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Abstract 

 For single as well as multi core designs, effective strategies to minimize cache access latencies 

have been proposed by a number of researchers over the last decade. Such designs include the Miss Status 

Holding Registers, Victim Buffers, Eager and Lazy Write backs, and Cache Pre-fetching. However, write-

buffer stalls remain a bottleneck in real-time memory accesses. To alleviate this problem, the Secondary 

Bus Architecture was developed at Auburn. The secondary bus connects the write back buffer to the main 

memory via an independent secondary bus controller to retire dirty cache lines to memory. The write back 

traffic is only about 25-30% of the total traffic between the last level of cache and memory and is 

intermittent compared to read requests. Therefore, a narrow 8-bit secondary bus was used in the 

implementation. The secondary bus controller identifies idle main bus cycles by snooping on the main 

bus control lines. These idle cycles are used to retire write back buffer entries to the main memory.  

 In this research, we evaluated the effectiveness of secondary bus in retiring cache write-backs to 

the memory using a series of extensive rigorous experiments run on the computers of the Alabama Super 

Computer Center using SimAlpha and SPEC CPU 2006 benchmarks. The simulator SimAlpha was used 

for analyzing the architecture since it incorporates a well defined memory hierarchy. The SPEC CPU 

2006 programs are both CPU and memory intensive and thus were ideal candidates for our evaluations. 

The I/O injections used normal traffic distribution using DMA as well as the new Direct Cache Injection 

mechanism.  

 We observed performance improvements of up to 35% over the base architecture (i.e. one without 

a secondary bus) in presence of I/O traffic on the main bus and 17% in absence of any I/O traffic. 

Furthermore, queuing delays on the main bus were observed to drastically reduce. In comparisons with 
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Eager Write back, a strategy that is popular in many contemporary cache designs, it was found that the 

secondary bus architecture is much superior in performance. 
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Chapter 1. Introduction 

 Computer designs and related technologies have made incredible progress in the last half century. 

There has been a constant scaling up in speed and scaling down in size every generation. This can be 

strongly attributed to the advances in semiconductor devices and also to innovative designs at the 

architectural level. It has also given rise to the notion that smaller is faster. Memory and computational 

logic are analogous to cement and water when it comes to the construction of a computer. There are three 

digital circuit implementation factors critical to the design of the state of the art computer, which scale 

fast but at different rates relative to each other. Integrated circuit logic technologies, semiconductor 

memories and magnetic disk technologies form those three main components of a computer in the 

decreasing order of speed.  

 Circuit logic density scaling has always followed the Moore’s law [1] with the transistor count 

doubling every 1.5 years. Memory modules such as Register files, Static Random Access Memories 

(SRAMs, present on chip) and Dynamic RAMs (present off chip), have also increased in capacity at the 

same rate due to the transistor device scaling. But large interconnect capacitances have resulted in slower 

access speed for larger memory units. This explains the speed gap between the memory devices and the 

logic circuitry. Disk density has been improving by 50% per year, almost quadrupling in three years. 

Since disks have mechanical parts, they can never match the speeds of the RAMs. Hence they are mainly 

used for mass storage. As a consequence of this varied rate of scaling the speed gap between memory 

devices and computational logic has been widening, thereby creating several performance bottlenecks. 

Memory hierarchies are used in order to bridge this gap between these three component levels and ease 

the constraints.  
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 This chapter introduces the typical cache and memory setup in modern day processors and the 

performance issues associated with them. The chapter concludes with a description of the problem 

addressed in this work. 

1.1 Caches and Memory Hierarchy 

 A cache is nothing but a small memory unit that stores data for future data requests to be serviced 

faster. The keyword here is small, because a smaller memory structure would have lower access latencies. 

A typical memory hierarchy in present day processors, both single and multi core ones, starts with the 

register files within the processor core and gradually moves towards larger but slower memory levels 

comprising expensive cache memories and ends in either the disk or network storage elements. The main 

motive behind this arrangement is to bridge the speed gap between the Central Processing Unit (CPU) 

core and the slower memory devices. This is very clearly illustrated in the Figure 1 reproduced from [2] 

below. 

 

Figure 1: Memory hierarchy in a computer 
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  A successful cache access is termed as a hit and failure is called a miss. This applies to both reads 

and writes. A read hit occurs when the requested block is present in the cache and a miss occurs when it 

isn’t, prompting an access to the next level of cache with greater access latency. Similarly a write miss 

occurs when the modified data could not be successfully written to the next level of the cache because of 

the data block being absent from the cache. Let us consider a 3 level memory hierarchy comprising of a 

level 1 (L1) cache, a L2 cache and the memory for an example. If the probability of a hit in a level i 

memory structure is given by hi and if Ti is the access time in cycles for the corresponding cache level, the 

average memory access time in cycles is given by this expression and provides a good performance 

measure, 

TAverage   T       -      T       -     T    ………………………….     

 Miss rate (1 - hi) reduction is the primary motive behind all cache based designs. Designs that do 

not address large miss rates would essentially lead to more program stalls and a smaller processor 

throughput even with pipelined and superscalar architectures. The ‘temporal’ and ‘spatial’ locality of the 

cache blocks are used for mitigating the miss rates in caches. Programs vary widely in terms of 

workloads, algorithmic complexity and size. Hence, it is also hard to design a cache hierarchy that suits 

perfectly for every program. However, we can always design one for optimal performance requirements 

by analyzing the tradeoffs involved. Memory hierarchy design is simpler for a set of applications that 

have similar and fixed workloads. 

1.2 Bottlenecks and Tradeoffs in Cache Design 

 Memory hierarchies are very much required for cushioning the impact of access latencies due to 

slower devices, but a certain amount of tradeoffs are required for an optimal design. Reducing the number 

of cache misses has been the primary goal of most designers as it addresses both miss rate and miss 

penalty. Some of the basic cache design methodologies are listed below: 
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1. As seen from equation 1, the miss rate greatly affects the average memory access time. To reduce 

the miss rate caches (cache memories) with larger block sizes are used. As a drawback, a larger 

block size increases miss penalty after a certain optimal value since it would consume more 

cycles to transfer a block from the memory. 

2. Larger caches certainly help in reducing miss rate, but the miss penalty increases as it takes more 

cycles to access a larger memory device. Caches with multiple banks are a good option if the data 

sets of the programs are large. 

3. Using a higher associativity cache also helps in reducing the miss rate. This reduces the number 

of conflict misses. But the hardware complexity of the data retrieval circuitry increases because 

we now have to select between multiple ‘ways’. 

4. Processors typically use two levels of caches. By increasing the number of levels to three, we can 

get some speed-up. 

5. Miss penalty can be reduced by giving more priority to reads than writes. In a setup with write 

buffers, on a miss we can check the buffer for the requested block. Writing the block to the 

memory and then reading it back would add to the miss penalty. 

 The tradeoffs between the hardware overhead and speed with caches are quite clear now. In 

addition to these, the write traffic handling is a major task for the cache controller. In programs involving 

large workloads, almost every cache miss results in an eviction as there is never much space on the cache 

for the incoming block. Write buffers are quintessential to every cache for absorbing the write latency 

(discussed in later chapters), and they are not foolproof either. Write buffer induced processor stalls can 

be attributed to the following three reasons [3]: 

1. Full stalls occur when the buffer is full. The processor would have to retire the entries in the buffer 

to make space for the replaced cache entry causing stalls as the requested block has to wait. 

2. A read-access stall occurs when a read miss in L2 cache encounters a delay in reading from the 
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memory because the write-back buffer is currently writing to memory. 

3. A read-hazard stall occurs when L2 read miss finds its data in write-back buffer. However, this 

hazard can be avoided if write-back buffer entries and L2 cache entries can be swapped. 

 There are several strategies for cache write handling. Designs explained in [3], [5] and [6] have 

shown that write buffers contribute significantly in mitigating stalls. Jouppi in [7] and [8] proposed the 

victim buffer for handling conflict misses that mainly occur with direct mapped L1 caches. Chu and 

Gottipati [3] examine various factors to be considered for write buffer performance evaluation in their 

work. They find that even a single word of buffering yields a substantial gain in performance. Write 

buffer strategies are deeply analyzed in [9]. Having a deeper buffer provides more write merging 

opportunities and also reduces conflict misses. A read bypassing strategy, mentioned earlier, helps in 

holding the write data until the read takes place. An eager writeback strategy helps in balancing the 

accesses on the main system bus to reduce delays due to bus contention by committing Least Recently 

Used (LRU) blocks to memory earlier than the expected time. Handling the write traffic in such a way 

that there is complete concurrency between reads and writes will act as the upper bound on any 

improvement that can be achieved by addressing the write buffer issues. 

