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Abstract

Original thesis project: By studying the literature, collect and write a survey paper on

special three-dimensional polyhedra and bodies. Read and understand the results, to which

these polyhedra and bodies are related.

Although most of the famous examples are constructed in a very clever way, it was

relatively easy to understand them. The challenge lied in the second half of the project,

namely at studying the theory behind the models. I started to learn things related to

Schönhardt’s polyhedron, Császár’s polyhedron, and a Meissner body. During Fall 2010 I

was a frequent visitor of Dr. Bezdek’s 2nd studio class at the Industrial Design Department

where some of these models coincidently were fabricated. A change in the thesis project

came while reading a paper of R. Guy about a polyhedron which was stable only if placed

on one of its faces. It turned out that for sake of brevity many details were omitted in the

paper, and that gave room for a substantial amount of independent work. As a result, the

focus of the thesis project changed.

Modified thesis project: By studying the literature, write a survey paper on results con-

cerning stable polyhedra.

The following is the outcome of the thesis:

1. A collection of elementary facts/theorems/proofs concerning stable tetrahedra.

2. A description of a double tipping tetrahedron constructed by A. Heppes.

3. A description of a 19 faceted polyhedron of R. Guy, which has only one stable face.

4. Description of the Gömböc, a recently discovered mono-monostatic 3D body.
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Chapter 1

Introduction and outline of the thesis

Since tetrahedra and other special polyhedra occur so often in physics, in chemistry and

in crystallography, it’s particularly useful to understand their geometry. In Chapters 2-5

of this thesis we will study the stability properties of such bodies. Intuitively speaking we

want to know how many stable positions these bodies can have and those specific positions.

Recall that in planar geometry, the centroid, geometric center, or barycenter of a plane figure

refers to the intersection of all straight lines that divide the figure into two parts of equal

moment about the line (equal moment means balanced position). This definition extends to

any object in 3-dimensional space. The centroid of an object is the intersection of all planes

that divide the body into two parts of equal moment.

In physics, the mass center or the center of gravity refers to the point where the object

is supported while maintaining a balanced position. Informally, the center of mass (and

center of gravity in a uniform gravitational field) is the average of all points, weighted by

the local density or specific weight. This gives rise for using integral calculus at computing

the coordinates of the mass center. For special shapes and special density distributions this

computation is simple, otherwise it can be quite involved.

If a physical object has uniform density, then its center of mass is the same as the

centroid of its shape. In the subsequent sections, if we do not say otherwise, polyhedra are

assumed to be solids with uniform mass density. We will call a face of given polyhedra stable

if the polyhedra will rest on that particular face in a stable position on top of a horizontal

table.

The following is an outline of the thesis:
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In Chapter 2 we study the geometry of tetrahedra. We will list and prove some basic

properties concerning the mass center of tetrahedra and also describe some special tetrahedra

to give an insight on what makes a face stable.

Chapter 3 contains the proof of Conway’s theorem, which claims that every tetrahedron

has at least two stable faces.

In Chapter 4 we explain a construction of Guy [7], which shows that there are polyhedra

with exactly one stable face. This is our main section where most of our independent

work was done. It turned out that a crucial step of the proof in Guy’s paper was given

without explanation. This step was about finding a closed formula for a quite elaborate

integral. Pages 26-36 contain these computations. Moreover Guy’s paper ended by saying

that if certain distance is sufficiently large then the constructed model has the right stability

properties. We computed the numerical value of this measurement and then 3D printed

Guy’s model. The printed model will lead other students to a better understanding of Guy’s

construction.

Chapter 5 contains a brief description of a recently discovered body called the Gömböc.

The Gömböc is a body with exactly one stable and exactly one unstable position. In this

section we include the proof of planar theorem on the existence of stable and unstable

equilibriums. This result shows the difference both in difficulty and in nature of the 2D and

the 3D versions of our stability questions.

Finally, the Appendix contains Chapter’s 6-9 which are further reading on phenomenal

three-dimensional objects. They are not contained in the main part of the thesis because

they are not closely related, but much time was spent on this before the discovery of the

monostatic polyhedron [7].
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Chapter 2

Geometry of tetrahedra

2.1 Things to know about the mass center of tetrahedra

In this section we assume that the tetrahedra have uniform mass density. The mass

center of such a tetrahedron always coincides with its centroid.

1. Simple coordinate calculus shows that the centroid of a tetrahedron with vertices

(xi, yi, zi), i = 1, . . . 4 is the point
(∑4

1 xi
4
,
∑4

1 yi
4
,
∑4

1 zi
4

)
.

2. It follows from (1) that the centroid of a solid tetrahedron is located on the line segment

that connects the apex to the centroid of the base, moreover the centroid is at 1/4 of

the distance from the base to the apex.

3. It follows from (1) that the centroid of a solid tetrahedron is also the midpoint of three

segments each connecting the midpoints of the opposite edges.

4. Assume that the base ABC of tetrahedron ABCD lies on a horizontal surface. (3)

implies that this tetrahedron will tip over the edge BC if and only if the perpendicular

projection D′ of the vertex D onto the plane of ABC lies further from the edge BC than

the vertex A. Thus, an obtuse dihedral angle (angle between two neighboring faces) is

necessary for a tip, moreover a tetrahedron can tip from a face to another face only

if the later has larger area. This simple observation will play a very important role in

most of the proofs later.

5. The following is a natural question: At most how many obtuse dihedral angles can

a tetrahedron have? It turns out that the maximum is three. Although none of the
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proofs of our subsequent results will use this bound, we present a proof here for sake

of completeness. The solution is by M. Klamkin [9]. There is at least one vertex of

the tetrahedron such that its corresponding face angles are all acute. This is necessary

because otherwise the sum of all face angles would be greater than 4π (the sum of two

face angles at a vertex is greater than the third face angle). Since there are four faces,

the sum must be equal to 4π.

The following two lemmas are for the face angles a, b, c, and the opposite dihedral

angles of a trihedral angle.

Lemma 2.1. If π
2
> a ≥ b ≥ c, then B and C are acute.

Lemma 2.1 follows from the sign analysis of the spherical law of cosine: sin b sin c sinA =

cos a− cos b cos c, etc.

Lemma 2.2. If A ≥ B ≥ π
2
> C, then a, b ≥ π

2
> c.

Lemma 2.2 follows from the sign analysis of the spherical law of cosine: sinB sinC cos a =

cosA+ cosB cosC, etc.











Figure 2.1: All tetrahedra have no more than three obtuse dihedral

Choose P as the vertex with all acute face angles in tetrahedron PQRS. By Lemma

1, we can take PQ and PS as the edges of the two acute dihedral angles. Now assume
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these are the only acute dihedral angles and obtain a contradiction. By the application

of Lemma 2 to trihedral angles at vertices Q and S, it follows that angles PQS and

PSQ are both non-acute. This is impossible, so there are always at least three acute

dihedral angles in any tetrahedron.

6. Every tetrahedron has at least one stable face. To see this notice that a face of a given

tetrahedron is stable iff it contains the perpendicular projection of its mass center. A

simple indirect reasoning shows that the face nearest to the mass center has the later

property.

7. As in (6) it follows that every tetrahedron with all acute dihedral angles has four stable

faces.

8. Figure 2.2 shows a tetrahedron which has only two stable faces.













Figure 2.2: Top view of tetrahedron with only two stable faces

9. Heppes [8] discovered a “two-tip tetrahedron” which Guy [1] realized with edges 41, 26,

24, 20, 17 and 4 (amature carpenters may like to construct this). Section 2.2 contains

Heppes’s construction.
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10. Dawson [2] includes an argument of Conway which proves that every tetrahedron has

at least two stable faces. Section 3.1 contains Conway’s proof.

2.2 A double tipping tetrahedron

Aladár Heppes posed the following problem in SIAM Review [8]. Design a homogeneous

tetrahedron which, when placed lying on one of its faces on the top of a horizontal table, will

tip over to another face and then tip over again, finally coming to rest on a third face. Heppes

presents a solution and called his tetrahedron the double tipping tetrahedron.

Let A, B, C, D denote the vertices of a tetrahedron T , and let G′ denote the orthogonal

projection of its centroid G, on the ”horizontal” coordinate plane z=o. We compute the x

coordinate of G′ by averaging the x coordinates of the vertices of T. The z coordinate of G′

is obviously 0. We will be using the mass center’s projection to see if the solid will tip over,

and if it does tip over, the side with which it will rotate over. Heppes presents the following

coordinates for the tetrahedron. The initial position of the tetrahedron is described by the

following coordinates where 0 < ε < 1.

A ( -7, -8(1-ε), 0),

B ( -1, 0, 0),

C ( 1, 0, 0),

D ( 7, 8, 8).

For simplicity we choose ε = 1
2

A ( -7, -4, 0),

B ( -1, 0, 0),

C ( 1, 0, 0),

D ( 7, 8, 8).

