
A Knowledge Base and Question Answering System Based on Loglan and English

by

Sheldon Linker

A dissertation submitted to the Graduate Faculty of
Auburn University

in partial fulfillment of the
requirements for the Degree Doctor of Philosophy

Auburn Alabama

May 9, 2011

Keywords: knowledge base, data base, artificial intelligence

©2005-2011 by Linker Systems, Inc.
Some material ©1982-1995 by The Loglan Institute, Inc. (used with permission)

Patent pending

Approved by

Cheryl Seals, Chair, Associate Professor, Department of Computer Science and Software
Engineering

David Umphress, Associate Professor, Department of Computer Science and Software
Engineering

Sviatoslav Braynov, Assistant Professor, Computer Science Department, University of
Illinois at Springfield

— — ii

Abstract

 One of the "holy grails" of computational linguistics has been to have a machine

carry out a conversation, and to have some idea of what it is talking about. Loglan's

(Brown, 1960 & 1975) machine grammar (Linker, 1980) was a first attempt to carry out

such a project using a grammar which was unambiguous, yet able to encompass the

whole of human discourse. Writing a logical, speakable language, with a SLR-1 (simple

left-to-right parsing, with one look-ahead) grammar, and then reducing that to a

functional form results in a language which is hard to use for spoken logic, and is hard to

translate into. A more useful way to go is to use the symbols of predicate, first-order

logic, second-order logic, and higher-order logic, to use the word-classes of Loglan, to

build a functional form from those in combination, and then to work backward from such

a functional form to a speakable language, as much like English and Loglan, in priority

order, as possible. Such a language is feasible, speakable, understandable, and useful

(Linker, 2007). The result was the JCB-English language.

 The thesis presented herein is that JBC-English can be improved by a number of

means, making the language easier to learn and speak, more concise, and faster to

process. The research and development projects detailed herein are to produce an

improved version of the language, and the language processing system, which can be

effectively used for human and machine discourse, and a demonstration system, which

converses in this language, in such a way as to be useful in business and academia.

— — iii

Acknowledgements

 First and foremost, I'd like to thank my wife, who convinced me that I could do

this.

 Just as important, I'd like to refresh the memory of Professor James Cooke

Brown, who started this project in the year I was born.

 Last, I'd like to thank the informative and encouraging faculties of Thomas Edison

State College, the University of Illinois at Springfield, and Auburn University.

— — iv

Table of Contents

Abstract . ii

Acknowledgements . iii

List of Tables . vii

List of Figures . viii

List of Abbreviations . ix

Introduction . 1

Literature Review . 5

 Introduction . 5

 Other Research into the Sapir-Whorf Hypothesis 6

 Logical Languages . 6

 Patents . 8

 Question Answering Systems and Related Programming 11

 Specifically Prolog-Based Systems . 16

 Prolog and the Alternatives . 17

 The Loglan Grammar . 20

 Other Grammar Work . 21

My Thesis, Put Simply . 23

The Work Done . 24

 The Research Phases . 24

— — v

 Completeness . 24

 Speed . 25

 User-Interface Improvement . 26

 Grammatical Improvement over previous JCB-English 27

 New Logic Areas . 29

 Lexical Improvement . 30

 Better Proof of Correctness and Speed than available in the Previous JCB-… 31

 Additional Languages . 32

 Evaluation . 34

 Performance Benchmarks . 35

Design Considerations . 36

 Veracity . 36

 Limitations . 37

 Comparisons . 37

 Vocabulary . 40

Implementation . 42

 The Choice of Language . 42

 Knowledge Storage Design . 42

 Inputs . 44

 Processing . 46

 Outputs . 46

 Performance . 47

Tests . 48

— — vi

 Server Test Results . 48

 Speakability Improvement Comparisons . 73

The Final Grammar . 76

 The language definition, in YACC . 76

 The language definition, in BNF, with explanation following 80

 Explanation of the BNF grammar . 82

Acceptance Testing . 88

 Tests that Cannot be Run . 88

 Tests that were Run . 89

 Completion Metrics . 89

 Conclusion . 100

Future Work . 102

 Research . 102

 Research and Development . 102

 Development . 104

References . 106

Appendix I — Institutional Review Board Approval 123

Appendix II — A Loglan Primer . 124

Appendix III — Transformation of Loglan Into Functional Form 126

 The Starting Point: Loglan Grammar . 126

 Changes Already Made . 136

Appendix IV — Previous Redesign of the Language 137

 The Semantics of Predicates . 154

— — vii

 Commands . 155

— — viii

List of Tables

Summary/Comparison with other systems . 22

Pretty Little Girls School examples . 29

Statements and Results (Conversations) . 40

Test cases . 48

Loglan Translations . 124

The Symbols of Logic . 137

Items Inherited, or not, from Loglan . 140

Commands . 155

— — ix

List of Figures

Proof flow . 39

An Overview of Processing . 44

— — x

List of Abbreviations

BNF Backus-Naur Form

FAQ Frequently Asked Questions

JCB James Cooke Brown

KBMS Knowledge-base management system

PLGS The "Pretty Little Girls School" ambiguity problem

QA Question Answering system

SLR-1 Simple left-to-right parsing with a single look-ahead

SQL Structured (or Standard) Query Language

SVO A Subject-Verb-Object(s) sentence

VO A Verb-Subject-Object(s) sentence or fragment

YACC Yet Another Compiler Compiler

— — 1

Chapter 1 — Introduction

 Since the concept of machine intelligence was first made popular in English-

speaking countries by Karel Capek (1920) in the play Rossum's Universal Robots, people

have been interested in the possibility of conversing with machines. In a seemingly

unrelated development, Sapir and Whorf are said to have developed a psychological

hypothesis, that "there may be a linkage between the language one speaks and one’s

patterns of thought. " (Beeman, 1987). James Cooke Brown (1960 & 1975) invented the

Loglan language as a tool to investigate the Leibnitz conjecture by testing the Sapir-

Whorf hypothesis (see below). Loglan was to be a language which was complete enough

to express every thought-form expressible in every human language, have a sound set

pronounceable by everyone, be adjustable to test parts of the hypothesis, and be totally

unambiguous.

 It appears that Dr. Brown's Loglan article in Scientific American in 1960 was a

turning point in linguistics. Dr. Brown, in his article, cites Leibnitz as the instigator of

this line of work:

The central notion underlying Leibnitz's vision may be stated in a question.
Is it true that the "rational power" of the human animal is in any significant
measure determined by the formal properties of the linguistic game it has
been taught to play?

Many years later, Dr. Brown, Michael Urban, and this author started an association aimed

at making Loglan provably unambiguous, and to create a SLR-1 (which stands for

"Simple left-to-right parsing with one look-ahead") machine grammar for Loglan

— — 2

(Linker, 1980). Since then, others have continued this line of research (Brown, 1999) —

both at the Loglan Institute, with its Loglan language, and the "rebel" offshoot, the

Logical Language Group (2007), with its competing language, Lojban — but have gone

only as far as verifying and graphing the grammar of this human-spoken language. The

Loglan institute and the Logical Language Group were both effectively working on the

same research project, but had differences of opinion. Dr. Brown, the original principal

investigator had one idea of where the research and design of the language should be

headed, and those who left to form the Logical Language Group had a differing opinion.

This author had (and maintains) yet a third opinion, but did not bring it to the public light

during Dr. Brown's lifetime.

 What of the Sapir-Whorf hypothesis? This author saw three significant effects

from learning Loglan and its grammar: (1) The ability to learn languages better and more

quickly, (2) the ability to work out a greater variety of problems without benefit of paper,

and (3) the sometimes-unfortunate ability to see dozens of ambiguous meanings in what

others see as having exactly one reasonable meaning. The best example of this sort of

ambiguity is what Dr. Brown called the "Pretty Little Girl's School" problem, in which he

points out that the reference could be to a school for girls who are little and pretty, or a

pretty school for little girls, or 24 other meanings, including such meanings as a school

owned by a very small girl.

 What about communications with computers? The basis of this author's research

was designed to use the predicate calculus basis of Loglan to create the foundation of a

knowledge base integrated with a logic inference engine that answers questions directly

from its knowledge base or, when required, make logical inferences and answer

— — 3

questions. The previous research design was limited with respect to a design to deal with

a "back end", which communicates in a language of its own. At this point, the JCB-

English system can sustain a conversation with a person, build a representative

knowledge base, understand the interrelationships, and provide answers to questions.

 In this system, a full English-language conversation with the computer involves

the following steps:

• For some time to come, the person conversing with the computer will formulate

statements, commands, and question in English. Example: "I like my cat."

• The user then translates these items into the controlled English described herein, known

as JCB-English. There are many similarities between JCB-English and naturally spoken

English; therefore there is little translation to be done. Example: "i like my cat".

Whenever JCB-English is used herein, it will be shown in the Chalkboard font (as

shown), to distinguish it from English.

• The JCB-English is currently entered into the system via keyboard input, but the

program is built to operate as a service. Operating as a service, the C program accepts

request packets from various front ends, one of which will be a web interface written as

a Java Servlet.

• A parser then translates the language into a data structure, which directly represents the

entered utterances.

• Rules of transformation then restructure the representation of the utterance into a more

basic logical structure in some cases of grammar detailed below. Example: "i like my

cat", when spoken by a user named "sheldon", internally becomes "both "SHELDON"

*OWN 1 *CAT// and "sheldon" *LIKE 1 *CAT//"

— — 4

• Next, certain optimizations may take place to prune the data structure. Example:

Changing "both x and true" to "x". Commands are executed at this point.

• Statements and questions are evaluated by a knowledge-base management system

(KBMS). This results in statements and questions being rejected as false, rejected for

storage because the statement is known to be true, answered, or stored. A series of

provers is used. The Instant prover evaluates a statement to be possibly true or false on

its own. The Fast prover looks for simple facts that directly prove, disprove, or answer

a statement. The Slow prover performs a more complete proof.

• Lastly, the result is translated into JCB-English.

 In this author's previous research for this work, a reformulation of the grammar of

Loglan into an even more formal form was made, to prepare for the description and

implementation of a single-user, functional-form conversational knowledge base.

 The JCB-English system was produced. As with most prototypical systems,

certain aspects of the language and system providing the language were observed. This

paper serves to correct those inadequacies, and to provide the speed, functionality, and

ease of use that will make JCB-English both a usable tool and a basis for even further

investigation and improvement.

— — 5

Chapter 2 — Literature Review

Introduction
 In reading about question-answering systems, it seems that most of the work

concentrates around fitting data into an existing slot, as is the case in most database

systems, with manuals and descriptions too numerous to mention, or with finding text

containing the data, deciding which are likely to be relevant, and then delivering a list of

such documents, delivering the most likely text, or even trying to construct an answer

based on the likeliest data. It seems that there is almost no information, though, on the

idea of taking an unclassified datum, and storing it into a knowledge base, in a self-

defining manner. For instance, one can store "Patrick Henry said 'give me liberty or give

me death,'" as plain text, but the likelihood of a system making enough sense of it to

make it useful is slim. If one takes a little effort to translate it to something more formal,

"Patrick Henry desires that the British give him either liberty or death", or, in JCB-

English, ""patrick henry" desire the event "britain" give "patrick henry" the

event either "patrick henry" free or "patrick henry" dead".

 There is much to be said, too, about the artificial formal languages, such as

Loglan and Lojban. Unfortunately, no real-world use has been made of these languages.

 On the subject at hand, conversing with the computer in speakable formal

language, there is virtually nothing to be found. As Isaac Newton is oft quoted, "…I stand

on the shoulders of giants." I stand there only that I may take a flying leap into new

— — 6

territory. Below, the literature review is begun in sections: Patents, Question Answering

Systems, and Languages.

Other Research into the Sapir Whorf Hypothesis
 One of the best examples of the Sapir Whorf hypothesis was shown in

experiments by Phillips & Boroditsky (2003). In the experiments, they showed that,

given pictures of various objects, people who spoke (in addition to English) a language in

which the object has a female "gender" in their native language saw the object has having

female qualities. Similarly, people who spoke a language in which the same object has a

male gender in their native language saw the object as having male qualities. Thus

showing that language and thought are closely related, and in this type of case, the native

language does indeed drive certain thought processes.

 The Sapir-Whorf hypothesis is also being investigated as it relates to teaching.

Gao (2008) points out that since culture and language are intermixed, they should both be

part of a foreign language course, as language won't come easily without culture.

Logical Languages
 The subject of machine conversation with people has been rampant in fiction.

However, true conversation on a meaningful basis with a computer requires both a formal

language and a machine understanding of context. The idea of a speakable formal

language was started by Prof. James Brown of the University of Florida, and described as

an article in Scientific American, in 1960 (Brown, 1960). Later, books on the subject were

published (Brown, 1975 and 1978), and became the subject of web-based publication and

update (Jennings, 2006). Rather than being the culmination of a research project, things

had only begun. Other projects, such as Lojban (LeChevalier, 2006) and Guaspi (Carter,

— — 7

1991) branched out. Despite grand plans after the first machine grammar was delivered

(Linker 1980 and 1981), there had been many half-attempts (Goertzel, 2005), but a

machine conversationalist, running a limited subset of Lojban finally was written (Speer

& Havasi, 2004). This was a great advance, but still had its limitations, in that full Lojban

was not yet supported, and (of course), the common English speaker would not be able to

make use of the system. It is also pleasing to note that the Lojban-speaking program is

happy with its work, as is evidenced by its use of the word "ua". Proposals for a language

partway between Lojban and English, such as "Lojban++" have also been proposed

(Goertzel, 2006).

 This paper makes heavy use of the interrelatedness of Loglan, thought, and

higher-order logic. An excellent overview of all of these, plus the Sapir-Whorf hypothesis

appears in Lógica y Lenguajes (Logic and Languages, Laboreo, 2005).

 Relatively recently, Norbert Fuchs and his colleagues (Fuchs, et al., 1999) at the

Institute for Information at Zurich University have developed a number of schemes, each

layered on another, to bring English to usability in logic. They have taken English, and

applied a large number of rules against it, and limited it to a subset they call Attempto

Controlled English, or ACE (Fuchs, et al., 1999). ACE is a limited subset of English. It is

very powerful for a limited subset. The description of the subset takes the form of a

manual, part grammar lesson and part programming manual. Attempto Controlled

English follows English as closely as its creators could manage; thus there are a very

large number of context rules. This is a very strong point in ACE, in that anyone can read

ACE; however, the weak point is strong reliance in context rules, and the inherent ability

to get into trouble with a misplaced phrase. Given their language specification, the

— — 8

authors next set out to develop the specifications for a Reasoner for ACE, or RACE

(Fuchs, et al., 2002). A thesis project was done by Hirtle (Hirtle, 2006) bringing these

components together. Unfortunately, ACE has no usable query language at this time, and

is limited to the description of facts. Hirtle's project and this one have the possibility of

being used together in the future, in that there is a possibility of compiling Attempto into

statements acceptable to this project's language or data-store. If so, this project's query

language might one day be used to extract information from the resulting, combined

knowledge base.

Patents
 Some of the patents claiming to involve "universal languages" actually pertain to

internal computer coding, and not spoken languages, such as an intermediate compile-to

language (Goss et al., 1987), or suggested data structures for storing data for later

analysis (Jung, 2005).

 There are also patents and patent applications which claim to disclose new

information or teach new methods, but do not, even though they have intriguing

introductions. These include universal language parsing, in which we are told how to

write a compiler (Bralich et al., 1999), a "cognitive processor" of knowledge bases or

which understands information (Stier & Haughton, 2002; Suda, 1994; Suda &

Jeyachandran, 2003), a logical agent (Jowel & Kessock, 2006), answering in English

(Chang, 2006), and even how to build your own fully functional android (Datig, 2002 and

2005).

 There are a number of descriptions of question-and-answer methodologies, in

which the user presents a command or query, and the computer responds with a series of

— — 9

questions of its own to narrow down the exact nature of the initial command or query.

These include pattern-matching to determine the information content and question, much

like a game of Twenty Questions (Schramm, 1987; Yano et al., 2002; Matheson, 2006;

Zhang & Yang, 2002).

 Many patents discuss methods of speeding up processing, some more obvious

than others. These include parallelism (Dixon et al., 1992), optimization of the

information store (Kautz & Selman, 1993), and hashing (Miller et al., 2002; Brassell &

Miller, 2003). In a similar vein, several patents (Eldredge et al., 2004; McConnell &

Barklund, 2006; Spiegler & Gelbard, 2002) describe indexing systems that can be applied

to existing textual or other forms of data, for quicker retrieval.

 A very common method of using natural language is to apply grammatical rules,

or picking out sentence fragments or key words to use the utterance or writing to serve as

the basis for a formulation of a query, SQL or otherwise, which is then used to query a

data base or table (Lamberti et al., 1994; Schwartz, 1993 and 1998; Machihara et al.,

2001; Wyss et al., 2002; Hsu & Boonjing, 2002; Metcalf & Dingus, 2004; Sheu &

Kitazawa, 2004; Nakamura & Tate, 2005; Ejerhed, 2006; Rosser & Sturges, 2006; and

others too numerous to mention) or to perform some command activity (Firman, 1994;

Namba et al., 1996; Salanha at al, 2004; Hogenhout & Noble, 2006; Diederiks & Van De

Sluis, 2001; Ross et al., 2002 and 2005; Fain & Fain, 2002; Beauregard & Armijo-

Tamez, 2006; Dusan & Flanagan, 2002). A similar technique is to verify that the

utterance or writing matches a preformulated query template, and then to retrieve query

elements from the matching template zones (Appelt, 2003; Harrison et al., 2003; Agarwal

& Shahshahani, 2004; Williams & Hill, 2005).

— — 10

 Many systems retrieve information, pulling either entire documents or facts from

the documents. This searching can take place based on noun, keyword, or phrase

matching (Fujisawa et al., 1991, 1995, and 1996; Haszto et al., 2001; Ho & Tong, 2002;

Brown et al., 2003; Fung et al., 2004; Ejerhed, 2006; Tsourikov, 2002), actual grammar-

fragment matching (Kupiec, 1996 and 1997; Ford, 2003), statistical likelihoods of having

meaningful data (Ahamed, 1998), or a plurality of these techniques (Weber, 2002;

Scheneburg et al., 2002; Brody, 2004; Bennett, 2005). An adjunct method to these,

reading documents, placing search tags in them, and coming back for matching tags later

(Kasravi & Varadarajan, 2006; Pustejovsky & Ingria, 2001) is also described.

 There are also a number of inventions dealing with presentation, allowing the

computer to present an improved user interface (including drawing faces [Guo et al.,

2003]) to humanize the conversation. This includes "human-like responses" (Armstrong,

1998; Hagen & Stefanik, 2005), emulation of an understood system, similar to the Eliza

program of the 1970s (Klipstein, 2001), text to speech (Epstein, 2002; Kobayashi et al.,

2004; Wang, 2006), and keeping the dialog on track (Coffman, 2003). As an alternative

approach, research has been done towards using more natural input. There are an ever-

increasing number of products that perform speech recognition (Gould et al., 1999;

Strong, 2001 & 2004; Romero, 2002; Bangalore et al., 2003; Wang et al., 2004). The use

in speech recognition would be nice in a follow-on to this project, but is not required.

 Some systems (Moser et al., 2001; Sukehiro et al., 2004) rather than storing,

understanding, or retrieving information, simply translate it to another language.

 One system (Hawkinson & Anderson, 2004) uses a tree-structured set of classes,

in which numeric class IDs exist in ranges, so that, for instance, Dog might have an index

— — 11

in the Mammal range, and Mammal might have an index in the Animal range (as would

Dog). However, full prepositional logic is impossible in this sort of configuration. Here is

a simple example: Consider Charles, Prince of Wales. He is a member of the classes

Men and Royalty. Any simple indexing scheme using numbers will not do. Prince

Charles cannot be assigned any numeric index, which will be both numerically in the

Men range and in the Royalty range. The current project, in contrast, uses logic reasoning

statement to derive such knowledge. For instance (shown in the English equivalent) "A

prince is the son of a king. A son is a male child. A king is royalty."

 One system (Tunstall-Pedoe, 2006) uses "objects", which are for the most part

nouns or nominative phrases, but which may also be verbs or verb-like phrases. Objects

can be grouped to form facts, and facts are queryable. This sort of system can find facts

and negative facts quickly, but cannot reason out more complex problems.

 Virtually all patent work dealing with question answering systems in the last few

years deals with delivering pages, paragraphs, or sentences from a library of purportedly

factual documents, rather than formulating answers from the facts themselves.

Question Answering Systems and Related Programming
 In their review, Andrenucci and Sneiders (2005) point out a list of approaches

being used in question answering systems:

• Natural Language Processing maps user questions into a formal world
model and ensures the most reliable answers.

• Information Retrieval powered QA, together with NLP, focus on fact
extraction from large amounts of text.

• Template-based QA matches user questions to a number of templates
that cover often queried parts of the knowledge domain.

Despite these trends, this project will be using near-natural language data and queries.

— — 12

 The Pegasus language processor (Knöll & Mezini, 2006) uses natural language

(currently English and German), and interprets what is said as a series of imperatives. It

translates those imperatives to Java. The grammar parsing, of course, is dependent on the

input language. Within Pegasus, the basic unit is called an "idea". All in all, the result

looks much like COBOL.

 The idea that there is a need for a special information retrieval language, perhaps

based on Loglan (Ohlman, 1961) or a logical subset of English (Cooper, 1964), is not

new. Indeed, these were proposed over 40 years ago.

 There have been a number of discussions on the idea of retrieving documents, or

fractions thereof, based on input questions (Cardie et al., 2000; Radev et al., 2001; Brill et

al., 2002; Ramakrishnan et al., 2003; Sekine & Grishman, 2003). Some take the

additional step of allowing the user to narrow down the responses (Small. 2003), or by

template (Srihari, Rohini & Li, 2000) or pattern (Roussinov & Robles, 2004) matching,

or even reformulating the question to use other such systems as agents (Agichtein et al.,

2001 and 2004). Although there are many more articles in this category, the same data

tends to repeat, so no further mention of such articles will be made herein.

