The Effect of Mutations in Type II Topoisomerases on Fluoroquinolone Resistance in Clinical Canine Urine *Escherichia coli* Isolates

by

Megan Grace Behringer

A thesis submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements for the Degree of Masters of Science

> Auburn, Alabama May 9, 2011

> > Approved by

Dawn M. Boothe, Chair, Professor of Physiology and Pharmacology Stuart Price, Associate Professor of Pathobiology Jacek Wower, Professor of Biochemistry Abstract

A series of experiments were preformed in order to validate a rapid FRET-PCR based assay for the detection of fluoroquinolone resistance in small animal *Escherichia coli* urinary tract infection (UTI) isolates. Three hundred and six canine UTI *E. coli* isolates from pure culture were subjected to the FRET-PCR assay. Fourty-three of 50 enrofloxacin resistant isolates were detected by FRET-PCR for a sensitivity of 86% and a specificity of 97%. Urine was then spiked with 7 isolates of varying minimum inhibitory concentration for enrofloxacin (MIC_{Enro}) to evaluate sensitivity of detection and resistant isolates were detected at concentrations as small as 10^3 CFUs. Lastly DNA extracted from 438 small animal urine samples was subjected to the FRET-PCR assay. Two hundred and seventy-eight were confirmed to contain *E. coli*, 18 of which were resistant to enrofloxacin based on susceptibility testing. The FRET assay positively identified 388 of 420 samples (specificity of 92.36%). When compared to FRET run on DNA extracted from isolates, isolates had better specificity and sensitivity than FRET run on DNA extracted from urine samples.

Acknowledgments

This thesis is the product of the love and support of so many individuals. Dr. Dawn Boothe provided the opportunity and guidance that allowed me to successfully conduct my research. Thanks to my committee members, Dr. Jacek Wower and Dr. Stuart Price for their time and assistance. Special thanks to Jameson Sofge for managing my funding and handling the ordering of all of my supplies which without none of this would have been at all possible. Many thanks to Kamoltip Thungrat for her emotional support and for providing the susceptibility data . Also, thanks to Auburn University Clinical Pathology and Clinical Microbiology for supplying the urine samples.

Most of all I would like to thank my family, my father David and mother Kathleen who kept me motivated throughout the entire process. Without their love I would have never had made it this far in my studies and for that I am endlessly grateful. Blane Hollingsworth has remained patient with me, kept me sane and took care of me whenever I felt the world crashing down on me. Lastly, I am grateful to my brother Alex, for giving his encouragement when I needed it most.

Table of Contents

Abstractii
Acknowledgementsiii
List of Tablesv
List of Figures
Chapter 1: Literature Review: Genetic Factors Influencing Fluoroquinolone Resistance in Escherichia coli
Chapter 2: Development and Evaluation of a FRET-PCR Assay for Determining Fluoroquinolone Resistance in Canine Urine <i>Escherichia coli</i> Isolates
Chapter 3: Evaluation of a FRET-PCR Assay for Determining Fluoroquinolone Resistant <i>Escherichia coli</i> in Clinical Urine Samples from Companion Animals
Appendix A: Data for Urines Containing Negative or Single Cultures76
Appendix B: Data for Urines Containing Multiple Cultures

List of Tables

Table 1: Drug MICs for E. coli cells over expressing acrAB, mdfA and norE
Table 2: Susceptibilities of <i>E. coli</i> transformed with plasmids harboring different <i>qnr</i> genes 14
Table 3: Notation for Antimicrobials used and their respective drug classes
Table 4: Results of Nucleotide Sequences for Determination of Assay Specificity
Table 5: 7 <i>Escherichia coli</i> isolates of increasing MIC _{Enro} in inoculated urine
Table 6: Species, source, and origin of organisms isolated from urine samples 62
Table 7: Comparison of sensitivity and specificity of FRET assay by DNA extraction method 63
Table 8: Sensitivity and Specificity of FRET Assay by Collection Method 64
Table 9: FRET results for urine samples containing enrofloxacin resistant E. coli
Table 10: Urine samples falsely identified by FRET to have enrofloxacin resistant E. coli 66

