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Proper design analysis is indispensable to assure quality and reduce emergent cost 

due to faulty software. Teaching proper design verification skills early during the 

pedagogical development of a software engineer is crucial, as much analysis is the only 

tractable way of resolving software problems early when they are easy to fix. Besides, 

fundamental component of any engineering discipline, including software engineering, is 

the use of formal and sound techniques that facilitate analysis of artifacts produced by 

students. Yet, the impact of formal methods in software engineering practice, as well as 

education, is minuscule. The fundamental reasons why formal methods are not 

effectively utilized are attributed to (1) the impedance mismatch between the underlying 

mathematical underpinning of formal methods and students’ semi-formal, if not informal,
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view of the design problem and (2) the lack of tool support for seamless and transparent 

integration of formal methods into software design education. This thesis suggests a 

strategy and tool support to improvement attainment of software design verification skills. 

The strategy illustrates how selective and pragmatic application of model-based 

verification methods can be used in software design education via tools that aim to bridge 

the gap between students’ semi-formal design world-view and the formalism underlying 

formal methods. 
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1. INTRODUCTION 

As modern systems are increasingly becoming reliant upon computing technologies, 

software that powers these platforms is emerging as a vital component for today’s 

technology infrastructure. A study performed by the National Institute of Standards and 

Technology (NIST) reveals that erroneous and inefficient software products cost U.S. 

economy $59.5 billion annually in failed missions and lost productivity [42]. Clearly, the 

need for reliable software systems is critical as such systems are becoming pervasive in 

our lives. With the continuing growth of using software-intensive technology products, it 

will be even more important to attain higher levels of reliability and assurance. Various 

software verification methods have been introduced and applied [8] through software 

development stages to detect and eliminate errors as early as possible. Concomitantly, in 

academia, there has been considerable interest in developing more effective software 

design and verification techniques [1] and teaching them to new generation of software 

engineers [28].  

1.1 The Need for Integration of Formal Methods into Software Design Education 

The principle methods for complex system verification include simulation [8], testing 

[42], deductive verification [8], and model checking [6]. Simulation and testing both 

involve conducting experiments before deploying the system in the field. While 

simulation is performed using an abstraction (i.e. model) of the system, testing is 

performed on the actual product. In both cases, they usually involve providing certain
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inputs to the system or the system model and observing the corresponding outputs. These 

methods are common and cost-effective ways to find many errors. However, checking all 

possible interactions among all building blocks of the system using simulation and testing 

techniques is computationally intractable.  

Deductive verification [8] refers to the use of axioms and proofs to prove the 

correctness of the software systems and usually applied in the verification of mission 

critical systems. Proofs were first constructed by hand and eventually software tools were 

built to facilitate the effort. Although deductive reasoning is widely recognized and 

accepted by computer scientists, the process is rather time consuming and can only be 

performed by experts who have proper education and experience in logical reasoning. 

Model checking is a technique for formally verifying finite state concurrent systems 

based on formal methods [7]. Formal methods, mathematically based techniques that 

provide a framework to specify, define, and verify systems, can effectively reveal 

ambiguity, incompleteness, and inconsistency within complex systems. Use of formal 

methods does not automatically guarantee correctness. However, when used 

appropriately, these techniques have proven themselves to result in software products 

with higher levels of quality [9]. In model checking, specified systems are modeled as 

finite-state machines and its expected properties and behaviors are specified in temporal 

logic, and the process of verification can be performed automatically. The procedure 

normally uses an exhaustive search of the state space of the system to determine if some 

specification is true or not. While model checking has become increasingly popular in the 

industry, other formal methods have received relatively little attention. The introduction  
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of formal methods, as a set of engineering disciplines and practices, into software design 

education has at least a two-fold benefit to the students [28]. First, it bridges the gap 

between theories in computer science and emerging industry practices. Second, it 

provides students valuable and pragmatic skills in the formal modeling and analysis of 

complex software systems that are beyond the scope of conventional informal 

verification methodologies. 

1.2 The Challenges in Integrating Formal Methods into Software Design Education 

The emerging trend of model-driven development [14] and model-driven architecture [30] 

suggests significant benefits when integrating model-based verification techniques into 

software design education. By learning the engineering discipline of applying these 

techniques to facilitate the development, analysis, and verification of software, students 

will grasp the significance of formal methods and gain valuable skills and experience in 

software design and modeling [28]. Strategies of integrating formal methods in the form 

of model-based verification into software design education have been difficult. Many 

academic institutions either completely avoid teaching formal methods or teach them in 

an isolated manner, with emphasis on notations rather than its underlying principles [15]. 

Carnegie Mellon University [15] has successfully integrated formal methods throughout 

its software engineering graduate program, but their approach cannot easily be adapted 

into undergraduate software design curriculum because undergraduate students do not 

possess the requisite skills to understand and apply formal methods. For these students, it 

is beneficial to participate in courses designed specifically toward them, such as courses 

that provide exposure to model checking without having students to burden themselves  
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with high requirements in advanced background in mathematics. Concomitantly, new 

software tools should be developed to facilitate learning the pragmatic use of formal 

methods and to fill the gap between learning and practice to help the students accomplish 

following goals [47]: 

• to use formal methods without getting into the quagmire of theoretical details 

• to avoid steep learning curves about the syntax of a specific formal method by 

using alternative generic high-level constraint patterns to analyze designs 

• to collaboratively analyze inconsistencies and design conflicts at least semi-

formal reasoning within the realm of the actual industrial software development 

process  

Using today’s technology, students must rely on existing model checking tools to assist 

their learning experience. There are indeed capable model checking tools available, such 

as SMV [29] and SPIN [18]; yet, they share a common problem for a typical 

undergraduate student: These tools are difficult to learn and difficult to use, despite many 

accolades they have won from the industry, they are not designed for education purposes, 

and the learning curve is enormous, considering the range of functionalities they provide. 

Both model checkers are command-line applications requiring the user to memorize the 

meaning of all of their run-time parameters and options. In order to perform model 

checking, the software model which serves as an input to the model checkers need to be 

encoded using a separate but complex notation, almost as if the user is learning a new 

programming language. But perhaps the most serious problem of all, the model checkers 

do not facilitate the understanding or the learning of model checking by hiding the model 
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checking processes from their users. No information is conveyed back to the users until 

the end, when model checking has been completed and lines of cryptic text-based results 

are dumped on the screen. To a typical undergraduate software engineering student, these 

text-based results probably make little sense.  

The origin of the steep learning curve of the existing model checking tools can be 

traced back to almost twenty years ago when these tools were still in their infant stage of 

development. Computing at the time was a lot different than today. Computers were not 

only bulky and slow, but also extremely expensive. Computing resources were scarce and 

precious. As a result, most computer applications are written using structured 

programming languages in the most cost-effective manner to boast their performance. In 

order to do so, other aspects of the software, such as usability and maintainability, had 

been sacrificed. When building a software application to solve a particular problem, as 

long as the problem is solved within a reasonable amount of time and using a reasonable 

amount of computing resources, one could care less of how does the application solve the 

problem. As time has progressed and technology has been improved, modern computer 

platforms with the computation power one could only dream of just a few years ago have 

become accessible at much lower costs. The availability of high performance computing 

platforms has triggered a paradigm shift in the computing society regarding how to write 

software. Much more emphasis has been given to the learnability, flexibility, and 

robustness of the software instead of its crude performance, and the structured 

programming approach has been gradually shifted out and replaced by the object-oriented 

programming approach for the same purpose. It is quite ironic during the same period of  
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time formal methods have gained acceptability in the industry and even some popularity 

when dealing with the verification of mission critical hardware systems [4]. This success 

has quickly led the application of the same approach on the verification of software 

systems. Model checking tools have become more robust, powerful, and feature-rich, and 

have a lot of potential to offer in the campaign against hidden software design flaws. 

However, it is built on top of an aging foundation. It is rather difficult to integrate these 

legacy tools directly with today’s software design methodology being taught in 

undergraduate level classrooms.  

1.3 Research Objective  

Given the challenging obstacle of merging formal methods into software design 

education, the goal of this research is to enable the methodology of teaching formal 

methods in undergraduate level software design curricula, without having the students to 

be burdened by the vast amount of theoretical details and mathematical logic required to 

understand formal methods. This objective can be realized by developing a tool that 

integrates model checking into current software design methodology being taught in 

undergraduate software design courses. The design of this tool addresses the difficulties 

of teaching formal methods to undergraduate students in general, as well as the 

shortcomings of existing model checking tools for educational purposes. This tool 

abstracts unnecessary theoretical details away from its users while emphasizing flexible 

interaction with during the model checking process. As a result, the students may not 

only gain a novel verification technique to validate their software design in a quick and 

effective manner, but also attain fresh insights on how model checking works. 
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The thesis is organized as follows. Chapter 2 reviews the related work in formal 

methods, model checking and the integration of formal methods into software design 

education. Chapter 3 lays out the general strategy on how to realize the research 

objectives. Chapter 4 provides the conceptual design of the tool, and chapter 5 addresses 

finer design details related to components of the tool. Chapter 6 describes the 

implementation details of the tool and provides a case study to demonstrate its utility and 

effectiveness. Finally, in chapter 7 we conclude by discussing the benefits and limitations 

of the tool as well as future work to extend our research. 



 

 8

2. LITERATURE REVIEW 

In meeting the challenge of software products’ growing complexity, a major goal of 

software engineering is to enable the construction of reliable software systems [16]. The 

use of formal improves reliability by revealing inconsistencies, ambiguities, and 

incompleteness hidden in the system design [43]. As a result, a set of software 

engineering techniques and practices for software verification and testing based on 

formal methods, known as model-based verification, has been codified and adopted [16]. 

2.1 Formal Methods 

Modeling and verification techniques employed by model-based verification involve the 

application of a formal methodology. A formal method in software development is 

defined as “a method that provides a formal language for describing a software artifact 

(e.g. specifications, designs, code) such that formal proofs are possible, in principle, 

about properties of the artifact [43].” In this formal methodology, essential models of a 

software system are created using a formalism, which is a collection of principles and 

practices that are built upon well-defined language of expression and inference and 

meaning assigned to the symbols of the language [9], and then analyzed and compared 

against its expected behaviors. Formal specification is the use of notations derived from 

formal logic to describe [26] 

• the assumptions about the world in which a system will operate,
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• the requirements that the system is to achieve, and  

• the design to accomplish those requirements.  

Essentially, a real system is represented, as a rule, in the form of labeled transition system 

(LTS) [26]. LTS is an oriented graph whose nodes are associated with the states of the 

system, and edges of this graph that connects the nodes, labeled by symbols of performed 

actions, are used for representation of the transition-action relation in the system. When 

the system starts, some state called initial is selected in the set of states of the LTS, and a 

sequence of transition-actions in the LTS is called its run or trace. The totality of all 

possible traces in the LTS is called the language of the system. An LTS is called finite if 

the sets of its states and transitions are finite, and infinite if otherwise. In formal 

specification, the basic types of properties that are usually specified include behavior 

properties over time, working characteristics, and internal structure. The behavioral 

properties are most important. Examples of such behavioral properties include safety and 

liveness properties, and they can be expressed in logic languages, such as temporal logic.  