1.3 Problem Description 

 Write data traffic to memory constitutes up to 30% of the total communication traffic to the 

memory in most of the modern computer configurations and with many of the existing software 

programs. The results shown in Figure 2 convey the same with some of the Standard Performance 

Evaluation Corporation (SPEC) CPU benchmarks for a typical uniprocessor architecture operating at 

3GHz and having a 2MB on chip L2 cache using Sim-alpha, an Alpha 21264 processor simulator. In 

Figure 2, our simulations with SPEC benchmarks show that as much as 30% of the traffic between the 

CPU and memory is comprised of writes. 
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Figure 2: Memory access requests per 100 million instructions 

  

 The amount of queued cycles per request on the main system bus that results due to the access 

conflict between the read requests and the write commits from the memory whenever the write buffer 

becomes full. Write intensive benchmarks have shown that write buffer induced stalls can add significant 

latency to read misses in the last level cache. Research work in the area of write buffer analysis is 

minimal, but the works in [4], [5], [6] and [9] agree that write buffers do contribute to processor stalls, a 

case of the solution itself becoming a problem. The average number of cycles required per instruction 

execution is significantly lower than the average queued cycles per request on the main bus. This does not 

mean that the program execution is entirely blocked because of the queuing delay (design features such as 

‘out of order execution’, ‘speculative execution’ and ‘non blocking caches’ ensure this does not happen), 

but there is certainly a major impact on the program execution time. This indicates that those instructions 

that have to endure the penalty of L2 cache misses take a large beating in execution time because of the 

conflict between the incoming reads and the outgoing write traffic. 

 The above mentioned setbacks with write buffers are addressed by using a hardware enhancement 

and a write-back strategy to support the main system bus. This architecture along with I/O techniques 
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such as ‘direct cache injection’, ‘memory mapped I/O’ and ‘interrupt driven I/O’ which communicate 

directly with the CPU cache (as opposed to DMA) can make the best use of the main bus by efficient 

memory bandwidth utilization. The proposal is to have a dedicated bus, smaller in bandwidth to the main 

bus, to handle cache writes to the memory. Having a separate bus will also help I/O communications and 

Write-backs to happen in parallel in the case of the above mentioned techniques. The benefit of using a 

secondary bus to handle all of the cache writes to the memory has been studied in this thesis on some of 

the latest SPEC benchmark programs. Serial bus speeds are shown to be enough to handle the write traffic 

and be used as the secondary bus. A secondary bus controller that snoops for main bus traffic and 

determines the cycles best suited for a writeback to the memory is the hardware addition required to allow 

the link to function in the presence of I/O traffic and read requests. The main idea is to have write buffer 

entries retire ahead of time and only during those cycles where the main system bus is free from either a 

communication with the memory or an I/O device. One such arrangement has been extensively simulated 

in this work for different I/O data rates and also for Direct Memory Access (DMA) and Direct I/O 

transfer techniques. 
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Chapter 2. Background on Processor Architecture 

 Processors are classified into various different categories based on the architectural design. They 

can be categorized based on the instruction set complexity, number of cores, internal register length and 

number of threads per core to name a few. One thing that is common to all these designs is the caching of 

data for faster access. Almost every processor has multiple levels of cache and they use a common system 

bus to communicate with the memory and other peripheral devices like Graphics Processing Units 

(GPUs), I/O devices and Network Interfaces. This chapter throws light on a typical uniprocessor 

architecture that has later been used for simulations in this work and also provides an insight into the 

concept of multi core processors. 

2.1 Uniprocessor and Multiprocessor Architectures 

 A typical uniprocessor is made up of only one processing core which can in turn have a pipelined 

and/or superscalar architecture that make use of instruction level parallelism (ILP). The former executes 

almost one instruction per cycle by having pipeline registers store the control information while a 

superscalar architecture incorporates multiple processing resources to enable two or more instructions to 

execute in parallel. A lot of the present day uniprocessors incorporate both pipelining and superscalar 

features to extract the best possible performance. Also, the architecture that exploits ILP in the best 

possible way is the one that guarantees a good instruction throughput. Several hardware-software 

techniques are used to make this happen. Resources can be register files, ALUs, branch predictors and 

multipliers to name a few. Resource redundancy can help us run multiple threads in parallel on the 

processor thus resulting in faster program execution. Typical uniprocessor architecture from [10] is shown 

in Figure 3. 
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 Multi-core architectures are in vogue today because the scalability of uniprocessors has reached 

its limits and researchers have leveraged on the concepts of parallel programming. This has led to the use 

of several processor cores of reasonable speeds to perform the task and make use of the multiple threads 

in programs in a more efficient manner. These architectures exploit both instruction level and thread level 

parallelism. Figure 4 shows a simple multi-core processor block diagram. It is a common design practice 

for each processor core to have a local L1 cache and a shared L2. An interconnection network between 

the L1 and L2 caches handles data transfers between the two. A cache coherency protocol checks for 

Figure 3: A typical bus based computer architecture [10] 
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inconsistencies between the two levels and the memory. The L2 cache can later be connected to the main 

memory through a main system bus. 

 

 

2.2 Processor System Bus 

 In a computer system, the various subsystems will have communication interfaces to each other. 

For instance, the CPU needs to communicate with the Memory and also with the I/O devices because the 

executing program comprises of both memory and I/O bound instructions. This communication is 

commonly done using a bus. The bus serves as a shared communication link between the subsystems. The 

two major advantages of a bus based system are low implementation cost and versatility. By defining a 

single interconnection scheme, new devices can be added easily and peripherals can even be moved 

between computer systems that use a common bus. The cost of a bus is low because a single set of wires 

is shared among multiple devices. One major drawback with a bus is that it creates a communication 

bottleneck especially when there is I/O traffic on the bus along with the regular memory traffic. In server 

systems where I/O is frequent, designing a bus system capable of meeting the demands of the processor is 

a major challenge. 

… 
Local L1 Local L1 Local L1 

Shared L2 

Interconnection 

Network 

…

. 

Figure 4: A simple multi core processor architecture 
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 One of the main challenges designers face with a bus based design is that the maximum bus speed 

is largely limited by physical factors like the length of the bus and the bus loading (number of devices on 

the bus). The desire for high I/O rates and high I/O throughput can also lead to conflicting design 

requirements. Buses are traditionally grouped into CPU-Memory buses (main system bus) or the I/O 

buses. I/O buses may be lengthy, may have many types of devices connected to them, have a wide range 

in the data bandwidth of the devices connected to them, and normally follow a bus standard. CPU-

memory buses, on the other hand, are smaller in length and faster. Several bus bridges are used to connect 

the buses of different bandwidth and speed specifications. Ultimately, all of the I/O buses connect to the 

main system bus as shown in Figure 3. 

 Any communication over the bus happens between a master, who initiates the transaction and the 

slave who services accordingly. A situation with multiple masters on the bus would call for some kind of 

an arbitration mechanism. Table 1 illustrates the cost and performance trade-offs that need to be looked 

into while choosing a bus design. One thing that is clear from the table is that ‘higher performance comes 

at a cost’. The first four points are self explanatory. It also talks about split transactions and how they aid 

in performance at a higher cost. The idea behind split transactions is to divide bus events into requests 

and replies, so that the bus bandwidth can be utilized in the time between the request and the reply. 

Table 1: Main trade-offs for a bus design [10]. 

Option High Performance Low Cost 

Bus Width Separate address and data lines. Multiplex address and data lines. 

Data width Wider is faster. Narrower is cheaper. 

Transfer Size  Multiple Words have less bus overhead. Single-word transfer is simpler. 

Bus masters Multiple entities. Single master requires no 

arbitration. 

Split transaction Yes - separate request and reply packets get higher 

bandwidth. 

No - continuous connection is 

cheaper and has lower latency. 

Clocking Synchronous Asynchronous 



12 

 

 The final item in Table 1 is about bus clocking and it is concerns whether a bus is synchronous or 

asynchronous. If a bus is synchronous, it includes a clock in the control lines and a fixed protocol for 

sending address and data relative to the clock. Since little or no logic is needed to decide what to do next, 

these buses can be both fast and inexpensive. Major disadvantages include clock skew problems, which 

limit the length of the bus and a fixed clock rate means that everything on the bus must run at the same 

pace. Asynchronous buses, on the other hand, are not clocked. Instead, self-timed, handshaking protocols 

are used between the bus sender and receiver. It is much easier to accommodate a variety of devices and 

to lengthen the bus without worrying about clock skew. This comes at the cost of increased traffic on the 

bus causing large queuing delays for other traffic. It is not surprising to see the CPU-memory bus to be 

synchronous and an asynchronous I/O bus in computer architecture. 

2.3 Input/Output techniques in modern day computers 

 As explained in the previous chapters, I/O refers to the exchange of data between the CPU and 

the peripheral devices. Traditional as well as some current techniques under research are discussed in this 

section. Table 2 lists the peak bandwidths which some of the fastest I/O buses are capable of. Though 

these are just the maximum possible numbers and the I/O traffic may not always attend such high rates, it 

gives an insight into the potential traffic that can be associated with I/O. One more point to note is that 

most of this traffic transits via the main system bus (CPU-memory bus) before reaching its destination 

(see Figure 3). This destination for all practical purposes is either the CPU or the memory. 