List of Figures

Figure 1: Progression of quinolone structure through generations
Figure 2: Structure of AcrAB/TolC efflux system in <i>E. coli</i>
Figure 3: Prediction of secondary structure for plasmid based quinolone efflux pump QepA 16
Figure 4: Primer and Probe set designed for FRET-PCR
Figure 5: Melting curves from 3 gyrA mutation profiles encountered in the clinical isolates 45
Figure 6: Scatter plot of isolate MIC _{Enro} respective to T _m
Figure 7: Mean and Standard Deviation of Tm for isolates grouped by MICEnro class
Figure 8: Melting Curves of Canine Urine Innoculated with Dilutions of <i>E. coli</i>
Figure 8: log ₂ MIC _{Enro} vs. T _m for urine samples containing <i>E. coli</i> and <i>E. coli</i> isolates
Figure 9: Contents of urine samples by collection method
Figure 10: Distribution of urine samples containing multiple infective species by collection method
Figure 11: Representative Melting curve analysis of DNA from both extraction methods71
Figure 12: Amplification curves of DNA from both extraction methods

CHAPTER I

LITERATURE REVIEW: GENETIC FACTORS INFLUENCING FLUOROQUINOLONE RESISTANCE IN *ESCHERICHIA COLI*

Topoisomerases

Topoisomerases are enzymes responsible for controlling the tension of supercoiled DNA by facilitating the winding and unwinding during DNA replication and transcription. Winding and unwinding is especially important to reducing tension in front of the replication fork where the progress of the helicase and DNA polymerase machinery cause large amounts of force on the downstream DNA. Two classes of toposiomerases; Type I and Type II have been described.

Type I topoisomerases are monomer proteins that cut and reanneal single stands of double stranded DNA, allowing for a change in the linking number by +1 or -1 coils to the double helix. Type I can be further broken down into three subclasses: Type IA, Type IB, and Type IC. Type IA's structure resembles a lock and makes a break in the DNA to form a 5' phosphotyrosine intermediate. A strand or duplex of DNA is then passed through the break before reannealing the strands back together, thus introducing a positive or negative coil in an ATP independent process. In *E. coli*, the gene that codes for this enzyme is referred to as *topA*. Type IB and IC both work in a rotary fashion by nicking the double stranded DNA and forming a 3' phosphotyrosine intermediate while allowing the torque of the wound DNA to control the unwinding of the DNA until the single strands are reannealed. This process is also ATP independent. Type IB is coded for by *topB* in *E. coli* (Dean et al, 1983).

Type II topoisomerases are multimer proteins that cut and reanneal double strands of DNA, allowing for a change in the linking number by +2 or -2 coils to the double helix in an ATP dependant process. Type II can also be broken into subclasses Type IIA and Type IIB. Type IIA includes bacterial DNA gyrase and bacterial topoisomerase IV (topo IV) while Type IIB are only found in archaea and higher plants. *E. coli* DNA gyrase is a heterodimer coded for by genes *gyrAB*, while topo IV is of similar design but coded for by *parCE*. Their structure consists of an ATPase domain, a Rossmann fold (a motif that binds nucleotides such as NAD and FMN), a DNA binding domain, and a variable C terminus (Watt et al, 1994).

DNA gyrase is solely responsible for relaxing positive supercoils ahead of the DNA replication fork. Topo IV, however, has an extra function in the cell. In addition to working like DNA gyrase to remove positive supercoils, it also has decatenating activity, being responsible for separating the daughter chromosome from the parent chromosome at the end of replication so that cell division can occur (Kato et al, 1990).

Topoisomerases are the target of the quinolone drug class of antimicrobials. Quinolones interfere with DNA replication and RNA transcription by targeting the DNA/Topoisomerase duplex. Two quinolone molecules bind to the duplex (Yoshida et. al. 1993) and DNA is then cleaved by topoisomerase; however, religation of the double stranded break is inhibited and the unreligated DNA/topoisomerase complex is trapped within a DNA/topoisomerase/quinolone ternary complex (Critchlow and Maxwell, 1996) (Anderson et.al.1998). The Topoisomerase is unable to reanneal and religate the DNA strands back together, causing a lethal SOS response by the cell. Topoisomerase IV is also inhibited similarly in its concatamer releasing activity. In gram-negative bacteria, DNA gyrase is the primary target for quinolones while for gram-positive bacteria topoisomerase IV is the primary target. In *E. coli* the effects of quinolones on

topoisomerase IV appear to be more bacteriostatic as opposed to the bacteriacidal effects associated with DNA gyrase. (Khodursky, 1995)

Quinolones and Drug Development

Development of drugs in the quinolone class began with the discovery of naladixic acid in 1962 (Lesher, et. al, 1962). Discovered while producing chloroquine, an antimalarial drug as a derivative of 1,8-Naphthyridine, naladixic acid was found to be an effective antimicrobial against Enterobacteriaceae. Naladixic acid was followed by oxolinic acid (Turner, et. al., 1967), cinoxacin (Wick, et. al., 1973), and pipemidic acid (Shimizu, et. al., 1975); together, these drugs comprised the first generation of quinolone drugs. By 1963, naladixic acid-induced resistance in patients with *E. coli* urinary tract infections was observed (Barlow, 1963).