On the other hand, formal verification is the use of proof methods from formal logic 

to [26] 

• analyze specifications for certain forms of consistency and completeness,  

• prove that the design will satisfy the requirements, given the assumptions, and 

• prove that a more detailed design implements a more abstract one 

Two well established approaches to formal verification are model checking [8] and 

theorem proving [9]. Theorem proving, proposed by Burstall [5], Kröger [25] and Pneuli 
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[34], is a technique by which both the system and its desired properties are expressed in 

the form of mathematical logic. This logic is given by a formal system which defines a 

set of axioms and a set of inference rules. Theorem proving is the process of finding a 

proof of a property from the axioms of the system, and it is increasingly being used today 

in the mechanical verification of safety-critical properties of hardware and software 

designs [8]. The theorem proving tools consists of powerful collections of inference steps 

that can be used to reduce a proof goal to simpler sub-goals that can discharged 

automatically by the primitive proof steps of the prover. Given a property and a model, 

the prover is either able to verify the property by completing the proof or given back 

scenarios in which the property is violated. The advantage of theorem proving is that it 

can deal directly with infinite state spaces by relying on techniques such as structural 

induction to prove over infinite domains. Therefore, it is not limited by size of the state 

space. Large systems cannot be verified by a model checker for the same reason, but they 

can still by verified by the theorem prover. Unfortunately, theorem proving requires 

considerable amount of technical expertise. As a result, the process is often slow and 

error prone.  

2.2 Model Checking 

Model checking relies on building a finite model of a system and checking that a desired 

property is holding in the model [9]. It involves an exhaustive state space search which is 

guaranteed to terminate. During the search process, the model and the property are fed to 

a model checker and the model checker determines whether the system model satisfies 

the property. The result is either a claim that the property is true or a sequence of states
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from some initial state that violates the property, also known as a counterexample. Model 

checking can be applied to analyze specifications of software systems. Because checking 

whether a single model satisfies a formula is much easier than proving the validity of a 

formula for all models, model checking can be implemented fairly efficiently [8]. 

2.2.1 The Advantages and Disadvantages of Model Checking 

Applying model checking to a design consists of several tasks: modeling [8], 

specification [8], and verification [39]. Modeling refers the conversion of a design into a 

formalism accepted by a model checking tool. In some cases, this is a straightforward 

compilation task. In other cases, owing to limitations on time and memory, modeling a 

particular design may require the use of abstraction to eliminate irrelevant or unimportant 

details. Before verification, it is necessary to state the properties that the design must 

satisfy. This specification is usually given in some logical formalism, such as temporal 

logic, which is able to assert the behavior of the system as it evolves over time. Although 

model checking provides means for checking a model of a design satisfies a given 

specification, it is impossible to determine whether the given specification covers all the 

properties that the system should satisfy. With modeling and specification in proper order, 

verification can take place. In theory, model checkers can perform verification 

automatically, given a model and a specification. However in practice, it often involves 

human assistance [8]. An example is the analysis of the verification results. In case of a 

negative result, the user is often provided with an error trace serving as a counterexample 

for the supplied property, which can be used to track down the exact location of the 

design fault. False negatives result from incorrect modeling of the system or incorrect 
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specification Erroneous results or premature termination of verification can also emerge 

due to the size of model. In this case, it is necessary to decompose the model into fine-

grain sub-models or change some parameters of the model checking tool. 

Compared to theorem proving, model checking is relatively easy, systematic, and fast 

[8]. Model checking can be used to check partial specifications and provide valuable 

feedback about a system’s correctness even if the system has not been completely 

specified. Model checker can produce counterexamples that reflect the errors in design, 

which can be invaluable for debugging. It is preferable to theorem proving, or deductive 

reasoning, whenever it can be applied. However, there will always be critical applications 

in which theorem proving is necessary for complete verification. There have been new 

research directions that attempt to integrate deductive verification and model checking to 

maximize benefits offered by both [36]. The main disadvantage of model checking is 

state explosion problem, as mentioned earlier. Many efforts have been invested to resolve 

the problem, such as McMillan’s symbolic model checking [29]. Other approaches such 

as partial order reduction [33], localization reduction [22], and semantic minimization 

[13], are all designed to remove redundant states from a system model. 

2.2.2 Symbolic Model Checking and Partial Order Reduction 

In the original implementation of model checking algorithm, transition relations were 

represented explicitly by adjacency lists [8]. For a software system with small number of 

states and processes, the approach was quite practical. As the system model becomes 

more complex, the model checker simply could not handle the growing number of states. 

Since a model checker replies on an internal global state transition graph to keep track of  
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the states and transitions during model checking, McMillan [29], in 1987, realized that by 

using a symbolic representation for the state transition graph, much larger systems could 

be verified. The new symbolic representation was based on Bryant’s ordered binary 

decision diagrams (OBDDs) [3]. OBDDs provide a canonical form for Boolean formulas 

that is usually much more compact than conjunctive or disjunctive normal form, and very 

efficient algorithms have been developed in order to manipulate them. In this implicit 

representation, each state is encoded by an assignment of Boolean values to the set of 

state variables associated with the model. The transition relation can be expressed as a 

Boolean formula in terms of two sets of variables, one set encoding the old state and the 

other encoding the new. This formula is then represented by a binary decision diagram. 

The model checking algorithm is based on computing fix points of predicated 

transformers that are obtained from the transition relation. The fix points are sets of states 

that represent various temporal properties of the system. In the new implementations, 

both the predicate transformers and the fix points are represented with OBDDs. Thus, it is 

possible to avoid explicitly constructing the state graph of the system. 

Besides symbolic model checking, partial order reduction is another popular 

technique designed to combat the state explosion phenomenon [33]. This technique 

exploits the independence of concurrently executed events. Two events are independent 

of each other when executing them in either order results in the same global outcome. A 

common model for representing concurrent software is the interleaving model, in which 

all of the events in a single execution are arranged in a linear order called an interleaving 

sequence. Concurrently executed events appear arbitrarily ordered with respect to one 

another. As a result, all possible interleaving of such events are normally considered and 
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causing an extremely large state space. The partial order reduction technique makes it 

possible to decrease the number of interleaving sequences that must be considered. Thus, 

the number of states that are needed for model checking is reduced. Under the partial 

order reduction technique, when a specification cannot distinguish between two 

interleaving sequences that differ only by the order in which concurrently executed 

events are taken, it is sufficient to analyze only one of them.  

2.2.3 Using Temporal Logic for Model Checking 

Temporal logic is a formalism for describing sequences of transitions between states in a 

reactive system and has been proven to be useful for specifying concurrent systems, as 

they can describe the ordering of events in time without introducing time explicitly [8]. In 

temporal logic model checking, finite state machine models software or hardware system 

and a property specified as a formula in a certain temporal logic are given. The goal is to 

determine whether the system satisfies the formula. Since time is not considered 

explicitly, instead, a formula might specify that eventually some designated state is 

reached, or that an error state is never entered. Properties like eventually or never are 

specified using special temporal operators and these operators can be combined with 

Boolean connectives or nested arbitrarily.  

CTL* is a powerful logic used for model checking as well as foundation for other 

logics [8]. Conceptually, CTL* formulas describe properties of computation trees. The 

tree is formed by designating a state in a Kripke structure [8] as the initial state and then 

unwinding the structure into an infinite tree with the designated state as the root. The 

computation tree shows all of the possible executions starting from the initial state. The 
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logic formulas are composed of path quantifiers and temporal operators. The path 

quantifiers are used to describe the branching structure in the computation tree, and there 

are two of such quantifiers: A for all computation paths, and E for some computation path. 

These quantifiers are employed in a particular state to specify either paths starting from 

this state or some of the paths starting from this state contain certain properties. The 

temporal operators are used to describe properties of a path through the tree. There are 

five basic operators [8]: 

• X – next time, which requires a property to hold in the second state of the path. 

• F – eventually or in the future, which requires a property to hold at some state on 

the path. 

• G – always or globally, which requires a property to hold at every state on the 

path. 

• U – until, which requires the second property to hold at some state on the path, 

and the first property to hold at every proceeding state in the path. 

• R – release, which requires the second property to hold along the path up and 

including the first state where the first property holds. However, the first property 

is not required to hold eventually. 

There are two useful sub-logics based on CTL* [8]. One is branching-time logic 

called Computation Tree Logic (CTL) [7]. The other is linear-time logic called Linear 

Temporal Logic (LTL) [7]. CTL is a restricted subset of CTL* in which each of the 

temporal operators X, F, G, U, R must be immediately preceded by a path quantifier,
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resulting ten basic CTL operators: 

• AX and EX 

• AF and EF 

• AG and EG 

• AU and EU 

• AR and ER 

Examples of some typical CTL formulas include the following: 

• AG safe: All reachable states are safe. 

• AG AF stable: The system is stable infinitely often. 

• AG (request  AF response): A request is always a response sometime in the 

future. 

• AG EF restart: It is possible to restart the system in any reachable state 

Formally, a finite state machine <Q, R, I> consists of a set of states Q, a state transition 

relation R ⊆ Q × Q, and a set of initial state I ⊆ Q. A path is an infinite sequence of states 

such that each consecutive pair of states is in R. The set of states Q is often encoded by a 

set of state variables, such that each state corresponds to some value for the variables and 

no distinct states correspond to the same value. Basic on this foundation, a proposition is 

defined as any Boolean combination of predicates on the state variables. A formula is a 

proposition, a Boolean combination of formulas, or the combination of a temporal 

operator and a formula [8]. Each formula is evaluated at some state q. A proposition 
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holds at q if q satisfies the proposition. The operator A means “for all paths starting at q”, 

E means “for some path starting at q”, G means “for every state along the path”, and F 

means “for some state along the path”. Therefore, AG safe holds at q is every state (G) 

along every path (A) starting at q satisfies the proposition safe. The system satisfies a 

formula if the formula holds at all initial states. If not, a model checker typically attempts 

to find a counterexample. For instance, if the formula AG safe is false, a counterexample 

is a finite path starting at some initial state and ending at a state that is not safe. 

In explicit model-checking techniques, the truth value of a CTL formula is 

determined in a graph-theoretic manner by traversing the state diagram, with time 

complexity linear in the size of the state space and in the length of the formula [7]. Using 

symbolic model checking techniques, instead of visiting individual states as in 

conventional state space search, symbolic model checkers visit a set of states at a time [4, 

28]. A state set can be represented by a predicate on the state variables such that a state is 

in the set if and only if the predicate is true at the state. When the state space is finite, we 

can assume that the state variables are Boolean and there are only finitely many of them. 

A predicate on these variables is simply a Boolean function, which can be represented by 

reduced ordered binary decision diagrams (OBDDs) [3]. An OBDD resembles a binary 

decision tree, except that isomorphic sub-trees must be combined resulting a directed 

acyclic graph. In addition, each path can contain a variable at most once, and must 

comply with a fixed linear order of the variables.  

Linear Temporal Logic (LTL) is an extension of propositional logic to include discrete 

time information [8]. Formulas are interpreted as referring to events along an infinite path  
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of time points. LTL formulas are built inductively from its set of atomic propositions. 

These atomic propositions and their operators are given below, and p and q are some 

states or events occurring in the path of time points: 

• And    p ∧ q 

• Or    p ∨ q 

• Not    ¬ p 

• Next    X p 

• Always    G p 

• Eventually / Future  F p 

• Strong Until   p U q 

• Releases   p R q 

One can model LTL by assigning to each natural number a set of true atomic propositions. 

The operators then define requirements on those propositions. The formula for the 

proposition “And” means that states p and q must both be true. “Or” means that either 

state p is true, or state q is true. “Not” means that state p is false. Atomic propositions 

“Next”, “Always”, “Eventually”, “Until” and “Release” have same meanings from CTL*, 

where they have been originated.  

