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Abstract

Open Biomedical Ontology (OBO) is a socio-technical community that is comprised

of individuals dispersed geographically, but function as a coherent unit through the use of

cyber-infrastructure. This study explores dynamics of open source science in such virtual

socio-technical networks. Innovation within a socio-technical network can be defined as

the approach to work that leads to the generation of novel and useful ideas and processes.

Among the factors that influence innovation are structural properties such as centrality, den-

sity, clustering coefficient, and average path length of socio-technical networks, as well as

effectiveness in collaboration. Hence, we explore virtual scientific communities from three

main perspectives: network, collaboration, and activity. Structural network metrics measure

the resilience of socio-technical networks. Collaboration analysis aims to discover interaction

patterns among participants and between knowledge domains. Activity analysis facilitate

discerning artifact submission and community growth patterns over time. To expedite anal-

ysis, a computational ethnography tool, called SciBrowser, is introduced. Using SciBrowser,

we observe power law degree distributions, which indicate presence of scale-free network

configurations. Such configurations provide an explanation for the resilience of research

communities in cyberspace. A new metric, called activity strength, suggests that major

contributors of the project are weak collaborators. As a result, their strong contribution

factor is nullified by their weak collaboration intensity. Activity patterns of the observed

projects suggest the presence of an adaptive renewal cycle, which is the epitome of behavior

in innovation ecosystems.
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Chapter 1

Introduction

The open source research has turned into a business model because of its popularity

and the open innovation revolution it brought in the software industry 15 years ago. Despite

differences in research dynamics between software and biomedical industries, this model has

entered the biomedical research [29]. Virtual collaboratories are enabling a new mode of

collaboration among scientists distributed over the globe to share and co-develop knowledge

over the cyber-infrastructure. The practice of science is becoming open and global as the

access to knowledge, as well as its production, is becoming increasingly transparent. Service-

oriented science [15] and e-Science [8] initiatives create scientific communities where shared

domain knowledge is no longer exclusively documented in scientific literature or patents.

Rather it is documented in software, simulations, and databases that represent an evolving

collective knowledge-base that is governed and maintained by community members. Just

like open source software communities, “SourceForge for science” style in scientific produc-

tion and collaboration provides the requisite infrastructure that encompasses community

membership services, catalogs, storage services, and workflow orchestration services.

As reported in [20], [13] and [38], open source communities promise a great deal of

discovery and learning. Many researchers have examined open source science communities

in the past. For example, Madey et al. [18] performed topological analysis of an entire

development community on SourceForge.net [14], wherein they classified the members of

the community based on their activity into 4-5 groups and then performed social network

analysis on the networks. They study primarily the project-developer network. Based on

this network, they derive project-project and developer-developer networks. In our study,

we investigate the individual projects and study the collaboration network of the members
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at the artifact level which makes our study more detailed. Moreover, we do not classify

the members based on their roles in the database. The roles as mentioned in the database

can be deceiving for the purpose of our study because they does not correlate with their

respective member activities. Recent studies such as the human flesh search engine [13] and

the network analysis of scientific workflows [38] also use social network analysis to explore

their communities of practice and answer some of the vital questions about their research.

For instance, in [38] authors aim to answer the questions “What is the current usage pattern

of services in scientific workflows, and how can this knowledge be extracted to facilitate

reuse?”

What differentiates our study is the 3 pronged approach towards analysis of the OBO

community. Our aim is to study the network not only from its structural point of view (which

is social network analysis) but also from the perspectives of collaboration and activity. From

the structural perspective, we visualize different types of graphs: user-user, user-artifact-user,

user-domain, and domain-domain. We study social network metrics: different centralities,

density, clustering coefficient and average path length for these graphs. Centrality and

density metrics assist in detecting whether the core periphery structure exists in the network.

Clustering coefficient and average path length comment on the small world nature of the

community. Both of these properties, if present in the network, can foster the innovation in

the community. In structural analysis we also look for presence of power law in the degree

distribution of the users, artifacts, and domains for different types of graphs mentioned

above. Apart from degree distribution, we concentrate on the phenomenon of preferential

attachment. To examine this phenomenon, we plot rate of change of degrees of actors over

time.

Collaboration and activity analysis gives a new dimension to the study. Collaborative

approach takes place at the user level, for which we developed a novel set of metrics (to

be discussed in chapter 6) to identify influentiality and innovation potential of users based

on their activity in the project. We also visualize the collaboration between users using
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color coded maps and highlight the areas where collaboration is significantly high. Temporal

analysis of activity is conducted at both the group and the domain level within a group,

thereby relating the open source science project life cycle to the organizational life cycle.

Two types of activities are identified for purpose of our study: artifact contribution and

number of active users. We examine the implication of one activity over the other. Activity

outbursts (high activity points) are also plotted to see how frequently activity crosses a

threshold. Threshold is determined by the user by setting relevant parameters.

We introduce a tool, called SciBrowser, for comprehensive analysis of open source sci-

ence communities. Among significant findings is a power law degree distribution for the

User-User graph indicating the resilient nature of the community. We also observe power

law distribution for the User-Artifact-User graph which indicates that only a few artifacts

greatly influence responses from users. Most of the projects have their clustering coefficient

value stabilizing at around 0.5 and their average path length value stabilizing at around 2

which is the indication of the small world network. Distribution of innovation metric “Ac-

tivity Strength” on a log scale indicates that major contributors of the project are weak

collaborators. Thus, their strong contribution factor is nullified by their weak collaboration

intensity. As a result, we fail to get a power law distribution when we consider both contribu-

tion as well as collaboration as a part of “Activity Strength” metric. Activity patterns of the

projects closely resemble the virtual organization life cycle. Thus, there is a possibility that

the open source science projects possess specific organizational characteristics like division

of labor, leadership, level of commitment, and coordination/control.

This thesis is structured as follows. Chapter 2 highlights the properties of complex

adaptive systems and open source communities that prevail in OBO. It also explains rele-

vant social network metrics that are related to innovation and creativity. Chapter 3 presents

the conceptual framework of the SciBrowser tool in terms of major building blocks that con-

stitute the tool. Chapter 4 introduces the SourceForge database schema and its extension

3



to facilitate calculation of metrics required for the project. Chapter 5 outlines the imple-

mentation of the SciBrowser tool from a software engineering perspective and discusses the

software process in terms of different stages of the software development life cycle. Chapter

6 elaborates on data analysis using SciBrowser and describes different ways in which we

analyze the community. We relate our observations to the innovation capacity of the group

as well as the individual. In Chapter 7, we conclude by summarizing our findings and point

out potential avenues of future research.
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Chapter 2

Background

This chapter presents the theory behind open source communities and complex adaptive

systems. It explains the characteristics of Open Biomedical Ontology (OBO) which makes

it a complex system. Some light is thrown on the important aspects of visualizing science.

At the end, various metrics used in the field of social network analysis are formulated and

their relevance in our study is explained.

2.1 Open Source Communities

The key to understanding an organization is to understand its governance, because it

not only offers an insight into an organization’s conception of control, but also indicates how

such communities can be sustained over time [30]. Corporate organizations use bureaucratic

bases of authority, while other organizations such as socio-technical communities of practice

use shared bases of authority. It is important to know how collaboration between individ-

uals in social communities accomplishes important outcomes such as knowledge sharing - a

determining factor in innovation.

One of the key aspects of open source communities is learning through knowledge shar-

ing. Members voluntarily collaborate and contribute towards community formation and

growth in the form of artifacts for either public or private benefit. Typically, members are

geographically dispersed and rely on modern communication technologies such as the In-

ternet as the means of communication and coordination. According to [30], a meritocratic

governance system must be introduced in the open source communities in order to attract

high quality contributions from the members. In return, the contributors can be rewarded

with greater status, responsibility, or opportunity. Thus, communities tend to satisfy the
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contributor’s need for recognition. There are 4 stages of governance that an open source com-

munity goes through [30]. These stages are explained in relevance to the study of Debian

Linux Community:

• De facto Governance

• Designing Governance

• Implementing Governance

• Stabilizing Governance

Leadership of such communities can either be decided based on Technical Contribution [30],

or Organizational Building and Leadership [30]. According to the technical contribution

approach, the greater the amount of technical contribution of a member, the higher is the

probability that the member will become a leader. Based on the organizational building and

leadership approach, the more a community member participates in online discussions, the

higher is the probability that the member will become leader.

2.2 Complex Adaptive System

Complex systems research is an interdisciplinary field that seeks to explain how large

number of relatively simple entities organize themselves, without the benefit of any central

controller into collective whole that creates patterns, uses information and in some cases

evolves and learns (called as Complex Adaptive System) [27]. For instance, ant colonies [27]

are an example of complex adaptive systems. An ant colony consists of hundreds to millions

of ants, with each ant being a simple creature performing simple tasks like foraging for food,

responding to the chemical signals of other ants and fighting intruders. But as a group, they

create complex structures like bridges (out of their own bodies) from one nest site to another

via tree branches separated by great distances.

It can be seen from the examples in [27] that complex systems consist of many elements

connected together. A possibility exists that the parts of complex systems are complex
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systems themselves. But the individual element need not necessarily have a complex nature.

They can be simple parts which adhere to simple rule sets. If a system consists of simple parts

whose collective behavior is complex, then the resulting phenomenon is called as emergence

[4]. Emergent patterns are not caused by single elements/agents working in isolation, but

they emerge from the interactions that take place between the agents based on the simple

rules which an agent operates on. In order to understand complex systems it is important

to know their properties. Each complex system is sufficiently different from others, but

at an abstract level they have some commonalities. Following are some of the common

characteristics and mechanisms of complex systems:

• Aggregation [16] - Aggregation has two interpretations; first one is the way we model

a system and second one is the behavior of the complex system. According to the first

interpretation, we categorize the system into similar objects and each category becomes

a class that is treated equivalently. The second interpretation is concerned about the

emergent behavior as a result of aggregate interactions of agents. For example, an ant

in an ant colony is a relatively simple agent, but the ant aggregate is highly adaptive

and complex. Aggregates so formed can act as agents at higher levels called meta-

agents. Meta-agents can also aggregate to yield meta-meta-agents which leads to an

hierarchical structure commonly found in complex adaptive agents. Thus the second

interpretation of Aggregation is a typical characteristic of complex adaptive systems.

• Tagging [16] - Tagging is the mechanism by which aggregates are formed in a sys-

tem. Similar agents are identified by tags which enable the members to filter their

interactions so that they can choose from the pool of agents, the agents that they need

to interact with. Thus, tagging leads to aggregation of agents into meta-agents and

organizations which is so common in complex adaptive systems.
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• Self Organization and Dynamicity - It has been argued that complex activities

are inevitably self-organizing [28]; that is, they cannot be fully externally or hierarchi-

cally controlled. A system can be considered a self-organizing complex system if its

components dynamically interact to achieve a global goal or function [40] page 40. In

the decentralized self-organizing systems there is no central authority who imposes the

function. Rather the function is imposed through the autonomous interactions to pro-

duce the feedback that regulates the system. Internal structures of complex systems

do not remain the same; it changes dynamically depending on the interactions that

take place between the actors of the systems.

• Non-Linearity [16] - Generally, linearity means that we can get the whole by adding

sum of the parts. Linear function consists of weighted sum of its parts as given in this

function: 3x + 5y + z. But in complex adaptive systems, the whole is more that just

the sum of its parts. Such systems demonstrate the non-linear properties like power

law.