Figure 1: Progression of quinolone structure through generations. 1,8-napthyridine is core molecule leading to the first generation quinolones (Naladixic acid), second generation quinolones (ciprofloxacin), third generation quinolones (levofloxacin) and fourth generation quinolones (moxifloxacin).

The second generation of quinolones marks the advent of fluoroquinolones in which a fluorine atom was added to C6 and the methyl group at C7 was replaced with a piperazine group. These changes increased bactericidal potency by improving cell penetration and binding to the DNA/Gyrase complex (Chu and Fernandes, 1989). This second generation was further divided into two classes. Class 1 includes norfloxacin, the first fluoroquinolone to be approved for use in humans in the United States, (Ito et. al., 1980), lomefloxacin (Hirose et. al. 1987), and enoxacin whose spectrum are similar to first generation. Class two includes ciprofloxacin, enrofloxacin and ofloxacin, each of which is characterized by a broader spectrum of microbial targets, including atypical pathogens (e.g., Bacillus anthracis, Yersinia pestis, Vibrio cholerae) and Pseudomonas aeruginosa. Other R group adjustments in the class 2 fluoroquinolones included replacement of the N1 ethyl group with a cyclopropane (figure1), which allowed for ciprofloxacin's increased bioavailability, allowing more convenient usage of these antimicrobial on systemic infections (Domagala, 1994). However, even as second generation quinolones were synthesized, new patterns of resistance began to emerge. These quinolones were shown to cause cross-resistance with each other as well as the original class of quinolones (Barry and Jones, 1984). In 1984, Sanders et al. showed that *Klebsiella pneumoniae* mutant isolates selected with naladixic acid, ciprofloxacin, and norfloxacin also expressed resistance to antibiotics in the betalactam class (Sanders et. al, 1984). For gram positive isolates, resistance to second generation quinolones was quickly detected in Staphylococcus aureus. This resistance emerged because single nucleotide polymorphism (SNP) mutations increased their MIC to concentrations higher than could be achieved in serum at recommended doses. In S. aureus, resistance emerged more quickly in methicillin resistant (MRSA) strains (Blumberg, et. al 1991). In a study conducted at Atlanta Veteran's Medical Center, MRSA was observed within 3 months of introducing

ciprofloxacin as a treatment. In methicillin susceptible (MSSA) strains resistance was observed within 7 months of introducing ciprofloxacin as a treatment.

With the coming of third generation quinolones the antimicrobial properties were extended to *Streptococcus*. Development of sparfloxacin (Nakamura et. al., 1989), levofloxacin (the l- enantiomer form of ofloxacin) (Tanaka et al, 1992), grepafloxacin (Imada et. al., 1992), Marbofloxacin, and temafloxacin involved modifications such as methyl groups to the piperazine ring at C7. These methyl groups reduced central nervous system adverse reactions in the patient and the potential for drug interactions, while improving activity against gram positive organisms (Domagala, 1994). Once again, not long after levofloxacin was introduced in 1992 as a treatment for *Streptococcus pneumoniae*, resistance induced by its use was observed (Laferedo et al., 1993). In addition, cross resistance with ciprofloxacin was also observed.

The fourth generation quinolones currently are a rising group of fluoroquinolones including the drugs gatifloxacin (Hosaka et. al, 1992), moxifloxacin (Dalhoff et. al., 1996) trovafloxacin, and clinafloxacin. These drugs act dually on DNA gyrase as well as topoisomerase IV slowing emerging resistance. Additionally, trovafloxacin's substitution of a difluorophenyl group at N8 and clinifloxacin's addition of a chlorine atom at C8 accounts for their heightened activity against *Bacteroides fragilis* (Ashina et al. 1992) (Hecht et. al 1996).