2.2.4 Existing Model Checking Tools 

There are tools available that facilitate the checking of expected model based system 

behavior and properties of concurrent programs under different fairness assumptions. 

SMV [29], the Symbolic Model Verifier, is a popular model-checking system first 

developed by McMillan in 1993. It uses the OBDD-based symbolic model checking 
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algorithm to perform verification and takes a finite state machine as the model of the 

system, expressed in its own input language, and properties of the system, expressed in 

CTL formula. The system model is often decomposed into a series of modules and each 

can be instantiated multiple times. A SMV module can be composed either 

synchronously, which means all modules perform an action concurrently at a time period, 

or using interleaving, which means exactly one module performs an action at a time 

period. The state transitions in the model can be either deterministic or nondeterministic. 

The state transitions in the model can be specified explicitly in terms of Boolean relations 

or implicitly as a set of parallel assignment statements. When performing model checking, 

a breadth-first searching procedure with fixed-point algorithms is used to check the 

satisfaction of the finite state machines against the expected properties.  

An alternative model checking system is called SPIN [18], which uses explicit state 

enumeration and partial order reduction during model checking. It was developed at Bell 

Laboratories by Gerard Holzmann and Doron Peled, and primarily used for verifying 

asynchronous software systems such as communication protocols. It can check a system 

model for deadlocks or unreachable code or determines if it satisfies a particular property 

composed by LTL specification. The input language to describe the system model, called 

PROMELA [18], an acronym for Process Meta-Language, was developed by Gerard 

Holzmann. It uses syntactic constructs similar to several other programming languages, 

such as C. The basic building blocks of SPIN models are asynchronous processes, 

buffered and un-buffered message channels, synchronizing statements, and structured 

data. Unlike SMV, SPIN uses partial order reduction to limit the state space explosion 

problem to optimize the process of model checking. 
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2.3 The Role of Formal Methods in Software Design Education 

Formal methods involve the use of discrete mathematics and mathematical logic in the 

study and practice of computer science and software engineering [1]. From its beginning, 

computing was regarded as an abstract, mathematical science. Pioneers like Turing, 

Church, and von Neumann used mathematics to establish the essence and boundaries of 

the computing discipline. Although computing technology is crucial in software 

engineering education and practice, the underpinnings are mathematical in nature and 

computing does deal with purely logical processes [30]. Students often resist the use of 

mathematics in the study of computing, usually for the following reasons: 

• Students may lack the proper preparation or motivation. 

• Many have neither an understanding of nor appreciation for the role of 

mathematics, or more explicitly, formal methods, in computing [31]. 

• Some feel intimidated or even fearful of the level of mathematical knowledge and 

capability required. 

As the term software engineer becomes a popular title for software developers, there is 

little evidence to show that the practice of software design and engineering compares 

with the rigor and discipline that is required for practice in other engineering fields [32]. 

So the question seems to be whether software engineering programs should follow the 

traditional engineering approach to professional education. Quality problems arise from 

incomplete and imprecise requirements, specification, shoddy designs with poor 

documentation, and almost sole reliance on testing for software quality assurance, and 

there is increasing interest in the use of formal methods for specification and design [1].
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With the explosive growth of software, the Internet, and electronic commerce, formal 

methods become a practical approach for achieving higher confidence in today and 

tomorrow’s infrastructure system [1]. 

2.3.1 Formal Methods as Part of an Engineering Curriculum 

Formal methods improve software reliability by providing mathematical frameworks to 

define, specify, and verify complex software systems. However, the majority of software 

engineering curricula have a low level of emphasis on formal methods [1]. This is partly 

due to a lack of interest on the part of the software industry, but much of the 

responsibility must be attributed to the state of the curriculum and course design. The 

computing education community has adopted a curriculum strategy of dividing curricula 

elements into areas of theory and practice. This causes both faculty and students to view 

the theory of computing as separate and distinct from the practice of computing. As a 

result, there are theorists who are viewed as the mathematical elite and practitioners with 

little respect for the applicability of formal methods to their work. This mindset inhibits 

the use and integration of formal methods into software development process, and 

ultimately, into software design and engineering education. Because of this, there is little 

guidance and support available to faculty, who would like to introduce formal methods 

into their software engineering courses. 

The scope and scale of software projects today are increasing dramatically, along 

with shorter release cycles, and traditional software quality assurance methodologies are 

facing more challenges in attempting to meet quality standards [16]. Equipped with 

formal methods to address the complexity, model checking provides software engineers 
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fresh insights on how to debug, verify, and validate designs. With the success of model 

checking and other formal approaches for software verification are attracting attentions, 

trying to integrate them into software design education has lead to following observations 

[28]: 

• The theoretic foundations of model checking involve mathematical logic. 

• The engineering principles and processes used for implementing model checking 

provide excellent training for students to solve complicated design and analysis 

problems. 

• The skills and knowledge that students acquire from the course provide them with 

alternative approaches to solve problems in many important software engineering 

areas. 

Strategies of integrating formal methods in the form of model-based verification into 

software design education have been difficult. Generally there are three strategies [15]. 

The first approach avoids teaching formal methods altogether and considers formal 

methods are impractical and mature enough to be beneficial in software engineering 

practices. The appropriateness of this argument for the general software engineering 

education is debatable. The second approach is to devote a specific course which 

emphasizes formal verification of source code using a number of formal methods, such as 

VDM [21] or Z [40]. The students are expected to learn about the methods, and then they 

are expected to apply the formal skills to software development activities. This approach 

involves broad coverage of a variety of formal methods that provide students with a 

larger scope of exposure, but may not enable them to be proficient in any specific 
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approach. Furthermore, the methods tend to be taught in an isolated manner with 

emphasis in notations rather than its underlying principles. This isolated exposure 

generally prohibits students to apply such approaches in software engineering practices. 

Finally, the third approach is invented to redesign the curriculum so that formal methods 

are integrated throughout the entire curriculum [15]. Carnegie Mellon University [15], as 

an example, redesigned its software engineering graduate program to promote better 

understanding to formal models of software systems. This approach offers many benefits 

to the students as they incorporate finite state modeling and temporal logic for model 

checking interactive aspects of system. More specifically, the curriculum integrated with 

formal methods enables the analysis of software development products such as delivered 

code, specifications, designs, documentation, prototypes, and test suites. It also treats 

both static and dynamic analyses, such as type checking, verification, testing, 

performance analysis, hazard analysis, reverse engineering, and program slicing. 

Although a novel strategy, the approach adopted at Carnegie Mellon is difficult to 

apply at the undergraduate level, as it  assumes that students in the curriculum have 

already had exposure to advanced logic, discrete and combinatorial mathematics that 

facilitate the attainment of the requisite skills to understand and apply formal methods. 

Although many graduate students who have strong background in mathematics indeed 

possess such skills; many undergraduate students with comparatively limited background 

in advanced mathematics, a course delivery strategy that revolves around formal methods 

can be overwhelming for two reasons: 



 

 24

2. The impedance mismatch between the underlying mathematical underpinning of 

formal methods and students’ semi-formal, if not informal, view of the design 

problem and  

3. The lack of tool support in the seamless integration of formal methods into 

software design education  

Considering the difficulties of teaching formal methods to undergraduate students, 

software tools should encourage learning by abstracting required material into relatively 

simple paradigms that novice users can easily learn and manage [9]. However, most tools, 

used to support the learning and the teaching of formal methods, are developed for 

practitioners, rather than for educators or learners. Some desired properties of tools that 

are attractive to this group of users include [9]: 

• Ease of Use: Tools should be easy to use and their output should be easily 

interpreted by novice users. 

• Ease of Learning: Tools should provide a starting point for writing formal 

specifications for users who would not otherwise write them. The knowledge 

requirement of formal methods on the users should be kept minimal. 

• Focused Analysis: Tools should be good at analyzing at least one aspect of the 

system well. 

• Early Payback: Tools should provide significant benefits almost as soon as the 

users start to use them. 
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• Incremental Gain for Incremental Effort: Tools should provide users increased 

benefits as the users are getting more adept or are putting more effort into writing 

specifications. 

• Efficiency: Tools should make efficient use of users’ time, and the amount of time 

used by the tool should be proportional to the extensiveness of the analysis. 

• Integrated Use: Tools should work in conjunction with other common 

programming languages and techniques and should be integrated with traditional 

software development tools. Users should not have to look into another new 

methodology in order to receive benefits. 

• Evolutionary Development: Tools should allow partial specification and analysis 

of selected aspects of a system. 

• Orientation toward Error Detection: Tools should be optimized to find errors 

rather than confirming correctness.  

Going one step further, rather than building a single tool, “meta-tools” can be built to 

automatically produce tools that are customized toward a particular problem domain [38], 

formal notation [10], or logic [17, 24]. It is also important for a tool to make the user 

aware its strengths, limitations, modeling assumptions, ease of integration with other 

tools, and start-up costs. 

2.3.2 Common Formal Methods used in Software Engineering Education 

The education of formal methods in a classroom environment often revolves around a 

particular technique. As a result, specific formal techniques have become foundations for 
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certain curricula aimed to provide exposure of formal methods to students, due to their 

popularity in the industry. The most popular formal techniques are VDM [21] and the Z 

notation [40]. 

VDM is a model-oriented formal method based on a denotational semantic setting, 

intended to support stepwise refinement of abstract models into concrete implementations 

[21]. The method includes a formal specification language, VDM-SL [21], which 

supports various forms of abstraction. Representational abstraction is supported by data 

modeling facilities. These facilities are based on six mathematical data-structuring 

mechanisms: sets, sequences, maps, composite objects, Cartesian products and unions. At 

a lower level, the language provides various numeric types, Booleans, tokens and 

enumeration types. By using the data-structuring mechanism and the basic data types, 

compound data types can be formed with a specific mathematical structure, and these 

compound data types are denoted as domains. Sub-typing is supported by attaching 

domain invariants to domain definitions. Operational abstraction is supported by both 

functional abstraction and relational abstraction: the former by means of function 

specification and the latter by operation specification. Both functions and operations may 

be specified implicitly using pre and post conditions, or explicitly using applicative 

constructs to specify functions and imperative constructs to specify operations. 

Operations have direct access to a collection of global objects: the state of the 

specification. The state is constructed as a composite object and built from labeled 

components. A VDM specification typically consists of a state description augmented 

with invariant and initialization predicates, a collection of domain definitions augmented 

with invariants, a collection of constant definitions, a collection of operations and a 
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collection of functions. An initial specification is usually kept as abstract as possible. 

Then the initial specification can be further developed and refined using two techniques: 

data reification, which addresses the refinements of state elements, and operation 

modeling, which addresses the refinements of the functions and operations. Data 

reification involves the transition from abstract to concrete data types, and a justification 

of this transition. Choosing a more concrete data model implies a redefinition of all 

operations and functions on the original model in terms of the new model, a process 

called operation modeling. Central to data reification is the notion of adequacy, expressed 

through two functions on the abstract and concrete domains, the abstraction-function and 

the retrieve-function. The abstraction-function maps abstract values onto concrete values; 

the retrieve-function does the opposite, mapping concrete values onto abstract values. 

The final step within the development is the transition of a low-level specification into 

the chosen programming language. 