• Flows [16] - Flows can be thought of as the information transfer over a network of

nodes and connectors. Agents form the nodes and their interaction forms the connec-

tors of the network. There are two effects caused by the flows in the network: multiplier

effect and recycling effect. Multiplier effect is caused when the resource is added at

any node in the network. The resource is passed from node to node throughout the

network. Recycling effect is caused when the resource is reused across the network.

Recycling leads to increase in the resource amount as well as its quality.

• Unpredictability and uncertainty [40] page 40 - Presence of this characteristic

in the environment is another common feature of complex systems. As the systems are

self organizing they use two mechanisms to cope with the uncertainty and volatility

in the environment: adaptation and anticipation. In adaptation system uses learning

techniques such as genetic algorithms or evolutionary computing to adapt or update
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its behavior to changes in the environment. In anticipation system uses current state

as well as current image of its future states to determine what the next state of the

system is and accordingly updates the behavior.

• Diversity/Disparity [16] - Diversity of the complex system is reflected by the het-

erogeneity of the agents that are part of the system. Each agent may be following

same set of simple rules but there are some properties that are different for each agent.

For e.g. in standing ovation problem [26] each agent can have different personal traits

and can behave according to those. Presence of such diverse agents causes the system

to undergo cascade of adaptations when a certain type of agent is removed from the

system.

2.3 Open Biomedical Ontology (OBO) as a Complex System

OBO Foundry [6] is a collaborative experiment in order to establish a common set of

principles for ontology development and a standardized data acquisition system. Aim of

OBO foundry is to support the community members who are developing and publishing

ontologies in the biomedical field. The goal is to apply the scientific methods to the ontol-

ogy development, so that, the data gathered through the biomedical research can be single,

consistent, cumulatively expanding and algorithmically tractable whole. OBO Foundry is

open and its contributors are the researchers who work together on a continuously evolving

set of design principles that can foster interoperability of ontologies. There are more than 60

ontologies that are interested in the goal of OBO Foundry. OBO Foundry is a consortium

that is comprised of multiple groups that focus on different domains. The groups used in

this study are: Open Biomedical Investigations (OBI), Gene Ontology (GO), Open Biomed-

ical Ontology (OBO), Chemical Entities of Biological Interest, Disease Ontology, Sequence

Ontology and System Biology Ontology. Following are the 2 types of data that are taken

into account for the purpose of this study.
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• Trackers [25] facilitate submission of the artifacts that characterize open problems and

feature requests. Each artifact tends to generate solution to the open problem in the

form of comments or suggestions posted by other members of the community. Artifacts

not only facilitate social interactions, but also act as the contributors to the knowledge

base. Mostly, artifacts are submitted by the active members of the community that

are engaged in knowledge creation.

• Patches [25] are the revisions submitted to the knowledge base by the core members

of the community. Knowledge base evolves over time and sometimes branches out in

new directions as it is explored. Exploratory branch may mature and merge with the

main stable branch, or it may even terminate to become the discontinued development

branch.

Just like world wide web [27], OBO can be thought of as a self organizing socio-technical

system with little or no central control. OBO comprises of the individual users spread

across geographically and performing simple tasks like submitting the artifacts, elaborat-

ing/commenting on the artifacts submitted by the other members. The only means of direct

interaction between the members is through emails. The elaborations provide an indirect

means of interaction. Through these simple actions OBO emerges as the complex system in

terms of its dynamic structure, growth over time, patterns of artifact submissions, user col-

laborations and information flows across domains. Following are the properties of complex

adaptive system that appear to be applicable to open source science communities:

• Aggregation - Aggregation in an open source science community symbolizes the col-

laboration between the agents. Members of the community are the agents who collab-

orate over the artifact contributions that they make. A single agent behavior is simple

in terms of the contribution he/she makes, but the emergent behavior becomes evident

when the users collaborate. Emergent behavior like power law, scale free network can

be seen in such communities.
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• Tagging - Members in open science communities are tagged or designated based on

the technical contributions that they make [30]. Due to tagging the community gets

segmented into different groups of users, and apparently members of the lower rank try

to associate themselves with the members of the higher rank leading to a phenomenon

called Preferential Attachment [1] which can be the cause of the power law and the

scale free network.

• Self Organization and Dynamicity - In open science communities, central control

does not exist; participation of members of the community is entirely voluntary. An

impact of self organization is that the structure of the network changes dynamically

with the addition of new members and resources over time. Users who greatly con-

tribute to the community become central to the community, while those having scarce

contribution remain on the periphery.

• Non-Linearity - Power law is an example of non-linear behavior.

• Flows - Knowledge mobility signifies the information transfer in the network. When

an artifact is submitted by the member of the community, the knowledge gets passed

on from node to node throughout the network (multiplier effect) due to collaborating

users. At the same time, as the members start contributing to the artifacts in the form

of comments the artifact is refined (recycling effect).

• Diversity/Disparity - Diversity is not necessarily a trait of the members of the

community; it can be a trait of the knowledge that is injected into the network by

the members. When injected knowledge is new, it gives rise to the response from

the other members of the community which further enhances the knowledge. But

after a while, the knowledge saturates and there are no more responses coming from

the members of the community. It is at this point that we need diversity in terms

of the knowledge contribution so that the responses keep coming from the members.
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Having homogeneous knowledge in the network quenches the growth of the community,

whereas presence of the novel ideas gives a new direction to the growth.

2.4 Visualizing Science

Visualizing science [34], over a period of time has come up as the useful tool in decision

making and analysis. Researchers in this field are producing representations that are catching

the attention of the program officers and the policymakers. But at the same time it is

important to have a statistical basis for the visualizations so that we can differentiate between

noise and a real change. Any visualization is based on the following keys:

• Data - Having data readily available to the researchers is the most essential require-

ment in visualization. University of Notre Dame maintains the Source Forge Data

Archive, which is available for research. For any open source project on the Source

Forge, data is updated monthly. Data can be easily downloaded as a csv (comma

separated values) file by querying the database using the query portal. Queries fired

on the database are SQL queries. Having such a framework and roadmap makes data

collection and management easier.

• Model - Visualization should be based on the statistical models built on the data.

This is a difference between data analysis and visualization. Data analysis is more of

a building statistical models on the data that would induce sense into the data, where

as visualization is the way data analysis is represented so that it becomes easy for the

end user to understand the data analysis. For e.g., power law [1] becomes a statistical

model/metric which is visualized using a line plot or a bar plot, because mare numbers

will make is difficult for the user to interpret the power law.

• Validation - Underlying statistical models need to be validated, so that they convey

the right information what an user intends to see. But it becomes a challenge to validate

these models when we are exploring. Visualization when used as an exploration tool,
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makes validation difficult, because one does not know what to expect ahead of time

[34]. The following section on social network metrics talks more about the metrics that

are already defined for any social network.

• User Interaction - For understanding what will be the right kind of visualization, we

need to first understand user needs. Taking user needs into account while designing

visualization tools, makes it easier to design useful visualization. The users in our case

are technical people working on simulation models, so the visualizations were designed

from their perspective. They needed to see the data in the form of graphs and plots so

that they can tweak their simulation models based on the actual data that they see.

2.5 Social Network Metrics and Interpretation

The best way to visually represent a social network is in the form of network of nodes

connected together; where the nodes are the actors of the network. In this section we

will discuss the metrics explained by [36], that are useful in interpreting the social network

with respect to creativity. These metrics have different interpretations for different types of

graphs.

2.5.1 Centrality

Centrality indicates the prestige and influentiality associated with the actor. Creativity

and centrality are related to each other according to following propositions.

“In phase 1 a positive self reinforcing spiral exists between centrality and creativ-

ity such that an increase in one leads to an increase in the other, until centrality

becomes constraining. In phase 2 the spiral becomes self-correcting such that an

increase in centrality no longer leads to an increase in creativity.” [31]
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“As an individual becomes more central, his or her creativity should continue

to increase at a decreasing rate, up to a point. Beyond this point, increases in

centrality may constrain creativity.” [31]

There are 3 types of centralities:

• Degree Centrality: At the individual level this metric determines the number of

nodes connected to a given node. One can view this as a measure of activity, in the

sense that a highly active actor will have links to most of the other actors [36]. Degree

centrality for an actor is represented by the formula:

CD(ni) =
d(ni)

g − 1
(2.1)

where d(ni) is the degree of the actor ni and (g − 1) is the group size [36].

For a group, the degree centrality is found by subtracting the individual actor degree

centrality from the maximum degree centrality value and summing them up; sum is

then divided by maximum attainable value for the numerator. Generalized formula for

the group degree centrality is:

CD =

g∑
i=1

[CD(n
∗)− CD(ni)]

(g − 2)
(2.2)

where CD(n
∗) is the maximum individual degree centrality in the group and (g− 2) is

the maximum attainable value for the numerator (star network) [39].

• Closeness Centrality: For an individual actor, closeness centrality determines how

close that actor is from all other actors. It reflects the distance between the actor and

all other actors in the network. The metric is computed as the average distance between

an actor and other members of the network [31]. It not only takes direct links, but also

indirect links required for an actor to communicate with all other actors. Closeness
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centrality helps in knowledge mobility [9]. The actor closeness centrality is defined in

[36] by the formula:

CC(ni) =
(g − 1)

g∑
i=1

d(ni, nj)

(2.3)

where d(ni, nj) is the shortest distance between node i and j. Closeness centrality for

node i is the inverse of the sum of the distances of node i from all other nodes in the

graph. So higher is the distance lower is the closeness and vice versa. Minimum value

for the sum of distances from any node to all other nodes in a graph with g nodes

is (g − 1). So the distance is normalized by (g − 1) in the equation above. Value of

closeness centrality thus varies between 0 and 1.

Closeness centrality for the group is found in the similar manner as in case of degree

centrality. First subtract the individual actor closeness centrality from the maximum

closeness centrality value, and add the difference; the sum is then divided by the

maximum attainable value for the numerator. Following equation gives the formula:

CC =

g∑
i=1

CC(n
∗)− CC(ni)

[(g − 2)(g − 1)]/(2g − 3)
(2.4)

where CC(n
∗) is the maximum individual closeness centrality in the group and [(g −

2)(g − 1)]/(2g − 3) is the maximum attainable value for the numerator (star network)

[36].

• Betweenness Centrality: This metric highlights the actors that act as the mediators

between two actors or groups of actors. They act as the communication medium

between the two groups or actors, and hence have a high betweenness centrality value.

Betweenness is a measure of how good an actor is at routing information. Following

quote explains betweenness centrality in a better way.
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Suppose that in order for [actor] i to contact [actor] j, [actor] k must be

used as an intermediate station. [Actor] k in such a network has a certain

“responsibility” to [actors] i and j. If we count all the minimum paths which

pass through [actor] k, then we have a measure of the “stress” which [actor]

k must undergo during the activity of the network [36] (page 189)

For calculating betweenness centrality of a node, we count number of the shortest paths

which pass through the node, out of the total number of paths possible in a graph.

Actor betweenness centrality is defined in [36] according to the formula given below:

CB(ni) =

g∑
i=0

gjk(ni)

gjk

[(g − 1)(g − 2)]/2
(2.5)

where gjk(ni) is the number of paths between nodes j and k that pass through node

ni and gjk is the total number of paths between j and k. The numerator is normalized

by the denominator [(g − 1)(g − 2)]/2 which is maximum number of paths possible in

a undirected graph with g nodes. Since we deal with undirected graphs above formula

is appropriate for our case.