 In the QA1 system, first-order predicate calculus was used to deal with list-

controlled data (Green & Raphael, 1968). List-controlled data is likely a good idea, since

the true structure and interrelatedness of the data (as relevant) will not be known until the

query is issued. However, it seems unlikely that first-order logic would be sufficient for

any but the most basic questions. QA1 has the advantage that is can quickly categorize

data, and thus search quickly, but the disadvantage of needing to categorize data at input

time. The language itself is very Lisp-like. A very similar system, MRPPS (Minker,

— — 13

1977) uses a more traditional descriptive technique. In a latter paper (1978), Minker

describes, in great detail, how one might go about writing a theorem prover into an

analysis engine. Since Prolog is available, this project will use Prolog for the time being,

but replacing Prolog with Minker's method would yield far greater control in tuning

performance. There are also methods whereby some rules can be quickly excluded in

such a prover (Joshi, 1977). Yet another system of this nature was created by Furbach et

al. (2008), but with the typical limitation of first-order logic, there is still much to be

desired.

 Some systems (Reiter, 1977; Waltz, 1978; Kang, 2002) attempt to retrieve data

from a relational data-base system using natural language queries.

 Similarly, but perhaps more clever, one system, QuASM, gathers data from

tabular information found on the web (Pinto, 2002). Such a technique could be used to

drop data into a strict-grammar system, in that a crawler could gather the tables, and a

template could be entered manually for the data, thus effectively adding all of that table's

data to the knowledge base. The technique is not a part of the current project, but could

be used to enhance future versions.

 It has been pointed out (Lita & Carbonell, 2004) that entering data into a

question-answering system can be a time-consuming enterprise, and that the data will

thus be limited. A method of gaining large amounts of reliable data is proposed. While

this technique is not being incorporated into the current project, automatic data gathering

could be a useful, later addition. A similar technique, based on similarities

(Ramakrishnan, 2004) is also possible.

— — 14

 One innovative system, Cogex (Moldovan, 2003), transforms front-end natural-

language queries into a logical first-order predicate form. It does the same with back-end

documents. It then uses a theorem prover to find substantial matches, and then returns the

source sentence.

 The writing of theorem provers has been proposed a number of times, in a number

of different ways. However, Prolog is cited as being useful directly as a theorem prover

(Loveland, 1986), albeit with a little work. One important source of Prolog techniques, as

well as a good list of pitfalls to avoid (such as ways a logic specification can infinite-

loop) appears in Prolog Programming for Artificial Intelligence (Bratco, 2001).

 If a system is going to answer questions, then it needs to be trustworthy, or at least

report the trustworthiness level of its data, as Chen et al. (2006) point out. This is true

whether questions are answered by an automatic system, or by a person. It is for this sort

of reason that this project will involve rating the veracity of the information and its

answers.

 Obviously, if the question-answering system can parse English (or some other

source language), then it will be fairly precise. Hao et al. (2006) show how to reasonably

parse a certain subset of English questions, giving reasonable answers to the most-often

type of questions asked. This shows, more by omission than anything else, that a precise

language syntax is required for truly precise answers. That is the reason that the current

project first attempted the use of Loglan, and has since switched to Loglan-like English.

For the purposes of database retrieval, very limited subsets of English have been

proposed as a query language (Bernardi et al., 2007).

— — 15

 Some of the question-answering systems are really just FAQ systems, saving pairs

of questions and their answers, and either answering directly, or answering a question-

answer pair when the new question and the saved question are close enough (Wang et al.,

2006).

 Burek et al. (2005) describe breaking a sentence down into components, based on

linked phrases. They give as an example, "What researchers work in the ALPHA project

financed by the Argentine government?" They show that this can be broken down into a

sentence describing the ALPHA project, and a question about the researchers on the

project. Of course, such method can be applied recursively. This is the type of technique

which will be used when linking words like "my" appear in statements or questions in

this project.

 Bererle (1993) describes a language, Lilog, which is similar to Loglan, first order

logic, and the limited English presented below. An example of some Anglicized Lilog is

"forall X: BUILDING(exists Y: TOWER part-of(X,Y) impl

CASTLE(X))". The same sentence in Loglan would look similar, but would be far

simpler to say and write. For instance "forall x:" is "Ba go" in Loglan. In the limited

English presented below, the concept presented above, "for all X, if X is a building, and

there is some tower Y, which is a part of X, then X is a castle" would be expressed as

"for all x: if both x building and x contains at least 1 tower then x castle".

 One system, Chanel (Kuhn & Di Mori, 1995), attempts to learn semantics and

grammar on the fly. Herein, though, a fixed grammar will be used.

— — 16

Specifically Prolog-Based Systems
 Baral and Tari (2006) present a project in which grammatical parsing is used to

formulate the data and the question into Prolog, and Prolog is then used to formulate the

answer to the question. This is an example of an application-specific question-answering

system, but what is still desired is a general-purpose question-answering system.

Additionally, if the data is to be large, the use of Prolog or its equivalent should be a last

resort.

 In the work of Marchiori (2004), a project somewhat similar to the current project

is discussed. Like this one, and English-like syntax is developed, and Prolog is used to

perform the logic. However, the grammar presented is at once too loose ("JOHN IS

'tall like a tower'.") and too specific ("VERB represents

'http://www.w3.org/2003/m2#verb'."), so that general discourse would be

almost impossible. The same problem was found in attempts to use Loglan grammars.

Also, using Prolog for the first cut means that all responses are too slow. Thus, in this

project, a more extensive yet fixed grammar will be used, but with a self-extending

vocabulary. Additionally, there will be a fast (but limited) prover as the logic engine,

with Prolog as a back-up.

 Similarly, Greetha & Subramanian (1990) describe a limited English sentence

structure that is not only understood in Prolog, but parsed in Prolog. An example given in

the work is "John opened the door with a key". Using Greetha & Subramanian's method,

the Prolog structure which is first developed is "sentence(agent(np(propernoun(

john))), (vp(verb(opened), (object(np(det(the), noun(door))),

(instrument(pp(prep(with), np(art(a), noun(key)))))", which is then

simplified to "sentence(agent(np(john)), verb(opened), object(np(

— — 17

the door)), instrument(pp(with a key)))". In the project described below,

the same original sentence is presented as 'before now open "john" 1 door/ 1 key',

because each predication (verb, for most practical purposes) carries positional arguments.

In this example, the translated phrase would be presented to Prolog in a form equivalent

to "time(T<0), open(john, qtty(1,door), qtty(1,key))". In Greetha &

Subramanian's work, the introduced function abbreviations "np", "vp", "det", "pp",

"prep", and "art" stand for Noun Phrase, Verb Phrase, DETerminant, Prepositional

Phrase, PREPosition, and ARTicle, respectively.

 The LogAnswer system (Furbach, 2008) parses the question for meaning and

formulates its own search plan using a ProLog program, and then does Google-like work,

in that it searches documents. Rather than formulating answers, it retrieves sentences or

passages, rating each for "Qualität" (quality).

Prolog and the Alternatives
 Prolog is an obvious and popular choice for logic programming. Prolog is very

different from most other languages, in that it is almost entirely declarative rather than

procedural. This makes Prolog difficult to use, even for most experienced programmers.

A Prolog manual does not give an explanation of how one might go about actually using

Prolog for a project such as this. However, the book Prolog Programming for Artificial

Intelligence (Bratco, 2001) does just this. Some key points from apropos to this project

from Bratko's book are:

• That if a Prolog program or knowledge base defines a rule on itself, directly or in a

loop, that the program may fail in an infinite loop. A trivial example of self-reference

is "a:-a." A trivial example of a loop is "a:-b. b:-a." Thus, in a project of this

— — 18

nature, the program should guarantee that no such loop is passed to Prolog. This may

or may not prove practical in the given time constraints. If impractical, it should be a

future goal. (§2.6.1)

• Because of the way in which Prolog recurses, it is possible that ordering of the clauses

passed to it in the knowledge base can involve recursive, depth-first goals, which may

prove unsolvable. If a program and query are passed to Prolog, and Prolog infinite-

loops for this reason, the result will be a stack overflow message of some sort. In these

cases, the driving program (this project) can rearrange the Prolog program such that

recursion will be breadth-first. (§2.6.2)

• Exclusive paths — paths, which, if followed, preclude other paths from being tried —

can be used to speed program execution, using the "!" operator. (§5.1.1)

• If exclusive paths are used, then criteria following the exclusive paths may be omitted,

much the same way that in C, one can change "if (x>0) y(); else if

(x<=0) z();" to "if (x>0) y(); else z();". (§5.1.2)

• Prolog uses a closed-world system. Anything that cannot be proven or disproved is

considered false. Thus, its use is limited. (§5.4) More on this below.

• Rather than having to generate a new program if the knowledge base is changed,

Prolog predicates "assert" and "retract" can add and remove facts and rules.

Additionally, and for the purposes of optimization, "asserta" can add facts and rules

at the beginning of the consideration list. (§7.4)

• Prolog, in some implementations, has the ability to define a parser. It remains to be

seen whether the parsing ability is robust enough for the purposes of this project. If so,

some or all of the parser might be written in Prolog, rather than Java. (§21)

— — 19

• Programs are often written in Prolog for rapid prototyping, and then rewritten in other

languages to execute quickly, once the methods or rules are locked in. (§23.1)

• A meta-level executive — in which the Prolog program controls the execution of

another Prolog program —can be written almost trivially in Prolog. Use of this type of

facility allows various sorts of tracing, explanations of the methods and/or facts used

in a proof or determination, and the direction or limitation of depth of exploration.

(§23.2.1)

• For full theorem proving, rather than just determination of found or not found, Prolog

may have to be supplied with a transform function, giving it the explicit rules of

double negation, elimination, distribution, sub-expressions, and De Morgan's laws.

(§23.6)

 Although Prolog is well-known, it suffers from the major drawback of being a

closed-world system, in which Yes is "yes", Maybe and No are "no". This makes Prolog

unsuitable as the full-fledged engine behind a conversational knowledge base. Prolog is,

however, optimal for a first-cut system, and the debugging thereof, because it is known to

work. A better alternative (Boley & Sintek, 1995) is RelFun. RelFun solves the problem

of the need for tri-state logic ("yes", "no", and "unproven") neatly:

Queries to RelFun differ only as follows: they return the truth-value "true"
instead of printing the answer "yes"; they signal failure by yielding the
truth-value "unknown" instead of printing "no". When we stay in the
relational realm of RelFun this makes not much of a difference since
"true" can be mapped to "yes" and "unknown" can be mapped to "no".
However, when proceeding to RelFun's functional realm, queries will be
able to return the third truth-value "false": this is to be mapped to those of
Prolog's "no" answers for which the closed-world assumption is justified.
In general, however, RelFun does not make the closed-world assumption,
and in the absence of explicit negative information modestly yields
"unknown" instead of "omnisciently" answering "no".

— — 20

 Other alternatives exist, too. However alternatives such as CP (for Conceptual

Programming) provide open-world facilities, but in a completely different manner. For

example (as shown by Hartley, 1986):

<>
 <- [STATE: (PERSON: John] -
 (POSS) -> [BOOK: * b]],
 <- [EVENT: [GIVE] -
 (AGT) -> [PERSON: John]
 (OBJ) -> [BOOK: * b]
 (RCPT) -> [PERSON: Mary]
 <- [STATE: [PERSON:Mary] -
 (POSS) -> [BOOK: * b]].

Another such alternative is OWL (for Open World Logic), which can be accessed from

Prolog (Matzner & Hitzler, 2006). Even more so than Prolog, OWL's differences from

the rest of the procedural and declarative languages makes it difficult to use without a lot

of OWL experience.

 Yet another example is the Lisp-like PowerLoom (Chalupsky, 2005). Although

PowerLoom differs significantly from Prolog, PowerLoom actually has a simpler syntax,

and a program written for Prolog could be quickly converted to PowerLoom. PowerLoom

has the advantage of running on a variety of platforms including Macintosh OS X. Given

these data, an extension of the program by porting from Prolog to PowerLoom must be

considered for a later phase (or the current project, if time allows).

The Loglan Grammar
 The Loglan grammar deserves a full citation in this literature review because it

was, to a large extent, two of the steps in writing this proposal. It was the culmination of

the project that led to this one, and it was the basis for the first cut at this proposal (in

which Loglan was going to be the language in use), and served as the basis for the

planning of the English subset in this proposal. The grammar (Brown, 1960; Linker,

— — 21

1980; Prothero et al., 1994) encapsulates the whole of human language capabilities, in a

very small space. Rather than taking the space inline, the grammar and its derivations

appear in the indices which follow. The 1994 Loglan Machine Grammar is ©1982-1994,

and is used herein with the express written permission of the publisher.

Other Grammar Work
 Loglan and JCB-English (as defined below) both have a very limited set of

prepositions. In the future a great number of prepositions could be added to JCB-English.

Under the current design, descriptions of placement can be made, but not easily. In her

paper (2009), Lockwood describes a great number of ways in which language handling of

prepositions can work.

 Work on the logic of tenses began thousands of years ago by Diodorus Chronus

(Galton, 2008), and has been formalized more recently by a number of researchers,

beginning with Prior in 1957. Such temporal logic is included here.

 The tenses of possibility, such as "will", "may", "can", "must", and the like, are

sometimes known as "modes".

— — 22

Table 1 — Summary/Comparison with other systems

Summary/Comparison with other systems (major examples only — not a complete list)

JCB Easy to learn, Speakable, fully functional for logic

definition and theorem proof. Now has a Machine Speaker

Loglan,

Lojban

Hard to learn, Speakable, fully functional for logic

definition and theorem proof

Attempto Very contextual, so very easy to violate the rules. Has a

very limited Machine Speaker, RACE.

ProLog Hard for most people to learn and use; not speakable;

fully functional for logic definition and theorem proof

Languages

SQL Hard for most people to learn and use; not speakable; very

fast for retrieval and association, but can't apply logic.

JCB Uses unambiguous parsing. Has statements and questions.

Answers questions with distinct answers. Is not domain-

specific.

Search

engines, such

as Google

Retrieve documents based on words given. Questions are

used to pick words from.

Template

matchers

Retrieves answer templates based on certain linguistic

"hits". Attempts to fill in the template from data.

Structure-

based systems

These systems use a number of grammar rules, but since

English (and German) grammar is fluid, they take their

best guess (highest grammatical point score) or

statistically good guesses (from past satisfaction values) to

take their guesses on matches.

Q&A

systems

Q&A boards,

such as Yahoo

Answers

These systems rely on users to answer questions.

— — 23

Chapter 3 — My Thesis, Put Simply

 It is possible and feasible to produce a language suitable for a briefly-trained

layman to use to enter knowledge into a knowledge base, and to retrieve knowledge from

that knowledge base. Further, it is possible and feasible to produce a language processor

matched to that language.

 The motivation for this work is simple — to help realize the long-sought

conversational computer; but at the same time, to produce a system to surpass the

capabilities of simple search engines or data bases.

— — 24

Chapter 4 — The Work Done

The Research Phases
 In the first phase of research into the design of JCB-English, a design course was

followed that didn't work out well, and that path was abandoned.

 In the second phase of research into the design and implementation of JCB-

English, the design goals were met, and the outcome was successful. That design an

implementation led to this author's previous paper.

 Once the author's Master's thesis was completed, further usage tests were

performed, in the way of usability and speed research. This research and these tests

indicated that a number of improvements could and should be made, and are listed below.

The research, design, and implementation goals formed the basis for the present effort.

Completeness
 As originally designed, the JCB-English system had a plan calling for a "fast

prover" and a "slow prover". Then, when an utterance had been received, the fast prover

runs. If the fast prover returns True, False, or Answerable (with a proof text), then the

result is returned to the user right away. The fast prover operates by checking direct

implications. For each fact in the knowledge base, if that fact can (through direct

matching, and not logic manipulation other than decomposition) prove or disprove a

statement, or answer a question or query, then a result is in hand, and execution stops.

The slow prover was an uncompleted plan. It developed a Prolog program and query to

carry out the required logic, but never went so far as to deliver them to RelFun. RelFun is

— — 25

much like Prolog, but rather than True and Unprovable, adds a False response. A

complete description can be found at http://relfun.org. Here, the "Slow Prover" was

completed, calling RelFun-like code for proof work. Originally, the Slow Prover was

built to translate the knowledge and question or candidate new knowledge into the Prolog

language for submission to RelFun for external processing. However, there were

problems in doing so. This author and the main author of RelFun worked together

telephonically to devise a solution. Some parts of the JCB language could not be handled

in RelFun, such as "There exists" clauses. The conclusion was that some of the

techniques used in RelFun and some of the techniques present in JCB-English would

have to be combined, resulting in the current Slow Prover. The Slow Prover, despite its

name, can operate fairly quickly. JCB-English has an Instant Prover component, used to

see if a statement is on its face true or false, which operates at O(1). The Fast Prover

operates at O(n), and is fairly incomplete. The Slow Prover can operate as slowly as

O(n!), but typically operates near O(n2). The Slow Prover can invoke the Medium

Prover to handle ∀ and ∃ statement evaluations within the broader investigation of the

statement in concert with the knowledge base.

Speed
 As Glöckner (2008) points out, speed is a major issue in question answering

systems, especially in systems that use parsing and/or proofs to do their work. Two

possible methods of increasing speed have been identified.

 One speed improvement method was to add a "Medium Prover". The medium

prover is a step between use of RelFun-like code to execute full proofs (a slow process)

and the quick check provided by the "Fast Prover" as described above. The Medium

— — 26

Prover evaluates ∀ and ∃ and the negation of these items by enumerating all known items

into test sentences, and then calling the Fast Prover for each iteration.

 Although it was planned that the Slow Prover should run on a second server while

the Medium and Fast Provers run, the Instant and Fast Provers that now run first can

complete in less time than it takes to move data to a secondary server, so the use of a

secondary server does not increase speed.

User-interface improvement
 In the original testbed project, knowledge and input were both read from disk

files. The output elicited from the input was delivered to the Java console window, and

then knowledge was written to a new disk file for inspection. The second version, after

the previous paper was complete was a web interface, in which each user operates in an

independent "world". The goal at this stage was to have a usable web and service

interface, in which any number of users could log into the system and use it at the same

time, each sharing knowledge, but controlled by trust levels. Knowledge is read during

start-up, and rewritten to disk on a regular schedule, and once again on shut-down.

 In the final system, there are three interfaces. The service program, running on a

server, can accept input from a single user, as if service-request packets were arriving,

and answer them one at a time. This allows for debugger-based testing. The service can,

of course, act as a true service, fielding packets and responding to them. The front-end

program appears as a web-page by responding with a web page to HTTP GET and POST

requests, acting as a broker for the service program. User state is maintained purely in

HTML, and the server program need maintain extremely little state information. The

knowledge base is currently stored as an array of objects in contiguous memory, and so

— — 27

can be read and written very quickly. In this author's tests, read and write time were

unnoticeable.

Grammatical improvement over previous JCB-English
 There is a very common form of speech in which we list a string of facts. For

instance, let's say we want to give facts A, B, C, and D. In English, the three main ways

of doing this are as four sentences, four paragraphs, or as a single-sentence list. It doesn't

matter which we use. In JCB-English, there were also three ways: As four transmissions,

four sub-utterances separated by the word "execute", or as a list of facts in a single

utterance, either as "both both both A and B and C and D" or "both A and both B

and both C and D". Either way is cumbersome. There is a difference between using

"execute" and "both", in that the "execute" method will accept A as true (in which

case the statement will be ignored), false (in which case the statement will be rejected), or

plausible (in which case the statement will be retained as knowledge), and then evaluate

B, C, and D in turn in the same way. The use of "both" means that the four putative facts

are evaluated as a single compound statement. If the statement is plausible, then each of

the four facts will be added to the knowledge base separately. If, as a whole, the

combined statement is false, then all four sub-facts will be rejected together. In order to

make the "both" form simpler to use, "also" is introduced, which acts through the

introduction of an additional production into the grammar.

 This allows the four facts to be written as "A also B also C also D", and has the

same meaning as if "both" and "and" had been used. It is grammatically unambiguous

because it occurs at the outermost level of the grammar only, and thus cannot bind too

soon.

— — 28

 In his original research on speakable unambiguous languages, James Brown

brought forth the "Pretty Little Girls' School" example, in which the phrase, known in the

Loglan and Lojban communities as "PLGS", has meanings. The various meanings arise

from English's ambiguity in binding adjectives to other adjectives or nouns. For instance,

one meaning of "pretty little girls' school" has "pretty" modifying "little", meaning "little

in a pretty sort of way", and that construct modifying "girls", so that we mean "girls who

are little in a pretty sort of way", and finally having all of that modify "school", so that we

get "school for girls who are pretty in a little sort of way". In Loglan, where "pretty" is

"bilti", "little" is "cmalo", "girl" is "nirli", and "school" is "ckela", this first meaning is

translated as "bilti cmalo nirli ckela". In the previous version of JCB English, this

would translate as "adjective adjective adjective pretty modifies little modifies

girl modifies school". This is cumbersome.

 Loglan provides for other orders of adjectival effects by providing "ge" and "gu".

In Loglan, adjectives normally associate from left to right. But, "ge" and "gu" form

parenthetical markers to limit or rearrange this association. Loglan allows for a missing

"gu" when it would occur after the predicate. For instance, "bilti ge cmalo nirli ckela

gu" and "bilti ge cmalo nirli ckela" are equivalent.

 In order to make use of more manageable simple adjectives, an additional form

has been added, allowing the "adjective predicate" form, in addition to the previous

"adjective predication affects predication" form.

 In any string of two or more predications, a predication to the left of another

modifies it as an adjective, binding right-to-left. When left-to-right associations are

— — 29

desired, or arguments are required for adjectival phrases, the older, more verbose form

must be used.

