (and others), we consider the symbol sequence {s(n)} as a stochastic process

so as to utilize the soft decisions on the data symbols generated in the iterative decoding

process as its a priori information. We can express s(n) as s(n) = s̄(n) + s̃(n) where

s̄(n) = E[s(n)] and s̃(n) is approximated as a zero-mean uncorrelated sequence such that

E[s̃(n)s̃∗(n + j)] = (n)�(j), assuming an ideal interleaver. Note that s̄(n) and (n) are
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provided via the a priori information. We have s̄(n) = d̄(n) and (n) = d(n) for a data

symbol d(n) (where d̄(n) and d(n) are specified in (5.16) and (5.17), respectively), while

s̄(n) = t(n) and (n) = 0 for a training symbol t(n).

Using x(n), the state equation turns out to be

x(n) = T x(n− 1) + e0s̄(n) + u(n), (5.35)

where

T =

⎡

⎣
Φ 0�̄×Q(L+1)

0Q(L+1)×�̄ F

⎤

⎦

J×J

, F = �IQ(L+1), (5.36)

Φ =

⎡

⎣
01×(�̄−1) 01×1

I(�̄−1) 0(�̄−1)×1

⎤

⎦

�̄×�̄

, e0 =
[

1 01×(J−1)

]T
, (5.37)

the vector

u(n) :=
[

eT�̄ s̃(n) wT (n)
]T

(5.38)

is zero-mean uncorrelated process noise where e�̄ = [1 01×(�̄−1)]
T , w(n) is given in (5.21) and

Q(n) := E[u(n)uH(n)] = Q̃+ (n)e0e
T
0 , Q̃ :=

⎡

⎣
0�̄×�̄ 0�̄×Q(L+1)

0Q(L+1)×�̄ �2
wIQ(L+1)

⎤

⎦

J×J

. (5.39)

The channel output y(n) in (5.1) can be rewritten by CE-BEM given in (5.2) as

y(n) = sT (n)
[

I(L+1) ⊗ 퓔(n)
]H

h(n) + v(n), (5.40)

where s(n) = [s(n) s(n− 1) ⋅ ⋅ ⋅ s(n− L)]T (and 퓔 (n) is as defined in (5.23)). Using the

state vector that comprises the information symbols and channel coefficients, the measure-

ment equation can be given as

y(n) = f [x(n)] + v(n), (5.41)

where

f [x(n)] := xT (n)
[

I(L+1) 0(L+1)×(J−L−1)

]T [

I(L+1) ⊗ 퓔(n)
]H [

0[Q(L+1)]×�̄ IQ(L+1)

]

︸ ︷︷ ︸

=:D

x(n).

(5.42)

With (5.35) and (5.41) as the state and measurement equations, respectively, nonlinear

Kalman filtering is applied to track x(n) for joint channel estimation and equalization.
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Fixed-Lag Soft Input Extended Kalman Filtering

In EKF, the state transition and observation models need not be linear functions of the

state but may instead be (differentiable) functions. The state function can be used to com-

pute the predicted state from the previous estimate and similarly the measurement function

can be used to compute the predicted measurement from the predicted state. However, these

functions cannot be applied to the covariance directly. Instead a matrix of partial derivatives

(Jacobian) is computed. At each time-step the Jacobian is evaluated with current predicted

states. Those matrices can be used in the Kalman filter equations. This process essentially

linearizes the non-linear function around the current estimate.

For the nonlinear system represented by (5.35) and (5.41), EKF is applied to track the

channel BEM coefficients and to decode data symbols jointly. The EKF is initialized with

x̂ (−1 ∣ −1) = 0 and P (−1 ∣ −1) = Q̃ (5.43)

where x̂ (p ∣ m) denotes the estimate of x (p) given the observations {y (0) ,y (1) , ⋅ ⋅ ⋅ ,y (m)},
and P (p ∣ m) denotes the error covariance matrix of x̂ (p ∣ m), defined as

P (p ∣ m) := E{[x̂ (p ∣ m)− x (p)][x̂ (p ∣ m)− x (p)]H}. (5.44)

Extended Kalman recursive filtering (for n = 0, 1, 2, ⋅ ⋅ ⋅ ) is applied as in [68] but with a

different state and measurement equations, to generate x̂ (n ∣ n) and P (n ∣ n). The following

steps are executed:

1. Time update:

x̂ (n ∣ n− 1) = T x̂ (n− 1 ∣ n− 1) + e0s̄(n), (5.45)

P (n ∣ n− 1) = T P (n− 1 ∣ n− 1) T T + Q̃+ (n)e0e
T
0 . (5.46)

2. Kalman gain:

�(n) =
∂f [x]

∂x

∣
∣
∣
∣
∣
x=x̂(n∣n−1)

= x̂T (n ∣ n− 1)
(

D+DT
)

. . . Jacobian matrix, (5.47)

K(n) = P(n ∣ n− 1)�H(n)/
[

�2
v + �(n)P(n ∣ n− 1)�H(n)

]

. (5.48)
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Figure 5.3: Structure of the adaptive SfiSfo equalizer proposed in [68]

3. Measurement update:

x̂ (n ∣ n) = x̂ (n ∣ n− 1) +K (n) (y (n)− f [x̂(n ∣ n− 1)]) , (5.49)

P (n ∣ n) = [IJ −K (n) � (n)]P (n ∣ n− 1) . (5.50)

The a priori information {s̄(n), (n)} is the soft input at time n acquired via (5.16) and

(5.17), while �-th element of the estimate x̂(n+� ∣ n+�) is the delayed a posteriori estimate

of data symbol. [Note that, in order to compensate the estimation errors, we take the noise

variance in (5.48) to be �2
v + 0.01�2

s instead of �2
v in our simulations, which is similar as

Kalman detector in Section 2.4.1 and MMSE-DFF in Section 2.4.2. One can also take this

increase as the stabilizing noise that is useful to solve a problem of EKF underestimating

the true covariance matrix.]

Structure of Adaptive soft-in soft-out Equalizer

The fixed-lag EKF takes soft inputs and generates a delayed a posteriori estimate

for s(n). In order to generate extrinsic estimate independent of the a priori information

{s̄(n), (n)}, a “comb” structure in conjunction with the EKF in Fig. 5.3 is used for SfiSfo

equalization, just as in [68]. At each time n, the vertical branch composed of (� + 1) EKF’s

produce the extrinsic estimate ŝ(n), while the horizontal branch keeps updating the a pos-

teriori estimate x̂(n ∣ n) and its error covariance P(n ∣ n). The first vertical EKF has an

input {0, 1} in place of {s̄(n), (n)} to exclude the effect of the a priori information. Let

x̂e(n + i ∣ n + i) and Pe(n + i ∣ n + i) denote the state estimate and its error covariance

matrix, respectively, generated by the (i+1)-th vertical filtering branch. Then the extrinsic

89



estimate ŝ(n) of s(n) and its error variance �2(n) are given by

ŝ(n) = �-th component of vector x̂e(n+ � ∣ n+ �), (5.51)

�2(n) = (�, �)-th component of matrix Pe(n+ � ∣ n+ �). (5.52)

Note that the extrinsic outputs ŝ(n) and �2(n) are computed for data symbol d(n), not for

training symbol t(n), and then used in the later parts of the turbo-equalization receiver (see

Fig. 5.2). Further details regarding generation of extrinsic estimates can be found in [68].

Computational Complexity

Here we consider computational complexity using the floating point operation (flop)

counting for turbo equalization using EKF and CE-BEM. The computational complexity

of the approach of [68] is O((� + 2)[�̄ + P (L + 1)]2) where � is the equalization delay, �̄ is

given by (5.32) and an AR(P) channel model is used. Note that it is independent of the

constellation size ℳ. As we follow [68] with the difference that we use CE-BEM instead

of AR modeling of the channel, the computational complexity of our proposed approach

readily follows as O((� + 2)[�̄ +Q(L+ 1)]2) = O((� + 2)J2) where Q is the number of basis

functions in the CE-BEM. Therefore, the proposed approach and the approach of [68] have

comparable computational complexity if one takes P = Q. As in [68], the computational

complexity of our proposed approach is independent of the constellation size ℳ. In the

simulations presented in Section 5.2.3, we have � = 5, L = 2 and �̄ = 6. For CE-BEM,

we take Q = 5 or Q = 9, therefore, corresponding values of the AR model order P in the

approach of [68] were picked as 5 or 9 to attain comparable computational requirements for

a fair performance comparison.

5.2.3 Simulation Examples

A random time- and frequency-selective Rayleigh fading channel is considered. We

assume ℎ (n; l) are zero-mean, complex Gaussian, and spatially white with autocorrelation

�2
ℎ. We take L = 2 (3 taps) in (5.1), and �2

ℎ = 1/ (L+ 1). For different l’s, ℎ (n; l)’s

are mutually independent and satisfy Jakes’ model. To this end, we simulate each single

tap following [75](with a correction in the appendix of [63]). We consider a communication

system with carrier frequency of 2GHz, data rate of 40kBd (kilo-Bauds), therefore Ts = 25�s,

and a varying Doppler spread fd in the range of 40 to 400Hz, or the normalized Doppler

spread fdTs from 0.001 to 0.01. The additive noise is zero-mean complex white Gaussian.

The (receiver) SNR refers to the average energy per symbol over one-sided noise spectral

density.
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Figure 5.4: Turbo equalization: performance comparison for SNR’s under fdTs = 0.01, lp =
5, ls = 20 (20% training overhead).

In the simulations, we use a 4-state convolutional code of rate Rc = 1/2 with octal

generators (5, 7). The information block size is set to 3000 bits (Ti=3000) leading to a coded

block size of 6000 bits, and the interleaver size is equal to the coded block size. In the

modulator, the QPSK constellation with Gray mapping is used, which gives ℳ = 4 and a

block size of 3000 symbols. After modulation, training symbol sequences of length lp are

inserted in front of every ls data symbols, leading to a sequence of length Tr = 3750 when

lp = 5 and ls = 20 (20% training overhead).

We compared the following schemes:

1. The approach of [48] that uses the linear MMSE equalizer (e.g. [38]) coupled with

modified RLS channel estimation, where we set the linear filter length = 3 (6 pre-

cursor taps and 3 post-cursor taps are used). This scheme is denoted by “TE-LE”.

2. The AR(P) model-based scheme in [68]. The AR(P) model is as described in Sec-

tion 2.2.1 and is fitted using [27] to Jakes’ spectrum with fdTs=0.01 (the maximum

anticipated normalized Doppler spread), denoted by “TE-AR5” for AR(5) model and

“TE-AR9” for AR(9) model.

3. The proposed BEM-based turbo equalization schemes, where we consider BEM period

T = 200 and 400 respectively, so that Q = 5 and 9, respectively, by (5.2). For the

channel BEM coefficients, we take the AR-coefficient in (5.30) as � = 0.996 for T = 200

and � = 0.998 for T = 400. This scheme is denoted by “TE-BEM(200)” for T = 200

and “TE-BEM(400)” for T = 400.
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Figure 5.5: Turbo equalization: performance comparison for normalized Doppler
spread(fdTs)’s under SNR = 10dB, lp = 5, ls = 20 (20% training overhead).

4. The turbo equalizer based on the fixed-lag Kalman filter with perfect knowledge of the

true channel, denoted by “TrueCH”.

5. The turbo equalizer based on the optimum trellis-based MAP (BJCR) method [46]

with perfect knowledge of the true channel, denoted by “Opt-MAP-TrueCH”.

We evaluate the performances of various schemes by considering their normalized chan-

nel mean square error (NCMSE) and their bit error rates (BER). The NCMSE is defined

as

NCMSE :=

∑Mr
i=1

∑TN−1
n=0

∑L
l=0

∥
∥
∥ℎ̂(i) (n; l)− ℎ(i) (n; l)

∥
∥
∥

2

∑Mr
i=1

∑TN−1
n=0

∑L
l=0 ∥ℎ(i) (n; l)∥

2

where ℎ(i) (n; l) is the true channel and ℎ̂(i) (n; l) is the estimated channel at the i-th Monte

Carlo run, among total Mr runs. The BER’s are evaluated by employing the equalization

delay � = 5, using the decoded information symbol sequences at the turbo-equalization

receiver. All the simulation results are based on 1000 runs.

In Fig. 5.4, the performance of all the above schemes, under normalized Doppler spread

fdTs = 0.01, are compared for different SNR’s. In Fig. 5.5, those schemes are compared over

varying Doppler spread fd’s, under SNR = 10dB. Other settings of the simulation are same

as Fig. 5.4, including the fact that Q = 5 (for T = 200) or Q = 9 (for T = 400), regardless

of the actual fd. It is clear that since the channel variations are well captured by the BEM

coefficients, our proposed TE-BEM approach yields good performance even for “low” SNR’s.
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Figure 5.6: Turbo equalization: performance comparison for SNR’s under fdTs = 0.004, lp =
5, ls = 20 (20% training overhead).

We can expect to save the signal power to get the same BER performance. Note that TE-

BEM with larger block size (T = 400) has a little better performance than with smaller

one (T = 200), since CE-BEM with T = 400 has the more basis functions in (5.2) and

Kalman filtering utilize the past data implicitly(see Section 2.2.2). The NCMSE and BER

for TE-BEM (especially, with T = 400) vary “slightly” along the range of normalized Doppler

spread, so that given the CE-BEM representation used in channel tracking, its performances

are not sensitive to the actual Doppler spread. Therefore, we do not have to know the exact

Doppler spread of the channel — an upper bound of that is sufficient in practice.

The performance of TE-AR5 is significantly worse than that of TE-BEM(200) (the two

approaches have comparable computational complexity) in Fig. 5.4 with increasing SNR for

a fixed fdTs = 0.01, and is slightly worse in Fig. 5.5 for a fixed SNR of 10dB and varying

Doppler spreads. On the other hand, while the performance of TE-AR9 is slightly better

than that of TE-BEM(400) (the two approaches have comparable computational complexity)

in Fig. 5.4 with increasing SNR for a fixed fdTs = 0.01, it is significantly worse in Fig. 5.5

for a fixed SNR of 10dB and varying Doppler spreads. While increasing the BEM period

T improves performance, increasing the AR model order does not necessarily do so: we

get inconsistent performance. A possible reason is that, as noted in [27], AR model fitting

to a given correlation function can be numerically ill-conditioned for “large” model orders;

it turned out to be so for AR(9) model and we followed the recommendations of [27] in

choosing the regularization parameter for the matrix inversion involved. Such inconsistent

behavior is also seen in Fig. 5.6 where we compare performance of various schemes (including
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Figure 5.7: Turbo equalization: performance comparison of TE-BEM(200) with different
interleaver lengths for SNR’s under fdTs = 0.01, lp = 5, ls = 20 (20% training overhead).

TE-BEM(100) with T = 100 and Q = 3, and AR3 with order P = 3) for different SNR’s

under normalized Doppler spread fdTs = 0.004. It is seen that increasing the BEM period

T improves performance but increasing the AR model order does not necessarily do so.

Moreover, for the same computational complexity, BEM models outperform AR models.

In Figs. 5.4 and 5.5, it is seen that the linear MMSE equalizer coupled with modified RLS

channel estimation (TE-LE) only works for normalized Doppler spread values of ≤ 0.002.

Note that turbo equalization using linear MMSE equalizer with separate channel estimation

only works well for slow fading channels, no matter what value of the filter length to choose

[68]. In Fig. 5.4, we present the performance of the turbo equalizer based on the fixed-

lag Kalman filter with knowledge of the true channel (TrueCH) in order to illustrate the

effectiveness of the proposed channel estimation approach; as there was little improvement

beyond the second iteration, we only show the second iterative result with dotted curve. It is

seen that there is a slightly more than 2dB SNR penalty due to channel estimation. As has

been noted in the literature, the Kalman filter based equalization is a sub-optimum equalizer

compared to the trellis-based MAP (BCJR) equalizer [46]. We also present the performance

of the turbo equalizer based on the optimum BCJR method with knowledge of the true

channel (Opt-MAP-TrueCH) in order to illustrate loss in performance due to suboptimality

of the Kalman equalizer; as there was little improvement beyond the second iteration, we

only show the second iterative result with dotted curve. It is seen that while there is a

large difference in performance initially (see 1st iteration results for TrueCH and Opt-MAP-

TrueCH), just one turbo iteration yields very close performance (see the two dotted curves).
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Figure 5.8: Turbo equalization: performances of TE-BEM(200) for AR(1) coefficient �’s
under fdTs = 0.01, SNR = 10dB, lp = 5, ls = 20 (20% training overhead).

That is, at least for this example, performance loss in using Kalman equalizer instead of the

BCJR equalizer is quite negligible.

In Fig. 5.7, a smaller information block size (Ti = 1000) in BICM transmitter is consid-

ered leading to a coded block size 2000 bits and interleaver length of 2000 bits also. Thus,

we have a smaller interleaver size compared to 6000 bits in our earlier setting, designed to

reduce the overall delay at turbo equalization receiver output. We compare the performance

of TE-BEM with T = 200, Q = 5 in CE-BEM for different SNR’s, under normalized Doppler

spread fdTs = 0.01 with two different interleaver size (equivalently different information

block size). It is seen that a smaller interleaver length results in a “small” deterioration in

NCMSE and BER (when five iterations are considered).