The Z notation is based upon set theory and mathematical logic [44]. The set theory 

used includes standard set operators, set comprehensions, Cartesian products, and power 

sets. The mathematical logic is a first-order predicate calculus. Together they make up 

the mathematical objects in Z. These objects and their properties can be collected in 

schemas, which are patterns of declaration and constraint. The schema language can be 

used to describe the state of a systems, and conditions in which that state may change. It 

can also be used to describe system properties, and to reason about possible refinements 

of a design. A characteristic feature of Z is the use of types. Every object in the 

mathematical language has a unique type, represented as a maximal set in the current 

specification. This notion of types suggests that an algorithm can be written to check the 
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type of every object in the specification. Another important feature of Z is the use of 

natural language. In Z, mathematics is used to state the problem, to discover solutions, 

and to prove the chosen design meets the specification. Natural language is used to relate 

the mathematics to objects in the real world. This task is often partly achieved by the 

judicious naming of variables and additional comments in the specification. Z also 

supports the concept of refinement. A system can be developed by constructing a model 

of a design, using simple mathematical data types to identify the desired behavior. This 

description can be further refined later by constructing another model which respects the 

design decisions made, and yet is closer to implementation. This process of refinement 

can be continued until executable code is produced.  

In summary, both VDM the Z notation are mathematical languages with powerful 

structuring mechanisms capable of producing formal specifications, and both require 

immense requisite skills in mathematical logic to be understood and used effectively. As 

a result, their user group is largely limited to seasoned professionals who have grasped 

the underlying principle over years of experience [43]. 
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3. A PRACTICAL STRATEGY FOR INTEGRATING MODEL CHECKING  

INTO SOFTWARE DESIGN EDUCATION 

The goal of the research is to integrate formal methods into current software design 

methodology being taught in undergraduate software design courses. This objective is 

realized by building a tool called the Behavioral Model Analyzer (referred as the BMA in 

the rest of the thesis). The BMA aims to address the difficulties of teaching formal 

methods to undergraduate students, as well as the shortcomings of existing model 

checking tools for educational purposes. The operation of the BMA can broadly be 

described in the following manner. It accepts as input a software design model (i.e., 

statechart) and a property specifying how the model is required to behave. The BMA then 

performs model checking using the model and the property to display the results back to 

the modeler. Although this description hardly differs from the operation of any other 

model checking tool, the BMA places emphasis on the following features that are not 

present in other model checkers: 

• The input software design models are UML models, which are commonly used in 

software design, rather than tool-specific model description languages which 

modelers have little exposure. 

• The properties defining the required behaviors of the models can either be 

supplied or derived in the form of abstract and user-friendly specification
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•  templates rather than temporal logic, thus eliminating the requisite mathematical 

skills involved in formal methods.  

• The results of model checking are shown using graph visualization rather than 

cryptic text, so that students can have better grasps on where problems are 

detected and how to fix them. 

3.1 Using UML Models as Input Design Models 

Unified Modeling Language (UML) [2, 19, 38], is a general-purpose visual modeling 

language that is used to specify, visualize, construct, and document the artifacts of a 

software system and is capable of capturing information about the static structure and 

dynamic behavior of the system. The static structure defines the collection of discrete 

objects that make up the system and the dynamic behavior defines the history of objects 

over time and the communication among objects to accomplish goals. Software tools can 

provide code generators from UML into a variety of programming languages, as well as 

reverse engineered models from existing programs. UML is not a highly formal language 

designed for the theorem proving, but rather a modeling language for discrete systems. 

These reasons, coupled with the increasing popularity of object-oriented methodology, 

made UML ubiquitous in both the industry and the academia [2, 38]. 

Although UML offers a variety of diagrams to model different perspectives of a 

software system, we are interested of using the state machine view, modeled by a 

statechart diagram, to represent an input design model, since the state machine view 

describes the dynamic behavior of objects over time by modeling the lifecycles of objects 

of each class [2, 19, 38]. A state machine is a graph of states and transitions and it is
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attached to a class and describes the response of an instance of the class to events that it 

receives. Events represent the kinds of changes that an object can detect – the receipt of 

calls or explicit signals from one object to another, a change in certain values, or the 

passage of time. Anything that can affect an object can be characterized as an event. A 

state is a set of object values for a given class that have the same qualitative response to 

events that occur; therefore it describes a period of time during the life of an object of a 

class. In the state machine, a set of states is connected by transitions. A transition leaving 

a state and entering into another state defines the response of an object to the occurrence 

of an event. 

To facilitate model checking of UML statecharts, the BMA translates input models 

into an intermediate format defined in terms of PROMELA language. This is similar in 

principle to the translation of UML models into code skeletons within the Model-Driven 

Architecture initiative [30]. PROMELA is an acronym for Process Meta-Language [18], 

which is a model description language for the model checker SPIN [18]. The BMA uses 

SPIN to perform model checking by translating abstract and user-friendly inputs from the 

modeler into tool-specific inputs for SPIN, and visualizing text-based model checking 

output in the form of graphs. As a result, UML statecharts need to be translated into 

PROMELA before the model checking process. 

3.2 Substituting Temporal Logic with Specification Templates 

In model checking, a property (i.e., required behavior) of the model is specified using 

temporal logic. The steep learning curve for the mathematical skills required to use 

temporal logic is one of the core reasons why formal methods have been almost absent in



 

 32

undergraduate design education. It is imperative for the BMA to circumvent this obstacle. 

As a result, the BMA uses the notion of specification templates [12] to describe the 

required property of the model. A specification template is a generalized description of a 

commonly occurring requirement on the permissible state sequences in a finite-state 

model of a system, and it describes the essential structure of some aspect of the system’s 

intended behavior. The specification templates are generalized in a hierarchical structure 

in terms of their scopes for formal specification and verification. The scope of a template 

is the extent of program execution over which the template must hold. It is determined by 

specifying a starting and an ending state for the template. Therefore the scope consists of 

all states beginning with the starting state and up to but not including the ending state. 

There are five different scopes (Figure 1) [12]: 

• Global – the entire program execution 

• Before – the execution up to a given state 

• After – the execution after a given state 

• Between – any part of the execution from one given state to another 

• After-Until – just like Between but the designated part of the execution continues 

even if the second state does not occur 
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Figure 1 Scopes of specification templates 

Each template can be translated into its corresponding temporal logic formula by the 

BMA. When working with a specification template, only states required by the particular 

template need to be supplied by the modeler in terms of simple mathematical logic. Some 

common specification templates are listed as follows (Figure 2) [12]: 

 

Figure 2 Specification templates in hierarchical order  

Occurrence Templates include  

• Absence – A given state or event does not occur within a scope. This template is 

also known as Never. 

• Existence – A given state or event must occur within a scope. This template is 

also known as Future or Eventuality. 

• Bounded Existence – A given state or event must occur k times within a scope. 
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• Universality – A given state or event occurs throughout a scope. This template is 

also known as Globally, Always and Henceforth. 

Ordering Templates include  

• Precedence – A state or event P must always be preceded by a state or event Q 

within a scope. 

• Response – A state or event P must always be followed by a state or event Q 

within a scope. This template is also known as Follows and Leads-to. 

Compound Templates include  

• Chain Precedence – A sequence of states or events P1, …, Pn must always be 

preceded by a sequence of states or events Q1, …, Qm. 

• Chain Response – A sequence of states or events P1, …, Pn must always be 

followed by a sequence of states or events Q1, …, Qm.  

• Boolean Combinations – Sometimes we want to generalize the templates to allow 

for sets of states to describe scopes and properties. Some times this is 

straightforward and sometimes disjunctions and conjunctions of state or event 

descriptions can yield incorrect specifications when substituted into templates. 

These templates outline how Boolean combinations can be applied in different 

case. 

Each of the hierarchical specification templates has its corresponding temporal logic 

specified, and the BMA translates these templates into temporal logic. The model checker 

SPIN can perform model checking using the translated temporal logic as input. Table 1 

provides the temporal logic specifications for the Existence Templates.  
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Specification Scope Temporal Logic Specification 

Globally <>(P) 

Before R !R W (P & !R) 

After Q [](!Q) | <>(Q & <>P)) 

Between Q and R [](Q & !R -> (!R W (P & !R))) 

After Q until R [](Q & !R -> (!R U (P & !R))) 

Table 1 Temporal logic specifications for the existence templates 

In the table, P, Q, and R are events and the column specification scope indicates the 

scope where event P is true. The temporal operators in the temporal logic specifications 

have the following semantics: 

• Eventually <> 

• Always  [ ] 

• Negation ! 

• Or  | 

• And  & 

• Implies   

• Until  U 

• Strong Until W 

Using the temporal logic for the specification templates as a foundation, the BMA can 

automatically derive the specification templates from UML sequence diagrams [2, 38], if 

they are included in the input design model, thus avoiding the necessity of having the 

modeler to input the required behavioral property of the design model. A sequence 
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diagram specifies a set of messages arranged in time sequence to depict a scenario or the 

behavioral sequence of a use case. Each message on a sequence diagram corresponds to 

an operation on a class or an event trigger on a transition in a state machine. Since each 

specification template involves with the occurrence of one or more states or events 

present based on different scopes, it is possible to derive these specification templates by 

detecting the order of occurrence of the events in the sequence diagram. 

3.3 Three Incremental Steps to Realize the BMA 

The features of the BMA are implemented using three incremental steps. The first step 

includes the translation of UML statechart models for the purpose of model checking, the 

construction of the specification template input interface so that a modeler can supply the 

required behavioral property for the design model without the intricate details involving 

formal methods, and a graph visualization shows the counterexample, as a sequence of 

states, which violates the required property. The second step incorporates the capability 

to automatically recognize and derive the behavioral properties, in the form of 

specification templates, from the UML sequence diagrams. The third and final step adds 

the capability to visualize the specification finite state machine generated from the 

required behavioral properties before model checking. This visualization offers two 

benefits to the modelers. First, it provides detailed awareness and representation of the 

specification templates to the modeler. When deriving these templates from the UML 

sequence diagrams, it is unlikely the modeler knows the derived templates ahead of time. 

Second, since the BMA emphasizes learning formal methods through interaction, the 

detailed representation of specification templates in the form of graphs provides the 

modeler better intuitive grasp of the required behavior. 
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4. ARCHITECTURAL DESIGN OF THE BEHAVIORAL MODEL ANALYZER 

The development strategy described in chapter 3 has outlined the required functions of 

the BMA. The architectural design of the BMA follows this strategy to form the 

functional components of the application. This goal of this chapter is to provide the 

design details at the component level in three phases to reflect distinct functions 

performed in each of one of the phases. The architectural design for the BMA can be 

divided into three subsystems as shown in Figure 3: the Semi-Automated BMA, the 

Automated BMA, and the Advanced Visualizer. The DesktopBMA is the front-end UI 

component of the entire application. 

 

Figure 3 Three subsystems of the BMA
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The Semi-Automated BMA fulfills Phase I requirements of the BMA. In this subsystem, 

model information from the UML statecharts, exported in XMI, are extracted and 

translated into PROMELA design models described by the PROMELA model description 

language. Specification templates are obtained from the modeler and translated into 

temporal logic. Model checking is then performed using the PROMELA model and 

behavioral constraints defined in terms of temporal logic. The results of model checking 

are visualized in an interactive and informative manner. 

The Automated BMA fulfills Phase II requirements of the BMA. In this subsystem, 

messages in the UML sequence diagrams are examined and specification templates are 

derived based on the order of occurrence of these messages without intervention from the 

modeler.  

The Advanced Visualizer fulfills Phase III requirements of the BMA. In this 

subsystem, the reachability graph of the states in the design model is generated. If errors 

are detected during model checking, an error trace is also shown to indicate the execution 

path of the error. The specification finite state machine is also generated from the 

specification templates either supplied by the modeler or derived from the UML sequence 

diagrams. 