Group betweenness centrality is calculated in similar fashion as that of the degree and

closeness centrality. According to [36], following equation defines group betweenness

centrality:

CB =

g∑
i=0

CB(n
∗)− CB(ni)

[(g − 1)2(g − 2)]
(2.6)

where CB(n
∗) is the maximum individual betweenness centrality in the group and

[(g − 1)2(g − 2)] is the maximum attainable value for the numerator (star network)
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2.5.2 Density

Density is the measure of degree of completeness and cohesiveness of the graph [36].

Any graph can have certain maximum number of edges. Density will measure the number of

edges the graph actually consists of out of the total edges possible. For an undirected graph

the maximum number of edges possible are n(n−1)
2

, and if we denote the number of edges of

the graph as |E| then density is defined as:

D =
|E|

n(n− 1)/2
(2.7)

2.5.3 Clustering Coefficient

Clustering Coefficient (CC) measures the average fraction of an actor’s collaborators who

are also the collaborators with one another [35]. A clique is defined as a maximal complete

subgraph of three or more nodes [36]. In the context of a social network, the clustering

coefficient represents how cohesive the group is; a high clustering coefficient represents a

tight circle, or subgroup. Similar to how circles of friends form in social settings, circles of

preferred collaboration can form in socio-technical networks. When the change of this metric

is shown over time it can show how well this node is integrating with the group.

2.5.4 Average Path Length

Average path length is the number of edges in the shortest path between two vertices,

averaged over all the pairs of vertices [37]. It is the measure of efficiency with which infor-

mation is transfered over the network from one node to the other; smaller the average path

length higher being the efficiency. Small average path length gives rise to the phenomenon

of the small world networks [37]. The issue of small world networks is of great importance

for the network studies, as this property directly affects such crucial fields like information

processing in different communication systems, disease or rumor transmission, network de-

signing and optimization [2]. In relation to OBO the smaller average path length fosters
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knowledge transfer, which can be a vital factor for innovation. The metric can be defined

according to following equation. Consider an unweighed graph G with the set of vertices V.

Let d(v1, v2), where v1, v2 ⊂ V denote the shortest distance between v1 and v2. Assume that

d(v1, v2) = 0 if v1 = v2 or v2 cannot be reached from v1. Then, the average path length is:

APL =

n∑
i,j

d(vi, vj)

[n ∗ (n− 1)]
(2.8)

where n is the number of vertices in G.

2.5.5 Small World Phenomenon

According to [35] Clustering Coefficient (CC) and Average Path Length (APL) both

define the small world network. In order to determine if a given network is the small world

network or not, Watt’s model compares CC and APL of actual network to that of the

randomly generated graph of same size. Random graph has a low CC and APL. Small

World Quotient (Q) is the measure of small world property of the network and is defined as:

Q =
CCratio

APLratio

(2.9)

where CCratio is defined as:

CCratio =
CCactual network

CCrandom network

(2.10)

and APLratio is defined as:

APLratio =
APLactual network

APLrandom network

(2.11)

More closer the APLratio to 1.0 and more the CCratio exceeds 1.0, higher is the small

world coefficient. In a bipartite (affiliation) network, members on the same team form a
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fully linked clique. Clustering includes both the within-team clustering and the between-

team clustering. If CCratio is approximately 1.0 then the clustering in the actual network

is mainly the result of the within-team clustering. But as CCratio goes beyond 1.0 there

is an increase in the between-team links. Also the cross-team links are mostly repeated

which means that the member who has collaborated previously, likes to collaborate across

the teams, with the same person they did previously. Thus, in bipartite networks the small

world influences behavior through two mechanisms:

“Structurally, the more a network becomes small worldly (formally, the more

the small world quotient exceeds 1.0), the more links between clusters increase

in frequency, which potentially enables the creative material within teams to be

distributed throughout the global network.” [35]

“Relationally, the more a network becomes small worldly, the more links between

clusters are made up of repeated ties and third-party ties, which potentially

increases the level of cohesion in the global network.” [35]

Thus, as the small world quotient increases, the level of connectivity between the dif-

ferent teams within the network increases through cohesive relations among the members

of these teams. This can be considered as the reason for their successful collaboration and

creativity.
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Chapter 3

The Organizational Framework of the SciBrowser System

This chapter gives an overview of the application in terms of its important components,

and how they communicate with each other. In addition, language specific libraries &

frameworks used in the tool are also discussed. Broadly speaking, there are two parts

involved in the construction of this tool: Schema Conversion Subsystem (Chapter 4) and

SciBrowser Subsystem (Chapter 5).

3.1 Schema Conversion Subsystem

Figure 3.1 below shows the block diagram for Schema Conversion Subsystem. Source-

Forge.net [14] uses relational databases to store project management activity and statis-

tics. There are over 100 relations (tables) in the data dumps provided to Notre Dame

[33]. SourceForge.net cleanses the data about personal information and strips out all OSTG

(Open Source Technology Group) specific and site functionality specific information. On a

monthly basis, a complete dump of the databases (minus the data dropped for privacy and

security reasons) is shared with Notre Dame. The Notre Dame researchers have built a data

warehouse comprised of these monthly dumps, with each dump stored in a separate schema.

Thus, each monthly dump is a snapshot of the status of all the SourceForge.net projects at

that point in time. To help researchers determine what data is available, an ER-diagram

and the definitions of tables and views in the data warehouse are provided. Data access

is given to the academic and scholarly researchers through a query portal to extract the

data. We query and extract the project specific data using the query portal and load it

in the local MySQL database on the server in our lab. Our study requires us to aggregate

the data, so that we have precalculated results which can further be used to calculate the

20



metrics we need for the purpose of our study. Thus, we have a set of python programs in

the Schema Converter which convert the original schema to a new one. The new schema is

called SciBrowser schema, and it contains the aggregate tables.

Figure 3.1: Schema Conversion Subsystem

3.2 SciBrowser Subsystem

SciBrowser subsystem is the GUI tool written entirely in python language, and is used

analyze the projects on SourceForge.net [14]. The tool has three types of analysis as shown in

the figure 3.2: Structural Analysis, Collaboration Analysis and Activity Analysis (explained

in detail in Chapter 5). The database in the backend of the tool is the SciBrowser schema

that we get after running the Schema Converter code against the SourceForge schema, as

mentioned in the previous section.

As shown in figure 3.2, the tool uses couple of python libraries; given below is the brief

description of each library:

• matplotlib [19]

matplotlib is a library for making 2D plots of arrays in python. Although it has

its origins in emulating the MATLAB [17] graphics commands, it is independent of
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Figure 3.2: SciBrowser Subsystem

MATLAB, and can be used in a pythonic, object oriented way. Although matplotlib is

written primarily in pure python, it makes heavy use of NumPy [7] and other extension

code to provide good performance even for large arrays. Using matplotlib simple plots

can be created with just a few commands.

• NetworkX [3]

NetworkX is a python-based package for the creation, manipulation, and study of

the structure, dynamics, and function of complex networks like social, biological, and

infrastructure networks. It provides a standard API and/or graph implementation that

is suitable for many applications such as social network analysis. The structure of the

graph or network is encoded in the edges (connections, links, ties, arcs, bonds) between

the nodes (vertices, sites, actors). Various types of graphs (directed, undirected) can

be drawn using NetworkX; moreover weights can also be given to nodes and edges if

needed.

• wxPython [32]

wxPython is a GUI toolkit for the python programming language. It allows python

programmers to create programs with a robust, highly functional graphical user inter-

face, simply and easily. It is implemented as a python extension module (native code)
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that wraps the popular wxWidgets - a cross platform GUI library written in C++.

Like python and wxWidgets, wxPython is open source which means that it is free for

anyone to use and the source code is available for anyone to look at and modify. Any-

one can contribute fixes or enhancements to the project. wxPython is a cross-platform

toolkit which makes it possible for the same program to run on multiple platforms

without modification. Since the language is python, wxPython programs are simple,

easy to write and easy to understand.

• wxmpl [24]:

Embedding matplotlib in wxPython applications is straightforward, but the default

plotting widget lacks the capabilities necessary for interactive use. WxMpl (wx-

Python+matplotlib) is a library of components that provide these missing features

in the form of a better matplolib FigureCanvas.
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Chapter 4

Schema Conversion Subsystem

This chapter gives a detailed description of the SourceForge schema that we harness to

derive a new schema, called SciBrowser schema. Detailed description of the tables used in

both of these schema’s, is provided in the sections below.

4.1 Open Biomedical Ontologies Schema, SourceForge Research Data Archives

SourceForge.net [14] stores all its project related data in the relational databases. This

data package is made available to researchers through a query portal provided by the Uni-

versity of Notre Dame [33]. The schema of our interest is the Artifact Data schema in the

Source Forge database.

4.1.1 Original Schema

Figure 4.1 shows the original database schema provided by SourceForge for Artifact

Data. Following is the description of the tables that interest our project.

• groups

There are various communities that form the part of source forge open biomedical

ontology (OBO), such as Gene Ontology (GO). These communities are designated as

groups in the “groups” table of the SourceForge database schema. Each group has an

identification number that uniquely identifies the group.

• artifact group list

A group can be generic and might have various specific areas within it. These areas

of specialization are called as domains. This table keeps the association between a
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Figure 4.1: Open Biomedical Ontology Schema for Artifact Data

group and its domains. Each record in the table represents a domain, and is uniquely

identified by an identification number. A group can have multiple domains, whereas a

domain is always associated with a single group.

• users

This table stores the list of all the members of the communities. The members submit

the artifacts, comment on the artifacts and collaborate. Table lists all user information

including their names and contact information.

• artifact

Table “artifact” holds the artifacts submitted by the members of the community. Ar-

tifact is a generic term to represent numerous types of reports that are attached to a

project. SourceForge automatically defines a number of default artifacts like bug re-

ports, feature requests, support requests, and patches; however, projects can also define
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their own type of artifacts. Each artifact record actually has two users associated with

it; one user is the person who created or submitted the artifact record, and the other

user is the person assigned to the artifact record. When a user contributes an artifact,

the contribution is made towards a domain which is designated by “group artifact id”.

The same artifact cannot be associated with a single domain.

• artifact message

When a member submits an artifact other users are free to comment or elaborate on

it. Each entry in the table “artifact message” represents a single elaboration. Details

like who submitted the elaboration, when it was submitted, which artifact it was

submitted for and the body of that message is stored in the table. There can be

multiple elaborations towards each artifact.

• user group

When a user gets registered with the community he/she gets affiliated with that group.

Table “user group” stores this affiliation information. Each user in a group has a

member role which decides the rank of the user for that group. User can be core-

developer, co-developer, admin, etc. In addition, an user can be the member of multiple

groups, and different member roles can be assigned to the user; one for each group.