We have G′ = (0, 1, 0). Notice that G′ falls outside of the triangle ABC on the y-axis

therefore the tetrahedron will tip over side BC.
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Figure 2.3: Top view of the double tipping tetrahedron first position

In order to determine coordinates of T after the tip, we need to evaluate each coordinate

individually. The tetrahedron is tipping over side BC, so the coordinates of B and C are not

going to change. Since the tetrahedron is flipping straight over the x-axis, all xth coordinates

of the vertices will remain the same. Both y and z coordinates of A and D will be determined

through the right triangles with legs x,y. In the case of both vertices these form 45◦, 45◦, 90◦

triangles. These right triangles are known to have a side ratio of 1:1:
√

2, with
√

2 being the

hypotenuse. The triangle associated with A has a hypotenuse of 4. With the given ratios,

we know that the new y and z coordinates will have a length of 4( 1√
2
)= 4

√
2

2
= 2
√

2. The

triangle associated with D has side lengths 8 and 8. With the given ratios, we know that

the new y coordinate will have a length of 8(
√

2)= 8
√

2. The tetrahedron is tipping onto

triangle BCD, so the z coordinate of D will become 0.

This gives us the following coordinates for the vertices of T after the first tip.

A ( -7, -2
√

2, 2
√

2),

B ( -1, 0, 0),

C ( 1, 0, 0),

D ( 7, 8
√

2, 0).
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Figure 2.4: Top view of the double tipping tetrahedron second position

The projection for the mass center is G′ = (0, 3
√
2

2
, 0). This is also outside of triangle

BCD, and our tetrahedron will tip over the side BD and come to rest on the base ABD.

Heppes found a tetrahedron with only two stable faces that tips over twice when placed

on a horizontal surface. Richard Guy [1] modified this example and found that with edges

41, 26, 24, 20, 17, and 4, and with opposite pairs summing to 45, 43, and 44, an amateur

carpenter could construct such a tetrahedron! In the next chapter we will discuss if there

are tetrahedrons with only one stable face.
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Chapter 3

All tetrahedra have at least two stable faces

J. Conway and R. Guy presented the following problem in the SIAM Review [7]: Show

that any homogeneous tetrahedron will rest in stable position when lying on any one of at

least two of its faces.

Michael Goldberg [7] published an incorrect solution to prove that all tetrahedra have

at least two stable faces. Goldberg said that a tetrahedron is always stable when resting

on the face nearest to the center of gravity. He stated that if you project the apex and the

edges onto the stable base, then the projection of the center of gravity will fall onto one

of the projected triangles or on the projected edges. If it lies within a projected triangle,

then a perpendicular from the center of gravity to that corresponding face will meet within

the face, thus proving that it is another stable face. If it projects onto an edge, then both

corresponding faces are stable faces.

Apparently there are two problems concerning the above underlined sentence. A) Con-

way constructed a tetrahedron with non-uniform density which is stable only on one of the

faces. Goldberg’s solution makes no explicit use of the position of the mass center of a

tetrahedron, thus in view of Conway’s example, it cannot be complete. B) We constructed a

tetrahedron, which is stable on two faces, but not on those which Goldberg claims, thus his

proof cannot be completed. It was not until 1985 that R. J. Dawson [2] included Conway’s

proof in his paper. For the sake of completeness we also include Conways proof here.

Definition 3.1. Bodies with just one stable equilibrium are called monostatic.

Theorem 3.1. No tetrahedron is monostatic.

Proof (Conway): A tetrahedron will not tip about an edge unless the dihedral angle at

that edge is obtuse. Thus, an obtuse angle is necessary for a tip. In view of (2) in 2.1 and

9



the volume formula of the tetrahedron, the closer the center of mass is to a tetrahedron’s

face, the larger the area of the face. Thus a tetrahedron can only tip from a smaller face to

a larger one.

Suppose there exists some tetrahedron which is monostatic. Let A and B be faces with

the largest and second-largest areas. There are two ways for the tetrahedron to roll onto face

A. Either it rolls from B onto A and from C onto A, or it rolls from another face C, onto

B, and then from B onto A. Either way, one of the two largest area faces has two obtuse

dihedral angles (call these sides with dihedral angles e and f). Either e or f is a side shared

with the other of the two largest faces.

Since sides e and f are both obtuse dihedral angles, the vertex v must be outside the

intersection of the extended lines of e and f . The projection of D shows that the face is

larger than A or B, thus leading us to a contradiction.

 







Figure 3.1: No monostatic tetrahedron exist
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Chapter 4

A polyhedron, which has only one stable face

R. K. Guy [7] approached this problem in an attempt to define how to develop a mono-

static body with only 1 stable equilibrium. His goal was to find the polyhedron which is

stable on only one face with the least number of faces. In view of chapter 3, the minimum

number of faces is between 4 and 19. The exact value is still unknown today.

Think about taking a long cylinder and diagonally cut off one end, then at the opposite

angle chop off the other end. This truncated cylinder can lie stable on the table on it’s

longest ”side”, but in no other position. It only has one stable equilibrium. Intuitively we

can think about how to prove that it only has one stable equilibrium. Think about a normal

cylinder; the mass center of the object goes through the center of the circle. After we cut the

edges diagonally, there is more mass below the center of the circle. Thus the mass center is

below the center of the circular center of the truncated cylinder. This shows that the bottom

of our cylinder is a stable equilibrium. If we place the cylinder down anywhere except the

bottom of the cylinder then it will roll because the perpendicular from the mass center to the

side will fall outside of the cylinder. Thus, it only has one stable equilibrium. We are going

to evaluate a figure that is similar to the truncated cylinder, however it is multi-faceted and

much more complicated.

Figure 4.1: Truncated Cylinder
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Guy’s solid is a 17-sided prism. The first view (see Figure 4.2) is only half of the side

view because they are symmetrical. Basically you are looking into the 17-sided prism from

the 2 ends. The second view (see Figure 4.3) is looking at the prism from the front, and it

is also symmetrical so we are only showing half of it once again.

In general, we are taking a (2m− 1) sided prism. The section is made up of 2m similar

right triangles with angle β = π
m

at point O. This means that our m is 9, and we have 18

right triangles around the prism. The reasons we have 1 less side face is due to the two

triangles at the bottom that meet to form just 1 side face. Our angle from O is β = π
9

.

When on it’s stable equilibrium, the longest hypotenuse is r = ro going from O to the

top. This is where we start ”counting,” or naming off everything. We will name the rest

of the hypotenuses rn = rcosnβ, 0 < n < m. Our side length rm = s, so it is collinear

with r = r0. We can conclude from this that the measure of the height of this prism is

r + s = r0 + rm. (rm = rcosmβ respectively).

Figure 4.2: View 1
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Figure 4.3: View 2

The vertices other than O (on the boundary) lie on two symmetrical equiangular spiral

S. So, we start with r, then make the next hypotenuse (r1)
π
9

from r. Then connect the

two, so that there is a right angle where the side and r1 meets. Continue repeating until the

prism is complete.

Our ”view 2” (see Figure 4.3) of the cylinder is called the half length. It is represented

as y = fx+ g where x is measured vertically downwards from O and where f and g denote

the following numbers

f =
b

r + s

g = a+
br

r + s

Notice that when x moves below O it’s positive, and above it is negative.

We want to choose b sufficiently large compared to a because we want the mass center

below O and above P . For the definition of P see Figure 4.3. P is the point where the

perpendicular line through Q to R intersects the vertical line containing O. P moves based

off of the length of b because as it increases or decreases the right angle must remain. Since

the angle PQR must remain a right angle, adjusting b moves P up or down.

We describe the half width (looking into the prism from the side) with depth x as well.

We are again measuring x below O. It is going to be represented in terms of z as z = px+ q.

13



We will represent p and q in the following way as well:

p =
zn − zn−1
xn − xn−1

q =
zn−1xn − znxn−1

xn − xn−1

We will represent xn and zn in terms of r in the following way:

xn = −rncosnβ = −r(cosβ)ncosnβ

zn = rnsinnβ = r(cosβ)nsinnβ

So, looking at Figure 4.2, our −x0 is all the way at the top with zo. Then −x1 (since x

is measured downward from O) goes up to where r1 forms a right angle with the edge of the

prism. The distance from the point (−x1, 0) to the point where r1 forms a right angle is z1.

Continue this process until n = m − 1, in which case we have xn and zn where xn = xm−1

and zn = zm−1. Then we reach xm and zm where rm meets the bottom of our prism and

rm = s.

It seems that the reason Guy constructed the prism this way is so that one could easily

compute the coordinates of the mass center. The reason that each of the figures only shows

half of the actual views is that they are symmetrical. To check to see where there is a stable

face, drop a perpendicular from the mass center. If it is on the face, then it stays there when

sitting on the face. If the dropped perpendicular falls outside of the face, then it tips over.