Mechanisms of Quinolone Resistance

E. coli is a common cause of urinary tract infections (UTI). Antibioctic resistant *E. coli* is increasingly identified in association with both UTI and nosocomial infections in human and veterinary teaching hospitals. An increase in fluroquinolone resistance in particular has been reported and this fluoroquinolone resistance is progressively more associated with MDR (Cohn

et. al. 2003) (Boothe et al., 2006) (Shaheen, et. al., 2010). An important risk factor associated with the emergence of fluroquinolone resistance is use of fluroquinolone antimicrobials (Richard et. al. 1994). Resistant *E. coli* have been documented to emerge during treatment of *E. coli* infections with quinolones, resulting in therapeutic failure. (Webber et. al. 2004) High levels of naladixic acid resistance has been reported from single step exposure with a frequency of 10^{-7} while low level resistance to fluroquinolones have been detected from single step exposure with a frequency of 10^{-9} (Wolfson and Hooper, 1989). Sources of quinolone resistance have been identified such as mutations in the quinolone resistance determining region (QRDR) of *gyrAB* (Yoshida et. al 1988) (Yamagishi et. al. 1986), (Shaheen et al., 2011) and *parCE* (Vila et. al. 1996) (Breines et. al. 1997), plasmid mediated factors *qnrA*, *qnrB*, *qnrS*, *aac*(6')-*Ib-cr*, and *qepA*, as well as overexpression of efflux pumps, specifically *acrAB/tolC*.

Conformational Change of Topoisomerases

Single nucleotide polymorphisms located within *gyrAB* and *parCE* coding for nonsynonymous mutations lead to fluroquinolone resistance in both gram-positive and gramnegative isolates. These mutations reside in a region referred to as the quinolone resistance determining region (QRDR). The QRDR is located between nucleotides 199-318 of *gyrA* or *parC* (Yoshida et. al. 1990), and 1276-1392 of *gyrB* or *parE* (Yoshida et. al. 1991, Soussy et. al 1993).

In *E. coli*, mutations in gyrase can increase resistance to fluoroquinolones by a factor of 100 x (ug/ml) (Cullen et. al., 1989), while mutations in topoisomerase IV can contribute to a increase of a factor of 10 in fluoroquinolone resistance (Khodursky et. al 1995). Among the studies providing evidence of the role of mutations in topoisomerase are those which replace

mutations with wild-type sequences. Cullen and co-workers isolated DNA gyrase A from an *E. coli* strain that was cross resistant to several second generation fluoroquinolones, and then complemented the protein with wild-type gyrase B. The supercoiling function of the topoisomerase of the resultant isolate was characterized by an 100 fold increase in resistance to enoxacin. Genetic analysis of gyrase A revealed that an amino acid substitution of S83W was solely responsible for the increase. Subsequent studies revealed that a S83L substitution was more common due to $C \rightarrow T$ transition in the second position (resulting in a leucine substitution) than a $C \rightarrow G$ transversion (resulting in a tryptophan substitution). Levofloxacin resistant ParC mutant *E. coli* became susceptible after transformation of plasmids containing wild-type *parC* resulting in an MIC change from 50 to 1.56 ug/ml. It was also observed that resistance could be induced by introducing a multicopy plasmid containing mutated *parC* into a quinolone susceptible *E. coli* (Kumagai et.al 1996).

Further, mutations in GyrA have been demonstrated to affect the supercoiling activity of the protein, not just the protein's susceptibility to quinolones. Barnard and Maxwell conducted a study in which the hypermutable amino acids in GyrA (codon 83 and 87) were substituted with alanine to make 3 different mutant proteins, GyrA S83A, GyrA N87D, and GyrA S83A, N87D. In the GyrA mutant with only the S83A substitution, while the mutation was only responsible for conferring low levels of quinolone resistance and it had little to no affect on the catalytic activity of DNA gyrase. However, in the N87D mutant and the S83A, N87D double mutant, the mutated region appeared to have a higher affinity to DNA therefore resulting in 2.5 fold less supercoiling activity in the N87D mutant and 5 fold less supercoiling activity in the S83A, N87D double mutant resulting in a situation where protein function is compromised in exchange for resistance.

The N87D mutation did account for high level quinolone resistance in both the single mutant and the double mutant.

Pfeiffer and Hiasa addressed the sequelae on norfloxacin resistance when the α 4 region of Topoisomerase IV (the region that houses the QRDR for ParC) was replaced with the α 4 region of DNA gyrase using overlap extension PCR. The PCR product was cloned into a plasmid vector and transformed into *E. coli* HMS174 (DE3). This vector was expressed with wild type *parE* to create a protein with two mutated ParC subunits and two wildtype ParE subunits. Whereas the substitution of the α 4 region of GyrA into ParC didn't affect the quinolone sensitivity of the protein, it significantly and negatively affected the catalytic activity of the protein. Interestingly, the norfloxacin/ParC α 4GyrA/DNA ternary complex was found to be more stable, and the inhibition more cytotoxic than the norfloxacin/ParC/DNA ternary complex. This suggests a stabilizing interaction between the amino acids in the catalytic sites of the topoisomerases with quinolone antibiotics.