In Fig. 5.8 and 5.9 we show the BER performance of schemes TE-BEM(200) and TE-

BEM(400) for different values of � respectively. It is seen that while the performance is

not sensitive to the choice � over a relatively wide range of values, it does deteriorate as

� approaches one. Note that � = 1 in (5.30) implies time-invariance and � < 1 permits

tracking by discounting older values of the channel BEM coefficients – smaller the value of �

higher this discounting effect but discrepancy with the value of � obtained from (5.31) also

increases.

5.2.4 EXIT Chart Analysis

The extrinsic information transfer (EXIT) chart is a useful semi-analytic tool [37,47,59]

to analyze the exchange of mutual information between the equalizer and the decoder and
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Figure 5.9: Turbo equalization: performances of TE-BEM(400) for AR(1) coefficient �’s
under fdTs = 0.01, SNR = 10dB, lp = 5, ls = 20 (20% training overhead).

to describe the convergence of the iterative receiver algorithm. The EXIT chart makes it

possible to predict the system trajectory from extrinsic mutual information transfer functions

without performing simulations on the complete iterative receiver. The (extrinsic) mutual

information I(L; c) between the equally likely c ∈ {+1,−1} and the symmetric LLR L

simplifies to [37,59]

I(L; c) = 1− E
[

log2(1 + e−L) ∣ c = +1
]

. (5.53)

Under ergodicity, for a large sample of size Tr, we have [37]

I(L; c) ≈ 1− T−1
r

Tr∑

t=1

log2(1 + e−c(t)L{c(t)}). (5.54)

We observe the mutual information IMe = I(LM
e {c(n)} ; c(n)) at the equalizer output and

IDe = I(LD
e {c(n′)} ; c(n′)) at the decoder output. The EXIT chart combines the equalizer

transfer function and the decoder transfer function. Since the output LLR’s from the equal-

izer are input to the decoder and vice versa, both transfer functions are drawn in the same

plot with the axes being flipped for the decoder transfer function. The system trajectory

of the turbo equalization receiver forms a “zigzag-path” between the two transfer functions

where each equalization (or decoding) task is represented as a vertical (or horizontal) arrow.

The simulation setup to generate the extrinsic information transfer function is shown in

Fig. 5.10. Following [59] (and others), LM
e {ci(n′)} (input to the SfiSfo decoder) is modeled as

independent and identically distributed (i.i.d.) Gaussian with mean ci(n′)�2
L/2 and variance

96



(a) Decoder

(b) Equalizer

Figure 5.10: Simulation setup for generating extrinsic information transfer functions

�2
L; then mutual information IMe and IDe at the input and output, respectively, of the decoder

are functions of a single parameter �L. For a range of values of �L and randomly generated

LM
e {ci(n′)}, we can estimate IMe and IDe (the same for all channel models) via simulations

using (5.54). The interleaved random extrinsic LLR’s LD
e {ci(n)} are input to the “LLR to

symbol” block in Fig. 5.10b together with the corresponding a priori LLR LM
e {ci(n)}, the

input LLR’s of the decoder, in order to obtain the a posteriori LLR’s La {ci(n)}. Then we

can estimate input-output mutual information IDe and IMe of the equalizer (dependent upon

the channel model) using the input LLR’s LD
e {ci(n)} (not La {ci(n)}) and output LLR’s

LM
e {ci(n)}, respectively, of a given SfiSfo equalizer. For a given equalizer we plot curves

(transfer function) with input IDe along horizontal axis and output IMe along the vertical

axis; the axes are “flipped” for the decoder. The iteration process between equalizer and

decoder can be visualized by using a trajectory trace where each vertical trace represents

equalization task and each horizontal trace represents decoding task and the trajectory starts

at the (0, 0) point (see Fig. 5.11 for instance).

Using the set-up and parameters of Fig. 5.5 but with the information block size set to

30000 bits (the coded block size Tr = 60000), the normally distributed LLR’s were generated

with values of �2
L ∈ [10−2, 102], and then IMe and IDe were calculated. We analyze the EXIT

charts of our CE-BEM based approach with T = 200 and Q = 5 (TE-BEM(200) scheme) and

the symbol-wise AR-model-based approach in [68] using AR(5) model (TE-AR5 scheme). In
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Figure 5.11: EXIT charts of the proposed turbo equalizer using CE-BEM with T = 200, Q =
5 for different SNR’s under fdTs = 0.008, lp = 5, ls = 20 (20% training overhead).

Fig. 5.11, EXIT charts for TE-BEM(200) are shown under a fixed normalized Doppler spread

fdTs = 0.008 for different SNR’s. We show the trajectory trace for SNR=10 dB where the

first iteration is not visible as it is “cramped” in the lower left corner. Note that, as SNR

increases, the output mutual information of the SfiSfo equalizer increases. In Fig. 5.12,

EXIT charts for the symbol-wise AR(P)-based turbo equalizations (TE-AR5, TE-AR9) and

the proposed ones using CE-BEM (TE-BEM(200), TE-BEM(400)) are compared under fixed

fdTs = 0.004 and 0.008, SNR = 10dB. In Fig. 5.13, EXIT charts for TE-BEM(200) and

TE-AR5 schemes are depicted under SNR = 10dB for different normalized Doppler spreads.

One can compare EXIT charts with the actual simulation performances for every scheme

in Section 5.2.3. Table 5.1 compares the BER’s obtained via full Monte Carlo simulations

(as in Section 5.2.3, Fig. 5.13, with lp = 5, ls = 20 and SNR=10 dB) and predicted by

EXIT chart analysis (shown in parentheses). It is seen that while the two sets of BER’s are

“close,” there are discrepancies. One reason for this is that while EXIT charts are based on

the assumption of infinite interleaver length, simulation results are based on finite length

interleaver. Furthermore, drawing of trajectory traces is subject to “manual” errors.
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Figure 5.12: EXIT charts for TE-AR5, TE-AR9, TE-BEM(200) and TE-BEM(400) under
fixed fdTs, SNR = 10dB, lp = 5, ls = 20 (20% training overhead).
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Figure 5.13: EXIT charts for different fdTs’s under SNR = 10dB, lp = 5, ls = 20 (20%
training overhead).
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Table 5.1: Turbo equalization: comparison between actual BER (via simulations) and pre-
dicted BER (via EXIT charts)

Via Monte Carlo runs (predicted by EXIT charts): SNR=10dB

fd (fdTs) iteration TE-BEM(200) TE-AR5

80Hz (0.002)

1st 1.2× 10−1 (1.4× 10−1) 0.8× 10−1 (1.2× 10−1)

2nd 2.3× 10−2 (2.4× 10−2) 8.5× 10−3 (1.5× 10−3)

3rd 1.9× 10−3 (1.5× 10−5) 6.3× 10−4 (< 10−5)

160Hz (0.004)

1st 1.3× 10−1 (1.5× 10−1) 1.5× 10−1 (1.7× 10−1)

2nd 2.7× 10−2 (5.5× 10−2) 4.8× 10−2 (9.0× 10−2)

3rd 2.1× 10−3 (2.0× 10−4) 7.0× 10−3 (2.4× 10−3)

240Hz (0.006)

1st 8.5× 10−2 (1.1× 10−1) 6.6× 10−2 (8.5× 10−2)

2nd 6.9× 10−3 (2.2× 10−3) 3.3× 10−3 (4.0× 10−4)

3rd 1.9× 10−4 (< 10−5) 7.1× 10−5 (< 10−5)

320Hz (0.008)

1st 1.4× 10−1 (1.7× 10−1) 1.1× 10−1 (1.6× 10−1)

2nd 3.9× 10−2 (7.0× 10−2) 1.8× 10−2 (4.5× 10−2)

3rd 2.9× 10−3 (1.3× 10−3) 7.2× 10−4 (2.5× 10−4)
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5.3 MIMO Turbo Equalization using EKF and CE-BEM

In this section, we extend the approach of Section 5.2 to multi-input multi-output

(MIMO) systems. Several variants of DFE and linear transversal equalizer (LTE), such

as the delayed decision feedback sequence estimator along with schemes like ordered suc-

cessive interference cancellation has been proposed in [3, 73]. Considering a coded system,

Partial response equalizers, which effectively shorten the original MIMO channel so as to

follow it by a trellis based equalizers and the SfiSfo iterative Kalman equalizer pursuing

low complexity for MIMO frequency selective fading channels have been proposed in [12]

and [56] respectively. In contrast to [6] based on AR model only, our adaptive turbo equal-

izer takes advantage of BEM in addition to the conventional turbo processing and results in

superior performance, even with smaller SNR’s and over a wide range of Doppler spreads as

demonstrated in simulation examples.

5.3.1 MIMO System Model and Turbo Equalization Receiver

Consider a doubly-selective (time- and frequency-selective) MIMO, finite impulse re-

sponse (FIR) linear channel with K inputs and N outputs. Let {sk (n)} denote k-th user’s

information sequence that is input to the time-varying channel with discrete-time response

{hk (n; l)} (channel response for the k-th user at time instance n to a unit input at time

instance n − l). Then the symbol-rate noisy N -column channel output vector is given by

(n = 0, 1, . . .)

y (n) =
K∑

k=1

L∑

l=0

hk (n; l) sk (n− l) + v (n) (5.55)

where the N -column vector v (n) is zero-mean, white, uncorrelated with sk (n), complex

Gaussian noise, with the autocorrelation E{v (n+ �)vH (n)} = �2
vIN� (�). We assume that

{hk (n; l)} represents a wide-sense stationary uncorrelated scattering (WSSUS) channel [60],

independent for different k’s. We assume that sk (n) is mutually independent and iden-

tically distributed (i.i.d.) with zero mean and variance E{sk (n) s∗k (n)} = �2
sk

= �2
s for

k = 1, 2, ⋅ ⋅ ⋅ , K. Define

s(n) :=
[

s1(n) s2(n) ⋅ ⋅ ⋅ sK(n)
]T

h(n; l) :=
[

h1(n; l) h2(n; l) ⋅ ⋅ ⋅ hK(n; l)
]

and then we may rewrite (5.55) as

y (n) =
L∑

l=0

h (n; l) s (n− l) + v (n) . (5.56)
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In our approach, we use an oversampled CE-BEM for the overall channel variations

and first-order AR model for the BEM coefficients. These two models are described in this

subsection. In CE-BEM [11,14,70], over the i-th block consisting of an observation window

of TB symbols, the channel is represented as (n = (i− 1)TB, (i− 1)TB + 1, ⋅ ⋅ ⋅ , iTB − 1 and

l = 0, 1, ⋅ ⋅ ⋅ , L )

hk(n; l) =
Q
∑

q=1

hk,q(l)e
j!qn, (5.57)

where h
(l)
k,q is the N -column time-invariant BEM coefficient vector for k-th user and one

chooses (Λ is an integer)

T := ΛTB, Λ ≥ 1, (5.58)

Q := 2 ⌈fdTTs⌉+ 1, (5.59)

!q :=
2�

T
[q − (Q+ 1) /2] , q = 1, 2, ⋅ ⋅ ⋅ , Q (5.60)

L := ⌊�d/Ts⌋ , (5.61)

�d and fd are respectively the delay spread and the Doppler spread, and Ts is the symbol

duration. The BEM coefficients hk,q(l)’s remain invariant during this block, but are allowed

to change at the next consecutive block; the Fourier basis functions {ej!qn} (q = 1, 2, ⋅ ⋅ ⋅ , Q)

are common for every block. If the delay spread and the Doppler spread (or at least their

upper bounds) are known, one can infer the basis functions of the CE-BEM [70]. Treating

the basis functions as known, estimation of a time-varying process is reduced to estimating

the invariant coefficients over a block of TB symbols.

Bit-Interleaved Coded Modulation (BICM) for multiple users

Figure 5.14: Bit-interleaved coded modulation system model for doubly-selective fading
MIMO channels
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We consider a BICM transmitter (as in [67]) for a doubly-selective MIMO channel as

shown in Fig. 5.14. At the Transmitter, the input bit stream {b(n)} for K users are

processed independently one another. A sequence of information data vector bk(n
′) =

[b1k(n
′), b2k(n

′), ⋅ ⋅ ⋅ , bk0k (n′)] ∈ {1, 0}k0 for k-th input are fed into a convolutional encoder with

a code rate Rc = k0/n0. The coded output ck(n
′) = [c1k(n

′), c2k(n
′), ⋅ ⋅ ⋅ , cn0

k (n′)] ∈ {1, 0}n0

is passed through a bit-wise random interleaver �, generating the interleaved coded bit se-

quence ck(n) = �[ck(n
′)]. The binary coded bits are then mapped to a signal sequence dk(n)

over a 2-dimensional signal constellation X of cardinality ℳ = 2m by a ℳ-ary modulator

with an one-to-one binary map � : {1, 0}m → X . In this section, we only consider the case

of phase-shift keying (PSK) or quadrature amplitude modulation (QAM) with the average

energy of the constellation X to be unity. That is, the signal dk(n) drawn from X has mean

E {dk(n)} = 0 and variance E
{

∣dk(n)∣2
}

= 1. After modulation, we periodically insert short

training sequences into the data symbol sequence. The training symbols tk(n), which are

known to the receiver, are randomly drawn from the signal constellation X with equal prob-

abilities. The {sk(n)} will be used to denote the symbol sequence after training({tk(n)})
insertion into data symbol sequence({dk(n)}).

MIMO Turbo Equalization Receiver

Figure 5.15: MIMO turbo equalization receiver. Following [10, 49, 68], a posteriori LLR
La {ck(n)} = LM

e {ck(n)} + LD
e {ck(n)} is input to the LLR-to-symbol block. Inclusion of

LM
e {c(n)} to create a posteriori LLR is shown via dashed line.

A turbo equalization structure, as depicted in Fig. 5.15, is employed in the receiver

as used in [68] except that [68] uses symbol-wise AR models. The adaptive SfiSfo equalizer

is embedded into the iterative decoding (ID) process of the BICM transmission system
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(BICM-ID) [67]. In each decoding iteration, the equalizer takes the training symbols and

the soft decision information about data symbols supplied by the SfiSfo decoder from the

previous iteration as its a priori information to perform joint adaptive channel estimation

and equalization. The equalizer produces the soft-valued extrinsic estimate of the data

symbols, which are independent of their a priori information.

The output of the equalizer is an updated sequence of soft estimates d̂(n) and its error

covariance ���2(n) for K users. Using the adaptive SfiSfo equalizer in Section 5.3.2, we have

an extrinsic information for the data symbols d(n). The training symbols in the received

signal are removed at the SfiSfo equalizer and the following iterative process is only for

data symbols since training symbols are known to the receiver. Note that the extrinsic

output of SfiSfo equalizer
{

d̂k(n), �
2
k(n)

}

for k-th user is processed independently in SfiSfo

module set, where SfiSfo demodulation and SfiSfo decoding are implemented. The SfiSfo

demodulator follows [67] whereas the SfiSfo decoder follows the MAP decoding algorithm

(“BCJR”) [72, Section 6.2]. [See the details for the SfiSfo demodulator and the SfiSfo decoder

for k-th user in Section 5.2.1.]

5.3.2 Adaptive Soft-In Soft-Out Nonlinear Kalman Equalizer for Doubly-Selective

MIMO Channels

In this section, we extend a CE-BEM model-based SfiSfo nonlinear Kalman equalizer

in Section 5.2.2 to MIMO systems, implementing joint channel estimation and equalization

where their correlation was (implicitly) considered.