4.1 Architectural Design of the Semi-Automated BMA 

The architectural design of the Semi-Automated BMA consists of eight functional 

components as shown in Figure 4: DesktopBMA, XMIParser, TemplateInput, 

LTLEncoder, PromelaParser, SpinEvoker, OutputParser, and ModelVisualizer. These 

components provide the following functions to perform model checking and display the 
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results: 

1. Convert UML statecharts to PROMELA model description language 

2. Obtain specification templates and translate them into temporal logic 

3. Perform model checking  

4. Graphically display the errors detected during model checking  

 

Figure 4 Static structure of the Semi-Automated BMA  

The BMA is enacted when the DestopBMA initializes. This component contains 

functions to call other components to execute the work request by using interactive user 

interface widgets. Using these widgets, a UML design model is converted into 

PROMELA language; specification templates regarding the design model are supplied; 

and the model checking process is launched to find potential errors. When a UML input 
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model has been chosen, the detailed structure information of the input model is extracted 

by the XMIParser and stored in a data structure called StateMachine. Afterwards, the 

graph visualization of the input model is generated by the ModelVisualizer. The model 

information stored in the StateMachine data structure is converted into PROMELA 

language and stored in a text file by the PromelaEncoder. Meanwhile, specialized user 

interface elements provided by the TemplateInput enable constraint templates to be 

supplied, and these templates are converted into temporal logic by the LTLEncoder and 

saved into a temporal text file. Once the design model and the specification templates are 

converted into PROMELA and temporal logic, respectively, the model checker is evoked 

by the SpinEvoker to perform model checking. Error information is extracted from the 

text-based model checking results by the OutputParser and saved into a data structure 

called Errors. Using this data structure, a colored trace linking the problematic states in 

the existing visualization is generated by the ModelVisualizer. The interactions among 

the components are specified in terms of the  UML sequence diagram shown in Figure 5. 

 

Figure 5 Sequence diagram of the Semi-Automated BMA 
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The deployment diagram shown in Figure 6 provides the physical view of the 

components grouped by their functions. The components in this system can be grouped 

into five subsystems. The subsystem UI contains the BMADesktop. Besides being the 

user interface, it facilitates communication among other components. The Property 

Specification handles the process of converting supplied specification templates to 

temporal logic and contains the TemplateInput, LTLEncoder, and the text file that 

includes the converted temporal logic from the specification templates. The Model 

Checking component performs model checking and retrieves the raw results from the 

model checker. It contains the SpinEvoker, OutputParser, and the data structure 

containing the errors found during model checking. Finally, the Visualization provides 

the results of model checking using graphs. 

 

Figure 6 UML Deployment diagram of the Semi-Automated BMA 
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4.2 Architectural Design of the Automated BMA 

The architectural design of the Automated BMA consists of four major components as 

shown in Figure 7: DesktopBMA, TemplateHandler, XMISeqParser, and TempSelector. 

These components facilitate the derivation of specification templates from the UML 

sequence diagram. When using the BMA, the specification templates can either be 

directly supplied or automatically derived from the UML sequence diagram, but not both 

at the same time. 

 

Figure 7 Static structure of the Automated BMA 
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The process of deriving specification templates starts when the messages in the UML 

sequence diagrams are extracted by the XMISeqParser and stored in a data structure 

named UMLMessages. Then the list of messages in the data structure is examined and 

relevant specification templates are derived by the TemplateHandler. Since the BMA is a 

prototype application, only the recognition of the before and the between occurrence 

templates defined by Dwyer et al [12] is implemented to demonstrate the effectiveness of 

our strategy. The recognized templates are saved into the data structures TempBeforeList 

and TempBetweenList, respectively. The list of recognized templates are shown to the 

modeler by the TempSelector, and the modeler needs to check off the particular ones to 

use as properties for the design model to perform model checking. Afterwards, the 

selected templates are converted into temporal logic and saved in a text file by the 

TempSelector. The interactions among the components are described in terms of the 

UML sequence diagram shown in Figure 8. 

 

Figure 8 UML Sequence diagram of the Automated BMA 
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The deployment diagram shown in Figure 9 provides the physical view of the 

components in this system based on their functions. It contains two subsystems. The UI 

subsystem contains the DesktopBMA, which is the user interface. The rest of the 

components are all grouped under the Template Generation. This subsystem performs the 

extraction of the messages from the UML sequence diagrams, the derivation of 

specification templates based on their order of occurrence, and the conversion of the 

derived templates into temporal logic. 

 

Figure 9 UML Deployment diagram of the Automated BMA 
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4.3 The Architectural Design of the Advanced Visualizer 

The architectural design of Advanced Visualizer includes four components as shown in 

Figure 10: DesktopBMA, ReachVisualizer, SpecParser, and SpecVisualizer. These 

components enable two additional functions:  

1. Generate a reachability graph and highlight the trace of errors detected during 

model checking. 

2. Derive the specification finite state machine from the specification templates. 

 

Figure 10 Static structure of the Advanced Visualizer 

In this system, the main purpose of the DesktopBMA is to coordinate the communications 

among other components. The ReachVisualizer component is responsible for displaying 

the reachability graph derived from the finite state design model. To produce this graph, 

this component needs to access to two data structures: LTL and StateMachine, both are 

managed by DesktopBMA. LTL is the text file containing the property of the design 

model expressed in temporal logic, which is converted from the specification templates. 
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StateMachine is the data structure containing the finite state design model, which is 

extracted from the UML statecharts. To generate the specification finite state machine, 

structure information from LTL is extracted by the SpecParser and stored in another data 

structure called SpecMachine. This data structure is used by the SpecVisualizer to 

construct the specification finite state machine. The interactions among the components 

in this system are described by the UML sequence diagram shown in Figure 11. These 

two functions represent two separate processes that are completely independent of each 

other. When using the BMA, the specification finite state machine is generated earlier 

than the reachability graph because the temporal logic required to derive the specification 

finite state machine is available before model checking, and the errors required to 

produce the reachability graph becomes available after model checking. 

 

Figure 11 UML Sequence diagram for the Advanced Visualizer  

The deployment diagram shown in Figure 12 provides the physical view of the 

components in the Advanced Visualizer grouped by their functions. There are three 

subsystems in this phase. The UI subsystem contains the component DesktopBMA, which 

is the user interface and performs the coordination of communications among other 

components. The Specification FSM Generation derives the specification finite state 
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machine and contains the SpecVisualizer, as well as the SpecParser. It also contains the 

data structure enclosing the specification finite state machine and the text file containing 

the temporal logic needed to generate the specification finite state machine. The 

Reachability Graph Generation generates the reachability graph and contains the 

ReachVisualizer and the data structures that are required to generate the reachability 

graph. 

 

Figure 12 UML Deployment diagram for the Advanced Visualizer
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5. THE VERIFICATION PROCESS USING THE BEHAVIORAL  

MODEL ANALYZER 

The BMA provides various functions to improve the use of model checking as a formal 

method in software design education. These functions can be divided into the following 

processes: 

• Converting UML statecharts to PROMELA model description language 

• Augmenting state variables to the design model 

• Obtaining  supplied specification templates 

• Deriving specification templates from UML sequence diagrams 

• Visualizing model checking results 

• Visualizing the reachability graph 

• Visualizing the specification finite state machine  

This chapter provides the detailed design motivation and procedure on the realization of 

these processes by the BMA. 

5.1 Converting UML Statecharts to PROMELA Model Description Language 

The BMA uses an existing model checker called SPIN [18] to perform model checking. 

SPIN is a formal verification tool for verifying distributed software systems and uses its 

own input verification language called PROMELA [18] to perform verification. As a 

result, the design model needs to be converted to its corresponding PROMELA input.
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Before the conversion to the PROMELA model, a finite state machine representing 

thehierarchical structure of the software design model is obtained by extracting states and 

transitions from the UML statecharts which are exported to XMI. This finite state 

machine is stored in an internal data structure. 

Based on the finite state machine, the PROMELA file can be divided into blocks, 

with each block representing the execution at a state in the state machine. The system 

always starts at the first block. Transition events are translated into signals in PROMELA. 

When a transition event is signaled, a GOTO statement causes the current block, 

representing the source state of the transition, to pass the execution control to another 

block, representing the target state of the transition. When the block representing the final 

state in the PROMELA file is reached, the system gracefully exists. Figure 13 provides a 

simple finite state model and its PROMELA description after the conversion. 

 

Figure 13 A simple finite state machine and its PROMELA model 
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5.2 Augmenting State Variables to the Design Model 

Although UML statecharts can model transitions in the finite state machine, it does not 

offer ways to describe finer details regarding each transition. Whenever an event is 

causing the system to transition from one state to another, this change should be captured 

using state variables. The absence of the use of state variables in the UML statecharts 

makes it impossible to express the transitional logic as an essential element of the model 

behavior. To fill this gap, the BMA allows the modeler to define state variables for each 

transition in the finite state machine. Figure 14 shows the specialized GUI that is used to 

define state variables. 

 

Figure 14 Defining state variables in the BMA 

The previous section describes the process of converting the system model, 

represented in the UML statechart diagram, into the PROMELA model. This process 

produces the PROMELA skeleton code used for model checking. State variables are
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incorporated into this skeleton system to accurately describe the model’s dynamic 

properties. The BMA offers two distinct approaches that allow the augmentation of the 

state variables. The first approach assumes that the modeler has no knowledge of 

PROMELA and does not understand how the BMA converts the system model into 

PROMELA. In this case, s/he can associate state variables with each transition in the 

system’s finite state machine. A special GUI lists all transition events in the finite state 

machine and the modeler can assign different logic for different events. After the modeler 

has finished supplying all the logic, the BMA inserts the logic into the PROMELA file. 

The second approach assumes that the modeler may be familiar with PROMELA and 

prefers to insert the state variables directly into the PROMELA file. In this case, the 

BMA allows the modeler view and modify the contents of the PROMELA file and saves 

any modifications made by the modeler. 

5.3 Specification Templates 

In formal methods, the property of the design model is described by using temporal logic, 

which requires significant level of expertise in mathematical background. On the other 

hand, the hierarchical specification templates introduced by Dwyer et, al [12] offer an 

alternative mechanism to describe the model checking property in an intuitive manner. 

The list of hierarchical specification templates are described in the previous chapter. In 

the BMA, each specification template is encoded using one or more atomic propositions 

that are grouped together using operators such as always, before, and until, etc. Since 

each atomic proposition represents a specific predicate that is meaningful in the context 

of the particular design model, it is up to the modeler to define them. To simplify the
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process, variables can be defined to represent different logical propositions and these 

variables can be used to form multiple specification templates. Figure 15 displays how to 

define these variables when supplying specification templates. 

It is typical for the modeler to supply one specification template before performing 

model checking. If more than one specification templates are supplied, they are 

concatenated into one complex template using the AND operator. If the design model 

violates one of the specification templates, the BMA will provides the visualization of a 

counter example for that particular specification template only. 

 

Figure 15 Defining specification templates in the BMA 

5.4 Deriving Specification Templates from UML Sequence Diagrams 

Conventional model checking tools require the properties of the design model to be 

expressed in temporal logic. Our approach of substituting temporal logic with 



 

 53

specification templates alleviates the problem to a degree, but having the modeler to 

supply the templates is not always desirable due to the following two reasons: 

• The modeler may not be familiar with the concept of the hierarchical specification 

templates and cannot apply them in model checking. 

• The modeler may not able to correctly originate the properties of the design 

model due to inexperience or complexity of the model. 

