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Magnetic resonance spectroscopic imaging (MRSI) is a completely non-invasive

method for obtaining quantitative information regarding biochemical parameters [1].

It shows great promise for use in basic physiological research and for clinical imaging of

metabolic function [2, 3]. The information obtained with MRSI can be used to assess

regional metabolic abnormalities in various pathologies. However, MRSI requires a great

deal of time to gather the data necessary to achieve satisfactory resolution. When prior

information about the image is available, it may be possible to reconstruct the image

from a subset of k-space samples. Therefore, we desire to choose the best possible combi-

nation of a small number of k-space samples to guarantee the quality of the reconstructed

image by using the available prior knowledge. In this thesis, we assume prior knowledge

only of the region of support (ROS) of the spatial-domain image.

Sequential forward selection (SFS) is appealing as an optimization method because

the previously selected sample can be observed while the next sample is selected. We

develop an efficient computational strategy for this algorithm that allows SFS to be
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applied to this problem when the image region has a known region of support (ROS).

The combined algorithm efficiently selects a reduced set of k-space samples from which

the ROS can be reconstructed with minimal noise amplification. Furthermore, if there

is no noise, the minimum density can be reached with this algorithm.

Hexagonal sampling gives a 13.4% sampling density reduction compared to rectan-

gular sampling for images with a circular ROS. However, nonuniform sampling patterns

are more efficient than hexagonal sampling for the same ROS. To reduce selection time

and achieve higher resolution, we develop a sequential backward selection (SBS) algo-

rithm from samples on a hexagonal grid. Simulation results show that more efficiency

and reduced selection time can be achieved with the proposed method in comparison

with SBS on a rectangular grid.

We develop two efficient algorithms for optimizing the dithering pattern so that an

image can be reconstructed as reliably as possible from a periodic nonuniform set of

samples, which can be obtained from a dithered rectangular-grid array.

One algorithm is SBS of sample arrays. Taking into account the ROS of the im-

age, we sequentially eliminate the least informative array recursively until the minimal

number of arrays remain. In this scheme, we provide an efficient update formula for the

criterion based on convolution kernels rather than large, non-sparse matrices, an efficient

update formula for the convolution kernels based on the deleted array, and an efficient re-

construction method based on convolutions. The proposed method dramatically reduces

storage and computational complexity.

The other algorithm is SFS of sample arrays. Based on the ROS image, we sequen-

tially select the array that minimizes the noise amplification recursively until the desired

v



number of arrays are selected. To avoid the singularity of the criterion when extending

the selection procedure to more samples than unknowns, we propose a modified criterion

for the case when the number of unknowns is more than the number of selected samples

and the complementary case. We also propose an efficient method to update the crite-

rion based only on the deleted array in the previous step to greatly reduce computational

time and avoid the inversion of a huge matrix. This method has great practical potential

because it can finish the selection process within half a minute for practical sizes.

The proposed schemes in this dissertation efficiently optimize the MRSI observa-

tion in different ways. In general, they will reduce observation time and overcome the

problems in various available optimization methods.
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Chapter 1

Introduction

Magnetic resonance spectroscopic imaging (MRSI) is an extension of localized mag-

netic resonance spectroscopy (MRS), which allows collection of in-vivo spectroscopic

information from multiple regions simultaneously. MRSI is a completely non-invasive

method for obtaining quantitative biochemical information [1], which shows great promise

for use in basic physiological research and for clinical imaging of metabolic function [2,3].

The information acquired with MRSI is shown as either spectral line plots at a particu-

lar location or images of metabolite distributions, which can be used to assess regional

metabolic abnormalities in various pathologies. In recent years, spectroscopic imaging

studies have been performed on a large number of pathologies [3]. 1H MRSI studies have

indicated both focal and global metabolic changes in a variety of diseases including brain

tumors [4–9], sub-acute and acute cerebral infarction [10, 11], multiple sclerosis [12, 13],

AIDS dementia [14,15], Alzheimer’s disease [16–18], and epilepsy [19–21]. Most of these

diseases present challenges to neuronal viability, which relate to a reduction in the NAA

concentration. For instance, a reduction in the NAA concentration was shown in severely

affected areas in stroke. Lactate is often increased in the same regions, indicating is-

chemia [22]. The observed regional reduction of NAA could mark onset of Alzheimer’s

disease in an early stage. Observed reductions in brain myo-inositol could indicate alter-

ations in liver biochemistry [18]. In addition, an increase of choline is observed in most

malignant brain tumors. For example, the choline increase has been found to correlate

with tumor grade in astrocytomas [11]. On the other hand, applications of phosphorus

1
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MRSI have focused on energy metabolism in the human brain, in skeletal muscle and

cardiac muscle [23–25]. For example, metabolic changes have been observed in the brain

due to tumors [26] and epilepsy [21]. ATP depletion was found to indicate infarcted

regions in the cardiac muscle [25].

MRSI requires dedicated acquisition techniques because it combines elements from

MRS and magnetic resonance imaging (MRI) [1, 3, 27, 28]. Despite its potential, MRSI

has remained largely in a research setting because a relatively long time is required to

acquire the images. In order for MRSI to reach its full potential in a clinical environment,

the acquisition time must be reduced. When prior knowledge of the image is available,

it may be possible to reconstruct the image from a subset of k-space samples. Examples

of such prior knowledge are region of support, locations of anatomical boundaries, and

relative smoothness of various image areas. Given this potential for reducing the number

of k-space samples, we desire to choose the best possible combination of these samples

to guarantee the quality of the reconstructed image. Towards this end, we are pursuing

strategies where the imaging process is optimized so that only the most significant por-

tions of the data set are acquired. The strategies we are developing have demonstrated

significant reductions in imaging time with minimal noise amplification and no reduction

in resolution.



3

1.1 MRI, MRS, and MRSI

1.1.1 MRI

MRI is a completely non-invasive method for imaging soft tissues and other struc-

tures in the body. MRI makes use of the nuclear magnetic resonance (NMR) phe-

nomenon, which was discovered in 1946 [29], to obtain a proton density image of a given

object. The history of MRI based on the principle of NMR goes back to the early 1970s.

At that time both Lauterbur [30] and Damadian [31] proposed that NMR spectroscopic

techniques could be applied to human imaging. Andrew et al. [32, 33] demonstrated

that NMR imaging could show the details of the human anatomy. Subsequent images

obtained by Moore et al. [34] and Holland et al. [35] proved NMR tomography is indeed

capable of performing diagnostic imaging. Since MRI became clinically viable about 15

years ago, it has proven itself as an important diagnostic tool for a wide variety of health

problems. MRI is unique in that it exploits a magnetic moment called spin, which is a

physical property possessed by certain atomic nuclei such as those of hydrogen (protons).

It is completely noninvasive and appears to be safe for children and probably even for

pregnant women.

The Physics of MRI [1, 29,36–41]

All materials contain nuclei, which are protons, neutrons, or a combination of both

[39]. Nuclei that have an odd number of protons, neutrons, or both in combination,

possess a nuclear spin or a magnetic moment. Under normal circumstances, these atomic

nuclei in a sample are aligned randomly, and therefore their magnetic moments cancel

each other and no signal can be measured. However, if a sample is placed into a powerful

static magnetic field H0, spins align themselves with the external field either in a parallel
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Figure 1.1: (a) The spin magnetization M0 without the application of the rf pulse, (b)
The spin magnetization M0 with the rf field H1(t) applied.

direction (in low-energy state) or in an antiparallel direction (in high-energy state) and

start to precess at the Larmor precession frequency, which is proportional to the magnetic

field strength. At thermal equilibrium, the net spin magnetization vector M0 is along

the external magnetic field H0. When an rf signal is applied to the system in the form

of an rf magnetic field H1, those protons in the lower-energy state tend to be excited to

the higher-energy state and as a result, M0 can be rotated or flipped by any angle θ.

After cessation of the rf magnetic field H1, the excited protons tend to return to their

low-energy state by emitting a well-defined rf frequency (i.e. the same frequency as the

applied rf) by spin relaxation mechanisms such as spin-lattice and spin-spin relaxations,

and M0 lines up with H0 again. This emission of rf signals is then picked up by an rf

coil placed close to the excited object. This signal is called a free induction decay (FID),

which is the central part of NMR imaging. The spin magnetization in the rotating frame

with and without an rf pulse is shown in Figure 1.1. The flip angle θ of the magnetization

M0 is given by θ = γ
∫ tp
o H1(t)dt, where H1(t) is the time-varying rf field intensity and

τp is the application length of the rf pulse. The angle θ is typically set to 90o or 180o.
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The two relaxation mechanisms are the transverse or spin-spin relaxation known as

T2 relaxation and the longitudinal or spin-lattice relaxation known as T1 relaxation. Both

of these relaxations and their respective relaxation times (T1 and T2) are quite sensitive

to the molecular structures and the environments surrounding the nuclei. For example,

the mean T1 and T2 values of normal tissues and those of many malignant tissues differ

significantly, thereby allowing us to differentiate malignant tissue from normal tissues [1].

The imaging capabilities of these two important parameters, T1 and T2, together with

the spin densities and the flow-dependent phase information of the objects, make NMR

imaging a unique, versatile, and powerful technique in diagnostic imaging.

Three widely used spin-echo techniques play an essential role in data acquisition

for NMR and NMR imaging: the HAHN spin-echo technique [42], the CPMG technique

[43,44], and the stimulated echo techniques [42,45]. Both Hanh and CPMG techniques

have wide applications in all phases of NMR and NMR imaging to overcome several

adverse effects that often arise in experimental situations, such as the effects of the

gradient pulse rise time and the field inhomogeneity. The same goal can be achieved

with stimulated echo but without suffering additional T2 decay.

In a typical spin echo sequence, the RF pulses are repeated many times; the interval

between the repeated pulses is called the repetition time (TR). The interval in the pulse

sequence between the end of the RF pulse and the detection of the returning MR signal

is called the echo time (TE). By adjusting proper combinations of TR and TE, the image

will show contrast related mainly to differences in proton density, T1 relaxation time, or

T2 relaxation time of the tissue — in other words, the image is proton density weighted,

T1 weighted or T2 weighted. If long TR and long TE are chosen so that T1 differences
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Figure 1.2: Image weighting as a function of TR and TE

are responsible for the observed contrast, the image is said to be T1-weighted. If short

TR and short TE are chosen so that T2 differences are responsible for the observed

contrast, the image is said to be T2-weighted. If long TR and short TE are selected so

that both the T1 and T2 effects are minimized, then the image is said to be spin density-

or proton density-weighted. Figure 1.2 shows these weighting rules.

In NMR imaging or MRI, a field gradient or a set of gradients is deliberately added

to resolve the spatial distribution of spins by Fourier encodings. The basic form of the

signal obtained can be expressed as [46–48]

s(t) = M0

∫ ∫ ∫ ∞

−∞
ρ(x, y, z) exp{−iγ

∫ t

0
[xGx(t

′)+yGy(t
′)+zGz(t

′)]dt′}dxdydz (1.1.1)

The resulted FID or echo is in effect a Fourier transform-domain representation of

the spatially distributed spin density. Many imaging algorithms can be derived from this

basic form of the 3-D equation.

From the basic imaging equation in (1.1.1), a 3-D discrete imaging equation can be

obtained by discrete Fourier encoding. Fourier-domain scanning uses both frequency and

phase encodings. Discrete Fourier encoding can be achieved by changing the gradient
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amplitude (or its length):

S(gx, ty, gz) = M0

∫ ∫ ∫
ρ(x, y, z) exp[−iγ(xgxTx + yGyTy + zgztz)]dxdydz (1.1.2)

where gx = n�Gx and gz = n�Gy. �Gx and �Gz are the increments of the x-

gradient amplitude and z-gradient amplitude, and n denotes the step number of the phase

encoding gradient. The pulse length can also be varied provided that the pulse amplitude

is kept constant. However, the former phase encoding method is more widely used due

to the fact that the constant time or pulse width Tx employed in the former eliminates

NMR parameter-dependent signal variations such as T2 decay [1]. The y-gradient Gy

is used as the readout gradient, which is also the frequency-encoding gradient. This is

distinguished from the phase-encoding gradients which in this case are the x-gradient

and z-gradient. The number of phase encoding steps determines the x-directional and

z-directional resolution, while the y-directional resolution remains constant regardless of

the number of encoding steps employed. Theoretically the resolution of the y-directional

resolution can be infinitely high. However, in most cases the resolution in the y-direction

is limited by the bandwidth of the NMR data, the sampling interval, the frequency

response of the electronics, and the SNR. In practical NMR imaging, the resolution

is therefore largely determined by the number of phase encoding steps employed (e.g.,

the x-gradient and the z-gradient in this case) provided that the signal has a sufficient

SNR. Other important physical parameters involved in NMR imaging are the spin-lattice

and spin-spin relaxation times T1 and T2. The increased phase encoding steps will

improve resolution but cause long imaging time. If we let wx = γgxTx, wy = γGyty, and
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wz = γgzTz, (1.1.2) can be rewritten as

S(wx, wy, wz) = M0

∫ ∫ ∫
ρ(x, y, z) exp[−i(wxx+wyy + wzz)]dxdydz (1.1.3)

The 3-D density function can be obtained by taking a 3-D inverse Fourier transform of

S(wx, wy, wz):

ρ(x, y, z) = c

∫ ∫ ∫
S(wx, wy, wz) exp[−i(wxx+ wyy + wzz)]dwxdwydwz (1.1.4)

where c is a constant. 2-D Fourier imaging can be derived directly by setting z = z0 as

S(wx, wy) = M0

∫ ∫
ρ(x, y, z = z0) exp[−i(wxx+ wyy)]dxdy (1.1.5)

and

ρ(x, y, z = z0) = c

∫ ∫
S(wx, wy) exp[−i(wxx+ wyy)]dwxdwy (1.1.6)

1.1.2 MRS

Because the magnetic field in the vicinity of a nucleus is influenced by the local

conditions, the Larmor frequencies for two different nuclei of the same species may be

shifted apart. This phenomenon is also known as chemical shift. The Larmor frequencies

for two different nuclei of the same species are given by

vk = γ(1− σk)B0 (1.1.7)

vref = γ(1− σref )B0 (1.1.8)
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where σk and σref are the screening (or shielding) constants of the sample and the

reference materials, respectively, due to the diamagnetic, paramagnetic, and interatomic

current effects. The chemical shift is defined as the difference of these two equations:

wk ≡ vk − vref = γ(σref − σk)B0 (1.1.9)

To eliminate the field dependency of wk, a relative chemical shift δk is defined as

δk =
σref − σk
1− σref

× 106ppm (1.1.10)

In proton NMR spectroscopy, tetramethylsilane (TMS) is a typical reference mate-

rial. A positive value of δk indicates that the nuclei of the sample resonate at a frequency

higher than the reference material. In a high magnetic field the spectrum of a partic-

ular substance may be resolvable into several peaks due to the chemical shift, and the

frequency difference between the peaks becomes larger with increasing magnetic field

strength B0. Therefore, chemical shift plays a key role in NMR spectroscopy.