State-Space Model using CE-BEM and a Priori Information

Stack the channel coefficients in (5.57) into into vectors

h(l)
q :=

[

ℎ
(l)

11,q ⋅ ⋅ ⋅ℎ (l)
N1,q ⋅ ⋅ ⋅ ℎ

(l)
1K,q ⋅ ⋅ ⋅ℎ (l)

NK,q

]T
, (5.62)

h(l) :=
[

h
(l)T
1 h

(l)T
2 ⋅ ⋅ ⋅ h

(l)T
Q

]T
, (5.63)

h :=
[

h(0)T h(1)T ⋅ ⋅ ⋅ h(L)T
]T

(5.64)

of size NK, NKQ and J1 := NKQ(L + 1) respectively. We allow the coefficient vector in

(5.64) to change with “time” n, in which case it will be denoted by h(n). We assume that

the channel BEM coefficients follow an AR model. One could fit a general AR(P ) model

with a high value of P , but we seek a “simple” AR(1) model given by

h (n) = A1h (n− 1) +w (n) (5.65)
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where A1 = �IJ1 is the AR coefficient matrix, and the driving noise vector w (n) is zero-mean

complex Gaussian with variance �2
wIJ1 and statistically independent of h (n− 1). Assuming

the channel is wide-sense stationary (WSS) and coefficients ℎ
(l)

rk,q ’s are independent, we have

�2
w = �2

ℎ(1− ∣�∣2)/Q (5.66)

where �2
ℎIJ1 := E

{

h (n; l)hH (n; l)
}

. [Typically � < 1 but close to one. Strictly speaking

one should try a “full” matrix A1 in (5.64); however, it can only be calculated if the MIMO

channel statistics are known – we do not assume such knowledge here, just an upperbound

on the Doppler and multipath delay spreads. See details in Section 5.2.2]

Define with the equalization with a delay � > 0 and K-column vector s (n),

�̄ := max {� + 1, L+ 1} (5.67)

z (n) :=
[

sT (n) sT (n− 1) ⋅ ⋅ ⋅ sT
(

n− �̄ + 1
)]T

. (5.68)

In order to apply (extended) Kalman filtering to joint channel estimation and equalization,

we stack h (n) and data vector z (n) together into a J × 1 state vector x (n) at time n as

x (n) :=
[

zT (n) hT (n)
]T
, J := K�̄ +NKQ (L+ 1) = K�̄ + J1. (5.69)

As in [68] (and others), we consider the symbol sequence {s(n)} as a stochastic process

so as to utilize the soft decisions on the data symbols generated in the iterative decoding

process as its a priori information. We can express k-th user’s information sequence sk(n)

as

sk(n) = s̄k(n) + s̃k(n), (5.70)

where s̄k(n) = E[sk(n)] is a deterministic sequence and s̃k(n) is approximated as a zero-mean

uncorrelated stochastic process such that E[s̃k(n)s̃
∗
k(n + j)] = k(n)�[j] assuming an ideal

interleaver. Note that s̄k(n) and k(n), the statistical characteristics of sk(n), are provided

via the a priori information. We have s̄k(n) = d̄k(n) and k(n) = dk(n) for a data symbol

dk(n), where d̄k(n) and dk(n) are given in (5.16) and (5.17) respectively, while s̄k(n) = tk(n)

and k(n) = 0 for a training symbol tk(n). Using x(n), the state equation turns out to be

Using the state vector, x(n) in (5.69), the state equation can be written as

x(n) = T x(n− 1) + Γs̄(n) + u(n), (5.71)
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with the following definitions :

T =

⎡

⎣
Φ 0K�̄×J1 ,

0J1×K�̄ F

⎤

⎦

J×J

, F = �IJ1 , (5.72)

Φ =

⎡

⎣
01×(�̄−1) 01×1

I(�̄−1) 0(�̄−1)×1

⎤

⎦⊗ IK , Γ =
[

IK 0K×(J−K)

]T
. (5.73)

The vector u(n) is zero-mean uncorrelated process noise, defined as

u(n) =
[

ΓT
�̄ s̃(n) wT (n)

]T
, (5.74)

where Γ�̄ = [1 01×(�̄−1)]
T ⊗ IK , and w(n) is given in (5.65). The covariance matrix of u(n) is

given by

Q(n) = E[u(n)uH(n)] = Q̃+ Γdiag {(n)}ΓT , (5.75)

where diag {(n)} is a diagonal matrix composed of k(n) and matrix Q̃ is defined as

Q̃ =

⎡

⎣
0K�̄×K�̄ 0K�̄×J1

0J1×K�̄ �2
wIJ1

⎤

⎦

J×J

. (5.76)

Meanwhile, based on CE-BEM given in (5.57), the channel output y(n) in (5.56) can

be rewritten as

y(n) = [S(n)⊗ IN ]
T
[

I(L+1) ⊗ (퓔(n)⊗ INK)
]H

h(n) + v(n), (5.77)

where

S(n) :=
[

sT (n) sT (n− 1) ⋅ ⋅ ⋅ sT (n− L)
]T
, (5.78)

퓔(n) :=
[

e−j!1n e−j!2n ⋅ ⋅ ⋅ e−j!Qn
]T
. (5.79)

where s (n) = [s1 (n) s2 (n) ⋅ ⋅ ⋅ sK (n)]T . Note that the state vector x(n) comprises S(n)

and h(n) in (5.69). Hence, the measurement equation using x(n) can be given as

y(n) = f [x(n)] + v(n), (5.80)

where the nonlinear function for f [x(n)] is defined as

f [x(n)] := [S(n)⊗ IN ]
T
[

I(L+1) ⊗ (퓔(n)⊗ INK)
]H

h(n), (5.81)
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Treating (5.71) and (5.80) respectively as the state and the measurement equations,

nonlinear Kalman filtering can be applied to track the vector x(n) at each time for the joint

channel estimation and equalization.

Fixed-Lag Soft Input Extended Kalman Filtering

The EKF is applied to (5.71) and (5.80) to track the channel BEM coefficients and to

decode data symbols jointly. Kalman tracking is initialized with

x̂ (−1 ∣ −1) = 0 and P (−1 ∣ −1) = Q̃,

where x̂ (p ∣ m) denotes the estimate of x (p) given the observations {y (0) ,y (1) , ⋅ ⋅ ⋅ ,y (m)},
and P (p ∣ m) denotes the error covariance matrix of x̂ (p ∣ m), defined as

P (p ∣ m) := E{[x̂ (p ∣ m)− x (p)][x̂ (p ∣ m)− x (p)]H}.

Extended Kalman recursive filtering (for n = 0, 1, 2, ⋅ ⋅ ⋅ ) is applied one by one via the

following steps:

1. Time update:

x̂ (n ∣ n− 1) = T x̂ (n− 1 ∣ n− 1) + Γs̄(n), (5.82)

P (n ∣ n− 1) = T P (n− 1 ∣ n− 1) T T + Q̃+ Γdiag {(n)}ΓT ; (5.83)

2. Kalman gain:

���(n) =
∂f [x]

∂x

∣
∣
∣
∣
∣
x=x̂(n∣n−1)

(Jacobian matrix), (5.84)

K(n) = P(n ∣ n− 1)���H(n)/
[

�2
vIN + ���(n)P(n ∣ n− 1)���H(n)

]

(n). (5.85)

3. Measurement update:

x̂ (n ∣ n) = x̂ (n ∣ n− 1) +K (n) {y (n)− f [x̂(n ∣ n− 1)]} , (5.86)

P (n ∣ n) = [IJ −K (n)��� (n)]P (n ∣ n− 1) . (5.87)

The a priori information {s̄(n), (n)} is the soft input at time n, a a priori information

acquired from LLR-to-symbol block in Fig. 5.15, while (K(� − 1) + k)-th elements (for

k = 1, 2, ⋅ ⋅ ⋅ , K) of the estimate x̂(n + � ∣ n + �) is the delayed a posteriori estimate of
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data symbol for the k-th user. [Note that we increase the noise variance in (5.85) from �2
v

to �2
v + 0.1�2

s in our simulations in Section 5.3.3 to compensate the estimation errors.]

Structure of Adaptive soft-in soft-out MIMO Equalizer

The fixed-lag EKF takes soft inputs and generates a delayed a posteriori estimate for

s(n). However, we need an extrinsic estimate as an output of SfiSfo equalizer at turbo-

equalization receiver in Fig. 5.15. In order to generate extrinsic estimate independent of

the a priori information {s̄(n), (n)}, we use a “comb” structure in conjunction with the

EKF in Fig. 5.3, where we have K-column vectors s̄(n), (n) and N -column vector y(n) for

MIMO systems. At each time n, the vertical branch composed of (� + 1) EKFs produce the

extrinsic estimate ŝ(n), while the horizontal branch keeps updating the a posteriori estimate

x̂(n ∣ n) and its error covariance P(n ∣ n). The first vertical EKF has an input {0K×1,1K×1}
in place of {s̄(n), (n)} to exclude the effect of the a priori information. Let x̂e(n+ i ∣ n+ i)
and Pe(n+ i ∣ n+ i) denote the state estimate and its error covariance matrix, respectively,

generated by the (i + 1)-th vertical filtering branch. Then the extrinsic estimate ŝk(n) and

its error covariance �2
k(n) for sk(n) are given by

ŝk(n) = (K(� − 1) + k)-th component of vector x̂e(n+ � ∣ n+ �), (5.88)

�2
k(n) = (K(� − 1) + k,K(� − 1) + k)-th component of matrix Pe(n+ � ∣ n+ �). (5.89)

Computational Complexity

Here we consider computational complexity using the floating point operation (flop)

counting for MIMO turbo equalization in this section. Since the adaptive SfiSfo equalizer

has (� + 2) EKFs at time n as shown in Fig. 5.3, the computational complexity is given by

O((� + 2)J2), where � is the equalization delay and J is the size of state vector x(n); the

computational complexity of a Kalman filtering is O(J2). When based on AR(P) model [68],

the computational complexity is O((�+2)
[

K�̄ +NKP (L+ 1)
]2
) where �̄ is given by (5.67).

Note that it is independent of the constellation size ℳ. As we follow [68] with the difference

that we use CE-BEM instead of AR modeling of the channel, the computational complexity

of our proposed approach readily follows as O((�+2)
[

K�̄ +NKQ(L+ 1)
]2
) where Q is the

number of basis functions in CE-BEM. Therefore, the proposed approach and the approach

of [68] have comparable computational complexity if one takes P = Q. In addition, since

the size of state vector using CE-BEM is given by (5.69), the computational complexity of

our proposed approach is also independent of the constellation size ℳ. In the simulations

presented in Section 5.3.3, we have � = 5, L = 2 and �̄ = 6. For BEMs we take Q = 5 or
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Q = 9, therefore, corresponding values of the AR model order P in the approach of [68] were

picked as 5 or 9 to attain comparable computational requirements for a fair performance

comparison.

5.3.3 Simulation Examples
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Figure 5.16: MIMO turbo equalization: performance comparison for SNR’s under N = K =
2, fdTs = 0.01, lp = 6, ls = 14 (30% training overhead).

A random time- and frequency-selective multi-input multi-output (MIMO) Rayleigh

fading channel is considered. We assume h (n; l) are zero-mean, complex Gaussian, and

spatially white. We take L = 2 (3 taps) in (5.56), and �2
ℎ = 1/ (L+ 1). For different

l’s, h (n; l)’s are mutually independent and satisfy Jakes’ model. To this end, we simulate

each single tap following [75] (with a correction in the appendix of [63]). We consider a

communication system with carrier frequency of 2GHz, data rate of 40kBd (kilo-Bauds),

therefore Ts = 25�s, and a varying Doppler spread fd in the range of 40 to 400Hz, or the

normalized Doppler spread fdTs from 0.001 to 0.01. The additive noise is zero-mean complex

white Gaussian. The (receiver) SNR refers to the average energy per symbol over one-sided

noise spectral density.

In the simulations, we consider a simple two-receiver and two-user scenario, i.e., N =

2, K = 2 with the same transmitted power. We use a 4-state convolutional code of rate

Rc = 1/2 with octal generators (5, 7). The information block size is set to 3000 bits (Ti=3000)

leading to a coded block size of 6000 bits, and the interleaver size is equal to the coded block

size. In the modulator, the QPSK constellation with Gray mapping is used, which gives

109



1 2 3 4 5 6 7 8 9 10

x 10
−3

−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

Normalized Doppler spread (f
d
T

s
)

N
C

M
S

E
 (

dB
)

QPSK,N=2,K=2,L=2,d=5,l
p
=6,l

s
=14,SNR=10dB,500runs

 

 

1st iteration
3rd iteration
TE−LE
TE−AR5
TE−AR9
TE−BEM(200)
TE−BEM(400)

(a) NCMSE vs fdTs

1 2 3 4 5 6 7 8 9 10

x 10
−3

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Normalized Doppler spread (f
d
T

s
)

B
E

R

QPSK,N=2,K=2,L=2,d=5,l
p
=6,l

s
=14,SNR=10dB,500runs

 

 

1st iteration
3rd iteration
TE−LE
TE−AR5
TE−AR9
TE−BEM(200)
TE−BEM(400)

(b) BER vs fdTs, with equalization delay d = 5

Figure 5.17: MIMO turbo equalization: performance comparison for normalized Doppler
spread(fdTs)’s under N = K = 2, SNR = 10dB, lp = 6, ls = 14 (30% training overhead).

ℳ = 4 and a block size of 3000 symbols. After modulation, training symbol sequences of

length lp are inserted in front of every ls data symbols. We set lp = 6 and ls = 14 leading to

30% training overhead.

We compared the following schemes:

1. The approach of [48] that uses the linear MMSE equalizer (e.g. [38]) coupled with

modified RLS channel estimation, where we set the linear filter length = 3 (6 pre-

cursor taps and 3 post-cursor taps are used). This scheme is denoted by “TE-LE”.

2. The AR(P) model-based scheme in [68]. The AR(P) model is as described in Sec-

tion 2.2.1 and is fitted using [27] to Jakes’ spectrum with fdTs=0.01 (the maximum

anticipated normalized Doppler spread), denoted by “TE-AR5” for AR(5) model and

“TE-AR9” for AR(9) model.

3. The proposed BEM-based turbo equalization schemes, where we consider BEM period

T = 200 and 400 respectively, so that Q = 5 and 9, respectively, by (5.57). For the

channel BEM coefficients, we take the AR-coefficient in (5.30) as � = 0.994 for T = 200

and � = 0.996 for T = 400. This scheme is denoted by “TE-BEM(200)” for T = 200

and “TE-BEM(400)” for T = 400.

4. The turbo equalizer based on the fixed-lag Kalman filter with perfect knowledge of the

true channel, denoted by “TrueCH”.
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Figure 5.18: MIMO turbo equalization: performance comparison for SNR’s under N = K =
2, fdTs = 0.004, lp = 6, ls = 14 (30% training overhead).

For the MIMO systems, unlike SISO system in Section 5.2.3, we do not have the turbo

equalizer based on the optimum trellis-based MAP (BJCR) method [46] with perfect knowl-

edge of the true channel due to the complexity.

We evaluate the performances of various schemes by considering their normalized chan-

nel mean square error (NCMSE) and their bit error rates (BER). The NCMSE is defined

as

NCMSE :=

∑Mr
i=1

∑TN−1
n=0

∑L
l=0

∥
∥
∥ĥ(i) (n; l)− h(i) (n; l)

∥
∥
∥

2

∑Mr
i=1

∑TN−1
n=0

∑L
l=0 ∥h(i) (n; l)∥2

where h(i) (n; l) is the true channel and ĥ(i) (n; l) is the estimated channel at the i-th Monte

Carlo run, among total Mr runs. The BER’s are evaluated by employing the equalization

delay � = 5, using the decoded information symbol sequences at the turbo-equalization

receiver. All the simulation results are based on 500 runs.

In Fig. 5.16, the performance of all the above schemes, under normalized Doppler spread

fdTs = 0.01, are compared for different SNR’s. In Fig. 5.17, they are compared over varying

Doppler spread fd’s, under SNR = 10dB. Other settings of the simulation are same as Fig.

5.16, including the fact that Q = 5 (for T = 200) or Q = 9 (for T = 400), regardless of

the actual fd. Since the channel variations are well captured by the BEM coefficients, our

proposed TE-BEM approach yields good performance even for “low” SNR’s, which makes it

possible to save the signal power to get the same BER performance. Note that TE-BEM

with larger block size (T = 400) has a better performance than with smaller one (T = 200),
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Figure 5.19: MIMO turbo equalization: performance comparison of TE-BEM(200) with
different interleaver lengths for SNR’s under N = K = 2, fdTs = 0.01, lp = 6, ls = 14 (30%
training overhead).

since CE-BEM with T = 400 has the more basis functions in (5.57) and Kalman filtering

utilize the past data implicitly (see Section 2.2.2). It is clear that the NCMSE and BER of

turbo equalization using the CE-BEM for the channel tracking (TE-BEM) are not sensitive

to the actual Doppler spread. Especially, TE-BEM with T = 400, Q = 9 seems so realizable

over all the range of normalized Doppler spread. Therefore, we can neglect the actual

Doppler spread of the channel for TE-BEM, esp., TE-BEM(400). With the comparable

computational complexity, the performance of the symbol-wise AR(P )-based schemes are

significantly worse than that of the proposed turbo equalization using CE-BEM. TE-AR5

is than that of TE-BEM(200) in Fig. 5.16 with increasing SNR for a fixed fdTs = 0.01,

and is slightly worse in Fig. 5.17 for a fixed SNR of 10dB and varying Doppler spreads.

On the other hand, TE-AR9 is significantly worse than that of TE-BEM(400) in Fig. 5.16

with increasing SNR for a fixed fdTs = 0.01 and in Fig. 5.17 for a fixed SNR of 10dB and

varying Doppler spreads. For the same computational complexity, BEM models outperform

AR models.