Under these situations, the BMA’s ability of deriving the templates directly from the 

UML sequence diagram is a valuable feature. The BMA extracts messages in the UML 

sequence diagrams, which are exported into XMI, and store them into an internal data 

structure. We use a top-down approach to recognize the specification templates creating a 

rule for each unique template, based on the availability and the sequence of the messages. 

Given the set of all messages in the UML sequence diagram, all possible combinations of 

messages and their sequences are examined to detect which rule has been met and what 

are their elements. Using this available information, the template is constructed using the 

elements in a detected rule. The prototype only implements the global, before, after, and 

between scopes of the existence templates and the global scope of the universality 

templates in the hierarchical template system. 

Consider the detection of the between-existence template as an example, which states 

that a message or event Q should eventually occur between messages P and R. First, the 

BMA extracts all the unique messages from the UML sequence diagrams and forms all 

possible cases where one message can occur between two other unique messages. For 

instance, the UML sequence diagram below in Figure 16 leads to the following template 
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combinations, where the template <A, B, C> is interpreted as Message B occurs between 

Messages A and C.  

• <A, B, C>, <A, B, D>, <A, C, B>, <A, C, D>  

• <A, D, B>, <A, D, C>, <B, A, C>, <B, A, D> 

• <B, C, D>, <B, D, C>, <C, A, D>, <C, B, D> 

 

Figure 16 A simple UML sequence diagram 

The BMA examines all of these combinations one by one. Redundant combinations that 

have the same meaning with an already derived template, such as <C, B, A> is the same 

as <A, B, C>, are eliminated. For the combination <A, B, C>, the BMA finds one 

occurrence of Message B in the sequence diagram, and finds whether there is a Message 

A occurring before B and C occurring after B. If so, the template is proved to be true. 

Otherwise, the BMA examines the next occurrence of Message B and applies the same 

procedure, until all occurrences of B are examined. For this simple sequence diagram, <A, 

B, C> is tested to be true, as well as the templates <A, B, D>, <A, C, D>, and <B, C, D>. 

Using a different example shown in Figure 17, the BMA derives the templates <A, B, C> 

and <A, C, B> using the same algorithm. For any between-existence template <P, Q, R>, 
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the BMA does not support P, Q, or R to be the same message in the UML sequence 

diagram.  

 

Figure 17 Another UML sequence diagram as an example 

Even with limited templates available in implementation, a sequence diagram with a 

few messages can produce many templates that match the criteria. Some are relevant to 

model checking while others are not. Performing model checking with many templates at 

one time can be extremely slow, and the BMA facilitates this requirement by injecting a 

GUI containing all of the recognized templates, as shown in Figure 18. The modeler can 

select the templates that are relevant and only the selected templates are used for model 

checking. Another reason for this screening process is that occasionally the BMA will 

incorrectly derive a specification template. This problem is caused by the limitation that 

the BMA is unable to recognize the events that are unreached during execution. Looking 

at the UML statecharts of a design model, one observes that certain paths in the finite 

state machine remain unreached, and they are not known until the runtime. Figure 19 

shows such an example.   
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Figure 18 Confirming the derived templates  

In this example, at State 1, the finite state machine either transitions to State 2, or to State 

3, but not both at the same time. This means either Transitions B and E, or C and F, are 

reachable. Since we do not know which transitions can be reached for certain ahead of 

the runtime, it is impossible to produce accurate specification templates based on the 

occurrence of these transition events. 

 

Figure 19 An unreachable path 
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5.5 Visualizing Model Checking Results 

Once the design model has been converted to the PROMELA model and the specification 

templates converted to temporal logic, the BMA relies on the model checker SPIN to 

perform model checking. The model checker produces text-based model checking results 

which indicate whether the property is violated. If it is, then there is a list of states that 

have been traversed in order for the model checker to make such a conclusion. In other 

words, this list of traversed states is the counter example produced during model 

checking. The only problem is that these states do not map to the design model, but rather 

an optimized finite state machine based on the design model that is generated by the 

model checker at the beginning of model checking. However, the model checker does 

provide line numbers in the PROMELA text file that can be mapped to the states in its 

optimized model checking state machine. Given how the PROMELA text file is 

structured in Section 5.1, the BMA maps these line numbers to the states in the design 

model. 

When the finite state design model is extracted from the UML statecharts, a graph 

containing the states and transitions among the states is generated and displayed. Once 

the list of traversed states from the model checker’s optimized finite state machine is 

mapped to the list of traversed states in the design model and stored into a data structure, 

the BMA locates the list of states in the graph and uses a different color to redraw them. 

Given the order of those states that have been reached during model checking, the 

transitions executed to reach these states is derived and colored as well. The result is a 

finite state graph containing the trace of errors found during model checking showing in 

Figure 20. 
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Figure 20 Visualizing model checking results in the BMA 

5.6 Visualizing the Reachability Graph 

Reachability analysis is a common practice in software verification and primarily used to 

verify the properties of synchronization structure, such as freedom from deadlock, 

starvation, and dangerous parallelism [46]. It describes the construction of a state-

transition model of a system from models of individual processes. The composite state-

transition model is called a reachability graph [46]. In this graph, each node represents a 

possible state in the system, whereas states represent the value of all variables in the 

system. Each edge represents progress in a single task. Figure 21 shows the reachability 

graph constructed from two simple interleaved tasks, T1 and T2, and they are 

synchronized prior to termination. 
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Figure 21 A simple reachability graph 

The reachability graph provides an enhanced view of the counter example detected 

during model checking. The state-transition model is portrayed in a structure which 

resembles a tree. The root of the tree is the initial state in the model, and a leaf state of the 

tree is an ending state in the model. The error trace, which generated from the counter 

example produced by the model checker, is displayed. This error trace starts at the root of 

the reachability tree, and ends at one of the leaves of the tree. It resembles one path of the 

tree. 

The error trace cannot be drawn in the same way in the visualization described in the 

previous section since the structure of a tree is different from a finite state machine. The 

BMA generates the reachability tree first, and then colors the states and transitions in the 

branch representing the counter example. Ideally, the reachability graph without the 

counter example should be available as soon as the finite state model is extracted from 

the UML statecharts and stored in a data structure. However, due to potential non-
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terminating paths in the tree, the error trace generated from the results of model checking 

is used as a factor to limit the size of the tree. Thus, the reachability graph feature of the 

BMA is only available after the model checking has been completed. The BMA uses a 

modified depth-first algorithm to visualize the reachability tree. The classic depth-first 

algorithm in this scenario involves drawing nodes in the graph based on transitions 

evoked at each state. The algorithm starts at the initial state, then it chooses one of 

transitions evoked from the initial state to draw the next state where the chosen transition 

leads to. This process will continue till a final state has been reached, suggesting a 

complete path of the tree is visualized. At the same time, the algorithm keeps a list, which 

contains all states in the finite state machine. Every time a state has been visualized, it is 

removed from the list, so the algorithm does not draw the same state again. When all the 

states have been drawn, the visualization of the complete reachability graph is finished. 

This algorithm cannot be directly applied here because the reachability graph in the 

BMA involves the occurrence of the same state multiple times due to the potential 

infinite nature of some states in the design model. Therefore the marking strategy in the 

depth-first algorithm is modified. Now the same node in the tree is allowed to be drawn a 

number of times before the drawing stops, and this number should be defined based on 

the complexity of the design model. The strategy of picking a sub-branch of the tree to 

draw first is also modified and the priority is given to the states and transitions present in 

the error trace. This way, the counter example will not be partially left out of the 

reachability graph. Once the reachability graph is completely visualized, the BMA picks 

the branch that represents the counter example and colors it. Figure 22 shows a 

reachability graph produced by the BMA. 
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Figure 22 The reachability graph produced by the BMA 

5.7 Visualization of the Specification Finite State Machine 

The property defining the required behavior of the design model is converted to temporal 

logic by the BMA and the model checker converts the temporal logic into a specification 

text file so it can easily construct this finite state machine during model checking. The 

BMA visualizes this finite state machine to offer enhanced description of the 

specification templates. Since the conversion from the specification templates to the 

temporal logic is performed prior to model checking, this feature is available before the 

model checking process. 

The format of the specification text file is identical to the PROMELA file generated 

by the BMA. Figure 23 shows the content of the text file representing a simple 

specification finite state machine as a toy example. The text file is divided into sections. 

Each section represents a state in the finite state machine and transitional behavior is 
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specified under each section. The header of a section corresponds to the name of that 

particular state. At the state init, p and q are some events that cause the finite state 

machine to transition into other states. The state accept_all is the final state.  

 

Figure 23 A simple specification text file and its Visualization 

Since the state machine terminates at the final state, the section representing this state 

does not contain transitions to other states. Given this highly structured format of the 

specification text file, the BMA extracts the states and transitions in the text file and 

visualizes the specification finite state machine it represents. Figure 24 displays the 

visualization of a much more complex specification finite state machine produced by the 

BMA based on a specification template derived from the UML sequence diagram. Details 

of this design model can be found in the case study section of the next chapter.   
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Figure 24 The specification finite state machine visualized by the BMA
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6. IMPLEMENTATION AND CASE STUDY 

6.1 Implementation 

The BMA is developed in Java using the open source Eclipse IDE and it is compiled 

using Sun’s Java SDK 5.0. All GUI components in the application are built using the 

Java Swing toolkit. The XMI files containing the UML diagrams are parsed using the 

open source Xerces XML SAX parser for Java [45]. All graph-based visualizations in the 

application are generated by the Java Universal Network/Graph Toolkit (JUNG) [17]. 

The model checker SPIN [18] is used to perform model checking by the BMA. The BMA 

is developed on Windows, and it can be run on Linux with slight modifications. 

6.2 Case Study 

To demonstrate that the BMA is able to correctly detect problems giving a model and its 

property, this section provides a case study revolving around the following BMA features: 

• Performing model checking using supplied specification templates 

• Performing model checking using derived specification templates 

• Visualizing the specification finite state machine 

• Visualizing the reachability graph 

One strategy is to require students to submit verification queries in terms of BMA 

templates along with their UML statechart designs. As part of their homework 

assignment, students can be provided with a set of constraints their designs need to
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satisfy. They are them asked to supply verification queries and demonstrate the 

correctness of their designs with respect to these queries. In evaluating submitted 

assignments the instructor can not only check the correctness of the design, but also 

students’ verification performance. Verification performance can be tested by running the 

verification queries against the instructor provided reference models that are mutated to 

measure the fault revealing quality of the student-supplied queries. In the following 

scenario, we assume a student is submitting a design model, while the instructor uses 

specifications to verify the consistency of the student’s design. 

6.2.1 Scenario Description 

For the case study, a simple gas pump design model is created and submitted by a 

student and its UML statechart diagram is shown in Figure 25. In this model, the gas 

pump starts in an idle start state waiting for a customer to interact with it. When a 

customer wants to use the pump by lifting a nozzle, the pump checks whether the nozzle 

is available to be used because sometimes a nozzle can be out of service. This causes the 

pump go to the state “CheckingNozzle”. If the nozzle is out of service, the pump goes to 

the state “Unavailable” and eventually goes back to the idle start state and the customer 

is forced to choose another nozzle. If the nozzle is ready to be used, the gas pump goes to 

the state “Available” and once the customer starts pumping gas into his/her car, the gas 

pump goes to the state “InUse”. At this state, the customer can pause the process and the 

pump goes to the state “Paused”. The customer can also stop the process to finish fueling 

the car. In this case, the pump goes to the state “Stopped”. While the pump is at the state 

“Paused”, the customer can either continue the fueling process or stop the fueling process. 
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If continue, the pump goes to the state “ReEnabled” and the gas is again being pumped 

into the car and the pump goes back to the state “InUse”. If stop, the pump goes to the 

state “Stopped”. At the state “Stopped”, the pump goes to the final state “Completed” and 

the fueling process is completed. This UML statechart model is created using Rational 

Rose and exported into XMI. The XMI file is opened by the BMA and the visualization 

of the statechart is generated by the BMA, as shown in Figure 26. 