Magnetic resonance spectroscopy is a unique tool in that it can noninvasively obtain

quantitative biochemical information. Proton magnetic resonance spectroscopy plays an

important role for the study of in vivo metabolites in animals and humans [49–55]. Phos-

phorus spectroscopy plays a key role in NMR spectroscopy especially in in vivo human

studies [56, 57]. However, most of the spectroscopy techniques critically depend upon

the quality of the spectral resolution that can be obtained. Good resolution can be

achieved by optimizing the magnetic field homogeneity over the sample volume of inter-

est by localization techniques. A number of volume localization techniques have been
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developed such as rotating-frame zeugmatography [58,59], DRESS [60], SPARS [61,62],

STEAM [50, 63] and other techniques using high-order gradient fields and multidimen-

sional localization [49,51–56,64–77].

1.1.3 MRSI

MRSI is a combination of MRS and MRI. MRSI differs from conventional spec-

troscopy in that the spectroscopic information is presented in the form of an image

instead of in the form of a graph. Consequently, MRSI gives results which are readily

interpretable in a qualitative sense and allows collection of in vivo spectroscopic data

from multiple regions simultaneously. It shows great promise for use in basic physiolog-

ical research and for clinical imaging of metabolic function [2]. Spectroscopic imaging

studies have been performed on a large number of pathologies [3]. 1H MRSI studies have

indicated both focal and global metabolic changes in a number of diseases including brain

tumors [4–9], sub-acute and acute cerebral infarction [10, 11], multiple sclerosis [12, 13],

AIDS dementia [14, 15], Alzheimer’s disease [16–18], and epilepsy [20]. Most of these

diseases cause a reduction in the NAA concentration and challenges to neuronal vi-

ability [3]. Applications of phosphorus MRSI have focused on energy metabolism in

the human brain, skeletal muscle and cardiac muscle [23–25]. For instance, Metabolic

changes have been observed in the brain due to brain tumors [26] and epilepsy [21]. ATP

depletion was found in the cardiac muscle to indicate infarcted regions [25].

MRSI can be expressed in the form of four-dimensional Fourier NMR imaging [27],

which offered new possibilities of doing spatially resolved high-resolution spectroscopy.
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This 4-D NMR technique is a variation of the three-dimensional Fourier imaging tech-

nique with an additional spectral dimension. The new spectral dimension indicates the

chemical shift information. The acquired data in the frequency domain is then trans-

formed into the spatial domain by an inverse four-dimensional Fourier transform to gen-

erate the NMR spectra as well as the 3-D image – in other words, the NMR spectrum

at each voxel in the spatially resolved 3-D volume image. The observed NMR signal is

given by

S(wx, wy, wz, tx) =

∫
wk

∫
z

∫
y

∫
x
ρ(x, y, z, wk) exp[−i(wxx+wyy +wzz +wktk)]dxdydzdwk

(1.1.11)

where wx = γgxTx, wy = γgyTy, and wz = γgzTz, gx, gy, and gz are the amplitude

variables of the x, y, and z gradients, and Tx, Ty, and Tz are constant time intervals. A

three-dimensionally resolved volume spectral image can be reduced to a two-dimensional

slice spectral image by converting any one of the three coding gradients into the selection

gradient.

The standard MRSI protocol is to acquire a set of k-space samples on a rectangular

grid and perform an inverse Fourier transform on the acquired data to obtain the spatial-

domain image and the NMR spectrum. Full four-dimensional Fourier imaging requires

an imaging time of NxNyNzTR seconds for spectrally resolved 3-D volume imaging. Nx,

Ny, Nz and TR are the number of encoding steps of the x, y, z gradients and repetition

time, respectively. Then Nx, Ny, and Nz will represent the number of image pixels in

the spatial domains x, y, and z. Quite a large number of coding steps will be required

even for the case of 2-D slice-selected spectroscopic imaging, and they are often too long

for human in vivo imaging. This limitation results in truncated k-space data, which



12

causes ringing and limits the resolution of the reconstructed image. However, increased

resolution is particularly important for making MRSI a clinically viable technique. For

example, the use of MRSI to localize and assess brain tumors [7] and multiple sclerosis [78]

as well as to determine the seizure focus of temporal lobe epilepsy [19] will all require

increased resolution. A number of image modeling techniques have been proposed to

incorporate a priori information from a proton-density MR imaging study to improve

the resolution of the MR spectroscopic image of the same object [79–81]. When these

image models are imposed on the image reconstruction process, the combination of k-

space samples acquired can have a considerable effect on the quality of the reconstructed

image. In this thesis, we consider images with a limited region of support (ROS). When

the image has a limited region of support (ROS), it is possible to reconstruct the image

from a subset of k-space samples. Therefore, we desire to develop strategies to choose the

best possible combination of a reduced set of k-space samples to guarantee the quality

of the reconstructed image while reducing the imaging time required. This is the goal of

the thesis.

1.2 MRSI Acquisition Methods and Existing Problems

1.2.1 Rectangular Sampling

Rectangular sampling acquires a set of k-space samples on a rectangular grid. The

spatial-domain image is reconstructed by performing an inverse Fourier transform on the

acquired data. This is the standard MRSI protocol. If the spatial extent of the image

is limited, rectangular sampling at the Nyquist rate will permit accurate reconstruction

with no spatial aliasing (overlapping of the periodic images). Rectangular sampling
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may be formally defined as sampling on a regular lattice whose basis vectors form an

orthogonal set. The basis vectors need not be of equal magnitude. However, the time

required to gather the data while maintaining an adequate signal-to-noise ratio (S/N)

limits the number of k-space samples that can be acquired, which we have discussed in the

previous section. This limitation is typically addressed by limiting the k-space acquisition

to low spatial-frequency samples, which causes ringing and limits the resolution of the

reconstructed image. On the other hand, in two or more dimensions rectangular sampling

is inefficient if the image is isotropically spatially limited. Consider rectangular sampling

of k-space for an image with a 2-D circular or elliptical ROS at Nyquist density. As shown

in Figure 1.3, gaps exist among the replications. In the 2-D case, the mean sampling

density is 4
π as dense as the minimum sampling density required to avoid aliasing. This

translates into 27% more time to obtain an image than is necessary, which can be critical

in MRSI. Therefore, various other sampling schemes have been proposed to optimize the

sampling strategy.

1.2.2 Multi Spin Echo Imaging

Multi-spin echo imaging is a class of rapid imaging techniques that includes echo

planar imaging (EPI) and spiral scan echo planar imaging (SEPI).

Mansfield was the first to propose EPI. This method, in principle, allows us to obtain

2-D image data by a single excitation [82] and can be extended to a 3-D form. First, a

slice of thickness �z is selected by applying Gz together with a 90o selective rf pulse.

Then an oscillating Gx and a small constant gradient Gy are applied. The generated
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Figure 1.3: The replication of elliptical ROS for rectangular sampling of k-space at
Nyquist density(a and b are semi major and minor respectively).

FID and echoes can be written as

f(t) = {
∞∑
n=0

gn(t− 2nπ)exp(− t

T2
) (1.2.1)

where gn(t− 2nπ) is the echo signal:

gn(t− 2nπ) = s(t) (1.2.2)

The entire frequency or k-space can be covered with a single 90o rf pulse excitation

by adjusting Gx and Gy. However, there exist some problems in EPI. One problem is

that T2 decay requires a rapidly alternating gradient pulse of large amplitude, which is

often difficult to obtain in practice. Another problem in EPI is the poor resolution in the
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phase encoding direction due to the limitation in the number of phase encoding steps or

the number of echoes that can be recalled due to the signal decay by T2.

Some of the difficulties in the original EPI such as the resolution limits in the phase

encoding direction can be partially resolved by the application of a spiral scan in k-space

known as SEPI [75]. The spiral scan represents a close approximation of the concentric

circles with which the entire frequency range of interest can be covered uniformly [83],

thereby achieving approximately circularly symmetric resolution. The required k-space

radial and angular sampling rates can be defined as

�kr =
2π

2Nr
(1.2.3)

�kθ =
2π

Nθ
(1.2.4)

where Nr and �r denote the number of rotations in the k-domain and the image resolu-

tion in the spatial domain, respectively. The total required image data acquisition time

TD is given by multiplication of angular incremental time �T , the number of rotations,

and the number of samples in one complete revolution.

TD = NrNθ�T (1.2.5)

The main advantage of SEPI over standard EPI is the conjugate symmetry property

of the spiral scan. This property allows the sampling rate to be increased by a factor

of 2. One of the drawbacks of SEPI is that the complex 2-D interpolation of the polar

coordinate data to Cartesian data is necessary for using an FFT to reconstruct the spatial

image to display. Another drawback is that the samples on the circles near the origin are
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too close while the samples on the outermost circles are too wide apart, causing either

wasting of time or aliasing and increasing the complexity of the interpolation.

Multi-spin echo imaging techniques are inappropriate for standard MRSI, since the

standard MRSI protocol uses the readout direction for the spectroscopic information and

each point in k-space must be acquired by a separate excitation sequence. But they can

be adapted to MRSI with some modifications [84–88].

1.2.3 Hexagonal Sampling

Hexagonal sampling [89] allows an image with an elliptical ROS to be reconstructed

with no aliasing from fewer data points than rectangular sampling. Hexagonal sampling

at the Nyquist rate has a 13.4% efficiency gain over rectangular sampling at the Nyquist

rate and yields the most densely packed spatial replications for space-limited signals

[90, 91]. However, Nyquist density sampling cannot reach the minimum density for an

elliptical ROS image. Consider hexagonal sampling of k-space for an image with a 2-D

circular or elliptical ROS at Nyquist density. As shown in Figure 1.4, gaps exist among

the replications. Minimum density sampling yields samples linearly independent of each

other, which cannot be reached through this uniform sampling strategy.

1.2.4 Other Existing Observation Optimization Strategies

The problem of optimizing the choice of k-space samples has also been addressed

in various other ways. Von Kienlin et al. [92] introduced a criterion for optimizing the

k-space samples using the SLIM [79] model for the image. This model assumes that

the image is made up of homogeneous regions. The proposed criterion is based on the
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Figure 1.4: The replication of elliptical ROS for hexagonal sampling of k-space at Nyquist
density

resulting point-spread function. However, their final criterion must be numerically opti-

mized by a multidimensional nonlinear optimization algorithm, and the criterion contains

multiple local minima. Furthermore, the criterion has only an indirect relation to image

quality. Cao and Levin [93] used an image database to constrain the reconstructed image

to a limited set of basis images and optimized the choice of k-space samples to minimize

mean square error (MSE) in the reconstruction. The problem with this approach is that

it may overly constrain the reconstruction when one is attempting to detect anomalies in

the image. Furthermore, the authors did not propose an efficient optimization method.

Plevritis and Mackovski [94] proposed a heuristic k-space selection method based on find-

ing the highest-energy k-space locations of a binarized scout image. While this method

may improve reconstruction results as compared to lowpass sampling, it has no clear

connection to any measure of optimality in the reconstructed image.
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Recognizing the combinatoric problem inherent in the previous approaches, two

independent groups have proposed an alternative sampling scheme called coset sampling

[95–97]. In this scheme, k-space is divided into rectangular blocks and the same irregular

pattern of samples is selected within each block so that the sampling scheme becomes

block-periodic. This approach is quite effective and reduces the optimization problem

considerably under certain conditions. However, to achieve a significant reduction in

the sampling density, the ROS must be well approximated by a collection of rectangles.

Reeves et al. proposed sequential backward selection (SBS) [98,99] and sequential forward

selection (SFS) [100] based on minimizing MSE in the reconstructed image. However,

SBS cannot be implemented in real time because SBS eliminates the worst candidate

rather than selects the best one. Therefore, observation cannot begin until the whole

selection process finishes. The SFS algorithm based on MSE does not apply when there

are more unknowns than selected samples, because the criterion is undefined in this case.

Thus, the SFS algorithm cannot begin with no samples selected.

In addition to optimizing MRSI data acquisition, the techniques proposed here can

be used for 3-D MRI. In the case of 3-D MRI the readout direction is used to sample

along a line in the third k-space dimension, so these lines will appear as individual k-space

points in the first two k-space dimensions. Therefore, if the 3-D image has a limited ROS

in every slice along a particular dimension, the proposed algorithm can be used without

modification to select the k-space distribution. The most efficient acquisition would

use echo-volume imaging to traverse several selected k-space lines for every excitation

period. The only restriction is that in the optimization algorithm we must use an ROS

that completely contains the ROS at each slice. However, a relative shift of the ROS
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from slice to slice will not affect the optimal set of k-space samples for that slice, since

the criteria in (2) and (8) are unaffected by shifts of the ROS. We have proved this

assertion in the appendix.

1.3 Thesis Overview and Contributions

1.3.1 Overview

Nyquist density sampling yields the most densely packed spatial replications for

space-limited signals, while minimum density sampling yields samples linearly indepen-

dent of each other but not necessarily uniformly distributed. It can be shown that for 1-D

space-limited functions, the two densities (or rates) are identical. For higher-dimensional

space-limited functions, Nyquist densities can be significantly higher than minimum den-

sities [101]. This is the rationale for optimized k-space sampling with a limited ROS. If

the ROS is smaller than the image, Nyquist sampling represents a redundant sampling

of k-space. The multidimensional extension of Papoulis’ generalized sampling expansion

states that the minimum frequency-sampling density of an M-D space-limited function

is equal to the area of the ROS of the function [101]. That is, the minimum number of

samples in k-space equals the area of the ROS. However, this theorem does not tell us

how to achieve this minimum density sampling without losing any signal information.

In this thesis, we develop four MRSI observation optimization strategies to overcome

the existing problems in different ways: 1) efficient SFS [102–104], 2) efficient SBS ap-

plied to hexagonal samples [105], 3) efficient SBS for block-periodic sampling [106–108],

and 4) efficient SFS for block-periodic sampling. In each case, we develop an efficient op-

timization criterion based on minimizing the sum of squared errors in the reconstructed
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image samples, an efficient computational strategy for the optimization procedure, and

in one case an efficient image reconstruction method. These strategies tend to minimize

the error criterion, but they do not guarantee the optimal observation selection.

1.3.2 Contributions

The contributions we propose are summarized as follows:

• A modified SFS algorithm [102–104] is developed to overcome the problems with

standard SFS [100]. This entails the following contributions:

– We present a modified form of the criterion that overcomes the existing prob-

lem for the standard SFS algorithm and develop an SFS algorithm for the

new criterion.

– We develop an efficient computational strategy for the new algorithm as well

as the standard SFS algorithm, which drastically reduces storage space and

computational time.

– The combined algorithm can efficiently select a reduced set of k-space samples

from which we can reach the minimum density without losing any signal

information. Furthermore, if the data is noisy as is the case in MRSI, we can

reduce noise amplification considerably by selecting a few more samples than

the number of unknowns in the ROS. Simulations with real MR data show

that a good-quality image can be reconstructed with only a few more samples

than the minimum density with this method.
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– It is more applicable in practice than SBS in that the best sample can be

observed as soon as it is selected, making possible real-time selection and

acquisition.

• We present an efficient SBS algorithm from hexagonal samples when the ROS is

approximated by an ellipse. In this method, we make the following contributions:

– A general periodic matrix FFT is implemented based on a rectangular FFT

with the Smith form decomposition. A structured Smith form decomposition

is implemented.

– By choosing an appropriate periodic matrix N , the hexagonal samples in the

frequency domain can be transformed to rectangular samples in the spatial

domain without interpolation directly with the generalized FFT. Therefore,

artifacts and extra computational time are avoided.