 Below are three of Loglan's 26 examples of "Pretty Little Girls' School" usage:

Table 2 — Pretty Little Girls School Examples

Standard English Functional form Previous JCB
English New JCB English

Pretty little girls'
school

(((pretty little) girl)
school)

Adjective
adjective
adjective pretty
affects little
affects girls
affects school

Adjective
adjective pretty
little affects
girl affects
school

Pretty little girls'
school

(pretty (little (girl
school)))

Adjective pretty
affects adjective
adjective little
affects girls
affects school

Pretty little girl
school

Pretty little girls'
school

((pretty (little
girls)) school)

Adjective pretty
affects adjective
little affects girl
affects school

Adjective pretty
affects little
girl affects
school

New logic areas
 For ease of writing the language, everything in older JCB-English was in Verb-

Subject-Object format, even though English is in Subject-Verb-Object format. In order to

simplify sentence writing, and have JCB-English look more like standard English,

subjects appear at the beginning of a sentence. However, when a predication is used as an

argument or adjective, or appears following a tense, it will continue to be in Verb-

— — 30

Subject-Object argument form. In the first two cases, this is because English uses similar

formations. In the last case, this is to avoid ambiguity. Thus, "I like potatoes" could be

expressed as "i like the class potato" or "i *like the class *potato//"

Lexical improvement
 In its first operational version, JCB English accepted facts (in particular) and the

basic concepts of the universe (in general) in the same manner — as statements. For a

complete language, such as English, this is often cumbersome. For instance, for the

concepts of big (or large) or little (or small), we might have to state the following (shown

in English, for clarity):

For all X, Y, and Z, all of the following is true: If X is bigger than Y, then

X is larger than Y. If X is smaller than Y, then X is littler than Y. If X is

bigger than Y, then Y is not bigger than X. If X is smaller than Y, then Y

is not smaller than X. If X is bigger than Y, then Y is smaller than X. If X

is smaller than Y, then Y is bigger than X. If X is bigger than Y, and Y is

bigger than Z, then X is bigger than Z. If X is smaller than Y, and Y is

smaller than Z, then X is smaller than Z.

For the concept of membership and exclusion, we might have to state items like these

(again shown in English):

For all X, all of the following is true: If X is a cat, then X is not a dog and

X is not a rabbit. If X is a dog, then X is not a cat and X is not a rabbit. If

X is a rabbit, then X is not a dog and X is not a cat. If X is a dog then X is

an animal. If X is a cat then X is an animal. If X is a rabbit then X is an

animal.

— — 31

These are straightforward, but cumbersome. They would take time to load as part of the

knowledge base, and would take time to use as a part of the knowledge base during

evaluation. To avoid this verbosity and time, and to thwart other problems, the following

additions have been made to JCB-English:

 Besides storing a knowledge base, JCB-English stores an additional set of

knowledge dictionary-like items describing the language and the basic concepts of the

universe, apart from facts about the world. This has been implemented as a series of

dictionary-defining commands. These commands allow the definition of chaining rules,

such as a>b>c and a=b=c, synonyms, antonyms, exclusive membership sets, and strict

dictionary items. (See below for a complete description of all grammar items, including

commands.) The defining rules shown above in English are greatly simplified using the

new dictionary-defining commands:

>bigger execute synonyms bigger larger execute antonyms bigger

smaller execute antonyms bigger littler execute set animal cat

execute set animal dog execute set animal rabbit

Better Proof of Correctness and Better Speed than available in the Previous JCB-English
 The compiler originally used for this project was written by this researcher purely

in Java and tested using a test plan. The compiler was supplied with inputs, and behaves

in a manner matching the test plan. For this phase of research, the modern equivalent of

YACC, Bison (Free, 2010), was used to check the grammar for ambiguity (as it is

required that the grammar be unambiguous), and to check whether the grammar is

actually in the SLR-1 (simple left-to-right parsing with a single look-ahead) class of

languages. (Bison supports general language parsing, so SLR-1 is no longer required; but

— — 32

whether or not a language is SLR-1 is a good measure of its simplicity.) The new

compiler was written in C, as was everything but the front-end Java servlet.

 A novel technique was used to get the speed required for the system to be usable.

An advantage that C has over Java is that C programs can allocate millions of objects at a

time. In the tests run in this project, it was not unusual for a simple test run to generate

hundreds or even thousands of computational objects during a proof. In C, an object can

contain an array without needing a separate array object. If the objects themselves are

stored in arrays, and allocated a million at a time, then the C-based prover will perform a

memory allocation once per million objects used, as opposed to the Java program's

2,000,000 allocations (for the base class, plus the enclosed array) per million objects

used. The objects used in the JCB-English server have another difference from the

standard C++ and Java objects. Objects here are polymorphic. For instance, in the

previous version, Dyadic-Predication(Exclusively, ConstantPredication(True), Constant-

Predication(True)) is simplified by creating a new predication, Constant-

Predication(False), and by back-tracking to any predication that linked to the original,

and changing that link to bear the object number of the newly created object. Using

polymorphic objects, the object which started this process as a Predication-Predication is

changed into a Constant-Predication in place, saving even low-level allocation, some of

the garbage collection, and saving the need to back-track.

Additional Languages
 An investigation was made into having JCB-English both take input in, and

produce output in, Spanish ("español-JCB"). One way of making a multilingual parser in

YACC is to have the lexer emit one or more tokens to the parser defining the language to

— — 33

use (for instance ENGLISH or SPANISH). The lexer could also switch key-word tables.

However, a problem arises in making an attempt to input an unambiguous Spanish-like

language.

 One major problem in accepting such a Spanish-like language is the manner in

which Spanish handles negation. In English, "I like tomatoes" is the opposite of both "I

like no tomatoes" and "I don't like tomatoes", and the same as the grammatically horrible

"I don't like no tomatoes". In Spanish and related languages, negatives apply throughout,

so "Me gustan tomates" and "No me gustan ningunes tomates" are opposites. Using only

a single negative strikes a Spanish-speaker as malformed and ambiguous.

 Another problem in accepting a Spanish-like language as unambiguous is

Spanish’s lack of prefix and postfix operators. In English, one can say "apples or

tomatoes" and be clear. Similarly, "manzanas o tomates" in Spanish. However, the

English "apples or tomatoes and bananas or oranges" is not clear, because we have no

rule to determine the "and" and "or" order. To make this clear in English, we need either

prefix operation ("both either apples or tomatoes and either bananas or oranges") or the

unwieldy postfix operators ("apples or tomatoes, either, and bananas or oranges, either,

both"). No such operators exist in Spanish.

 Yet another problem in accepting an unambiguous Spanish-like language is the

problem of word order. In English, it is possible to rearrange words to suit, and a

grammar can be formed that is English-like enough for an English speaker to recognize

the words in the grammar for what they are intended to be, for instance, noun-like

predications, verb-like predications, or adjective- or adverb-like predications. Additional

descriptive phrases can be used. For instance "red apple" or "adjective red affects

— — 34

apple". In Spanish, the adjectives and adverbs come after the main word, as do the

arguments. Any additional words that appear naturally in Spanish to be used to point out

the roles of the words would not actually disambiguate the situation.

 For these reasons, it was decided that although a Spanish vocabulary could be

used for Spanish input, a Spanish-like grammar cannot. Thus, no Spanish input facility

has been provided. However JCB-English provides both unambiguous JCB-English

output, and ambiguous English output. Ambiguous Spanish output has been added. This

required the addition of one extra command, "spanish", followed by the spanish word

and the English word. For instance, "spanish gato cat" defines the translation.

Evaluation
 Evaluation is at several levels — speakability of the language, unit test, and actual

usability of the system. Speakability and unit test have been combined to some extent, in

that unit test contains a wide variety of concepts.

• Speakability of the language: Does the speakability of the language actually improve?

As can be seen in examples above and below, fewer words are required to say the

same thing, and there is now more flexibility in the language.

• Unit test: One very workable method of testing a piece of software is to check each

sentence of the manual or description, and see that the feature is present and correct.

Another is the aerospace method — checking that every new or changed instruction

believed to be reachable is actually used. Some instructions are present for exceptional

cases, but are not believed to be actually reachable. Both methods have been used.

— — 35

• Actual usability of the system: Can the system be used to store data, accept new data,

reject data, answer questions, and report that questions cannot be answered? Can

normal people do this?

• Timing: The original JCB-English system took a noticeable fraction of a second to

read or write a knowledge base, and could take noticeable time to form a proof. "Slow

Proofs" were not even implemented. The current system reads, writes, and proves so

quickly as to be completely unnoticeable when the fast prover is used, and in a

reasonable amount of time when the slow prover is used.

Performance Benchmarks
 As a last step, tests were run on various types of statements and queries. In each

case not involving chaining logic, JCB-English responded in less than a tenth of a second.

— — 36

Chapter 5 — Design Considerations

Veracity
 In any system which takes in data, and gives results, one must avoid the Garbage

In, Garbage Out syndrome. Data base systems typically do this by having trusted users,

untrusted users, and excluded users. Trusted users are allowed to write data into the

system, update it, and remove it. Untrusted users can only query the system. In a system

of this type, those categories are insufficient for a multi-user system. Many times, one

hears of one person's reality versus another's. If nothing else, Einstein proposed that the

truth, under certain circumstances, can be relative (in that no complete agreement can

ever be made on the relative coordinates of two events, not even on their relative times of

occurrence (Einstein, 1916)). So, unlike a standard data base system, in which each fact is

accepted universally or not, the situation here is of each fact being accepted universally,

or pertinent only to a given user and to those users who accept the given user's viewpoint.

In JCB-English, the operator speaks with absolute authority. Any user may state an

opinion. When proofs are made, only the operator, the user, and other users with

sufficient current trust are considered. This may be best shown by example.

 The operator says that his cat is large. In so speaking, the operator states absolute,

inarguable fact. Bob, a regular person, says that his dog is small. Although Bob is given a

great deal of trust, Bob's normal statement is accepted as Bob's belief. Bill, a regular,

untrusted user, later says that the operator's cat is small, and that Bob's dog is big.

— — 37

 In the case of Bill's data entry, the statement about the operator's cat being small

should be rejected, because the fact that the operator's cat is large is absolute. However,

as a regular user, and from Bill's perspective, Bob's dog is indeed big. Thus, if Bill asks

for information on Bob's animals, he should be told that Bob's cat is large (as Bob made

known as absolute truth), and that Bob's dog is big (as is true from Bill's perspective).

Limitations
 Development of the type of system being described here is an open-ended affair.

There will always be room for increased functionality and increases in the ability to make

logical transformations and solutions. Thus, in implementing a pilot program to

demonstrate the concept's viability, certain limitations must be placed on the program.

These limitations may include:

• There is currently no shift of pronouns, other than from "you", "i" and "me" to name

form. The context rules behind words like "he", "she", "it", "them", "they", and like are

difficult to unravel.

• Each utterance (a linguistic term meaning one or more sentences, spoken or entered at

once, which can be statements, questions, imperatives, informal languages, and

sentence fragments) must be either a collection of statements, or contain exactly one

predication containing exactly one question-word. Mixed statements and questions,

complex questions, and imperatives are not accepted.

Comparisons
 The knowledge base and logic engine accept as input four types of utterance:

• A statement of fact, which may be composed of one or more predications and/or

logical connectives,

— — 38

• a yes/no question,

• a fill-in-the-blank question, and

• direct system directives (commands).

 The knowledge base is composed of stored fact-type utterances.

• In answering a yes/no question, the system attempts to prove or disprove the question's

predication.

• In the case of a fill-in-the-blank question (using a word, such as "when" or "which"),

the logic engine searches the knowledge base for a match (a proof with wild-cards), so

that the question can be answered.

• If a new statement is to be added to the knowledge base, and the same knowledge is

already present, the new statement is discarded as redundant.

• If a contradiction to the new statement is found (i.e., the new statement can be

disproved), then the new statement is not accepted. Note that some users will speak

globally, where others speak only for their own frame of reference.

• If a new statement is received, and is plausible (neither provable nor disprovable), then

the system accepts the statement into the knowledge base (at the current level of trust).

 Here, the rules for what constitutes a match are explained (with the aid of a chart

on the following page). The system uses several types of logic. There is an Immediate

Prover, which checks whether a statement is true on its face (such as "x=x") or false on

its face (such as "x≠x"). There is a Fast Prover, involving only direct matches, and a

Slow Prover, which makes use of inference. Proofs are tried in order: Immediate, Fast,

and then Slow Provers. If two statements exactly match in form and content, they are

— — 39

equal. (For instance, "I am Sheldon" matches "I am Sheldon" in form and content.

Similarly, "I am who" matches, because "who" matches everyone.) If two statements

match in form, but do not match in content, the two statements are unequal. (For instance,

"I am Sheldon" does not match "I am Bob".) If one statement matches another in

content, but not in form, they may still match, by virtue of one of the statements implying

the other. For instance, "I have a cat" matches the statement "I have a happy cat". The

statement "I have a cat" is a generalization of the statement "I have a happy cat" because

they both imply "I have a cat". The second statement refines this knowledge. Thus, the

following table of conversations: (Note that these conversations are in English for

purposes of clarity of explanation, and not in the language used in a following section.)

Figure 1 — Proof Flow

— — 40

Table 3 — Statements and Results (Conversations)

Statements Result

I have a cat.

I have a happy cat.

Do I have a happy
cat?

(accepted as new information)

(accepted as new information; "I have a cat" may be discarded as
redundant)

Yes

I have a happy cat.

I have a cat

Do I have a happy
cat?

(accepted as new information)

(ignored as redundant information)

Yes

I have a cat.

Some cat is happy.

Do I have a happy
cat?

(accepted as new information)

(accepted as new information)

(Unknown, because we have not identified it as the same cat.)

I have a cat.

I have no cat.

(accepted as new information)

(rejected as contradictory to known information)

Vocabulary
 In the existing open-ended mode, the vocabulary was the list of words defined in

the grammar proper, plus the words which are recognized in context as predication

words. A word which is in context as a predication word is a word that appears in a

position which guarantees that it is a verb, and any word with an asterisk immediately

— — 41

before it. In the strict vocabulary mode, only words which are defined as predications and

words defined in the grammar are allowed.

 Input to the program is (a) persistent information, including dictionary items,

grammar nodes, and user accounts, and (b) user input packets, delivered directly or

through the Java servlet front end.

— — 42

Chapter 6 — Implementation

The Choice of Language
 The prototype system was written in Java, and generates Prolog. The Prolog

component had not fully come into use, but was to be a part of this effort, with RelFun to

be used to run the Prolog code. The current version, designed for greater speed and

efficiency was written in C languages without the overhead of a generalized garbage

collector. In a production setting, this is a project that will process a large amount of data,

with the need to respond in a very short amount of time. Objects are used, but they are

polymorphic, in that they can change class after creation.

Knowledge Storage Design
 The internal storage uses the rules of grammar as the basic storage structure.

Many grammar productions are stored as an object representing that grammar rule. Many

other grammar productions are transformed into some other grammar rule's storage class.

For instance, ¬(¬A∧¬B) can and will be stored as A∨B. Favoring speed over simplicity,

the prover not only deals with ∧ and ∨ directly, but also →, ↔, and ⊕. For external

storage, it was found that storing the data as an array of objects, plus a separate symbol

table was the fastest (but not the most conservative of disk space).

 A novel type of object-oriented programming was used in this project to boost

speed. The objects used have several properties different than in normal object-oriented

systems:

— — 43

• To reduce computational time, objects are allocated a million at a time, rather than

one at a time.

• Most objects are kept the same size as others, even if this involves considerable

padding, so that they can be kept in arrays without needing an array of pointers.

• It is possible to call a member method on a null object. In such a case, the method (in

the base class of the pointer's defined type) has a "self" which is itself null. This

allows calling a method without having to check before each use whether the object

ID is null or valued. Instead, the member routine can contain a single check for the

null case.

• Certain specialty objects, all immutable singletons, are never allocated, but have a

special object ID which identifies them by class as well as ID. For instance, the

"Anything" object is an Argument object with no property fields. No "Anything"

objects are ever allocated, but the "Anything" object ID can be used as an object ID,

and its methods can come into play.

• Certain immutable objects that have property fields, such as "Name arguments" and

"Literal text arguments" have only a single instance per unique value. For instance,

the equivalent of 'new NameA("fred")' and 'new NameA("ethel")' would return

different object IDs, but two uses of 'new NameA("fred")' would not. Likewise, the

"clone" method on these immutables returns the ID of the original object.

Because no current programming language has these desired features, C was used, and

these object behaviors were implemented at the application level.

— — 44

Figure 2 — An Overview of Processing

Inputs
 The program needs to read the knowledge base, and then receive a number of

utterances. The knowledge base will serve to establish the vocabulary, chaining rules,

— — 45

user list, and the sum of gleaned knowledge (empty at first). Input packets, delivered as

HTTP POST messages or and/or direct socket connections, will each contain one

utterance, which may contain items separated by the keyword "execute".

Processing
 When the program initializes, it must first read the knowledge base. If no

vocabulary is present during initialization, then the system has no vocabulary of

predicates to start, and any word may be used as a predication. If no knowledge is

present during initialization, then the system starts devoid of knowledge, and everything

is initially plausible.

 The system then starts accepting service requests. There will be a pure service

socket, and requests will also be accepted via HTTP transactions. The HTTP page (a

Java Servlet) will reformat the users' requests to a form acceptable to the pure service

socket. When a message (page or packet) is received, it will process the utterance. The

system performs I/O so quickly that it can afford to rewrite after every change.

 Each utterance must be checked for a number of things: The utterance must be

syntactically and lexically correct, and within the vocabulary if vocabulary is constrained.

There can be at most one question word in each utterance. An utterance may also be a

command.

 Once the preliminary checking is done, the utterance can be evaluated. If the top

level is a "both" or "also" compound, then the sub-utterances can be separated, and

considered separately. This type of separation is applied recursively. Each is added to the

knowledge base one at a time. This involves several steps: The sentence or question is

refactored and optimized to have the least possible logic, and least implication possible.

— — 46

(For instance, "X=X" is always true, and thus should not be added to the data base. As

another example, "¬ ¬X" is the same as "X". The sentence is then evaluated against the

knowledge base for veracity. If the sentence can be shown to be false, then the entire

utterance must be discarded as false. If the sentence can be shown to be true, then the

sentence must be discarded as redundant. If the sentence passes, then each of the

sentence's and-separated components must be added to the knowledge base. If there is a

question present, then it must be answered.

 The logic applied above is able to handle adjectives. The subject of adjectives

does not usually come up in discussions of logic. So, if the knowledge base held "X is a

cat", and the new sentence is "X is a male cat", then it checks out as true. However, it

should also be noted that "X is a cat" would be replaced if the sentence is accepted. If the

knowledge base held "X is a male cat" and the sentence is "X is a cat", then the new

sentence is redundant. If the new sentence is "Y is a dog", then the sentence is plausible,

and the system must assume the sentence is true (in the viewpoint of the speaker). Given

"X is a cat" as the knowledge base, then these fill-in-the-blank questions would match:

"? is a cat", "X ? a cat", "X is ? cat", "X is a ?", and "X is ?".

Outputs
 Output from the program occurs at the end of each transmission, responding with

acceptance, rejection, or the answer to any given question. Outputs to questions will be in

the language shown below. The service socket responds to its requestor. In the case of

an HTTP web request, the server socket will return the result to the Applet, which will

then wrap the result in a web page and send it to the user.

 After modification, the knowledge base is rewritten.

— — 47

Performance
 Performance for the fast-prover is rather quick. Time required is linear with the

size of the knowledge base and the size of the input (O(n)). The Slow Prover's

performance can be as bad as O(n!), but in practice is closer to O(n2) when chaining

words (such as "big", meaning "bigger than") are not used. Server transaction times for

these tests, on a 2.5GHz processor, with both native and Java debuggers running, was

observed to be 10 to 67ms in such non-chaining cases.

— — 48

Chapter 7 — Tests

 Tests consist of three types.

• Black box testing exercises each element of the grammar, with an expected result.

• White box testing checks each line of code believed to be executable for proper

execution. Exception lines not believed to be executable are not tested.

• Speakability tests involves doing translations, and looking for areas hard to understand

or too wordy.

Server Test Results
 The tests shown below, are the results of execution. Each shows the input

presented directly to the JCB-English server. Where appropriate, the server's outputs,

storage, and/or test notes are shown.

Table 4 — Test Cases

Test 1
Input: either "streak" say 'meow' or "streak" say 'woof'

Output: This information is being saved

Notes: The statement is already in simplest form, compared against an empty

knowledge base. It should be stored as is.

— — 49

Test 2
Input: (packet has bad credentials)

Output: Account/Password doesn't match any user

Notes: Each packet bears credentials, which means that the system doesn't have to

maintain any user states.

Test 3
Input: facts

Output: # Fact
 7 either "STREAK" *SAY 'meow' / or "STREAK" *SAY 'woof' /

Notes: This command dumps memory. In some instances, the entire dump will be

shown. In other instances, only the significant facts are shown. Although the

fact was entered without special start ("*") or end ("/") markers, it is displayed

with these markers. Knowledge is retained in pure form, without regard to its

entry form.

Test 4
Input: (packet header calls for output in English) my facts

Output: # Fact
 7 either "STREAK" SAY 'meow' or "STREAK" SAY 'woof'

Notes: The packet called for output in English, rather than JCB-English, so the

disambiguating language markers are not present. This test also involved hard-

stopping the server without warning, and restarting it. Because the knowledge

base is maintained clean, and rewritten in a fraction of a second, maintaining the

knowledge base intact should not be a problem.

Test 5
Input: "streak" say either 'meow' or 'woof'

— — 50

Output: This was already known

Notes: The input, after passing through the optimizer, becomes exactly the statement

about Streak we already have in the knowledge base, and is thus known.

Test 6
Input: for all x y sub 2: true

Output: This was already known

Notes: This is ∀x,y2: True, which optimizes to True.

Test 7
Input: be my cat

Output: Parse error: syntax error, unexpected WORD_N, detected at just before

line 1, column 1

Test 8
Input: neither me be you nor i be your 1 cat execute

 facts

Output: This information is being saved

Fact
19 neither "OPERATOR" *BE "J C B" / nor both "OPERATOR" *BE

1 *CAT / / and "J C B" *OWN 1 *CAT / /

Notes: Here, "me", "you", and "i" have been mapped to proper names, "operator" for

the speaker, and "j c b" for the JCB-English system. "your" has been mapped

to a separate statement of ownership. In subsequent tests, storage will be shown

directly, even though it will be generated with facts commands behind the

scenes.

— — 51

Test 9
Input: forget 19

Output: (none)

Memory: (gone)

Test 10
Input: forget "streak" say either 'meow' or 'woof'

Output: (none)

Saved: (gone)

Notes: Again, note that the predication here and in memory did not exactly match,

although they had the same meaning, and thus matched.