For example, with a normal cube sitting on one of its faces we can drop a perpendicular, and

it will fall inside the face (meaning the face will not tip over). In our other possible example

the cube is stretched and crooked to where if we drop a perpendicular from the mass center,

it would fall outside of the face. This means that after modification it will not stand on that

face, and it will tip over. This way of thinking was most likely how Guy began forming this

prism.

14



They knew the body would be multi-faceted, however, it needed to be somewhat simple

so that they could easily compute the mass center. They want the perpendicular from the

mass center to only fall on one face and none of the others. After all the computation is

carried out we know that in the z plane we are alright with the 18 faces because when we

drop a perpendicular from the mass center it falls outside of the faces. We also need to take

care of the other 2 faces which we evaluated in the y plane. We need the mass center to be

below O, but above P . P will take care of the other points when we drop the perpendicular

because all of the points above it will not make a perpendicular with the two side faces, thus

they are not stable. It has to be in between the two for it to work. That is when picking

the correct proportion of a and b comes into play.

4.1 (1) Setting up the integral

So we know that we have constructed the prism symmetrically so that the y and z

coordinates of the mass center are equal to 0. They are trivial (there is only one face where

we drop a perpendicular from the mass center and land on a face). We are only going to

have to set up the integral to find the first moment relative to the yz plane. Our goal is to

show that the first moment is positive so that the mass center lies below 0. We are going to

slice the prism parallel to the yz coordinate plane. Since they are both symmetrical, we are

going to have 2 of each, giving us 4 on the outside of the integral. My slices are going to go

from the very top of the prism where xn is x1, all the way down to the bottom of the prism

where xn is xm. The product of xyz, as a function of x, depends on the subinterval [xi−1, xi],

thus our slices are going to be from xn−1 to xn. Since the integral only takes care of one of

the slices, we will need to sum from n = 1 to m. Thus giving us the following integral to

compute the first moment (4.1) below O of the material solid:

4
m∑
n=1

∫ xn

xn−1

xyzdx (4.1)
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The following excerpt (Figure 4.4) is from Guy’s paper [7]. It shows how he evaluates

1. (the labeling 1... 5 is by us). As we go through 2-5 it turns out that a substantial amount

of algebra had to be redone.

1

2

3

4

5

Figure 4.4: Guy’s solution

4.2 (2) Evaluating the integral

The following completes Part 1 of the solution in Figure 4.4. We substitute the equations

y = fx+ g and z = px+ q so that the integral is in terms of x.

∫ xn

xn−1

xyzdx =

∫ xn

xn−1

x(fx+ g)(px+ q)dx

16



=

∫ xn

xn−1

x(fpx2 + fqx+ gpx+ gq)dx =

∫ xn

xn−1

(fpx3 + fqx2 + gpx2 + gpx)dx (4.2)

When we evaluate the integral we get:

fp
x4

4
+ fq

x3

3
+ gp

x3

3
+ gq

x2

2

∣∣∣xn
xn−1

=
1

4
fp(x4n − x4n−1) +

1

3
fq(x3n − x3n−1) +

1

3
gp(x3n − x3n−1) +

1

2
gq(x2n − x2n−1) (4.3)

So the integral in (4.2) has value:

=
1

4
fp(x4n − x4n−1) +

1

3
(fq + gp)(x3n − x3n−1) +

1

2
gq(x2n − x2n−1) (4.4)

The above equation is given in Part 2 of the solution in Figure 4.4.

4.3 (3) Algebraic/ trigonometric manipulation

Then when we substitute p = zn−zn−1

xn−xn−1
and q = zn−1xn−znxn−1

xn−xn−1
into our equation we get

the following (The equation is broken up into three parts so that we can see how each form

is manipulated):

=
1

4
f
( zn − zn−1
xn − xn−1

)
(x4n − x4n−1) (4.5)

+
1

3

[
f
(zn−1xn − znxn−1

xn − xn−1

)
+ g
( zn − zn−1
xn − xn−1

)]
(x3n − x3n−1) (4.6)

+
1

2
g
(zn−1xn − znxn−1

xn − xn−1

)
(x2n − x2n−1) (4.7)

We will start by evaluating 4.5:

1

4
f
( zn − zn−1
xn − xn−1

)
(x2n − x2n−1)(x2n + x2n−1)

17



=
1

4
f
( zn − zn−1
xn − xn−1

)
(xn − xn−1)(xn + xn−1)(x

2
n + x2n−1)

=
1

4
f(zn − zn−1)(xn + xn−1)(x

2
n + x2n−1)

=
1

4
f(zn − zn−1)(x3n + xnx

2
n−1 + x2nxn−1 + x3n−1)

=
1

4
f
(
(x3nzn)+(xnx

2
n−1zn)+(x2nxn−1zn)+(x3n−1zn)−(x3nzn−1)−(xnx

2
n−1zn−1)−(x2nxn−1zn−1)−(x3n−1zn−1)

)
For future manipulation of the equation, we will break 4.5 up into:

=
1

4
f
(
(x3nzn)− (x3n−1zn−1)

)
+

1

4
f
(
(xnx

2
n−1zn) + (x2nxn−1zn) + (x3n−1zn)− (x3nzn−1)− (xnx

2
n−1zn−1)− (x2nxn−1zn−1)

)
Now we will evalute 4.6:

1

3

[
f
(xnzn−1 − xn−1zn

xn − xn−1

)
+ g
( zn − zn−1
xn − xn−1

)]
(xn − xn−1)(x2n + xnxn−1 + x2n−1)

=
1

3

[f(xnzn−1)− f(xn−1zn) + g(zn − zn−1)
(xn − xn−1)

]
(xn − xn−1)(x2n + xnxn−1 + x2n−1)

=
1

3
[f(xnzn−1)− f(xn−1zn) + g(zn)− g(zn−1)](x

2
n + xnxn−1 + x2n−1)

=
1

3

[
f
(
(x3nzn−1) + (x2nxn−1zn−1) + (xnx

2
n−1zn−1)− (x2nxn−1zn)− (xnx

2
n−1zn)− (x3n−1zn)

)
+g
(
(x2nzn) + (xnxn−1zn) + (x2n−1zn)− (x2nzn−1)− (xnxn−1zn−1)− (x2n−1zn−1)

)]
For future manipulation of the equation, we will break 4.6 up into:

1

3
g
(
(x2nzn)− (x2n−1zn−1)

)
+

1

3

[
f
(
(x3nzn−1) + (x2nxn−1zn−1) + (xnx

2
n−1zn−1)− (x2nxn−1zn)− (xnx

2
n−1zn)− (x3n−1zn)

)
+g
(
(xnxn−1zn) + (x2n−1zn)− (x2nzn−1)− (xnxn−1zn−1)

)]
18



Now we will evaluate 4.7:

1

2
g
((xnzn−1)− (xn−1zn)

(xn − xn−1)

)
(xn − xn−1)(xn + xn−1)

=
1

2
g
(
(xnzn−1)− (xn−1zn)

)
(xn + xn−1)

=
1

2
g
(
(x2nzn−1) + (xnxn−1zn−1)− (xnxn−1zn)− (x2n−1zn)

)
Combining 4.5, 4.6, and 4.7 to simplify further we have:

1

4
f
(
(x3nzn)− (x3n−1zn−1)

)
+

1

3
g
(
(x2nzn)− (x2n−1zn−1)

)
+

1

4
f
(
(xnx

2
n−1zn) + (x2nxn−1zn) + (x3n−1zn)− (x3nzn−1)− (xnx

2
n−1zn−1)− (x2nxn−1zn−1)

)
+

1

3
f
(
(x3nzn−1) + (x2nxn−1zn−1) + (xnx

2
n−1zn−1)− (x2nxn−1zn)− (xnx

2
n−1zn)− (x3n−1zn)

)
+

1

3
g
(
(xnxn−1zn) + (x2n−1zn)− (x2nzn−1)− (xnxn−1zn−1)

)
+

1

2
g
(
(x2nzn−1) + (xnxn−1zn−1)− (xnxn−1zn)− (x2n−1zn)

)
When we add the third and fourth rows

1

4
f
(
(xnx

2
n−1zn) + (x2nxn−1zn) + (x3n−1zn)− (x3nzn−1)− (xnx

2
n−1zn−1)− (x2nxn−1zn−1)

)
+

1

3
f
(
(x3nzn−1) + (x2nxn−1zn−1) + (xnx

2
n−1zn−1)− (x2nxn−1zn)− (xnx

2
n−1zn)− (x3n−1zn)

)
,

they are combined to get:

1

12
f
(
− (xnx

2
n−1zn)− (x2nxn−1zn)− (x3n−1zn) + (x3nzn−1) + (xnx

2
n−1zn−1) + (x2nxn−1zn−1)

)
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When we add the fifth and sixth rows

1

3
g
(
(xnxn−1zn) + (x2n−1zn)− (x2nzn−1)− (xnxn−1zn−1)

)
+

1

2
g((x2nzn−1) + (xnxn−1zn−1)− (xnxn−1zn)− (x2n−1zn)),

they are combined to get:

1

6
g
(
(x2nzn−1) + (xnxn−1zn−1)− (xnxn−1zn)− (x2n−1zn)

)
Combining 4.5, 4.6, 4.7, and the simplifications we get:

1

4
f
(
(x3nzn)− (x3n−1zn−1)

)
(4.8)

+
1

3
g
(
(x2nzn)− (x2n−1zn−1)

)
+

1

12
f
(
− (xnx

2
n−1zn)− (x2nxn−1zn)− (x3n−1zn) + (x3nzn−1) + (xnx

2
n−1zn−1) + (x2nxn−1zn−1)

)
+

1

6
g
(
(x2nzn−1) + (xnxn−1zn−1)− (xnxn−1zn)− (x2n−1zn)

)
The above equation is given in Part 3 of the solution in Figure 4.4.