 

Figure 25 Statechart diagram of the gas pump model 
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Figure 26 Visualization of the UML statechart model 

6.2.2 Model Checking Using Supplied Specification Templates 

Specifications are needed before model checking takes place. The BMA can either obtain 

specification templates directly from the instructor or derive them from the UML 

sequence diagram. If the templates are supplied from the instructor, state variables need 

to be supplied beforehand. Figure 27 shows the interface for defining state variables. The 

top section of this interface displays the PROMELA model description of the design 

model. The PROMELA description can be modified by the instructor if s/he is 

comfortable in editing the PROMELA file. The bottom section of this interface enables 

the definition of state variables for each transition in this finite state model. 
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Figure 27 Interface for state variables in the BMA 

Here we assume the role of being the instructor and providing state variables and 

properties to the original model designed by the student. Before inserting state variables 

that are relevant to the case study, let us consider the following logic based on the 

scenario: The status of the gas pump can be described by a variable whose value 

represents five states including unavailable, inuse, paused, stopped, and finished. The 

state unavailable suggests the nozzle is out of service. The state in-use suggests that the 

nozzle is currently being used. The state paused suggests the fueling process is paused, 

and the state stopped suggests that the nozzle is currently idle. A state variable named 

pumpstatus is created to hold the value of these states. To create this variable in the BMA, 

we need to select the variable selection item under the List of Transitions and then type 

the declaration “int pumpstatus = 0” in the textbox on the right, as shown in Figure 28. 
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Figure 28 Initializing a state variable 

Besides initializing the state variable, additional values are needed to represent the 

five states. The exact values are irrelevant as long as they are different from each other, 

and we assign them from 1 to 5 respectively. This process is done by directly inserting 

expressions into the PROMELA language, as shown in Figure 29. 

 

Figure 29 Assigning values for the states 

While the finite state machines executes, transitions cause the state variable 

pumpstatus to change states. More specially, the state unavailable is assigned to the 

variable whenever the transitional event NotReady occurs. The state stopped is assigned 

whenever the transitional events Ready or Stop executes. The state in-use is assigned 
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whenever the transitional event Pump takes place. The state paused is assigned whenever 

the transitional event Pause takes place, and finally, the state finished is assigned 

whenever the transitional event Finish takes place. Specifying transitional logic with 

respective to different transitional events in the BMA is demonstrated in Figures 30. 
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Figure 30 Assigning transitional logic to different transitional events  
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Once the transitional behaviors have been defined, the specification templates for the 

design model are supplied. In this scenario, we demonstrate by creating three templates 

for model checking. The first template can be described as “the pumpstatus will reach the 

inuse state before the paused state”. This refers to the fact that a customer must always 

start the fueling process before s/he can pause the pump. This template can be divided 

into two logical propositions: one representing the status of the pump is currently inuse, 

the other is currently paused. The two propositions are joined using the scope operator 

before. Figure 31 displays the interface which enables the specification of the templates. 

 

Figure 31 Specifying specification templates in the BMA 

In the scenario, we define two propositions: The first is called pumpinuse with the 

logical expression “pumpstatus == INUSE” assigned to it. The second is called 
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pumppaused with the logical expression “pumpstatus == PAUSED” assigned to it. We 

also specify that the scope operator of this template is before, and pumpinuse is occurring 

before pumppaused. Figure 32 displays the declaration of the propositions and the 

template which made up by the two propositions and the before operator. 

 

Figure 32 Declaration of propositions during template specification 

The model checking using the supplied template does not yield any errors, shown in 

Figure 33. The design model is consistent with the specification template. 
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Figure 33 No error is found during model checking 

Let us look at another template: the pumpstatus will reach the state stopped after 

reaching the state in-use. Transitional logic is already defined in the demonstration of the 

previous template. Like the previous template, two propositions are declared: one 

representing the status of the pump is inuse, and the other representing the state is 

stopped. The two propositions are joined by the scope operator after, as shown in Figure 

34. The result of model checking yields no errors, proving the design model is consistent 

with the template.  
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Figure 34 Defining the second specification template 

While the design model matches with the properties presented by the first two 

templates, the third template provides a mismatch between the design model and the 

specification. This template is described as “the pumpstatus will reach the state paused 

between the reaching the state inuse and the state stopped”. Although this template makes 

sense within the context of the scenario, upon careful inspection of the UML statechart 

diagram presented in Figure 25, the instructor finds that the transition Pause and the state 

“Paused” are not necessarily being reached during execution. In the scenario, the 

customer may complete the fueling process without pausing in the middle, thus the 

pumpstatus state variable may not be assigned to the state paused. Creating the template 

in the same way as described above and performing model checking proves that the 
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design model violates the specification, shown in Figure 35, and the colored error trace is 

shown in Figure 36.  

 

Figure 35 Error detected in model checking 

 

Figure 36 Error trace displayed by the BMA 
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In order to conform to the specification, the design model can be modified based on the 

results from model checking. The reason for which the model violates the specification 

template is that the transition event Pause can be unreachable. One alternative model 

shown in Figure 37 is consistent with the specification. In this model, the transition event 

Pause is guaranteed to be reached. 

 

Figure 37 A model conforms to the specification 

6.2.3 Model Checking Using Derived Specification Templates 

If UML sequence diagram is present, the BMA is capable of deriving specification 

templates from the sequence diagram. Therefore the instructor can take advantage of this 

feature rather than design specifications from scratch to test the student’s design. Figure 

38 shows a sequence diagram used for this case study. It represents the following 

scenario: A customer wants to use the pump by lifting the nozzle, the gas pump first 

checks whether the nozzle is available to be used or not (CheckNozzle). Then it finds out 

that the nozzle is ready to be used and informs the customer (Ready). The customer 

connects the nozzle to the gas tank and starts pumping gas into the car (Pump). While
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 fueling the car, the customer pauses the process (Pause). Then the customer continues 

fueling (Continue), and the nozzle once again starts pumping gas into the car (Pump). 

The gas tank is full and the customer stops fueling (Stop), and the customer disconnect 

the nozzle from the gas tank and the process is finished (Finish). 

 

Figure 38 The UML sequence diagram for the case study 

This UML sequence diagram is also created by using Rational Rose and exported into 

XMI. Once the XMI file has been loaded into the BMA, the BMA automatically applies 

the algorithm explained in chapter 5 to derive the specification templates. The list of the 

templates that have been detected is presented to the instructor, as shown in Figure 39. 



 

 79

 

Figure 39 The list of specification templates derived by the BMA 

The presentation of the templates remains primitive since there is no standard and 

effective way for displaying them using text-based interface. Each item in this list 

represents a derived template. Each template contains a scope operator, such as before, 

after, or between. Rather than using propositions, the templates are composed of the 

occurrence of messages in the UML sequence diagram. Each message is UML sequence 

diagram is related to a transitional event, therefore in the list, the name of each 

transitional event identifies each message in the sequence diagram. The name of the 

transition is followed by the source and target states of the transition. Upon examining 

the templates, one or more relevant templates are chosen as properties for model 

checking. In this case, we pick the first template in the list: CheckNozzle is occurring 

before Ready. The result of model checking confirms that the design model does not 

violate this property, as shown in Figure 40. 
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Figure 40 The design model does not violate the specification 

The limitation of deriving templates fall into the problem which that the BMA is 

unable to recognize which transition can be skipped during execution. Since the 

templates are formed based on pure calculation of message sequences, it is unable to 

check which transition event can potentially be unreached. The sequence diagram shown 

in Figure 38 represents a valid scenario. One template generated by the BMA based on 

this scenario is that the event Pause occurs between the occurrences of events Pump and 

Stop. Based on the experiments from the previous section, the event Pause may not 

necessarily be reached during execution, thus the design model violates this template, if 

being used as a specification. This shortcoming places great emphasis upon human 

examination when the instructor checks off which template is relevant and to be us during 

model checking.  
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6.2.4 Visualizing the Specification Finite State Machine and the Reachability Graph 

The visualization of the specification finite state machine becomes available immediately 

after the BMA has obtained the specification templates. If the BMA is relying on users to 

define templates, the visualization is generated after the templates are defined using 

propositions and scope operators. If the BMA is deriving templates from UML sequence 

diagram, the visualization is generated after the user checks off which template is 

relevant to the model, so that it be included as part of the properties list for model 

checking. Figure 41 displays the visualization produced using a derived template in the 

scenario: the event CheckNozzle occurs before Ready. The overlapping elements 

produced in the visualization are caused by limitation of JUNG, the library used to 

generate visualizations in the BMA. 

 

Figure 41 The specification finite state machine 

The visualization of the reachability graph is available immediately after the model 

checking is completed. If an error is detected during model checking, it displays an error 
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trace from the originating state to an ending state. The reachability graph shown in Figure 

42 is generated after model checking using the scenario design model and the derived 

template, the event Paused occurs between the occurrences of events Pump and Stop, as 

the specification.  

 

Figure 42 The reachability graph



 

 83

7. CONCLUSIONS 

Formal methods represent powerful techniques in meeting the challenges to reduce 

design flaws and increase overall quality in software. The need for formal methods 

increases tremendously in safety critical systems. The uses of formal methods enhance 

the insight into the understanding of software requirements. Therefore it is critical to 

bring formal methods into software design education. The BMA represents one step 

forward in this direction. 

7.1 The Limitations of the BMA 

Two critical limitations are encountered during the implementation of the BMA: 

• Inadequate system model description provided by UML  

• Information loss during system model translation to PROMELA 

The BMA relies on the UML statecharts to obtain the behavioral model of the software 

system. Yet the UML statecharts cannot capture the transitional behaviors of the finite 

state machine. Recall that the UML statecharts are composed of distinct states with one 

or more state transitions between the states. Although UML statecharts provide 

mechanisms to specify guard conditions and triggers for every transition in the finite state 

machine, these mechanisms are inadequate to describe the runtime behavior of a vivid 

software system. State variables and their manipulation during a transition are not 

supported by UML. As a result, there is little or no restriction on the action specification
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during the transitions from one state to another. To get around this problem, an additional 

component is incorporated into the application that allows state variables to be defined, 

so that specification properties can be created based on these simple variables to test 

whether the model is behaving as expected during model checking. This component does 

not offer enough flexibility to enrich the model since the input is limited to simple 

variable declarations.  

Another problem that has been encountered is potential information loss when 

converting the system model into the PROMELA input language that is required by the 

model checker. Information loss here refers as the original model description of system 

has changed once it has been converted into PROMELA, and suggesting that not all 

behaviors of the original model have been captured. The quality loss is largely due to the 

absence of a standard methodology that UML statecharts to be converted into 

PROMELA systematically since PROMELA is not designed to accommodate 

translations from UML statecharts when it was created. As one can expect, this problem 

occurs more frequently when the model becomes more complex. Finite state models with 

many transitions that are missing transitional logic often causes model checking to be 

trapped in an infinite loop. On the other hand, complex transitional logic coupled with 

guard conditions often cause model checking to end prematurely. To ensure the model 

checking process takes place without these side effects, problematic elements in 

PROMELA are rewritten at the sacrifice of slight variation to the original finite state 

model. Simple and moderate-sized finite state models with limited number of transitions 

are not being affected.  
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7.2 Future Work 

Given the limitations from the previous section, the perfection of the BMA requires 

additional efforts from the computing community to recognize the potential offered by 

formal methods and to produce new methodology and better tools that integrates model 

checking with existing software design techniques. Model checkers such as SPIN need to 

be improved to accommodate verification of UML models, not just hardware systems. 