The Role of Efflux Systems in Fluroquinolone Resistance

Five major families of efflux pumps exist in *E. coli*: ATP-Binding Cassette (ABC) superfamily, major facilitator superfamily (MFS), multidrug and toxic compound extrusion (MATE) family, resistance nodulation cell division (RND) family, and small multidrug resistance (SMR) family.

The efflux system which most effects quinolone resistance is AcrAB which belongs to the Resistance Nodulation Cell Division (RND) family. The AcrAB efflux system also includes one copy of the outer membrane protein TolC. TolC is a transmembrane protein channel that reaches out through the outer membrane to allow the substrate to cross the periplasmic space as part of a RND or MFS efflux pump (Fralick, 1996). Ma et. al. observed that when *acrAB* is deleted, the *E. coli* cell becomes hypersusceptible to bile salts. They also observed that *acrAB* expression was increased in multidrug resistant *E. coli* mutants. AcrB is the portion of the pump located in the inner membrane, deriving energy from proton motive force (Ma et al, 1993). This portion of the protein is believed to be the part of the efflux system that captures the molecule, transferring it to TolC for efflux. In contrast, AcrA is a lipoprotein found in the periplasmic space and the inner membrane; it serves to transport non polar molecules (Zgurskaya and Nikaido, 1999) but also appears to stabilize the TolC-AcrAB complex. All three proteins are needed in order for the AcrAB/TolC efflux system.

Figure 2: Structure for AcrAB/TolC efflux system in E. coli. (Murakami et. al., 2002)

Substrates for the AcrAB/TolC efflux system include such compounds as tetracycline, chloramphenicol, fluoroquinolones, β -lactams, erythromycin, fusidic acid, ethidium bromide, crystal violet, sodium dodecyl sulfate (SDS), and bile acids.

marABR is believed to code for regulators of antimicrobial resistance. The *marABR* operon is located on the chromosome of *E. coli*; when expressed, it increases resistance seen initially to chloramphenicol and tetracycline. The accepted functions of these three genes are as follows: MarA is thought to be a transcriptional activator of antimicrobial resistance genes by

activating *sodA* (a superoxide dismutase), *zwf* (a glucose-6-phosphate dehydrogenase) and *micF* (an antisense RNA regulator of outer membrane porins). The function of MarB is still yet to be determined. MarR is the repressor of the *marABR* operon. (Cohen et. al. 1993) With MarA sharing a pathway with SoxS, MarA is also found to be associated with upregulation of AcrAB, making it also part of the multi-antimicrobial resistance pathway. (Ma et. al, 1996).

Several other genes contribute to efflux pump activity in E. coli. mdfA encodes for the major facilitator superfamily (MFS) of efflux pumps.. MdfA is a multidrug efflux pump. Originally identified as a chloramphenicol resistance pump, it is now known to efflux other antimicrobial substrates such as tetraphenylphosphonium (TPP+), ciprofloxacin, and ethidium bromide. *norE* was also identified as a multi substrate efflux pump, this time belonging to the multi antimicrobial extrusion (MATE) family. Yang et. al in 2003 compared the roles of AcrAB, MdfA, and NorE in quinolone resistance. Regardless of the efflux pump, expression of each increased resistance (based on magnitude of increase in MIC) only 10 fold. Strains of E. coli studied (n=15) including those with mutations gyrA S83L, parC E84K, gyrA S83L parC E84K, and each of those strains with each combinations of deletions: $\Delta acrB1$, $\Delta norE$, $\Delta mdfA$ or overexpression by plasmid of *acrB1*, *norE* and *mdfA*. In cells overexpressing *acrB1*, resistance increased up to 6.4 for ciprofloxacin and 5.3 for norfloxacin; overexpression of *acrB1* and *norE*, resulted in increases of 9.4 and 16.0 fold, for ciprofloxacin and norfloxacin respectively, and overexpression of *acrB1* and *mdfA*, an increase in 11.8 fold and 16 fold, respectively (Shaheen et al., 2010a).