Test 11
Input: certainly be 'dozen' the sum of 5 and 7 egg

Saved: certainly *BE 'dozen' 12 *EGG//

Test 12
Input: on good authority be "streak" the difference between the product of

3 and 3 and the quotient of 16 and 2 cat

Saved: on good authority *BE "STREAK" 1 *CAT//

Test 13
Input: i believe the statement cute x is implied by cat x execute

 i guess if dog x then friend x

Saved: i believe if *CAT x/ then *CUTE x/

 i guess if *DOG x/ then *FRIEND x/

— — 52

Test 14
Input: according to "descartes" if and only if *exist i then think i

Saved: according to "DESCARTES" if and only if *EXIST "OPERATOR"/

then *THINK "OPERATOR"/

Notes: Here, "exist" needs an asterisk to prevent it from being considered a keyword.

Test 15
Input: likely exclusively dog "streak" or cat "streak" execute

 not i cat

Saved: likely exclusively *DOG "STREAK"/ or *CAT "STREAK"/

 not "OPERATOR" *CAT/

Test 16
Input: adjective jointly black and brown affects "streak" cat

Saved: adjective jointly *BLACK/ and *BROWN/ affects "STREAK" *CAT/

Test 17
Input: who cat

Output: Answer: "STREAK"

Test 18
Input: blank "streak"

Output: Answer: "STREAK" *CAT /

Test 19
Input: "nemo" blank

Output: There is insufficient information to say

— — 53

Test 20
Input: adjective go anything emphasis affects "auburn" school also "streak"

be the item 1 cat with property i love

Saved: adjective *GO anything emphasis/ affects "AUBURN" *SCHOOL/

 "STREAK" *BE 1 *CAT//

 "OPERATOR" *LOVE 1 *CAT//

Notes: The statement about Auburn is that Auburn is a school, modified by go's second

argument. Since "go" is conventionally go(mover,destination,source), Auburn

is being modified as being a destination school, or the "go to" place. The

property "i love" expands to a separate statement as a way of applying the

property to the "cat" argument.

Test 21
Input: most of the class human/ gullible also all of the class politician/ liar

Saved: most of the class *HUMAN/ *GULLIBLE/

 all of the class *POLITICIAN/ *LIAR/

Test 22
Input: i desire the event the class force/ *with you

Saved: "OPERATOR" *DESIRE all of the event all of the class *FORCE/

*WITH "J C B"//

Test 23
Input: i like the number 3.1415926 also all the class cat/ nice also 1000000

dog/ nice execute

 how many of the class cat/ nice execute

 how many dog/ nice

— — 54

Output: This information is being saved

 Answer: all of the class *CAT /

 Answer: 1000000 *DOG /

Saved: "OPERATOR" *LIKE the number 3.14159/ …

Test 24
Input: i like both 1 aardvark and 1 bear also i like neither 1 cat nor 1 dog

also i like the item 1 elephant is implied by 1 fox also i like if 1

gazelle then 1 hamster also i like if and only if 1 iguana then 1 jaguar

also i like exclusively 1 kangaroo or 1 llama

Saved: neither "OPERATOR" *LIKE 1 *CAT// nor "OPERATOR" *LIKE 1

*DOG//

 if "OPERATOR" *LIKE 1 *FOX// then "OPERATOR" *LIKE 1

*ELEPHANT//

 if "OPERATOR" *LIKE 1 *GAZELLE// then "OPERATOR" *LIKE 1

*HAMSTER//

 if and only if "OPERATOR" *LIKE 1 *IGUANA// then "OPERATOR"

*LIKE 1 *JAGUAR//

 exclusively "OPERATOR" *LIKE 1 *KANGAROO// or "OPERATOR"

*LIKE 1 *LLAMA//

 "OPERATOR" *LIKE 1 *AARDVARK//

 "OPERATOR" *LIKE 1 *BEAR//

Test 25
Input: at noon go i my 1 home also on tuesday go i 1 school

Saved: during 2010-08-10 through 2010-08-10 23:59:59 *GO "OPERATOR"

1 *SCHOOL//

— — 55

 at 2010-08-13 12:00 both *GO "OPERATOR" 1 *HOME// and *OWN

"OPERATOR" 1 *HOME//

Test 26
Input: after september work "rachael" 1 job also on or after next week go i

1 school execute

 when work "rachael" 1 job

Output: This information is being saved

 Answer: after 2010-08-31 23:59:59 true

Saved: after 2010-08-31 23:59:59 *WORK "RACHAEL" 1 *JOB//

 on or after 2010-08-15 *GO "OPERATOR" 1 *SCHOOL//

Test 27
Input: potentially burn the class wood execute

 when burn the class wood

Output: This information is being saved

 Answer: potentially true

Saved: potentially *BURN all of the class *WOOD//

Notes: The answer is "potentially true" because in the JCB-English language, a tense

("potentially") must be applied to a predication ("true").

Test 28
Input: during last month through this year magic a frog

Saved: during 2010-07-01 through 2010-12-31 23:59:59 *MAGIC 1

*FROG//

— — 56

Test 29
Input: beginning after today at "auburn u" whatever also before now

located 3000000 meters from "auburn u" be "irvine" also on or

before yesterday up to a meter from "auburn u" be an egg

Saved: at "AUBURN U" beginning after 2010-08-18 23:59:59 *WHATEVER/

 located 3000000 meters from "AUBURN U" before 2010-08-18

03:40:04 *BE "IRVINE"/

 up to 1 meters from "AUBURN U" on or before 2010-08-17

23:59:59 *BE 1 *EGG//

Test 30
Input: ending before tomorrow located 10 to 100 meters from "auburn u"

verbOne also during 11:00 am through 2:00:00 pm at least twenty

meters from "auburn u" verbTwo also at 6:00:03 near "auburn u"

verbThree

Saved: located 10 to 100 meters from "AUBURN U" ending before 2010-

08-19 *VERBONE/

 at least 20 meters from "AUBURN U" during 2010-08-18 11:00

through 2010-08-18 14:00 *VERBTWO/

 near "AUBURN U" at 2010-08-18 06:00:03 *VERBTHREE/

Test 31
Input: at midnight far from "auburn u" whatever execute

 where whatever

Output: …Answer: far from "AUBURN U" true

Saved: far from "AUBURN U" at 2010-08-19 *WHATEVER/

— — 57

Test 32
Input: during 15 april whatever execute

 tense whatever

Output: …during 2010-04-14 through 2010-04-14 23:59:59 *WHATEVER /…

Test 33
Input: at 1 year 2 days from january 1 2010 verbOne also at 1 year before

january 1 2010 verbTwo also at may 1 2000 bce verbThree

Saved: during 2000-05-01 bce through 2000-04-30 00:00:01 bce

*VERBTHREE/

 at 2009-01-01 *VERBTWO/

 at 2011-01-03 23:59:59 *VERBONE/

Notes: Note that facts are not necessarily stored in the order received.

Test 34
Input both beginning 1997-04-01 noon cat "streak" and ending noon january

1 2004 big dog "fido" also "whitehouse" white house

Saved: beginning 1997-04-01 12:00 *CAT "STREAK"/

 ending 2004-01-01 12:00 adjective *BIG/ affects "FIDO" *DOG/

 adjective *WHITE/ affects "WHITEHOUSE" *HOUSE/

Test 35
Input: "streak" cat execute

 is "streak" cat execute

 is "arrow" cat

Output: This information is being saved

— — 58

 Yes

 There is insufficient information to say

Test 36
Input: some of the class politician/ honest also little of the class student/

stupid also x blue quantity y house

Saved: some of the class *POLITICIAN/ *HONEST/

 little of the class *STUDENT/ *STUPID/

 subject x *BLUE quantity x *HOUSE//

Test 37
Input: there exists x such that false

Output: That would contradict information already held

Notes: The optimizer evaluates this, and the prover does not run.

Test 38
Input: there exists at least 1 x such that x happy

Saved: there exists at least 1 x such that x *HAPPY/

Test 39
Input: there exists 1 x such that x be "luna" also there exists up to 27 x

such that x go "luna" also there does not exist x such that both x go

"disneyland" and x sad

Saved: there exists 1 x such that x *BE "LUNA"/

 there exists up to 27 x such that x *GO "LUNA"/

 for all x: not both x *GO "DISNEYLAND"/ and x *SAD/

— — 59

Notes: As of this test, the entire question and statement grammar-space has been tested.

Tests which follow cover command grammar and program logic.

Test 40
Input: user "abe" password 'aaa' execute

 trust "abe" 1 execute

 user "bob" password 'bbb' execute

 trust bob 0.5 execute

 user "sales" password 'sss' execute

 trust "sales" 0 execute

 drop "sales "

Notes: Effects were verified by inspection of the user table's storage.

Test 41
Input (Present credentials as "abe") cat "streak"

 (Present credentials as "bob") "fido" dog

 (Presentation of "sales" credentials was rejected)

 (Present credentials as "operator") consider facts execute

 who cat execute

 who dog execute

 consider opinion execute

 who cat execute

 who dog

Output: Answer: "STREAK"

— — 60

 There is insufficient information to say

 Answer: "STREAK"

 Answer: "FIDO"

Notes: With only certain facts in play, we can't take Bob's statement into consideration,

because his trust level is only 50%. We can take Abe's statement into

consideration, because his trust level is 100%.

Test 42
Input: consider opinion at 0.4 execute

 who dog execute

 consider opinion at 0.6 execute

 who dog

Output: Answer: "FIDO"

 There is insufficient information to say

Notes: At a consideration level of 0.4, Bob's 0.5 trust level is useful. At a

consideration level of 0.5, Bob's trust rating falls under the line.

Test 43
Input: forget "bob" facts

Saved: subject "STREAK" *CAT/

Test 44
Input: password 'ooo'

 (present new credentials)

— — 61

Test 45
Input: "streak" cat also for all x: if x cat then x happy execute

 who happy

Output: …Answer: "STREAK"

Notes: This is the first test showing inference, rather than data retrieval.

Test 46
Input: after noon go i

Output: This information is being saved

Input: after 13:00 go i

Output: This information is being saved

Input: after 11:00 go i

Output: This was already known

Notes: This and the nearby following tests are exercising otherwise untested areas of

the Fast prover.

Test 47
Input: after x seconds before noon go i

Output: This information is being saved

Input: after y seconds before noon go i

Output: This information is being saved

Input: after x seconds before noon go i

Output: This was already known

— — 62

Test 48
Input: ending before monday go i

Output: This information is being saved

Input: ending before sunday go i

Output: This information is being saved

Input: ending before tuesday go i

Output: This was already known

Test 49
Input: during this month happy i

Output: This information is being saved

Input: during this week happy i

Output: This was already known

Test 50
Input: located 1000 to 1500 meters from "comfort inn" be "intuit"

Output: This information is being saved

Input: located 1500 to 1000 meters from "comfort inn" be "intuit"

Output: This was already known

Input: located 1000 to 1500 meters from x be "intuit"

Output: This information is being saved

Input: according to "ted" located 1000 to 1500 meters from x be "intuit"

Output: This information is being saved

Test 51
Input: potentially go i

— — 63

Output: This information is being saved

Input: go i

Output: This information is being saved

Test 52
Input: i like the sum of 2 and x cat execute

 i like the product of 2 and x cat

Notes: The Fast Prover correctly recognized the difference.

Test 53
Input: i like either a cat or a dog execute

 either i like 1 cat or i like 1 dog

Output: This information is being saved

 This was already known

Notes: The dyadic "or" was evaluated properly, using code that recognizes any

operator. "And" is a special case, though, in that the facts for "and" are stored

separately.

Test 54
Input: not "streak" dog execute

 not "streak" fish execute

 i like the number 3.1415 execute

 i like the number 2.7818 execute

 there exists x such that x happy execute

 there exists x such that x happy

— — 64

Notes: Each new fact was accepted. The repeated fact was called out as such.

Test 55
Input: there exists at least 3 x such that x go

Output: This information is being saved

Input: there exists up to 6 x such that x go

Output: This information is being saved

Input: there exists at least 4 x such that x go

Output: This information is being saved

Input: there exists at least 2 x such that x go

Output: This was already known

Input: there exists 5 x such that x weird

Output: This information is being saved

Input: there exists 6 x such that x weird

Output: That would contradict information already held

Test 56
Input: "x y z " like the number .3/

Saved: "X Y Z" *LIKE the number 0.3/

Test 57
Input: at 1900-5-5 go i also at 1904-5-5 go i also during september go i also

during january go i also at last century go i

Saved: during 1900-05-05 through 1900-05-05 23:59:59 *GO "OPERATOR"/

 during 1904-05-05 through 1904-05-05 23:59:59 *GO "OPERATOR"/

 during 2010-09-01 through 2010-09-30 23:59:59 *GO "OPERATOR"/

— — 65

 during 2011-01-01 through 2011-01-31 23:59:59 *GO "OPERATOR"/

 during 1900-01-01 through 1999-12-31 23:59:59 *GO "OPERATOR"/

Test 58
Input: there exists x y z such that x go y z

Output: This information is being saved

Input: there exists z y y x such that x go y z

Output: This was already known

Test 59
Input: located 0 to 100 meters from b like i c also i like the sum of 0 and d

aardvark also i like the sum of e and 0 baboon also i like the

difference between f and 0 cat also i like the product of 0 and g dog

also i like the product of 1 and h elephant also i like the product of j

and 0 fox also i like the quotient of 0 and k gazelle also i like the

quotient of L and 1 iguana

Saved: "OPERATOR" *LIKE quantity d *AARDVARK//

 up to 100 meters from b *LIKE "OPERATOR" c/

 "OPERATOR" *LIKE quantity e *BABOON//

 "OPERATOR" *LIKE quantity f *CAT//

 "OPERATOR" *LIKE 0 *DOG//

 "OPERATOR" *LIKE quantity h *ELEPHANT//

 "OPERATOR" *LIKE 0 *FOX//

 "OPERATOR" *LIKE 0 *GAZELLE//

 "OPERATOR" *LIKE quantity L *IGUANA//

Notes: These are optimizer tests.

— — 66

Test 60
Input: i like twelve both bagel and donut

Saved: "OPERATOR" *LIKE 12 *BAGEL//

 "OPERATOR" *LIKE 12 *DONUT//

Test 61
Input: not not i like 1 aardvark also not neither i like 1 baboon nor i like 1 cat also not

either i like 1 dog or i like 1 elephant also not if and only if i like 1 fox then i

like 1 gazelle also not exclusively i like 1 hare or i like 1 iguana

Saved: "OPERATOR" *LIKE 1 *AARDVARK//

 either "OPERATOR" *LIKE 1 *BABOON// or "OPERATOR" *LIKE 1

*CAT//

 neither "OPERATOR" *LIKE 1 *DOG// nor "OPERATOR" *LIKE 1

*ELEPHANT//

 exclusively "OPERATOR" *LIKE 1 *FOX// or "OPERATOR" *LIKE 1

*GAZELLE//

 if and only if "OPERATOR" *LIKE 1 *HARE// then "OPERATOR"

*LIKE 1 *IGUANA//

Test 62
Input: x be x

Output: This was already known

Test 63
Input: There exists at least 0 x such that x be a unicorn

Output: This was already known

— — 67

Test 64
Input: (Output in ambiguous English) x sub 1 be '''< &' execute

 facts

Output: This information is being saved
<table border=2><tr><td align=center>

#</td><td align=center>Fact</td></tr><tr><td align=center

valign=center>1</td><td><tt>x₁ *BE '''<

&' / </tt></td></tr></table>

Notes: This is an output test.

Test 65
Input: according to "random guy" cat "streak" execute

 who cat execute

 consider opinion at 0.6 execute

 who cat

Output: This information is being saved

 Answer: "STREAK"

 There is insufficient information to say

Notes: This is a trust test.

Test 66
Input: "streak" cat execute

 for all y: not y cat execute

 for all z: z cat

Output: This information is being saved

 That would contradict information already held

— — 68

 This information is being saved

Notes: This is the first test in the Medium prover test series. The Medium Prover used

to be a separate item, but is now a part of the Slow Prover.

Test 67
Input: both "streak" and "arrow" cat execute

 there exists x such that x cat execute

 there exists at least 2 x such that x cat execute

 either "streak" toaster or there exists x such that x cat

Output: This information is being saved

 This was already known

 This was already known

 This was already known

Test 68
Input: >big execute

 "rachael" big "shannah" also "shannah" big "rebecca" execute

 is "rachael" big "rebecca"

Output: This information is being saved

 Yes

Notes: With this test, the first dictionary test and the first extended logic test have

succeeded.

Test 69
Input: =same execute

— — 69

 "auburn university" same "auburn u" also "auburn u" same "auburn"

execute

 is "auburn university" same "auburn"

Output: This information is being saved

 Yes

Test 70
Input: antonyms big small execute

 "rachael" big "shannah" execute

 "shannah" small who

Output: This information is being saved

 Answer: "RACHAEL"

Test 71
Input: synonyms big large execute

 "rachael" large who

Output: Answer: "SHANNAH"

Test 72
Input: set animal cat execute

 set animal dog execute

 "streak" cat execute

 who cat execute

 who animal execute

 is "streak" dog

— — 70

Output: This information is being saved

 Answer: "STREAK"

 Answer: "STREAK"

 No

Notes: Here, "animal" is being defined as an exclusive set or class that includes "cat".

"Animal" also includes "dog". Streak is a cat. Asking "Who's a cat" and

"Who's an animal" both respond with "Streak". Streak is known not to be a dog

because Streak is known to be a cat, and nothing can be both a cat and a dog.

Test 73
Input: facts

Output: # Fact
 1 "RACHAEL" *BIG "SHANNAH" /
 4 "STREAK" *CAT /
 Dictionary item 1 SMALL is an antonym of BIG
 Dictionary item 2 LARGE is a synonym of BIG
 Dictionary item 3 CAT is a member of ANIMAL
 Dictionary item 4 DOG is a member of ANIMAL

Test 74
Input: :happy execute

 i happy execute

 i sad

Output: …Warning: Strict dictionary use is in effect, but the predication is not in the

dictionary…

— — 71

Test 75
Input: "streak" cat execute

 "streak" black cat execute

 "fido" big dog execute

 "fido" dog

Output: This information is being saved

 This information is being saved

 This information is being saved

 This was already known

Notes: Adjectives are special, in that they increase specificity.

Test 76
Input: "streak" say 'meow'

Saved: "STREAK" *SAY 'meow'/

— — 72

Test 77
The front-end in English:

— — 73

Test 78
The font-end in Spanish:

Speakability Improvement Comparisons
 Here, the speakability of the previous version of JCB-English is compared. The

first example is an informal text, and can be translated loosely:

Once upon a time, there were three little pigs. One pig made a house of
straw, one made a house of sticks, and one made a house of bricks.

— — 74

This could be translated in the previous version of JCB-English as:

before now both be x 3 adjective little affects pig and both
member x sub 1 x and both member x sub 2 x and both member
x sub 3 x and both build x sub 1 1 adjective straw affects house
and both build x sub 2 1 adjective stick affects house and build
x sub 3 1 adjective brick affects house

Using the improved grammar, this could be better translated as:

before now both x be 3 little pig also both x sub 1 and both x
sub 2 and x sub 3 member x also x sub 1 build a straw house
also x sub 2 build a stick house and x sub 3 build a brick house

 As an example of a more formal document, I cite the oldest formal document still

in good standing. Since this document is older than English, proper translation should be

from the original language, and not from an English translation. Below are shown the

original, modern but formal English, and JCB-English. First, the original:

Rendered into rather exact English, word-by-word (letter-by-letter, in some cases), that

becomes:

At-[the]-root-[of everything]*, created elohim† the-depths-of-space‡ and
the-land. And-the-land was unformed and-void…

*Root word is "head"

†elohim can be translated as G-d, god, gods, spirit, or spirits (since the sentence is in the
singular, but the word is in the pleural, this is taken to mean the royal conjugation)

‡Root word is "water"

In the previous version of JCB-English, this became:

Both there exists one x such that x be elohim and both for all y

if it is not the case that be 1 elohim y then create 1 elohim y

— — 75

and both be 1 elohim both 1 god and both 1 spirit and 1 monarch

and both create one elohim both the class space and the class

land and ending before now both it is not the case that form

anything the class land is true and void the class land

In the current version of JCB-English, this becomes:

There exists one x such that x be elohim also for all y: if not y

be 1 elohim then 1 elohim create y also 1 elohim be both 1 god

and both a spirit and a monarch also one elohim create both the

class space and the class land also ending before now not

anything form the class land and void the class land

 Thus, it has been shown that text can, in general, be translated to JCB-English

(including an inline definition of a hard-to-translate word). In these two examples

(picked before the grammar improvements), the new grammar results in smaller

utterances.

— — 76

Chapter 8 — The Final Grammar

 Below, the grammar is shown in both YACC format (as compiled by Bison, with

lexical comments), and in BNF as commonly used. An explanation accompanies the

BNF description of the language.