2.4 Memory mapped I/O 

 In this type of I/O a peripheral device is connected to the CPU's address and data lines exactly 

like memory through some mapping, so whenever the CPU reads or writes to the address associated with 

the peripheral device, the CPU transfers data to or from the device. This mechanism has several benefits 

and only a few disadvantages. The prime advantage of a memory-mapped I/O subsystem is that the CPU 

can use any instruction that accesses memory to transfer data between the CPU and a memory-mapped 
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I/O device. The MOV instruction is the one most commonly used to send and receive data from a 

memory-mapped I/O device, but any instruction that reads or writes data in memory is also legal. 

Table 2: Contemporary I/O bus bandwidths. 

Bus Name 
Peak Bandwidth 

(GB/Sec) 

SATA 3.0 [11] 0.750 

Light Peak [12] 1.25 

USB 3.0 [13] 6.25 

PCI Express 2.0 [14] 2 - 16 

AGP [15] 2.133 

QPI [16] 19.2 – 25.6 

HyperTransport [17] 22.4 – 51.2 

10 Gigabit Ethernet (10GBASE-X) [18] 1.25 

40 Gigabit Ethernet (40GBASE-X) 5 

100 Gigabit Ethernet (100GBASE-X) 12.5 

Infiniband (SDR, 12X) [14] 3 

Infiniband (DDR, 12X) 6 

Infiniband (QDR, 12X) 12 
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 A major disadvantage of memory-mapped I/O devices is that they consume addresses in the 

memory map. Generally, the minimum amount of space that can be allocated to a peripheral (or block of 

related peripherals) is a four kilobyte page. Therefore, a few independent peripherals can wind up 

consuming a fair amount of the physical address space. Fortunately, a typical Personal Computer (PC) has 

only a couple dozen such devices, so this isn't much of a problem. However, some devices, like video 

cards, consume a large chunk of the address space (e.g., some video cards have 32 megabytes of on-board 

memory that they map into the memory address space). 

2.5 Interrupt driven I/O 

 In the case of programmed I/O, the CPU is busy waiting for an I/O opportunity and as a result 

remains tied up with that I/O operation until it is completed. This disadvantage can be overcome by 

means of interrupt driven I/O. In Programmed I/O, CPU itself checks for an I/O opportunity, but here the 

I/O controller interrupts the execution of CPU whenever an I/O device wants to initiate a transaction. This 

way the CPU can perform other computations in the mean time and execute an interrupt service routine 

only when an I/O operation is required, which is quite an optimal technique. A priority scheme 

determines what happens in the case of simultaneous interrupts. A fixed priority scheme results in devices 

getting assigned priorities in a fixed order. This may result in some low priority devices not being 

serviced enough. A solution to this is to assign priorities in a rotational order. This scheme rotates the 

highest priority among all devices by shifting the priorities. 

2.6 Direct Memory Access (DMA) 

 DMA technology provides special channels for CPU and I/O devices to exchange I/O data, and 

the memory is used for buffering the I/O data. When the CPU wants to handle I/O data, it triggers the 

DMA write operations that transfer the I/O data from I/O devices to the memory. On the opposite 

direction, when the CPU writes data to I/O devices, the DMA read operations (transferring I/O data from 

the memory to I/O devices) are performed. 
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 The data flow diagram for a DMA transaction over different levels of the memory hierarchy is 

shown in Figure 5 for a DMA produce - CPU consume direction, reproduced from [19]. The processor, 

memory and the DMA engine are involved in the interactions during a DMA operation. The interaction 

requires three data structures namely the DMA buffer, descriptor and destination buffer, all residing in the 

main memory. To start off, the device driver creates a descriptor for a DMA buffer. The driver allocates a 

DMA buffer in the memory and initializes the descriptor with the DMA buffer’s start address, size and 

status information. The driver informs the DMA engine of the descriptor’s start address. DMA engine 

then loads the descriptor’s content from the memory. With the DMA buffer’s start address and size 

information extracted from the descriptor, the DMA engine receives the data from the I/O device and 

writes the data to the DMA buffer. After all I/O data is stored in the DMA buffer, the owner status of the 

descriptor is modified to be the DMA engine. The DMA engine sends an interrupt to the processor to 
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Figure 5: DMA flow diagram 
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indicate the completion of the receiving operation. The driver handles the interrupt raised by the DMA 

engine and copies the received I/O data from the DMA buffer to the Destination buffer. Then, it frees the 

DMA buffer. The processors adopt snooping-cache scheme for maintaining I/O data’s coherence, 

accordingly they need to send snoop requests to the processor’s data cache to invalidate those cache 

blocks that pertain to the I/O data under DMA request. Consequently, when the CPU consumes the I/O 

data, the compulsory misses will take place and trigger the memory read requests to the memory 

controller. 

2.7 Direct Cache Access (DCA) and Cache Injection 

 In addition to the traditional techniques discussed above, DCA and cache injection are two other 

techniques that attempt to ease the memory bottleneck but letting the I/O device directly inject I/O data 

into the processor’s cache. These techniques are producer driven when compared to the previously 

discussed techniques such as DMA, Interrupt Driven I/O and programmed I/O, which are consumer 

driven. Both of them are well suited for the large data rate network I/O over the Gigabit Ethernet. DCA 

[20] is basically a cache coherency optimization that delivers inbound data from a network interface 

controller (NIC) directly into processor caches dramatically reducing stalls due to memory access of 

descriptor, packet header and packet payload data structures. 

 Another technique that is worth mentioning because it is one of the assumptions in the 

simulations carried out in our work is that of direct cache injection [21]. Cache injection addresses the 

continuing disparity between processor and memory speeds by placing data into a processor’s cache 

directly from the I/O bus. This disparity adversely affects the performance of memory bound applications 

including certain scientific computations, encryption, image processing, and some graphics applications. 

As shown in Figure 6, reproduced from [21], the injection operation is first initiated by the NIC. Unlike in 

DMA, where the next step is to write to the memory, step 2 allocates incoming network data into the 

cache. If the processor uses this data promptly there is no need to fetch the data from the memory. 
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Figure 6: Direct cache injection based I/O. 

 

2.8 Cache Writeback Strategies 

 Cache writeback, as explained before, is the process of committing data blocks back to the 

memory via the system bus. Several write buffering and writeback techniques are used to ease the 

memory access latency after a cache miss. The most basic ones of them all are the ‘writeback’ and the 

‘writethrough’ techniques which are explained here. 

a. Write Back 

 In this technique, the memory locations written are marked as dirty and are held in the cache until 

a read request evicts this line as a replacement. More often than not there is traffic towards the memory 

every time a cache read miss occurs some dirty cache line has to make way for the incoming datum. As a 

result a read miss in a writeback cache would require two memory accesses: one to retrieve the needed 

datum, and one to write replaced data from the cache to the store. 
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b. Write Through 

 When the system writes to a memory location that is currently held in cache, it writes the new 

information both to the appropriate cache line and the memory location itself at the same time. This type 

of caching provides worse performance than write-back, but is simpler to implement and has the 

advantage of internal consistency, because the cache is never out of sync with the memory the way it is 

with a write-back cache. 

 Writeback caches are more complex architectures than the ones using writethrough when it 

comes to implementation. Both the techniques as discussed later use some sort of buffering to absorb the 

impact of memory accesses. These methodologies are also used between the L1 and L2 caches. L1 caches 

usually comprise of separate partitions for instruction and data portions of the cache lines to aid in faster 

instruction fetch rates. Since writes can happen only on a datum, we can use a buffer only for the data 

cache among the two. 
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Chapter 3. Prior Work on Memory Hierarchy Optimization 

 Cache accesses and the penalties associated with them have been targeted by a lot of researchers 

over the past two decades. All the proposed cache write-back policies are aimed at minimizing the impact 

that a write to the next level would have on the processor pipeline. Consequently there have been a good 

number of innovative solutions such as Write Buffers, Victim Buffers, MSHRs, Eager retirement policies 

and Cache Prefetching. Most of the modern day processors use a good mix of all of these strategies. This 

chapter discusses a few of them. 

3.1 Write Buffers 

 As mentioned in the previous chapter, cache write techniques used in uniprocessor architectures 

involve either the ‘Write-Through’ or the ‘Write-Back’ policy [10]. In a Write-Through technique, the 

modified data lines are written to the cache as well as the next lower level in the memory hierarchy. On 

the other hand, caches employing Write-Back usually mark the data line as ‘dirty’ to imply that the cache 

line is inconsistent with the next level in the hierarchy and do a write to the next level only when they are 

evicted by another incoming block. The disadvantage of Write-Through is that the processor has to stall 

since the memory is accessed every time there is a write operation. Write-Back also creates processor 

stalls whenever a dirty line is evicted from the cache and it has to be written to the memory to make space 

for the required line.  