Note that while increasing the BEM period T (and corresponding Q) in CE-BEM im-

proves performance, increasing the AR model order does not necessarily do so: we get

inconsistent performance. A possible reason is that, as noted in [27], AR model fitting to

a given correlation function can be numerically ill-conditioned for “large” model orders; it

turned out to be so for AR(9) model and we followed the recommendations of [27] in choosing

the regularization parameter for the matrix inversion involved. Such inconsistent behavior
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is also seen in Fig. 5.18 where we compare performance of various schemes (including TE-

BEM(100) with T = 100 and Q = 3, and AR3 with order P = 3) for different SNR’s

under normalized Doppler spread fdTs = 0.004. It is seen that increasing the BEM period

T improves performance but increasing the AR model order does not necessarily do so.

For the linear MMSE equalizer coupled with modified RLS channel estimation (TE-LE),

it performs well only for the small Doppler spread (fdTs ≤ 0.002 in Fig. 5.17), since it uses

the linear MMSE equalizer with separate channel estimation (not joint channel estimation

and equalization). In Fig. 5.16, we present the performance of the turbo equalizer based

on the fixed-lag Kalman filter with knowledge of the true channel (TrueCH) in order to

illustrate the effectiveness of the proposed channel estimation approach; as there was little

improvement beyond the second iteration, we only show the second iterative result with

dotted curve. It is seen that there is a slightly more than 2dB SNR penalty due to channel

estimation. As has been noted in the literature, the Kalman filter based equalization is a

sub-optimum equalizer compared to the trellis-based MAP (BCJR) equalizer [46].

In Fig. 5.19, we compare the performance of TE-BEM(200) for different SNR’s, under

normalized Doppler spread fdTs = 0.01 with two different interleaver size (equivalently

different information block size). A smaller information block size (Ti = 1000) in BICM

transmitter is considered leading to a coded block size 2000 bits and interleaver length of

2000 bits also. Thus, we have a smaller interleaver size compared to 6000 bits in our earlier

setting, designed to reduce the overall delay at turbo equalization receiver output. It is seen

that a smaller interleaver length results in a “small” deterioration in NCMSE and BER.

5.3.4 EXIT Chart Analysis

Figure 5.20: Simulation setup for generating extrinsic information transfer functions for
MIMO system
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Figure 5.21: EXIT charts for different SNR’s under N = K = 2, fdTs = 0.008, lp = 6, ls = 14
(30% training overhead).

The simulation setup to generate the extrinsic information transfer function is shown

in Fig. 5.20. Note that the data symbol estimate and its error covariance for the k-th

user,
{

d̂k(n), �
2
k(n)

}

is processed independently for the SfiSfo demodulation and the SfiSfo

decoding at the receiver, as the input bit stream for k-th user, {bk(n)} is processed in-

dependently of other users at the transmitter. For EXIT chart for the SfiSfo decoder, we

observe LM
e {cik(n′)} (input LLR’s to the SfiSfo decoder) and LD

e {cik(n′)} (output LLR’s to

the SfiSfo decoder). Following [59] (and others), LM
e {cik(n′)} is modeled as independent and

identically distributed (i.i.d.) Gaussian with mean ck(n
′)�2

L/2 and variance �2
L; then mutual

information IMe and IDe at the input and output, respectively, of the decoder are functions of

a single parameter �L. For a range of values of �L and randomly generated LM
e {cik(n′)}, we

can estimate IMe and IDe (the same for all channel models) via simulations. The interleaved

random extrinsic LLR’s LD
e {cik(n)} are input to the “LLR to symbol” block in Fig. 5.20

together with the corresponding a priori LLR LM
e {cik(n)}, the input LLR’s of the decoder,

in order to obtain the a posteriori LLR’s La {cik(n)}. Then we can estimate input-output

mutual information IDe and IMe of the equalizer (dependent upon the channel model) using

the input LLR’s LD
e {cik(n)} (not La {cik(n)}) and output LLR’s LM

e {cik(n)}, respectively, of

a given SfiSfo equalizer. For a given equalizer we plot curves (transfer function) with input

IDe along horizontal axis and output IMe along the vertical axis; the axes are “flipped” for the

decoder. The iteration process between equalizer and decoder can be visualized by using a

trajectory trace where each vertical trace represents equalization task and each horizontal
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Figure 5.22: EXIT charts for TE-AR5, TE-AR9, TE-BEM(200) and TE-BEM(400) under
N = K = 2, fixed fdTs, SNR = 10dB, lp = 6, ls = 14 (30% training overhead).

trace represents decoding task and the trajectory starts at the (0, 0) point (see Fig. 5.21 for

instance).

Using the set-up and parameters of Fig. 5.5 but with the information block size set to

30000 bits (the coded block size Tr = 60000), the normally distributed LLR’s were generated

with values of �2
L ∈ [10−2, 102], and then IMe and IDe were calculated. We analyze the EXIT

charts of our CE-BEM based approach with T = 200 and Q = 5 (TE-BEM(200) scheme) and

the symbol-wise AR-model-based approach in [68] using AR(5) model (TE-AR5 scheme). In

Fig. 5.21, EXIT charts for TE-BEM(200) are shown under a fixed normalized Doppler spread

fdTs = 0.008 for different SNR’s, where the output mutual information of the SfiSfo equalizer

increases as SNR increases. We also show the trajectory trace for SNR=10 dB. In Fig. 5.22,

EXIT charts for the symbol-wise AR(P)-based turbo equalizations (TE-AR5, TE-AR9) and

the proposed ones using CE-BEM (TE-BEM(200), TE-BEM(400)) are compared under fixed

fdTs = 0.004 and 0.008, SNR = 10dB. In Fig. 5.23, EXIT charts for TE-BEM(200) and

TE-AR5 schemes are depicted under SNR = 10dB for different normalized Doppler spreads.

One can estimate the actual simulation performances in Section 5.3.3 using the corresponding

EXIT charts [Compare Fig. 5.23 and 5.22a with Fig. 5.17 and 5.18 respectively].

5.4 Conclusions

We proposed a turbo equalization receiver based on complex exponential basis expan-

sion model (CE-BEM) for doubly selective fading channels, extending the single-user turbo
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(a) TE-AR5: Turbo Equalization of [68] using AR(5)
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(b) TE-BEM(200): Turbo Equalization using CE-BEM
with T = 200, Q = 5

Figure 5.23: EXIT charts for different fdTs’s under N = K = 2, SNR = 10dB, lp = 6, ls = 14
(30% training overhead).

equalization approach of [68] based on symbol-wise AR modeling of channels to channels

based on CE-BEMs where the adaptive equalizer using nonlinear Kalman filters is coupled

with an SfiSfo decoder to iteratively perform equalization and decoding using soft infor-

mation feedback. The proposed adaptive equalizer jointly optimizes the estimation of BEM

channel coefficients and data symbol decoding in each iteration with the assistance of a priori

information for the data symbols given by the SfiSfo decoder. While the BEM coefficients

are updated via the autoregressive (AR) model, the time-varying nature of channels can be

well captured by the CE-BEM, since the time-variations of the (unknown) BEM coefficients

are likely much slower than those of the real channels. Unlike [68], an EXIT chart analysis

of the proposed approach was also provided. Simulation examples demonstrated that our

CE-BEM-based approach had significantly superior performance over the symbol-wise AR

model-based turbo equalizer of [68] for comparable computational complexity.
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Chapter 6

Decision-Directed Tracking for Doubly-Selective Channel using Basis

Expansion Models

We present a decision-directed tracking approach to doubly-selective channel estimation,

exploiting the complex exponential basis expansion model (CE-BEM) for the overall channel

variations, where we track the BEM coefficients rather than the channel tap gains, aided by

the symbol decisions from a decision-feedback equalizer (DFE). The time-varying nature of

the channel is well captured by the CE-BEM while the time-variations of the (unknown)

BEM coefficients are likely much slower than those of the channel. Two different schemes

are investigated for BEM coefficient tracking based on the first-order autoregressive (AR)

model for the BEM coefficients, including the Kalman filtering scheme and the extended

exponentially-weighted (EW) recursive least-squares (RLS) algorithm. Simulation examples

illustrate the superior performance of our approaches.

6.1 Introduction

Exploiting the detected information symbols as virtual training, decision-directed track-

ing is often utilized in both training-based and blind channel estimation approaches [6, 9,

21,53]. Wireless channels, due to multipath propagation and Doppler spread, are character-

ized by frequency- and time-selectivity [60]. Accurate modeling of temporal evolution of the

channel plays a crucial role for estimation and tracking purposes. Among various models

for channel time-variations, the autoregressive (AR) process, particularly the first-order AR

model, is regarded as a tractable formulation to describe a time-varying channel [16].

The AR model, however, does not perform well in predicting a (fast-varying) channel,

which is often required in decision-directed schemes. In fast-fading environments, channel

prediction using an AR model may lead to high estimation variance resulting in erroneous

symbol decisions [6]. With these incorrect decisions, channel estimation error can be fur-

ther worsened, inducing error propagation and even a breakdown in symbol detection [53].

Since decision-directed approaches are sensitive to error propagation, more accurate channel

modeling becomes necessary for tracking fast-fading channels.

In contrast to AR models that describe channel variations on a symbol-by-symbol update

basis, a basis expansion model (BEM) depicts evolutions of the channel over a period (block)

of time, where the time-varying channel taps are expressed as superpositions of time-varying
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basis functions in modeling Doppler effects, weighted by time-invariant coefficients [11].

Candidate basis functions include complex exponential (Fourier) functions [11,70] leading to

CE-BEM. Since the time-varying nature of the channel can be well captured in a BEM by

the known basis functions, the time-variations of the (unknown) BEM coefficients are likely

much slower than that of the channel, and thus more convenient to track in a fast-fading

environment.

In Chapter 3, a subblock-wise tracking approach was proposed for doubly-selective chan-

nels using time-multiplexed (TM) training. It exploits the CE-BEM for the overall channel

variations, and a first-order AR model to describe the evolutions of the BEM coefficients.

The slow-varying BEM coefficients, rather than the fast-varying channel, are tracked and up-

dated at each training session; during information sessions, channel estimates are generated

by the CE-BEM using the estimated BEM coefficients. The BEM coefficients are updated

via Kalman filtering at each training session.

Based on the subblock approach (as opposed to blockwise approaches of [8, 26, 41, 44]),

decision-directed tracking of doubly-selective channels is investigated. Acting as virtual

training symbols, the information symbol decisions, provided by a DFE (with delay d ≥ 0)

utilizing the estimated channel, are used to enhance the estimation of the BEM coefficients,

so that much of the spectrum resource allocated to training can be saved. Although a time

gap still exists between the available symbol decisions and the channel estimates required by

the DFE, it can be successfully bridged by the CE-BEM-based channel prediction, without

incurring much estimation variance.

Decision-directed channel tracking using a polynomial BEM has been investigated in [8],

where the BEM coefficients are updated via the recursive least-squares (RLS) algorithm

within a sliding window; channel estimation using Kalman filtering and polynomial or com-

plex exponential BEM for OFDM systems has been explored in [26, 41, 44], among which

decision-directed tracking is considered in [26,41]. Our decision-directed scheme updates the

BEM coefficients of much smaller size of (sub)block than BEM period. The periodic training

symbols are still necessary to recover the channel tracking from possible phase ambiguity

due to the error propagation.

Two different decision-directed schemes are investigated exploiting CE-BEM for the

channel variations: the Kalman filtering and the extended EW-RLS algorithm. We assume

that the BEM coefficients (rather than the time-varying channel tap gains) follow a first-order

AR model. The BEM coefficients are tracked and used to generate the channel estimates

by the CE-BEM. The RLS filter is only a special case of a Kalman filter and an extended

RLS scheme is developed with enhanced tracking abilities. These approaches have superior

performances in both channel estimation variance and bit error rate (BER) over the scheme
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proposed by [6] that relies solely on the AR model. Compared with the approaches in

Chapters 3 and 4, the decision-directed tracking scheme in this chapter achieves better BER

performances with much less training overhead.

6.2 Decision-Directed Tracking using CE-BEM

Figure 6.1: Decision-directed tracking: overlapping blocks that differ by a small step size
ms.

Consider two overlapping blocks (each consisting of TB symbols) that differ by only ms

(1 ≤ ms ≪ TB) symbols as Fig. 6.1: the “past” block beginning at time n0, and the “present”

block beginning at time n0 +ms. Thanks to the significant overlapping of two blocks, one

can expect the BEM coefficients hq (l)’s in CE-BEM (6.2) to vary only a little from the past

block to the current overlapping one. Therefore, we can estimate channel by updating the

BEM coefficients every ms symbols, rather than the anew at every non-overlapping block

as in [70]. Intuitively, with a smaller step size ms, the BEM coefficients should vary more

slowly. At the receiver, we employ a MMSE-DFE in Section 2.4.2 [40] with delay d ≥ 0 to

equalize the estimated channel. In decision-directed tracking, its output symbol decisions

are fed-back to the channel estimator as pseudo-trainings. Note that we need to predict the

channel up to time n to detect symbol for ŝ (n− d) at the DFE. In CE-BEM (6.2), we can

use the BEM coefficients hq (l)’s provided by a channel estimator for the current step size ms

to predict the channel ĥ(n; l) for the following ms+d symbols since they are within the same

p-th overlapping block; the estimated BEM coefficients are shared for TB symbols starting

n = pms in CE-BEM. In this chapter, we propose to update the BEM coefficients in CE-

BEM every ms symbols via Kalman filtering or EW-RLS algorithm for the decision-directed

tracking.

Consider a doubly-selective (time- and frequency-selective) single-input multi-output

(SIMO), finite impulse response (FIR) linear channel with N outputs. Let {s (n)} denote

a scalar information sequence that is input to the time-varying channel with discrete-time

response {h (n; l)} (N -column vector channel response at time instance n to a unit input at
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time instance n − l). We assume {s(n)} is independent and identically distributed (i.i.d.)

with zero mean and variance E{∣s (n) ∣2} = �2
s . Then the symbol-rate noisy N -column

channel output vector is given by (n = 0, 1, . . .)

y (n) =
L∑

l=0

h (n; l) s (n− l) + v (n) (6.1)

where the N -column vector v (n) is zero-mean, white, uncorrelated with s (n), complex

Gaussian noise, with the autocorrelation E{v (n+ �)vH (n)} = �2
vIN� (�). We assume that

{h (n; l)} represents a wide-sense stationary uncorrelated scattering (WSSUS) channel [60].

In CE-BEM [11, 14, 70], over the i-th block consisting of an observation window of

TB symbols, the channel is represented as (n = (i − 1)TB, (i − 1)TB + 1, ⋅ ⋅ ⋅ , iTB − 1 and

l = 0, 1, ⋅ ⋅ ⋅ , L )

h(n; l) =
Q
∑

q=1

hq(l)e
j!qn, (6.2)

where hq(l) is the N -column time-invariant BEM coefficient vector and one chooses (K is

an integer)

T := ΛTB, Λ ≥ 1, (6.3)

Q ≥ 2 ⌈fdTTs⌉+ 1, (6.4)

!q :=
2�

T
[q − (Q+ 1) /2] , q = 1, 2, ⋅ ⋅ ⋅ , Q (6.5)

L := ⌊�d/Ts⌋ , (6.6)

�d and fd are respectively the delay spread and the Doppler spread, and Ts is the symbol

duration. The BEM coefficients hq(l)’s remain invariant during this block, but are allowed

to change at the next consecutive block; the Fourier basis functions {ej!qn} (q = 1, 2, ⋅ ⋅ ⋅ , Q)

are common for every block. If the delay spread and the Doppler spread (or at least their

upper bounds) are known, one can infer the basis functions of the CE-BEM [70]. Treating

the basis functions as known, estimation of a time-varying process is reduced to estimating

the invariant coefficients over a block of TB symbols.

Stack the BEM coefficients in (6.2) into “tall” vectors as

h(l) :=
[

h
(l)T
1 h

(l)T
2 ⋅ ⋅ ⋅ h

(l)T
Q

]T
(6.7)

h :=
[

h(0)T h(1)T ⋅ ⋅ ⋅ h(L)T
]T

(6.8)
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of size NQ and M := NQ (L+ 1) respectively. The coefficient vectors in (6.7) and (6.8) of

the p-th overlapping block will be denoted by h(l) (p), and h (p). Again, we emphasize that

the p-th block and the (p+ 1)-st block differ by just ms symbols. Since a fading channel

can follow well a Markov model [16], we further assume that the BEM coefficients over each

overlapping block are also Markovian. A simplified formulation is given by the first-order

AR model, i.e.,

h (p) = A1h (p− 1) +w (p) , (6.9)

where A1 = �IM is the first-order AR coefficient, and the driving noise vector w (p) is zero-

mean complex Gaussian with variance �2
wIM and statistically independent of h (p− 1). [We

have already investigated the theoretical choice for the first-order AR coefficient in Section

3.4, whose results apply here after replacing the subblock size mb with the smaller step size

ms.] Assuming the channel is wide-sense stationary (WSS) and the BEM coefficients ℎq(l)’s

are independent, we have

�2
w = �2

ℎ(1− ∣�∣2)/Q (6.10)

where �2
ℎIM := E

{

h (n; l)hH (n; l)
}

. [Typically � < 1 but close to one. Strictly speaking,

one should try a “full” matrix A1 in (6.9); however, it can only be calculated if all the channel

statistics are known — we do not assume such knowledge here, just an upperbound on the

Doppler and multipath delay spreads.]