4.4 (4) Sum from n = 1 to m

Applying the sum to the first and second row, 1
4
f
(
(x3nzn)− (x3n−1zn−1)

)
+ 1

3
g
(
(x2nzn)−

(x2n−1zn−1)
)
, means summing from n = 1 to m. These two terms yield 1

4
f
(
(x3mzm)− (x0z0)

)
and 1

3
g
(
(x2mzm − x20z0)

)
. These both equal zero because z0 = zm = 0. In order to sum the

third and fourth lines, we will recall the following formulas: r = r0, rn = r cosn β, 0 < n < m,

xn = −rn cosnβ → xn = −r cosn β cosnβ, zn = rn sinnβ → zn = r cosn β sinnβ. When we

write k = cos β we get:

xn = −rkn cosnβ
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zn = rkn sinnβ

We will deal with line three and four individually and then combine them. When we

plug xn, zn, and k = cos β, into

1

12
f
(
− (xnx

2
n−1zn)− (x2nxn−1zn)− (x3n−1zn) + (x3nzn−1) + (xnx

2
n−1zn−1) + (x2nxn−1zn−1)

)
we get:

1

12
f
[
(−rkn cosnβ)3(rkn−1 sin(n− 1)β)

+(−rkn cosnβ)2(−rkn−1 cos(n− 1)β)(rkn−1 sin(n− 1)β)

+(−rkn cosnβ)(−rkn−1 cos(n− 1)β)2(rkn−1 sin(n− 1)β)

−(−rkn cosnβ)2(−rkn−1 cos(n− 1)β)(rkn sinnβ)

−(−rkn cosnβ)(−rkn−1 cos(n− 1)β)2(rkn sinnβ)

−(−rkn−1 cos(n− 1)β)3(rkn sinnβ)
]
.

Which can be reduced to the following form:

r3

24k3
fr(k4)n

[
− (2 cos3 nβ)(1)(sin(n− 1)β)(k2)

−(2 cos2 nβ)(cos(n− 1)β)(sin(n− 1)β)(k)

−(2 cosnβ)(cos2(n− 1)β)(sin(n− 1)β)(1)

+(2 cos2 nβ)(cos(n− 1)β)(sinnβ)(k2)

+(2 cosnβ)(cos2(n− 1)β)(sinnβ)(k)

+(2)(1)(cos3(n− 1)β)(sinnβ)(1)
]
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When combining the rows according to their last term (1, k, and k2) we get:

r3

24k3
fr(k4)n

[
(2 cosnβ)(cos(n− 1)β)

[
(− cosnβ)(sin(n− 1)β) + (sinnβ)(cos(n− 1)β)

]
(k)

+(2 cos2 nβ)
[
− (cosnβ)(sin(n− 1)β) + (sinnβ)(cos(n− 1)β)

]
(k2)

+(2 cos2(n− 1)β)
[
− (cosnβ)(sin(n− 1)β) + (sinnβ)(cos(n− 1)β)

]
(1)
]

From the ”sum and difference formula” which says sin(α−β) = sinα cos β− cosα sin β,

we know that (− cosnβ)(sin(n− 1)β) + (sinnβ)(cos(n− 1)β) = sin β. So factor out sin β to

have:

r3

24k3
fr(k4)n sin β

[
2(cosnβ)(cos(n− 1)β)(k)

+2(cos2 nβ)(k2) + 2(cos2(n− 1)β)(1)
]

Using the ”product to sum formula” which says cosα cos β = 1
2
[cos(α−β)+cos(α+β)],

and the ”half angle formula” which says cos2 α = 1
2
(1+cos(2α)) the above yields the following:

r3

24k3
fr(k4)n sin β

[
(cos β + cos(2n− 1)β)(k)

+(1 + cos 2nβ)(k2) + (1 + cos(2n− 2)β)(1)
]

Factoring in k, and k2 yields (remember k = cos β):

r3

24k3
fr(k4)n sin β

[
(k2 + cos(2n− 1)βk)

+(k2 + cos 2nβk2) + (1 + cos(2n− 2)β)
]

Combining the above to see the manipulation of the ”f” part of 4.8 produces

r3

24k3
fr(k4)n sin β

[
1 + 2k2 + k2 cos 2nβ + k cos(2n− 1)β + cos(2n− 2)β

]
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Now we will look at the fourth line of 4.8 which is

1

6
g
(
(x2nzn−1) + (xnxn−1zn−1)− (xnxn−1zn)− (x2n−1zn)

)
,

and becomes the following when using xn = −rkn cosnβ, zn = rkn sinnβ, and k = cos β.

1

6
g
[
(−rkn cosnβ)2(rkn−1 sin(n− 1)β)

+(−rkn cosnβ)(−rkn−1 cos(n− 1)β)(rkn−1 sin(n− 1)β)

−(−rkn cosnβ)(−rkn−1cos(n− 1)β)(rkn sinnβ)

−(−rkn−1 cos(n− 1)β)2(rkn sinnβ)
]

Which can be reduced to the following form:

r3

24k3
(−4g)(k3)nk

[
(−k)(cos2 nβ)(sin(n− 1)β

+(−1)(cosnβ)(cos(n− 1)β)(sin(n− 1)β)

+(k)(cosnβ)(cos(n− 1)β)(sinnβ)

+(1)(cos2 (n− 1)β)(sinnβ)
]

When combining the rows according to their last term (1 and k) we get:

r3

24k3
(−4g)(k3)nk

[
k
(
(cosnβ)(cos(n− 1)β)(sinnβ)− (cos2 nβ)(sin(n− 1)β)

)
+(cos2(n− 1)β)(sinnβ)− (cosnβ)(cos(n− 1)β)(sin(n− 1)β

)]
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Factor out cosnβ from the first and cos(n− 1)β from the second and get:

r3

24k3
(−4g)(k3)nk

[
k cosnβ

(
(cos(n− 1)β)(sinnβ)− (cosnβ)(sin(n− 1)β)

)
+ cos(n− 1)β

(
(cos(n− 1)β)(sinnβ)− (cosnβ)(sin(n− 1)β)

)]
We know that we know that (− cosnβ)(sin(n−1)β)+(sinnβ)(cos(n−1)β) = sin β, so factor

out sin β and get:

r3

24k3
(−4g)(k3)nk sin β

[
k cosnβ + cos(n− 1)β

]
.

When we combine our manipulations r3

24k3
fr(k4)n sin β

[
1+2k2 +k2 cos 2nβ+k cos(2n−

1)β + cos(2n− 2)β
]

and r3

24k3
(−4g)(k3)nk sin β

[
k cosnβ + cos(n− 1)β

]
, factor in (k4)n and

(k3)n for computation and get:

r3 sin β

24k3

[
fr
(
(k4)n + 2k2(k4)n + k2(k4)n cos 2nβ + k(k4)n cos(2n− 1)β + (k4)n cos(2n− 2)β

)
(4.9)

−4gk
(
k(k3)n cosnβ + (k3)n cos(n− 1)β

)]
The above equation is given in Part 4 of the given solution in Figure 4.4.

4.5 (5) Evaluating the sum

In order to take the sum of 4.9 we need to put it in the following form:

r3 sin2 βk

24 sin βk4

[
fr
(
(k4)n + 2k2(k4)n +k2(k4)n cos 2nβ+k(k4)n cos(2n− 1)β+ (k4)n cos(2n− 2)β

)
−4gk

(
k(k3)n cosnβ + (k3)n cos(n− 1)β

)]
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which is equal to

r3k

24 sin β

[
fr
(
(k4)n−1 sin2 β + 2k2(k4)n−1 sin2 β + k2(k4)n−1 cos 2nβ sin2 β (4.10)

+k(k4)n−1 cos(2n− 1)β sin2 β + (k4)n−1 cos(2n− 2)β sin2 β
)

−4g
(
k(k3)n−1 cosnβ sin2 β + (k3)n−1 cos(n− 1)β sin2 β

)]
We will look at the ”f” and ”g” part of 4.10 separately.