 Using a ‘write buffer’ between the caches and the memory or the next lower level in the hierarchy 

helps in reducing this bottleneck. This is one of the earliest solutions proposed for tackling cache 

coherency and the associated latencies in the memory hierarchy. The cache writes directly go into the 

buffer than the next level and since the buffer has similar access latencies as the cache, we benefit through 
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reduced stalls. Write buffers can also induce CPU stalls at times. Listed below are a few problems 

associated with write buffers [3]: 

1. Full stalls occur when the buffer is full and the store cannot merge.  

2. A read-access stall occurs when a read miss in L2 cache encounters a delay in reading from 

memory because the write-back buffer is currently writing to memory.  

3. A load-hazard stall occurs when L2 read miss finds its data in write-back buffer. However, this 

hazard can be avoided if write-back buffer entries and L2 cache entries can be swapped. 

 There are certain occupancy based policies for retiring the buffer entries to the next level in the 

memory hierarchy. The buffer can retain a suitable number of entries for coalescing purposes, but can 

retire entries at the maximum possible rate when occupancy rises above a particular mark (number of 

valid entries in the buffer). Waiting until this mark before retiring means that sequential writes can 

achieve maximal coalescing. The most recently allocated entry cannot be retired until a new entry is 

allocated. We call the entry that triggers retirement, the high-water mark and name the retirement policy 

according to this mark. For example, a retire-at-2 policy would wait until 2 or more entries are valid in the 

buffer before starting the process.  

 Read access stalls on the other hand can be reduced by using an eager writeback policy, which is 

discussed later in this chapter. Flushing the write buffer on every load miss solves the load hazard 

problem, but at substantial cost. Techniques such as Flush-full, Flush-partial and Flush-item only are 

alternative solutions to this problem. Flush-full flushes the entire write buffer when the miss hits in the 

buffer. Flush-partial saves some work by flushing entries in FIFO order only as far as necessary to purge 

the hit entry. Flush-itemonly saves even more work by flushing only the hit entry. If a different entry is 

already being retired when the load hazard occurs, we assume this transaction completes first. Finally, 

read-from-WB allows the load miss to read its data directly from the write buffer without altering the 

buffer’s contents, avoiding an access to the next level in the process [3], [9]. Deeper buffers also help in 
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reducing the buffer full stall by storing more burst writes which is normally associated with the data 

intensive streaming programs. It also supports the concept of lazy retirement. As mentioned before, more 

contents held in the buffer provide more write merging opportunities and also improves the chances of a 

hit in the buffer upon a read miss in the cache. Figure 7 illustrates the writeback policy with a buffer. 

 

 

 

3.2 Victim Buffers and Victim Caches 

 In cache terminology a ‘victim’ cache block is the one that is evicted upon a conflict cache miss. 

Many cache blocks get evicted in direct mapped caches during iterative function calls or context switches 

in a program. Since the probability of a cache block becoming a victim is very high in direct mapped 

caches compared to set associative ones, we need a buffer mechanism to hold these blocks as they may be 

required sooner in the program. So misses in the cache that hit in the victim cache provide a great chance 

to reduce miss penalty [7], [22], [23]. Experiments carried out on certain benchmark programs in [7] 

show that a small victim cache of 5 to 8 entries was enough to reduce the number of misses in a 1 to 4KB 

first level cache by about 80% of the cache misses. 
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Figure 7: Write buffer example with write-back technique in a three level memory hierarchy. 



22 

 

 The term ‘victim buffer’ on the other hand is associated with the buffering mechanism that 

ensures write merging. They are an advanced version of the write buffers discussed previously. A dirty 

cache line is buffered and any subsequent modifications to the line are merged to the entry in the buffer 

itself during write misses. Victim buffers are typically made up of more entries than a victim cache. 

Another difference between the two is in the fact that victim caches catch both ‘dirty’ and ‘non-dirty’ 

lines which are victims, whereas the victim buffer is usually meant for modified or ‘dirty’ cache lines 

[10]. The block diagram of a typical uniprocessor memory hierarchy can be seen in Figure 8. In a two 

cache arrangement, the L1 cache usually employs either a victim cache for support with a direct mapped 

cache or a victim buffer in case a cache with higher associativity is used. L  employs the ‘write through’ 

policy. The L2 employs a write buffer and uses a writeback policy for coherence. 

 

 

System Bus 

Main Memory I/O 

PROCESSOR 

Victim Cache / Write Buffer 

 

L2 Cache 

L1 Instruction Cache L1 Data Cache 

 

Write Buffer 

Processor 

Chip 

Figure 8: Processor Cache Architecture with Write Buffers. 
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3.3 Cache Prefetching 

 CPU cache prefetching involves fetching a block from the main memory into the CPU when the 

block has not been referenced in the expectation that it will be referenced in the near future. Hardware 

cache prefetching is specifically concerned with prefetching algorithms implemented solely by dedicated 

hardware without any software support. Two questions have to be answered before prefetching a block: 

which block to prefetch and when to prefetch. The simplest candidate to prefetch is the next sequential 

block after the one most recently referenced. This is illustrated in [24] with a technique called always 

prefetch. With this algorithm, every time there is a reference to block i, the cache is examined for block i 

+ 1 (i.e., the next sequential block, in terms of ascending memory addresses). If block i + 1 is absent from 

the cache, it is prefetched. 

 A variation which requires fewer prefetches and prefetch lookups (i.e., look into the cache to see 

if the block is there) is called prefetch on misses, which prefetches the next sequential cache block if and 

only if the access to the current cache block is a miss. A more complicated scheme, known as tagged 

prefetch [24], keeps the number of prefetch lookups low while issuing more prefetches than prefetch on 

misses. In this case, each cache block has a single bit, called the tag, which is set to zero whenever the 

block does not reside in the cache. When a block is referenced by the processor, its tag will be set to one. 

A block brought into the cache by a prefetch, however, retains its tag of zero. 

 Figure 9 (reproduced from [24]) shows a typical hardware cache prefetch architecture. The two 

prefetch units, one for each cache, are responsible for issuing new prefetch requests to the main memory. 

During each clock cycle, each prefetch unit receives information like cache misses, cache hits, instruction 

types, and branch target addresses from the processor and the caches. Based on this information, it 

decides whether to issue a new prefetch request or not. If it does, the prefetch address is looked up in the 

corresponding cache. The request is issued in the next clock cycle if the data is not found in the cache. 

Issued requests from both prefetch units are not sent directly to the memory bus, though, but to a prefetch 

address buffer, each of which is organized as a FIFO queue with 16 entries. The oldest entry is sent to the 
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memory bus only when the bus is free. If the buffer is full when a newly issued request arrives, the oldest 

entry is discarded from the buffer to make room for the new one. Whenever there is a cache miss, the 

address of the missing cache block is compared against every entry of the buffer. Any entry which 

matches the address represents a failed prefetch (because it is issued too late) and is discarded without 

being issued. 

 

 

  

 One of the disadvantages of cache prefetching is the unavoidable increase in memory traffic 

because of prefetches which are never referenced. The limitations of cache prefetching on a bus-based 

multiprocessor system are investigated in [26]. Results show that, when bus bandwidth is the bottleneck, 

prefetching will not improve performance, even when it reduces the demand miss ratio. Another 

disadvantage of cache prefetching is that useless prefetches may pollute cache contents by displacing 

useful cache blocks from the cache and, thus, cause new cache misses which would not have happened 

had there been no prefetching. All of these factors ensure the advantages from cache prefetching are 

minimal on CPU performance. 

Figure 9: Cache Prefetching Architecture [25] 
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3.4 Miss Status Holding Registers 

 Out of order instruction execution is a popular technique in pipelined computers that allow a 

processor to fetch another instruction whenever there is a miss in the data cache. This means the processor 

need not wait until the data request is serviced by the next level in memory. A non blocking cache is used 

in such a situation to reap the benefits. Extra hardware is needed to store the cache miss information in the 

form of the requested address and that is where the Miss Status Holding Register (MSHR) comes into 

play. These registers hold the address information for the miss that is to be serviced. A hit under miss 

optimization reduces the effective miss penalty by helping during a miss instead of ignoring the requests 

of the processor [10]. 
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 Most of the modern processors such as Intel Pentium 4 use multi banked L2 caches to facilitate 

parallel miss request servicing [27]. This optimization allows multiple misses over a miss, which means 

we can have multiple misses in queue. Conventionally each cache bank would have an MSHR file to 

facilitate storing of this miss information [28]. Figure 10 shows the block diagram of a typical multi bank 

cache and the MSHR arrangement. 