Define

퓔 (n) :=
[

e−j!1n e−j!2n ⋅ ⋅ ⋅ e−j!Qn
]T
,

s (n) :=
[

s (n) s (n− 1) ⋅ ⋅ ⋅ s (n− L)
]T
. (6.11)

For pms ≤ n < (p+ 1)ms, by (6.1), (6.2), (6.7) and (6.8), the received signal at time n can

be written as

y (n) = [s (n)⊗ IN ]
T [IL+1 ⊗ (퓔 (n)⊗ IN)]

H
h (p) + v (n) .

Further defining

Ci (p) := [s (pms + i)⊗ IN ]
T [IL+1 ⊗ (퓔 (pms + i)⊗ IN)]

H , (6.12)

C (p) :=
[

CT
0 (p) CT

1 (p) ⋅ ⋅ ⋅ CT
ms−1 (p)

]T
, (6.13)

we have

yms (p) = C (p)h (p) + vms (p) (6.14)
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where

yms (p) :=
[

yT (pms) yT (pms + 1) ⋅ ⋅ ⋅ yT ((p+ 1)ms − 1)
]T

and vms (p) is defined likewise.

6.2.1 Decision-Directed Kalman Tracking

The dynamical state-space system model for Kalman filtering is represented by (6.9)

and (6.14), where yms(p) is the measurement of the state of BEM coefficients h(p). Kalman

filtering can be applied to track the coefficient vector h (p) at a step size of ms symbols.

Since s (n) is unknown during information sessions, the receiver then switches to a decision-

directed mode, in which the past symbol decisions are assumed to be correct and used in

Kalman tracking. Treating (6.9) and (6.14) as the state and the measurement equations

respectively, the Kalman tracking in the training mode is initialized with

ĥ (−1 ∣ −1) = 0M and Rℎ (−1 ∣ −1) = �2
wIM ,

where ĥ (p ∣ m) denotes the estimate of h (p) given the observations {yms (0) ,yms (1) , ⋅ ⋅ ⋅ ,yms (m)},
and Rℎ (p ∣ m) denotes the error covariance matrix of ĥ (p ∣ m), defined as

Rℎ (p ∣ m) := E{[ĥ (p ∣ m)− h (p)][ĥ (p ∣ m)− h (p)]H}.

Kalman recursive filtering (for p = 0, 1, ⋅ ⋅ ⋅ ) is applied via the following steps [32]:

1. Time update:

ĥ (p ∣ p− 1) = �ĥ (p− 1 ∣ p− 1) ,

Rℎ (p ∣ p− 1) = ∣�∣2 Rℎ (p− 1 ∣ p− 1) + �2
wIM ;

2. Kalman gain:

R� (p) = C (p)Rℎ (p ∣ p− 1)CH (p) + �2
vINms ,

G (p) = Rℎ (p ∣ p− 1)CH (p)R−1
� (p) ;

3. Measurement update:

ĥ (p ∣ p) = ĥ (p ∣ p− 1) +G (p)
[

yms (p)−C (p) ĥ (p ∣ p− 1)
]

,

Rℎ (p ∣ p) = [IM −G (p)C (p)]Rℎ (p ∣ p− 1) .
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In our simulations, we take the noise variance to be �2
v + 0.01�2

s instead of �2
v to com-

pensate the symbol decision errors.

6.2.2 Decision-Directed EW-RLS Tracking

Since the CE-BEM (6.2) is periodic with a period T , the memory of the algorithm

should be less than T to avoid periodicity of the model influencing the estimation results

as the actual channel is not periodic. Therefore, adaptive algorithms with finite memory

are preferred. A “finite-memory” algorithm is considered in decision-directed tracking: the

extended exponentially-weighted recursive least-square (EW-RLS) algorithm. Assuming the

BEM coefficients follow the first-order AR model, a state-space model for the extended EW-

RLS algorithm is given by (6.9) and (6.14). [As in Chapter 4, one can use the “normal” EW-

RLS algorithm with no a priori model for BEM coefficients. However, we adopt the extended

EW-RLS algorithm because it turns out AR(1) modeling for the BEM coefficients limits the

error propagation caused by the incorrect decision-feedbacks which are more severe than the

modeling errors (especially in low SNR’s). Note that subblock-wise channel estimation in

Chapter 4 uses only the training symbols for the channel tracking.]

Based on (6.9) and (6.14), we can apply the extended exponentially-weighted regularized

RLS (EW-RLS) algorithm [2, Section 12.B.(12.B.18)] to track an unknown BEM coefficient

vector h (p). Choose h (p) to minimize the cost function

�p+1� ∥h∥2 +
p
∑

i=0

�p−i ∥yms(i)−C(i)h∥2 , (6.15)

where � > 0 is a regularization parameter and 0 < � < 1 is the forgetting factor. [This

is the general cost function of the exponentially-weighted regularized RLS. See the details

in [2, Section 12.B] about the equivalent cost function and its solution for the extended

exponentially-weighted regularized RLS that is subject to the state equation in (6.9).] Note

that the forgetting factor is used to give more weight to recent data and less weight to past

data. We take � to be close to one for updating the small step size ms.

Mimicking [2, Algorithm 12.B.1], the extended EW-RLS tracking is applied via the

following steps :

1. Initialization:

ĥ (−1) = 0M×1 and P (−1) = �−1IM
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2. RLS recursion: For p = 0, 1, ⋅ ⋅ ⋅

Γ(p) = �INms +C(p)P(p− 1)CH(p),

G(p) = P(p− 1)CH(p)Γ−1(p),

ĥ(p) = �ĥ(p− 1) + �G(p)
[

yms(p)−C(p)ĥ(p− 1)
]

,

P(p) = �−1 ∣�∣2 [IM −G(p)C(p)]P(p− 1) + �2
wIM

where ĥ (p) denotes the estimate of h (p) given the observations {yms (0) ,yms (1) , ⋅ ⋅ ⋅ ,yms (p)}.

After channel estimation for every p using Kalman filtering or RLS algorithm, we can

generate the channel by the estimated ĥ (p) via the CE-BEM (6.2). In order to bridge the

time gap between the symbol decisions and the channel estimates required by a MMSE-DFE

with delay d ≥ 0, we estimate the channel for the current ms symbols as well as following

ms + d symbols, i.e., the channel estimates in our receiver are given by

ĥ(n; l) = 퓔
H(n)ĥ(l)(p), (6.16)

for n = pms, pms +1, ⋅ ⋅ ⋅ , (p+2)ms + d− 1. The definition of ĥ(l) (p) is similar to (6.7) and

ĥ(l) (p) is based on observations up to time n = (p+ 1)ms − 1.

Using the channel estimates up to time (p+ 2)ms+d−1, the symbol detections are made

by DFE for the time n = pms, pms + 1, ⋅ ⋅ ⋅ , (p+ 2)ms − 1. Note that the detected symbols

for the time n = (p+1)ms, (p+1)ms+1, ⋅ ⋅ ⋅ , (p+2)ms−1 are used for the following channel

tracking, whereas the “current” decisions for the time n = pms, pms + 1, ⋅ ⋅ ⋅ , (p + 1)ms − 1

are updated for improved performance.

Computational Complexity

We compare the computational complexity using the floating point operation (flop)

count for the decision-directed schemes. The detailed flops counts for one iteration of Kalman

filtering are already shown in Section 3.3.1 (EW-RLS algorithm in Section 4.3.1) and DFE

in Table 6.1 respectively. We consider three different channel estimation schemes: “SB-KF-

BEM” denoting BEM-based subblock-wise Kalman filtering in Section 3, “DD-KF-ARP ”

denoting AR(P) model-based symbol-by-symbol decision-directed Kalman filtering [6], “DD-

KF-BEM” denoting BEM-based decision-directed Kalman filtering with different step sizes

ms = 1, 2 and 4. All the above schemes have the same subblock (mb = 100) and hence

same training overhead. We take T = 400 and Q = 9 for CE-BEM. [Since the complexities

of Kalman filtering and EW-RLS algorithm are (almost) the same, we consider Kalman
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filter only to compare the proposed decision-directed approach with others under the same

environment.]

The number of flops for one cycle of subblock-wise Kalman filtering, decision-directed

Kalman filtering and DFE turn out to be

f1(SB-KF) =M3
s +M2

s (3Lp + 3) +Ms(2L
2
p + 5Lp + 1) + L3

p/3 + L2
p

f1(DD-KF) =M3 +M2(3Nms + 2) +M [2(Nms)
2 + 3Nms + 1] + (Nms)

3/3 + (Nms)
2

f1(DFE) =2(Nlf )
3 + (Nlf )

2(l̄f + l̄b + 2) + (Nlf )(l̄f l̄b + l̄2b + l̄b + 1) + 2(l̄3b + l̄2b + l̄b) + lb

where Ms = Q(L + 1) for SB-KF-BEM,M = NP (L + 1) for DD-KF-ARP or NQ(L +

1) for DD-KF-BEM, and Lp = L + 1, l̄f = lf + L, l̄b = lb + 1. The overall flop counts

over one block of TB symbols for the subblock-wise and decision-directed Kalman tracking

schemes are then given by

fc(SB-KF-BEM) = N(TB/mb)f1(SB-KF) + [TB −mt(TB/mb)]f1(DFE)

fc(DD-KF-ARP ) = TBf1(DD-KF) + 2[TB −mt(TB/mb)]f1(DFE),ms = 1

fc(DD-KF-BEM) = (TB/ms)f1(DD-KF) + 2[TB −mt(TB/mb)]f1(DFE).

The comparative flop counts for each scheme with one receiver (N = 1) are compared in

Table 6.2 over one block (TB = 200). Note that DD-KF-BEM with ms = 1 has the same

complexity as DD-KF-ARP since we select P = Q = 9.

Table 6.1: DFE: flop count for one cycle.

Operation flops (with �2
s = 1)

Ryy = H(n)HH(n) + �2
vINlf (Nlf )

2(l̄f + 1)

Rsy = ΦHH(n) (Nlf )l̄f l̄b

R� = Il̄b −Rsy(n)R
−1
yy (n)R

H
sy(n) (Nlf )

3 + (Nlf )
2l̄b + (Nlf )l̄

2
b

bMMSE(n) = R−1
� e0

(

eT0R
−1
� e0

)−1
2(l̄3b + l̄2b + l̄b)

fMMSE(n) = R−1
yy (n)R

H
sy(n)bMMSE(n) (Nlf )

3 + (Nlf )
2 + (Nlf )l̄b

ŝ(n− d) =
∑lf−1

m=0 f
T
m(n)y(n−m)−∑lb

k=1 bk(n)s̃(n− d− k) Nlf + lb

Total : 2(Nlf )
3 + (Nlf )

2(l̄f + l̄b + 2) + (Nlf )(l̄f l̄b + l̄2b + l̄b + 1) + 2(l̄3b + l̄2b + l̄b) + lb
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Table 6.2: Subblock-wise and decision-directed tracking with DFE: comparative flop count
over one block of TB symbols.

tracking schemes comparative flops

SB-KF-BEM 1

DD-KF-BEM, ms = 4 4.78

DD-KF-BEM, ms = 2 6.78

DD-KF-BEM, ms = 1 10.86

DD-KF-AR9 10.86

6.2.3 Simulation Examples

A random time- and frequency-selective Rayleigh fading channel is considered. We

assume h (n; l) are zero-mean, complex Gaussian, and spatially white with autocorrelation

E
{

h (n; l)hH (n; l)
}

= �2
ℎIN for each l. We take L = 2 (3 taps) in (6.1), and �2

ℎ = 1/ (L+ 1).

For different l’s, h (n; l)’s are mutually independent and satisfy Jakes’ model. To this end,

we simulate each single tap following [75] (with a correction in the appendix of [63]).

We consider a communication system with carrier frequency of 2GHz, data rate of

40kBd (kilo-Bauds), therefore Ts = 25�s, and a varying Doppler spread fd = 400Hz, or

the normalized Doppler spread fdTs = 0.01 (corresponding to a maximum mobile velocity

216km / h). The additive noise is zero-mean complex white Gaussian. The (receiver) SNR

refers to the average energy per symbol over one-sided noise spectral density.

We evaluate the performances of various schemes by considering their normalized chan-

nel mean square error (NCMSE) and their bit error rates (BER). The NCMSE is defined

as

NCMSE :=

∑Mr
i=1

∑TN−1
n=0

∑L
l=0

∥
∥
∥ĥ(i) (n; l)− h(i) (n; l)

∥
∥
∥

2

∑Mr
i=1

∑TN−1
n=0

∑L
l=0 ∥h(i) (n; l)∥2

where h(i) (n; l) is the true channel and ĥ(i) (n; l) is the estimated channel at the i-th Monte

Carlo run, among total Mr runs. In each run, a training mode of 200 binary phase-shift

keying (BPSK) symbols is followed by a decision-directed mode of quadrature phase-shift

keying (QPSK) 4000 symbols (TN = 4000). All the simulation results are based on 500 Monte

Carlo runs, and we consider the performances during the decision-directed mode only.

In the decision-directed mode, training sessions are also periodically sent to facilitate

the EW-RLS tracking. The TM training scheme of [70] is adopted, where each subblock of

equal length mb symbols consists of an information session of md symbols and a succeeding

training session of mt symbols (mb = md +mt). The training session for each user contains
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an impulse guarded by zeros (silent periods), which has the structure ( > 0)

cp :=
[

01×L  01×L

]

. (6.17)

Therefore, mt = 2L+1 = 5, which have to be devoted for training and the remaining, md =

mb − mt are available for information symbols. We assume that each information symbol

has unit power, while at every training session given by (6.17), we set  =
√
2L+ 1 =

√
5

so that the average power per symbol at training sessions is equal to that of information

sessions. We consider a large subblock size mb = 100 with less frequent training symbols,

comparing a small subblock size mb = 40 with frequent training symbols. For the CE-BEM,

we take T = 400 and Q = 9 with fdTs = 0.01.
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Figure 6.2: Decision-directed tracking: performance comparison for SNR’s, under N =
1, fdTs = 0.01,mb = 100.

We compared the following schemes:

1. The subblock-wise EW-RLS algorithm with � = 1, which is one of the best subblock-

wise approaches in Chapter 4. [One can pick a different subblock-wise scheme using

SW-RLS algorithm or Kalman filter that has similar (or slightly worse) performances.]

In the simulations, we take the forgetting factor � = 0.5 for mb = 100 in EW-RLS

algorithm. This scheme is denoted by “SB-RLS-BEM”.

2. The decision-directed channel tracking scheme in [6] using the P -th order AR model,

i.e., the time-varying channel follows (assuming each independent channel tap has same
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Figure 6.3: Decision-directed tracking: performance comparison for SNR’s, under N =
2, fdTs = 0.01,mb = 100.

Doppler spread)

h (n; l) =
P∑

i=1

Aih (n− i; l) +w (n) , (6.18)

where Ai = �iI is the AR coefficients matrix and driving noise w(n) is zero-mean

complex Gaussian with autocorrelation, E
{

w (n)wH (n)
}

= �2
wIN . Using Yule-Walker

equations, we “fit” the AR coefficients and noise variance for fdTs = 0.01. The channel

prediction stage is conducted by using (6.18) omitting the driving noise, i.e.,

ĥ (n; l) =
P∑

i=1

Aiĥ (n− i; l) . (6.19)

We take P = 9 to compare CE-BEM with T = 400, Q = 9. This scheme is denoted by

“DD-KF-AR9”.

3. The proposed decision-directed tracking scheme with different step sizes in the Kalman

tracking, denoting by “DD-KF-BEM”. For the CE-BEM, we take the first-order AR

coefficient for the BEM coefficients, � = 0.992, 0.996 and 0.998 for ms = 4, 2 and 1

respectively. [We select the � values empirically via simulations to get the best per-

formances; the corresponding theoretical values are � = 0.9992, 0.9998 and 0.9999 in

(6.9) for ms = 4, 2 and 1 respectively. See the details in Section 3.4 about theoretical
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Figure 6.4: Decision-directed tracking: performance comparison for fdTs’s, under N =
2, SNR = 14dB,mb = 100.

choice for AR(1) coefficient, but replacing the subblock size mb with the smaller step

size ms.]

4. The proposed decision-directed tracking scheme with different step sizes in the extended

EW-RLS tracking with � = 1, denoting by “DD-RLS-BEM”. We take the same � value

for each step size as the decision-directed Kalman tracking. We also take the forgetting

factor � = 0.93, 0.96 and 0.98 for ms = 4, 2 and 1 respectively. [The theoretical choice

for the forgetting factor in EW-RLS tracking is analyzed later in Section 6.4.]

5. Perfect symbol decisions are used as training for the extended EW-RLS channel track-

ing with step size ms = 2 and the same other setups as decision-directed RLS tracking.