Starting with the ”f” part we will be looking at

(k4)n−1 sin2 β + 2k2(k4)n−1 sin2 β + k2(k4)n−1 cos 2nβ sin2 β

+k(k4)n−1 cos(2n− 1)β sin2 β + (k4)n−1 cos(2n− 2)β sin2 β

We need to remember the following for computations: sin2 β = (1−k2), β = π
m
, cos 2β =

cos (2(m+ 1))β = 2k2 − 1, cos 2mβ = 1.

We will label it accordingly and work with each separately, and take the sum from n = 1

to m:

an = (k4)n−1 sin2 β + 2k2(k4)n−1 sin2 β

bn = k2(k4)n−1 cos 2nβ sin2 β

cn = k(k4)n−1 cos(2n− 1)β sin2 β

dn = (k4)n−1 cos(2n− 2)β sin2 β

First,

Sa =
m∑
n=1

an = (1 + 2k2) sin2 β
( m∑
n=1

(k4)n−1
)

= (1 + 2k2)(1− k2)1− k4m

1− k4
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= (1 + 2k2)(1− k2) 1− k4m

(1− k2)(1 + k2)
= (1 + 2k2)

1− k4m

1 + k2

Second,

Sb =
m∑
n=1

bn =
m∑
n=1

k2(k4)n−1 cos 2nβ sin2 β

Notice:

k2 cos 2nβ = k cos 2nβ(cos β) = k
1

2
(cos (2n+ 1)β + cos (2n− 1)β)

=
1

2

(
cos (2n+ 1)β cos β + cos (2n− 1)β cos β

)
=

1

2

[1

2

(
cos (2n+ 2)β + cos 2nβ + cos 2nβ + cos (2n− 2)β

)]
=

1

4
cos (2n+ 2)β +

1

2
cos 2nβ +

1

4
cos (2n− 2)β

Sb =
m∑
n=1

1

4
(k4)n−1 cos (2n+ 2)β sin2 β+

m∑
n=1

1

2
(k4)n−1 cos 2nβ sin2 β+

m∑
n=1

1

4
(k4)n−1 cos (2n− 2)β sin2 β

=
1

4k2

m∑
n=1

k2(k4)n−1 cos (2n+ 2)β sin2 β +
1

2k2

m∑
n=1

k2(k4)n−1 cos 2nβ sin2 β

+
1

4k2

m∑
n=1

k2(k4)n−1 cos (2n− 2)β sin2 β

Evaluate the first (1), second (2), and third (3) place of the equation:

1.

1

4k2

m∑
n=1

k2(k4)n−1 cos (2n+ 2)β sin2 β

=
1

4k2

[Sb
k4
− k2 1

k4
(k4)0 cos 2β sinβ +k2(k4)m−1 cos (2(m+ 1))β sin2 β

]
=

1

4k2

[Sb
k4
− k2

k4
cos 2β sin2 β +

k2

k4
(k4)m cos (2(m+ 1))β sin2 β

]
=

1

4k6
Sb −

(2k2 − 1)(1− k2)
4k4

+
(k4)m(2k2 − 1)(1− k2)

4k4
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2.

1

2k2

m∑
n=1

k2(k4)n−1 cos 2nβ sin2 β

=
1

2k2
Sb

3.

1

4k2

m∑
n=1

k2(k4)n−1 cos (2n− 2)β sin2 β

=
1

4k2

[
Sbk

4 − k2(k4)m cos 2mβ sin2 β + k2(k4)0 cos (2(0))β sin2 β
]

=
k2

4
Sb −

(k4)m(1− k2)
4

+
(1− k2)

4

We get Sb by adding 1+2+3:

Sb =
1

4k6
Sb−

(2k2 − 1)(1− k2)
4k4

+
(k4)m(2k2 − 1)(1− k2)

4k4
+

1

2k2
Sb+

k2

4
Sb−

(k4)m(1− k2)
4

+
(1− k2)

4

Sb(1−
1

4k6
− 1

2k2
−k

2

4
) = −(2k2 − 1)(1− k2) + k4m(2k2 − 1)(1− k2)

4k4
+
−k4m(1− k2) + (1− k2)

4

Sb(1−
1

4k6
− 1

2k2
− k2

4
) =

(k4m − 1)(2k2 − 1)(1− k2)
4k4

+
k4(1− k4m)(1− k2)

4k4

Sb(
4k6 − 1− 2k4 − k8)

4k6
) =

(1− k4m)

4k4
[
(1− 2k2)(1− k2) + (k4 − k6)

]
Sb =

( 4k6

−k8 + 4k6 − 2k4 − 1

)(1− k4m)

4k4

[
− k6 + 3k4 − 3k2 + 1

]
Sb =

( 4k6

−k8 + 4k6 − 2k4 − 1

)(1− k4m)

4k6

[
k2(−k6 + 3k4 − 3k2 + 1)

]
Third,

Sc =
m∑
n=1

cn =
m∑
n=1

k(k4)n−1 cos(2n− 1)β sin2 β

Notice:

k cos (2n− 1)β = cos β cos (2n− 1)β =
1

2
(cos (2n− 2)β + cos 2nβ)
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=
k

2k
(cos (2n− 2)β + cos 2nβ) =

1

2k
(cos (2n− 2)β cos β + cos 2nβ cos β)

=
1

2k

[cos (2n− 3)β + cos (2n− 1)β

2
+

cos (2n− 1)β + cos (2n+ 1)β

2

]
=

1

4k
cos (2n+ 1)β +

1

2k
cos (2n− 1)β +

1

4k
cos (2n− 3)β

Sc =
m∑
n=1

1

4k
(k4)n−1 cos (2n+ 1)β sin2 β +

m∑
n=1

1

2k
(k4)n−1 cos (2n− 1)β sin2 β

+
m∑
n=1

1

4k
(k4)n−1 cos (2n− 3)β sin2 β

Sc =
1

4k2

m∑
n=1

k(k4)n−1 cos (2n+ 1)β sin2 β +
1

2k2

m∑
n=1

k(k4)n−1 cos (2n− 1)β sin2 β

+
1

4k2

m∑
n=1

k(k4)n−1 cos (2n− 3)β sin2 β

Evaluate the first (1), second (2), and third (3) place of the equation:

1.

1

4k2

m∑
n=1

k(k4)n−1 cos (2n+ 1)β sin2 β

=
1

4k2

[Sc
k4
− k 1

k4
cos 1β sin2 β +

k

k4
(k4)m cos (2m+ 1)β sin2 β

]
=

1

4k6
Sc −

(1− k2)
4k4

+
k4m(1− k2)

4k4

2.

1

2k2

m∑
n=1

k(k4)n−1 cos (2n− 1)β sin2 β

=
1

2k2
Sc
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3.

1

4k2

m∑
n=1

k(k4)n−1 cos (2n− 3)β sin2 β

=
1

4k2

[
Sck

4 − k(k4)m cos (2m− 1)β sin2 β + k(k4)0 cos(−1)β

=
k2

4
Sc −

k4m(1− k2)
4

+
(1− k2)

4

=
k2

4
Sc +

(1− k2)(1− k4m)

4

We get Sc by adding 1+2+3:

Sc =
1

4k6
Sc −

(1− k2)
4k4

+
k4m(1− k2)

4k4
+

1

2k2
Sc +

k2

4
Sc +

(1− k2)(1− k4m)

4

Sc(1−
1

4k6
− 1

2k2
− k2

4
) =
−(1− k2) + k4m(1− k2)

4k4
+

(1− k2)(1− k4m)

4

Sc(1−
1

4k6
− 1

2k2
− k2

4
) =

(k4m − 1)(1− k2)
4k4

+
(1− k2)(1− k4m)

4

Sc =
( 4k6

−k8 + 4k6 − 2k4 − 1

)[(1− k4m)(k2 − 1)

4k4
+

(1− k4m)(1− k2)
4

]
Sc =

( 4k6

−k8 + 4k6 − 2k4 − 1

)1− k4m

4k6

(
k2(k2 − 1) + k6(1− k2)

)
Fourthly,

Sd =
m∑
n=1

dn =
m∑
n=1

(k4)n−1 cos(2n− 2)β sin2 β

Notice:

1

k
[cos (2n− 2)β cos β]

=
1

2k
(cos (2n− 3)β + cos (2n− 1)β)

=
1

2k2
(cos (2n− 3)β cos β + cos (2n− 1)β cos β)

=
1

2k2

[(cos (2n− 4)β + cos (2n− 2)β

2
+

cos (2n− 2)β + cos 2nβ

2

]
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=
1

4k2
cos (2n− 4)β +

1

2k2
cos (2n− 2)β +

1

4k2
cos 2nβ

Sd =
m∑
n=1

1

4k2
(k4)n−1 cos (2n− 4)β sin2 β

+
m∑
n=1

1

2k2
(k4)n−1 cos (2n− 2)β sin2 β +

m∑
n=1

1

4k2
(k4)n−1 cos 2nβ sin2 β

Sd =
1

4k2

m∑
n=1

(k4)n−1 cos (2n− 4)β sin2 β

+
1

2k2

m∑
n=1

(k4)n−1 cos (2n− 2)β sin2 β +
1

4k2

m∑
n=1

(k4)n−1 cos 2nβ sin2 β

Evaluate the first (1), second (2), and third (3) place of the equation:

1.