The language definition, in YACC
%token ACCORDING ADJECTIVE AFFECTS AFTER ALL ALSO AM AND ANYTHING AT
%token AUTHORITY BCE BEFORE BEGINNING BETWEEN BLANK BOTH BY CLASS
%token CONSIDER DIFFERENCE DO DOES DROP DURING EITHER EMPHASIS
%token ENDING EVENT EXCLUSIVELY EXECUTE EXIST EXISTS FACTS FAR FOR
%token FORGET FROM GOOD HOW IF IMPLIED IS ITEM JOINTLY LAST LEAST
%token LOCATED MANY MIDNIGHT MY NEAR NEITHER NEXT NOON NOR NOT NOW
%token NUMBER OF ON ONLY OPINION OR PASSWORD PM POTENTIALLY PRODUCT
%token PROPERTY QUANTITY QUOTIENT STATEMENT SUB SUCH SUM THEN THE
%token THEN THERE THIS THROUGH TO TODAY TOMORROW TRUST UP USER WITH
%token YESTERDAY YOU YOUR
%token BELIEVE_X /* believe guess */
%token DAY_N /* Sunday-Saturday */
%token END_X /* END / */
%token LETTER_N /* b-h j-z */
%token LIKELY_X /* certainly likely */
%token ME_X /* I me */
%token METER_S /* meter meters */
%token MONTH_N /* January-December */
%token NOISE_X /* than */
%token PAIR_X /* antonyms set synonyms */
%token PERIOD_N /* second seconds minute minutes hour hours week
 weeks month months year years decade decades
 century centuries millennium millennia */
%token SOME_X /* little most some */
%token TENSE_Q /* tense when where */
%token TRUE_N /* false true */
%token WHAT_X /* what which who */
%token NUMBER_N /* digits, with or without a decimal point, or A AN
 HALF ONE-NINETEEN TWENTY-NINETY THE */
%token DOUBLEQUOTEDSTRING_N /* " letters and spaces " */
%token SINGLEQUOTEDSTRING_N /* ' any symbols, which may include
 doubled-single-quotes ' */
%token WORD_N /* letters */

%%

— — 77

Transmission : Utterance
 | Transmission EXECUTE Utterance ;

Utterance : AlsoList
 | IS AlsoList TRUE_N
 | CONSIDER FACTS
 | CONSIDER OPINION
 | CONSIDER OPINION AT NUMBER_N
 | USER DOUBLEQUOTEDSTRING_N PASSWORD
 SINGLEQUOTEDSTRING_N
 | PASSWORD SINGLEQUOTEDSTRING_N
 | DROP DOUBLEQUOTEDSTRING_N
 | MY FACTS
 | FACTS
 | FORGET Svo
 | FORGET NUMBER_N
 | FORGET DOUBLEQUOTEDSTRING_N FACTS
 | TRUST DOUBLEQUOTEDSTRING_N NUMBER_N
 | '>' WORD_N
 | '=' WORD_N
 | ':' WORD_N
 | PAIR_X WORD_N WORD_N ;

AlsoList : Svo
 | AlsoList ALSO Svo ;

Svo : SSimple
 | BOTH AlsoList AND Svo
 | EITHER AlsoList OR Svo
 | NEITHER AlsoList NOR Svo
 | THE STATEMENT AlsoList IS IMPLIED BY Svo
 | IF AND ONLY IF AlsoList THEN Svo
 | IF AlsoList THEN Svo
 | EXCLUSIVELY AlsoList OR Svo
 | ADJECTIVE Vo AFFECTS Svo
 | JOINTLY Svo AND Svo
 | TRUE_N
 | FOR ALL VariableList ':' Svo
 | THERE EXISTS VariableList SUCH THAT Svo
 | THERE EXISTS AT LEAST Number VariableList SUCH THAT
 Svo
 | THERE EXISTS NumberOr VariableList SUCH THAT Svo
 | THERE EXISTS UP TO Number VariableList SUCH THAT Svo
 | THERE DOES NOT EXIST VariableList SUCH THAT Svo
 | NOT Svo
 | Tense Vo ;

Vo : Simple
 | BOTH Vo AND Vo
 | EITHER Vo OR Vo
 | NEITHER Vo NOR Vo
 | THE STATEMENT Vo IS IMPLIED BY Vo
 | IF AND ONLY IF Vo THEN Vo
 | IF Vo THEN Vo
 | EXCLUSIVELY Vo OR Vo
 | ADJECTIVE Vo AFFECTS Vo
 | JOINTLY Vo AND Vo

— — 78

 | NOT Vo
 | Tense Vo ;

SSimple : Argument Simple
 | Argument IS Simple
 | Argument NUMBER_N Simple
 | Argument IS NUMBER_N Simple ;

Simple : Simplest
 | WORD_N Simple ;

Simplest : WORD_N ArgumentList MayEnd
 | BLANK ArgumentList MayEnd ;

MayEnd : END_X
 | /*EMPTY, CONTEXTUAL*/ ;

ArgumentList : /*EMPTY*/
 | ArgumentList TO Argument
 | ArgumentList FROM Argument
 | ArgumentList NOISE_X Argument ;

Argument : Some Vo
 | WHAT_X
 | ANYTHING
 | EMPHASIS
 | Variable
 | BOTH Argument AND Argument
 | EITHER Argument OR Argument
 | NEITHER Argument NOR Argument
 | THE ITEM Argument IS IMPLIED BY Argument
 | IF AND ONLY IF Argument THEN Argument
 | IF Argument THEN Argument
 | EXCLUSIVELY Argument OR Argument
 | ME_X
 | YOU
 | MY Argument
 | YOUR Argument
 | SINGLEQUOTEDSTRING_N
 | DOUBLEQUOTEDSTRING_N
 | Some THE CLASS Vo
 | THE CLASS Vo
 | THE EVENT Svo
 | THE NUMBER Number
 | THE ITEM Argument WITH PROPERTY Svo ;

Some : NumberOr Of
 | ALL Of
 | SOME_X Of ;

NumberOr : QUANTITY Variable
 | NumberLow ;

Number : Variable
 | NumberLow ;

NumberLow : NUMBER_N
 | THE SUM OF Number AND Number
 | THE DIFFERENCE BETWEEN Number AND Number
 | THE PRODUCT OF Number AND Number

— — 79

 | THE QUOTIENT OF Number AND Number
 | HOW MANY ;

Of : /*EMPTY*/
 | OF ;

Variable : LETTER_N SUB NUMBER_N
 | LETTER_N ;

VariableList : VariableList Variable
 | Variable ;

Tense : AT TimeReference
 | DURING TimeReference
 | NEAR Argument
 | FAR FROM Argument
 | POTENTIALLY
 | TENSE_Q
 | ON GOOD AUTHORITY
 | LIKELY_X
 | ME_X BELIEVE_X
 | ACCORDING TO Argument
 | UP TO Distance FROM Argument
 | LOCATED Distance FROM Argument
 | AT Argument
 | AT LEAST Distance FROM Argument
 | LOCATED Number TO Distance FROM Argument
 | ON OR AFTER TimeSpec
 | ON TimeSpec
 | AFTER TimeSpec
 | BEGINNING AFTER TimeSpec
 | BEGINNING TimeSpec
 | ON OR BEFORE TimeSpec
 | BEFORE TimeSpec
 | ENDING BEFORE TimeSpec
 | ENDING TimeSpec ;

TimeReference : TimeSpec
 | TimeSpec THROUGH TimeSpec ;

TimeSpec : SimpleTime
 | Offsets FROM SimpleTime
 | Offsets BEFORE SimpleTime ;

SimpleTime : NOW
 | Time Date
 | Date Time
 | Date
 | Time
 | THIS PERIOD_N
 | LAST PERIOD_N
 | NEXT PERIOD_N
 | MONTH_N ;

Date : DateLow BCE
 | DateLow
 | DAY_N
 | TODAY
 | TOMORROW

— — 80

 | YESTERDAY ;

DateLow : NUMBER_N '-' NUMBER_N '-' NUMBER_N
 | MONTH_N NUMBER_N NUMBER_N
 | NUMBER_N MONTH_N ;

Time : TimeLow AM
 | TimeLow
 | TimeLow PM
 | NOON
 | MIDNIGHT ;

TimeLow : NUMBER_N ':' NUMBER_N ':' NUMBER_N
 | NUMBER_N ':' NUMBER_N ;

Distance : Number METER_S ;

Offsets : Offset
 | Offsets Offset ;

Offset : NumberOr PERIOD_N ;

%%

The language definition, in BNF, with explanation following
Transmission → [Utterance execute]… Utterance

Utterance → AlsoList
 | is AlsoList
 | consider facts
 | consider opinion [at NUMBER]
 | [user "string"] password 'string'
 | drop "string"
 | [my] facts
 | forget Predication
 | forget NUMBER
 | forget "string" facts
 | trust "string" [at NUMBER]
 | do not trust "string"
 | >WORD
 | =WORD
 | :WORD
 | {antonyms synonyms set spanish} WORD WORD

AlsoList → [Predication also]… Predication

Predication → [Argument] [IS] [A] [WORD…] {WORD blank} [[{to from than}]
 Argument…] [{end /}]
 | both AlsoList and Predication
 | {either exclusively} AlsoList or Predication
 | neither AlsoList nor Predication

— — 81

 | the statement AlsoList is implied by Predication
 | if [and only if] AlsoList then Predication
 | {true false}
 | for all VariableList: Predication
 | there exists [at least NumberOr] Variable… such that
 Predication
 | there exists [Number] Variable… such that Predication
 | there exists up to NumberOr Variable… such that Predication
 | there does not exist Variable… such that Predication
 | not Predication
 | adjective AlsoList affects Predication
 | jointly AlsoList and Predication
 | Tense Predication

Argument → Number [of] Predication
 | {all little most some} [of] Predication
 | {what which who}
 | anything
 | emphasis
 | Variable
 | both Argument and Argument
 | {either exclusively} Argument or Argument
 | neither Argument nor Argument
 | the item Argument is implied by Argument
 | if [and only if] Argument then Argument
 | {me i you}
 | {my your} Argument
 | "string"
 | 'string'
 | [{all little most some} [of]] the class Predication
 | the event Predication
 | the number Number
 | the item Argument with property Predication

Number → [quantity] Variable
 | NUMBER
 | the {sum product quotient} of Number and Number
 | the difference between Number and Number
 | how many

Variable → LETTER [sub NUMBER]

Tense → {at during} TimeSpec [through TimeSpec]
 | {at near} Argument
 | far from Argument

— — 82

 | {tense when where potentially certainly likely}
 | on good authority
 | i{believe guess}
 | according to Argument
 | up to NumberOr meter[s] from Argument
 | at least NumberOr meter[s] from Argument
 | located [NumberOr to] NumberOr meter[s] from Argument
 | on [or {before after}] TimeSpec
 | beginning [after] TimeSpec
 | ending [before] TimeSpec
 | {before after} TimeSpec

TimeSpec → [Offset… {from before}] SimpleTime

SimpleTime → now
 | Time [Date]
 | Date [Time]
 | {this last next} {second minute hour day week month year
 decade century millennium}
 | {january-december}

Date → DateLow [bce]
 | {sunday-saturday}
 | {today tomorrow yesterday}

DateLow → NUMBER-NUMBER-NUMBER
 | {january-december} NUMBER [NUMBER]

Time → NUMBER:NUMBER[:NUMBER] [{am pm}]
 | {noon midnight}

Offset → Number {second[s] minute[s] hour[s] day[s] week[s] month[s]
 year[s] decade[s] century centuries millennium
 millennia}

Explanation of the BNF grammar
 A Transmission is composed of one or more Utterances.

 An Utterance is a statement of fact (an AlsoList not containing a question-word),

a question (is AlsoList), a query (an AlsoList containing a question-word), a command, or

a dictionary definition. The consider facts command requires that only statements at a

trust level of 1 be considered in answering questions. Consider opinion allows any trust

— — 83

level to come into play. If a number is specified, then any statement at or above that trust

level will be applied. The password command changes a user's password. My facts

shows a list of facts that the user created. Facts alone lists all facts, including dictionary

definitions. Forget, followed by a Predication or a fact number, drops a fact from the

knowledge base. The operator can drop any fact, but users can only drop their own. The

following commands can only be executed by the operator. User accounts can be created

and dropped using the user and drop commands, respectively. A dropped user can no

longer log in, but the user's facts are retained. Forget "user name" facts drops the

knowledge, whether or not the user is still valid. Like consider, trust and do not trust

establish a trust level (between 0 and 1) for a given user. The remaining commands set

up a dictionary. > defines a word as having one-way comparison chaining. For instance,

>big establishes "big" with two arguments to behave symbolically like the ">" symbol,

effectively making it the English word "bigger". Similarly = defines a word as having

two-way comparison chaining. For instance, =same establishes "same" with two

arguments to behave symbolically like the "=" symbol. The : symbol defines a word as

being in the dictionary, and puts the dictionary into Strict mode, in which words not

already in the dictionary are flagged as a problem. The antonyms command establishes

the second word as the opposite of the first, and any use of the second word will be

translated to a use of the first word. For instance, antonyms big small makes "small"

the opposite of "big", and any use of "small" will become a use of "big". For instance

after antonyms big small, the statement small a cat/ an elephant (a cat is smaller

than an elephant) will be stored as big an elephant/ a cat. The synonyms command

— — 84

replaces subsequent uses of the second word with uses of the first word. The set

command establishes mutual exclusion sets. This is best shown by example. Set

animal cat states that all cats are animals. Set animal elephant also establishes

elephants as animals, but also states that no thing can be both a cat and an elephant. The

spanish command establishes a Spanish language translation. For instance, spanish

gato cat establishes "gato" as the Spanish word for "cat".

 An AlsoList is one or more predications separated by the word also. Also has the

same meaning as ^ in logic, and is the only infix operator. It allows afterthought

connectors, while all other operators are Polish or prefix operators, and bind explicitly.

 A Predication is the main statement or question type in JCB-English. A

Predication may by prefixed by one or more nots (which negate the rest of the

predication), Tenses, and words used as adjectives. The most basic predications are a

predicate word followed by one or more arguments. Following the argument list, end or

/ may be added. The use of end or / is context sensitive, and is used when meaning

would otherwise not be clear. For instance, an elephant big a cat would be

considered by JCB-English to be two arguments, one an "elephant" type of "big", and

another which is a cat. Using instead an elephant/ big a cat allows JCB-English to

understand that "big" has two arguments, since the slash terminates the "elephant"

predication. Placing an asterisk in front of a predication word forces that word to be used

as a predication word, even if the word is a keyword. If, instead of a predicate word, the

word blank is used, then the predication is a fill-in-the-blank query. For instance, an

elephant/ blank a cat would respond with "big". The prefix operators both, either,

— — 85

exclusively, neither, is implied by, if, if and only if, for all, there exists, and

there does not exist have the same meaning as they do in classical logic. Adjective

words, as described above, bind right to left. The adjective operator allows explicit

adjective binding. The jointly operator behaves like English’s "and jointly" For

instance, i like an adjective jointly green and blue affects ball means that I like a

ball which is somehow green and blue at the same time. i like an adjective both

green and blue affects ball means that I like a green ball, and that I like a blue ball.

Last, true and false are constant predications, and are probably not useful in standard

discourse (since they will almost always be factored out during the optimization phase),

but are very useful for testing purposes. Early in testing, it was found that people like to

add "is", "is a", "is the", "a", or "the" between the subject and the first predicate word.

The grammar was expanded to allow for this extraneous verbiage. Some so-called little

words (as defined in English) are allowed the user, but ignored by the parser, to make

input easier. In some contexts, where the presence or absence of such a word does not

add or remove any meaning, a, an, from, is, than, the, and to are ignored (by virtue of

the parser recognizing the word in a position where the word doesn't matter, and skipping

over the word).

 An Argument is most typically a number, followed by a predication. Usually, the

predication will have no arguments itself. Thus, a cat is a typical argument, with the

"number" a and the predication cat. The number can be a distinct number, or all, little,

most or some of. The operators both, either, exclusively, neither, is implied by, if,

and if and only if can be applied to arguments. Computationally, this is handled by

— — 86

forming separate predications, none of which contain arguments with operators within

them. Direct, possessional, and query-forming pronouns, me, i, you, my, your, what,

which, and who can be used, as well as variables. Proper names can be used by

enclosing them in double-quotes. In names, capitalization and spacing are not

significant. Literal text strings can be used as such by enclosing the string in single

quote. Capitalization and spacing are significant within such strings. Within a literal text

string, a single quote can be represented using two single-quote characters. Classes of

things can be represented using the class. Events and numbers can be used as

arguments using the event and the number, respectively. With property allows

short-hand use. With property is never stored into the knowledge base. For instance i

take an apple with property i like is evaluated and stored as i like an apple and i

take an apple. The argument anything is a place-holder, in that x go y and x go y

anything are the same. Anything is most useful when an argument needs to be skipped.

"Emphasis" is a special and complicated case. Let's say we define the predicate "x go y

z t" as meaning "x goes from y to z over route t." "Go restaurant" would mean a

restaurant in a going sort of way, which doesn't make much sense. Let's say that we

wanted to talk about a "destination restaurant". That would mean that we need to modify

"restaurant" with "destination". Since "destination" is the third argument of "go", we'd

use "Adjective go anything anything emphasis modifies restaurant".

 NumberOr means a Number (as defined below) or a Variable.

 Wherever Number appears in the grammar, a number can be used, either as digits

(with or without a decimal point) or as a single word. The prefix operators sum,

— — 87

product, quotient, and difference may be used. Questions are formed using how

many in place of a number. A variable can be used as if a number, too, when prefixed by

quantity to distinguish it from an argument.

 A Variable is a letter, other than A or I, optionally followed by sub and an integer.

For instance x sub 2 is "x2".

 Tenses can set time or place, as in most languages, and belief, as in Hopi. Time

tenses include after, at, before, beginning, during, ending, on, and through, alone or

in consort. Distances can use at, at least, far, located, near, and up to define

position. Belief uses according to, certainly, likely, i believe, i guess, on good

authority, and potentially. When and where are specific questions. Tense is a

general question, and can be answered with time, location, and/or believability. Time

specifications can include offsets, from a second to millennia, as well as the words am,

bce, last, next, midnight, now, pm, this, today, tomorrow, yesterday, day names,

and month names, all of which have the same meanings here as in English.

— — 88

Chapter 9 — Acceptance Testing

 The main question answering system types, as mentioned above, are represented

by Google, Prolog, SQL, and Yahoo Answers. Of this list, only SQL is suitable for user

acceptance testing. User acceptance testing was performed as described below with the

help of 30 volunteer test subjects. The entrance criteria for test subjects were that they

were aged 19 or more, and that they had no prior knowledge of SQL.

Tests that Cannot be Run
 Google can search documents for results, but there is little or no control of what

data gets in, or how. There is no cross-document correlation done. There is no method to

deal with veracity. Finally, Google does not present its results as answers. Instead, it

presents a list of documents; often thousands of documents. For purposes of testing,

there is no way for users to directly enter data into the system.

 Prolog is a system directly built for the entry of facts, correlation of those facts,

and for answering questions regarding those facts and getting back reasoned responses.

Unfortunately, Prolog requires that the Prolog program be compiled before queries can be

made. There is no reasonably convenient way to intermix the entry of facts, rules, and

questions into Prolog, since this would require a recompilation each time the user wants

to switch from fact or rule entry to questions. Additionally, the difficulty of sharing data

entry with multiple (n) users is O(n2).

— — 89

 In concept, Yahoo Answers is the closest system to what is being attempted here.

Questions can be entered into Yahoo Answers, and facts may likewise be entered. The

two main differences are that in Yahoo Answers, questions are entered first, and the facts,

in the form of answers, are entered later. The second big difference, of course, is that

Yahoo Answers uses volunteer human labor. This leads to delays of minutes to days in

getting answers. Simply put, there isn't enough time to get answers from Yahoo Answers

or to test the system's use.

Tests that were Run
 There were two test groups, adults who are not programmers and do not know any

SQL (23 subjects), and adult programmers who do not know any SQL (7 subjects). The

number of programmers who do not know SQL is low, since finding programmers who

do not know any SQL is fairly difficult. Each test group was taught JCB-English, for up

to 15 minutes, and taught SQL, for up to 15 minutes. Everyone who registered initial

interest agreed to participate and began instruction.

 After training, each subject was asked to perform a series of data entry and data

retrieval tasks, with the total task time for each language limited to 15 minutes. The

training forms (used as "cheat sheets") used, the list of tasks, and questionnaires used

each appear following this document.

Completion Metrics
 Each of the following was measured directly by the author, and compared with

SQL only. No comparison can be made to any other commonly used system, as no other

commonly-used system can switch between data entry and answering mode on the fly.

Below, each area with a light green background indicates a result in the planned range.

— — 90

Question JCB SQL

How long does it take the system read & write the test knowledge
base?

<0.1s <0.1s

How long does it take the system to compile a typical query? <0.1s <0.1s

How long does the fast prover typically take? <0.1s <0.1s

Typical Slow Prover time, without chaining rules: <0.1s n/a

Typical Slow Prover time, with chaining rules: <1.3s n/a

Can the system operate with multiple users in the same knowledge
space?

Yes Yes

Given that the size of the sample translations presented in the
original thesis are 100%, what is the size of those same
translations in the current language?

80% n/a

Given that the size of the PLGS problems' translations are 100%,
what is the current minimum size of those same translations?

66% n/a

Can sentences be entered in a more English-like subject-verb-
object manner?

Yes No

Can the concept of chaining (i.e., if a>b, and b>c, then a>c) be
entered as a simple command or statement, rather than formulating
a theorem covering the matter?

Yes No

Can the concept of equivalence (i.e., if a=b, and b=c, then a=c) be
entered as a simple command or statement, rather than formulating
a theorem covering the matter?

Yes No

Can the concept of membership in a group, such as cats and dogs
being members of mammals, be entered as a simple command or
statement, rather than formulating a theorem covering the matter?

Yes No

— — 91

Question JCB SQL

Can the concept of exclusion within a group, such as being a cat
and being a dog being mutually exclusive, be entered as a simple
statement or command, rather than formulating a theorem covering
the matter?

Yes No

Can the concept of synonyms (i.e., big, bigger, biggest, large,
larger, largest, huge, immense, … are all the same predication) be
entered as a simple command or statement, and handled in the
parse or lex phase, thus alleviating the need for formulation of
theorems, and also alleviating the need of execution at proof-time?

Yes No

Can the concept of antonyms (i.e., and small being the same
predication, but with arguments reversed, such as
Big(x,y)↔Small(y,x)) be entered as a simple command or
statement, and handled in the parse or lex phase, thus alleviating
the need for formulation of theorems, and also alleviating the need
of execution at proof-time?

Yes No

Is the grammar proven to be SLR-1, and thus completely
syntactically unambiguous?

Yes Yes

Percentage of lines tested: 100% n/a

Can the system operate with or without a "strict vocabulary" mode,
in which "strict" means that only pre-approved predication words
are available?

Yes n/a

Can all previously documented features still be used? Yes n/a

In which additional languages, can the system output? Spanish n/a

 The following tables each derive their data from observations of the subject, or

from questionnaire answers by the subjects. Below, a light green background indicates

whether JCB-English or SQL had a better (rather than higher or lower) result.

— — 92

Subjects who completed the exercise (after having started):

 Non-programmers Programmers Overall

JCB-English 100% 100% 100%

SQL 91% 100% 93%

Average learning time, ± standard deviation, measured in minutes, but shown here in

minutes and seconds, with a 15-minute maximum:

 Non-programmers Programmers Overall

JCB-English 11:08 ±2:35 11:26 ±1:54 11:12 ±2:25

SQL 13:06 ±1:55 12:43 ±2:22 13:00 ±2:00

The expectation with respect to learning time was that programmers would have

approximately the same or better learning time for JCB-English than would non-

programmers. However, non-programmers learned JCB-English faster than did

programmers.

Average task time, ± standard deviation, measured in minutes, but shown here in minutes

and seconds, with a 15-minute maximum:

 Non-programmers Programmers Overall

JCB-English 8:34 ±3:40 10:26 ±4:05 9:00 ±3:47

SQL 15:00 ±0:00 15:00 ±0:00 15:00 ±0:00

Again, the expectation was that programmers would be able to perform more tasks than

would non-programmers using JCB-English. Again, the non-programmers did better at

JCB-English than did the programmers.