– An efficient SBS algorithm is applied to hexagonal samples. The combined

algorithm efficiently optimizes a reduced set of k-space samples and saves

a great deal of selection time in comparison with SBS applied to common

rectangular samples. The savings results from the fact that the algorithm

begins with fewer samples than with a rectangular grid.

• We develop an SBS algorithm for periodic sample blocks. In this scheme, we make

the following contributions:

– It provides an efficient update formula for the criterion based on convolution

kernels rather than large, non-sparse matrices;
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– It provides an efficient update formula for the convolution kernels based on

the deleted array.

– It provides an efficient reconstruction method based on convolutions rather

than matrix inverses. The proposed method dramatically reduces storage and

computational complexity.

• We develop an efficient SFS algorithm for periodic sample blocks. In this scheme,

we make the following contributions:

– It provides a modified criterion to avoid the singularity problem when extend-

ing the selection process.

– It provides an efficient update formula for the criterion based only on the

previous selected array.

– It decomposes the block sample algorithm into a combination of single sample

algorithms to efficiently solve the complicated array selection problem.

– It seamlessly integrates the modified SFS algorithm for fewer samples than

unknowns with the standard algorithm for more samples than unknowns.

– It has great practical potential in that it can finish the selection in half a

minute for a practical size image.



Chapter 2

Efficient Sequential Forward Selection

2.1 Introduction

Sequential forward selection (SFS) is appealing as an optimization method because

the previously selected sample can be observed while the next sample is selected. SFS

tends to minimize the error criterion, but it does not guarantee the optimal observation

selection. When the number of selected k-space samples is less than the number of un-

knowns at the beginning of the selection process, the optimality criterion is undefined

and the resulting SFS algorithm cannot be used. In this chapter, we present a modified

form of the criterion that overcomes this problem and develop an SFS algorithm for the

new criterion. Then we develop an efficient computational strategy for this algorithm

as well as for the standard SFS algorithm. The combined algorithm efficiently selects a

reduced set of k-space samples from which the ROS can be reconstructed with minimal

noise amplification. With the proposed algorithm, we can reach the minimum density

without losing any signal information. If the samples are noisy as are the case in MRSI,

we can reduce noise amplification considerably with a few more samples than the number

of unknowns in the ROS. Furthermore, the proposed algorithm brings real-time imple-

mentation closer to reality because the previously selected sample can be observed while

the next sample is selected.

23
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2.2 Criteria

2.2.1 Signal Model

We model the observed k-space samples y as a vector resulting from a linear trans-

formation of the original image x in the presence of additive noise w; that is

y = Ax+ w (2.2.1)

where w is zero-mean, independently identical distributed (i.i.d.) noise and A ∈ Cm×n,

m and n are integers. Given the observed signal y, the goal is to reconstruct a good

estimate of x. We want to select the limited set of observations that will yield the

best possible reconstruction of x by using the known mapping from the original to the

observations. This is equivalent to choosing rows for A that correspond to the best set

of observations y. For MRI and MRSI, A represents a Fourier transform matrix with

columns removed corresponding to the voxels outside the ROS.

2.2.2 Standard Criterion

If the noise is zero-mean, i.i.d. and the reconstruction of x is performed via least

squares, we can define a criterion E(A) that is proportional to the mean square error in

the reconstruction [109] as

E(A) = tr (AHA)−1 (2.2.2)

Obviously, the criterion is not defined when A has fewer rows than columns. A

critical limitation of the SFS algorithm based on this criterion is that it only applies
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when the initial matrix has a column rank of n. A necessary condition, therefore, is that

A have at least n rows to begin the update process [100]. Consequently, this criterion

can not be used directly for an SFS algorithm that starts with no selected observations.

Therefore, in the next section we present a modified form of the selection criterion

that uses a pseudo-inverse in place of the inverse to make the initial selection process

possible. We optimize the selection process based on the modified criterion until A is

square. Afterwards, we switch the selection process to the standard algorithm.

2.2.3 Modified Criterion

When A has fewer rows than columns, we propose to use the following modified

criterion:

E(A) = tr (AHA)+ (2.2.3)

where (AHA)+ is the pseudo-inverse of AHA. Let UHAV = Σ be the singular value

decomposition (SVD) of A ∈ Cm×n with r = rank(A). Then (AHA)+ = V (ΣHΣ)+V H ,

where

(ΣHΣ)+ = diag(
1

σ2
1

, . . . ,
1

σ2
r

, 0, . . . , 0), (2.2.4)

and σi is the ith diagonal entry of Σ. Now, we consider the validity of the modified

criterion and its relation to the standard criterion. The minimum-norm least-squares

solution is given by

xLS = (AHA)+AHy

=
r∑

i=1

ηiη
H
i x+ (AHA)+AHw (2.2.5)
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and

x = V V Hx =
n∑

i=1

ηiη
H
i x (2.2.6)

where x is the ideal solution with A full rank and no noise and ηi is the ith column

vector of V . Then,

E||x− xLS ||2 = ||
n∑

i=r+1

ηiη
H
i x||2 + σ2

wtr(A(A
HA)+(AHA)+AH)

=
n∑

i=r+1

||xT ηi||2 + σ2
wtr(A

HA)+ (2.2.7)

When A is underdetermined, there are two parts in the error. One part is due to

the loss of signal components; the other is due to noise. The error due to the loss of

these signal components is not reflected in the modified criterion. However, the criterion

does reflect the noise error. Thus, the criterion still provides a useful indicator of the

degree to which the available components suppress or amplify noise. When a new row

is selected, the number of zeroed signal components (n − r) will decrease by one, and

the corresponding noise will be reflected in the criterion and increase the criterion value.

Therefore, we can choose the best new row based on the modified criterion such that the

criterion increases by the minimum value. When at least n rows are ultimately to be

selected, the error in the reconstructed signal due to the zeroed signal components will

eventually disappear, and the pseudo-inverse criterion will be equivalent to the original

inverse criterion. This justifies our neglect of the signal error component in using the

modified error criterion.
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Having modified the criterion, we can no longer use the standard SFS algorithm to

optimize it. Note that AAH = U(ΣΣH)UH . Therefore,

E(A) = tr (AHA)+ =
n∑

i=1

1

σ2
i

= tr (AAH)−1 (2.2.8)

Now, the form of the criterion given by (2.2.8) no longer needs a pseudo-inverse and

consequently is much more tractable as the basis of a selection algorithm.

2.3 SFS Algorithm

2.3.1 Standard SFS algorithm

Standard SFS begins with a matrix A with the number of rows at least equal to the

number of columns, or equivalently, with the number of selected observations at least

equal to the number of unknowns. It then sequentially selects the row that reduces the

MSE criterion the most at each step until the desired number of rows are selected. Let

A+ represents the new matrix after the ith row ai is added to matrix A. Using the

Sherman-Morrison matrix inversion formula [110] gives

(AH
+A+)

−1 = (AHA)−1 − (AHA)−1aHi ai(A
HA)−1

1 + ai(AHA)−1aHi
(2.3.1)

Taking the trace of both sides gives

tr {(AH
+A+)

−1} = tr {(AHA)−1} − tr {(AHA)−1aHi ai(A
HA)−1}

1 + ai(AHA)−1aHi
(2.3.2)
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and using the property that tr {CDE} = tr {DEC}, we obtain

tr {(AH
+A+)

−1} = tr (AHA)−1 − ai(A
HA)−2aHi

1 + ai(AHA)−1aHi
(2.3.3)

Therefore, the criterion is minimized at each step by selecting the row (observation)

that maximizes the second term of (2.3.3).

2.3.2 Modified SFS algorithm

In this section, we derive an efficient SFS algorithm for the modified criterion.

Lemma 2.3.1 [111] Let R denote an invertible partitioned matrix,

R =

⎡
⎢⎢⎢⎢⎢⎢⎣

P
... Q

· · · · · ·

S
... T

⎤
⎥⎥⎥⎥⎥⎥⎦

(2.3.4)

where P and T are invertible. Then

R−1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

E−1 ... FH−1

· · · · · ·

H−1G
... H−1

⎤
⎥⎥⎥⎥⎥⎥⎦

(2.3.5)

where

E = P −QT−1S, (2.3.6)

F = −P−1Q (2.3.7)

G = −SP−1 (2.3.8)
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and

H = T − SP−1Q (2.3.9)

The matrix E is called the Schur complement of P , and the matrix H is called the Schur

complement of T .

Lemma 2.3.2 [111] Let E denote the Schur complement of P ,

E = P −QT−1S. (2.3.10)

Then the inverse of E is

E−1 = P−1 + FH−1G (2.3.11)

Now denote A+ as the new matrix after the ith row ai is added to matrix A. Then

we have a partitioned expression of A+A
H
+ :

A+A
H
+ =

⎡
⎢⎢⎢⎢⎢⎢⎣

AAH ... AaHi

· · · · · ·

aiA
H

... aia
H
i

⎤
⎥⎥⎥⎥⎥⎥⎦

(2.3.12)

From (2.3.5), (2.3.9), and (2.3.11)

tr {(A+A
H
+ )−1} = tr (E−1) + tr (H−1)

= tr (AAH)−1

+
1 + aiA

H(AAH)−2AaHi
aiaHi − aiAH(AAH)−1AaHi

(2.3.13)
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Therefore, the criterion is minimized at each step by selecting the row that minimizes

the second term in (2.3.13) [103].

2.4 Efficient Computation For SFS Algorithm

From (2.3.13), we know that we need to calculate aiA
H(AAH)−2AaHi and aiA

H(AAH)−1AaHi

for every candidate row ai to determine the best one among all the candidate rows. If

we have many candidate rows, then the computational cost can be enormous. How-

ever, by making use of the previous calculations for the next choice, we can reduce the

computational burden.

Let vi = (AAH)−1AaHi and σi = aia
H
i − aiA

H(AAH)−1AaHi . Then

(A+A
H
+ )−1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

(AAH)−1 + 1
σi
viv

H
i

... − 1
σi
vi

· · · · · ·

− 1
σi
vHi

... 1
σi

⎤
⎥⎥⎥⎥⎥⎥⎦

(2.4.1)

AH
+ (A+A

H
+ )−1A+ = AH(AAH)−1A

+
1

σi
(AHviv

H
i A− aHi vHi A−AHviai + aHi ai) (2.4.2)

Let ui = AHvi. Then

ajA
H
+ (AAH)−1A+a

H
j = ajA

H(AAH)−1AaHj +
1

σi
|ajui − aja

H
i |2 (2.4.3)

(A+A
H
+ )−2 = (A+A

H
+ )−1(A+A

H
+ )−1
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=

⎡
⎢⎢⎣ P Q

S T

⎤
⎥⎥⎦ (2.4.4)

P = (AAH)−2 +
1

σi
viv

H
i (AAH)−1 +

1

σi
(AAH)−1viv

H
i

+
1

σ2
i

(viv
H
i )2 +

1

σ2
i

viv
H
i (2.4.5)

Q = − 1

σi
(AAH)−1vi − 1

σ2
i

viv
H
i vi − 1

σ2
i

vi (2.4.6)

S = − 1

σi
vHi (AAH)−1 − 1

σ2
i

vHi viv
H
i − 1

σ2
i

vHi (2.4.7)

T =
1

σ2
i

vHi vi +
1

σ2
i

(2.4.8)

Let zi = (AAH)−1vi and wi = AHzi. Then

AH
+ (A+A

H
+ )−2A+ = AH(AAH)−2A+

1

σi
(uiw

H
i +wiu

H
i )

− 1

σi
(aHi wH

i + wiai)

+
1 + ‖vi‖2

σ2
i

(uiu
H
i − aHi uHi − uiai + aHi ai) (2.4.9)

ajA
H
+ (A+A

H
+ )−2A+a

H
j = ajA

H(AAH)−2AaHj

+
2

σi
[Re((ajwi)(ajui)

H)−Re((ajwi)(aja
H
i )H)]

+
1 + ‖vi‖2

σ2
i

|ajui − aja
H
i |2 (2.4.10)
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Now, when we choose the best row from the remaining candidate rows to add to A+,

we can recursively update ajA
H
+ (A+A

H
+ )−1A+a

H
j and ajA

H
+ (A+A

H
+ )−2A+a

H
j for every

candidate row aj using (2.4.3) and (2.4.10). The initial values of these quantities can be

shown to be zero. Once ui and wi have been computed, the update formulas in (2.4.3)

and (2.4.10) only require vector inner products. The computational cost will be reduced

greatly in this way.

To calculate ui and wi, we need to calculate vi and zi first. To calculate vi =

(AAH)−1AaHi and zi = (AAH)−1vi, we need to deal with (AAH)−1. However, in this

problem, AAH is huge and cannot be stored or inverted. Therefore, instead of finding

the inverse matrix explicitly, we compute the solution by finding the minimizer of a

quadratic function of the form:

Φ(f) = ||g −Df ||2 (2.4.11)

where g is a known vector and D is a known matrix. We use the conjugate gradients

method [112] which is defined as follows:

p0 = r0 = DHg (2.4.12)

f0 = 0 (2.4.13)

rk = −1

2
∇Φ(fk) = DH(g −Dfk) (2.4.14)

pk = rk + (||rk||2/||rk−1||2)pk−1 (2.4.15)

fk+1 = fk + βkpk (2.4.16)
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βk =
(pk, rk)

||Dpk||2 (2.4.17)

where pk is called the direction vector, and βk is chosen to minimize Φ(f) in the pk

direction. Note that the conjugate gradients iteration does not require the storage of D

as long as the operation Dx can be performed on an arbitrary vector x in some way other

than by a matrix-vector multiply. In this setting, Dx can be computed using FFT’s and

other simple operations. Since f has finite dimensions, the minimum can be reached

in finite steps. The vectors vi and ui will be the solutions corresponding to different

definitions of g and D. Therefore, we can greatly reduce the computational time and

storage space by using the conjugate gradients algorithm to solve the inversion problem

instead of calculating the inverse directly.

2.5 Extending the SFS Process

When more samples than unknowns are desired, the selection can be continued

with the standard SFS algorithm in Section 2.3.1 based on (2.2.2). For computational

efficiency, we derive a recursive method for updating ai(A
HA)−2aHi and ai(A

HA)−1aHi ,

which are needed to evaluate the second term in (2.3.3). For completeness, we reproduce

the derivation in [100], along with our own extension that allows us to compute the initial

values of the recursion. Using the Sherman-Morrison matrix inversion formula, we have

the update formula for (AH
+A+)

−1 as follows:

(AH
+A+)

−1 = (AHA)−1 − (AHA)−1aHi ai(A
HA)−1

1 + ai(AHA)−1aHi

= (AHA)−1 − 1

σi
gig

H
i (2.5.1)
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where gi = (AHA)−1aHi . Let hi = (AHA)−1gi. Then

(AH
+A+)

−2 = (AHA)−2 − 1

σi
gih

H
i − 1

σi
hig

H
i +

1

σ2
i

(gig
H
i )2 (2.5.2)

aj(A
H
+A+)

−1aHj = aj(A
HA)−1aHj − 1

σi
|ajgi|2 (2.5.3)

aj(A
H
+A+)

−2aHj = aj(A
HA)−2aHj − 2

σi
Re(ajgi(ajhi)

H) +
‖gi‖2
σ2
i

|ajgi|2 (2.5.4)

Now we need to find the initial value of ai(A
HA)−2aHi and ai(A

HA)−1aHi . When A is

square (the initial A for the extended SFS algorithm), we have the following relations

after some matrix manipulation:

aj(A
HA)−1aHj = ajA

H(AAH)−2AaHj (2.5.5)

aj(A
HA)−2aj = ajA

H(AAH)−3AaHj (2.5.6)

The term ajA
H(AAH)−2AaHj is already available from the initial SFS process from

(2.4.10). We also need an efficient recursive formula to update ajA
H(AAH)−3AaHj .