3.5 Eager Writeback 

 The fundamental idea behind eager writeback strategies is to write the dirty cache lines to the 

next level in the hierarchy and clear the dirty bits earlier than in a conventional writeback. Since the main 

system bus handles a huge amount of data traffic for data intensive applications, this enhancement would 

be highly beneficial for performance improvement. The work in [29] explores one such technique by 

indirectly distributing the traffic on the main bus to make use of the idle bus cycles. The Eager writeback 

technique is a compromise between the writeback and write through techniques. Here the write commits 

are neither made upon every cache line modification like in write through nor does the write buffer waits 

to get filled. The dirty lines are evicted as and when the main system bus becomes free. However, the 

system bus carries more traffic than just the writebacks and reads from the cache hierarchy to the 

memory. Input/Output (I/O) traffic can cause a major bottleneck on the main system bus when network 

based I/O or other I/O intensive applications are running is considered. This technique does not provide 

much benefit with I/O considerations. In summary, the following two points highlight the shortcomings 

of the Eager writeback strategy: 

1. The strategy does not ‘snoop’ the main bus to identify free memory cycles. This can be a 

hazardous in situations where clustered activity is present on the main bus. The write commits are 

just offset to an earlier stage through an early writeback of LRU lines with Eager writeback. This 

may not always solve the problem of bus contention. 
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2. During high I/O traffic densities on the main bus, the performance of the CPU decreases because 

of the large queuing for CPU read requests. This is a situation amplified by two kinds of traffic, 

CPU Produce-I/O Consume and I/O Produce-CPU Consume.  

 A majority of the processors today use an optimal mix of the above techniques to mitigate the 

memory access penalties that results from a cache miss. Some researchers also call for dynamic 

optimizations in order to optimize the performance for a particular type of application currently running 

on the processor. 

3.6 Secondary Bus Architecture 

 The concept of a secondary bus to connect the level-2 cache to memory for cache writebacks has 

been explored in [30] by O’Farrell and Baskiyar. The simulations results on three data intensive micro-

benchmarks show that adding an additional bus to support the main system bus would help in achieving 

significant reductions in queuing delays on the main bus. Such reductions in queuing delays offer superior 

temporal determinacy in a real-time environment. Their simulation results also compare well with ‘free 

writeback’ (it models a system in which dirty writebacks do not generate any memory traffic on the bus) 

and indicate that this bus can indeed parallelize reads and writes. It also discusses the feasibility of 

implementing such a bus as a serial or a wireless link. 
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Chapter 4. Secondary Bus Architecture 

 The main system bus is a bottleneck in bus based systems and an efficient use of the bus cycles 

calls for some kind of access control mechanisms. An additional bus can support by carrying the write 

traffic off the main system bus. Just adding a second bus would not help in easing congestion as it would 

only transfer the bottleneck to the memory interface from the L2 cache interface of the main bus. This 

write traffic would require a new write back policy (retirement policy), to make sure there is a less 

contentious path between the memory and the processor for reads. A bus controller is required for 

controlling who (write buffer, an I/O device or Read requests) gets access to the main memory and when. 

This chapter explains the design of the secondary bus architecture that is expected to ease queuing delay 

and result in improved program execution speed for the CPU. The secondary bus architecture was 

designed by Wang and Baskiyar [31]. 

4.1 Design of the Secondary Bus 

The motive behind the secondary bus architecture design is to first provide a separate path from 

write buffers to main memory so that the three main reasons for CPU stalls (explained in Chapter 1) due 

to the main bus bottleneck are reduced. We refer to direct I/O here as a technique similar to cache 

injection or DCA (discussed in section 2.3.4), where the I/O data is directly written to or read from the 

processor cache. Direct I/O gives us an upper bound on the improvements possible with the architecture 

under discussion. Then, the following two time slices can be made use of to commit dirty cache lines in 

the write buffer to the memory over the main system bus: 

a. In the absence of any data traffic directed towards or from the main memory. 

b. During I/O transactions on the main system bus in the case of direct I/O. 
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 The first condition is required because we are assuming a single ported memory here. A single 

port memory restricts the number of simultaneous accesses to just one, irrespective of whether it is for a 

read or a write operation. Hence, to return the cache lines in the buffer, choosing intervals when the 

memory is free eliminates queuing delays on the system bus as opposed to the techniques discussed in the 

previous chapter. Secondly, in the presence of any I/O traffic that is a result of a communication directly 

between the processor and the I/O device (as it happens during a Direct I/O transaction), the memory unit 

is available for write commits via the secondary bus. The design of their secondary bus based architecture 

[31] is shown in Figure 11 below. 

 

 

Figure 11: Architecture with the Secondary bus 

 

 

As seen in Figure 11, the main bus is supported by the secondary bus during writebacks and I/O 

transactions. This is made possible by the secondary bus controller which does a snoop on the main bus 

and identifies the bus cycles where it is not busy with memory operations. These are the cycles where the 
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secondary bus would take over and commit the dirty cache lines to the memory, giving a ‘faucet’ like 

control. The ‘control input’ to the secondary bus controller is made up of the main bus control lines that 

give information about the type of transaction happening on the bus. This can be address strobe, burst 

ready or the I/O control lines [32], which indicate when a transaction starts on main bus. The signals ‘s ’ 

and ‘s ’ are sent in accordance with the states of the main bus to arbitrate their memory accesses. 

 

4.2 Design Issues 

 There are several design issues that need to be addressed while developing a write back policy for 

the secondary bus architecture. Some of them are explained here. 

a. There can be situations when there can be read requests on the main bus at a point where there can be 

cache retirements happening on the secondary bus to the memory. One of the ways of handling this 

situation is to make the main bus request to queue up in the MSHRs and then complete the write 

operation until the writeback buffer is empty, while the other option would be to abort the burst 

writeback and enable the main bus to do the transaction with the memory. In this design, the main bus 

access is given priority so as not to contribute to the queuing delay on the bus. This creates a 

dependency for the secondary bus states on that of the main bus. 

b. The addition of the secondary bus and the bus controller can consume some area on the motherboard 

and the memory controller hub respectively. Secondary bus though, is designed to be of a smaller 

width than the main bus and hence of a smaller bandwidth since it is only used for the writebacks. 

This would mean the transactions on the secondary bus would take longer than the main bus. This is 

not a concern because writes constitute a small percentage of the total memory traffic as discussed 

earlier and lesser bandwidth would suffice. However, the usefulness of the secondary bus depends on 

the amount of free memory bandwidth. If the main bus is busy with ‘direct I/O’ operations or idle for 

longer time, even a small secondary bus would be good enough to commit the dirty cache lines. This 

will lead to performance boost in situations when there is severe I/O traffic or clustered memory 
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accesses, which otherwise can lead to congestion on the main bus. This design ensures that the 

performance of a processor with a particular application will not be degraded as much as it would for 

a computer without the secondary bus. 

c. In the case of direct I/O operations, as explained before we can parallelize the write back and I/O read 

operations. During DMA, the memory bandwidth is used up most of the time for one of these: I/O 

reads, I/O writes, CPU reads or CPU writes. This movement of I/O data between the processor cache 

and the memory adds more queuing delay to the traffic on the main bus, thereby creating a bottleneck. 

DMA reduces the number of available cycles for writeback. It would cause the write buffer induced 

CPU stalls to aggravate, which otherwise is one of the major areas of improvement with the 

secondary bus. So the secondary bus will work fine with DMA without any specific design 

modifications, but with reduced benefits. 
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Chapter 5. Simulation Setup for Performance Evaluation 

 Any new design or an enhancement to an older design always requires evaluation. Computer 

architecture research groups around the world use simulators like SimpleScalar, Sim-alpha, GEMS, 

SimOS and Simics to name a few. These simulators try to simulate the entire architecture along with the 

modification to our desired level of accuracy. Though the simulation data generated can never match the 

data collected from a real time run on an actual hardware for accuracy, they are faster and good for 

comparisons at an early design stage. In this work the Sim-alpha simulator [33] is used for the same 

purpose. SPEC CPU 2006 benchmarks are used for simulations as they a both CPU and memory 

intensive. The latter, especially, was very important as a good workout for the memory hierarchy is 

essential for secondary bus benefits to be visible. The changes made to the simulator encompasses the 

architectural design originally made in [31]. In other words, secondary bus architecture is very much 

suited for memory and I/O intensive programs. This chapter throws light on the simulation setups created 

using Sim-alpha and the SPEC benchmarks. 

5.1 Sim-alpha Simulator 

 Sim-alpha is a validated, execution driven, Alpha 21264 processor simulator. It was written by 

extending the SimpleScalar tool suite [34]. Sim-alpha models the implementation constraints as well as 

the performance enhancing features of the Alpha 21264 processor. The simulator settings can be varied 

by the user to simulate the influence of parameters like cache sizes, memory speed, fetch width, issue 

queue sizes, bus bandwidths and many others associated with a computer. 

 The 21264 is a superscalar processor that can fetch and execute up to four instructions per cycle. 