4.1.2 Extension

With original schema alone, the calculation of some of the complex metrics becomes

computationally extensive; so we decided to include some additional tables that extend the

original schema, and facilitate the calculations of these metrics. The new schema contains

precalculated results stored in the tables. This helps in reducing the input-output calls made

towards the database during calculation of the metrics. The extended schema is shown in

figure 4.2.
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Figure 4.2: Extended Schema for Artifact Data

• collaboration

The “collaboration” table stores the data about user-user collaboration that helps in

calculating “Collaboration Intensity” factor of “Activity Strength” metric (explained

in Chapter 6). This table stores edges between users for given group, domain, year,

month and artifact which makes it very easy to slice and dice the data according to

the various dimensions thus providing flexibility.
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• contribution

The “contribution” table stores the details about contribution of the individual users

in terms of artifacts and elaborations and thus helps in calculating “Contribution”

factor of the “Activity Strength” metric (explained in Chapter 6). The table stores

number of artifacts and elaborations submitted by the user for a given group, domain,

year and month. So that, it makes it very easy to slice and dice the data according to

the various dimensions thus providing flexibility.

• user group affl

According to SourceForge, the user is the member of the group with which he/she is

registered. This relationship is misleading, because a user being registered with one or

more groups does not mean that he/she would contribute only for those groups. It is

upto user’s discretion to submit an artifact to the domain of their choice. If we have

this relationship, then we tend to neglect the contributions which were made by the

user for the groups with which they are not officially registered. This prompted us to

define a new table “user group affl”, not available in the original artifact schema. The

table gives the affiliation between users and groups based on newly defined relationship

which differs from the relationship between user and group at the database level. Now,

the user becomes the member of the group only if he/she contributes an artifact for

the group.

• domain domain collaboration

In order to construct the domain-domain graph, “domain domain collaboration” ta-

ble is built so that edges between different domains can be retrieved efficiently from

the database. Moreover, this also helps in calculation of certain structural metrics

like “Preferential Attachment” and “Degree Distribution” (to be discussed in later

sections).
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• artifact data

This table is a combination (equi-join) of “artifact” and “artifact message” tables from

original schema, with the only exception of the date field. The dates in the original

schema tables are stored in UNIX epoch time. But in our case, we need the dates in

the form of month and year. As a result, the dates in the artifact table are converted

to month, year format and stored in this table. In order to differentiate the users who

submit the artifact from the users who elaborate on it, we have a column called flag.

Setting the flag as ‘S’ indicates that the user submitted the artifact; where as, setting

it as ‘E’ indicates that user elaborated on the artifact.

As we can see from figure 4.2, the extended schema forms a star in which tables “col-

laboration”, “contribution”, “domain domain collaboration” and “artifact data” form the

FACTS that are surrounded by the DIMENSIONS: “group”, “artifact”, “artifact group list”

and “users”- the tables from original schema.
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Chapter 5

Implementation of SciBrowser Tool

This chapter gives the details about implementation of the SciBrowser tool. It explains

entire software engineering approach followed in terms of various stages of software process.

The Chapter is divided into 4 sections namely: Requirement Analysis, Design, Verification

and Validation. Each of these sections resemble a specific stage of software process that we

follow.

5.1 Requirement Analysis

5.1.1 Purpose

Primary purpose of the project is to analyze the Open Biomedical Ontology (OBO) net-

work from the perspective of Complex Adaptive Systems (CAS). Analysis includes demon-

strating the properties of a CAS, such as power law, scale free network, preferential attach-

ment etc. Our objective is to search for these properties and find out if they do or do not

exist. These properties can be observed in different types of graphs mentioned in [25], where

the interpretation of the properties vary accordingly. The properties targeted are mainly

the structural attributes of a social network. Apart from the structural aspects, the tool

also focuses on the behavioral properties of the the social network that are inclusive of the

collaboration as well as the activity taking place in the network. It visualizes as well as

quantifies the collaborations between members of the network, and also displays the activity

distributions over time.

Following is the list of requirements:
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• Visualize the Degree Distribution, at the Group/ Domain level, and for a given time

frame.

• Visualize the Preferential Attachment phenomenon, at the Group/ Domain/ User/

Artifact level, and for a given time frame.

• Visualize the Activity Strength Distribution of users, at the Group/ Domain level, and

for a given time frame.

• Visualize the Artifact Contribution Distribution of users, at the Group/ Domain level,

and for a given time frame.

• Visualize the Collaboration Intensity Distribution of users, at the Group/ Domain

level, and for a given time frame.

• Visualize the Activity Distribution, which includes visualizing the Active User distri-

bution and the Artifact Contribution distribution at the Group/ Domain level, and for

a given time frame.

• Visualize both, the cumulative and the non-cumulative forms of activity.

• Month-wise aggregation of the activity and the preferential attachment plots, within

a given time frame.

• Comparisons of the domains in terms of their activity.

• The plots displayed in the image panel should be interactive in the sense that the user

should be able to zoom in and zoom out in order to see the fine details of the plot.

Options for each metric are mentioned in tables 5.1, 5.2 and 5.3.

All the metrics in the discussion are calculated for the selected group and domain during

a certain time frame, and in some cases for certain artifacts or users as well. All these

parameters are required as the input for the calculation of the metrics. The user should be
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Type of Metric Metric User Options

User User

Preferential Attachment Type of Plot, Group, Domain, From Year,
From Month, To Year, To Month, User,
Time Interval

Degree Distribution Type of Plot, Group, Domain, Year,
Month

User Artifact User

Preferential Attachment Type of Plot, Group, Domain, From Year,
From Month, To Year, To Month, Artifact,
Time Interval

Artifact Degree Distribution Type of Plot, Group, Domain, Year,
Month

User Degree Distribution Type of Plot, Group, Domain, Year,
Month

User Domain

Preferential Attachment Type of Plot, Group, From Year, From
Month, To Year, To Month, Domain, Time
Interval

Domain Degree Distribution Type of Plot, Group, Year, Month
User Degree Distribution Type of Plot, Group, Year, Month

Domain Domain

Preferential Attachment Type of Plot, Group, From Year, From
Month, To Year, To Month, Domain, Time
Interval

Degree Distribution Type of Plot, Group, Year, Month

Table 5.1: Structural Analysis Metrics

Metric User Options
Artifact Contribution Distribution Type of Plot, Group, Domain, Year, Month
Activity Strength Distribution Type of Plot, Group, Domain, Year, Month
User Collaboration Map Type of Plot, Group, Domain, Year, Month
Collaboration Intensity Distribution Type of Plot, Group, Domain, Year, Month

Table 5.2: Collaboration Analysis Metrics
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Type of Metric Metric User Options

Cumulative/Non-
Cumulative

Active User Distribution Type of Plot, Group, Domain, From Year,
From Month, To Year, To Month, Time
Interval

Contribution Distribu-
tion

Type of Plot, Group, Domain, From Year,
From Month, To Year, To Month, Time
Interval

Domain Active User
Comparison

Type of Plot, Group, Domain List, From
Year, From Month, To Year, To Month,
Artifact, Time Interval

Domain Contribution
Comparison

Type of Plot, Group, Domain List, From
Year, From Month, To Year, To Month,
Artifact, Time Interval

Table 5.3: Activity Analysis Metrics

able to select the parameters required to calculate the metrics, from the drop down choices

provided on the panel and see the result.

5.2 Design

Figure 5.1, shows the comprehensive class diagram of the SciBrowser application. De-

tails like method signature and variable names have been eliminated from the class diagram

due to space constraint. To start with, we focus on the various packages this class diagram

is made up of; they are listed as follows.

• Data:

Data package is composed of the classes that hold the data to be displayed on the user

interface in the form of the options on the control panel (ControlPanelOptions), and

the metadata which is used in order to calculate the metrics. The class ControlPan-

elOptions, holds the data to be displayed on the control panel for all 3 pages. The

class Data, holds the different types of method binding data. For example, each metric

has a specific method used for its calculation; thus, there is a binding between metric

name and its method name in the form of a dictionary– a data structure in python.

33



The class, LoadParameterData is used to load the parameter values in the control

panel, directly from the database. The options for different groups or domains, used

in our analysis are loaded using this class. Finally, Parameter class is used to hold the

parameters selected by the user, which are then used in the metric calculation.

• Metric Interfaces:

The package MetricInterfaces, holds the common interface used to calculate all three

types of metrics (to be discussed in detail in following sections). IMetrics is the in-

terface for metrics, IToolkit is the interface for all the toolkits used in calculation of

metrics and IQueryConstructor is the interface all the query constructors used to gen-

erate queries. Although, python does not have concept of Interfaces we still enforce

this concept by creating the classes and having unimplemented methods inside it. If

in a class, just the method signatures are defined with “pass” keyword in the body of

the method, we call it as “Interface”.

• Connection:

The Connection package has 2 classes: DatabaseConfig and DBConnect. The class

DatabaseConfig, holds all the parameters such as host, port number, database name,

username and password that are required to connect to any database. All these pa-

rameters are static or class variables. The class is not singleton i.e. we can create

multiple instances of the class. Thus, if we want to get/set any of these parameters

(using getters and setters), then we just need to create an instance of the class, and

use getter/setter methods to alter these parameters. The class DBConnect, returns the

connection object to be used to query the database during metric calculation. Again,

connection object is a static variable which makes it possible to have single point of

reference for connection.

• Threading:

The class Thread in threading, module is used to generate a background thread for

34



Figure 5.1: Comprehensive Class Diagram

metric calculation or connection to the database. This makes it possible to have a

progress bar displayed for the user, while calculation or connection process is going on

in the background.

• GUI:

Detailed view of the GUI class diagram can be seen in the figure 5.11. Figure 5.1, shows

only the important parts of the GUI module. GUI package consists of number of sub

packages. The package GUI.MVC, is the dedicated package for the implementation

35



of Model View Controller [21] design pattern. Both, ImagePanel and AnalysisTree-

bookPanel (which is a part of control panel) act as the views which call the Controller

instance. The Controller instantiates Parameter class, and stores all the parameter

values in that class. The instance of the class Parameter, is passed to the Model for

metric calculation. The Model calls the instance of class CalculationThread to cal-

culate the metric, and then updates the ImagePanel. ImagePanel registers with the

Model initially when the application starts. Thus, the Model is aware about the view it

needs to update. GUI.BackgroundProcess package works in association with threading

module, in order to generate background threads for metric calculation and connection

to the database.

• Factory:

Factory package comes into play when the class Model (in the GUI.MVC package)

needs to calculate a metric. Factory returns right kind of object for the metric to be

calculated. The package Factory, is explained in details in Metric Selection section

below.

5.2.1 Helper Tables

The database schema provided by SourceForge, is alone insufficient to efficiently cal-

culate the metrics. As a solution to this problem, we came up with a new schema which

has the data in the relevant format. The new schema expedites the calculation of metrics

in terms of the time complexity, by reducing the number of input-output calls made to the

database. The new schema forms the basis for the calculation of all the metrics we need.

Tables in the new schema are designated as the Helper Tables, as they assist a great deal

in efficient calculation of metrics. The conversion from old schema to new schema is done

through a set of python programs.
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5.2.2 Metrics

Metrics are classified into three types: Structural Analysis, Collaboration Analysis and

Activity Analysis. Although they are significantly different modules, they have same depen-

dency structure which we call as 3 level dependency structure. The module that sits on the

top of the structure is the high level module, and is named as Metric module. Metric module

is represented by an interface which defines the methods that calculate metrics. The actual

implementation of the metric method is done by the classes that implement the interface.

In addition to that, the concrete class can also have its own methods to calculate some of

the specific metrics.