Let ci = (AAH)−1zi and di = AHci. Using (2.4.1) and (2.4.4), after some matrix

manipulation we have

(A+A
H
+ )−3 = (A+A

H
+ )−2(A+A

H
+ )−1

=

⎡
⎢⎢⎣ E F

G H

⎤
⎥⎥⎦ (2.5.7)
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where

E = (AAH)−3 +
1

σi
(vic

H
i + civ

H
i )

+
1

σi
ziz

H
i +

1 + ‖vi‖2
σ2
i

(viz
H
i + ziv

H
i )

+
vHi zi
σ2
i

viv
H
i +

(1 + ‖vi‖2)2
σ3
i

viv
H
i (2.5.8)

F = − 1

σi
ci − vHi zi

σ2
i

vi − 1 + ‖vi‖2
σ2
i

zi − (1 + ‖vi‖2)2
σ3
i

vi (2.5.9)

G = − 1

σi
cHi − vHi zi

σ2
i

vHi

−1 + ‖vi‖2
σ2
i

zHi − (1 + ‖vi‖2)2
σ3
i

vHi (2.5.10)

H =
1

σ2
i

vHi zi +
(1 + ‖vi‖2)2

σ3
i

(2.5.11)

AH
+ (A+A

H
+ )−3A+

= AH(AAH)−3A+
1

σi
wiw

H
i +

1

σi
(uid

H
i + diu

H
i − aHi dHi − diai)

+
1 + ‖vi‖2

σ2
i

(uiw
H
i + wiu

H
i − aHi wH

i − wiai)

+(
vHi zi
σ2
i

+
(1 + ‖vi‖2)2

σ3
i

)(uiu
H
i − aHi uHi − uiai + aHi ai) (2.5.12)
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ajA
H
+ (A+A

H
+ )−3A+a

H
j

= ajA
H(AAH)−3AaHj +

1

σi
|ajwi|2 + 2

σi
(Re((ajdi)(ajui)

H)−Re((ajdi)(aja
H
i )H))

+
2(1 + ‖vi‖2)

σ2
i

(Re((ajwi)(ajui)
H)−Re((ajwi)(aja

H
i )H))

+(
vHi zi
σ2
i

+
(1 + ‖vi‖2)2

σ3
i

)|ajui − aja
H
i |2 (2.5.13)

Now, we can use this recursive formula to update ajA
H
+ (A+A

H
+ )−3A+a

H
j until we

have the same number of samples as unknowns. Then we use this value as the initial

value of aj(A
HA)−2aj to begin the recursion for the extended SFS algorithm.

2.6 Experiments

To demonstrate the value of our method, we applied it to an actual MR data set.

Figure 2.1(a) shows a 128 × 128 MR scout image (courtesy of the Center for Nuclear

Imaging Research, University of Alabama at Birmingham) reconstructed from the full

128×128 k-space sample set. The k-space samples of the scout image are considered to be

the full image data set for selection purposes. This data set was a rapidly acquired scout

image, which contains some significant artifacts outside the ROS. The presence of these

artifacts tests the ability of the algorithm to provide a good selection and reconstruction

in spite of violating the assumptions of the ROS.

Figure 2.1(b) shows the ROS identified by hand. It contains 5168 possibly nonzero

voxels. Using this ROS, the k-space data were selected optimally by the proposed algo-

rithm. Since the initial criterion with a single selected sample in the frequency domain
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(a) (b)

Figure 2.1: (a) The real image, (b) The ROS image (white indicates the support region)

is the same regardless of the sample, we arbitrarily choose the DC sample as the initial

point for the recursive method. We have shown in the appendix that any circular shift

of the selection pattern in k-space yields the same criterion value. Therefore, a shift

of the initial point only causes a circular shift of the resulting optimal selection, which

is also optimal. To illustrate how the criterion changes as more samples are selected,

we continued the SFS process until all 16, 384 k-space samples were selected. First, we

chose 5168 k-space samples (matching the number of points in the ROS) from 16, 384

candidate points with the modified algorithm in Section 2.4. Then we switched to the

algorithm in Section 2.5 to continue the SFS process.

The criterion curve for the whole selection process is shown in Figure 2.2(a). When

matrix A is underdetermined, the criterion increases with each selected sample and

reaches a maximum value when A is square. This is because the pseudo-inverse solution



38

reduces the degrees of freedom for the noise, and the corresponding error resulting from

zeroing out some signal components is not included in the criterion. Equation (2.2.7)

shows that the MSE criterion for the minimum-norm least-squares solution includes two

terms when A is underdetermined — one term represents the error due to the missing

signal components and the other representing the error due to observation noise. As more

samples are selected, the error from missing signal components decreases. When the

number of observations equals the number of unknowns, this term disappears entirely.

Since we know we will select the minimum density so that no signal components are

missed, we ignore this term in our modified criterion and only keep the noise term that

reflects the noise amplification level during the selection process. For each row of A

that is added, the number of degrees of freedom for noise increases by one, causing the

criterion to increase until A becomes square. Since the criterion only represents the noise

portion of the error and the missing signal portion is unknown, we must select rows for A

until the unknown signal error disappears — that is, whenA becomes square. Thereafter,

the criterion decreases with each selected sample because the average noise will decrease

when more samples are observed while the number of the unknowns is fixed. The flop

curve in Figure 2.2 (b) shows the relation of the criterion to the condition number

indirectly, which has the same shape as the criterion curve. The average number of flops

for the whole selection process is 2.1759×108 . The average number of flops is 3.086×108

before the minimum density and 1.7566 × 108 after it.

An interesting result can be observed from the criterion curve. The curve drops

sharply right after the maximum value and then becomes smooth. Therefore, the recon-

structed image will improve greatly if we select only a few more samples than the number
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Table 2.1: Comparison of the criterion and time versus tol

tol=1e-5 tol=1e-3
# samples 5168 5297 16384 5168 5297 16384

MSE 10.8543 2.3362 0.3153 10.8542 2.3421 -0.3816
time(hr) 18 22 41 12 15 30

of unknowns. After this, selecting more samples yields diminishing returns in terms of

image quality improvement as a function of additional acquisition time. In Table 2.1, we

see that the criterion value is 10.8542 when the selected number equals the number of the

unknowns in the ROS (5168). Then with only 129 more samples selected, the criterion

drops drastically from 10.8542 to 2.3362; i.e, the net drop is 8.52. However, with 11216

more samples selected, the criterion decreases only by 2. Image quality improvement is

purely a function of the noise level decrement in the reconstructed image. There is no

direct relation of the quality criterion to the spatial resolution since the spatial resolu-

tion in the reconstruction is fixed; However, the samples optimized with the proposed

criterion covers the whole k-space nonuniformly. With this approach, we achieve the

same spatial resolution as that obtained with the full uniform k-space data.

The optimal sampling pattern with 5168 samples is shown in Figure 2.3(a) by the

black dots . The image reconstructed from these 5168 k-space samples is shown in Figure

2.4(a). To demonstrate the improvement obtained by selecting a few more samples than

the ROS, we reconstructed the image by selecting 129 more noisy samples than the ROS

(5297 k-space points), where the criterion drops from 10.85 to 2.34. The corresponding

sample pattern is shown in Figure 2.3(a) by 129 gray dots. The reconstructed image

is shown in Figure 2.4(b). The difference image between the optimized image from
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Figure 2.2: (a) The criterion curve versus the number of selected samples with the
128x128 ROS image, (b) The flop curve versus selection step with the 128x128 ROS .
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5297 k-space samples and the original image is shown in Figure 2.3 (b). The artifacts

outside the ROS are the systematic difference between them. When k-space samples are

acquired independently as in MRSI, the noise variance at each k-space location is the

same. However, our data set was acquired by a rapid scan through k-space in which

the samples are not acquired independently. In addition, the artifacts outside the ROS

are low-frequency noise, which is not considered in the model. Thus, the noise is larger

at the lowest, most powerful frequencies in the acquisition process. Therefore, once we

found the optimal sample distribution, we circularly shifted it so that DC and a few other

adjacent frequencies were unselected. Since according to the theorem in the appendix

the criterion is invariant to periodic shifts of the selection, this step will have no negative

effects on reconstruction quality.

The discrete impulse response for the optimized set is an impulse for every location

in the ROS. The impulse response from the optimized k-space data is shown in Figure

2.5(a). That explains why we can reconstruct the image exactly at the minimum den-

sity if there is no noise outside the ROS. For comparison purposes, we also used 5297

low-frequency noisy samples in a circle around DC to reconstruct the image from a ze-

ropadded FFT and a least-squares method. The impulse response from the inverse FFT

of the lowpass filter is shown in Figure 2.5(b). Only about 1/3 of the energy is concen-

trated on the center point with 2/3 of the energy spread out to form a lowpass impulse

response. The lowpass image from a zero padded FFT has about half the resolution

of the optimized image. There are obvious rings in the reconstructed image from a ze-

ropadded FFT as expected. Therefore, the zeropadded FFT reconstruction of the image

is not included here. Instead, iterative reconstructions of the lowpass image at 3 different
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Figure 2.3: (a) 5297 optimized k-space sample distribution (the 5168 black dots represent
the optimized minimum density, larger gray dots indicates 129 more optimized samples
than the minimum density), (b) Absolute difference between the optimized image recon-
struction and the fully sampled 128 × 128 image. (Dynamic range is scaled by a factor
of 5 for greater visibility).
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(a) (b)

Figure 2.4: (a) The image from the minimum density k-space data(5168 points). (b)
The image from 5297 k-space samples (the ROS has been imposed as a constraint in the
reconstruction).

iterations are shown in Figure 2.6. Figure 2.6(a) shows the reconstructed image from

an inverse FFT of 5297 lowpass samples. Figure 2.6(b) shows the reconstructed images

from a least-squares solution at iteration 5. Figure 2.6(c) shows the reconstructed im-

ages from a least-squares solution at iteration 20. Figure 2.6(d) shows the reconstructed

images from a least-squares solution at iteration 100.The resulting system is extremely

ill-conditioned and gets progressively worse as the iterations continue.

The tolerance for ending the conjugate gradients algorithm has some effect on the

accuracy of the computational criterion and the computational time which is shown in

Table 2.1. Here, we define the tolerance as the gradient vector norm of a quadratic

function that needs to be minimized. The function reaches the minimum when the

gradient vector norm equals zero. In theory, the MSE with all 16, 384 points observed is
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Figure 2.5: (a) The point spread function from optimized k-space data (b) The point
spread function from inverse FFT.

0.3154. When tol = 10−5, the final computational criterion is 0.3153, almost the same as

the theoretical value. When tol = 10−3, there is an obvious accumulating computational

error to the criterion when a huge number (16384) of samples is selected as shown in

Table 2.1, and the sample selection pattern is a little different from that for tol = 10−5.

When the selection number is not quite as large, (5297 in Table 2.1 and 4096 or 2304

in Table 2.2), the accumulating error is acceptable. To finish the whole process takes 30

hours when tol = 10−3 and 41 hours when tol = 10−5 (running on a 250MHz Sun Ultra

Sparc processor). The smaller the FOV is, the faster the selection process will be. Here,

we chose to use tol = 10−5 to assure reliability of the results.

To evaluate the method for MRSI, we applied the method to an actual 1H MRSI

data set. Figure 2.7(a) and (b) shows the water and fat image from a full 64 × 64 real

k-space MRSI data set (courtesy of the Center for Nuclear Imaging Research, University

of Alabama at Birmingham) and the ROS identified by hand. It contains 1439 possibly
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(a) (b)

(c) (d)

Figure 2.6: (a) Lowpass image from FFT, (b) Lowpass recursive solution at iteration 3,
(c) Lowpass recursive solution at iteration 20, (d) Lowpass recursive solution at iteration
100.
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Table 2.2: Comparison of the selection criterion and time versus FOV with MRSI ROS
image

64× 64 FOV 48× 48 FOV
# samples 1439 1513 4096 1439 1513 2304

tol= MSE 6.4186 1.8906 0.3513 8.4318 2.2886 0.6245
1e-5 time(hr) 1.13 1.39 2.47 0.77 0.92 1.15

tol= MSE 6.1709 1.9027 0.3184 8.4318 2.2887 0.6440
1e-3 time(hr) 0.72 0.9 1.64 0.497 0.598 0.757

nonzero voxels. Using this ROS, the k-space data were selected optimally by the proposed

algorithm. Figure 2.7(c) shows the ROS identified by hand. Using this ROS, the k-space

data were selected optimally by the proposed algorithm. To illustrate how the criterion

changes as more samples are selected, we continued the SFS process until all 4096 k-space

samples were selected. First, we chose 1439 k-space samples (matching the number of

points in the ROS) from 4096 candidate points with the modified algorithm in Section

2.4. Then we switched to the algorithm in Section 2.5 to continue the SFS process.

To compare the results with a reduced FOV, we applied the proposed method and the

traditional lowpass method to a reduced 48× 48 FOV. Figure 2.7 (d) shows the 48× 48

ROS image extracted from the 64 × 64 ROS image. Figure 2.7 (e) shows the 48 × 48

water image extracted from the 64× 64 real image. Figure 2.7 (f) shows the 48× 48 fat

image extracted from the 64× 64 real image. The results are summarized in Table 2.2.

The set of 1513 optimized k-space samples with the 64×64 FOV is plotted in Figure

2.8(a). Figure 2.8(b) shows the 1513 optimized k-space data set distribution with the

48× 48 FOV. The 1439 black dots represent the optimized minimum density sampling.

The larger gray dots represent an additional 74 optimized samples to reduce the noise.

Both distributions cover all of k-space with the larger interval in the 48× 48 case.
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(c) (d)

(e) (f)

Figure 2.7: (a) Water image from the full 64 × 64 real MRSI data, (b) Fat image from
the full 64×64 real MRSI data, (c) The 64×64 ROS image (white indicates the support
region), (d) 48 × 48 ROS image extracted from the 64 × 64 ROS (white indicates the
support region), (e) 48 × 48 water image extracted from the 64 × 64 real water image,
(f) 48× 48 fat image extracted from the 64× 64 real fat image.
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Figure 2.8: (a) 1513 optimized k-space data distribution with 64×64 FOV (the minimum
optimized 1439 points indicated by black dots, larger gray dots indicate 74 more samples
than the minimum density), (b) 1513 optimized k-space samples with a reduced 48× 48
FOV (the minimum optimized 1439 points indicated by black dots, larger gray dots
indicate 74 more samples than the minimum density).
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The noise criterion curve versus the number of selected samples with the reduced

48×48 ROS image is shown in Figure 2.9(a). The criterion value drops sharply right after

the maximum value at the minimum density. From Table 2.2, we see that the selection

time reduced greatly with smaller FOV, making it possible for real-time implementation.