— — 93

Average percentage of tasks completed, ± standard deviation:

 Non-programmers Programmers Overall

JCB-English 99% ±5% 90% ±17% 97% ±10%

SQL 29% ±29% 52% ±29% 34% ±30%

The expectation was that programmers would complete more tasks than would non-

programmers. However, the opposite was true. Programmers still did better at JCB-

English than they did at SQL.

Average number of help instances, ± standard deviation:

 Non-programmers Programmers Overall

JCB-English 1.2 ±2.2 0.6 ±0.8 1.0 ±2.0

SQL 3.2 ±2.8 1.7 ±0.8 2.8 ±2.5

Adjusted average number of completed tasks per 15-minute period (counting each help

instance as equivalent to 5 minutes):

 Non-programmers Programmers Overall

JCB-English 36.1 ±26.0 30.9 ±24.6 34.9 ±25.4

SQL 3.6 ± 3.9 7.0 ± 3.4 4.4 ± 4.0

Part of the reason that the standard deviation is so high for the number of tasks completed

in a 15-minute period is that seven of the subjects were able to score between 79 and 105

tasks per 15-minute period.

— — 94

The language is… (Terrible=0; Wonderful=4)

 Non-programmers Programmers Overall

JCB-English 2.9 ±0.8 2.9 ±1.1 2.9 ±0.8

SQL 1.2 ±0.9 1.4 ±1.4 1.3 ±1.0

Learning the language is… (Difficult=0; Easy=4)

 Non-programmers Programmers Overall

JCB-English 3.6 ±0.8 3.7 ±0.5 3.6 ±0.8

SQL 1.0 ±1.2 1.9 ±1.5 1.2 ±1.3

Using the language is… (Difficult=0; Easy=4)

 Non-programmers Programmers Overall

JCB-English 3.4 ±1.0 2.9 ±1.1 3.3 ±1.0

SQL 1.0 ±1.2 1.4 ±1.0 1.1 ±1.2

Using the language is… (Frustrating=0; Satisfying=4)

 Non-programmers Programmers Overall

JCB-English 3.0 ±1.1 2.7 ±1.1 2.9 ±1.1

SQL 1.0 ±0.9 1.4 ±1.0 1.1 ±0.9

The system is… (Too slow=0; Fast enough=4)

 Non-programmers Programmers Overall

JCB-English 3.1 ±0.9 2.4 ±1.8 2.9 ±1.2

SQL 1.4 ±1.5 2.1 ±1.6 1.6 ±1.5

— — 95

The experience was… (Dull=0; Stimulating=4)

 Non-programmers Programmers Overall

JCB-English 3.1 ±0.8 3.1 ±1.5 3.1 ±1.0

SQL 1.8 ±1.4 2.4 ±1.5 2.0 ±1.4

The language is… (Rigid=0; Flexible=4)

 Non-programmers Programmers Overall

JCB-English 2.4 ±1.1 3.0 ±1.0 2.6 ±1.1

SQL 0.5 ±0.7 1.1 ±1.2 0.7 ±0.9

Organization of the interface is… (Confusing=0; Very clear=4)

 Non-programmers Programmers Overall

JCB-English 3.0 ±1.3 2.9 ±1.5 3.0 ±1.3

SQL 0.9 ±0.8 2.9 ±1.3 1.4 ±1.3

The prompts are… (Confusing=0; Very clear=4)

 Non-programmers Programmers Overall

JCB-English 3.1 ±1.1 3.0 ±1.5 3.1 ±1.2

SQL 1.4 ±1.1 1.6 ±1.0 1.4 ±1.1

— — 96

Error messages are… (Helpful=0; Not helpful=4)

 Non-programmers Programmers Overall

JCB-English 3.0 ±1.3 3.0 ±1.5 3.0 ±1.3

SQL 1.5 ±1.5 1.7 ±1.3 1.6 ±1.4

Remembering the words and commands is… (Difficult=0; Easy=4)

 Non-programmers Programmers Overall

JCB-English 3.1 ±1.1 3.7 ±0.5 3.2 ±1.1

SQL 0.9 ±1.1 1.4 ±1.4 1.0 ±1.1

Using this system at work would allow me to accomplish tasks quickly. (Unlikely=0;

Likely=4)

 Non-programmers Programmers Overall

JCB-English 2.5 ±1.6 2.8 ±1.5 2.6 ±1.5

SQL 0.7 ±1.0 1.7 ±1.4 0.9 ±1.2

Using this system at work would allow me to accomplish more. (Unlikely=0; Likely=4)

 Non-programmers Programmers Overall

JCB-English 2.5 ±1.5 2.3 ±1.4 2.5 ±1.4

SQL 0.7 ±0.8 1.3 ±1.0 0.8 ±0.9

— — 97

It would be easy for me to get this language to do what I want it to. (Unlikely=0;

Likely=4)

 Non-programmers Programmers Overall

JCB-English 2.9 ±1.4 3.4 ±0.5 3.0 ±1.2

SQL 1.3 ±1.4 2.0 ±1.4 1.5 ±1.4

If I were to use this system, I'd become a… (Novice=0; Expert=4)

 Non-programmers Programmers Overall

JCB-English 3.5 ±0.8 3.4 ±0.8 3.4 ±0.8

SQL 1.5 ±1.4 2.9 ±1.2 1.9 ±1.5

This language is… (Inaccurate=0; Accurate=4) Note that there is an objectively correct

answer for both languages of Accurate. Note that this question is purely a matter of

perception, as both languages are entirely accurate.

 Non-programmers Programmers Overall

JCB-English 3.3 ±1.1 3.3 ±1.5 3.3 ±1.2

SQL 1.9 ±1.2 2.6 ±1.5 2.1 ±1.3

Compared to other computer systems, this language is more… (Contrived=0; Natural=4)

 Non-programmers Programmers Overall

JCB-English 3.1 ±1.1 3.8 ±0.4 3.3 ±1.0

SQL 0.8 ±1.0 0.8 ±0.8 0.8 ±0.9

— — 98

Using this language, you have to remember the conversation… (Totally=0; Not at all=4)

 Non-programmers Programmers Overall

JCB-English 2.2 ±1.4 3.1 ±0.9 2.5 ±1.3

SQL 1.1 ±1.5 0.6 ±0.8 0.9 ±1.4

The responses to this question are a bit surprising, in that the objective answer is 0 in

JCB-English, and 4 in SQL.

This language does what I would expects (fulfils the promise)… (Not at all=0;

Wonderfully=4)

 Non-programmers Programmers Overall

JCB-English 3.3 ±1.0 3.7 ±0.5 3.3 ±0.9

SQL 1.6 ±1.2 2.4 ±1.5 1.8 ±1.3

This language's capabilities… (Fall short=0; Are great=4)

 Non-programmers Programmers Overall

JCB-English 3.1 ±1.0 2.7 ±1.0 3.0 ±1.0

SQL 1.6 ±1.3 1.6 ±1.0 1.6 ±1.2

Fixing a mistake is… (Difficult=0; East=4)

 Non-programmers Programmers Overall

JCB-English 3.3 ±1.1 3.3 ±1.5 3.3 ±1.2

SQL 1.5 ±1.7 1.4 ±1.5 1.5 ±1.6

— — 99

I want to book-mark a web-site running this language… (Not=0; For sure=4)

 Non-programmers Programmers Overall

JCB-English 2.2 ±1.5 2.6 ±1.4 2.3 ±1.4

SQL 0.6 ±1.1 1.1 ±0.9 0.7 ±1.0

The same data has to be entered… (Repeatedly=0; Once=4) Note that for both

languages, the objectively correct answer is Once. This question is one of impressions or

training, as it can be shown that in both languages, the objective answer is 0.

 Non-programmers Programmers Overall

JCB-English 3.3 ±1.1 2.3 ±1.9 3.1 ±1.3

SQL 1.9 ±1.8 2.4 ±1.8 2.0 ±1.8

Statements can be undone (forgotten)… (Not at all=0; Easily=4)

 Non-programmers Programmers Overall

JCB-English 3.4 ±1.1 3.7 ±0.5 3.5 ±0.9

SQL 1.9 ±1.4 2.0 ±1.2 1.9 ±1.3

The language is useful for storing data. (Not at all=0; Very useful=4)

 Non-programmers Programmers Overall

JCB-English 3.3 ±0.9 3.3 ±1.5 3.3 ±1.0

SQL 2.0 ±1.3 2.6 ±1.6 2.2 ±1.4

— — 100

The language is useful for retrieving data. (Not at all=0; Very useful=4)

 Non-programmers Programmers Overall

JCB-English 3.5 ±0.8 3.1 ±1.5 3.4 ±1.0

SQL 2.0 ±1.5 2.6 ±1.1 2.2 ±1.4

This language can do some of the mental work for me. (Not at all=0; Certainly=4)

 Non-programmers Programmers Overall

JCB-English 2.9 ±1.4 2.9 ±1.5 2.9 ±1.4

SQL 1.1 ±1.4 1.7 ±1.4 1.2 ±1.4

Conclusion
 The main objectives of this research were to produce a grammar that is similar to

English, using techniques from Loglan and other logic areas, and to produce a system

which responds to the language so produced logically, coherently, usefully, and relatively

quickly. These goals have been accomplished: The current grammar is relatively small,

easy to understand, and useful. The Slow Prover is fast enough, using a single laptop

computer, to respond to users when using a small knowledge-base size. The system can,

in the future, be scaled into a useful tool with broad range. The system can produce its

output multilingually (currently using JCB-English, English, Spanish), and

unambiguously in JCB-English.

 Tests performed on the system by actual prospective users, known in the

computer industry as "alpha testers", had a number of expected results, and a few

unexpected results. The expected results were that this new language is indeed easy for

the average person to learn and use. Also as expected is the fact programmers

— — 101

outperformed non-programmers using control language, SQL. The unexpected results

were that the user acceptance level, in every category except production of error

messages, was greatly positive. Another unexpected result is that the non-programmers

outperformed programmers in many aspects of learning and using JCB-English. A

suspicion is that there may be left-brain and right-brain affinity in languages and careers.

 If a single-sentence conclusion can be offered, then that conclusion is this: JCB-

English may well prove to be a useful tool for information storage and retrieval, and for

expert and logical processing of that knowledge.

— — 102

Chapter 10 — Future Work

 Although a great deal of progress and improvement has been made, there is

always additional work to do. Some of the future work involves straightforward

development, while other work involves some research element. Below appears a list of

such work:

Research
• In order to allow for direct input in languages other than English, appropriate

grammars will have to be researched. As of this writing, it is not certain that

languages outside of the Germanic family (including English, the result of at least one

"mixed marriage") can be used for logic without modifications to the grammar so great

as to make the new language unrecognizable.

• The addition of COBOL-like noise words at various locations in the grammar may

obviate the need to "/" or "end" in various contexts or circumstances. It would bear

scrutiny to determine if a grammar simplification can occur because of this.

Research and Development
• The system, as implemented is fast, but runs on a single processor. For widespread

use, the system will have to be modified to run simultaneously on many processors.

• Since numbers and variables are present, the system's provers can be expanded to

handle straight algebra problems, as well as word problems involving any branch of

mathematics.

— — 103

• During the human-subject ("alpha") testing, a number of suggestions were made. One

of the more important suggestions was the proposition that if Streak is a multicolored

cat, then Streak is a cat, and Streak is multicolored. The JCB-English language, as

currently defined, recognizes from '"Streak" is a multicolored cat.' that Streak is a cat

and that Streak is a multicolored cat. It does not directly recognize the independent

concept that Streak is multicolored. Adding this capability would involve some

research and some development. The research involved is to determine which of the

following is true of any noun-adjective-predicate set A:P(N):

° The set can be expressed as two noun-predicate sets, A(N) and P(N).

° The adjective may or may not be separable, and this separability can be listed in the

dictionary, so that A:P(N) can be separated to A(N) and P(N) if the dictionary entry

for A so allows.

° The predication may or may not be separable, and this separability can be listed in

the dictionary, so that A:P(N) can be separated to A(N) and P(N) if the dictionary

entry for P so allows.

° The adjective-predication pair may or may not be separable, and this separability

can be listed in a table, so that A:P(N) can be separated to A(N) and P(N) if A:P

appears in the Separable table.

 Once the rules for separability are determined, the addition of a SEPARABLE rule

may be in order.

• Currently, the JCB-English parser recognizes certain words as COBOL-like "noise"

words. An example is the word "than". There are certainly more such noise words,

— — 104

and those words should be added to the lexer's list of such words. Some of the words

listed currently as noise could actually be used to rearrange arguments.

Development
• The system can make use of a complete dictionary, defining all predicates, and the

meanings of each predicate's arguments. This would include set classifications,

synonyms, and antonyms.

• The system can also make use of a complete Spanish dictionary, defining translations

for each predicate.

• The system can make use of translation dictionaries for additional languages.

• The system currently uses 8-bit characters. To use certain other languages, 16-bit

characters would be more appropriate.

• The system currently uses brute force for its proofs, without making a determination as

to which path would be the most likely to form a conclusion. Similarly, no cuts are

used. Addition of optimization would be helpful.

• The system currently allows facts determined by the slow prover, but not used in the

final proof, to go unreferenced, and thus to be swept away by the Garbage Collector.

An alternative plan would be to retain such facts.

• The optimizer should be able to recognize predicate terms used but unknown, and

determine (using truth tables or other means) whether use of the term can be optimized

out completely.

• The current grammar allows for assignment of ownership using the insertion of "my"

or "your". This typically appears in a sentence in this manner: "I like my one cat."

The presence of "my" or "your" absolutely implies that an argument (as defined in the

— — 105

grammar) follows. An additional grammar rule (or rules) can be added to recognize an

argument with a missing quantifier. The missing quantifier would assumed to be

"one", which would allow simplification of this example sentence to "I like my cat."

• In the event of a syntax error, when the parser can determine what the user likely

meant, the user interface should not only report the error, but should report (in the text

entry area) the most likely correct text, so that the user could then press Return or

Enter, or click on Submit, without having to retype or correct the entry.

— — 106

References

Agarwal & Shahshahani, patent application #2004-0085162, Method and apparatus for

providing a mixed-initiative dialog between a user and a machine, May 6, 2004.

Agichtein, Eugene et al. (2001). Learning search engine specific query transformations

for question answering. Proceedings of the 10th international conference on

World Wide Web, 2001, pages 169-178. ACM.

Agichtein, Eugene et al. (2004). Learning to find answers to questions on the Web. ACM

Transactions on Internet Technology. May, 2004, pages 129-162. ACM.

Ahamed. Patent #5,809,493. Knowledge processing system employing confidence levels.

September 15, 1998.

Andrenucci, Andrea & Sneiders, Eriks. (2005). Automated Question Answering: Review

of the Main Approaches. Proceedings of the Third International Conference on

Information Technology and Applications, 2005. IEEE.

Appelt et al. Patent application #2003-0078766. Information retrieval by natural

language querying. April 24, 2003.

Armstrong. Patent #5,855,002. Artificially intelligent natural language computational

interface system for interfacing a human to a data processor having human-like

responses. December 29, 1998.

Bangalore et al. Patent application #2003-0130841. System and method of spoken

language understanding in human computer dialogs. July 10, 2003.

— — 107

Baral, Chitta and Tari, Luis. (2006). Using AnsProlog with Link Grammar and WordNet

for QA with deep reasoning., 2006. IEEE.

Beauregard & Armijo-Tamez. Patent-related document #RE-39,090. Semantic user

interface. May 2, 2006.

Beeman, William et al. (1987). Hypertext and Pluralism: From Lineal to Non-lineal

Thinking. Hypertext Papers, November, 1987, pages 67-88.

Beierle, Christoph et al. (1993). Knowledge Representation for Natural Language

Understanding: The LLILOG Approach. IEEE Transactions on Knowledge and

Data Engineering, June 1993, Pages 386-401. IEEE.

Bennet. Patent application #2005-0080614. System & method for natural language

processing of query answers. April 14, 2005.

Bennet. Patent application #2005-0086049. System & method for processing sentence

based queries. April 21, 2005.

Bernardi et al. (2007). Lite Natural Language. Free University of Bozen-Bolzano, Italy.

<http://www.inf.unibz.it/~thorne/perso/lite.pdf>. [2010, February 21].

Boley, Harold & Sintek, Michael. (1995). Open-World Datalog.

<http://www.dfki.uni-kl.de/vega/relfun+/extension/subsection3_3_1.html> [2009,

December 24].

Bralich et al. Patent #5,878,385. Method and apparatus for universal parsing of

language. March 2, 1999.

Brassell & Miller. Patent #6,553,372. Natural language information retrieval system.

April 22, 2003.

— — 108

Bratko, Ivan. (2001). Prolog Programming for Artificial Intelligence. Harlow, England:

Pearson Addison Wesley.

Brill, Eric, et al. (2002). An Analysis of the AskMSR Question-Answering System.

Proceedings of the Conference on Empirical Methods in Natural Language

Processing, July 2002, pages 257-267. ACM

Brody. Patent application #2004-0215612. Semi-boolean arrangement, method, and

system for specifying and selecting data objects to be retrieved from a collection.

October 28, 2004.

Brown et al. Patent #6,665,666. System, method and program product for answering

questions using a search engine. December 16, 2003.

Brown, James. (1960). Loglan. Scientific American. June, 1960. Pages 53-63. Scientific

American, Inc., Ney York, New York.

Brown, James. (1975). Loglan 1, Loglan: A Logical Language, Gainesville, Florida:

The Loglan Institute:

Brown, James. (1975). Loglan 2, Loglan: A Logical Language, Gainesville, Florida:

The Loglan Institute:

Brown, James. (1978). Loglan 3, Loglan: A Logical Language. Xerox Press.

Brown, James. (1978). Loglan 4, Loglan: A Logical Language. Xerox Press.

Brown, James. (1978). Loglan 5, Loglan: A Logical Language. Xerox Press.

Brown, James. (1999). Loglan 1: A Logical Language.

<http://www.loglan.org/Loglan1/forward.html> [2009, December 24].

— — 109

Burek, Gaston et al. (2005). Hybrid Mappings of Complex Questions over an Integrated

Semantic Space. Proceedings of the 16th International Workshop on Database

and Expert Systems Applications, 2005. IEEE.

Capek, Karel. Rossum's Universal Robots (Broadway play), 1920.

Cardie, Claire et al. Examining the role of statistical and linguistic knowledge sources in

a general-knowledge question-answering system, Proceedings of the sixth

conference on Applied natural language processing, 2000, pages 180-187.

Morgan Kaufmann Publishers Inc.

Carter, James. (1991). Guaspi, an Artificial Natural Language.

<http://www.math.ucla.edu/~jimc/guaspi/acmpaper.html>. [2009, December 24].

Chalupsky, Hans. (2006). PowerLoom Documentation.

<http://www.isi.edu/isd/LOOM/PowerLoom/documentation> [2009, December

24].

Chang. Patent application #2006-0123045. Natural language expression in response to a

query. June 8, 2006.

Chen, Wei et all. (2006). A User-Reputation Model for a User-Interactive Question

Answering System. Proceedings of the Second International Conference on

Semantics, Knowledge, and Grid, 2006. IEEE.

Coffman. Patent application #2003-0014260. Method and system for determining and

maintaining dialog focus in a conversational speech system. January 16, 2003.

Cooper, William. (1964). Fact Retrieval and Deductive Question-Answering Information

Retrieval Systems, Journal of the ACM, April 1964, pages 117-137. ACM

— — 110

Datig. Patent application #2002-0198697. Universal epistemological machine (a.k.a.

android). December 26, 2002.

Datig. Patent application #2005-0005266. Method of and apparatus for realizing

synthetic knowledge processes in devices for useful application. January 6, 2005.

Diederiks & Van De Sluis. Patent application #2001-0056364. Method of interacting with

a consumer electronics system. December 27, 2001.

Dixon et al. Patent #5,088,048. A method to speed up problem solvers and provers.

February 11, 1992.

Dusan & Flanagan. Patent application #2002-017805. System and method for adaptive

language understanding by computers. November 28, 2002.

Einstein, Albert. (1916). Die Gundlage der allgemein Relativitätstheorie (The Basis of

General Relativity Theory). Annalen der Physik (Annals of Physics), 1916 #7,

pages 769-821.

Ejerhed. Patent #7,058,564. Method of finding answers to questions. June 6, 2006.

Eldredge et al. Patent #6,697,801. Methods of hierarchically parsing and indexing text.

February 24, 2004.

Epstein. Patent application #2002-0123891. Hierarchical language models. September 5,

2002.

Fain & Fain. Patent application #2002-0169597. Method and apparatus providing

computer understanding and instructions from natural language. November 14,

2002.

Firman. Patent #5,377,303. Controlled computer interface. December 27, 1994.

Ford. Patent application #2003-0144831. Natural language processor. July 31, 2003.

— — 111

Free Software Federation. (2010). Bison 2.4.2. Free Software Foundation.

<http://www.gnu.org/software/bison/manual/html_mono/bison.html> [2010, May

1]

Fuchs, Norbert et al. (1999). Attempto Controlled English Language Manual Version 3.0.

Geneva, Switzerland: Institut für Informatik der Universität Zürich.

Fuchs, Norbert & Schwertel, Uta. (2002). Reasoning in Attempto Controlled English.

Technical Report, January, 2002. Institut für Informatik, Universität Zürich.

Furbach, Ulrich, et al., (2008). LogAnswer - A Deduction-Based Question Answering

System.

<http://www.uni-koblenz.de/~bpelzer/publications/FGHP08_IJCAR08_prel.pdf>.

[2009, December 29].

Fujisawa et al. Patent #5,404,506. Knowledge based information retrieval system. April

4, 1995.

Fujisawa et al. Patent #6,182,062. Knowledge based information retrieval system.

January 30, 2001.

Fujisawa et al. Patent #5,555,408. Knowledge based information retrieval system.

September 10, 1996.

Fung et al. Patent #6,687,689. System and methods for document retrieval using natural

language-based queries. February 3, 2004.

Furbach et al. (2008). LogAnswer - A Deduction-based Question-answering System.

<http://www.uni-koblenz.de/~bpelzer/publications/FGHP08_IJCAR08_prel.pdf>.