Module at the second level is called as Toolkit module, and is represented by the interface

that defines the common methods that are needed by the Metric module. So, it is needless

to say that the Metric module depends on the Toolkit module. Any concrete class that

implements the Toolkit interface can define its own methods.

Module at the third and the bottommost level is called Query Constructor module,

and is also represented by the interface which defines the common methods required by the

Toolkit module. Toolkit module communicates with the database to acquire data and Query

Constructor module assists Toolkit module in data acquisition, by providing the relevant

SQL queries that need to be fired on the database for fetching the required data.

At each level there are interfaces, and higher level concrete classes are dependent on the

interfaces defined at the level below them. For instance, concrete classes in Metric module

implement the higher level Metric interface and also depend on the Toolkit interface defined

in the level below them. Similar is the relationship between Toolkit and Query Constructor

modules. This implementation is inspired from the Dependency Inversion Principle [22]

(one of the 5 principles of SOLID code). The principle states that details should depend

on abstraction but abstractions should not depend on the details. In our case the concrete

classes in the higher level module depend on the abstractions in the lower level module.
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As a result, every level has to be represented by an interface. This approach has following

advantages

• There is flexibility of modifying the lower level modules without modifying the higher

level modules, because higher level modules depend on the abstraction rather than the

concrete implementations. As long as the interface requirements are met there is not

need to change the higher level modules which depend on the interface.

• The software can be easily extended with new code with out modifying the existing

code. According to the Open Closed Principle (OCP) [23] (yet another principle of

SOLID coding), the software should be built in such a way that the entities (Classes,

Modules, Functions, etc.) should be open to extension but closed for modification.

This can be achieved via Dependency Inversion Principle. Suppose, in future we need

to extend the software for a new type of metric; then a new method can be added in the

existing class which implements the Metric interface, and corresponding Toolkit and

Query Constructor methods can be added to the classes in their respective modules if

required. Thus existing code doesn’t have to be tempered with. Whereas in absence

of this architecture, every time the higher level class depends upon a new lower level

class, changes have to be made in the higher level class.

Each category of metrics is discussed below in detail along with their class diagrams.

Structural Analysis

Structural analysis module is shown in figure 5.2. As there are 4 different types of

graphs, there can be 4 different interpretations of a metric. For instance, the method pop-

ularityGrowthRate() showing preferential attachment has four different interpretations for

4 different types of graphs. Thus, the Metric module has an interface IGraphMetrics and

the classes that implement the interface will implement the metric in their own manner. In

addition, the concrete classes also define their own metrics.
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In Toolkit module (second level), the classGraphToolkit implements the interface IGraph-

Toolkit which has signatures of common methods used by all the classes in theMetric module.

There are additional methods needed by UserArtifactUserGraphToolkit and UserDomain-

GraphToolkit classes which are defined in the corresponding classes These classes inherit

from GraphToolkit class.

The third level is called as Query Constructor level. It takes care of all the SQL query

generation required by the toolkit level. Toolkit level communicates with the database to

query for the data and the queries that are needed are provided by the Query Constructor

level. Interface IGraphQueryConstructor gives the methods that have different implementa-

tions for different types of graphs. We have 4 different classes (one for each type of graph)

that implement this interface. Method specific to a certain type of graph are defined in the

corresponding class.

Collaboration Analysis

Collaboration analysis module is shown in figure 5.3. These metrics do not depend

on the type of graph. In fact, currently there is single implementation of collaboration

metrics as can be seen from the Metric module in figure 5.3. But we are open to a different

interpretation as well as implementation of these metrics and as a result, we have created

an interface ICollaborationMetrics having signatures of these metrics.

The Toolkit class in the Toolkit module implements ICollaborationMetricsToolkit inter-

face and inherits from CollaborationMetricsToolkit class. The reason behind this implemen-

tation is that, there are certain methods such as getting user list or domain list from the

database which are standard methods having just single implementation. These are used

through out the project. Thus, they are defined in the concrete class on which the higher

level classes depend. Although this goes against the Dependency Inversion Principle it makes

sense, because ultimately we send instance of Toolkit class as a argument to the methods in
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Figure 5.2: Structural Analysis Module
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the higher level class. This instance is of type both ICollaborationMetricsToolkit and Col-

laborationMetricsToolkit, and hence, it has access to both the implemented methods and the

base class methods. If we define a new class that implements ICollaborationMetricsToolkit,

then we do not have to redefine the standard methods in CollaborationMetricsToolkit again

in the new class. The new class can get them by inheriting CollaborationMetricsToolkit class.

Same is the situation with the Query Constructor module.

Figure 5.3: Collaboration Analysis Module
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Activity Analysis

In this project we are targeting two types of activities Cumulative and Non-Cumulative.

As a result, we have two implementations of each metric method defined in the interface

IActivityMetrics. As far as Toolkit module is concerned, we just have a single implementation

of the IActivityMetricsToolkit interface and for Query Constructor module there are two

query builder classes as shown in figure 5.4.

Figure 5.4: Activity Analysis Module
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5.2.3 Metric Selection

Above sections are dedicated to metric calculation that happens in the backend. This

section concentrates on how the intended metric is chosen for the calculation, based on the

user input. User selects a bunch of parameters on the control panel that decide which metrics

should be drawn on the screen for the user. As we have seen in the above sections that we

have three categories of metrics. For calculating a metric be it any category, we need to se-

lect and instantiate three classes because of three level dependency structure. For instance,

if we have to calculate Degree Distribution for User-Artifact-User graph then the classes

that need to be instantiated are UserArtifactUserMetrics (from Metric Module), UserArti-

factUserGraphToolkit (from Toolkit module) and UserArtifactUserGraphQueryConstructor

(from Query Constructor module).

Thus, metric selection can be achieved by applying Factory Method pattern [12], as

shown in figure 5.5. Three factories are built, one for each type of metric: structural,

collaboration and activity. Each factory class has three methods with the same signature

for producing the instance of a concrete class in Metrics module, Toolkit module and Query

Constructor module for the given metric. This structure closely resembles Abstract Factory

pattern [12], if we just have an abstract class or interface for the three factories that are

created. Thus, we have Abstract Metric Factory as the interface for the three factories.

This also requires us to have a common interface for each type of metric, toolkit and query

constructor classes. In order to select the appropriate factory class based on the category of

metric, we have a wrapper class called Factory Selector around the three factory classes.

5.2.4 GUI

When designing graphical user interfaces (GUI), we should use a solid design pattern or

model so that the GUI would be stern and smooth in all its transitions. If a GUI contains

several views or screens, or if it contains complex controls, it would not be wise to create

the GUI on the fly without doing any prior design or without having any design base model.
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Figure 5.5: Metric Factory

MVC (Model View Controller) [21] is such design pattern that is used to model complex

user interface. The MVC metaphor imposes a separation of behavior between the actual

model of the application domain, the views used for displaying the state of the model, and
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the editing or control of the model and views. Figure 5.6 shows the interaction between

different modules of MVC.

Figure 5.6: Model-View-Controller

Model manages the information and domain logic which in our case is the calculation

of metrics. Our application uses a backend database that stores all the raw data, and

calculation of metrics is built upon the data that is queried from the database. So the data

access layer is assumed to be encapsulated by the model. When model changes its state it

notifies all the views about the state change. View is the visual representation of the model

and is comprised of screens and widgets used within the application. The view is shown in

figure 5.7. We have just one view (image panel) to be updated. Controller responds to the

user inputs such as button clicks, data entry or menu selection. Its acts as the link between

user and application. Once request is received by controller it instructs the model to perform

certain actions by making calls on model objects.

GUI for the tool is structured as shown in the figure 5.7. GUI window is divided into

two segments called image panel and control panel. Image panel displays the graphs and the

plots where as control panel displays the options to be selected by the user in order to get

the desired plot. Control panel is a notebook having 3 pages namely Structural Analysis,

Collaboration Analysis and Activity Analysis. Figure 5.8, 5.9 and 5.10 shows the sample

graphs for three diferrent types of analysis. Each page corresponds to a specific type of

analysis mentioned under “Metrics” subsection under “Design”. A tree structure of available

metrics under the given analysis, is displayed on the left side where as the options associated

with each of the metric are displayed on the right side. When user selects the appropriate

45



Figure 5.7: GUI Snapshot

Figure 5.8: Structural Analysis Tab
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Figure 5.9: Collaboration Analysis Tab

Figure 5.10: Activity Analysis Tab

set of options and clicks “Draw” button, user request goes to the controller which in turn

sets the parameters in the Parameter class and instructs the model to calculate the desired
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metric. Model runs the calculation as a background thread, and shows a progress bar to the

user indicating that the calculation is taking place. When calculation is done model notifies

the image panel and image panel updates itself with the new data from the model. Class

diagram for GUI package (figure 5.1) is shown below in figure 5.11

Figure 5.11: GUI Class Diagram
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artifact id group artifact id submitted by open date
3 2 4 1107306000
4 1 2 1109725200
2 3 1 1136163600
1 1 2 1159750800
5 3 3 1178067600
6 4 1 1183338000

Table 5.4: artifact

5.3 Verification/Testing

Metrics calculated had to be tested for correctness before they were actually transformed

into plots. Figure 5.12 shows components involved in testing. Each of these components have

been explained below.

5.3.1 Test Database

Figure 5.12: Testing Framework
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user id user name
1 user1
2 user2
3 user3
4 user4
5 user5
6 user6
7 user7

Table 5.5: users

group id unix group name
1 group1
2 group2

Table 5.6: groups

group id user id member role admin flags
1 1 0 Y
1 2 100 N
1 4 101 N
1 5 100 N
2 5 0 Y
2 6 101 N
2 7 100 N
2 1 100 N

Table 5.7: user group

group artifact id group id
1 1
2 2
3 2
4 1

Table 5.8: artifact group list
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(a) User User Network (b) User Artifact User Network

Figure 5.13: Test Network

Test database “obo test” is created in order to test the metrics. Schema of test database

is a replica of original OBO database and consists of test data, loaded using SQL scripts. The

test data is generated using a hypothetical network shown in figure 5.13. The hypothetical

network is constructed by considering the boundary cases as well as intermediate test cases.

First the network is sliced into time frames in such a way that time frames take care of all

the test cases. The test data is shown in the tables below.

5.3.2 Metric Verification Module

Metric Verification Module consists of a Test Module for each category of metrics.

There are three types of Test Modules corresponding to three types of metrics as mentioned

in design section. Each Test Module consists of unit test cases in python that are tested

using python’s unit test framework PyUnit. Each unit test splits the network into a certain

time frame using given parameters. Test cases and their results for some of the metrics are

shown in tables 5.10, 5.11 and 5.12.
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id artifact id submitted by adddate
1 1 1 1160010000
2 1 3 1165280400
3 5 1 1178326800
4 5 5 1178499600
5 5 4 1181005200
6 5 6 1188954000
7 5 3 1188954001
8 6 5 1186275600
9 6 6 1189126800
10 6 7 1199494800
11 6 5 1186275601

Table 5.9: artifact message

Test Case Description Result

group = 1, domain = 1,
year = 2005, month = 1

Boundary Condition,
No User Exist

{ }, Raise Exception “No Data
Available for selected set of

Parameters.”

group = 1, domain = 1,
year = 2005, month = 3

Boundary Condition,
User exists but does
not have a degree.