The flop curve is shown in Figure 2.9(b). The average number of flops per recursive step

for the whole selection process is 8.0730×107 . The average number of flops per recursive

step is 8.6022 × 107 before the minimum density and 7.1926 × 107 after the minimum

density.

The optimized PSF with a reduced 48×48 FOV is shown in Figure 2.10(a), which is

an impulse. The optimized PSF with the 64× 64 FOV is also an impulse (not include).

The PSF for 1513 lowpass samples with the reduced 48 × 48 FOV is shown in Figure

2.10(b). The PSF for 1513 lowpass samples with the 64 × 64 FOV is shown in Figure

2.10(c). From Figure 2.10(b) and Figure 2.10(c), we see that the percent of the energy on

the point is proportional to the percent of the lowpass area in the FOV for the lowpass

PSF, while the width of the lowpass PSF is inversely proportional to the area of the

lowpass region. However, with the circular or elliptical ROS, the lowpass image cannot

reconstruct the image exactly.

The water and fat reconstruction images from 1513 optimized k-space samples with

a 64×64 FOV are shown in Figure 2.11 (a) and (b). The corresponding difference images

between the optimal image and the original image are shown in Figure 2.12. The water

and fat reconstruction images from 1513 optimized k-space samples with the reduced

48× 48 FOV are shown in Figure 2.13 (a) and (b). The corresponding difference images
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Figure 2.9: (a) Noise criterion curve versus the number of selected samples with the
48 × 48 ROS, (b) Flops per selection step versus the number of selected samples with
the 48× 48 ROS.
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Figure 2.10: (a) Optimized PSF inside the ROS for a reduced 48×48 FOV, (b) Lowpass
PSF for 48 × 48 FOV with 1513 lowpass k-space samples, (c) Lowpass PSF for 64 × 64
FOV with 1513 lowpass k-space samples.

between the optimal image and the original image are shown in Figure 2.14. The lowpass

water and fat image from 1513 k-space samples are shown in Figure 2.13 (c) and (d).

2.7 Discussion

The work presented here is important for optimizing MRSI data acquisition and

can also be used for 3-D MRI. The new SFS algorithm presented in this paper has the

following advantages: 1) it overcomes the limitation of the SFS algorithm based on the

standard MSE criterion in that it can start with an empty initial matrix; 2) it drastically

reduces storage space and computational time with the proposed SFS recursive algorithm

and the conjugate gradients algorithm; 3) it is more applicable in practice than SBS in

that the best sample can be observed as soon as it is selected, making possible real-time

selection and acquisition. Simulation with real MR data shows a good-quality image

can be reconstructed with only a few more samples than the minimum density by our

method. Further work is clearly necessary to accelerate the algorithm if it is to be useful



52

(a) (b)

Figure 2.11: (a) Water image reconstructed from the 1513 optimized k-space samples
with 64× 64 FOV with ROS constraint imposed, (b) Fat image reconstructed from the
1513 optimized k-space samples with 64× 64 FOV with ROS constraint imposed.

(a) (b)

Figure 2.12: (a) Absolute difference between the optimized water image reconstruction
and the fully sampled 64 × 64 image (b) Absolute difference between the optimized fat
image reconstruction and the fully sampled 64× 64 image. (Dynamic range is scaled by
a factor of 5 for greater visibility).
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(a) (b)

(c) (d)

Figure 2.13: 48× 48 FOV reconstruction: (a) Water image reconstructed from the 1513
optimized k-space samples with ROS constraint imposed, (b) Fat image reconstructed
from the 1513 optimized k-space samples with ROS constraint imposed, (c) Water image
from the 1513 lowpass k-space samples, (d) Fat image from the 1513 lowpass k-space
samples.
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(a) (b)

Figure 2.14: (a) Absolute difference between the optimized water image reconstruction
and the 48×48 extracted image, (b) Absolute difference between the optimized fat image
reconstruction and the 48× 48 extracted image. (Dynamic range is scaled by a factor of
5 for greater visibility).

in a real-time context on an ordinary computer. However, the algorithm described here

brings real-time implementation closer to reality.



Chapter 3

Efficient Backward Selection of Hexagonal Samples in k-space

3.1 Introduction

Hexagonal sampling at the Nyquist rate has a 13.4% efficiency gain over rectangular

sampling at the Nyquist rate for an elliptical ROS and yields the most densely packed

spatial replications for space-limited signals [90,91]. However, Nyquist density sampling

cannot reach the minimum density for an elliptical ROS image. Minimum density sam-

pling yields samples linearly independent of each other, which can be reached through a

nonuniform sampling strategy [101].

Reeves et al. proposed sequential backward selection (SBS) on a rectangular grid

[98,99,103] based on minimizing mean squared error (MSE) in the reconstructed image.

SBS begins with a full set of candidate samples and sequentially eliminates one sample

at a time until the desired number remain. SBS represents a suboptimal approach to

determine an optimized set of sample locations. However, SBS can guarantee a given

level of performance before actually performing the optimization [100,113]. Furthermore,

in extensive simulations we have found that SBS provides nearly optimal results in every

case. By comparison, random or heuristic selection methods may yield wildly erratic

results. To reduce selection time, we present sequential backward selection (SBS) on a

hexagonal grid.

The motivation for using a hexagonal grid is that we can begin the elimination

process with fewer candidate samples than in the rectangular case. Thus, we have fewer

samples to eliminate to reach the desired number of remaining samples. It would be

55
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possible simply to eliminate randomly some samples from a rectangular grid candidate

set so that there are fewer samples to eliminate. However, there is no guarantee that this

initial candidate set would be a good one from which to begin the backward selection

process. Reeves and Zhao have shown that the upper bound on MSE of the final selection

is proportional to the MSE resulting from the initial candidate set [100]. The initial

candidate set defined by a hexagonal grid yields the lowest possible MSE for the same

number of samples. Thus, the upper bound on the MSE of the final selection resulting

from a hexagonal candidate grid is as low as possible when beginning with the same

number of candidate samples. As such, it is an ideal starting point for the backward

selection process.

Standard fast Fourier transform (FFT) algorithms cannot be used directly for non-

rectangularly sampled data. To make use of the standard fast Fourier transform, we use

a Smith normal form decomposition to transform the hexagonal DFT into a rectangular

DFT. Since standard display devices require images to be displayed on a rectangular

grid, the proposed algorithm yields an image sampled on a rectangular grid directly

without interpolation by properly setting the periodic matrix in the frequency domain.

3.2 Selection algorithm

Sequential backward selection begins with a candidate matrix and sequentially elim-

inates the least important row at each step until the desired number of rows remain. Let

ai represent row i of A. If we eliminate ai from A, the inverse matrix (ÃHÃ)−1 is given
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by the Sherman-Morrison matrix inversion formula [110] as

(ÃHÃ)−1 = (AHA)−1 − (AHA)−1aHi ai(A
HA)−1

1 + ai(AHA)−1aHi
(3.2.1)

Taking the trace of both sides gives

tr {(ÃH Ã)−1} = tr {(AHA)−1}+ tr {(AHA)−1aHi ai(A
HA)−1}

1− ai(AHA)−1aHi
(3.2.2)

and using the property that tr {CDE} = tr {DEC}, we obtain

tr {(ÃH Ã)−1} = tr (AHA)−1 +
ai(A

HA)−2aHi
1 + ai(AHA)−1aHi

(3.2.3)

Therefore, the criterion is minimized at each step by selecting the row (observation) that

minimizes the second term of (3.2.3). With this recursive formula, we need only evaluate

ai(A
HA)−1aHi and ai(A

HA)−2aHi for all i to determine the row to be eliminated rather

than computing the matrix inverse (AHA)−1 with each row ai in turn being eliminated.

We can follow a procedure similar to the one in [103] and described in Chapter

2 to recursively compute the quantities needed to evaluate the second term in (3.2.3).

Let gi = (AHA)−1aHi , hi = (AHA)−1gi, and σi = 1 − ai(A
HA)−1aHi . To avoid storing

a huge matrix, we compute gi and hi iteratively by minimizing φ(vi) = ||ei − Avi||2

and φ(wi) = ||vi − AHAwi||2 with the conjugate gradients method [114]. With these

quantities in hand, we can efficiently compute

aj(ÃHÃ)−1aHj = aj(A
HA)−1aHj +

1

σi
|ajgi|2 (3.2.4)
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aj(ÃHÃ)−2aHj = aj(A
HA)−2aHj +

2

σi
Re(ajgi(ajhi)

H) +
|gi|2
σ2
i

|ajgi|2 (3.2.5)

Note that vi and wi only need to be computed for the row being eliminated in each elim-

ination step, since every remaining row can be evaluated from the recursively computed

terms in (3.2.4) and (3.2.5).

To use the recursion formulas, we must have initial conditions. Assume that A

represents a Fourier transform matrix with columns removed corresponding to voxels

outside the ROS. Let the image size bem and the ROS size be n. AHA = mI because the

columns of A are orthogonal to each other. Therefore, the initial value of aj(A
HA)−1aHj

is n/m for all j. The initial value of aj(A
HA)−2aHj is n/m2 for all j. Since the criterion

increment is the same for all j, we may arbitrarily choose any sample as the first to be

eliminated.

3.3 Regular Hexagonal Sampling

All MR imaging methods use discrete data that has been sampled from an idealized

continuous data function. The data sampling pattern determines the image replication

pattern. If Xc(d) represent the continuous data function, the sampled data X at an

integer sequence of points n may be expressed as

X(n) = Xc(V n) (3.3.1)

where V is the sampling matrix whose columns are the basis vectors of the sampling

pattern [115]. The hexagonal sampling pattern is shown in Figure 3.1(b). The axis
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direction is drawn in an orientation that conforms to an image matrix. For rectangular

sampling, V is a diagonal matrix. For hexagonal sampling,

V =

⎡
⎢⎢⎣ 2d1 −d1

0 d2

⎤
⎥⎥⎦ (3.3.2)

where d1 = d2/
√
3. The sampling matrix is not unique for a given sampling pattern

because different basis vectors can be chosen. The sampling matrix in (3.3.2) has the

advantage of creating the rectangular image pixels directly from a discrete Fourier trans-

form without interpolation. To keep pixels on a square array, d2/d1 must be a rational

fraction rather than the optimal value of
√
3 [116]. Use of d2/d1 = 7/4 yields a near-

optimal efficiency gain of 12.5% compared to 13.4% for d2/d1 =
√
3. When sampling

in the frequency domain, the reconstructed image from a discrete Fourier transform is

replicated periodically in the spatial domain. The periodic matrix in the spatial domain

is

N = 2π(V T )−1

=

⎡
⎢⎢⎣

2π
2d1

0

2π
2d2

2π
d2

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

7
8M 0

M
2 M

⎤
⎥⎥⎦ (3.3.3)

where M ≤ 2π/d2 is an integer divisible by 8 that represents the length of one side of the

square image. On the other hand, discrete sampling of the image in the spatial domain

causes periodic replication of the sample pattern in the frequency domain. The periodic
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matrix in the frequency domain is

N T =

⎡
⎢⎢⎣

7
8M

M
2

0 M

⎤
⎥⎥⎦ (3.3.4)

It should be noted that the periodic matrix in (3.3.4) should be an integer matrix. It

defines a rectangular replication pattern in the frequency domain, although its sampling

pattern is hexagonal. The periodic matrix in (3.3.3) defines a hexagonal replication

pattern in the spatial domain. Figure 3.1(a) shows as an example of the rectangular

replication of the 4 × 6 representative hexagonal samples within the region defined by

the diamond symbols. It is known that a rectangular replication pattern in one domain

corresponds to a rectangular sampling pattern in the transformed domain, and a hexago-

nal replication pattern in one domain corresponds to a hexagonal sampling pattern in the

transformed domain regardless of the sampling pattern in the original space. Therefore,

the periodic matrix in (3.3.4) defines image pixels on a rectangular grid in the spatial

domain.

For the image to be exactly recoverable from the hexagonal sequence defined by

(3.3.1), it must be space-limited with a hexagonal ROS as shown in Figure 3.1(b) with

d1 <
π

b
, d2 <

4π

2a+ c
(3.3.5)

When a = c = 2π√
3
b, the ROS is a regular hexagon. However, the horizontal and

vertical sampling interval are not the same even for a regular hexagon. Consider a space-

limited waveform with a circular ROS. If b denotes the radius of this region, then for this

waveform sampled rectangularly the maximum sampling periods are d1 = π/b, d2 = π/b.
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Figure 3.1: (a) Hexagonal sampling pattern, (b) Hexagon
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For sampling this same waveform hexagonally we can choose d1 = π/b, d2 = 2π/
√
3b.

The mean sampling density is less for hexagonal sampling. In general, the mean sampling

density is proportional to the area of the assumed ROS. For a circularly space-limited

waveform, hexagonal sampling involves 13.4% fewer samples than rectangular sampling.

If we use SBS beginning with a full hexagonal grid rather than a full rectangular grid, the

selection time will be reduced because fewer samples must be eliminated. The resolution

will not be reduced.

3.4 Generalized Multidimensional Discrete Fourier Transform

An FFT from a hexagonal grid is necessary both for the selection algorithm as

well as for reconstruction once the samples are acquired. Many FFT algorithms have

been developed for the evaluation of rectangular multidimensional DFTs (MDFTs). We

present a procedure to make use of these algorithms for general MDFTs. A generalized

MDFT pair is

x(n) =
1

|detN |
∑
k

X(k)ejk
T
(2πN−1

)n (3.4.1)

X(k) =
∑
n

x(n)e−jkT
(2πN−1

)n (3.4.2)

whereN is an integer periodic matrix in (3.3.3). By using the Smith form decomposition

[117,118], N can be decomposed into

N = UDV (3.4.3)
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where U and V are unimodular integer matrices (determinant is ±1) and D is diago-

nal with |det(D)| = |det(N )|. To get desired Smith forms, two steps are performed.

First, using elementary (regular unimodular) matrices, multiply the given integer ma-

trix recursively on the left and right until the matrix is reduced to a diagonal form with

the diagonal entry values in increasing order. Elementary row and column operations

correspond to multiplication of the matrix on the left and right respectively by suitable

unimodular matrices. Initially, U = I, D = N , and V = I. The flowchart of the Smith

form decomposition is shown in Figure 3.2. The diagonal matrix D obtained in the first

step may not be what we desire. However, we can impose structure on the available

Smith forms by pivoting factors between diagonal elements of D [119]. Specifically, ma-

trix product PDS can move an integer factor i from one diagonal entry to the other

diagonal entry with det(P ) = ±1 and det(S) = ±1.

With Smith forms in (3.4.3), the MDFT pair in (3.4.1) and (3.4.2) can be expressed

as

X(k) =
∑
n

x(n)e−jkT
(2πV −1D−1U−1

)n

=
∑
n

x(n)e−j(V −Tk)TD−1(U−1n)

=
∑
n̂

x(Un̂)e−jk̂
T

D−1n̂

= X̂(k̂)

= X̂(V −Tk) (3.4.4)

x(n) =
∑
k

X(k)ejk
T
(2πV −1D−1U−1

)n
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Figure 3.2: Smith form decomposition flowchart
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=
∑
k

X(k)ej(V
−Tk)TD−1(U−1n)

=
∑
k̂

X(V T k̂)ejk̂
T

D−1n̂

= x̂(n̂)

= x̂(U−1n) (3.4.5)

With (3.4.4) and (3.4.5), a matrix-N DFT becomes a matrix-D DFT. The general

MDFT problem converts to a rectangular MDFT problem. The matrix-N MDFT al-

gorithm involves three steps. First, scramble the input sequence x(n) according to the

relation n = (Un̂) mod N . Second, compute a rectangular matrix-D DFT of the re-

sulting sequence. Third, unscramble the output sequence X(k̂) according to the relation

k̂ = (V −Tk) mod D. The matrix-N inverse MDFT involves three similar steps.