[2010, February 21].

— — 112

Gao, Sixia. (2008). Study on College English Teaching Strategy. Asian Social Science,

volume 4, number 11, pages 93-99. Toronto, Ontario: Canadian Center of

Science and Education.

Galton, Antony. (2008). Temporal Logic. Stanford Encyclopedia of Logic. Stanford

University. <http://plato.stanford.edu/entries/logic-temporal>. [2010, February

21].

Glöckner, Ingo. (2008). Towards Logic-Based Question Answering under Time

Constraints. Proceedings of the International MultiConference of Engineers and

Computer Scientists 2008, volume 1. Hong Kong: IMECS.

Goertzel, Ben. (2005). Potential Computational Linguistics Resources for Lojban.

<http://www.goertzel.org/new_research/lojban_AI.pdf> [2009, December 24].

Goertzel, Ben. (2006). Lojban++: An Efficient, Minimally Ambiguous, User-Friendly

Natural-Like Language for Human-Computer, Computer-Computer and Human-

Human Communication. <http://www.goertzel.org/papers/lojbanplusplus.pdf>

[2009, December 24].

Goss et al. Patent #4,667,290. Compilers using a universal intermediate language. May

19, 1987.

Gould et al. Patent #5,920,836. Word recognition system using language context at

current cursor position to affect recognition probabilities. July 6, 1999.

Green, C. & Raphael, Bertram. (1968). The use of theorem-proving techniques in

question-answering systems. Proceedings of the 1968 23rd ACM national

conference table of contents, 1968, pages 169-181. ACM.

— — 113

Greetha, T. & Subramanian, R. (1990). Representing Natural Language with Prolog,

IEEE Software, March 1990, Pages 85-92. IEEE.

Guo et al. Patent application #2003-0144055. Conversational interface agent. July 31,

2003.

Hagen & Stefanik. Patent application #2005-0010415. Artificial intelligence dialogue

processor. January 13, 2005.

Hao, Tianyong et al. (2006). Semantic Pattern for User Interactive-Question Answering.

Proceedings of the Second International Conference on Semantics, Knowledge,

and Grid, 2006. IEEE.

Harrison et al. Patent application #2003-0069880. Natural language query processing.

April 10, 2003.

Hartley, Roger. (1986). An Overview of Conceptual Programming.

<http://www.cs.nmsu.edu/~rth/publications/overviewCP.pdf> [2009, December

24].

Haszto et al. Patent #6,192,338. Natural language knowledge servers as network

resources. February 20, 2001.

Hawkinson & Anderson. Patent application #2004-0122661. Method, system, and

computer program product for storing, managing and using knowledge

expressible as, and organized in accordance with, a natural language. June 24,

2004.

Hirtle, David. (2006). Translator: A Translator from Language to Rules.

<http://www.ruleml.org/translator> [2009, December 24].

— — 114

Ho & Tong. Patent #6,498,921. Method and system to answer a natural-language

question. December 24, 2002.

Hogenhout & Noble. Patent #7,062,428. Natural language machine interface. June 13,

2006.

Hsu & Boonjing. Patent application #2002-0059069. Natural language interface. May

16, 2002.

Jennings, James, editor. (2006). Loglan.org. <http://www.loglan.org> [2009, December

24].

Joshi, Aravind. (1977). Some extensions of a system for inferencing on partial

information. ACM SIGART Bulletin, Deductive inference: question

answering/theorem proving, June 1977, page 7. ACM.

Jowel & Kessock. Patent #7,103585. System and method for logical agent engine.

September 5, 2006.

Jung. Patent #6,950,827. Methods, apparatus, and data structures for providing a

uniform representation of various types of information. September 27, 2005.

Kang, In-Su et al. (2002). Database Semantics Representation for Natural Language

Access, Proceedings of the First International Symposium on Cyber Worlds,

2002. IEEE.

Kasravi & Varadarajan. Patent #7,085,750. Method and system for mapping a hypothesis

to an analytical structure. August 1, 2006.

Kautz & Selman. Patent #5,259,067. Optimization of information bases. November 2,

1993.

— — 115

Klipstein. Patent application #2001-0049597. Method and system for responding to a

user based on a textual input. December 6, 2001.

Knöll, Roman & Mezini, Mira. (2006). Pegasus: first steps toward a naturalistic

programming language. Companion to the 21st ACM SIGPLAN conference on

Object-oriented programming systems, languages, and applications, 2006, pages

542-559. ACM.

Kobayashi et al. Patent application #2004-0054519. Apparatus and methods for

developing conversational applications. March 18, 2004.

Kuhn, Roland and Di Mori, Renato. (1995). The Application of Semantic Classification

Trees to Natural Language Understanding. IEEE Transactions on Pattern Analysis

and Machine Intelligence, May 1995, Pages 449-460. IEEE.

Kupiec. Patent #5,519,608. Method for extracting from a text corpus answers to

questions stated in natural language by using linguistic analysis and hypothesis

generation. May 21, 1996.

Kupiec. Patent #5,696,962. Method for computerized information retrieval using shallow

linguistic analysis. December 9, 1997.

Laboreo, Daniel. (2005). Lógica y lenguajes (Logic and languages).

<http://www.danielclemente.com/apuntes/ales/hl/html/hl.es.xhtml> [2009,

December 24].

Lamberti et al. Patent #5,377,103. Constrained natural language interface for a computer

that employs a browse function. December 27, 1994.

LeChevalier, Robert, editor. (2006). Lojban.org. <http://www.lojban.org/tiki/Lojban>

[2009, December 24].

— — 116

Linker, Sheldon. (1980). A Partial Machine Grammar of Loglan. The Loglanist (also

published under the name La Loglantan), June 1980, pages 21-32. Gainesville,

Florida: The Loglan Institute.

Linker, Sheldon. (1981). An Alternative 'MEX' Proposal. The Loglanist (La Loglantan),

February, 1981, pages 16 & 17. Gainesville, Florida: The Loglan Institute.

Linker, Sheldon. (2007). A Knowledge Base and Question Answering System based on

Loglan and English. Thesis. Springfield, Illinois: The University of Illinois.

Lita, Luvian & Carbonell, Jaime. (2004). Unsupervised question answering data

acquisition from local corpora, Proceedings of the thirteenth ACM international

conference on Information and knowledge management table of contents, 2004,

pages 607-614. ACM.

Ljungberg & Holm. (1996). Speech acts on trial. Scandinavian Journal of Information

Systems. 1996.

Lockwood, Kate. (2009). Using Analogy to Model Spatial Language Use and Multimodal

Language Capture. Northwestern University, Evanston, Illinois.

<http://www.qrg.northwestern.edu/papers/Files/QRG_Dist_Files/QRG_2009/Loc

kwood_dissert_09.pdf> [2010, February 21].

Logical Language Group, Inc. (wiki contributorship). (2007). Lojban.org Home Page.

<http://www.lojban.org/tiki/tiki-index.php?page=Home+Page&bl&bl=y> [2007,

March 1].

Loveland, D. (1986). Automated theorem proving: mapping logic into AI. Proceedings of

the ACM SIGART international symposium on Methodologies for intelligent

systems, 1986, pages 214-229. ACM.

— — 117

Machihara et al. Patent #6,233,578. Method and system for information retrieval. May

15, 2001.

Marchiori, Massimo. (2004). Towards a People's Web: Metalog, Proceedings of the

IEEE/WIC/ACM International Conference on Web Intelligence, 2004. IEEE.

Matheson. Patent #7,024,368. Man-machine dialogue system, controls dialogue between

systems and user using dialogue specification employing augmented transition

networks propagating tokens. April 4, 2006.

Matzner, Tobias & Hitzler, Pascal. (2006). Any-World Access to OWL through Prolog.

<http://www.aifb.uni-karlsruhe.de/WBS/phi/resources/publications/prowlog.pdf>

[2007, March 14].

McConnell & Barklund. Patent #6,993,475. Methods, apparatus, and data structures for

facilitating a natural language interface to stored information. January 31, 2006.

Metcalf & Dingus. Patent application #2004-0044515. Automated natural language

inference system. March 4, 2004.

Miller et al. Patent #6,393,428. Natural language information retrieval system. May 21,

2002.

Minker, Jack. (1977). Control structure of a pattern-directed search system. Deductive

inference: question answering/theorem proving, June 1977, pages 7-14. ACM.

Minker, Jack. (1978). Search strategy and selection function for an inferential relational

system. ACM Transactions on Database Systems, March 1978, pages 1-31. ACM.

Moldovan, Dan et al. (2003). COGEX: a logic prover for question answering.

Proceedings of the 2003 Conference of the North American Chapter of the

— — 118

Association for Computational Linguistics on Human Language Technology,

2003, pages: 87-93. Association for Computational Linguistics

Moser et al. Patent #6,275,789. Method and apparatus for performing full bidirectional

translation between a source language and a linked alternative language. August

14, 2001.

Nakamura & Tate. Patent #6,941,295. Data access system. September 6, 2005.

Namba et al. Patent #5,555,169. Computer system and method for converting a

conversational statement to computer command language. September 10, 1996.

Ohlman, Herbert. (1961). Pro a Special IR Language. Design, Implementation and

Application of IR-Oriented Languages, 1961, pages 8-10. ACM.

Phillips, Web & Boroditsky, Lera. (2003). Can quirks of grammar affect the way you

think? Grammatical gender and object concepts. Proceedings from the 25th

Annual Meeting of the Cognitive Science Society, 2003, pages 928-933.

Pinto, David et al. (2002). QuASM: a system for question answering using semi-

structured data. Proceedings of the 2nd ACM/IEEE-CS joint conference on

Digital libraries, 2002, pages 46-55. ACM.

Prothero, Jeff. (1990). Design and Implementation of a Near-optimal Loglan Syntax.

<http://www.rickharrison.com/language/plan_b.html> [2009, December 24].

Prothero, Jeff, et al. (1994). Loglan Grammar as of Dec 94.

<http://loglan.org/Misc/grammar80.y> [2009, December 24].

Pustejovsky & Ingria. Patent application #2001-0039493. Answering verbal questions

using a natural language system. November 8, 2001.

— — 119

Radev, Dragomir et al. (2001). Mining the web for answers to natural language questions.

Proceedings of the tenth international conference on Information and knowledge

management, 2001, pages 143-150. ACM.

Ramakrishnan, Ganesh et al. (2003). Question Answering via Bayesian inference on

lexical relations. Proceedings of the ACL 2003 workshop on Multilingual

summarization and question answering, 2003, pages 1-10. Association for

Computational Linguistics.

Ramakrishnan, Ganesh et al. (2004). Is question answering an acquired skill?.

Proceedings of the 13th international conference on World Wide Web table of

contents, 2004, pages 111-120. ACM.

Reiter, Raymond. An approach to deductive question-answering systems. ACM SIGART

Bulletin, Natural Language interfaces, 1977, pages 41-43. ACM.

Romero. Patent application #2002-0111803. Method and system for semantic speech

recognition. August 15, 2002.

Ross et al. Patent application #2002-0138266. Method and apparatus for converting

utterance representations into actions in a conversational system. September 26,

2002.

Ross et al. Patent #6,950,793. System and method for deriving natural language

representation of formal belief structures. September 27, 2005.

Rosser & Sturges. Patent application #2006-0069546. Autonomous response engine.

March 30, 2006.

— — 120

Roussinov, Dmitri & Robles, Jose. (2004). Self-learning web question answering system.

Proceedings of the 13th international World Wide Web conference on Alternate

track papers & posters, 2004, pages 400-401. ACM.

Salanha at al. Patent #6,714,939. Creation of structured data from plain text. March 30,

2004.

Scheneburg et al. Patent application #2002-0133347. Method and apparatus for natural

language dialog interface. September 19, 2002.

Schramm. Patent #4,670,848. Artificial intelligence system. June 2, 1987.

Schwartz. Patent #5,812,840. Database query system. September 22, 1998.

Schwartz et al. Patent #5,197,005. Database retrieval system having a natural language

interface. March 23, 1993.

Sekine, Satoshi & Grishman, Ralph. (2003). Hindi-english cross-lingual question-

answering system. ACM Transactions on Asian Language Information

Processing, September 2003, pages 181-192. ACM.

Sheu & Kitazawa. Patent application #2004-0088158. Structured natural language query

and knowledge system. May 6, 2004.

Small, Sharon et al. (2003). HITIQA: an interactive question answering system a

preliminary report. Proceedings of the ACL 2003 workshop on Multilingual

summarization and question answering, 2003, pages 46-53. Association for

Computational Linguistics.

Speer, Rob & Havasi, Catherine. (2004). Meeting the Computer Halfway: Language

Processing in the Artificial Language Lojban, Proceedings of MIT Student

— — 121

Oxygen Conference, MIT. <http://sow.lcs.mit.edu/2004/proceedings/Speer.pdf>

[2007, March 5].

Spiegler & Gelbard. Patent application #2002-0087567. Unified binary model and

methodology for knowledge representation and for data and information mining.

July 4, 2002.

Srihari, Rohini & Li, Wei. (2000). A question answering system supported by

information extraction. Proceedings of the sixth conference on Applied natural

language processing, 2000, pages 166-172. Morgan Kaufmann Publishers Inc.

Stier & Haughton. Patent #6,499,024. Method and system for development of a

knowledge base system. December 24, 2002.

Strong. Patent #6,311,157. Assigning meanings to utterances in a speech recognition

system. October 30, 2001.

Strong. Patent #6,704,710. Assigning meanings to utterances in a speech recognition

system. March 9, 2004.

Suda. Patent #5,282,265. Knowledge information processing system. January 25, 1994.

Suda & Jeyachandran. Patent application #2003-0144977. Information processing system

which understands information and acts accordingly and method therefor. July

31, 2003.

Sukehiro et al. Patent application #2004-0205671. Natural language processing system.

October 14, 2004.

Tsourikov. Patent application #2002-0116176. Semantic answering system and method.

August 22, 2002.

— — 122

Tunstall-Pedoe. Patent #7,013,308. Knowledge storage and retrieval system. March 14,

2006.

Yano et al. Patent #6,466,899. Natural language dialogue apparatus and method.

October 15, 2002.

Waltz, David. (1978). An English language question answering system for a large

relational database. Communications of the ACM, July 1978, pages 526-539.

ACM.

Wang. Patent application #2006-0190268. Distributed language processing system and

method of outputting intermediary signal thereof. August 24, 2006.

Wang et al. Patent application #2004-0225499. Multi-platform capable inference engine

and universal grammar language adapter for intelligent voice application

execution. November 11, 2004.

Wang, Chun-Chia et al. (2006). An Application of Question Answering System for

Collaborative Learning. Proceedings of the 26th IEEE International Conference

on Distributed Computing Systems Workshops, 2006. IEEE.

Weber. Patent #6,499,013. Interactive user interface using speech recognition and

natural language processing. December 24, 2002.

Williams & Hill. Patent application #2005-0105712. Machine learning. May 19, 2005.

Wyss et al. Patent application #2002-0026435. Knowledge-base system and method.

February 28, 2002.

Zhang & Yang. Patent application #2002-0077815. Information search method based on

dialog and dialog machine. June 20, 2002.

— — 123

Appendix I — Institutional Review Board Approval

— — 124

Appendix II — A Loglan Primer

 Loglan is a predicate-based language. In Loglan, the difference between a verb, a

noun, and an adjective or adverb is where the predication is placed in the language

structure. For instance,

Table 5 — Loglan Translations

Loglan Literal
translation

Idiomatic translation

Cmalo Small Be small.

Tu cmalo You small You have the capacity to be small; You are
smaller than [some x]

Tu na cmalo You now small You are small

Bilti cmalo ckela Pretty small school Prettily small school: A school that is
small, such that the Smallness is a pretty
form of smallness

Bilti ge cmalo
ckela

Pretty type of
small school

Pretty small school: A small school, which
is pretty

Bilti e cmalo
ckela

Pretty and small
school

Something which is pretty, and a small
school

Bilti e cmalo gu
ckela

Pretty and small
type of school

A school, which is pretty and small

— — 125

Loglan Literal
translation

Idiomatic translation

Le ckela ga
cmalo

The school is
small

The school is small

 Of course, one need not use the Loglan vocabulary to carry out Loglan's

functions. Loglan's vocabulary was designed to be unambiguously parseable in

continuous verbal stream. However, there is no reason that an English vocabulary could

not be used in a printed communication. For instance,

 English (ambiguous): Pretty little girls' school

 Loglan (unambiguous): Bilti ge cmalo nirli ckela

 Hybrid (unambiguous): Pretty type of school for girls who are small

 Loglan was designed by Dr. Brown to be unambiguous. By the time Michael

Urban and this author joined the project, Dr. Brown had a grammar, written in a BNF-

like notation. The grammar was then translated into YACC input format. With some hints

from Michael Urban and Dr. Brown, this author came up with a grammar which met the

requirements of Loglan, and which was provably unambiguous. Two versions of this

were published in The Loglanist (a.k.a. La Loglantan, Linker 1980 & 1981). Later, Jeff

Prothero (1990) and others (Prothero et al., 1994) made continuing improvements to the

Loglan grammar, and wrote a series of parsers for Loglan. Unfortunately, these parsers

never went past graphing the sentences, and stating whether a given "utterance" of

Loglan was legal or not.

— — 126

Appendix III — Transformations of Loglan into Functional Form

The Starting Point: The Loglan Grammar
 Some say that the Loglan grammar was superseded by Lojban, but for the present

purposes, the simpler the better. The text shown in courier is as it is delivered by HTTP

and published by The Loglan Institute, Inc (Prothero et al., 1994). This code is used and

reproduced here with specific permission. Various "trials" are referenced. Trial 1 was

written by myself, with the extensive testing and modification help of Mike Urban and

James Brown. Trial 2 was also this author's work. The additional 78 trials represent

additions and changes to the work, done by others.

 C-code and some other items have been stripped for clarity. Items shown in this

typeface are this author's comments.

/* GRAMMAR 80 Loglan grammar as of Dec 94
Copyright ©1982, 1984, 1986-1995 by The Loglan Institute, Inc.
Created in Jan-Feb 82 from JSP's Aug 81 grammar by SWL & JCB,
Modified in Mar 82, Dec 83, Mar 84, and Dec 86 - Jun 87 by
JCB. and in 1987-90 by RAM.

Translation: Sheldon Linker and James Cooke Brown worked together on a grammar,

which was converted to a full parser by Jeff Prothero, and later improved by Robert

McIvor. By 1981, this author had left UCLA, and had begun to work for TRW. TRW was

kind enough to allow this author to continue the work on this project at their facility, and

cleared the work for publication.

Trial 80 was created in Dec 94, include luo and lou, mea, nuo,
fuo, and juo. The preparser was adjusted to allow for the
other Keugru-mediated changes. Still in abeyance is whether

— — 127

duo, dui should go to the bi lexeme, whether fio, foi and suo
should be included in advance of approval.

Other comments on various trials ranging from 1987-1993 have been stripped out, as well

as YACC elements that have no effect.

*/
%token A1 /* a1 zea used for A when connecting predicates */
%token A2 /* a2 used for A when connecting linkargs or
 modifiers */
%token A3 /* a3 used for A when connecting argmods */
%token A4 /* ha a e o u also CPDs anoi, apa, noanoi, etc.
 Used for all other A */
%token ACI /* recognized by CPD-lexer */
%token AGE /* recognized by CPD-lexer. */
%token BI /* bi bia bie cie cio */
%token BAD
%token CA /* ca ce co cu also CPDs noca, canoi, nocanoi, etc.
 */
%token CI /* ci */
%token CUI /* cui */
%token DA /* ba be bo bu da de di do du mi tu mu ti ta tao tio
 tua mia mie mii mio miu mua mue mui muo muu toa
 toi tue tui tuo tuu suo */
%token DIE /* die fie kae nue rie */
%token DIO /* beu cau dio foa kao jui neu pou goa sau veu
 zua zue zui zuo zuu lae lue */
%token DJAN /* all C-final words found by lexer */

%token FI /* fi */
%token GA2 /* ga */
%token GE /* ge */
%token GEU /* geu */
%token GI /* gi goi */
%token GO /* go */
%token GU /* gu */
%token GUE /* gue */
%token GUI /* gui */
%token GUO /* guo */
%token GUU1 /* guu */
%token GUU2 /* guu2 */
%token HOI /* hoi */
%token I /* i also CPDs ifa, inusoa, etc. */
%token ICA /* all eeskeks, recognized by lexer */
%token ICI /* ici & icaci-type words, all recognized by CPD-
 lexer */
%token IE /* ie */
%token IGE /* ige & icage-type words, all recognized by CPD-
 lexer */

— — 128

%token JE /* je */
%token JI /* ji ja jie jae pe */
%token JIO /* jio jao */
%token JO /* jo also CPDs rajo, tojo, etc. */
%token JUE /* jue */
%token KA1 /* ka1 used for KA when connecting linkargs */
%token KA2 /* ka2 used for KA when connecting predicates */
%token KA3 /* ka ke ko ku also CPDs kanoi, nuku, nukunoi,
 kouki, nukouki,etc. For the rest */
%token KOU /* kou moi rau soa these are pa words separated out
 for the lexer */
%token KI /* ki also the CPD kinoi */
%token KIE /* kie */
%token KIU /* kiu */
%token LAO /* lao */
%token LAU /* lau lou */
%token LE /* le la lo lea leu loe lee laa */
%token LEPO /* recognized by CPD-lexer*/
%token LI /* li */
%token LIE /* lie */
%token LIO /* lio */
%token LIU /* liu lii niu */
%token LU /* lu */
%token LUA /* lua luo */
%token SOI /* soi */
%token MA /* ma si to recognize initial vowels in acronyms, NI
 otherwise */
%token ME /* me mea */
%token NI /* ho ni ne to te fo fe vo ve pi re ro ru sa se so
 su mo kua gie giu hie hiu kue nea nio pea pio suu
 sua tia zoa zoi also CPDs neni, nenisei, iesu,
 ietoni, etc. */
%token NO1 /* no1 used for NO + mod shown by PA */
%token NO2 /* no2 used for NO + markpred shown by PO, ZO or
 PA1 */
%token NO3 /* no3 used for NO + argument */
%token NO4 /* no For all other no's */
%token NOI /* noi */
%token NU /* nu fu ju nuo fuo juo also CPDs nufu, nufuju, nuto
 (=nu), nute (=fu), nufo (=ju), nufe, nuso, etc.
 */
%token PA1 /* pa1 used for PA and GA when inflecting a
 predicate */
%token PA2 /* va vi vu pa na fa gia gua pia pua nia nua fia
 fua via vii viu ciu coi dii duo gau kii lia lui
 mou hea peu rui sea tie fio foi also CPDs pana,
 pazi, pacenoina, etc. For the rest of PAs*/
%token PAUSE /* , # */
%token PO /* po pu */
%token PREDA /* he dua dui bua bui all preda-forms words; also
 all pred-wds found by lexer, CPDs like rari,