1

4k2

m∑
n=1

(k4)n−1 cos (2n− 4)β sin2 β

=
1

4k2
(Sdk

4 − (k4)m cos (2m− 2)β sin2 β + (k4)0 cos−2β sin2 β)

=
k2

4
Sd −

k4m(2k2 − 1)(1− k2)
4k2

+
(2k2 − 1)(1− k2)

4k2

=
k2

4
Sd +

(1− k4m)(2k2 − 1)(1− k2)
4k2

2.

1

2k2

m∑
n=1

(k4)n−1 cos (2n− 2)β sin2 β

=
1

2k2
Sd

3.

1

4k2

m∑
n=1

(k4)n−1 cos 2nβ sin2 β

=
1

4k2
(
Sd
k4
− 1

k4
cos 0β sin2 β +

k4m

k4
cos 2mβ sin2 β)
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=
Sd
4k6
− (1− k2)

4k6
+
k4m(1− k2)

4k6

=
Sd
4k6

+
(1− k2)(k4m − 1)

4k6

=
Sd
4k6

+
(1− k4m)(k2 − 1)

4k6

We get Sd by adding 1+2+3:

Sd =
k2

4
Sd +

(1− k4m)(2k2 − 1)(1− k2)
4k2

+
1

2k2
Sd +

Sd
4k6

+
(1− k4m)(k2 − 1)

4k6

Sd(1−
k2

4
− 1

2k2
− 1

4k6
) =

(1− k4m)(2k2 − 1)(1− k2)
4k2

+
(1− k4m)(k2 − 1)

4k6

Sd(1−
k2

4
− 1

2k2
− 1

4k6
) =

k4(1− k4m)(2k2 − 1)(1− k2)
4k6

+
(1− k4m)(k2 − 1)

4k6

Sd(1−
k2

4
− 1

2k2
− 1

4k6
) =

1− k4m

4k6

(
k4(2k2 − 1)(1− k2) + (k2 − 1)

)
Sd =

( 4k6

−k8 + 4k6 − 2k4 − 1

)[1− k4m

4k6

(
k4(2k2 − 1)(1− k2) + (k2 − 1)

)]
To get the remaining part of ”f” we will add Sb + Sc + Sd.

Sb =
( 4k6

−k8 + 4k6 − 2k4 − 1

)1− k4m

4k6

[
k2(−k6 + 3k4 − 3k2 + 1)

]

Sc =
( 4k6

−k8 + 4k6 − 2k4 − 1

)1− k4m

4k6

(
k2(k2 − 1) + k6(1− k2)

)
Sd =

( 4k6

−k8 + 4k6 − 2k4 − 1

)1− k4m

4k6

(
k4(2k2 − 1)(1− k2) + (k2 − 1)

)
Sb + Sc + Sd =

=
( 4k6

−k8 + 4k6 − 2k4 − 1

)(1− k4m

4k6

)[
k2(−k6 + 3k4 − 3k2 + 1) + k2(k2 − 1)

+k6(1− k2) + k4(2k2 − 1)(1− k2) + (k2 − 1)
]

=
1− k4m

−k8 + 4k6 − 2k4 − 1

(
− k8 + 3k6− 3k4 + k2 + k4− k2 + k6− k8 + 3k6− 2k8− k4 + k2− 1

)
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=
1− k4m

−k8 + 4k6 − 2k4 − 1

(
− 4k8 + 7k6 − 3k4 + k2 − 1

)
= (1− k4m)

[−4k8 + 7k6 − 3k4 + k2 − 1

−k8 + 4k6 − 2k4 − 1

]
= (1− k4m)

[ (k2 − 1)(1 + 3k4 − 4k6)

(k2 − 1)(1 + k2 + 3k4 − k6)

]
Sb + Sc + Sd = (1− k4m)

[ 1 + 3k4− 4k6

1 + k2 + 3k4 − k6
]

Adding in what we got for Sa, our ”f” part is the following:

r3k

24 sin β

[
fr(1− k4m)

(1 + 2k2

1 + k2
+

1 + 3k4 − 4k6

1 + k2 + 3k4 − k6
)]

Taking the sum of the ”g” part of 4.10. We will evaluate the equation by naming parts

of the equation in the following way:

A =
m∑
n=1

k(k3)n−1 cosnβ sin2 β

B =
m∑
n=1

(k3)n−1 cos(n− 1)β sin2 β

We will begin by evaluating A:

A =
m∑
n=1

(k3)n−1 cosnβ cos β sin2 β

From cosα cos β = 1
2
[cos(α− β) + cos(α + β)],

cosnβ cos β sin2 β =
cos(n+ 1)β + cos(n− 1)β

2
sin2 β

A =
1

2k

[ m∑
n=1

k(k3)n−1 cos(n+ 1)β sin2 β +
m∑
n=1

k(k3)n−1 cos(n− 1)β sin2 β
]
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=
1

2k

[A
k3
− k(k3)0

k3
(cos 1β)(sin2 β) + k(k3)m−1 cos(m+ 1)β sin2 β

+k3A+ k(k3)0 cos 0β sin2 β − k(k3)m cosmβ sin2 β
]

We need to remember the following for computations: sin2 β = (1 − k2), β = π
m

,

cosmβ = cosπ = −1, and cos(m+ 1)β = cos(m+ 1) π
m

= − cos β = −k.

=
1

2k

[A
k3
− 1− k2

k
− k3m

k
(1− k2) + k3A+ k(1− k2) + k(k3)m(1− k2)

]
A =

A

2k4
− 1− k2

2k2
− k3m

2k2
(1− k2) +

k2A

2
+

1− k2

2
+

(k3)m(1− k2)
2

A
(

1− 1

2k4
− k2

2

)
= (1− k2)(− 1

2k2
− k3m

2k2
+

1

2
+
k3m

2
)

A
(2k4 − 1− k6

2k4

)
= (1− k2)

(1− k3m + k2 + k2+3m

2k2

)
A
((1− k2)(k4 − k2 − 1)

2k4

)
=

(1− k2)
2k2

(−1− k3m + k2 + k2+3m)

A
((k4 − k2 − 1)

k2

)
= (1− k3m + k2 + k2+3m)

A =
(1− k3m + k2 + k2+3m)k2

k4 − k2 − 1

A =
(k2 − 1)(1 + k3m)k2

k4 − k2 − 1

A =
(1− k2)(1 + k3m)k2

1 + k2 − k4

Now we will evaluate B with A:

B =
m∑
n=1

(k3)n−1 cos(n− 1)β sin2 β

=
1

k

m∑
n=1

k(k3)n−1 cos(n− 1)β sin2 β
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=
1

k

(
k3A+ k(k3)0 cos 0β sin2 β − k(k3)m cosmβ sin2 β

)
=

1

k

(
k3A+ k(1− k2) + k(k3m(1− k2)

)
B = k2A+ (1 + k3m)(1− k2)

Now evaluate A+B

A+B =
(1− k2)(1 + k3m)

1 + k2 − k4
k2 +

(1− k2)(1 + k3m)

1 + k2 − k4
k2(k2) + (1 + k3m)(1− k2)

A+B =
(1− k2)(1 + k3m)

1 + k2 − k4
k2(1 + k2) + (1 + k3m)(1− k2)

=
(1− k2)(1 + k3m)

1 + k2 − k4
k2(1 + k2) + (1 + k3m)(1− k2)

=
(1− k2)(1 + 33m)

1 + k2 − k4
(
k2(1 + k2) + 1 + k2 − k4

)
=

(1− k2)(1 + k3m)

1 + k2 − k4
(1 + 2k2)

So now we know that the ”g” part of our equation results in the following:

= 4g
(1− k2)(1 + k3m)

1 + k2 − k4
(1 + 2k2)

Our final equation results in:

r3k

24 sin β

[
fr(1−k4m)

(1 + 2k2

1 + k2
+

1 + 3k4 − 4k6

1 + k2 + 3k4 − k6
)
−4g(1+k3m)

(1− k2)(1 + 2k2)

1 + k2 − k4
]

(4.11)

The above equation is given in Part 5 of the given solution in Figure 4.4.
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4.6 Evaluating m

Working just with the inner brackets of 4.11, we will substitute our equations for f = b
r+s

and g = a+ br
r+s

as follows

=
br

r + s
(1− k4m)

2 + 4k2 + 8k4 + 4k6 − 6k8

(1 + k2)(1 + k2 + 3k4 − k6)

−4(a+
br

r + s
)(1 + k3m)

(1− k2)(1 + 2k2)

1 + k2 − k4

= −4a(1 + k3m)
(1− k2)(1 + 2k2)

1 + k2 − k4
− 4br

r + s
(1 + k3m)

(1− k2)(1 + 2k2)

1 + k2 − k4

+
2br

r + s
(1− k4m)

1 + 2k2 + 4k4 + 2k6 − 3k8

(1 + k2)(1 + k2 + 3k4 − k6)

= −4a(1 + k3m)
(1− k2)(1 + 2k2)

1 + k2 − k4
(4.12)

+
2br

r + s

[
(1− k4m)

1 + 2k2 + 4k4 + 2k6 − 3k8

(1 + k2)(1 + k2 + 3k4 − k6)
− 2(1 + k3m)

(1− k2)(1 + 2k2)

1 + k2 − k4
]

This entire equation needs to be positive. First, the equation in the brackets for the

b part must yield a positive number. In order to determine the first integer in which m is

positive, we will run a program in MATLAB. Figure 4.5 is the program that was run to

determine our value for m.