It also features out of order execution, which results in critical path executions to start and complete 
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quickly. It also has a branch prediction unit and executes speculatively. Coupled with high clock speeds 

this unique combination of out-of-order and speculatively execution, provide exceptional core 

computational performance [35]. The processor has seven pipeline stages as shown in Figure 12 

(reproduced from [35]). Most of the present day complex applications cannot necessarily be run at a 

throughput of fours instructions per cycle. Some of them can take more than 1000 cycles to execute due 

to the access bottlenecks on the last level cache (LLC), the system bus and the memory. Though the 

numbers shown below in Table 3 are from the actual design of the 21264 processor, these can be varied 

using several flags or configuration files with sim-alpha. 

 

 

Figure 12: Microarchitecture of the Alpha 21264 processor [35]. 

 

 Sim-alpha incorporates a detailed memory subsystem with support for multi level cache 

hierarchies, address translations, bus contention and a Synchronous DRAM (SDRAM) memory model. It 

builds on x86 machines and acts a cross architectural simulator, whereby it runs on a x86 machine and 
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simulates binaries compiled for the Alpha 21264 instruction architecture. The average error by using sim-

alpha as opposed to the actual Alpha processor is only about 2% as evaluated across a handful of micro 

benchmarks in [33]. 

5.2 SPEC Benchmark Programs and Simpoints 

 The SPEC CPU 2006 benchmarks suite [36] consists of integer and floating-point programs that 

represent a wide range of applications that we use today on our computers. These benchmarks are highly 

rated for evaluating several computer design components, mostly the CPU, memory subsystem and also 

compilers. Though some of the previous SPEC suites had problems exercising the memory subsystem 

either due to lack of working sets [29] or due to lesser application complexity, the 2006 programs run 

longer, have large working sets and are more complex. Video compression and speech recognition have 

also been added to these new benchmarks. 

 The 2006 suite of programs have a large amount of run times though its predecessors can now 

finish a run within minutes on the existing architectures. Runs times of the current benchmarks can range 

from machine weeks to months on a cycle accurate simulator like sim-alpha, before one can get access to 

the results. They also show high variability across several runs on the same set of data even after these 

accurate simulations. In order to ease this problem simulation points (simpoints) [37] are used during 

simulations. These small set of samples (simpoints) when simulated and weighted appropriately provide 

an accurate picture of the complete execution of the program with large reduction in the simulation time. 

Several days of run times are reduced to just a few hours with a slight compromise on accuracy. The 

methods used to extract these points and their weights are discussed in [37]. It also provides a list of files 

for the CPU 2006 group for quick use in simulations. 

5.3 Sim-alpha Architectural Configurations Used in Simulations 

 Sim-alpha requires a processor and memory hierarchy configuration list to start a simulation run. 

We have used the data provided in Table 3 for simulations with the secondary bus. Modifications were 
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made to the memory hierarchy with the addition of a write buffer to the last level cache. In the final 

structure, L1 cache had a victim buffer for support and the L2 (LLC) had the write-back buffer to handle 

write traffic. This setup made up the base architecture against which the secondary bus architecture would 

be compared later. Changes to the configuration file involved the addition of a new bus connecting the 

write buffer (added previously) to the memory, bypassing the main bus. It was made sure that the write 

traffic used only the secondary bus.  

Table 3: Simalpha specifications 

Processor Parameter Specifications 

Processor Speed 3 GHz 

Level 1 Data Cache 8 way, 32KB, virtual-index virtual-tag 

Level 1 Instruction Cache 8 way, 32KB, virtual-index virtual-tag 

Level 2 Cache 8 way, 2MB, physical-index physical-tag 

Number of MSHRs per Cache 8 

Write Mechanism for Level 1 Cache Victim Buffer, No Writeback Buffer 

Write Mechanism for Level 2 Cache Writeback Buffer, No Victim Buffer 

Main Bus (Front Side Bus) 600MHz, 8B wide, 10 cycles of arbitration latency 

Secondary Bus 600MHz, 1B wide, 10 cycles of arbitration latency 

  

 A major benefit of using such a secondary bus would be in those situations where I/O traffic uses 

a large part of the bandwidth on the main bus causing congestion for non I/O data. Hence, a simulation 

setup to generate I/O traffic at a rate described by a ‘Normal’ distribution was created. Normal 
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distribution was assumed I/O traffic with the CPU because I/O can be mainly composed of network traffic 

and disk traffic. Figure 13 gives the probability density function used for our simulations. A dummy I/O 

device that would generate blocks of the size of cache lines was implemented and I/O injection 

frequencies were chosen to get a calculated bandwidth pinch. The I/O data rates tried were of 600 

MB/Sec, 1.2 GB/Sec and 1.8 GB/Sec. These numbers were chosen based on the I/O bus bandwidth 

number shown in Table 2. I/O data eventually reside in the LLC by evicting some dirty cache lines in 

order to make space for this incoming data. These replacements can lead to some conflict misses later in 

the run and cause more traffic on the main system bus. Comparisons with Eager writeback [29] were also 

made possible with a different set of changes to the simulator. DMA I/O was discussed in section 2.3.3 

and performance comparisons with the DMA I/O were also required. Simulator changes included 

implementing a DMA engine that would mimic the I/O injection and act as a bus master. This time I/O 

traffic went through the memory unit before landing in the LLC as opposed to Direct I/O, thereby 

reducing the memory bandwidth available for writeback. 

 Simpoints does help us in speeding up the simulations but faster simulations can only be achieved 

via a supercomputing environment. The Alabama Supercomputing Authority [38] provided us with a 

server cluster that was made up of some of the latest processors. As a result of multiple simpoints being 

run in parallel on the supercomputer nodes, the results for all of the 16 benchmarks were obtained in just a 

couple of weeks. Although separate such simulations had to be run for Eager writeback, each of the I/O 

injection rates, DMA I/O and Direct I/O conditions, each taking about two weeks, because of the inability 

of Sim-alpha to make use of multi processing. 
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Figure 13: Probability density function used for I/O injection, Mean = 100 cycles and SD = 60 cycles. 
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Chapter 6. Simulation Results and Observations 

In this chapter, the simulations results obtained with sim-alpha and their analysis are put down. 

The results shown include comparisons with the Eager writeback technique for all the different I/O 

frequencies, simulations with I/O traffic. The metrics used for evaluation included queuing delay on the 

main bus, maximum number of cycles taken by any instruction, average cycles per instruction execution 

and number of instructions taking more than 1000 cycles to complete. Though all of the metrics are 

interrelated, the results give understanding of their dependencies on each other. Reduction in some of the 

metrics like the average queuing delay for an instruction can be more beneficial to certain real time 

applications and systems as opposed to personal computers and server based systems.  

6.1 Queuing Delay on the Main System Bus 

The main bus in our simulations has a bandwidth of 4.8 GB / Sec and was shared by some I/O 

traffic (600MB / Sec, 1.2 GB / Sec and 1.8 GB / Sec) the writeback traffic and the read traffic. There are 

times when the bus is being used for servicing a number of clustered requests and another request that 

comes up at the same time has to be queued because of the limit on the number of outstanding requests. In 

real-time systems these queuing delays can become significant resulting in unexpected latencies and hard 

deadlines getting missed. Our simulations show significant reduction in queuing delays due to separation 

of the write traffic from the read traffic. Figure 14 shows the percentage queuing delay reduction achieved 

with the secondary bus against the base architecture for each of the SPEC programs at various I/O rates. 

Almost all of the programs showed great reduction in the queuing delays with an average reduction of 

nearly 99% during the absence of I/O traffic on the main bus. With I/O devices trying to communicate 

with the processor through the technique of direct I/O, we start to see reduced benefits, though Figure 14 



39 

 

conveys that the percentage reduction is still considerably high. It also indicates that a majority of the data 

queuing that occurs on the main bus is due to the write traffic in a write back cache and the benefit of 

using a secondary bus on queuing delay is very clear. 

 

Figure 14: Percentage reduction in queuing delays across different I/O rates. 

The comparisons with the Eager writeback and other types of I/O like DMA are shown in Figure 

15. It is obvious that direct I/O extracts the best out of the secondary bus architecture when compared to 

DMA. When DMA is used, the I/O data travels through the memory before reaching the processor. This 

data is very much like any other read data from the memory, reducing the memory bandwidth for 

writeback using the secondary bus. With direct I/O, we can do a write back to the memory as well as an 

I/O read from the I/O controller in parallel. All these factors lead to a reduced performance for DMA with 

the secondary bus, but it is quite useful in reducing the delays nevertheless. Although Eager Writeback 

results in good reduction in queued cycles, it cannot match the advantage with a secondary bus. This is 

because the write back policy there does not snoop for free cycles on the main bus and only offsets the 
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writes to an earlier stage. Figure 16 provides the total queued cycles information during an I/O rate of 1.2 

GB/Sec. 