{“user2”:0}

group = 1, domain = 1,
year = 2006, month = 10

General test case
where user exists
and has a degree

{“user2”:1,“user1”:1}

group = 2, domain = 0,
year = 2008, month = 1

Full Graph
Condition for
group id = 2

{“user1”:4, “user5”:4, “user3”:4,
“user4”:4, “user6”:4}

group = 0, domain = 0,
year = 2008, month = 1

Full graph condition
for all groups i.e.

cumulative

{“user1”:6, “user5”:5, “user3”:5,
“user4”:4, “user2”:2, “user6”:5,

“user7”:3}

Table 5.10: Test Cases for Degree Distribution
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Test Case Description Result

group=1, domain=1,
year=2005, month=2

Boundary
Contribution, No

User Exist

{ } Raise Exception “No Data
Available for selected set of

Parameters.”
group=1, domain=1,
year=2005, month=3

Single User
Condition

{“user2”:0.5}

group=1, domain=4,
year=2008, month=1

Full graph for
group id = 1

{“user1”:0.833, “user2”:0,
“user3”:0, “user5”:0.5,

“user6”:0.333, “user7”:0.333}

group=0, domain=0,
year=2008, month=1

Full graph condition
for all groups i.e.

cumulative

{“user1”:0.9117, “user2”:0.6176,
“user3”:0.75, “user4”:0.5441,
“user5”:0.4705, “user6”:0.3823,

“user7”:0.23529}

Table 5.11: Test Cases for Activity Strength Distribution

Test Case Description Result

group=1, domain=1,
fromYear=2005, fromMonth=3,

toYear=2005, toMonth=7,
timeInterval=1

-
{1:1, 2:0, 3:0, 4:0,

5:0}

group=1, domain=1,
fromYear=2006, fromMonth=9,
toYear=2006, toMonth=12,

timeInterval=1

- {1:0, 2:1, 3:0, 4:0}

group=1, domain=1,
fromYear=2005, fromMonth=9,

toYear=2005, toMonth=8,
timeInterval=1

Start Time comes before
End Time

Raise Exception
“Start Time Cannot
be less than End

Time”
group=1, domain=1,

fromYear=2006, fromMonth=9,
toYear=2006, toMonth=10,

timeInterval=2

Time Interval is greater
than the difference between

Start and End time

Raise Exception “No
Data Available for
selected set of
Parameters.”

group=0, domain=0,
fromYear=2006, fromMonth=8,

toYear=2007, toMonth=7,
timeInterval=3

Time Interval greater than
1. Aggregating the data for

every 3 months.
{1:1, 2:0, 3:0, 4:2}

Table 5.12: Test Cases For Contribution Activity Distribution
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5.4 Validation

In this section we demonstrate the validity of the SciBrowser by showing that it suc-

cessfully completes all the requirements specified in the Requirement Analysis section.

5.4.1 Structural Analysis

There are four different types of graphs [25] considered for this study. Structural analysis

page broadly consists of two metrics: degree distribution and preferential attachment. As

these metrics have different interpretations for different types of graphs they have been

grouped according to the graph types. Degree distribution is a plot of the degree of a node

v/s number of members having that degree. Besides line and bar, this plot can be viewed

on logarithmic scale as it helps in accurate representation of the power law if it exists.

Preferential attachment brings out the phenomenon of “rich gets richer”. It represented by

the plot of rate of change of degree with respect to time; thus, a constant increase in the

rate of change of the degree indicates the presence of preferential attachment.

5.4.2 Collaboration Analysis

The metric, activity strength is introduced in this analysis. This metric considers both

collaboration and contribution in its calculation; thus, it reflects the innovation potential

of the users/members of the community. The metric is plotted on time axis in order to

determine if there exists a similar distribution like power law. In addition, there is User-

User collaboration map in order to view the interactions between the users. The areas

that have high interactions are highlighted with lighter shades; whereas, the areas with low

interactions are assigned the darker shades.
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5.4.3 Activity Analysis

Under Activity Analysis page, we have metrics that display monthly distributions of

number of artifacts submitted and number of active users in the network. We also com-

pare the domains based on the activity using “Domain Active User Comparison” and “Do-

main Contribution Comparison” plots. In order to depict the frequency at which activity

reaches/crosses a threshold level, the distribution called “Waiting Time Distribution” is used

where the threshold can be set by the user.
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Chapter 6

Social Network Analysis Using SciBrowser

As mentioned in the last chapter, SciBrowser analyzes the OBO community from three

perspectives: structural, collaboration and activity. Structural analysis focuses on the social

network analysis metrics like degree, centrality, density, clustering coefficient and average

path length. Collaboration analysis focuses on collaboration between the users and innova-

tion potential of individual user, using some novel metrics like “Activity Strength”. Activity

analysis concentrates on visualizing temporal distributions of activity to see how frequently

the activity goes beyond a threshold which is a point of high activity. This chapter pinpoints

the results of analysis performed by the tool. Each type of analysis, along with the results

and their interpretations, is the highlight of this chapter.

6.1 Structural Analysis

Structural analysis is based on different types of graphs which we introduced in [25].

Following is the brief description of each type of graph that we used in our study and

its implications on social network metrics. In each type of graph, node size is directly

proportional to the degree of the node, and the strength of the connection between the nodes

is indicated by the thickness of the line connecting the nodes. Definition of the connection

strength varies according to the type of graph.

• User-Artifact-User Graph:

In this network graph, the nodes are users and artifacts. The network depicts the

contributions made by the users towards their group in the form of artifact submissions

and elaborations. An artifact is created by exactly one user, while multiple users can
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elaborate on it; thus, a given artifact has at least one connecting edge with the user

who submits it, and there can be multiple edges based on these user elaborations.

This graph shows the responses from other members of the network, and from these

responses we can deduce how influential a given artifact will become. Figure 6.1 depicts

the User-Artifact-User graph for the OBO hub group (group id: 125463 (ChEBI)). The

nodes which are named as numbers indicate artifacts, whereas rest of the nodes named

as alpha-numeric specify engineers and scientists (e.g., community members). The

greater the number of elaborations an user makes towards an artifact, the stronger the

connection strength between the user and the artifact.

Figure 6.1: User Artifact User Network

• User-User Graph: The User-User graph is derived from the User-Artifact-User

graph. We assume a transitive relationship between artifacts and users; if both member

A and member B are connected to artifact 1, we posit that member A is connected to

member B. This allows us to simplify the graph and show only how users change over
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time, and prevent information overload due to the artifacts. This graph can be termed

as a collaboration graph as it displays collaboration between users. The greater the

number of times users collaborate (indicated by number of comments shared between

users), the greater the strength of connection between them. Figure 6.2 depicts the

user-user graph for the OBO hub group (group id: 125463 (ChEBI)).

Figure 6.2: User User Network

• Artifact-Artifact Graph: The Artifact-Artifact graph is also derived from the User-

Artifact-User graph, by connecting together the artifacts that are linked to the same

member. The greater the number of members linked to the pair of artifacts, the

stronger the link between the two artifacts. This graph depicts the information flow at

the artifact level. Figure 6.3 shows the artifact-artifact graph for the OBO hub group

(group id: 125463 (ChEBI)).

• User-Domain Graph: A group has one topic of focus, but these topics can be broken

further into subfields in a similar manner to a phylogenetic tree. These communities
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Figure 6.3: Artifact Artifact Network

are laid out in a similar fashion. If we take any particular group, this group will be

composed of one or more subject area’s or domains. The subject areas are the focus of

the User-Domain graph. Figure 6.4 depicts the User-Domain graph for the OBO hub

group (group id: 36855 (Gene Ontology)). Each group in OBO has subgroups (i.e.,

domains) that focus on specific subject areas. Each artifact is submitted for a specific

domain. By abstracting the artifacts of the User-Artifact-User graph onto domains they

belong, we derive a low-resolution and abstract network representation that denotes

distribution of members onto subject areas. The nodes named as numbers indicate

domains, whereas the rest of the nodes named as alpha-numeric specify engineers and

scientists (e.g., community members).

• Domain-Domain: The Domain-Domain graph is derived from the User-Domain

graph. We assume a transitive relationship between users and domains similar to

what we have in the User-Artifact-User graph above; if member A is connected both

to domain 1 and domain 2, we posit domain 1 is connected to domain 2. Further-

more, the greater the number of members common to a pair of domains, the stronger
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Figure 6.4: User-Domain Network

the relationship between the domains. Members of the groups act as the medium

of knowledge transfer between domains (in Domain-Domain graph) or artifacts (in

Artifact-Artifact graph). This rationale gives us an idea of how well the knowledge

transfer takes place between domains– the concept which fosters innovation. Figure

6.5 depicts the domain-domain graph for the OBO hub group (group id: 36855 (Gene

Ontology)).

It was observed that despite network diversity, most of the real web-like systems share

three prominent structural features: small average path length (APL), high clustering and

scale-free (SF) degree distribution [2][37]. Although the SciBrowser tool is used to visualize

degree distribution and preferential attachment, we did not limit our study to these metrics;

rather, we have done comprehensive social network analysis of the OBO community.
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Figure 6.5: Domain Domain Network

6.1.1 Centrality

For the User-Artifact-User graph, the artifact with high degree-centrality will have ties

to most of the users which means large number of users contribute to the artifact. For

the User-User network, a highly central user will collaborate with most of the users, and

hence reflect high collaboration intensity. For the User-Domain and the Domain-Domain

networks, the central domain indicates that many users contribute to the domain which

makes it an active and important domain. High closeness centrality in an User-Artifact-User

graph indicates that the artifact is easily accessible to most of the users. In the User-

User graph the user having high closeness centrality can reach all other users easily which

facilitates communication. In Domain-Domain network high closeness centrality indicates

that knowledge diffusion from one domain to the other will be smooth.

Figure 6.6 shows the monthly distributions of different types of centralities and density.

Some of the projects like Open Biomedical Ontologies (76834), Disease Ontology (79168),

and Systems Biology Ontology (174625) have the closeness centrality value as 0 because

the graphs of these projects are disconnected. Sequence Ontology (72703) has values of all

centralities in the range 0.85 - 0.95 which is very high. This network has the structure close to
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a star network which makes it evident that the network has a small core and a large periphery.

Presence of the core members keeps the community active as they heavily contribute to the

community. Presence of peripheral members helps keep constant flow of novel ideas into the

community, as the peripheral members are the links between the community and the outside

world.

6.1.2 Small World Phenomenon

Clustering Coefficients (CC) and Average Path Lengths (APL) define the small world

phenomenon for networks [35]. Month-wise distributions of CC and APL for the User-User

graphs of various projects are shown in figure 6.7. CC indicates how complete the subgraph

is for the user in discussion. If the neighbors of a user are fully connected it means that the

CC for the user is 1. Whereas, if the user’s neighboring network is fully disconnected then

the CC for that user is 0. Thus, if the CC is high or very close to 1, then most or all of the

neighbors of the user will be connected to each other, creating a uniformity in the knowledge

level of the individual users in the clique. Simply, if everyone in the group has the same

knowledge as every other individual, then there’s no diversity– one of the important factors

in fostering innovation and creativity. Also having a 0 value for CC means that there is no

communication between the users that are connected to the user in discussion. This is not

advisable, as the knowledge mobility is suppressed. Thus, it is preferable to have a value

of CC between 0 and 1, as it indicates the presence of highly connected subgroups (within

the project) which are loosely connected to each other. As seen in Figure 6.7, most of the

groups have their CC value between 0 and 1 which is an indication of the existence or the

possibility of existence of creativity in the groups. APL is defined as the average number of

nodes it takes for any node to get to any other node in the graph. The smaller the APL, the

faster the information diffusion in the graph which favors the condition for the small world

phenomenon.
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(a) Sequence Ontology (72703) (b) Open Biomedical Ontologies (76834)

(c) Disease Ontology (79168) (d) ChEBI (125463)

(e) Systems Biology Ontology (174625) (f) OBI (177891)

Figure 6.6: Centrality and Density Distributions

It is worth noting that CC fluctuates initially for most of the groups which indicates that

the group is constantly restructuring itself with new users joining the group and innovating.