3.5 Experiments

To demonstrate the value of our method, we applied it to an actual MR data set.

Figure 3.3(a) shows a 96× 96 MR image from a 128× 128 rapidly acquired scout image

(courtesy of the Center for Nuclear Imaging Research, University of Alabama at Birm-

ingham) reconstructed from the full 128 × 128 k-space sample set. Figure 3.3(b) shows

a 96 × 96 ROS identified from Figure 3.3(a). It contains 5168 possibly nonzero voxels.

For the ROS in 3.3(b), the k-space data were selected by SBS from a 96 × 96 rectan-

gular k-space grid, which correspond to samples of the rectangular DFT coefficients of

the image in Figure 3.3(a). Likewise, k-space samples were selected by SBS from an

84 × 96 hexagonal k-space grid, which correspond to samples of the hexagonal DFT of

the equivalent 84× 96 image.
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(a) (b)

(c) (d)

Figure 3.3: (a) 96×96 image, (b) 96×96 ROS, (c) Reconstructed image from 5550 rect-
angular k-space samples, (d) Reconstructed image from 5550 hexagonal k-space samples.
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Figure 3.5: Time versus samples remaining.
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Figure 3.4 shows the criterion comparison between SBS on a rectangular grid and

SBS on a hexagonal grid. Figure 3.5 shows the selection time comparison between SBS on

a rectangular grid and a hexagonal grid. We observed that when the selection approaches

5168 samples, the criterion curves and selection time curves increase sharply but increase

very little when stopping with only a few more samples than 5168. The two criterion

curves are very close throughout the process. However, the selection time for SBS from

a hexagonal grid is always significantly less than that for SBS from a rectangular grid.

When selecting more than 6500 samples, the selection time in the hexagonal case takes

less than half of the selection time of the rectangular case. These observations tell us we

can sample at a rate lower than the Nyquist rate on a hexagonal grid with minimal noise

amplification as long as we acquire a few more samples than the number of nonzero pixels

in the ROS. As a further comparison, we reconstructed the image from 5500 selected

samples for both the rectangular and hexagonal cases. The reconstructions were done

iteratively using a conjugate gradients algorithm. The results shown in Figure 3.3(c)

and (d) demonstrate the good results that can be obtained with either selection method.

Although there is no difference in resolution for the two cases and little difference in

noise amplification, the selection time is much smaller for SBS on a hexagonal grid as

shown in Figure 3.5.

3.6 Conclusion

We proposed a new method for reducing selection time for MRSI samples by apply-

ing SBS on a hexagonal grid rather than a rectangular grid. To make use of a standard



69

rectangular FFT, we computed a generalized MDFT based on a Smith form decompo-

sition. To avoid interpolation artifacts, we chose an appropriate periodic matrix in the

frequency domain such that we can compute rectangular-grid image pixels directly from

hexagonal-grid frequency domain samples without interpolation. A lower than Nyquist

rate on a hexagonal grid can be achieved with the proposed method. Furthermore, SBS

on a hexagonal grid takes significantly less selection time than SBS on a rectangular

grid.



Chapter 4

Sequential Backward Array Selection

4.1 Introduction

In this chapter, we develop an efficient algorithm for optimizing the dithering pattern

so that the image can be reconstructed as reliably as possible from a periodic nonuniform

set of samples, which can be obtained from a dithered rectangular-grid array. Taking into

account the frequency support of the image, we sequentially eliminate the least informa-

tive array recursively until the minimal number of arrays remain. The advantage of the

proposed algorithm is that convolution and downsampling take the place of operations

involving a huge non-sparse matrix. Therefore, the proposed algorithm shows high effi-

ciency in computational time and memory space. The resulting algorithm can be useful

not only in magnetic resonance imaging but is also extremely important in some sensor

array optimization problems, in digital reception of multiband signal transmissions, and

in PMMW imaging [106,107].

4.2 The Mathematics of Sampling

Typical MRSI observations are laid out in a rectangular grid pattern as shown

in Figure 4.1. The heavy dots represent the locations of the sensor elements in the

unshifted sensor array. The light dots represent other locations to which the sensor

array can be shifted. Assuming a circular ROS, if the radius of the ROS is R m, the

Nyquist sample spacing in each dimension considered individually is π
R . This is the

maximum uniform rectangular sample spacing that avoids aliasing. However, it is well

70
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Figure 4.1: typical sampling pattern.

known that a circularly bandlimited image can be sampled uniformly on a hexagonal

grid with a 13.4% lower sampling density without aliasing [90,91], where Δx = 2π/
√
3R

and Δy = π/R. (See Figure 4.2.)

In fact, if we allow nonuniform sampling we can reduce the average sampling density

even further [101]. In particular, we can sample an image using a periodic replication of a

nonperiodic sampling pattern to capture the information in a bandlimited image without

aliasing. An example of this kind of sampling pattern is shown in Figure 4.3. In this

example, each 3× 3 block sampling pattern is periodically replicated over the frequency

image plane. This pattern results from shifting the array in Figure 4.1 according to each

offset sample in one of the 3× 3 blocks.

If we represent the discretized frequency image as a vector y, the unknown dis-

cretized spatial support by a vector x, and the mapping from the spatial-domain samples

to the frequency-domain image by F , the fully sampled frequency image can be expressed
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Figure 4.2: Hexagonal sampling pattern.

as

y = Fx+ u (4.2.1)

where u is zero-mean, i.i.d. noise. If we sample the image y using a single position of the

sensor array with offset indexed by i, we can represent this by

yi = Qiy (4.2.2)

where Qi downsamples the fully sampled image and orders the result into a vector. Then

we can rewrite y in a rearranged form yr as

yr = [yH1 yH2 . . . yHn ]H (4.2.3)

= [QH
1 QH

2 . . . QH
n ]H(Fx+ u)

= QrFx+ ur
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Figure 4.3: Periodic nonuniform sampling example.

where ur is the similarly rearranged version of u and Qr = [QH
1 QH

2 . . . QH
n ]H . If we

choose a subset of k of the n shifted arrays, we obtain

ỹr = [yHi1 yHi2 . . . yHik ]
H (4.2.4)

= [QH
i1 QH

i2 . . . QH
ik
]H(Fx+ u)

= Q̃rFx+ ũr

where ũr is the corresponding subset of ur and Q̃r is the corresponding subset of Qr.

As long as the {Qi} are properly chosen and enough subsets are selected, the un-

known spatial samples x can be reconstructed from ỹr in a least-squares sense by

x̂ = (FHQ̃H
r Q̃rF )−1FHQ̃H

r ỹr (4.2.5)

The precise conditions under which a least-squares reconstruction is defined are discussed

in [101] and [95]. A necessary condition is that the product of the number of samples
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in the array and the number of selected array positions equals or exceeds the number

of unknown frequency samples. Assuming that u has unit variance, the sum of squared

errors (SSE) in the reconstructed spatial samples is given by

E(Q̃r) = tr (FHQ̃H
r Q̃rF )−1 (4.2.6)

4.3 Basic Optimization Algorithm

We must optimize (4.2.6) with respect to the entries of Q̃r to provide the most

useful information for reconstruction of images in the minimal necessary acquisition

time. Unfortunately, optimization of (4.2.6) is a large-scale combinatoric optimization

problem, and an optimal solution is prohibitive to find. We use sequential backward

selection (SBS) to optimize (4.2.6). The key challenge in this optimization task is that

the available SBS algorithms do not apply directly, since they are designed to eliminate

one sample location at a time [98]. Instead, we must eliminate a whole periodic array

of samples at one time here. This severely complicates the relevant equations and the

resulting computational complexity of an already complex algorithm.

Without loss of generality, we assume that F is scaled so that it has orthonormal

columns. Therefore, we have the following from [98]:

E(Qr) = tr (FHQ̃H
r Q̃rF )−1 (4.3.1)

= tr (FHQ̃H
r Q̃rF )−1FHF (4.3.2)

= trF (FHQ̃H
r Q̃rF )−1FH (4.3.3)
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To manipulate this matrix, we use the following theorem.

Theorem 4.3.1 The matrix B = F (FHQ̃H
r Q̃rF )−1FH can be represented in the follow-

ing form:

B = [H1H2 . . . Hn]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

QH
1 Q1

QH
2 Q2

...

QH
n Qn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.3.4)

where Hi, i = 1, . . . , n, are convolution matrices.

The proof is in Appendix B. Let Z = FHQ̃H
r Q̃rF and Y be the matrix that results after

Qj is deleted. Then Y = Z − FHQH
j QjF . By using the matrix inversion formula, we

have

Y −1 = Z−1 + Z−1FHQH
j (I −QjFZ−1FHQH

j )−1QjFZ−1 (4.3.5)

FY −1FH = FZ−1FH + FZ−1FHQH
j (I −QjFZ−1FHQH

j )−1QjFZ−1FH (4.3.6)

Suppose that we delete the array corresponding to Qj from Qr so that B becomes

B̃ and Qr becomes Q̃r. Then from (4.3.6) and the definition of B

B̃ = B +BQH
j (I −QjBQH

j )−1QjB
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= B +BQH
j GjQ

H
j B (4.3.7)

where Gj = (I −QjBQH
j )−1. This matrix inverse can be evaluated efficiently as a result

of the following theorem:

Theorem 4.3.2 Assume that the {Hi} are circulant matrices. Then Gj is a circulant

matrix.

The proof is in Appendix B.

Because Gj is the inverse of a circulant matrix, it can be computed efficiently using

FFT’s.

Using the fact that B is symmetric, QjQ
H
j = I and QiQ

H
j = 0 with i 	= j, the

updating term of Eq. (4.3.7) becomes

Δj = BQH
j GjQjB

H

= HjQ
H
j QjQ

H
j GjQjQ

H
j QjH

H
j

= HjQ
H
j GjQjH

H
j (4.3.8)

From the property tr (ABC) = tr (BCA), we have

tr (Δj) = tr (GjQjH
H
j HjQ

H
j ) (4.3.9)

In the form of (4.3.9), the criterion increment can be efficiently evaluated for all

remaining j, since the matrix in the right-hand trace can be evaluated much more effi-

ciently than can Δj . The array j that gives the minimum value of (4.3.9) will cause the
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minimum SSE increase and therefore should be deleted. Only after we determine the

optimal j are we required to compute Δj .

Once the optimal j is chosen, we must update the convolution kernels hi, i =

1, 2, . . . , n, that construct the convolution matrices Hi, i = 1, 2, . . . , n, so that they are

available for the next elimination step. First, we need initial values for the {Hi} to begin

the SBS process. If we begin with all arrays selected, QH
r Qr = I, and we have

B = F (FHF )−1FH (4.3.10)

= FFH (4.3.11)

Thus, the initial B represents an operation in the frequency domain that is equivalent

to zeroing the spatial-domain signal outside the ROS. Consequently, the initial {Hi}

matrices are chosen to be the equivalent convolution operation with the ROS as the

spatial response. These matrices are stored and updated as impulse responses rather

than in their full matrix representation.

Because both B and B̃ in (4.3.7) are of the form (4.3.4), the update term Δj = B̃−B

is also of the same form. Thus, the convolution matrices that define B̃ can be updated

by updating Hi, i = 1, . . . , n. The form of the update is given by

Δj = [ΔH1,j ΔH2,j . . . ΔHn,j]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

QH
1 Q1

QH
2 Q2

...

QH
n Qn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.3.12)
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More specifically, these update terms are given by

Δj = BQH
j GjQjB

H

= HjQ
H
j GjQj [H1 H2 . . . Hn]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

QH
1 Q1

QH
2 Q2

...

QH
n Qn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.3.13)

Thus,

B̃ = [H1 +ΔH1,j H2 +ΔH2,j . . . Hn +ΔHn,j]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

QH
1 Q1

QH
2 Q2

...

QH
n Qn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= [H̃1 H̃2 . . . H̃n]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

QH
1 Q1

QH
2 Q2

...

QH
n Qn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.3.14)

Since the matrices {ΔHi,j} are circulant, we only need to calculate one column of each.

Let hi be the first column of Hi. Then we use the following procedure to calculate the

update:

For i = 1, . . . , n:

1. r = Qjhi. This is accomplished by downsampling hi with offset j − 1.
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2. s = Gjr. This is a filtering operation using FFT’s.

3. t = QH
j s. This is an upsampling operation with offset j − 1.

4. Δhi = Hjt. This is a filtering operation using FFT’s.

Thus, we can implement the algorithm with convolution kernels rather than huge

non-sparse matrices. We can efficiently evaluate the criterion increase with (4.3.9) and

update the convolution kernels with (4.3.12) and (4.3.14) using only convolution, down-

sampling, and upsampling operations. The above updating process can be continued

recursively until the minimal number of arrays remains. The proposed method dramat-

ically reduces storage and computational complexity.

4.4 Image reconstruction from nonuniform samples

Once the best array set ỹr is selected, the unknown spatial samples x (and thus

the entire spatial-domain image) can be reconstructed from ỹr in a least-squares sense.

However, the least-square solution in (4.2.5) involves inversion of a huge matrix. There-

fore, directly using (4.2.5) to reconstruct the image is probably prohibitive. However,

if we store the resulting impulse responses from the SBS process that correspond to

the selected array offsets, we can efficiently compute the least-squares reconstruction as

follows:

ŷ = FH(FQ̃H
r Q̃rF

H)−1FQ̃H
r ỹr

= B̃Q̃H
r ỹr
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= [H̃1 H̃2 . . . H̃n]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

QH
1 Q1

QH
2 Q2

...

QH
n Qn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
ỹr (4.4.1)

where H̃1 H̃2 . . . H̃n has been computed with the efficient algorithm in Section 4.3.

Then the spatial samples can be reconstructed as follows:

x̂ = F ŷ (4.4.2)

With (4.4.1) and (4.4.2), we can efficiently reconstruct the whole spatial image with

convolutions.

4.5 Experiments

Figure 4.4(a) shows a circular region of support (ROS) containing 3205 unknowns in

a 64× 64 grid. We experimented with three cases for this ROS, in which the number of

array elements decreased from case to case but the number of possible dithered positions

increased, so that the number of potential sample locations was fixed. In each case we

began with all possible array offsets and sequentially eliminated one array offset at a

time.

Table 4.1 lists the simulation results for these three cases. In the first case, the

criterion matrix was undefined after three arrays were eliminated. (The inverse in (4.3.3)

does not exist.) To keep the criterion defined, we needed to keep 14 of the 16×16 arrays,

corresponding to 3584 samples. In the second and third cases, 52 of the 8× 8 arrays and
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Table 4.1: Comparison of the criterion in three cases

Case 1 # of arrays 16 15 14 13
16x16 criterion 3205 4244 5612 undefined

Case 2 # of arrays 64 60 56 52
8x8 criterion 3205 4178 5357 8542

Case 3 # of arrays 256 240 224 208
4x4 criterion 3205 4171 5358 7658

Case 4 # of arrays 64 60 56 52
8x8 criterion 3779 4202 4990 8445

# of samples 4096 3840 3584 3328

208 of the 4×4 arrays were necessary to keep the criterion defined, corresponding to 3328

samples. The latter sample pattern yielded a lower error criterion than the former with

the same total number of samples. Figure 4.5(a) shows the same ROS in a 128×128 grid.