 

Figure 15: Total number of queued cycles during an I/O traffic rate of 1.8 GB/Sec. 

 

Figure 16: Total number of queued cycles during an I/O traffic rate of 1.2 GB/Sec. 
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6.2 Cycles per Instruction 

A comparison of the ‘cycles per instruction’ between the secondary bus architecture and the base 

architecture, gives us the speed-up achieved. Figure 17 shows the percentage speed-up achieved across a 

range of programs from the SPEC CPU 2006 benchmark suite. 

 

Figure 17: Percentage improvement in processor throughput with the secondary bus. 

 

Speed-ups of up to 19% were achieved due to the addition of the secondary bus as seen in Figure 

17 in the absence of I/O traffic on the main bus. With the presence of the secondary bus, read requests on 

main bus never waited for the dirty writeback traffic to be written to the main memory whenever it 

requested data due to a L2 cache miss. In the presence of I/O traffic further improvement was seen with 

speed-ups of up to 33%. In other words, the degradation of the base architecture was relatively severe 

when simulated with I/O traffic. The improvements in CPI are also a direct consequence of the reduction 

in queued cycles seen in the previous section. Programs that have a huge writeback rate or the ones that 

work on large data sets are the most beneficial of this architecture. On an average 13% speed-up over the 

base architecture was seen across 10 out of the 16 benchmarks we simulated with sim-alpha. 
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Results also show that the speed-up depends on how much the program strains the memory 

hierarchy. Processors using smaller second level caches lead to higher number of cache misses and hence 

writebacks. Thus programs having a very large working set could be more advantageous compared to the 

ones using smaller caches and working sets. This can be seen with programs like namd, gromacs, sjeng, 

h264ref, etc. The program namd did not have any writebacks to the memory and hence the architecture 

was never put to test during the simulations. Programs like bwaves, zeusmp, gemsFDTD, sphinx, etc. were 

highly writeback intensive with nearly 30% of the traffic on the main bus being the writeback traffic. 

As a result of the speed-up achieved, the group of instructions taking more than 1000 processor 

cycles was reduced. The results are shown in Figure 18 and Figure 19 for I/O injection rates of 1.2 

GB/Sec and 1.8 GB/Sec respectively. Although a majority of the 100 million instructions simulated took 

only around 100 to 200 cycles to execute due to cache hits, there were instructions which took more than 

1000 cycles. Instructions taking more than 1000 cycles refer to those that are affected by the writeback 

latencies upon a read miss in L2. Hence these additional cycles were mainly due to the memory accesses 

and main bus contention. More than 90% decrease in the number of such instructions was seen across the 

benchmark suite and this justifies the speed-ups seen in Figure 17. 
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Figure 18: Comparison between I/O techniques and Eager Writeback for I/O rate of 1.2 GB/Sec. 

 

 

Figure 19: Comparison between I/O techniques and Eager Writeback for I/O rate of 1.8 GB/Sec. 

 

 A comparison with the Eager Writeback technique shows that the performance improvement 

tends to decrease with I/O traffic on the main bus. This is can also be seen in the results from [29]. 
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Secondary bus, because of bus redundancy, scales easily with increased I/O rates. This is best explained 

with the plot shown in Figure 20 for the GemsFDTD benchmark program. GemsFDTD was chosen 

mainly because it has a good writeback rate compared to other programs and also shows improvements in 

CPI in excess of 35% for high I/O rates. With DMA, the results tend to flatten out at large I/O traffic 

rates. But it is not necessarily true that the CPI keeps improving with increased I/O with the secondary 

bus. There will be a point where the entire 4.8GB/Sec bandwidth of the main bus would not be sufficient 

and it may result in queuing delays and CPIs going out of the usual range of 0 to 3 cycles per instruction. 

That problem is still due to the main bus bandwidth getting exhausted which, happens very rarely as the 

main bus width is proportional to the number of devices on the bus. Increased number of agents on the 

bus will surely lead to wider main system bus. 

 

 

Figure 20: CPI percentage improvement for the GemsFDTD program. 
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Chapter 7. Future Work 

 The benefits of the secondary bus were obvious from the simulation results seen in the previous 

chapter. Though the technique was applied to a uniprocessor system during our analysis, a similar 

implementation can very much be used even with a multi-core processor. Although the front side bus 

(FSB) architecture is slowly giving way to technologies such as Quickpath [16] and HyperTransport [17], 

we still have more room for improvement on the FSB as seen from the secondary bus. Since FSB is a 

simpler design compared to Quickpath or HyperTransport, secondary bus architecture is worth 

considering for a dual core or a quad core processor. As seen in Figure 21 and Figure 22 [16] many multi 

core processors still use FSB as their system bus for communications with the chipset and hence 

secondary bus can be quite handy in easing congestion. Simulations with the multi core processor 

environment with the secondary bus can be done similar to the ones in the previous chapter using full 

system simulators such as GEMS, Simics or the M5. 

 

Figure 21: Front side bus architecture in Intel's multi core processors. 
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Figure 22: Dedicated FSB for each dual core processor. 

 Implementation considerations for the secondary bus need to be researched. We have shown that 

an 8 bit bus with a bandwidth of 600MB/Sec is good enough for the secondary bus, but we should be able 

to find a technology for realizing the same in hardware. Serial buses such as SATA provide sufficient 

bandwidths for write back data and can be considered. Wireless link is another technique that can come 

handy when facing space related constraints. A wireless link however would require the addition of a 

wireless transmitter and a receiver which may consume slightly more power than a bus based link. 

 The I/O injection rates were well tested with the proposed architecture and future simulations can 

use benchmarks that can actually generate the I/O data as well as feed on them. Some web applications 

are best suited for this purpose. It would call for writing an independent benchmark and then compiling 

the same for the Alpha benchmark. Modifications have to the made to the bridges and other controller 

logic to differentiate between the I/O and CPU data when communicating through the memory hierarchy. 

As mentioned in chapter 5 sim-alpha does not have these extensions built into it. 
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Chapter 8. Conclusion 

A simple solution for reducing latencies due to bus contentions on the main system bus between 

the CPU and the chipset has been evaluated in this work. The technique of bus redundancy combined with 

a policy for efficient bus bandwidth management through data traffic distribution have shown to give 

significant performance improvements compared to existing architectures. Since write traffic on the main 

system bus is the largest contributor to the queuing delays, separating the write and read data traffic is 

beneficial. Also, queuing delays were considerably reduced due to the sharing of the bus load by the 

secondary bus. This improvement was verified across a range of the SPEC CPU 2006 benchmarks which 

comprised of both CPU and memory intensive workloads to test the architecture. 

Performance metrics such as the average queuing delay per instruction and cycles per instruction 

were used to validate the results and understand the CPU areas that were directly impacted by this 

architecture. Comparisons were made against two types of I/O techniques namely DMA and Direct I/O 

and we found that this design would be highly advantageous in the presence of I/O traffic on the main 

bus. I/O devices and processors can be involved in two types of communications that determine the traffic 

direction on the main system bus: 

1. I/O produce, CPU consume (more than 80% of the I/O traffic are of this type). 

2. CPU produce, I/O consume. 

We were unable to analyze the second type of traffic as our benchmarks did not generate any I/O traffic 

themselves. The ‘I/O produce and CPU consume’ traffic type was simulated and analyzed by creating an 

I/O device that would pump data at regular intervals either directly the on-chip cache (direct I/O) or to the 

memory through DMA. In addition to seeing better improvements over the base architecture, the 
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secondary bus approach also proved to be better than Eager writeback for most of the SPEC programs. 

When larger I/O rates were considered, the gap between Eager writeback and secondary bus widens. 

The secondary bus can be implemented in many ways. In our simulations we used an 8-bit wide 

bus to evaluate the design for different traffic intensities. In the future, various other implementations of 

the secondary bus can be tried. Split bus or pipelined transactions can be tried on the secondary bus with 

multiple bit lines. The number of bit lines that can be used for the secondary bus depends on the L2 cache 

write-back rate. The secondary bus provides excellent benefits for single ported memories at a minimal 

cost, which consists of a small hardware addition for controlling the bus accesses and a small bus. 

 

 

 

 

 

 

 

 

 

 

 



49 

 

 

 

Bibliography 

[1] G. E. Moore, Cramming More Components onto Integrated Circuits, Electronics, Vol. 38, pp. 114-

117, 19 Apr. 1965. 

 

[2] Memory Hierarchy [Online]. Available: http://en.wikipedia.org/wiki/Memory_hierarchy 

 

[3] P. P. Chu and R. Gottipati, Write Buffer Design for On-Chip Cache. Proceedings of the IEEE 

International Conference on Computer Design: VLSI in Computers and Processors, pp. 311-316, 

Oct. 1994. 