But some of these groups (Open Biomedical Ontologies, OBI, Disease Ontology), stabilize

their CC values without much fluctuation which means that there is no more restructuring

63



(a) Sequence Ontology (72703) (b) Open Biomedical Ontologies (76834)

(c) Disease Ontology (79168) (d) ChEBI (125463)

(e) Systems Biology Ontology (174625) (f) OBI (177891)

Figure 6.7: Clustering Coefficient and Average Path Length Monthly Distribution

in the project and no more innovation. Other groups (Sequence Ontology, ChEBI, Systems

Biology Ontology) show slight variation in CC, but not enough for innovation and creativity.
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6.1.3 Degree Distribution

Figure 6.8 and 6.9 show the degree distributions for the User-User network of Gene

Ontology and entire OBO community respectively. The line plot in both cases indicates

that we have a power law which is shown by the log plot next to it. Power law has different

interpretations in different types of graphs. In the User-User network power law indicates

that only few users have a high degree where as most of the users have low degree. As can be

see from figures 6.8 and 6.9, the distributions are progressively broadening in time developing

heavy tails. This implies that the distribution has high variance i.e. if we randomly pick

a user then he is likely to have a degree value which is far from average. In User-Artifact-

User network we focus on the degree distributions of the artifacts and we get power law

as shown in figure 6.10. This indicates that there are only few artifacts that attract large

number of users but majority of the artifacts does not impact users of the network. Power

law demonstrates the scale-free property of the network which makes the network robust

and resilient; if we randomly remove nodes from the network, it does not fail. This is one

of the reasons why the self organized communities like WWW (world wide web) flourish

even though the members of the community join and leave voluntarily. We ignore the actors

having zero degree by classifying them as outliers, as log (0) is not defined.

(a) Line Plot (b) Log Plot

Figure 6.8: Degree Distribution of User-User network for Gene Ontology (Group Id-36855)
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(a) Line Plot (b) Log Plot

Figure 6.9: Degree Distribution of User-User network for OBO (All Groups Included)

Figure 6.10: Artifact Degree Distribution of User-Artifact-User network for OBO (Compre-
hensive)

6.1.4 Preferential Attachment

According to [5], the reasons of having scale-free power law distribution for many large

networks are: (i) networks expand continuously due to addition of new nodes to the network,

and (ii) new nodes attach preferentially to the nodes that are well connected. This indicates

that the nodes that are well connected will attract new nodes, and continue to grow until a

certain limit [31]. In order to visualize preferential attachment, we plot the change in degree

of the actor over period of time. Actor can be a user (in User-User network), artifact (in the

User-Artifact-User network) or domain (in Domain-Domain network). Ideally, what we can

expect from the visualization for the actor who displays preferential attachment is a linear
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rise in the rate of increase in degree of the actor indicating that the actor is becoming more

and more connected; but later the change will fall and approach zero which means that the

actor’s degree becomes saturated there after. In User-Artifact-User network, this exactly

resembles the life cycle of any artifact as shown in figure 6.11(a). Initially when the artifact

is new it influences response from the users; but later the responses diminish as there is no

novelty left in the artifact. But there is a exception to this revelation which is shown in

figure 6.11(b). Here the artifact just after its submission receives response which leads to

its degree change going to 100%, and over next few months the artifact becomes dormant

as there are no users contributing towards the artifact; but there is a sudden increase in the

degree of the artifact after that. We tracked this artifact at the database level and found

that the reason for the increase in the degree of the artifact is a certain contribution made

by a user, which influenced a series of responses from the existing as well as new users.

There is a possibility that this contribution was a novel one or an important addition to the

existing artifact. Thus, the contribution could have been either a radical innovation or an

incremental one.

(a) Artifact - 1167822 (b) Artifact - 994121

Figure 6.11: Preferential Attachment Graph for Artifact

In case of users, the preferential attachment depicts the journey of the user from the

periphery to the core of the network. Figure 6.12 shows the degree change plots for some of

the users of the Gene Ontology project. It is evident from these plots that they all follow

the same pattern in terms of degree change. Initially when users join the community they
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are highly active as indicated by their sharp rise in the rate of increase in degree. But over

period of time their degree starts increasing at a lesser rate and eventually stays constant.

Based on the plots, we can say that as the user becomes more and more central, the rate of

increase in the degree declines. Thus for a user, preferential attachment only exists initially

for a certain time.

(a) User - gomidori (b) User - jl242

(c) User - val wood (d) User - ramab

Figure 6.12: Preferential Attachment Graph for Users

6.2 Collaboration Analysis

Collaboration Analysis focuses on the collaboration aspect of the users. When an artifact

is submitted, the users discuss the artifact by commenting on it. The influentiality of the

artifact becomes evident from the number of comments it gets in the form of responses. But

this analysis is targeted towards determining the influentiality of the user and not the artifact.

Another objective to successfully visualize the collaboration between users. Activity strength
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helps identify the productivity of the user by considering both contribution and collaboration

aspects associated with the user, while collaboration map helps visualize the collaboration

between users at any given point in time.

6.2.1 Activity Strength

This metric has been drawn from the study conducted on the impact of Co-Authorship

teams [20], where it was used to identify the productivity and influentiality of the authors.

In OBO the users submit the artifacts, and these artifacts are elaborated by other users

in the form of comments. Thus, the artifacts become the means by which the users can

effectively collaborate. In order to calculate this metric for a user, we need both the number

of artifacts submitted (A) and the collaboration intensity (CI) for the user.

CI(i) =
∑
j

wij (6.1)

Equation 6.1 represents the Collaboration Intensity and it takes into account all the users j

connected to user i. Connection between user i and j has a weight associated with it that is

represented by wij where

wij =

∑
a Nc

Na

takes the weight between user i and j over all artifacts. Nc represents the number of col-

laborations that take place between user i and j over artifact a and Na is total number of

artifacts over which user i and j collaborate.

Sa(i) = Wa (Ai) +Wci (CIi) (6.2)

Equation 6.2 represents the activity strength with Wa representing the weight for artifact

submission (A), while Wci represents the weight for collaboration intensity (CI) such that

Wa +Wci = 1. If Wa > Wci then it indicates that the Activity Strength gives higher weight

to artifact submissions than collaboration intensity and vice versa. Furthermore, Ai and CIi
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are normalized by dividing them with maximum value for A and CI respectively, such that

0 ≤ Ai, CIi ≤ 1. This also makes sure that 0 ≤ Sa(i) ≤ 1.

Activity Strength is used to assess the productivity, influentiality and innovation po-

tential of the user. We expect to get a scale free distribution for this metric just like degree

distribution. It means that there exist a few influential users around which the community

is built, and all the other users connect to these influential users. Figure 6.13 shows activity

strength plots that we get from the SourceForge data. If we put Wci i.e. the weight for

collaboration intensity (CI) as 0 in the equation 6.2 there by completely ignoring collabo-

ration factor, then we get the plot as shown in figure 6.13(a). If the artifact submission

factor is completely ignored in equation 6.2 by putting Wa to 0, then we get the plot shown

in figure 6.13(b). With equal weights given to both these factors we get the plot shown

in figure 6.13(c). As we can see, plot 6.13(a) displays a power law; whereas, plots 6.13(b)

(a) Wci = 0 (b) Wa = 0

(c) Wa = 0.5, Wci = 0.5

Figure 6.13: Activity Strength Log Plots for Gene Ontology (36855)

70



and 6.13(c) are scattered and do not indicate any specific pattern. The conclusion we can

derive from these plots is that as far as artifact submission is concerned there are a few core

users who make contributions towards the project 36855 (Gene Ontology). But these users

are not major collaborators which is the reason why we fail to get a power law when we

consider both contribution and collaboration. Most of the members of the community are

collaborators and their collaboration intensity is along same lines which is the reason why

we do not get a power law when we consider just the collaborations.

6.2.2 Collaboration Map

Collaboration map is used to visualize the collaboration patterns in a group or domain,

using python matplotlib color map. The map is laid out as a 2 dimensional matrix with the

users on both X and Y axis of the map. Each cell of the matrix represents the collaboration

between the user on X axis and the corresponding user on Y axis. Diagonal cells are

ignored as they represent the same user on both X and Y axis. The map is symmetrical

with diagonal acting as the axis of symmetry. Figure 6.14 shows the collaboration patterns

between the users of different groups in OBO. Color scheme used in the matrix is shown in

a color bar adjacent to the color map. The darker the cell is, the lesser the collaboration

intensity between the users associated with the cell. As the color approaches yellow or

white, that indicates increase in the collaboration between associated users on X and Y

axis. Lower half of the color map is colored black in order to indicate that the graph we

are using is undirectional and is symmetrical across the diagonal. Thus, the collaboration

between User-X and User-Y is same as the collaboration between User-Y and User-X. In

case of bi-directional graphs entire color map can be used. Collaboration between two users

is calculated using the formula given in equation 6.3 shown below.

CUser−X,User−Y =
Nc

Na

(6.3)
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In equation 6.3, Nc is the number of collaborations that took place between User-X and

User-Y ; while Na is the number of artifacts over which the collaborations took place between

User-X and User-Y. Collaboration is normalized using the maximum value. Thus, we get

collaboration value between 0 and 1.

(a) Gene Ontology (36855) (b) Sequence Ontology (72703)

(c) Open Biomedical Ontologies
(76834)

(d) ChEBI (125463)

(e) Systems Biology Ontology
(174625)

(f) OBI (177891)

Figure 6.14: User Collaboration Maps for various projects under OBO
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6.3 Activity Analysis

The activity patterns are seen against the time so that it reflects different stages the

community has gone through. Activity not only shows the project life cycle stages but also

explains the innovation taking place in the project. We define two types of activities: Artifact

Submission and Active User Distribution. These activities can be viewed using SciBrowser

for a certain group (project) or domain from a certain start time (year/month) to a certain

end time (year/month). The smallest unit of time is one month i.e., by default the results

will be shown as monthly distributions. Also, the time can be aggregated to see the total

activity for that period; for e.g., a monthly activity can be aggregated to view it every n

months, where n can be anything in the set [2, 3, 6, 9, 12]. For the plots in figures 6.15,

6.16, 6.17 and 6.18 n is set to 9.

The activity metrics indicate the stage of the community growth at any given point in

time. A typical project life cycle of an organization is based on the sales or profits (dependent

variable) over time. According to [10] for an open source software project it is the number

of downloads the users do, that decides life cycle of the project. OBO being an open science

project, we plot the number of contributions and the number of active members over time,

in order to see how the project fits into the organizational life cycle model.