First, the channel is estimated using exact knowledge of the information symbols. Then

this estimated channel is used to detect the “unknown” information symbols. There-

fore the “performance-gap” between “decision-directed tracking” and “perfect decision-

directed” in figures shows the performance deterioration by decision-directed approach.

[One can also use Kalman tracking with the perfect symbol decisions which has almost

the same performance.] This scheme provides the baseline for decision-directed track-

ing, denoted by “PD-RLS-BEM”.

For each of the above schemes, an MMSE-DFE described in Section 2.4.2 is employed at

the receiver, using the obtained channel estimates, with lf = 8, lb = 2, and the equalization

delay d = 5 symbols.
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Figure 6.5: Decision-directed tracking: performance comparison for SNR’s, under N =
1, fdTs = 0.004,mb = 100.

In Figs. 6.2 and 6.3, the performances of the schemes are compared for different SNR’s,

under normalized Doppler spread fdTs = 0.01. In Fig. 6.4, the performances are compared

over different normalized Doppler spread fdTs’s for fixed SNR = 14dB with two receivers

(N = 2); we keep the AR(9) coefficients and Q = 9 for CE-BEM with T = 400, regardless of

the actual fd (we do not know it in practice). For the subblock-wise RLS tracking scheme,

frequent training sessions with a small subblock size (for instance mb = 40) are required

in order to track the rapid channel variations; SB with a large subblock size mb = 100 and

hence less training overhead, does not work. Note that subblock-wise approach depends only

on the training session of size mt to estimate channel for one subblock of size mb. On the

other hand, the decision-directed tracking performs well with low training overhead for the

fast-varying channel. Our decision-directed tracking has the training symbols to reduce the

error propagation while subblock tracking uses them for channel estimation. Exploiting the

detected information symbols as virtual training, our decision-directed tracking approach

requires less training overhead to achieve satisfactory performance, so that much of the

spectrum resource can be saved. Since the DFE is also a decision-directed device and thus

prone to error propagation, periodic training sessions are still necessary to recover channel

tracking from possible ambiguity. It is clear that since the channel variations are well cap-

tured by the BEM coefficients, our proposed BEM-based decision-directed approaches yield

better performance than the symbol-wise AR-model-based decision-directed approach [6].

The performance deteriorations caused by “not-a-perfect” decision-directed are also shown
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Figure 6.6: Decision-directed tracking: performance comparison for SNR’s, under N =
2, fdTs = 0.004,mb = 100.

in Figs. 6.2 and 6.3, where better performance in symbol detection (with N = 2) leads

to less deterioration. In Fig. 6.4, the NCMSE and BER for BEM-based decision-directed

approaches vary only “slightly” with increasing normalized Doppler spread implying that

its performance is not sensitive to the actual Doppler spread. Therefore, we do not have

to know the exact Doppler spread of the channel — an upper bound on it is sufficient in

practice. In Figs. 6.5 and 6.6, the performances are compared for the actual fdTs = 0.004

(slower fading), with the same AR coefficients and CE-BEM (T = 400, Q = 9) for the upper

bound fdTs = 0.01; similar results are shown.

Note that, in Figs. 6.2, 6.3, 6.4, 6.6 and 6.5, the proposed BEM-based decision-directed

tracking schemes update the BEM coefficients every step size (ms = 2 symbols), which have

less computational complexity than the AR-model-based one; see the flop counts in Table

6.2. As shown in Fig. 6.7, a “finer” channel tracking can be obtained by reducing step size

ms although the computational complexity increases. Fig. 6.7 also shows that the advantage

of multiple-receiver system with N = 2. At high SNR’s with two receivers, the NCMSE for

a large step size (ms = 4 symbols) is better than for a small one (ms = 1 symbol) since the

former has more measurements with the symbol decisions close to perfect decisions.

It is hard to say which one is better between Kalman filtering and extended EW-RLS

algorithm for BEM-based decision-directed tracking. For both decision-directed schemes, we

selected an arbitrary value for the first-order AR coefficient � via simulations, although the

theoretical choice is given in Section 3.4. In Fig. 6.8, the performances of the BEM-based
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Figure 6.7: Decision-directed Kalman tracking: performances with different step size ms’s
for SNR’s, under fdTs = 0.01,mb = 100.

decision-directed Kalman tracking is shown for different values of �. It is seen that while the

performance is not sensitive to the value of � over a relatively wide range of values, it does

deteriorate as � approaches one. Typically � is close to one (� ≈ 1) but not quite one. Note

that � = 1 in (6.9) implies time-invariance and � < 1 permits tracking by discounting older

values of the channel BEM coefficients – smaller the value of � higher this discounting effect

but discrepancy with the theoretical choice of � in Section 3.4 also increases. For the extended

EW-RLS algorithm, the sensitivity to � is similar but a little more due to the forgetting

factor �. In Fig. 6.9, the performances of the BEM-based decision-directed extended EW-

RLS tracking are shown for different values of � under fdTs = 0.01, SNR = 14dB. As in Fig.

6.13 where we show the theoretical MSE analysis for � values, the minima of NCMSE and

BER are similar for the different step sizes. It is also shown that the larger step size leads to

more convenience to select � for the reasonable performance. One can choose the step size

ms considering performance, complexity or convenience. In the following section (Section

6.4), we analyze the mean square error (MSE) of decision-directed EW-RLS tracking and

hence obtain the baseline for the theoretical value for the forgetting factor � in EW-RLS

algorithm.
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Figure 6.8: Decision-directed Kalman tracking: performances for AR(1) coefficient �’s, under
N = 2, fdTs = 0.01, SNR = 14dB,mb = 100.

6.3 Decision-Directed MIMO Tracking using CE-BEM

Consider a doubly-selective (time- and frequency-selective) multi-input multi-output

(MIMO), finite impulse response (FIR) linear channel with K inputs and N outputs. Let

{sk (n)} denote k-th user’s information sequence that is input to the time-varying channel

with discrete-time response {hk (n; l)} (channel response for the k-th user at time instance

n to a unit input at time instance n − l). Then the symbol-rate noisy N -column channel

output vector is given by (n = 0, 1, . . .)

y (n) =
K∑

k=1

L∑

l=0

hk (n; l) sk (n− l) + v (n) (6.20)

where the N -column vector v (n) is zero-mean, white, uncorrelated with sk (n), complex

Gaussian noise, with the autocorrelation E{v (n+ �)vH (n)} = �2
vIN� (�). We assume that

{hk (n; l)} represents a wide-sense stationary uncorrelated scattering (WSSUS) channel [60],

independent for different k’s. We assume that sk (n)’s are mutually independent and iden-

tically distributed (i.i.d.), with zero mean and variance E{sk (n) s∗k (n)} = �2
sk

= �2
s for

k = 1, 2, ⋅ ⋅ ⋅ , K. Define

s(n) :=
[

s1(n) s2(n) ⋅ ⋅ ⋅ sK(n)
]T

h(n; l) :=
[

h1(n; l) h2(n; l) ⋅ ⋅ ⋅ hK(n; l)
]

.
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Figure 6.9: Decision-directed EW-RLS tracking: performances for forgetting factor �’s,
under N = 2, fdTs = 0.01, SNR = 14dB,mb = 100.

Then we may rewrite (6.20) as

y (n) =
L∑

l=0

h (n; l) s (n− l) + v (n) . (6.21)

In CE-BEM [11, 14, 70], over the i-th block consisting of an observation window of

TB symbols, the channel is represented as (n = (i − 1)TB, (i − 1)TB + 1, ⋅ ⋅ ⋅ , iTB − 1 and

l = 0, 1, ⋅ ⋅ ⋅ , L )

hk(n; l) =
Q
∑

q=1

hk,q(l)e
j!qn, (6.22)

where hk,q(l) is the N -column time-invariant BEM coefficient vector for k-th user and one

chooses (Λ is an integer)

T := ΛTB, Λ ≥ 1, (6.23)

Q ≥ 2 ⌈fdTTs⌉+ 1, (6.24)

!q :=
2�

T
[q − (Q+ 1) /2] , q = 1, 2, ⋅ ⋅ ⋅ , Q (6.25)

L := ⌊�d/Ts⌋ , (6.26)

�d and fd are respectively the delay spread and the Doppler spread, and Ts is the symbol

duration. The BEM coefficients hk,q(l)’s remain invariant during this block, but are allowed
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to change at the next consecutive block; the Fourier basis functions {ej!qn} (q = 1, 2, ⋅ ⋅ ⋅ , Q)

are common for every block. If the delay spread and the Doppler spread (or at least their

upper bounds) are known, one can infer the basis functions of the CE-BEM [70]. Treating

the basis functions as known, estimation of a time-varying process is reduced to estimating

the invariant coefficients over a block of TB symbols.

Now extend the decision-directed tracking using CE-BEM in Section 6.2 to MIMO

systems. Consider two overlapping blocks (each consistingK-users’ sequences of TB symbols)

that differ by only ms (1 ≤ ms ≪ TB) symbols. Since the past block starting at time n0

and the present block starting at time n0 + ms overlap significantly, the BEM coefficients

representing a block of TB symbols in CE-BEM vary only a little from the past block to

the present one. We wish to estimate hk,q (l) by updating the BEM coefficients every ms

symbols using TM training or detected symbols, rather than estimating them anew at every

non-overlapping block as in [70].

Let ℎ
(l)

rk,q denote the r-th component of the column h
(l)

k,q . Stack the BEM coefficients

in (6.22) into “tall” vectors as

h(l)
q :=

[

ℎ
(l)

11,q ⋅ ⋅ ⋅ℎ (l)
N1,q ⋅ ⋅ ⋅ ℎ

(l)
1K,q ⋅ ⋅ ⋅ℎ (l)

NK,q

]T
(6.27)

h(l) :=
[

h
(l)T
1 h

(l)T
2 ⋅ ⋅ ⋅ h

(l)T
Q

]T
(6.28)

h :=
[

h(0)T h(1)T ⋅ ⋅ ⋅ h(L)T
]T

(6.29)

of size NK, NKQ and M := NKQ (L+ 1) respectively. The coefficient vectors in (6.27),

(6.28) and (6.29) of the p-th overlapping block will be denoted by h(l)
q (p), h(l) (p), and h (p)

respectively. Again, we emphasize that the p-th block and the (p+ 1)-st block differ by just

ms symbols. Since a fading channel can follow well a Markov model [16], we further assume

that the BEM coefficients over each overlapping block are also Markovian. A simplified

formulation is given by the first-order AR model, i.e.,

h (p) = A1h (p− 1) +w (p) , (6.30)

where A1 = �IM is the first-order AR coefficient matrix (� < 1 but close to one), and the

driving noise vector w (p) is zero-mean complex Gaussian with variance �2
wIM and statisti-

cally independent of h (p− 1). Assuming the channel is wide-sense stationary (WSS) and

the BEM coefficients ℎq(l)’s are independent, we have

�2
w = �2

ℎ(1− ∣�∣2)/Q (6.31)
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where �2
ℎIM := E

{

h (n; l)hH (n; l)
}

.

Define

퓔 (n) :=
[

e−j!1n e−j!2n ⋅ ⋅ ⋅ e−j!Qn
]T
,

S (n) :=
[

sT (n) sT (n− 1) ⋅ ⋅ ⋅ sT (n− L)
]T
, (6.32)

where s (n) is K-column vector. For pms ≤ n < (p+ 1)ms, by (6.21), (6.22), and (6.27)–

(6.29), the received signal at time n can be written as

y (n) = [S (n)⊗ IN ]
T [IL+1 ⊗ (퓔 (n)⊗ INK)]

H
h (p) + v (n) .

Further defining

Ci (p) := [S (pms + i)⊗ IN ]
T [IL+1 ⊗ (퓔 (pms + i)⊗ INK)]

H , (6.33)

C (p) :=
[

CT
0 (p) CT

1 (p) ⋅ ⋅ ⋅ CT
ms−1 (p)

]T
, (6.34)

we have

yms (p) = C (p)h (p) + vms (p) (6.35)

where

yms (p) :=
[

yT (pms) yT (pms + 1) ⋅ ⋅ ⋅ yT ((p+ 1)ms − 1)
]T

(6.36)

and vms (p) is defined likewise.

6.3.1 Decision-Directed MIMO Tracking via KF or EW-RLS

The dynamical state-space MIMO system model is represented by (6.30) and (6.35),

where yms(p) is the measurement of the state of BEM coefficients h(p). Kalman filtering

can be applied to track the coefficient vector h (p) at a step size of ms symbols. Since s (n)

is unknown during information sessions, the receiver then switches to a decision-directed

mode, in which the symbol decision is assumed to be correct (s̆ (n) = s (n)) and used in

Kalman tracking. Treating (6.30) and (6.35) as the state and the measurement equations

respectively, the Kalman tracking is applied recursively every step size. [See the details in

Section 6.2.1.]
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In order to avoid the periodicity of CE-BEM with a period T that has an impact on

estimating “non-periodic” channels, a “finite-memory” algorithm is considered in decision-

directed tracking via the extended exponentially-weighted RLS (EW-RLS) algorithm. As-

suming the BEM coefficients follow the first-order AR model, a state-space model for the

extended EW-RLS algorithm is given by (6.30) and (6.35).

Similarly as Kalman filtering, the extended exponentially-weighted regularized RLS

(EW-RLS) algorithm [2, Section 12.B.(12.B.18)] is based on (6.30) and (6.35) to track the

unknown BEM coefficient vector h (p) recursively every step size. [See the details in Section

6.2.2.]

After Kalman or RLS recursion for every p, we can generate the channel by the estimated

ĥ (p) via the CE-BEM (6.22). Note that we also need the channel estimate ĥ(n; l) for the

following ms + d symbols to make up the time gap between channel estimation and symbol

detection in DFE. Since the estimated BEM coefficients are same for a large block size

(TB >> ms), the channel predictions for the current ms symbols as well as following ms + d

symbols are given by

ĥ(n; l) = 퓔
H(n)ĥ(l)(p), (6.37)

for n = pms, pms + 1, ⋅ ⋅ ⋅ , (p + 2)ms + d − 1. The definition of ĥ(l) (p) is similar to (6.28)

and ĥ(l) (p) is based on observations up to time n = (p+ 1)ms − 1.

Using the channel estimates
{

ĥ(n; l)
}

in (6.37), the symbol decisions are made by an

FIR MMSE-DFE in Section 2.4.2 [40] for the time n = pms, pms + 1, ⋅ ⋅ ⋅ , (p + 2)ms − 1.

Note that the detected symbols for the time n = (p+1)ms, (p+1)ms +1, ⋅ ⋅ ⋅ , (p+2)ms − 1

are used for the following channel tracking, whereas the “current” decisions for the time

n = pms, pms + 1, ⋅ ⋅ ⋅ , (p+ 1)ms − 1 are updated for improved performance.

Computational Complexity

We compare computational complexity using the floating point operation (flop) count

for the decision-directed MIMO channel tracking schemes. Here we consider Kalman filtering

as the common basis for all the simulation schemes to fairly compare the decision-directed

approach with subblock-wise one. We consider three different channel estimation schemes:

“SB-KF(BEMT )” denoting BEM-based subblock-wise Kalman filtering with a period T in

Chapter 3, “DD-ARP ” denoting AR(P) model-based symbol-by-symbol decision-directed

Kalman filtering [6], “DD-KF(BEMT )” denoting BEM-based decision-directed Kalman fil-

tering with a period T . All the above schemes have the same subblock (mb = 100) and

hence same training overhead. We take T = 400 and Q = 9 for CE-BEM. [The complexity
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of EW-RLS algorithm is almost the same as Kalman filtering. See the detailed flop counts

of Kalman filtering in Section 3.3.1 and EW-RLS algorithm in Section 4.3.1.]

The number of flops for one cycle of of subblock-wise Kalman filtering, decision-directed

Kalman filtering and DFE turn out to be

fc(SB-KF) =M3
s +M2

s (3Lp + 3) +Ms(2L
2
p + 5Lp + 1) + L3

p/3 + L2
p

fc(DD-KF) =M3 +M2(3Nms + 2) +M [2(Nms)
2 + 3Nms + 1] + (Nms)

3/3 + (Nms)
2

fc(DFE) =2(Nlf )
3 + (Nlf )

2(l̄f + l̄b +K + 1) + (Nlf )(l̄f l̄b + l̄2b +Kl̄b +K)

+ 2(l̄3b +Kl̄2b +K2l̄b) +K3/3 +K2lb

whereMs = Q(L+1) for SB-KF(BEMT ),M = NKP (L+1) for DD-KF(ARP ) orNKQ(L+

1) for DD-KF(BEMT ), and Lp = L + 1, l̄f = K(lf + L), l̄b = K(lb + 1). The overall flop

counts over one block of TB symbols for the subblock-wise and decision-directed Kalman

tracking schemes are then given by

fc(SB-KF(BEMT )) = N(TB/mb)fc(SB-KF) + [TB −mt(TB/mb)]fc(DFE)

fc(DD-KF(ARP )) = TBfc(DD-KF) + 2[TB −mt(TB/mb)]fc(DFE),ms = 1

fc(DD-KF(BEMT )) = (TB/ms)fc(DD-KF) + 2[TB −mt(TB/mb)]fc(DFE).