— — 129

 nenira, sutori, etc.; also acronyms like ebai,
 baicai, ebaicai, ebaiocai, haitosaiofo, etc.,
 */
%token RA /* ra ri */
%token HUE /* hue */
%token SUE /* sue sao */
%token TAI /* gao forms like ama bai cai tai tei are
 recognized by the lexer; CPDs like baicai,
 ebaicai, ebaiocai, haitosaiofo, etc., belong to
 PREDA */
%token UI /* ua ue ui uo uu oa oe oi ou ia ii io iu ea ei eo
 eu ae ai ao au bea biu buo cea cia coa dau dou
 fae fao feu gea kuo kuu rea nao nie pae piu saa
 sui taa toe voi zou loi loa sia sii siu cao ceu
 also CPDs nahu, vihu, kouhu, duohu, nusoahu, etc.
 */
%token ZE1 /* ze also used by the preparser to recognize
 acronymic PREDA's */
%token ZE2 /* ze2 used for ZE + argsign */
%token ZI /* zi za zu used by the preparser to recognize pazi-
 CPDs and acronymic PREDA's */
%token ZO /* zo used by the preparser to recognize acronymic
 PREDA's; otherwise zo would be a member of PO */
%start utterance
%%

err : error
 ;
guo : GUO
 | GU
 | err
 ;
gui : GUI
 | GU
 | err
 ;
gue : GUE
 | GU
 | err
 ;
guu : GUU1
 | GU
 | err
 ;
lua : LUA
 | err
 ;
geu : GEU
 | err
 ;
gap : PAUSE

— — 130

 | GU
 | err
 ;
juelink : JUE argument
 ;
links1 : juelink
 | juelink links1 gue
 ;
links : links1
 | links A2 links1
 | KA1 links KI links1
 ;
jelink : JE argument
 ;
linkargs1 : jelink gue
 | jelink links gue
 ;
linkargs : linkargs1
 | linkargs A2 linkargs1
 | KA1 linkargs KI linkargs1
 ;
predunit1 : PREDA
 | SUE
 | NU PREDA
 | GE despredE geu
 | NU GE despredE geu
 | ME argument gap
 ;
predunit3 : predunit2
 | predunit2 linkargs
 ;
predunit2 : predunit1
 | NO4 predunit2
 ;
predunit : predunit4
 | predunit ZE1 predunit4
 ;
predunit4 : predunit3
 | PO predunit3
 ;
despredA : predunit
 | kekpredunit
 | predunit CI despredA
 ;
kekpredunit : NO4 kekpredunit
 | KA2 predicate KI predicate
 ;
despredB : despredA
 | CUI despredC CA despredB
 ;
despredC : despredB

— — 131

 | despredC despredB
 ;
despredD : despredB
 | despredD CA despredB
 ;
despredE : despredD
 | despredE despredD
 ;
descpred : despredE
 | despredE GO descpred
 ;
senpred1 : predunit
 | predunit CI senpred1
 ;
senpred2 : senpred1
 | CUI despredC CA despredB
 ;
senpred3 : senpred2
 | senpred3 CA despredB
 ;
senpred4 : senpred3
 | senpred4 despredD
 ;
sentpred : senpred4
 | senpred4 GO barepred
 ;
mod1 : PA2 gap
 | PA2 argument gap
 ;
mod : mod1
 | NO1 mod1
 ;
kekmod : KA3 modifier KI mod
 | NO3 kekmod
 ;
modifier : mod
 | kekmod
 | modifier A2 mod
 ;
name : DJAN
 | name CI DJAN
 | name predunit
 | name DJAN
 ;
mex : NI
 | mex NI
 ;
descriptn : LE descpred
 | LE mex descpred
 | LE arg1 descpred
 | LE mex arg1a

— — 132

 ;
voc : HOI descpred gap
 | HOI name gap
 | HOI DA
 | HOI gap
 | name gap
 ;
arg1 : LIO mex gap
 | LIO descpred gap
 | LIO term gap
 | LE name gap
 | descriptn gap
 | descriptn name gap
 | LI utterance LU
 | LI LU
 | LIU
 | LIE
 | LAO
 | LEPO uttAx guo
 | LEPO sentence guo
 ;
arg1a : DA
 | TAI
 | arg1
 | voc
 ;
argmod1 : JI argument
 | JI modifier
 | JI predicate gui
 | JIO uttAx gui
 | JIO sentence gui
 ;
argmod : argmod1
 | argmod A3 argmod1 gap
 ;
arg2 : arg1a
 | arg2 argmod gap
 ;
arg3 : arg2
 | mex arg2
 ;
indef1 : mex descpred
 ;
indef2 : indef1 gap
 | indef2 argmod gap
 ;
indefinite : indef2
 ;
arg4 : arg3
 | indefinite
 | arg4 ZE2 arg3

— — 133

 | arg4 ZE2 indefinite
 ;
arg5 : arg4
 | KA3 argument KI argx
 ;
arg6 : arg5
 | DIO arg6
 | IE arg6
 ;
argx : arg6
 | NO3 argx
 ;
arg7 : argx
 | argx ACI arg7
 ;
arg8 : arg7
 | arg8 A4 arg7
 ;
argument : arg8
 | arg8 AGE arg8
 | argument GUU2 argmod gap
 | LAU wordset
 ;
term : argument
 | modifier
 ;
terms : term
 | terms term
 ;
wordset : words lua
 | lua
 ;
words : word
 | words word
 ;
word : arg1a gap
 | NI gap
 | UI gap
 | PA2 gap
 | DIO gap
 | predunit1 gap
 | indef2
 ;
termset1 : terms guu
 ;
termset2 : termset1
 | termset2 A4 termset1
 | KA3 termset2 KI termset1
 ;
termset : termset2
 | guu

— — 134

 ;
barepred : sentpred termset
 | kekpred termset
 ;
markpred : PA1 barepred
 | PO gap sentence gap
 | NO4 markpred
 ;
backpred1 : barepred
 | markpred
 | NO2 backpred1
 ;
backpred : backpred1
 | backpred1 ACI backpred
 ;
bareekpred : barefront A1 backpred
 ;
barefront : barepred
 | bareekpred termset
 ;
markekpred : markfront A1 backpred
 ;
markfront : markpred
 | markekpred termset
 ;
predicate2 : barefront
 | markfront
 | NO2 predicate2
 ;
predicate1 : predicate2
 | predicate2 AGE predicate1
 ;
identpred : BI termset
 | NO4 identpred
 ;
kekpred : kekpredunit
 | kekpred despredD
 ;
predicate : predicate1
 | identpred
 ;
gasent : PA1 barepred GA2 terms
 | NO2 gasent
 ;
statement : gasent
 | terms gasent
 | terms predicate
 ;
keksent : KA3 sentence KI uttA1
 | KA3 gap sentence KI uttA1
 | KA3 headterms sentence KI uttA1

— — 135

 | NO3 keksent
 ;
sen1 : predicate
 | statement
 | keksent
 ;
sentence : sen1
 | sentence ICA sen1
 ;
headterms : terms GI
 | headterms terms GI
 ;
uttA : A4
 | IE
 | mex
 ;
uttAx : headterms sen1
 ;
uttA1 : uttA
 | uttAx
 | NO4
 | terms
 | links
 | linkargs
 | sen1
 | argmod
 | terms keksent
 ;
freemod : UI
 | SOI
 | DIE
 | NO4 DIE
 | KIE utterance KIU
 | HUE statement gap
 | HUE terms gap
 | JO
 ;
neghead : NO4 gap
 ;
uttC : uttA1
 | neghead uttC
 ;
uttD : uttC
 | uttC ICI uttD
 ;
uttE : uttD
 | uttE ICA uttD
 ;
uttF : uttE
 | uttE I uttE
 ;

— — 136

utterance : I
 | freemod
 | uttF
 | I uttF
 | ICA uttF
 | uttE IGE utterance
 ;
%%

 As a result of the error construct, anywhere Gu is required, but does not appear,

that disappearance is forgiven, and Gu assumed. This is a context rule similar to the usage

of "else" in languages in the C and Cobol families. If statements have an Else clause, but

if the clause is missing, its absence does not affect anything. Similarly, in JCB-English,

some constructs need to be explicitly ended in some context. In each such case, "end" or

"/" is required.

Changes Already Made
 The following changes are detailed in this author's previous paper.

• Change From YACC Input to BNF-Like Notation

• Simplification of the Representative Form

• An Increase in Formality

• Taking Advantage of a Written-Only Form

• Limiting the Choice of Word Order

• Converting to the Functional View

• The first-cut functional form

— — 137

Appendix IV — Previous Redesign of the Language

 The interactive language is designed based on English, propositional grammar,

and Loglan. The language extends to higher-order logic, including the ability to extend to

modifiers of every sort allowed by every language. Below is the derivation.

Table 6 — The Symbols of Logic

Symbol Meaning Functional

∀ For all for all variable… expression

∃ There exists there exists variable… such that

expression

there exists quantifier numeric

expression variable such that

expression

∄ There does not

exist

there does not exist variable such that

expression

∈, ∉, ∩,

∪, ⊂, ⊃, ⊆, ⊇, ⊄, ⊄,

⊈, ⊉, {…}, […]

Set and list

notation

These are predicates for now, but should be

added in this project as primitives later.

— — 138

Symbol Meaning Functional

∧ And both logic expression and logic expression

∨ Or either logic expression or logic expression

neither logic expression nor logic

expression

<, ≤, =, ≥, >, ≠ Equality notation These are predicates for now, but should be

added in this project as primitives later.

(…) Grouping (not needed)

Px Predication (see below)

Fx Function (see below)

+, -, ·, ÷ Arithmetic the sum of numeric expression and

numeric expression

the difference between numeric

expression and numeric expression

the product of numeric expression and

numeric expression

the quotient of numeric expression and

numeric expression

⇐ Is implied by the statement expression is implied by

expression

— — 139

Symbol Meaning Functional

⇒ Implies if expression then expression

⇔ If and only if if and only if expression then expression

⊕ Exclusive or exclusively logic expression or logic

expression

¬ Not it is not the case that logic expression

is true

true, false Logicals true

false

◊ Uncertainty perhaps, as a guess, as a belief

☐ Certainty certainly

— — 140

Table 7 — Items Inherited, or not, from Loglan

Class &
Meaning

Functional

Preda Dio

Ga Ge Geu

Gu:

Predicates

and

adjectives

*lexeme/

*lexeme argument … /

"*" (handled lexically) and "/" can be omitted if doing so would not

contextually cause a problem. One predicate can modify another:

adjective predication affects predication

Thus, to say "pretty little girls' school", having a primary meaning of a

school for girls who are little, and that such school is pretty would be said

(or written) as "adjective *pretty/ affects adjective adjective

*little/ affects *girl/ affects *school"

Ze: Jointly Let's say that one has a red-and-blue ball. It is not "a red ball and a blue

ball", not is it "a red ball in a blue way", nor "a blue ball in a red way". It

is "a ball in a way that is jointly red and blue". One could also say that it

is "a ball and it is jointly red or blue. For this, "jointly", which is tightly

binding is introduced.

jointly predication and predication

— — 141

Class &
Meaning

Functional

A Aci Age

Bi Ca Cui

Go Guu I

Ica Ici Ige

Ka Ki Lau

Lua No:

Operators

(Handled in the first-order logic section)

I: Period A separation between two executables (utterances or queries), even

though they are delivered together

executable execute executable

Ha:

Question

As a variable: what

Alternate form: which

As a predicate: blank

— — 142

Class &
Meaning

Functional

Nu:

Rearranger

In Loglan, the Nu-class words rearrange arguments. We do not need that

here, because there is a simpler way to do this. First, any place an

argument can appear, the word "anything" can appear in its stead, as an

unconstrained value. Second, when a predicate is used as an adjective or

adjectival phrase, we need to know how. For this, the word "emphasis"

is chosen. For instance, Go(x,y,z) means the going from x to y over path

z. Thus, "adjective *go/ affects *drive" would mean to drive in a

going sort of way, as would "adjective *go emphasis/ affects

*drive". However, "adjective *go anything emphasis/ affects

*drive" would mean to drive in a coming sort of way.

anything

emphasis

— — 143

Class &
Meaning

Functional

Da: It

Bi: Is

In English, "it", "he", "she", "him", "her", "they", and "them" all have

meanings that are ambiguous. You have to guess the same meaning that

the speaker is using. In Loglan, the meanings for "Da" through "Du", and

their subscripted forms are unambiguous, but follow fairly complicated

rules and are hard to follow in conversation. Here, for simplicity and

formality, as well as ease of understanding, a special predication (verb)

will be used:

be argument argument

Rather than implying that "it" is "a school" through context rules, one

will say "x is a school" explicitly.

Ba: x This class of word, in Loglan, represent true variables. They appear in

∀ and ∃ situations. Thus, in this language, the scope of each variable is

only with its "for all" or "there exists" phrase. These variables will be

represented by letters, other than "a" or "i".

— — 144

Class &
Meaning

Functional

Mi: Me, I me

i

Either of these terms, used interchangeably, represents the speaker. When

used, these tokens will be replaced by the known name of the user. On

output, the name of the particular knowledge-base computer system will

be replaced by "me" or "i". For instance, "I like you", translated as "like

i you" might be stored as "like "Sheldon Linker" "hal.linker.com"". If

this text were read out of the system, it might be translated back as "*like

you me/". If the data were read back to a different user, or on a different

system, the "you" and "me" substitutions would not occur.

Tu: You you

Operates similarly to "me" and "i". See above.

Ci: -sub- variable name sub number

Since 24 variables may not be enough, subscripts are provided. For

instance, "x sub 2".

— — 145

Class &
Meaning

Functional

Miu: We In Loglan, there are a number of words for "we" and other compounds. In

order to keep this language more English-like, and at the same time more

like logic, and easier to follow, such compounds must be defined using

"let". For instance, "let W be you and me", or "let U be 'ted' and

i".

Li Lie Liu

Lu Soi Sue

Tai:

Quoted

items

In Loglan, each of these syntactically marks a type of sound as a quoted

string. In this language, quoted strings will always act as arguments. The

meaning of the argument is "the literal text…".

'literal text'

To allow a quotation mark inside a string, a pair of quotes will do. Thus,

the literal string "don't" would be represented as "'don''t'". That may be a

bit hard to read, so here is an easier version: The string consisting of a

single-quote character, the letter D, the letter O, the letter N, a single-

quote character, another single quote character, the letter T, and a final

single-quote character.

— — 146

Class &
Meaning

Functional

Djan Lao:

Names

Names representing a person, place, thing, or named concept always act

as arguments, and are represented as double-quoted strings. Because

these name strings are marked names, and not literal strings, only letters

and numbers should be considered, with internal white space being

considered as a single space character. Thus, ""James Cooke Brown""

would have the same meaning (and storage) as "" james cooke

brown "". Other examples of names might be ""Shangri-la"",

""Fido"", and perhaps even ""The theory of Relativity"".

"name"

Die Ui: ! Attitudinal indicators are not needed, as each indication can be just as

easily expressed as a statement.

Hoi Hue:

Hey

Vocative markers, used in Loglan to gain or redirect attention, are not

needed, as we are engaged in point-to-point communication.

Jo Kie Kiu:

metaphor

Metaphors and parenthetic additions are better stated as separate

sentences, and so are not borrowed from English or Loglan.

Ie Gue Gui

Je Ji Jio

Jue Le:

The,

In English and Loglan, it is possible to say "the house". However, for the

purposes here, "the house" is still too ambiguous, as it requires that the

listener to understand which house is meant by the speaker, using some

form of plausibility context. Thus, a direct "the" is inappropriate. There

— — 147

Class &
Meaning

Functional

connectives,

descriptives

are two ways around this. First, one could say that the Whitehouse is a

white house with qualification: "adjective *white/ affects *house

"Whitehouse"". Second, one could declare that the Whitehouse is white

and a house in two separate clauses: "both *white "Whitehouse" and

*house "Whitehouse"". Third, one could assign a variable: "let W be

"Whitehouse" execute both *white W and *house W". A form had

been considered which would be something on the order, "the house

identified by…", but that is (a) redundant with the above, and (b) a

problem for execution order. Thus, "the" and the various "which is" and

"known as" type words and clauses are rejected, and the slightly wordier

forms just mentioned will suffice.

However, a general form of "of" is provided:

the item argument with property predication

In this form, which is really a short-hand, a property can be linked to a

thing. This is best shown by example: If we take a predicate Own to be

Own(owner,owned), then "my house" could be "the item 1 *house/

with property *own me". "emphasis" will be used to point out other

meanings. For instance, Go is Go(traveler,whence,wither,path). Thus,

"the restaurant I am going to" is "the item 1 *restaurant with

property *go i anything emphasis". Internally, anything of this form

— — 148

Class &
Meaning

Functional

will split the predication into two components, and introduce an unnamed

variable. as shown above. Yet a further short-hand is provided:

my argument

This is equivalent to "the item argument with property *own me". Of

course, we also need:

your argument

— — 149

Class &
Meaning

Functional

Ni: #, all,

some

One way to turn a predication into an argument is to put number in front

of it. A literal number or numeric expression will quantify the item. For

instance, "1 *apple" would be an apple. "2 *apple" would be two

apples. "0.5 *apple" would be half an apple. To get to "the apple", One

would need to first identify a particular item, using means described

above. When tempted to use "the", note that the item must have already

been fully qualified, and thus "1" will do.

numeric expression predicate expression

Loglan's Ni class also has other numeric forms. Special words mean "all",

"most", and "some". Thus, these words can be used to quantify a

predication into an argument.

all of predicate expression

most of predicate expression

some of predicate expression

little of predicate expression

This form can also be used in questioning.

how many predicate expression

Note that "most of *apple" means "most of an apple", and not "most

apples".

— — 150

Class &
Meaning

Functional

Lo: class Items can be taken as a class. For instance, "the class *apple" means

"the class consisting of all apples", or just "apples" in some uses.

the class predicate

Quantifiers can be applied with classes. So, "half of all apples" would be

"0.5 class of *apple". "some apples" (meaning "a certain percentage of

all apples", rather than "a certain number of apples") would be "some of

the class *apple".

numeric expression the class predicate expression

most of the class predicate expression

some of the class predicate expression

little of the class predicate expression

how many the class predicate expression

Guo Po:

event

One may speak of an event. The loss of attitudinal indicators requires it.

For instance, rather than saying "May The Force be with you", without

the indicators, this would be "I desire the event: The Force is with you",

or "*desire i the event *with "The Force" you". Likewise, properties can

be described, such as happiness.

the event predication

the property predicate expression

— — 151

Class &
Meaning

Functional

Lio:

number

Using this phrasing, a number can be turned into an argument.

the number numeric expression

For instance, "the number 7"

Pa: tenses Tenses in Loglan and in this language inherit from every language in the

world, including Hopi. Each tense modifies everything to its right, and

tenses can be stacked. Unprivileged users get a default tense which tags

an event as their opinion. Time tenses are listed below, to be followed by

other tenses.

at time reference predication

on [or after] time reference predication

after time predication

beginning [after] time predication

[on or] before time predication

ending [before] time predication

potentially predication

during time predication

This last tense is the "-ing" tense.

time Time references can be a single time, or a period

time

— — 152

Class &
Meaning

Functional

time through time

date

date time

time

now

today

this period

last period

next period

offset… from time

offset… before time

tomorrow

yesterday

named date

Dates can be in the form yyyy, yyyy-mm, or yyyy-mm-dd. They can be

followed be ad, ce, bc, or bce. Times can be in the form hh, hh:mm, or

hh:mm:ss. All times are assumed to be GMT.

Period names can be second, minute, hours, day, week, month, year.

Offsets can be:

— — 153

Class &
Meaning

Functional

 numeric expression period

 a period

 Periods may be in the pleural.

Named dates may include sunday-saturday and january-december.

Tenses Other tenses include:

certainly predication

on good authority predication

likely predication

as a belief predication

as a guess predication

according to argument predication

located at [a distance of [up to] distance from] argument

predication

located at a distance of at least distance from argument

predication

located at a range of distance to distance from argument predication

near argument predication

far from argument predication

— — 154

Class &
Meaning

Functional

Distance a meter

numeric expression meters

tenses? Questions can be asked as tenses. Some are specific, and the last is

general.

when

where

tense

The Semantics of Predicates
 Each predicate is transparent. It does not matter to the language what the predicate

means to you. However, we need to understand what it means. An example would be Go.

"Go(a,b,c,d)" we will take to mean "A goes to B from C over path D". If we take

"Come(a,b,c,d)" to mean "A comes from B to C over path D", then we can define

"∀a,b,c,d, (Go(a,b,c,d) ⇔ Come(a,c,b,d))". Missing arguments are assumed unspecified,

so that "∀x, (P(x) ⇔ ∃y, P(x,y))".

Commands
 A number of commands need to be present to control the system. These are

separate and distinct from statements and queries:

— — 155

Table 8 — Commands

Command Syntax

Tell the system to trust a given user's statements from

now on, either completely or to a given extent

trust user [to level number]

Tell the system to stop trusting a user's future

statements.

do not trust user

Add an authorized (untrusted) user. add user user [password

password]

name of user user is "name"

Remove further access for a user, without affecting

knowledge gained from that user.

drop user user

Forget a particular statement. forget predication

Log off bye

Log on i am user [with password

password]

Dump the knowledge base as a series of statements,

numbered.

list facts [i control]

Drop a particular knowledge item from the knowledge

base.

forget fact number

— — 156

Command Syntax

Drop all information from a particular untrusted user

(used as a maintenance item, or for malevolent users)

forget what user said

Retroactively promote a user's statements to trusted

status

trust what user said

Speak in unprivileged state (the default, even for the

privileged)

commoner

Speak in privileged state (for those privileged) ex progmatica

Acceptance of various levels of veracity consider facts

consider opinion [to level

level]