6.3.1 Contribution Distribution

“Contribution Distribution” is the plot of the number of artifacts submitted over period

of time. This metric can be visualized using line or bar plot, with the time on the x axis

and the magnitude of submission on y axis. Figure 6.15 shows the contribution pattern

for different communities under OBO foundry. Each point in the graph accounts for the

aggregate contribution of 9 months. This is done in order to achieve a smoother curve and

eliminate noise. The figure shows all the stages of typical project cycle. Figure 6.15(a)

shows the “Introduction and Growth” phase for the community. Figure 6.15(b) shows the

community which is in its “Maturity” phase and figure 6.15(c) shows the “Decline” phase
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for the respective community. It is not necessary that all the projects follow the same cycle

that is mentioned above. It is the most typically observed life cycle of a project. Figure

(a) Introduction & Growth (b) Maturity

(c) Decline

Figure 6.15: Typical Contribution Activity Patterns across projects OBI (177891), Open
Biomedical Ontologies (76834) and ChEBI (125463)

6.16 below shows the alternate life cycles that are followed by the projects. It is seen from

figure 6.16(a), that the community starts of with a steady growth and appears to become

mature after that, but then there is a sudden rise in the contributions coming from the

members of the community. Later the number of contributions starts dropping. According

to the project life cycle model [10], community can either start declining or reviving after

it reaches its maturity. In this case we witness a revival which can be due to an important

breakthrough in the existing domain in the project or due to the introduction of a new

domain. It can also be simply due to a new discovery by a group of motivated researchers.

Revival can make a project enter the growth phase again; this trend is evident from figure

6.16(b), where the community starts reviving after it started to decline. Thus, revival brings

with it the innovation which tends to put the project back on track.
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(a) Revival After Maturity (b) Revival After Decline

Figure 6.16: Alternate Contribution Activity Patterns across projects Gene Ontology (36855)
and Sequence Ontology (72703)

6.3.2 Active User Distribution

We define active users as the users that contribute towards the community. “Active User

Distribution” is the distribution of the active users over the period of time. The plot does

not necessarily indicate the state of the project, but it gives us the idea about overall active

population in a project at any given point in time. If we compare the plots of distribution

of active user with the plot of distribution of artifacts contributed, we get an idea about

how the changes in the active user concentration have affected the changes in the artifact

submission. Figure 6.17 and figure 6.18 compares these two plots for two projects. As can be

seen from figure 6.17(a) an initial increase in the number of active users can be correlated to

increase in the artifact submission (from x=1 to x=5 in figure 6.17(b)). This indicates that

the increase in the active population leads to influx of new ideas in the project and hence

innovation. Further, as the growth in the number of active users stagnates (from x=5 to

x=7), the artifact submission falls down and is revived as the active users grow (from x=7

to x=8).

The above case might not happen at all the time; figure 6.18 shows an exception to

the above revelation. Initially as the number of active users increase (from x=1 to x=4)

, an increase in the number of artifacts can be seen in figure 6.18(b). But the growth in

the number of artifacts stagnates (from x=4 to x=7) while the number of active users still

increases indicating that although the number of active users increase, their contribution
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(a) Active User Distribution (b) Contribution Distribution

Figure 6.17: Comparisons between Contribution and Active User Distribution Patterns for
Sequence Ontology (72703)

is not enough for innovation. Later, as the number of users reach a saturation (in figure

6.18(a) from x=7 to x=11), there is a sharp increase in the number of contributions. This

indicates that there was some significant contribution during this time which led to a high

activity coming out of the project, although there was no increase in the number of active

users at all and this again is a sign of innovation. Thus, in some projects only a few users

are the active contributors while the others are dormant or inactive, yet there is a significant

activity going on in the project. It also shows that it is the quality of the artifact which

decides what activity will follow the current one; not necessarily the active population.

(a) Active User Distribution (b) Contribution Distribution

Figure 6.18: Comparisons between Contribution and Active User Distribution Patterns for
Gene Ontology (36855)
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6.3.3 Activity Outburst Frequency Distribution

The activity for any project can be one of the above two types the number of contri-

butions over time and the number of active users over time. It can be seen from figure 6.19

that the activity of a project does not remain constant or ever increasing over time but goes

though ups and downs. Outburst in an activity is defined as the activity that crosses a

certain threshold. This threshold is defined by equation 6.4 given below.

ActivityOutburstThreshold = AverageActivity(1 + σ) (6.4)

where σ is the user defined variable. The value of σ has to be chosen carefully. Choosing too

small value for σ can greatly increase the number of outbursts; whereas, choosing too large

value for σ can greatly reduce the number of outbursts. So it is advisable to choose the value

of σ based on the average value of the activity. “Activity Outburst Frequency Distribution”

(a) Distribution of Number of Artifacts
Submitted

(b) Distribution of Number Active Users

Figure 6.19: Activity Plots for Systems Biology Ontology (174625)

for any activity can be defined as the frequency of occurrence of the outbursts in the activity.

It is a plot with x-axis indicating the outburst number; whereas, y-axis indicating the delay

in the occurrence of the corresponding outburst on x-axis. This metric has been derived

from the agent based civil violence model [11] created by Joshua M. Epstein. Figures 6.20

and 6.21 show “Activity Outburst Frequency Distribution” on the left and its corresponding
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histogram on the right, for different projects under obo. The histogram groups the outbursts

according to the delay caused for the outbursts. The plots also show the average value of

(a) Outburst Frequency Distribu-
tion for Gene Ontology

(b) Outburst Frequency His-
togram for Gene Ontology

(c) Outburst Frequency Distribu-
tion for ChEBI

(d) Outburst Frequency His-
togram for ChEBI

Figure 6.20: Activity Outburst Frequency Distribution For Gene Ontology and ChEBI

the activity and the value of σ chosen. Value of σ is selected, based on the average value of

the activity and by considering the number of outbursts we get. It can be seen that a specific

pattern comes across from these plots. According to this pattern, every activity outburst

that occurs after a significant delay is followed by a series of quick outbursts. These outbursts

might then be followed by an outburst that occurs after a significant delay. This means that

a high activity seems to trigger a series of high activities that are probably related to the

high activity with significant delay. Thus, in most of the histograms it can be seen that the

majority of the outbursts occur frequently i.e. they have a small delay period.
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(a) Outburst Frequency Distribu-
tion for Open Biomedical Ontolo-
gies

(b) Outburst Frequency His-
togram for Open Biomedical
Ontologies

(c) Outburst Frequency Distribu-
tion for Sequence Ontology

(d) Outburst Frequency His-
togram for Sequence Ontology

Figure 6.21: Activity Outburst Frequency Distribution For Open Biomedical Ontologies and
Sequence Ontology
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Chapter 7

Conclusion

In this thesis, we introduced SciBrowser, which is a computational ethnography tool,

to explore open source science communities that reside in SourceForge. We demonstrate the

applicability of the SciBrowser to the analysis of Open Biomedical Ontology (OBO), which

is an open source science network in the field of biomedical science. To demonstrate the

utility of SciBrowser and apply it the analysis of open source science networks, we present a

three dimensional analysis approach: structural, collaboration and activity analysis

Under structural analysis, we examine traditional social network metrics such as cen-

trality and density. We observe high values of centrality for the Sequence Ontology (72703)

project, indicating that it has a structural topology resembling the star network. This sug-

gests the possibility of the presence of core-periphery pattern. Clustering Coefficients (CC)

and Average Path Lengths (APL) measures are also plotted over time in order to determine

the presence of small world property in different projects. Values of CC for most of the

projects are around 0.5. This observation suggests that there exist highly connected com-

ponents which are loosely coupled with each other. For most of the networks, the value of

average path length is around 2, which is small compared to a random network. This facili-

tates efficient knowledge transfer and innovation diffusion from one part of the network to the

other. Furthermore, most of the projects that we examined stop substantially restructuring

themselves eventually, as indicated by stabilized values of CC. Due to the lack of restruc-

turing, it becomes evident that the communities may experience challenges in innovation.

The SciBrowser tool also plots degree distributions and visualizes preferential attachment.

A power law degree distribution is observed for the User-User graph of the Gene Ontology

(group id: 36855) domain, indicating the resilient nature of the community.
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Novel metrics such as “Activity Strength” are introduced for collaboration analysis.

These metrics are used to measure the productivity and innovation potential of users. Con-

fining innovation to artifact submission generates a power law, indicating the presence of

core members submitting most of the artifacts, while peripheral members commenting on

them. When the artifact submission and collaboration factors are combined as a proxy met-

ric for innovation, the power law is disturbed and seizes to exist. This may indicate that

major contributors of the project are weak collaborators and their strong contribution factor

is nullified by their weak collaboration intensity. We also visualize the collaboration among

users of the community using a color coded map. The visualization indicates that only few

users pair effectively collaborate, while most of the other user pairs have mediocre amount

of collaboration between them.

Under activity analysis, the tool plots two types of activities: artifact submissions and

active user distributions, over a period of time. It is observed that open source science com-

munities examined in this study closely follow the organization project life cycle. Thus, there

is a possibility that open source science projects possess specific organizational characteris-

tics such as division of labor, leadership, level of commitment, and coordination/control. In

addition, we also discovered certain unconventional activity patterns, in which the project

picks up pace after the decline phase. Knowing which stage the project is in can provide

potential insight to the administrators of a project, so that they can take certain decisions at

the proper time to revive the project. Active user distribution is also discussed in association

with artifact submission pattern. It is observed that when the number of users in the project

increase, it leads to an increase in the artifact submission. The rational behind this can be

the innovation which the new users bring into the project. We observe that an activity

outburst occurring after a significant delay is usually followed by one or more, frequently

occurring outbursts. This implies that the first outburst (occurring after a significant delay)

might trigger one or more outbursts that follow it. Or, it might also imply that initially
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when the community is growing, there are less outbursts, but once the community has found

its direction and conflicts are resolved the outbursts occur more frequently.

Primarily the SciBrowser tool is used by the simulation team in Simulation and Mod-

eling lab at Auburn University to validate their agent-based simulation models. But in a

broader sense, the tool is targeted towards researchers that explore open source communities

in SourceForge. Although our study pertains to specific community on the Sourceforge, the

application of the SciBrowser is not limited to the open biomedical ontology (OBO) com-

munity. The tool is versatile in terms of its usefulness, as it can also be applied to open

source software projects. At an abstract level, the structure of Sourceforge communities is

similar, and the database schema used by all the projects is the same. These similarities

make SciBrowser ideal for those who are interested in analyzing the collaboration between

the users of a community and tracking the activity taking place within a project that resides

in SourceForge.

Our future plans pertaining to the SciBrowser involve re-engineering the tool toward a

comprehensive analysis tool, including options for network visualization, metric observation,

and plot generation. Currently, we can visualize metrics and generate plots, but network

visualization in the form of a graph with nodes and edges is lacking. Such a feature would

give researchers the ability to observe the structural growth of a community and help de-

velop hypotheses about its dynamics. Also, further work includes integrating data mining

features, allowing the development of social network specific mining algorithms. Data mining

techniques such as association rule mining can be used to establish association or relation

between the changes in the structural metrics as well as temporal activity patterns. The cur-

rent version of the tool lacks the feature that would explicitly link the structural attributes

such as change in degree to the innovation metrics at the user level. Tool accounts for the

activity at the group level and domain level, but not yet at the user level.
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