The comparative flop counts for each scheme with three receivers and two users(N =

3, K = 2) are compared in Table 6.3 over one block (TB = 200).

Table 6.3: Subblock-wise and decision-directed MIMO channel tracking with DFE: compar-
ative flop count over one block of TB symbols.

tracking schemes comparative flops

SB-KF(BEM400) 1

DD-KF(BEM400), ms = 4 30.18

DD-KF(BEM400), ms = 2 52.99

DD-KF(BEM400), ms = 1 98.81

DD-KF(AR9) 98.81
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6.3.2 Simulation Examples

A random time- and frequency-selective Rayleigh fading MIMO channel is considered.

We assume h (n; l) are zero-mean, complex Gaussian, and spatially white with autocorre-

lation E
{

h (n; l)hH (n; l)
}

= �2
ℎIN for each l. We take L = 2 (3 taps) in (6.21), and

�2
ℎ = 1/ (L+ 1). For different l’s, h (n; l)’s are mutually independent and satisfy Jakes’

model. To this end, we simulate each single tap following [75] (with a correction in the

appendix of [63]).

We consider a communication system with carrier frequency of 2GHz, data rate of

40kBd (kilo-Bauds), therefore Ts = 25�s, and a varying Doppler spread fd = 400Hz, or

the normalized Doppler spread fdTs = 0.01 (corresponding to a maximum mobile velocity

216km / h). The additive noise is zero-mean complex white Gaussian. The (receiver) SNR

refers to the average energy per symbol over one-sided noise spectral density.

We evaluate the performances of various schemes by considering their normalized chan-

nel mean square error (NCMSE) and their bit error rates (BER). The NCMSE is defined

as

NCMSE :=

∑Mr
i=1

∑TN−1
n=0

∑L
l=0

∥
∥
∥ĥ(i) (n; l)− h(i) (n; l)

∥
∥
∥

2

∑Mr
i=1

∑TN−1
n=0

∑L
l=0 ∥h(i) (n; l)∥2

where h(i) (n; l) is the true channel and ĥ(i) (n; l) is the estimated channel at the i-th Monte

Carlo run, among total Mr runs. In each run, a training mode of 200 symbols modulated

by binary phase-shift keying (BPSK) is followed by a decision-directed mode of quadrature

phase-shift keying (QPSK) 4000 symbols (TN = 4000). All the simulation results are based

on 500 runs, and we consider the performances during the decision-directed mode only.

In the decision-directed mode, training sessions are also periodically sent to facilitate

the EW-RLS tracking. The TM training scheme of [70] is adopted, where each subblock of

equal length mb symbols consists of an information session of md symbols and a succeeding

training session of mt symbols (mb = md +mt). The training session for each user contains

an impulse guarded by zeros (silent periods), which for the k−th user has the structure

( > 0)

ck,p :=
[

01×((k−1)(L+1)+L)  01×((K−k)(L+1)+L)

]

(6.38)

where k = 1, ⋅ ⋅ ⋅ , K. Therefore, mt = K (L+ 1) + L, which have to be devoted for training

and the remaining are available for information symbols. Note that ck,p is the k−th row

of the matrix cp. We assume that each information symbol has unit power, while at every

training session given by (6.38), we set  =
√

K (L+ 1) + L so that the average power per

symbol at training sessions is equal to that of information sessions.

We compared the following schemes:
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(b) BER vs SNR, with DFE of lf = 8, lb = 2 and equal-
ization delay d = 5

Figure 6.10: Decision-directed MIMO tracking: performance comparison for SNR’s, under
N = 3, K = 2, fdTs = 0.01,mb = 100.

1. The subblock-wise EW-RLS algorithm with � = 1, which is one of the best subblock-

wise approaches in Chapter 4. [One can pick a different subblock-wise scheme using

SW-RLS algorithm or Kalman filter that has similar (or slightly worse) performances.]

In the simulations, we take the forgetting factor � = 0.5 for mb = 100 in EW-RLS

algorithm. This scheme is denoted by “SB-RLS-BEM”.

2. The decision-directed channel tracking scheme in [6] using the P -th order AR model,

i.e., the time-varying channel follows (assuming each independent channel tap has same

Doppler spread)

h (n; l) =
P∑

i=1

Aih (n− i; l) +w (n) , (6.39)

where Ai = �iI is the AR coefficients matrix and driving noise w(n) is zero-mean

complex Gaussian with autocorrelation, E
{

w (n)wH (n)
}

= �2
wIN . Using Yule-Walker

equations, we take the AR coefficients and noise variance for fdTs = 0.01. The channel

prediction stage is conducted by using (6.39) omitting the driving noise, i.e.,

ĥ (n; l) =
P∑

i=1

Aiĥ (n− i; l) . (6.40)

We take P = 9 to compare CE-BEM with T = 400, Q = 9. This scheme is denoted by

“DD-KF-AR9”.
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(b) BER vs fdTs, with DFE of lf = 8, lb = 2 and equal-
ization delay d = 5

Figure 6.11: Decision-directed MIMO tracking: performance comparison for fdTs’s, under
N = 3, K = 2, SNR = 20dB,mb = 100.

3. The proposed decision-directed tracking scheme with different step sizes in the Kalman

tracking, denoting by “DD-KF-BEM”. For the CE-BEM, we take the first-order AR co-

efficient for the BEM coefficients empirically via simulations, � = 0.990, 0.994 and 0.997

for ms = 4, 2 and 1 respectively.

4. The proposed decision-directed tracking scheme with different step sizes in the extended

EW-RLS tracking with � = 1, denoting by “DD-RLS-BEM”. We take the same � value

for each step size as the decision-directed Kalman tracking. We also take the forgetting

factor � = 0.93, 0.96 and 0.98 for ms = 4, 2 and 1 respectively.

5. Perfect symbol decisions are used as training for the extended EW-RLS channel track-

ing with step size ms = 2 and the same other setups as decision-directed RLS tracking.

First, the channel is estimated using exact knowledge of the information symbols. Then

this estimted channel is used to detect the “unknown” information symbols. There-

fore the “performance-gap” between “decision-directed tracking” and “perfect decision-

directed” in figures shows the performance deterioration by decision-directed approach.

[One can also use Kalman tracking with the perfect symbol decisions which has almost

the same performance.] This scheme provides the baseline for decision-directed track-

ing, denoted by “PD-RLS-BEM”.

In the simulations, we consider a three-receiver and two-user scenario, i.e., N = 3, K = 2

with the same transmitted power. We have mt = 8 with  =
√
8 for every user following the
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Figure 6.12: Decision-directed EW-RLS MIMO tracking: performances with different step
size ms’s for SNR’s, under N = 3, K = 2, fdTs = 0.01,mb = 100.

TM training scheme. For each of the above schemes, an MMSE-DFE described in Section

2.4.2 is employed at the receiver, using the obtained channel estimates, with lf = 8, lb = 2,

and the equalization delay d = 5 symbols.

In Fig. 6.10, the performances of the schemes are compared for different SNR’s, under

normalized Doppler spread fdTs = 0.01. In Fig. 6.11, the performances are compared

over different normalized Doppler spread fdTs’s for fixed SNR = 20dB; we keep the AR(9)

coefficients and Q = 9 for CE-BEM with T = 400 for the Doppler spread fd = 400Hz.

It is clear the subblock-wise RLS tracking scheme does not work with a large subblock

size mb = 100 at all since it depends only on the training to estimate channels. Note

that the decision-directed schemes take the symbol-decisions as virtual training and hence

perform well with less training overhead. It is shown the CE-BEM-based decision-directed

approaches yield better performance than the symbol-wise AR-model-based decision-directed

approach [6]. Especially, the extended EW-RLS decision-directed tracking, a finite memory

algorithm with a forgetting factor �, performs closely to the perfect decision-directed scheme

with high SNR’s. In Fig. 6.11, the performances for DD-RLS-BEM and DD-KF-BEM are

not so sensitive to the Doppler spread of the channel as AR-model-based scheme, which

means an upper bound, for instance fd = 400Hz, is sufficient in practice with unknown exact

Doppler spreads.
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The proposed BEM-based decision-directed tracking schemes update the BEM coeffi-

cients every step size (ms symbols) while the AR-model-based one updates the channel esti-

mates every symbol. Note that we take ms = 2 for the BEM-based schemes (T = 400, Q = 9)

in Fig. 6.10 and 6.11, where they have better performances with less computational complex-

ity than the AR(9)-based one. [See the flop counts in Table 6.3.] As shown in Fig. 6.12, a

“finer” channel tracking can be obtained by reducing step size ms although the computational

complexity increases.

6.4 Performance Analysis of Decision-Directed EW-RLS Tracking using CE-

BEM

The cost function for the EW-RLS algorithm can be rewritten for “large” p(p→ ∞) as

CEW =
∞∑

i=0

�i ∥yms(p− i)−C(p− i)h∥2 . (6.41)

Let Ns denote the multiples of the step size ms on which we would like to base the estimate

of BEM coefficient h. It is clear that E
{

CH(i)C(i)
}

is periodic in i with period T/ms as

CE-BEM is periodic with period T . In practice, we would like to have the memory length (in

symbols) to be less than the model period (recall that the channel is by no means periodic)

so that there are no deleterious effects due to the CE-BEM model for all time, i.e., msNs ≤ T

in order to avoid this periodicity. Let us pick Ns = T/ms. What other restriction should

we impose on Ns? In the following we assume that the detected symbols resulting from

MMSE-DFE and used for EW-RLS tracking, are correct (no detection error).

A least-square solution for h to minimize CEW is given by [50, p. 796]

ĥ = A−1B (6.42)

where

A :=
1

Ns

∞∑

i=0

�iCH(p− i)C(p− i), (6.43)

B :=
1

Ns

∞∑

i=0

�iCH(p− i)yms(p− i). (6.44)

In order to analyze the behavior of h we need a model for yms(i) for every step, i = p, p −
1, ⋅ ⋅ ⋅ . To this end, for the following analysis presented in this section, we assume the
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following “simplified” model:

yms(p− i) = C(p− i)h(tr)(p− i) + vms(p− i). (6.45)

where h(tr)(p− i) is the “true” BEM coefficient vector satisfying (m = 1, 2, ⋅ ⋅ ⋅ )

h(tr)(p− i) := h(tr)
m for (m− 1)Ns ≤ p− i < mNs. (6.46)

That is, there exist some true BEM parameters that are “fixed” over one BEM period of

T symbols (therefore, Ns = T/ms steps), and are allowed to change over non-overlapping

periods. In this set-up, we estimate the most recent true BEM coefficient vector h
(tr)
1 via

ĥ without it being unduly influenced by h(tr)
m ,m ≥ 2. Assuming the estimate ĥ asymptot-

ically Gaussian distributed, we are trying to evaluate mean-square-error (MSE) of channel

estimation when the true channel follows CE-BEM.

The MSE of the channel estimate using CE-BEM is defined as

MSE
(

ĥ
)

:= E
{

E
{∥
∥
∥ĥ− h

(tr)
1

∥
∥
∥

2 ∣ h(tr)
}}

︸ ︷︷ ︸

=:MSE1(ĥ)

+
1

T

T∑

n=1

L∑

l=0

E
{

∥eBEM(n; l)∥2
}

︸ ︷︷ ︸

=:MSE2(ĥ)

, (6.47)

where MSE1

(

ĥ
)

comes from the channel estimation and MSE2

(

ĥ
)

is an mean square mod-

eling error that is intrinsic to the BEM representation. Note that MSE2

(

ĥ
)

has nothing to

do with channel estimation.

Following [51, Section 4.3], consider the BEM representation (6.2) as an approximation

where only Q (out of total T ) basis functions are used to describe the channel. Then

MSE2

(

ĥ
)

is given by

MSE2

(

ĥ
)

=
1

T

T∑

q=Q+1

L∑

l=0

E
{

∥hq(l)∥2
}

=
1

T

T∑

q=1

L∑

l=0

T−1∑

n1=0

T−1∑

n2=0

Rℎ(n1, n2; l)e
−j

2�[q−(T+1)/2]
T

(n1−n2) (6.48)

where Rℎ(n1, n2; l) := E
{

hH(n1; l)h(n2; l)
}

. For the modified Jakes’ model,

Rℎ(n1, n2; l) = N�2
ℎJ0 (2�fdTs(n1 − n2))

144



where J0(⋅) denotes the zero-th order Bessel function of the first kind. After some manipu-

lations, we obtain

MSE2

(

ĥ
)

=
L+ 1

T 2

T−1∑

n1=0

T−1∑

n2=0

N�2
ℎJ0 (2�fdTs(n1 − n2))

⎡

⎢
⎣

T−Q+1
2∑

q=Q+1
2

ej
2�q(n1−n2)

T

⎤

⎥
⎦

=
L+ 1

T
N�2

ℎ

[

(T −Q)− 2
T−1∑

�=1

{

1− �

T
J0 (2�fdTs�)

sin ��Q
T

sin ��
T

}]

. (6.49)

For the mean square error of channel estimate MSE1, consider nonzero bias and the

channel estimation error can be written as

ĥ− h
(tr)
1 = ĥ− h̄+ h̄− h

(tr)
1

︸ ︷︷ ︸

=bias

,

where h̄ := E
{

ĥ
}

∕= h(tr). Then MSE1 is given by

MSE1

(

ĥ
)

= E
{∥
∥
∥ĥ− h̄

∥
∥
∥

2
}

︸ ︷︷ ︸

=tr{cov{ĥ}}

+E
{

E
{∥
∥
∥h̄− h

(tr)
1

∥
∥
∥

2 ∣ h(tr)
}}

(6.50)

The difference between the estimate ĥ and its expected h̄ can be determined by [61, Chapter

8, p.261]

ĥ− h̄ = A−1B̃ (6.51)

where

B̃ :=
1

Ns

∞∑

i=0

�iCH(p− i)vms(p− i). (6.52)

Then the covariance of channel estimate, cov
{

ĥ
}

in (6.50) is given by

cov
{

ĥ
}

= E
{(

ĥ− h̄
) (

ĥ− h̄
)H
}

= E
{

A−1B̃B̃
H
(A−1)H

}

. (6.53)

We can rewrite (6.43) as

A =
∞∑

m=1

�(m−1)NsAm, (6.54)

where

Am =
1

Ns

Ns−1∑

i=0

�iCH(p− i− (m− 1)Ns)C(p− i− (m− 1)Ns).
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Now we establish that

lim
Ns→∞

E
{

∥Am − E {Am}∥2
}

= 0. (6.55)

We have

E
{

∥Am − E {Am}∥2
}

≤ 1

N2
s

Ns−1∑

i=0

Ns−1∑

l=0

�i+l
∥
∥
∥E

{

YH
i Yl

}∥
∥
∥ , (6.56)

where

Yi := Xi − E {Xi} ,
Xi := CH(p− i− (m− 1)Ns)C(p− i− (m− 1)Ns).