This allowed us to consider array offsets spaced more closely together. We experimented

with one case (Case 4) for this ROS. In comparison with Case 2, the array size is the

same but there are 256 possible array locations in Case 4. The same number of arrays

and samples were necessary to keep the criterion defined, but the criterion achieved was

lower. The comparison of Case 2 and Case 4 suggests that with the same array size, the

more possible offsets the better the potential performance. However, this seems to be a

function of where the SBS procedure is stopped, which is evident from a comparison of

the various intermediate stopping points.

Figure 4.4(b), 4.4(c), and 4.4(d) show the selected sample patterns for Case 1, Case

2, and Case 3. Figure 4.5(b) shows the selected sample pattern for Case 4.
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Figure 4.4: (a) The 64×64 region of support (3205 unknowns) (b) 3584 selected samples
in the case 1 (c) 3328 selected samples in the case 2 (d) 3328 selected samples in the case
3 (black markers indicate selected samples)
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Figure 4.5: (a) The 128 × 128 region of support (white points indicate 3205 unknowns)
(b) 3328 selected samples in Case 4

4.6 Conclusion

We have developed an efficient sampling pattern optimization technique that pro-

vides the most useful information for reconstructing images with a limited ROS in the

minimal necessary acquisition time. The proposed algorithm has the following advan-

tages: 1) it provides an efficient update formula for the criterion based on convolution

kernels rather than large, non-sparse matrices; 2) it provides an efficient update formula

for the convolution kernels based on the deleted array; 3) it provides an efficient re-

construction method based on convolution. The proposed method dramatically reduces

storage and computational complexity. We found that the lowest SSE is obtained when

the number of possible dithered positions is largest, given the same total number of

samples.
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We have not accounted for some practical concerns. That is, we have assumed

throughout that all filtering operations are circular convolutions. Furthermore, one must

take into account the fact that the array and the image have a finite size, and therefore

boundary effects become an issue.



Chapter 5

Sequential Forward Array Selection

5.1 Introduction

In this chapter, we develop an efficient algorithm different from that in Chapter

4 for optimizing the dithering pattern so that the image can be reconstructed from a

periodic nonuniform set of samples as reliably as possible. In this algorithm, we begin

the development with the modified criterion from Chapter 2 and sequentially select the

least noisy sample recursively based on a given ROS until the desired number of arrays

is selected. To simplify the complicated block selection algorithm, we decompose the

block selection algorithm into a sum of single sample selection algorithms. To avoid

the singularity at the switching point, we further modify the criterion for extending the

selection process from the number of unknowns more than the number of selected samples

to less than the number of selected samples. The advantage of this method compared

to the SFS of single samples is time saved from selecting one block each time. The

disadvantage is that it may be impossible to reach the minimum density. The advantage

compared to SBS of sample blocks is that it brings real-time implementation into the

realm of possibility because the previously selected sample block can be observed while

the next sample block is selected.

5.2 Notation

If we represent the discretized frequency image with size m×n as a column-ordered

vector y, the unknown discretized spatial support by a vector x, and the mapping from

85
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the spatial-domain samples to the frequency-domain image by F , the fully sampled

frequency image can be expressed as

y = Fx+ w (5.2.1)

where w is zero-mean, i.i.d. noise. Suppose the array size is m1 × n1 and the possible

dithered positions of the array are m2 × n2. We have m = m1 ×m2 and n = n1 × n2.

If we sample the frequency image y using a single position of the sensor array with

offset indexed by 1 ≤ i ≤ n, we can represent this by

yi = Qiy (5.2.2)

where Qi downsamples the fully sampled image and orders the result into a vector. Then

we can rewrite y in a rearranged form yr as

yr = [yH1 yH2 . . . yHn ]H (5.2.3)

= [QH
1 QH

2 . . . QH
L1
]H(Fx+ w)

= QrFx+ wr

where wr is the similarly rearranged version of w and Qr = [QH
1 QH

2 . . . QH
n ]H . If we

choose a subset of k of the N shifted arrays, we obtain

ỹr = [yHk1 yHk2 . . . yHkk ]
H (5.2.4)

= [QH
k1 QH

k2 . . . QH
kk
]H(Fx+ w)
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= Q̃rFx+ w̃r

where w̃r is the corresponding subset of wr and Q̃r is the corresponding subset of Qr.

5.3 Criterion

Let A = Q̃rF . In chapter 2, we have shown that the criteria is the trace of (AAH)−1

when the number of selected samples is less than the number of unknowns in in the ROS

and the trace of (AHA)−1 when the number of selected samples is more than the number

of unknowns in the ROS. To unite these two different criteria into one for selection

purposes, we propose a modified criterion as follows

E(Q̃r) = tr (AAH + εI)−1

= tr (Q̃rFFHQ̃r
H
+ εI)−1 (5.3.1)

where ε is a very small number.

Let nr be the number of unknowns in the ROS. When m1n1k ≤ nr and AkA
H
k is

nonsingular,

lim
ε→0

tr (AkA
H
k + εIk)

−1 = tr (AkA
H
k )−1 (5.3.2)

Let the singular value decomposition of Ak = UkΣkV
H
k . Then

tr (AkA
H
k + εI)−1 = tr (UkΣkΣ

H
k UH

k + εIk)
−1

= trUH
k (UkΣkΣ

H
k UH

k + εIk)
−1Uk
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= tr (ΣkΣ
H
k + εUH

k Uk)
−1

= tr (ΣkΣ
H
k + εIk)

−1 (5.3.3)

When m1n1k ≥ nr, Σk has only nr nonzero elements.

tr (ΣkΣ
H
k + εIk)

−1 =
nr∑
i=1

1

|σi|2 + ε
+ (m1n1k − nr)

1

ε
(5.3.4)

tr (AH
k Ak)

−1 = lim
ε→0

nr∑
i=1

1

|σi|2 + ε

= lim
ε→0

tr (AkA
H
k + εI)−1 − (m1n1k − nr)

1

ε
(5.3.5)

Since the second term in 5.3.5 is a constant at each step, it has no effect on the

selection procedure. We only need this term to evaluate the true criterion after the

selection. Therefore, 5.3.3 and 5.3.5 show the reasonability of the selection criterion in

5.3.1.

5.4 Efficient recursive algorithm

To simplify the computational method, we first transform the block matrix in 5.3.1

into a diagonal block matrix after some modulation.

AAH = Q̃FFHQ̃H

= [QH
n1
FFHQH

n2
· · ·QH

nk
]HFFH [Qn1Qn2 · · ·Qnk

]
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=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Qn1FFHQH
n1

Qn1FFHQH
n2

· · · Qn1FFHQH
nk

Qn2FFHQH
n1

Qn2FFHQH
n2

· · · Qn2FFHQH
nk

...
... · · · ...

Qnk
FFHQH

n1
Qnk

FFHQH
n2

· · · Qnk
FFHQH

nk

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.4.1)

QiFFHQH
j , i, j = 1, 2, · · · , n, are easily seen to be circulant matrices, since FFH is circu-

lant and QiFFHQi are the same for i = 1, 2, · · · , n because FFH is a circulant matrix.

Therefore, AAH is conjugate symmetric matrix with circulant blocks [120] (circulant-

block-circulant blocks in the 2-D case).

Let Fd represent the downsampled Fourier matrix corresponding to the dithered ar-

ray. Then FH
d Fd = I. FdQiFFHQjF

H
d diagonalizes the circulant matrixQiFFHQj, i, j =

1, 2, · · · , n [120]. Let diag(dij1, dij2, · · · , dijg) = FdQiFFHQjF
H
d . Finally, let FD be a

block-diagonal matrix formed by replicating Fd along the diagonal k times,

(AAH)−1

= FDF
H
D (AAH)−1FDF

H
D

= FD(FDAA
HFH

D )−1FH
D

= FD

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

FDQn1FFHQH
n1
FDd

H FDQn1FFHQH
n2
FH
D · · · FDQn1FFHQH

nk
FH
D

FDQn2FFHQH
n1
FH
D FDQn2FFHQH

n2
FH
D · · · FDQn2FFHQH

nn
FDH

...
... · · · ...

FDQnk
FFHQH

n1
FH
D FDQnk

FFHQH
n2
FDH · · · FDQnk

FFHQH
nk
FH
D

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1

FH
D
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= FD

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

diag(d111 · · · d11m) diag(d121 · · · d12m) · · · diag(d1n1d1n2 · · · d1nm)

diag(d211 · · · d21m) diag(d221 · · · d22m) · · · diag(d2n1 · · · d2nm)

...
... · · · ...

diag(dk11 · · · dk1m) diag(dk21 · · · dk2m) · · · diag(dnn1 · · · dnnm)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1

FH
D

= FD

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

diag(d̂111 · · · d̂11m) diag(d̂121 · · · d̂12m) · · · diag(d̂1n1d̂1n2 · · · d̂1nm)

diag(d̂211 · · · d̂21m) diag(d̂221 · · · d̂22m) · · · diag(d̂2n1 · · · d̂2nm)

...
... · · · ...

diag(hatdk11 · · · d̂k1m) diag(d̂k21 · · · d̂k2m) · · · diag(d̂nn1 · · · d̂nnm)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
FH
D

(5.4.2)

where

D−1
g =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d11g d12g · · · d1kg

d21g d22g · · · d2kg

...
... · · · ...

dk1g dk2g · · · dkkg

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d̂11g d̂12g · · · d̂1kg

d̂21g d̂22g · · · d̂2kg

...
... · · · ...

d̂k1g d̂k2g · · · d̂kkg

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.4.3)

where g = 1, 2, · · · ,m. To calculate the vector dij , we do the following steps, which

involves only FFT’s instead of matrix operations [120,121].
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1. Take the FFT of the ROS image to get the impulse response h, which is the first

column of FFH . FFH is a circulant matrix. Only the first column needs to be

stored.

2. Shift h by j, then downsample the shifted h by Qi to get the first column hd of the

circulant matrix QiFFHQj, i, j = 1, 2, · · · , n.

3. Take the FFT of hd to get the diagonal vector of the diagonal matrix FdQiFFHQjF
H
d .

By using the property tr (ABC) = tr (CAB), we have

tr (AAH)−1

= tr

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
FHFd

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

diag(d̂111d̂112 · · · d̂11m) · · · diag(d̂1k1d̂1k2 · · · d̂1km)

diag(d̂211d̂
H
212 · · · d̂H21m) · · · diag(d̂2k1d̂2k2 · · · d̂2km)

... · · · ...

diag(d̂Hk11d̂
H
k12 · · · d̂Hk1m) · · · diag(d̂kk1d̂kk2 · · · d̂kkm)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= tr

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

diag(d̂111d̂112 · · · d̂11m) · · · diag(d̂1k1d̂1k2 · · · d̂1km)

diag(d̂211d̂212 · · · d̂21m) · · · (d̂2k1d̂2k2 · · · d̂2km)

...
... · · · ...

diag(d̂k11d̂k12 · · · d̂k1m) · · · diag(d̂kk1d̂kk2 · · · d̂kkm)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.4.4)

Let Ã represent the new A after the ith array is added to A.

ÃÃH = [QH QH
i ]HFFH [Q Qi]

=

⎡
⎢⎢⎣ QFFHQH QFFHQH

i

QH
i FFHQH QiFFHQH

i

⎤
⎥⎥⎦ (5.4.5)
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Let D̃g represent the corresponding new Dg after adding the ith array.

D̃g =

⎡
⎢⎢⎣ Dg SH

ig

Sig Tig

⎤
⎥⎥⎦ (5.4.6)

With Lemma 2.3.5 and 2.3.11 in Chapter 2, we have

D̃−1
g =

⎡
⎢⎢⎣ P−1 + P−1SH

i σiSip
−1 −P−1SH

i

−σiSiP
−1 σ−1

i

⎤
⎥⎥⎦ (5.4.7)

where σi = Ti − SiP
−1Qi is a scalar, Ti are the same for i = 1, 2, · · · ,m and P = Dg.

tr (D̃−1
g ) = tr (P−1) +

1 + SiP
−2SH

i

Ti − SiP−1Ri
(5.4.8)

Let ∇g represent the second term in (5.4.8) and ∇ represent the criterion increment

for each step. Then

∇g =
1 + SiP

−2SH
i

Ti − SiP−1Ri
(5.4.9)

∇ =
m∑
g=1

∇g (5.4.10)

where g = 1, 2, · · · ,m.

We select the array to minimize ∇ each step.

5.5 Efficient computational method

To find the minimizer of ∇ in 5.4.10, which we denote as the ith array, we need to

calculate ∇g, g = 1, 2, · · · , n for every possible j = 1, 2, · · · , n. That is, we must calculate
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SjP
−1SH

j and SjP
−2SH

j for every possible j = 1, 2, · · · , n. The computational burden

will be huge. To reduce the computational cost, we derived recursive formulas for the

above two terms such that the updated parts are calculated based only on the previous

selected array.

Let S̃j represent the new Sj after the ith array added. Note that the elements of

S̃j come from Sj, but S̃j only includes the elements corresponding to the offsets already

selected, sji. Let P̃ = D̃g, σi = Hi = Ti − SiP
−1Qi, Ri = P−1SH

i . Then

S̃jP̃
−1S̃H

j

= [Sj sji]

⎡
⎢⎢⎣ P−1 + 1

σi
P−1SH

i SiP
−1 −P−1SH

i

− 1
σi
SiP

−1 1
σi

⎤
⎥⎥⎦ [Sj sji]

H

= SjP
−1SH

j + SjP
−1SH

i H−1
i SiP

−1SH
j − SjP

−1SH
i H−1

i sHji + sjiH
−1
i sji

= SjP
−1SH

j +
1

σi
(SjRi)(SjRi)

H − 1

σi
sji(SjRi)

H − 1

σi
(SjRi)s

H
ji +

1

σi
sjis

H
ji

= SjP
−1SH

j +
1

σi
(||SjRi|| − 2Re((SjRi)s

H
ji) + |sji|) (5.5.1)

Let Fi = P−1Ri.