The results in Table 4.1 yield that the brackets will be positive for all m ≥ 9.

Now that we know our brackets are positive for all m ≥ 9, we will find a b sufficiently

large compared to a so that ”P” will intersect the center on or below the bottom our solid.

In order to find b we will set Equation 4.12 > 0.

To determine the value for b based off of given values for a, β, r, and s I wrote a

MATLAB program (See Figure 4.7). This made it easier to find values of b based off of

a given a. Remember that r is equal to length from the origin to the top of our solid,

s = r cos9 β = rk9, and β = π/9.
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Figure 4.5: The ”m” file that is run in MATLAB to determine our value for m

Figure 4.6: Side view of the solid

For the results when a = 0.25 and r = 1, b must be greater than 7.9762. For the given

r value, the ratio between a and b is 0.0313.

In order to ensure that P is below the mass center, we want b long enough compared

to a so that the right angle Q will cause PQ to intersect the center of the solid below the

bottom of the solid.

Since a = 0.25, and the height of the solid is r + s = 1 + 1 cos9 β ≈ 1.57, we know that

the diagonal from Q to the center and bottom of the figure is ≈ 1.59. Using similar triangles,

we find that any b ≥ 9.8624 and a = 0.25 ensures that P is below the the mass center.
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Table 4.1: Results for m

m value equation result
1 0
2 -1
3 -0.903076
4 -0.667969
5 -0.452051
6 -0.279457
7 -0.146033
8 -0.043859
9 0.034274
10 0.094100

Figure 4.7: The ”m” file to determine a value for b.
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Chapter 5

Bodies which have exactly one stable and one unstable position.

Guy’s construction of a polyhedron with just one stable equilibrium is fascinating and

important because of the fact that it is a polyhedron with the least known number of

faces and just one stable equilibrium (it is still an open question). Guy’s construction

had 1 stable equilibrium, and 3 unstable equilibrium. There are bodies with less than 4

equilibrium. These bodies are called mono-monostatic bodies. Gábor Domokos’ interest was

to find a three-dimensional body with just one stable and one unstable equilibrium. The

following provides a proof that no monostatic bodies exist in two-dimensions, and then the

construction of a three-dimensional mono-monostatic body.

5.1 All two-dimensional objects have at least two stable equilibrium.

Gábor Domokos was a Civil Engineering teacher in Hungary in the 1980’s. He enjoys

the mathematical side of things, and often times would discuss interesting problems with

Andy Ruina. Ruina had a friend named Jim Papadopoulous and both were working on

a simple conjecture. Papadopoulous started working with two-dimensional (2D) problems

with plywood to see if he could find shapes with only one stable equilibrium.

We are considering these bodies as resting on a horizontal surface in the presence of

uniform gravity. Monostatic bodies are possible to construct; for example, the popular

children’s toy called a ”Comeback Kid” is a monostatic body. Looking at homogeneous,

convex monostatic bodies in the 2D case, one can prove that:

Theorem 5.1. Among planar (slab-like) objects rolling along their circumference no mono-

static bodies exist.
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In 2D Papadopoulous found that a square, for example, had four positions for which

it was stable. He looked at an ellipse, which is stable when horizontal on one of the two

flatter parts. It is unstable when balanced on either end. Imagine balancing an upright egg.

Papadopoulous’ conjecture was that no matter what convex shape you draw and cut out, it

has at least two orientations where it is stable.

The following ideas are published by G. Domokos and P. Várkonyi [4]. Consider a

convex, homogeneous planar ”body” B and a polar coordinate system with origin at the

center of gravity of B. Let the continuous function R(ϕ) denote the boundary of B. It is

easy to see that non-degenerate stable/unstable equilibria of the body correspond to local

minima/ maxima of R(ϕ).

Assume that R(ϕ) has only one local maximum and one local minimum. Meaning that

there is only one point on the boundary that is closest to the origin, and one point of the

boundary that is furthest away from the origin. Finally a simple continuity argument shows

that there exists exactly one value ϕ = ϕ0 for which R(ϕ0) = R(ϕ0 + π). Rotate a directed

chord which passes through O clockwise around O. Assume initially the chord points toward

the closest boundary point. Notice that initially O is closest to the head of the directed chord,

while at the end O is closest to the tail of the directed chord.

Figure 5.1: Two-Dimensional case
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From this we know R(ϕ) > R(ϕ0) if π > ϕ − ϕ0 > 0, and R(ϕ) < R(ϕ0) if −π <

ϕ − ϕ0 < 0. The straight line discussed above ϕ = ϕ0 is the same as ϕ = ϕ0 + π. It

is passing through the origin O and cuts B into a ”thin” (R(ϕ) < R(ϕ0)), and a ”thick”

(R(ϕ) > R(ϕ0)) part. This implies that O can not be the center of gravity, which contradicts

our initial assumption.

Definition 5.1. Mono-monostatic bodies are convex, homogeneous bodies with fewer than

four equilibria.

5.2 The Gömböc

In 1995 Domokos attended an International Congress on Industrial and Applied Math-

ematics in Hamburg. There were many lectures, but the one that everyone attended was

Vladimir Igorevich Arnold’s lecture. A returning theme of that particular talk was the recur-

rence of the integer 4 in many seemingly unrelated results. His lecture reminded Domokos

of the 2D objects which always have at least four equilibrium (two unstable and two stable).

He proposed a counter example to Arnold, saying that he has found a three-dimensional

object with just one stable equilibrium. Arnold immediately explained that it was not a

counter example because the figure has one stable equilibrium, but three unstable. Arnold

did, however, conjecture that ”convex homogeneous bodies with fewer than four equilibria

(mono-monostatic bodies) may exist.”

Domokos moved on to construct a three-dimensional solid which has less than four

equilibrium. About ten years later, Domokos constructed the Gömböc to prove that Arnolds

conjecture is indeed correct. The problem was solved in 2006 [4]. It is called the Gömböc,

and is a convex three-dimensional homogeneous body which, when resting on a flat surface,

has just one stable and one unstable point of equilibrium.

The shape is not unique, has countless varieties, and most of which are very close to

a sphere with very strict shape tolerance. These bodies are hard to visualize, describe, or

identify. They are neither ”flat” nor ”thin.” The solution has curved edges and resembles a
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Figure 5.2: Gömböc

sphere with a squashed top. It rests in its stable equilibtirum, and its unstable equilibrium

position is obtained by rotating the figure 180◦ about the horizontal axis. Theoretically it

will rest on this point, but the smallest perturbation will bring it back to the stable point.

There is not a specific description of how to create the Gömböc available at this time.

It has been proven that there exists a body that is convex with its center of gravity at

the origin. Unfortunately, from the numerical proof it suggests that d must be very small

(d < 5 ∗ 10−5) in order to satisfy convexity together with other restrictions. The created

object with these properties is extremely similar to a sphere and nearly impossible to visually

see the difference in the construction.
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Appendix: For general appreciation and also to help me remember what was done during

the project, the description of Schönhardt’s polyhedron, Császár’s polyhedron, and a

Meissner body are included here.
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Chapter 6

Császár’s polyhedron

Theorem 6.1. The tetrahedron and Császár’s polyhedron are the only two known polyhedra

without any diagonals.

Definition 6.1. In a polyhedron, a line between two nonadjacent vertices is called a diagonal.

The Császár polyhedron is named after Ákos Császár, who discovered it in 1949. Ákos

Császár is a Hungarian mathematician specializing in general topology and real analysis.

Figure 6.1: Császár’s Polyhedron

It is very difficult to visualize the Császár Polyhedron because of its complexity. In an

attempt, to help you understand what it looks like, there is a flat pattern of the polyhedron.