 

[4] T. E. Anderson, H. M. Levy, B. N. Bershad and E. D. Lazowska, The Interaction of Architecture and 

Operating System Design, Proceedings of the 4
th
 International Conference on Architectural Support 

for Programming Languages and Operating Systems, pp. 108-120, 1991. 

 

[5] B. Chen, Memory behavior of an X11 window system, Proceedings of the USENIX Winter Technical 

Conference, Jan. 1994. 

 

[6] D. Nagle, R. Uhlig, T. Mudge, S. Sechrest, Optimal allocation of on-chip memory for multiple-API 

operating systems, Proceedings of the 21st Annual International Symposium on Computer 

Architecture, pp. 358-369, 18-21 Apr. 1994. 

 

[7] N.P. Jouppi, Improving direct-mapped cache performance by the addition of a small fully-associative 

cache and prefetch buffers, Proceedings of the 17th Annual International Symposium on Computer 

Architecture, pp. 364-373, 28-31 May. 1990. 

 

[8] N.P. Jouppi, Cache Write Policies and Performance, Proceedings of the 20th Annual International 

Symposium on Computer Architecture, pp. 191-201, 28-31 May. 1993. 

 

[9] K. Skadron, D.W. Clark, Design issues and tradeoffs for write buffers, Proceedings of the 3
rd

 

International Symposium on High-Performance Computer Architecture, pp.144-155, 1-5 Feb. 1997. 

 

[10] J.L. Hennessy and D.A. Patterson, Computer Architecture: A quantitative approach, Morgan 

Kauffmann Publishers Inc., 3
rd

 edition, 1996. 

 

[11] Serial ATA Revision 3.0 specification, 27 May. 2009, [Online]. Available: 

http://www.serialata.org/documents/SATA-6Gbs-Fast-Just-Got-Faster.pdf 

 

[12] S. Addagatla, M. Shaw, S. Sinha, P. Chandra, A.S. Varde, M. Grinkrug, Direct Network Prototype 

Leveraging Light Peak Technology, Proceedings of the IEEE 18th Annual Symposium on High 

Performance Interconnects (HOTI), pp. 109-112, 18-20 Aug. 2010. 

 

 

http://en.wikipedia.org/wiki/Memory_hierarchy
http://www.serialata.org/documents/SATA-6Gbs-Fast-Just-Got-Faster.pdf


50 

 

[13] PHY Interface for the PCI Express and USB 3.0 Architectures, 3 Nov. 2009, [Online]. Available: 

http://download.intel.com/technology/usb/USB_30_PIPE_10_Final_042309.pdf 

 

[14] M.J. Koop, Wei Huang, K. Gopalakrishnan, D.K. Panda, Performance Analysis and Evaluation of 

PCIe 2.0 and Quad-Data Rate InfiniBand, Proceedings of the 16
th 

IEEE Symposium on High 

Performance Interconnects (HOTI), pp. 85-92, 26-28 Aug. 2008. 

 

[15] AGP V3.0 Interface Specification, Sep. 2002, [Online]. Available: 

http://download.intel.com/support/motherboards/desktop/sb/agp30.pdf 

 

[16] An Introduction to Intel Quickpath Interconnect, Jan. 2009, [Online]. Available: 

http://www.intel.com/technology/quickpath/introduction.pdf 

  

[17] HyperTransport I/O Link Specification, Nov. 2006, [Online]. Available: 

http://www.hypertransport.org/docs/twgdocs/HTC20051222-0046-0017.pdf 

 

[18] Career Sense Multiple Access with Collision Detection (CSMA/CD) Access Method and Physical 

Layer Specifications, Jun. 2010, [Online]. Available: 

http://standards.ieee.org/getieee802/download/802.3ba-2010.pdf 

 

[19] D. Tang, Y. Bao, W. Hu and M. Chen, DMA cache: Using on-chip storage to architecturally separate 

I/O data from CPU data for improving I/O performance, Proceedings of the 16
th
 IEEE International 

Symposium on High Performance Computer Architecture, pp. 1-12, 9-14 Jan. 2010. 

 

[20] R. Huggahalli, R. Iyer and S. Tetrick, Direct cache access for high bandwidth network I/O, 

Proceedings of the 32nd International Symposium on Computer Architecture, pp. 50- 59, 4-8 June 

2005. 

 

[21] E.A. Leon, K.B. Ferreira, A.B. Maccabe, Reducing the Impact of the MemoryWall for I/O Using 

Cache Injection, Proceedings of the 15th Annual IEEE Symposium on High-Performance 

Interconnects, pp. 143-150, 22-24 Aug. 2007. 

 

[22] Z. Chuanjun and F. Vahid, Using a victim buffer in an application-specific memory hierarchy, 

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition, vol.1, pp. 

220- 225, 16-20 Feb. 2004. 

 

[23] G. Memik, G. Reinman, W.H. Mangione-Smith, Reducing energy and delay using efficient victim 

caches," Proceedings of the International Symposium on Low Power Electronics and Design, pp. 

262- 265, 25-27 Aug. 2003. 

 

[24] A.J. Smith, Cache memories, ACM Computing Surveys, vol. 14, no. 3, pp. 473-530, Sep. 1982. 

 

[25] J. Tse and A.J. Smith, CPU cache prefetching: Timing evaluation of hardware implementations, IEEE 

Transactions on Computers, vol.47, no.5, pp. 509-526, May. 1998. 

 

[26] D.M. Tullsen, S.J. Eggers, Limitations Of Cache Prefetching On A Bus-based Multiprocessor, 

Proceedings of the 20th Annual International Symposium on Computer Architecture, pp.278-288, 16-

19 May. 1993. 

 

[27] The Microarchitecture of the Intel Pentium 4 Processor on 90nm Technology, Intel Technology 

Journal, vol. 8, Issue. 1, 18 Feb. 2004. 

http://download.intel.com/technology/usb/USB_30_PIPE_10_Final_042309.pdf
http://download.intel.com/support/motherboards/desktop/sb/agp30.pdf
http://www.intel.com/technology/quickpath/introduction.pdf
http://www.hypertransport.org/docs/twgdocs/HTC20051222-0046-0017.pdf
http://standards.ieee.org/getieee802/download/802.3ba-2010.pdf
http://delivery.acm.org/10.1145/360000/356892/p473-smith.pdf?key1=356892&key2=7749558611&coll=GUIDE&dl=GUIDE&CFID=11184691&CFTOKEN=33329435


51 

 

 

[28] D. Kroft, Lockup-Free Instruction Fetch/Prefetch Cache Organization, Proceedings of the 8
th
 

International Symposium on Computer Architecture, pp. 81-87, 12-14 May 1981. 

 

[29] H.H.S. Lee, G.S. Tyson, M.K. Farrens, Eager writeback-a technique for improving bandwidth 

utilization, Proceedings of the 33rd Annual IEEE/ACM International Symposium on 

Microarchitecture, pp.11-21, 2000. 

 

[30] J. O’Farrell and S. Baskiyar, Improved Real-Time Performance Using a Secondary Bus, Proceedings 

of the Computers And Their Applications, Honolulu, HI, March, 2010, ISCA Press. 

 

[31] S. Baskiyar and C. Wang, A secondary channel between cache and memory for decreasing queuing 

delay, US Provisional patent application filed no. 61/003,542 on Nov 17, 2007, Auburn University, 

AL.  

[32] Intel Embedded Pentium processor family Developer’s Manual, December 1998. [Online]. Available: 

http://www.intel.com/design/intarch/manuals/273204.htm 

 

[33] R. Desikan, D. Burger, S.W. Keckler, Measuring experimental error in microprocessor simulation, 

Proceedings of the 28th Annual International Symposium on Computer Architecture, pp.266-277, 

2001. 

 

[34] T. Austin, E. Larson and D. Ernst. Simplescalar: An Infrastructure for Computer System Modeling, 

IEEE Computer, Volume 35, Number 2, pp. 59-67, Feb. 2002. 

 

[35] R.E. Kessler, E.J. McLellan and D.A. Webb, The Alpha 21264 microprocessor architecture, 

Proceedings of the International Conference on Computer Design: VLSI in Computers and 

Processors, pp. 90-95, 5-7 Oct. 1998. 

 

[36] SPEC CPU2006 Benchmark Descriptions, ACM SIGARCH newsletter, Computer Architecture 

News, Volume 34, No. 4, September 2006. 

 

[37] K. Ganesan, D. Panwar and L. K. John, Generation, Validation and Analysis of SPEC CPU2006 

Simulation Points Based on Branch, Memory and TLB Characteristics, Proceedings of the SPEC 

Benchmark Workshop on Computer Performance Evaluation and Benchmarking, Section: Modeling 

and Sampling Techniques, pp. 121-137, Jan. 2009. 

 

[38] Alabama Supercomputing Authority. http://www.asc.edu/ 

 

 

 

 

 

 

 

 

http://www.intel.com/design/intarch/manuals/273204.htm
http://www.asc.edu/