S̃jP̃
−2S̃H

j

= [Sj sji]

⎡
⎢⎢⎣ P−1 + 1

σi
P−1SH

i SiP
−1 −P−1SH

i

− 1
σi
SiP

−1 1
σi

⎤
⎥⎥⎦
2

[Sj sji]
H

= SjP
−2SH

j + SjP
−2SH

i H−1
i SiP

−1SH
j − SjP

−2SH
i H−1

i sHji

+SjP
−1SH

i H−1
i SiP

−2SH
j + SjP

−1SH
i H−1

i SiP
−2SH

i H−1
i P−1SH

j

−SjP
−1SH

i H−1
i SiP

−2SH
i H−1

i sji
H − sjiH

−1
i SiP

−2SH
j
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−sjiH
−1
i SiP

−2SH
i H−1

i SiP
−1SH

j + sjiH
−1
i SiP

−2SH
i H−1

i sHji

+SjP
−1SH

i H−2
i SiP

−1SH
j − SjP

−1SH
i H−2

i sHji − sjiH
−2
i SiP

−1SH
j + sjiH

−2
i sHji

= SjP
−2SH

j +
2

σi
Re(SjRi(SjFi)

H)− (
2

σi
((SjFi)s

H
ji) + SjFis

H
ij )

+
1 + ||Ri||2

σ2
i

||SjRi||2 + 1 + ||Ri||2
σ2
i

|sji|2 − 1 + ||Ri||2
σ2
i

2Re((SjRi)s
H
ji)

= SjP
−2SH

j +
2

σi
(Re(SjRi(SjFi)

H)− (SjFi)s
H
ji)

+
1 + ||Ri||2

σ2
i

(||SjRi||2 − 2Re((SjRi)s
H
ji ) + |sji|2) (5.5.2)

With (5.5.1) and (5.5.2), the inverses only operate on the previous selection array

rather than all possible arrays. We use Gaussian elimination to solve for Ri and Fi. The

computational cost is drastically reduced.

5.6 Experiments

Figure 5.1(a) shows a circular region of support (ROS) containing 3205 unknowns in

a 64× 64 grid. We experimented with three cases for this ROS, in which the number of

array elements decreased from case to case but the number of possible dithered positions

increased, so that the number of potential sample locations was fixed. In each case we

began with all possible array offsets and sequentially eliminated one array offset at a

time.

In Case 1, the array size is 4 × 4, and the number of possible dithered positions is

16 × 16. In Case 2, the number of dithered positions is 8 × 8, the array size is 8 × 8.

In Case 3, the number of possible dithered positions is 16 × 16, the array size is 4 × 4.

Figure 5.1(b), (c), (d) shows the sampling pattern with 13 arrays selected in Case 1,
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52 arrays selected in Case 2, and 208 arrays selected in Case 3 (corresponding to 3328

points).

To make a comparison with the same array size but different number of potential

dithered positions we considered Case 4. In Case 4, the array size is 8× 8, the same as

that in Case 2. However, the number of possible dithered positions is 16 × 16, different

than that in Case 2. In Case 4, we set ε = 10−2 to reduce accumulated error due to

ill-conditioning. Figure 5.2(a) shows a 128 × 128 ROS with 3205 unknowns. Figure

5.2(b) shows the selection pattern with 52 arrays (3328 points) selected.

Table 5.1 shows the criterion values at various steps for the four cases. In the

experiments, we used ε = 10−4 to avoid the singularity in the selection process. When

all 4096 samples are selected, the criterion values for Case 1, Case 2, and Case 3 are

approximately equal to 891/ε. This is consistent with the analysis. Let A = FS, S is

diagonal matrix with 3205 diagonal elements corresponding to nonzero unknowns as 1

and 891 diagonal elements corresponding to zero locations as 0.

tr (AAH + εI)−1 = (FSFH + εFFH)−1

= F (S + εI)−1FH (5.6.1)

tr (AAH + εI)−1 = tr (FHF (S + εI)−1)

= tr (S + εI)−1

=
891

ε
+

3205

1 + ε

≈ 8910000 + 3205
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Figure 5.1: (a) The 64×64 region of support (3205 unknowns) (b) 3328 selected samples
in Case 1 (c) 3328 selected samples in Case 2 (d) 3328 selected samples in Case 3 (black
markers indicate selected samples)
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Figure 5.2: (a) The 128 × 128 region of support (white points indicate 3205 unknowns)
(b) 3328 selected samples in Case 4 (c) 4096 selected samples in Case 4.
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Table 5.1: Comparison of the criterion in four cases

Case 1 # of arrays 9 13 14 15 16
16x16 criterion 0.950431 1839970 3789951 6349934 8909999

Case 2 # of arrays 36 52 56 60 64
8x8 criterion 0.892832 1229985 3789957 6349921 8909938

Case 3 # of arrays 144 208 224 240 256
4x4 criterion 0.884639 1230000 3789985 6349982 8910071

Case 4 # of arrays 36 52 56 60 64
8x8 criterion 0.840235 12302.2 37901.3 63501.1 89100.9

# of samples 2340 3328 3584 3840 4096

Table 5.2: Comparison of the criterion in four cases

Case 1 # of arrays 9 13 14 15 16
16x16 SFS time (s) 4.25 6.85 7.59 8.34 9.11

SBS time (s) N/A N/A 6.71 3.48 0

Case 2 # of arrays 36 52 56 60 64
8x8 SFS time (s) 9.19 20.92 25.15 30.0 35.69

SBS time (s) N/A 1111.9 766 398 0

Case 3 # of arrays 144 208 224 240 256
4x4 SFS time (s) 87.34 291.91 367.37 477.89 600.17

Case 4 # of arrays 36 52 56 60 64
8x8 SFS time (s) 21.94 42.60 49.46 57.07 65.65

# of samples 2340 3328 3584 3840 4096

≈ 891/ε (5.6.2)

Comparing the criterion values at 3328 samples ( 13 arrays in Case 1, 52 arrays

in Case 2 and Case 4 and 208 arrays in Case 3), the values are close for Case 2, 3,

and 4 (adjusting Case 4 by a factor of 102 to compensate for the different choice of ε).

However, the criterion value for Case 1 is much higher. Taking into account the time

cost, the experimental result in Case 2 is desired. It takes 21 seconds to select 52 arrays
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and half a minute to finish the whole selection process in Case 2. For the larger field

of view (FOV) in Case 4, it takes 42.60 seconds to select 52 arrays, 65.65 seconds to

select 64 arrays (corresponding to 4096 samples), and 1 hour 9 minutes 16 seconds to

finish the whole selection. Table 5.2 shows the time cost for the four cases and sequential

backward selection for Case 1 and Case 2. In comparison with the sequential backward

array selection, sequential forward array selection is of more practical value because it

can get the desired selection in a minute.

Figure 5.3(a) and (b) show the logarithmitic scale of criterion curve in Case 2 and

Case 4. We observed that the criterion has a sharp increase because of the singularity

of AAH . With a few more samples than the unknowns selected, the criterion curve

eventually becomes smooth. The criterion curve eventually increases uniformly because

adding the value ε makes the selection increment nearly uniform for the last phase of

the selection process. The increase due to the 1/ε term dominates the increase.

5.7 Conclusion

We developed an efficient sequential forward array selection technique that provides

the most useful information for restoring and superresolving bandlimited images in a

minute. We developed a modified criterion to unite the whole selection process. We

derived an efficient recursive selection algorithm for the update criterion. We derived

a recursive algorithm for efficiently computing inverse related terms such that they can

be updated based only on the previous selected array. We use Gaussian elimination to

find a set of small inverse solutions at each step. The proposed method has important

potential in practice because it can select a reduced set of the most useful samples in a
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Case 4
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minute and can reconstruct the image with fewer samples than regular sampling. This

may reduce the image acquisition time greatly and is very important in applications to

MRSI, PMMW imaging, and multiband digital signal reception.



Chapter 6

Conclusion and Discussion

Four efficient optimal magnetic resonance observation selection schemes have been

proposed to overcome the problems in those existing methods, reduce observation time,

and improve the image resolution.

6.1 Efficient sequential forward selection

In Chapter 2, we proposed an efficient SFS optimization scheme, which has the

following advantages: 1) it overcomes the limitation of the SFS algorithm based on the

standard MSE criterion in that it can start with an empty initial matrix; 2) it drastically

reduces storage space and computational time with the proposed SFS recursive algorithm

and the conjugate gradients algorithm; 3) it is more applicable in practice than SBS in

that the best sample can be observed as soon as it is selected, making possible real-time

selection and acquisition. Simulation with real MR data shows a good-quality image

can be reconstructed with only a few more samples than the minimum density by our

method.

Further work is clearly necessary to accelerate the algorithm if it is to be useful in

a real-time context on an ordinary computer. However, the algorithm described here

makes the possibility of real-time implementation into the realm of feasibility appear

promising.

102
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6.2 Efficient backward selection of hexagonal samples

In Chapter 3, we proposed a new method for efficiently choosing MRSI samples

by applying SBS on hexagonal samples. We computed a generalized MDFT with Smith

form decomposition and output rectangular image pixels directly from hexagonal samples

without interpolation. A rate lower than the Nyquist rate on a hexagonal grid can be

achieved with the proposed method. Furthermore, SBS on a hexagonal sampling grid

takes less selection time than SBS on a rectangular sampling grid,

6.3 Efficient selection of sample block

In Chapter 4, we developed a method for selecting a periodic array of samples. It

used an efficient update formula for the criterion based on convolution kernels rather

than large, non-sparse matrices, an efficient update formula for the convolution kernels

based on the deleted array, and an efficient reconstruction method based on convolution

and FFT’s. The proposed method dramatically reduces storage and computational com-

plexity. We found that the lowest SSE is obtained when the number of possible dithered

positions is largest, given the same total number of samples.

6.4 Efficient sequential forward selection of array

In Chapter 5, we developed an efficient sequential forward array selection technique

that rapidly selects a reduced set of the most important samples for reconstructing images

with a limited ROS. We developed a modified criterion applicable to the whole selection

process such that the selection smoothly switches from the case with the number of

samples less than the number of unknowns to the case with the number of samples more
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than the number of unknowns. We derived an efficient recursive selection algorithm for

the update criterion. We derived an efficient recursive algorithm for computing inverse-

related terms such that they can be updated based only on the previous selected array.

We use Gaussian elimination to solve for a set of small matrix inversions at each step.

With this efficient strategy, the proposed method can finish the selection process within

half a minute for a practical size of image and can reconstruct the image with fewer

samples than regular sampling. This advantage may reduce the image acquisition time

greatly and make it very promising in applications such as MRSI, PMMW imaging, and

multiband digital signal reception.

6.5 Future work

1. A remaining problem is to derive an upper bound on SBS for array selection. The

upper bound for SBS for single samples was derived by Reeves and Zhao [100].

Deriving the upper bound for SBS for array selection appears to be a much more

challenging problem.

2. Another problem remaining is to develop an algorithm for beginning with a stan-

dard ROS and adjusting the selection for a modified ROS. To decrease the selection

time for the SFS algorithm, it is possible to assume several standard ROS’s, choose

the ROS closest to the actual head as the standard ROS, and start selection of sam-

ples from the standard ROS selection.



Appendix A

We prove that circular shifts of the selected samples and the ROS yield the same

value of the MSE criteria. For ease of notation, we consider the 1-D case. The proof for

the 2-D case is exactly the same, although the notation is more involved.

Theorem 6.5.1 Let {si} and {ŝi} be two sets of size m such that ŝi = ((si + l))M for

arbitrary l, where ((n))M = n mod M . Also, let {ri} and {r̂i} be two sets of size n

such that r̂i = ((ri + k))M for arbitrary k. Let A and Al,k have elements defined as

a(i, j) = e−j2π
sirj
M and â(i, j) = e−j2π

ŝir̂j
M . Then,

tr(AHA)−1 = tr(AH
l,kAl,k)

−1 if m ≥ n and (AHA)−1 exists,

and

tr(AAH)−1 = tr(Al,kA
H
l,k)

−1 if m ≤ n and (AAH)−1 exists.

Proof: The individual terms in Al,k are of the form,

e−j2π
ŝir̂j
M = e−j2π

sirj
M e−j2π

lrj
M e−j2π

ksi
M e−j2π kl

M (6.5.1)

105



106

Therefore,

Al,k = e−j2π kl
M

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e−j2π
ks1
M 0 · · · 0

0 e−j2π
ks2
M · · · 0

...
...

. . .
...

0 0 · · · e−j2π ksm
M

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
A

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e−j2π
lr1
M 0 · · · 0

0 e−j2π
lr2
M · · · 0

...
...

. . .
...

0 0 · · · e−j2π lrn
M

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= αHsAHr (6.5.2)

For convenience, we have denoted the left-hand matrix above as Hs and the right-

hand matrix as Hr, and α = e−j2π kl
M . It is apparent that both matrices are unitary,

which will be useful below.

If m ≥ n,

tr(AH
l,kAl,k)

−1 = tr((αHsAHr)
HαHsAHr)

−1

= αα∗tr(H−1
r (AHA)−1Hr)

= tr(HrH
−1
r (AHA)−1)

= tr(AHA)−1 (6.5.3)

If m ≤ n,

tr(Al,kA
H
l,k)

−1 = tr(αHsAHr(αHsAHr)
H)−1

= αα∗tr(Hs(AA
H)−1H−1

s )

= tr(H−1
s Hs(AA

H)−1)

= tr(AHA)−1 (6.5.4)
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Proof of Theorem 4.3.1:

For simplicity, we present a proof for the 1-D case; the 2-D case is conceptually identical

but requires more complex notation. Define S̃j as a matrix implementing a k-space shift

and Sj as the corresponding spatial-domain matrix operator made up of linear-phase

weights; that is,

S̃jF = FSj (6.5.5)

We observe that S̃H
j S̃j = I and SH

j Sj = I. Let i = j mod N , and k = N�j/N, where N

is the spacing between samples in the sensor array; thus, j = i+ k. Define ej as the unit

sample vector shifted by j − 1 samples. Then the jth column of FH(FQ̃H
r Q̃rF

H)−1F is

given by

F (FHQ̃H
r Q̃rF )−1FHej = F (FHQ̃H

r Q̃rF )−1FH S̃kei (6.5.6)

= FSk(S
H
k FHQ̃H

r Q̃rSkFSk)
−1SH

k FH S̃kei (6.5.7)

= S̃kF (FH S̃H
k Q̃H

r Q̃rS̃kF )−1Fei (6.5.8)

Because S̃k shifts the sensor array by an integer number of periods of the sensor array

pattern, Q̃rSk = Q̃r. In this case we have from (6.5.8)

FH(FQ̃H
r Q̃rF

H)−1Fei+k = S̃kF
H(FQ̃H

r Q̃rF
H)−1Fei (6.5.9)
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Thus, the response to an impulse at location i+ k is a copy shifted by k of the response

to an impulse at location i. That is, there is an impulse response associated with each

shifted position of the sensor array.

Using the matrix form in (4.3.4) and post-multiplying by ej , we have

B = [H1H2 . . . Hn]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Q̃H
1 Q1

QH
2 Q2

...

QH
n Qn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
ej (6.5.10)

= Hi+1ej (6.5.11)

= S̃kHi+1ei (6.5.12)

Thus, by defining a Toeplitz matrix Hi+1 such that FH(FQ̃H
r Q̃rF

H)−1Fei = Hi+1ei, we

obtain the structure in (4.3.4).

Proof of Theorem 4.3.2:

Observe that QjQ
H
j = I and QiQ

H
j = 0 for i 	= j. Then

QjBQH
j = Qj[H1H2 . . . Hn]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

QH
1 (Q1Q

H
j )

QH
2 (Q2Q

H
j )

...

QH
n (QnQ

H
j )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= QjHjQ
H
j (6.5.13)

Thus,

Gj = (I −QjHjQ
H
j )−1 (6.5.14)
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Using the fact that a circulant matrix with downsampled rows and columns is a circulant

matrix, QjHjQ
H
j corresponds to a circulant matrix. Furthermore, the sum of circulant

matrices and the inverse of a circulant matrix are still circulant matrices. Therefore, Gj

is a circulant matrix.
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