It would look like this if it was completely unfolded (See Figure 6.2).

In geometry, the Császár polyhedron is a nonconvex polyhedron, topologically a torus,

with 14 triangular faces. When every pair of vertices is connected by an edge, the polyhedron

has thus no diagnols. Therefore, the Császár polyhedron has no diagonals because every

43



Figure 6.2: Flat Pattern of Császár’s Polyhedron

pair of vertices is connected by an edge. The graph is isomorphic with the skeleton of a

six-dimensional simplex, the 6-space analogue of the tetrahedron.

It may be easier to visualize the polyhedron if you understand how to construct it. It is

not difficult to make a paper model of the Császár polyhedron. Copy the two patterns below

and cut the copies out. Color the seven shaded triangles on both sides. Crease the paper to

make ”mountain folds” along each M line, and the ”valley folds” along each v line. [6]

1. With the pattern for the base, fold the two largest triangles to the center and tape

the A edges to each other. Turn the paper over. Fold the two smaller triangles to the

center and tape the B edges together to obtain a completed base.

2. The six-faced conical top is formed by taping the C edges together. Place it on the

base as shown in the drawing of the completed model. It will fit in two ways. Choose

the fit that joins white to shaded triangles, then tape each of its six edges to the

corresponding six edges of the base.

The polyhedron has 7 polyhedron vertices, 14 faces, and 21 polyhedron edges.

The Császár polyhedron and tetrahedron are the only two known polyhedra without

any diagonals for which there are no interior diagonals.
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Figure 6.3: Pattern for top of Császár’s polyhedron

A

A

B

B

M

M

M

M

V

V

V

Figure 6.4: Pattern for base of Császár’s polyhedron

Figure 6.5: Completed Base of Császár’s polyhedron

45



Chapter 7

Szilassi’s polyhedron

Theorem 7.1. The tetrahedron and Szilassi polyhedron are the only two known polyhedra

in three-dimensions in which each face shares an edge with another face.

The Szilassi polyhedron, named after Hungarian mathematics Lajos Szilassi, who dis-

covered it in 1977, is the dual to the Császár polyhedron with 7 faces, 14 vertices, and

21 edges. While the Császár polyhedron has the fewest possible vertices of any toroidal

polyhedron, the Szilassi polyhedron has the fewest possible faces of any toroidal polyhedron.

Figure 7.1: Transparent Szilassi’s Polyhedron

Definition 7.1. In geometry, polyhedra are associated into pairs called duals, where the

edges correspond to the faces of the other. The dual of the dual is the original polyhedron.

The dual of a polyhedron with equivalent vertices is one with equivalent faces, and of one

with equivalent edges is another with equivalent edges.

Duality means that every face of the Szilassi heptahedron has an edge in common with

each of the other 6 faces.
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Figure 7.2: Szilassi’s Polyhedron

Theorem 7.2. The four color theorem states that given any separation of a plane into

contiguous (adjacent) regions, no more than four colors are required to color the regions of

the map so that no two adjacent regions have the same color.

Definition 7.2. Two regions are called adjacent if they share a border segment, not just a

point.

The Four Color Problem dates back to 1852 when Francis Guthrie, while trying to

color the map of the counties of England, notices that four colors sufficed. He asked his

brother Frederick if it was true that any map can be colored using four colors in such a

way that adjacent regions receive different colors. Frederick Guthrie then communicated

the conjecture to DeMorgan. A year later the first proof by Kempe appeared, and its

incorrectness was pointed out 11 year later by Heawood. Another failed proof was presented

by Tait in 1880. Although they both failed, Kempe discovered what became known as

Kempe chains, and Tait found an equivalent formulation of the Four Color Theorem in

terms of 3-edge-coloring.
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Chapter 8

Schönhardt Polyhedron

Definition 8.1. A tetrahedralization is a partition of the input domain, point set or poly-

hedron, into a collection of tetrahedra, that meet only at shared faces (vertices, edges, and

triangles).

The analogue of triangulation in three dimensions is called tetrahedralization.

If additional vertices (Steiner points) are allowed when constructing the tetrahedraliza-

tion, then all polyhedra are tetrahedralizable.

Tetrahedralization turns out to be significantly more complicated than triangulation.

Theorem 8.1. Any polyhedra can be triangulated with O(n2) Steiner points and P (n2) tetra-

hedra.

Proof: Extend a vertical ”wall” from each edge of the polyhedron boundary, up and

down from that edge until is reaches some other part of the boundary. These walls divide the

polygon into generalized cylinders. Triangulating the top and bottom faces of the cylinders

partitions the polygon into O(n2) triangular prisms. Each vertical prism side is crossed at

most once by a polyhedron edge, so the prisms are polyhedra with at most twelve vertices.

Triangulate the faces of these polyhedra, making sure that tetrahedra from different prisms

will meet face to face, and then triangulate each prism with at most 20 tetrahedra incident

to the single interior Steiner point (Du [5]).

In geometry, the Schönhardt Polyhedron is the smallest non-convex polyhedron that

cannot be triangulated into tetrahedra without adding new vertices.

It can be formed by two congruent equilateral triangles in two parallel planes so that

the line through the centers of the triangles is perpendicular to the planes. Consider an
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equilateral triangular prism, where the base triangle ABC lies directly below the upper

triangle A′B′C ′.

Suppose that the edges of the prisms are constructed from wire and that the edges AB′,

BC ′, and CA′ have been added with extra wire. If we slowly rotate the upper triangle in

one direction, then the rectangular faces of the prism bend outwards along the extra edges

AB′, BC ′, and CA′. If we rotate in the other direction, however, the rectangular faces of

the prism bend inward, yielding a polyhedron which is not convex.

When we have rotated a full 60◦, then the three edges AB′, BC ′, and CA′ intersect at

the center of the figure. Schönhardt’s Polyhedron is obtained when the rotation is by some

intermediate value, for example 30◦. In this instance the line segments AB′, BC ′, and CA′

lie outside the polyhedron([3]).

Figure 8.1: Schönhardt’s Polyhedron

We take the three vertices on the bottom triangle, and we need to connect it to a fourth

additional vertex to form a tetrahedron. If we connect it to any of the above three vertices,

then the edge is outside of the polyhedron because every diagonal that is not a boundary

edge lies completely in the exterior. It implies that there can be no triangulation of it without

new vertices because there is simply no interior tetrahedron (all possible tetrahedra spanned

by four of its six vertices would introduce new edges).
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Schönhardt proved that this is the smallest example of an untetrahedralizable polyhe-

dron. Bagemihl extended this example to construct a polyhedron of n vertices with the same

properties for every n ≥ 6.
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Chapter 9

A Meissner body

Definition 9.1. A three-dimensional body is of constant width if it has the following property:

Whichever way it is clamped between two parallel plates, both plates are always at exactly the

same distance from each other.

Take a regular tetrahedron, which has four points in space that are arranged in such

a way that they are equidistant from each other. Place spheres of equal size at each of

the four tetrahedron vertices. The spheres expand at the same rate until they touch and

have to penetrate each other. The surface of each sphere intersects the three tetrahedron

vertices opposite the center of the sphere. This forms a Reuleaux tetrahedron, which is

the intersection of four spheres at the vertices of a regular tetrahedron. The result is a

body looking like a bulging tetrahedron. The Reuleaux tetrahedron has the same face

structure as a regular tetrahedron, but with curved faces: four vertices, and four curved

faces, connected by six circular-arc edges. Basically if a flat plate is placed on three equal

Reuleaux tetrahedrons and pushed back and forth, it will move almost parallel to the surface

of the table. In other words, it will move as though it is placed on three spherical balls with

equal size, without wobbling. As noted above, the Reuleaux tetrahedron is almost constant

width.

Since a Reuleaux tetrahedron is only of almost constant width, mostly the body touches

two plates between which it is clamped with one of its vertices and one point on the opposite

surface of the solid. In cases like this, the two plates are at the same distance from each

other, but the two possible points of contact may be on two opposite edges of the solid. At

this place on the solid, the width is greater. For two edge midpoints, it is maximally
√

3 -
√
2
2
≈ 1.0249 times larger than the smallest width.
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It is possible, to make the Reauleaux tetrahedron into a body of constant width by

rounding three of its edges. First, pick a face of the original tetrahedron. Extend the chosen

face in all three directions so that it intersects the Reuleaux tetrahedron. Then, extend the

adjacent triangles so that they intersect with the original triangle. Remove the part of the

surface of this body which is located between the extensions of two adjacent lateral surfaces

of the tetrahedron. In the new space, replace it with a sphere so that there are three smooth

and three original ”edges.” The resulting figure is called a Meissner body (Weber [10]).

Definition 9.2. When three edges of a Reuleaux tetrahedron that meet at a common vertex

are rounded as described, the resultant solid is a body of constant width, called a Meissner

body.
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