Since the information sequence {s(n)} is zero-mean white, it follows that E
{

YH
i Yl

}

= 0 for

∣i− l∣ > l0 := 1 +
⌈
L−1
ms

⌉

. Setting i − l = j and using the facts that
∥
∥
∥E

{

YH
i Yl

}∥
∥
∥ ≤ b0 for

∣i− l∣ ≤ l0 and some 0 < b0 <∞, and � < 1, we can simplify (6.56) as

E
{

∥Am − E {Am}∥2
}

≤ 1

N2
s

Ns−1∑

j=−Ns+1

Ns−1∑

l=0

�j+2l
∥
∥
∥E

{

YH
j+lYl

}∥
∥
∥

≤ 2Ns − 1

N2
s

(2l0 + 1)b0 → 0 as Ns → ∞. (6.57)

Since � < 1, in a similar fashion we can show that

lim
Ns→∞

E
{

∥A− E {A}∥2
}

= 0. (6.58)

Defining z (p) for the signal part and Ψ (p) for the BEM basis function part in C (p) as

z (p) :=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

sT (pms)

sT (pms + 1)
. . .

sT ((p+ 1)ms − 1)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (6.59)

Ψ (p) := IL+1 ⊗
[

퓔 (pms) 퓔 (pms + 1) ⋅ ⋅ ⋅ 퓔 ((p+ 1)ms − 1)
]H
, (6.60)

we have C(p) = z (p)Ψ (p). Note that we assumed the information sequence {s (n)} is

mutually independent and identically distributed (i.i.d.) with zero mean and variance

E{s (n) s∗ (n)} = �2
s . An important observation is that since E

{

CH(p)C(p)
}

is periodic
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with period Ns = T/ms, E {Am} is not a function of m. Therefore, we have

E {A} =
∞∑

m=0

�(m−1)NsE {Am} =
1

1− �Ns
E {Am}

=
1

1− �Ns
E

{

1

Ns

Ns−1∑

i=0

�iΨH(p− i)zH(p− i)z(p− i)Ψ(p− i)

}

=
1

1− �Ns

1

Ns

Ns−1∑

i=0

�iΨH(p− i)E
{

zH(p− i)z(p− i)
}

Ψ(p− i)

=
�2
s

1− �Ns

1

Ns

Ns−1∑

i=0

�iΨH(p− i)Ψ(p− i)

︸ ︷︷ ︸

=:A0

. (6.61)

and (i.p. stands for in probability)

lim
Ns→∞

A
i.p.
= E {A} =

�2
s

1− �Ns
A0. (6.62)

Based on (6.62), we can rewrite (6.53) as

cov
{

ĥ
}

= E {A}−1 cov
{

B̃
}

E
{

AH
}−1

. (6.63)

Assuming v(n) is zero-mean, white noise, uncorrelated with s(n), with E {v(n+ �)v∗(n)} =

�2
v�(�), the covariance of B̃ is given as (using (6.52) and C(p− i) = z (p− i)Ψ (p− i))

cov
{

B̃
}

= E
{

B̃B̃
H
}

=
1

N2
s

E

⎧

⎨

⎩

⎡

⎣

∞∑

i1=0

�i1CH(p− i1)vms(p− i1)

⎤

⎦

⎡

⎣

∞∑

i2=0

�i2CH(p− i2)vms(p− i2)

⎤

⎦

H
⎫

⎬

⎭

=
1

N2
s

∞∑

i1=0

∞∑

i2=0

�i1+i2E
{

CH(p− i1)
[

vms(p− i1)v
H
ms

(p− i2)
]

C(p− i2)
}

=
�2
v

N2
s

∞∑

i1=0

∞∑

i2=0

�i1+i2ΨH(p− i1)E
{

zH(p− i1)z(p− i2)
}

Ψ(p− i2)�(i1 − i2)

=
�2
v

N2
s

∞∑

i=0

�2iΨH(p− i)E
{

zH(p− i)z(p− i)
}

Ψ(p− i)

=
�2
v�

2
s

N2
s

∞∑

i=0

�2iΨH(p− i)Ψ(p− i) (6.64)
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Using the periodicity, Ψ(p− i− (m−1)Ns) = Ψ(p− i) for integer m’s, we can rewrite (6.64)

as

cov
{

B̃
}

=
�2
v�

2
s

N2
s

∞∑

m=1

�(m−1)2Ns

[
Ns−1∑

i=0

�2iΨH(p− i)Ψ(p− i)

]

=
�2
v�

2
s

1− �2Ns

1

N2
s

Ns−1∑

i=0

�2iΨH(p− i)Ψ(p− i)

︸ ︷︷ ︸

=:B0

(6.65)

Hence, using (6.62), (6.63) and (6.65), we have

cov
{

ĥ
}

=
�2
v

�2
s

(

1− �Ns

1 + �Ns

)

A−1
0 B0A

−1
0 =

1

SNR

(

1− �Ns

1 + �Ns

)

A−1
0 B0A

−1
0 . (6.66)

Considering the symbol decision errors in the decision-directed channel estimation, define

symbol error as

∣se(n)∣ := ∣s(n)− ŝ(n)∣ =
⎧

⎨

⎩

0 with probability 1− Pse

d with probability Pse

(6.67)

where d = 1 is the distance between two nearby symbols in the QPSK constellation diagram

and Pse is the symbol error rate. Then the variance of the symbol error is given by

E {se(n)s∗e(n)} = E
{

∣se(n)∣2
}

= d2�2
sPse = �2

sPse. (6.68)

Using the symbol decision, one may rewrite the received signal as

y (n) =
L∑

l=0

h (n; l) s (n− l) + v(n)

=
L∑

l=0

h (n; l) [ŝ (n− l) + {s (n− l)− ŝ (n− l)}] + v(n)

=
L∑

l=0

h (n; l) ŝ (n− l) +
L∑

l=0

h (n; l) se (n− l) + v(n)

︸ ︷︷ ︸

=:ve(n)

(6.69)
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where ve(n) is the “effective” noise including the symbol decision errors. In order to com-

pensate the symbol decision errors, we take the effective noise variance �2
ve as

E
{

ve(n)v
H
e (n)

}

= �2
vIN +

L∑

l1=0

L∑

l2=0

E
{

h(n; l1)h
H(n; l2)

}

E {se(n− l1)s
∗
e(n− l2)}

= �2
vIN + �2

sPse

L∑

l=0

E
{

h(n; l)hH(n; l)
}

(6.70)

For zero-mean, complex Gaussian and spatially white channel with variance �2
ℎ = 1/(L+1),

it can be simplified as

�2
ve = �2

v + �2
sPse. (6.71)

The probability of symbol error may be approximated as Pse ≈ 2Pbe for high SNR’s (as is

necessary for practical QPSK systems), where Pbe is a specific bit error rate. Using this

approximation, the effective noise variance is given by

�2
ve ≈ �2

v + �2
s ⋅ 2Pbe (6.72)

and we can replace �2
v in (6.66) with �2

ve in (6.72). For example, the effective variance of

noise is 3�2
v for Pbe = 0.01, SNR = 20dB.

Meanwhile, the other of MSE1 in (6.50) is a squared bias of channel estimate. Given

the true system model in (6.45), we can take the expected of ĥ in (6.42) as

E
{

h ∣ h(tr)
}

= [E {A}]−1E
{

B ∣ h(tr)
}

. (6.73)

Similarly using (6.44), (6.45) and a matrix A0 defined in (6.61), we have

E
{

B ∣ h(tr)
}

= E

{

1

Ns

∞∑

i=0

�iCH(p− i)C(p− i)h(tr)(p− i)

}

+ E

{

1

Ns

∞∑

i=0

�iCH(p− i)vms(p− i)

}

︸ ︷︷ ︸

=0

=
�2
s

Ns

∞∑

i=0

�iΨH(p− i)Ψ(p− i)h(tr)(p− i)

= �2
s

∞∑

m=1

�(m−1)Nsh(tr)
m

[

1

Ns

Ns−1∑

i=0

�iΨH(p− i)Ψ(p− i)

]

= �2
s

∞∑

m=1

�(m−1)Nsh(tr)
m A0. (6.74)
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Using (6.61) and (6.74), we can rewrite (6.73) as

E
{

h ∣ h(tr)
}

= (1− �Ns)
[

h
(tr)
1 + �Nsh

(tr)
2 + ⋅ ⋅ ⋅

]

, (6.75)

and it follows that for large Ns (recall we are estimating the most recent true BEM coefficient

vector h
(tr)
1 via ĥ),

E
{

h̄− h
(tr)
1 ∣ h(tr)

} ∼= �Ns

[

h
(tr)
2 − h

(tr)
1

]

. (6.76)

For WSSUS channel, where h
(tr)
1 and h

(tr)
2 have the same statistics and assuming that

E
{∥
∥
∥h

(tr)
1

∥
∥
∥

2
}

= E
{∥
∥
∥h

(tr)
2

∥
∥
∥

2
}

= 1, the squared bias of channel estimate in (6.50) can be

simplified as

E
{

E
{∥
∥
∥h̄− h

(tr)
1

∥
∥
∥

2 ∣ h(tr)
}}

= �2NsE
{[

h
(tr)
2 − h

(tr)
1

]H [

h
(tr)
2 − h

(tr)
1

]}

= �2Ns

(

E
{∥
∥
∥h

(tr)
1

∥
∥
∥

2
}

+ E
{∥
∥
∥h

(tr)
2

∥
∥
∥

2
})

= 2�2Ns (6.77)

So far, we obtain the MSE1 of the channel estimate using (6.50), (6.66) and (6.77),

MSE1

(

ĥ
)

= tr
{

cov
{

ĥ
}}

+ 2�2Ns , (6.78)

and the MSE of channel estimate based on CE-BEM by (6.47), (6.49) and (6.78).
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(b) Pbe = BER in Fig. 6.9

Figure 6.13: Decision-directed EW-RLS tracking: MSE with different step size ms’s for
forgetting factor �’s, under N = 2, fdTs = 0.01, SNR = 14dB.
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In Fig. 6.13a, a theoretical MSE of EW-RLS decision-directed channel tracking is

shown for N = 2, K = 1, SNR = 14dB over different � values in the fast-fading channel

(fd = 400Hz). We set T = 400, Q = 9 for CE-BEM and ms = 1, 2, and 4 for the step sizes.

We prespecified Pbe = 0.002 in (6.72) for the effective noise variance including the symbol

decision errors. One can pick a suitable � to get the minimum-mean-square-error (MMSE)

for one’s step size. The MMSE’s of different ms’s are similar although the respective suitable

range of �’s are different. It is clear the smaller step size (i.e., ms = 1) is more sensitive to �

than the larger ones (i.e., ms = 4) although the decision-directed channel tracking with the

smaller one has more complexity.

In Fig. 6.13b, the actual BER values based on 500 Monte Carlo runs in Fig. 6.9 are use

for Pbe in (6.72) to obtain the more realistic analysis. The MSE curves shrink inside since

larger Pbe’s increase the covariance of channel estimates.

6.5 Conclusions

A decision-directed channel tracking approach is investigated for doubly-selective chan-

nel in this paper. We exploited a CE-BEM to capture the overall time-variations of the

channel, and an AR model to update the BEM coefficients. Since the time-varying nature

of the channel is typically well captured in the CE-BEM by the known exponential basis

functions, the time-variations of the unknown BEM coefficients are likely much slower than

those of channels. Our decision-directed scheme tracks the slow-varying BEM coefficients via

Kalman filtering and extended exponentially-weighted RLS, using the detected information

symbols of MMSE-DFE as pseudo-trainings. A time gap, arising from the decision-directed

tracking, occurred between the symbol decisions and the required channel estimates of the

DFE, which could be successfully bridged by channel prediction using the CE-BEM and

the estimated BEM coefficients. Simulation examples illustrated that our decision-directed

approach has superior performance over the AR channel model-based tracking scheme of [6];

also, it achieves comparable performances to the subblock tracking scheme proposed in Chap-

ter 3 and 4, with much less training overhead.
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Chapter 7

Summary and Future Work

7.1 Summary of Original Work

An adaptive channel estimation approach, exploiting TM training and subblock-wise

tracking, was presented for frequency-selective time-varying channels. One block of TB sym-

bols comprises several subblocks of mb symbols. We employ the CE-BEM to describe the

channel. Rather than track each channel tap, we estimate the BEM coefficients subblock-by-

subblock and then regenerate the channel via CE-BEM with the estimated BEM coefficients.

In this way, the modeling mismatch introduced by the conventionally used symbol-wise AR

channel model can be greatly reduced, and hence better performance can be achieved in fast-

fading environments. The performance of symbol-wise channel tracking in [68, 76] (without

turbo equalization procedure) deteriorates as Doppler spread increases. Since the time-

varying nature of the channel is well captured in the CE-BEM by the known exponential

basis functions, the time variations of the unknown BEM coefficients are likely much slower

than those of the real channel and thus more convenient to track. The existing BEM-

based block-wise channel tracking in [70] works well only with the oversampled CE-BEM,

which makes it hard to satisfy the parameter identifiability requirement. The BEM-based

subblock-wise tracking is insensitive to the parameter identifiability and maintains a satis-

factory performance with a flexible subblock size (i.e., a flexible training overhead). Hence

the subblock-wise channel tracking using CE-BEM outperforms symbol-wise or block-wise

channel estimation schemes.

In Chapter 3, the Kalman filter-based subblock-wise tracking was proposed, where we

assume the BEM coefficients follow a first-order AR model. We analyzed the choice of the

AR(1) coefficient for the subblock-wise Kalman channel estimation. However, this first-order

AR assumption is an arbitrary a priori model that is not necessarily true for a real-world

channel and possibly incurs modeling error in channel estimation. With no a priori models

for the BEM coefficients, we considered adaptive filtering algorithms with finite memory:

EW-RLS and SW-RLS algorithms. It was shown that they are superior to Kalman filtering

for the subblock-wise channel tracking. In particular, subblock-wise EW-RLS tracking is a

good alternative since it has the same computational complexity as Kalman tracking. We

also analyze the theoretical choice of the forgetting factor � in EW-RLS for the subblock-wise

tracking using CE-BEM.
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In Chapter 5, we investigated the BEM-based approach to coded modulation commu-

nication systems using turbo equalization receiver. Based on the subblock-wise BEM-based

approach, we extended the turbo equalization approach of [68] using AR modeling of chan-

nels to channels using CE-BEM where an adaptive turbo equalizer with non-linear Kalman

filtering is coupled with a soft-in soft-out (SfiSfo) decoder to iteratively perform equalization

and decoding using soft information feedback. Assuming the BEM coefficients follow an

AR(1) model, the adaptive equalizer jointly optimizes the estimates of the BEM coefficients

and data symbols, thereby automatically accounting for the correlation between the chan-

nel estimates and data symbols. The proposed CE-BEM-based turbo equalizer has better

performances than the AR-model-based approach in [68], even with the same computational

complexity. We need only a few iterations to have a performance close to the optimal maxi-

mum a posteriori (MAP) approach or the turbo equalizer with perfect knowledge of the true

channels. Since the time-variations of the BEM coefficients are likely much slower than those

of the real channels, the BEM-based approach is not so sensitive to the Doppler spread as

the AR-model-based one. We also provided EXIT chart analyses that can be used to infer

performance comparisons without running the actual simulations.

The decision-directed tracking of doubly-selective channels using CE-BEM was also

investigated. In [6], the decision-directed scheme was proposed that relies on the AR model

only. Acting as virtual training symbols, the information symbol decisions, provided by a

DFE (with delay d ≥ 0) utilizing the estimated channel, were used to enhance the estimation

of the BEM coefficients, so that much of the spectrum resource allocated to training can

be saved. Although a time gap still exists between the available symbol decisions and the

channel estimates required by the DFE, it can be successfully bridged by the CE-BEM-based

channel prediction, without incurring much estimation variance. Similar to the other BEM-

based approaches, we exploited CE-BEM to capture the overall time-variations of the channel

and the first-order AR model to update the BEM coefficients. Our decision-directed scheme

updates the BEM coefficients for the step size ms, which is much smaller than the BEM

period (i.e., ms ≪ T ), via the Kalman filtering or the extended EW-RLS algorithm. With

a larger subblock size (i.e., a small training overhead), the CE-BEM-based decision-directed

tracking outperforms the subblock-wise tracking of Chapter 3 and Chapter 4. The AR-

model-based decision-directed scheme in [6] with the comparable complexity (letting P = Q)

performs better only for the small range of slow fading. Since the BEM-based decision-

directed tracking updates the BEM coefficients for the step size ms ≥ 1 symbol, we can

reduce the computational complexity by increasing the step size (e.g., ms = 2 or 4 symbols)

with little loss in performance. It was shown that the approach of [6] based on an AR model
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only has serious performance loss with increasing Doppler spread. However, the CE-BEM-

based decision-directed approach maintains satisfactory performance and thereby is more

reliable in practice, where we do not know the actual Doppler spread. We also presented a

performance analysis to provide guidelines for the theoretical choice of the forgetting factor

� for the decision-directed tracking using CE-BEM.

All the channel estimation and equalization schemes were extended to MIMO systems,

and simulation examples were provided for performance comparisons based on Monte Carlo

simulations.

7.2 Suggested Future Work

So far we have discussed doubly-selective channel estimation and equalization using

exponential basis models, including subblock-wise channel tracking, turbo equalization and

decision-directed tracking. Future work may include the following areas.

First, one should investigate other training schemes for the subblock-wise tracking in

Chapter 3 and 4 that is more efficient than the time-multiplexed (TM) training. The TM

training may waste resources for long channel length or multiple users. Since the subblock-

wise channel estimation depends only on the training session, it is important to find a training

scheme that can save system resources and overcome the user interference in a MIMO system.

For the turbo equalization using the extended Kalman filter in Chapter 5, one may

reduce the complexity by increasing the number of symbols for one recursion of the channel

estimation and detection algorithm, namely, use step size ms > 1. Since the neighboring

symbols have very similar BEM coefficients in CE-BEM with large block size (TB ≫ ms),

we do not need to update the BEM coefficient every symbol. Although the algorithm can

be more “complicated”, the overall computational complexity decreases with little loss of

performances; we already have similar examples in decision-directed tracking with ms =

1, 2 and 4 in Chapter 6.

In Section 6.4, the optimal value for the forgetting factor in EW-RLS decision-directed

tracking varies with SNR; as SNR increases, the optimal � becomes smaller (farther from one)

due to the lower covariance of the channel estimate in (6.66). One can expect improvement

in performance by using a variable forgetting factor dependent on the measured SNR. For

instance, [7, 25, 58] investigated the variable forgetting factor RLS algorithm. The Kalman

filter with a variable forgetting factor has also been proposed in some papers [24,34].

Finally, one may use other basis expansion models instead of the Fourier basis function

based CE-BEM, i.e., discrete prolate spheroidal basis expansion model (DPS-BEM) in [62,63]

or the orthogonal polynomial basis expansion model (OP-BEM) in [8, 26].
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