Methodology needs to be invented and standardized to convert UML models to the input 

model description language accepted by model checkers. The emergent trend toward 

model-driven development [15] and the adoption of the principles underlying the model-

driven architecture [29] implicates the necessity of promoting critical analysis and 

verification skills within the context of software design education. The significance of 

teaching formal methods in the context of emerging trends in software development is 

also argued by Davies and Simpson [11] and Robinson [37].  

The industry has already recognized the needs to produce new tools that complement 

this weakness in the UML specification. iUML [23], an application development 

environment offers support for executable UML modeling by incorporating Action 

Specification Language (ASL) [23] in UML models, represents one such effort. At this 

time, these new tools are neither sophisticated nor flexible enough to fill the gap. 

The capability of the BMA can be augmented by implementing the recognition of 

additional specification templates. Currently the BMA only supports the existence 

templates for the purpose of demonstration. The visualization of the statechart design 

model and the specification finite state machine is problematic as the visualization library 

JUNG currently does not support arcs. Using an alternative visualization library or 
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waiting a more mature version of JUNG will eliminate this problem. The flexibility of the 

BMA can be improved by more vigorous separation of modules in the design of the 

application by using specialized wrappers for SPIN and JUNG. This way the model 

checker and the visualization library can easily be swapped out and replaced with 

alternative tools. 

7.3 Conclusion 

The BMA offers potential benefits to its target users – undergraduate students who have 

little or no background in formal methods. With this tool, they can apply model checking, 

which is one of the most powerful verification techniques existing today. In this case, the 

students do not have to directly interact with a model checker, to manually design their 

model in the input language of the model checker, or to generate the sets of specifications 

for their designs. Through visualization, the application offers valuable output as 

compared to the text output of the original model checker. By closely working with UML 

models, the BMA provides a convenient bridge between the model checker and the 

current software modeling environment. 

The idea of bringing formal methods into software design education has little to lose, 

but a lot to gain. Formal methods have proven themselves to be effective in formal 

verification of software systems [38]. It provides significant benefits to students if they 

utilize its potential for software design activities. The BMA represents an initiative to 

develop a methodology to realize such an idea. 



 

 87

References 

[1]  Almstrum, V. L., Dean, C. N., Goelman, D., Hilburn, T. B., and Smith, J. (2001).  

“ITiCSE 2000 Working Group Reports: Support for Teaching Formal Methods”, 

Working Group Reports from ITiCSE on Innovation and Technology in Computer 

Science Education.  

[2]  Borger, E., Cavarra, A., Riccobene, E, (2003). “Modeling the Meaning of 

Transitions from and to Concurrent States in UML State Machines”, Proceedings of 

the 2003 ACM Symposium on Applied Computing, pp. 1086 - 1091 

[3]  Bryant, R. E. (1986). “Graph-Based Algorithms for Boolean Function 

Manipulation”, IEEE Trans. Comput. C-35, 8. 

[4]  Burch, J. R., Clarke, E. M., Long D. E., McMillan, K. L., and Dill, D. L. (1994) 

“Symbolic Model Checking for Sequential Circuit Verification”, IEEE Trans. 

Computer-Aided Design of Integrated Circuits, vol. 13, no. 4, pp. 401-424. 

[5]  Burstall, R. M. (1974) “Program Proving as Hand Simulation with a Little 

Induction”, In IFIP Congress 74, pp. 308 – 312, North Holland. 

[6]  Clarke, E. M., Emerson, E. A. (1981). “Design and Synthesis of Synchronization 

Skeletons Using Branching Time Logics”, in Logic of Programs: Workshop, 

Yorktown Heights, NY. 



 

 88

[7]  Clarke, E. M., Emerson, E. A., and Sistla, A. P. (1986). “Automatic Verification of 

Finite State Concurrent Systems Using Temporal Logic Specifications”, ACM 

Trans. Program Lang. Syst. 8, 2, 244-263. 

[8]  Clarke, E. M., Grumberg, O., and Peled, D. A. (1999). Model Checking, Edmund M. 

Clarke, Jr., Orna Grumberg, and Lucent Technologies. 

[9]  Clarke, E. M. & Wing, Jeannette. (1996). “Formal Methods: State of the Art and 

Future  

Directions”, ACM Computing Surveys 28, 4 (December 1996): 626-643. 

[10] Cleaveland, R., Madelaine, E., and Sims, S. (1995). “Generating Front Ends for 

Verification Tools”, In Tools and Algorithms for the Construction and Analysis of 

Systems (TACAS ‘95), Vol. 1019 of Lecture Notes in Computer Science, E. 

Brinksma, R. Cleaveland, K. Larsen, and B. Steffen Eds., Springer-Verlag, 153-173. 

[11]  Davies J. and A. Simpson.  (2004). “Teaching Formal Methods in Context,” In 

Procedings of the CoLogNET/FME Symposium, TFM 2004. LNCS 3294, pp. 185-

202. 

[12]  Dwyer, M., Arvrunin, G. and Corbett, J. (1999). “Property Specification Patterns 

for Finite-State Verfication”, Proceedings of the 21st international conference on 

Software engineering, pp. 411 – 420. 

[13] Elseaidy, W., Cleaveland, R., and Baugh, J. (1996). Modeling and Verifying Active 

Structural Control Systems”, Sci. Comput. Program. 

[14] Emerson, E. A. (1981). “Branching Time Temporal Logic and the Design of Correct 

Concurrent Programs”, Ph.D. thesis, Harvard University. 



 

 89

[15] Garlan D. (1994). “Integrating Formal Methods into a Professional Master of 

Software Engineering Program”, Proceedings of The 8th Z Users Meeting.. 

[16]  Gluch P. D. and Weinstock B. C. (1998). “Model-Based Verification: A 

Technology for Dependable System Upgrade”, CMU/SEI-98-TR-009. 

[17] Gordon, M. (1987). “HOL: A Proof Generating System for Higher-Order Logic”, in 

VLSIspecification, Verification and Synthesis. Kluwer. 

[18]  Holzmann, G. (1997). “The Model Checker SPIN”, IEEE Trans. On 

Software Engineering, Vol. 23, No. 5, May 1997, pp. 279-295.  

[19] Jagger, D., Schleicher, A., Westfechtel, B (1999). “Using UML for Software Process 

Modeling”, Foundations of Software Engineering, Proceedings of 7th European 

Software Engineering Conference, pp 91-108. 

[20]  Java Universal Network/Graph Framework. (2004). http://jung.sourceforge.net/. 

[21] Jones, C. B. (1986). Systematic Software Development Using VDM. Prentice-Hall 

International, New York. 

[22]  Kelemen, C., Tucker, A., Henderson, P., Bruce, K., and Astrachan, O. (2002) “Has 

Our Curriculum Become Math-Phobic?” Proceedings of the 5th Annual 

SIGCSE/SIGCUE Conference on Innovation and Technology in Computer Science 

Education, pp. 132-135. 

[23]  Kennedy Carter iUML, http://www.kc.com. 

[24]  Kindred, D. and Wing, J. (1996). “Fast, Automatic Checking of Security Protocols”, 

in Proceedings of the USENIX Workshop on Electronic Commerce Protocols. 

[25]  Kroger, F. LAR (1977): A logic for algorithmic reasoning. Acta Informatica 8:243–

246. 



 

 90

[26]  Kryvyi, S., Matveyeva, L. (2003) “Formal Methods of Analysis of System 

Properties”, Cybernetics and System Analysis, Vol. 39, No. 2. 

[27]  Kurshan, R. P. (1994). “The Complexity of Verification”, In Proceedings 26th 

ACM  Symposium on Theory of Computing (STOC), Montreal, 365 – 371. 

[28]  Liu, H., Gluch, D. P. (2002). “A Proposal for Introducing Model Checking Into an 

Undergraduate Software Engineering Curriculum”, The Journal of Computing 

in Small Colleges, Volume 18, Issue 2. 

[29]  McMillan, K. L. (1993). Symbolic Model Checking: An Approach to the 

State  Explosion Problem. Kluwer. 

[30]  MDA. (2004). MDA: "The Architecture of Choice for a Changing World," 

http://www.omg.org/mda/executive_overview.htm. 

[31]  Mills, H., (1988) Software Productivity, Dorset. 

[32]  Parnas, D. L., (1999) “Software Engineering Programs are not Computer Science 

Programs”, IEEE Software.  

[33]  Peled, D. (1996). “Combining Partial Order Reduction with On-the-Fly Model-

 Checking,” J. Formal Meth. Syst. Des. 8 (1), 39-64. 

[34]  Pnueli, A. (1977). “The Temporal Logic of Concurrent Programs”, Theoretical 

Computer Science 13: 45 – 60. 

[35]  Queille, J. and Sifakis, J. (1982). “Specification and Verification of concurrent  

systems in CAESAR,” In Proceedings of Fifth ISP. 

[36]  Rajan, R., Shankar, N., Srivas, M. K. (1995). “An Integration of Model Checking 

with Automated Proof Checking”, Proceedings of the 1995 Workshop on 

Computer-Aided Verification, pp. 84 – 97. 



 

 91

[37]  Robinson K. (2004). “Embedding Formal Development in Software 

Engineering,” In Procedings of the CoLogNET/FME Symposium, TFM 2004. 

LNCS 3294, pp.32-46. 

[38]  Rumbaugh, J., Jacobson, I., and Booch, G. (1999). The Unified Modeling Language 

Reference Manual, Addison-Wesley Longman, Inc. 

[39]  Sistla, A. P., Gyuris, V. and Emerson, E.A. (2000). “SMC: A Symmetry-Based 

Model Checker for Verification of Safety and Liveness Properties,” ACM 

Transactions on Software Engineering and Methodology (TOSEM), Volume 9, 

Issue 2. 

[40]  Spivey, J.M. (1988) Introducing Z: a Specification Language and its Formal 

Semantics. Cambridge University Press, Cambridge. 

[41]  Steffen, B., Margaria, T., Classen, A., and Braun, V. (1996) “The Meta ’95 

Environment”, In Proceedings of Computer-Aided Verification ’96, Lecture Notes 

Computer Science, Springer-Verlag. 

[42]  “The Economic Impacts of Inadequate Infrastructure for Software Testing”. (2002) 

National Institute of Standards and Technology. 

[43]  Vienneau, Robert. A Review of Formal Methods (1993). Griffins AFB, N.Y.: Rome 

Laboratory. 

[44]  Woodcock, J., Davies, J. (1996) Using Z: Specification, Refinement, and Proof, 

rentice Hall Europe, 1996. 

[45]  Xerces XML Parser. (2004) http://xml.apache.org. 

[46] Yeh, W. and Young, M. (1991) “Compositional Reachability Analysis Using 

Process Algebra”, Symposium on Testing, Analysis, and Verification. 



 

 92

[47]  Yilmaz, L. (2004) “Integrating Model-Based Verification into Software Design 

Education”, ASEE Southeast Section Conference. 

 
 