The deletion of *norE* or *mdfA* alone or in combination had no significant effect compared with the wild type, although deletion of *acrA1* decreased the MIC_{Cip} 8 fold. The combined deletion of *acrA1* and *mdfA* increased MIC_{Cip} by 1.1 fold, for *acrA1*, *and norE* as well as

combination of all three deleted the increase was 1.05 fold. When coupled with the MIC's resulting from deletion of the efflux pump genes, the data suggests that overexpression of efflux pumps, and especially combinations of efflux pumps, significantly increases *E. coli* resistance to fluoroquinolones.

Resistance Mechanism	Gene	MIC _{Cipro} Change	
	acrAB	10x	
Efflux Pump	mdfA	10x	
	norE	10x	
Efflux Pump	acrB1	6.4x	
Gene	acrB1/mdfA	11.8x	
Overexpression	acrB1/norE	9.4x	
	acrB1	.125x	
		No	
	mdfA	Change	
		No	
Efflux Pump Gene Deletion	norE	Change	
	acrB1/mdfA	1.1x	
	acrB1/norE	1.1x	
	acrB1/mdfA		
	norE	1.05x	

Table1: Fold change in MIC_{Cipro} for *E. coli* cells expressing *acrAB*, *mdfA* and *norE*, overexpressing acrB1, acrB1/mdfA, acrB1/norE, and with deletions of *acrB1*, *mdfA*, *norE*, *acrB1/mdfA*, *acrB1/mdfA*/*norE* (Yang et al, 2003)

According to a study in 2000 by Maira-Litrán et. al, while in biofilm (in which bacterial cells specialize in their function to form large bacterial communities), *E. coli* resistance to antimicrobials does not appear to be mediated through the upregulation of *mar* or *acrAB* operons. Further, mutations in gyrAB and parCE are ineffective at conferring quinolone

resistance, with *acrAB* being severely down-regulated or deleted. (Oethinger et. al, 2000) These findings exemplify the complexity involved in conferring antimicrobial resistance.

Emerging Factors: Plasmid Mediated Quinolone Resistance and More

Plasmid mediated quiniolone resistance genes termed *qnr* code for pentapeptide repeat proteins located on integron structures (Tran and Jacoby, 2002). First discovered on multiresistance plasmid pMG252 in *Klebsiella pneumonia*, QnrA was determined to have a broad host range found to exist in many gram negative microorganisms as well as some select gram positive microorganisms (Martínez-Martínez et. al. 1998). Antimicrobial susceptibility testing to an *E. coli* with a plasmid containing *qnrA* gene demonstrated an increased MIC_{Cip} by 4 to 7 fold. Tran et. al. (2005) demonstrated that QnrA is able to cause this increase by binding specifically to DNA gyrase, thus sheltering the target enzyme from fluroquinolones. Although the mode of action may reflect prevention of the ternary complex of DNA gyrase/ DNA/ fluroquinolone from forming, it is not through interference of DNA gyrase/ DNA interaction nor creation of the heterodimer required for DNA gyrase activity. The authors also proposed that QnrA may allow the toxic ternary complex to form, but that the replication fork is preserved by destabilizing the cleavage complex, thus avoiding the lethal double stand break. In a 2005 publication Tran et. al also showed similar patterns for topoisomerase IV and QnrA interaction.

Other Qnr proteins have also been identified; however the homology by amino acid identity is below 60% across all Qnr proteins. In 2005 Hata *et. al.* isolated QnrS from a clinical strain of *Shigella flexneri* via pulse field gel electrophoresis, and conjugated the wild plasmid carrying the quinolone resistance gene into competent strain *E. coli* HB101. Transconjugant *E. coli* HB101 displayed a MIC_{Cip} of .25mcg/ml compared to baseline 0.06mcg/ml MIC_{Cip}. A second experiment in which the wild plasmid was conjugated into quinolone susceptible *S*. *flexneri* resulted in an increase in MIC_{Cip} 4 fold, thus demonstrating that the *qnrS* gene encoded on this wild plasmid was responsible for conferring the observed quinolone resistance. Sequencing showed that QnrS shared an amino acid identity of 59% with QnrA.

The next Qnr protein to be identified was QnrB isolated from *K. pneumonia* clinical isolates in India exhibiting low level fluoroquinolone resistance. (Jacoby et al, 2004) These isolates, however, were QnrA negative. Cloning studies confirmed QnrB protein as responsible for the low level fluroquinolone resistance.

Plasmid in <i>E. coli</i> J53		MIC (µg/ml)				
	Qnr protein	Nalidixic acid	Ciprofloxacin	Gatifloxacin	Levofloxacin	Moxifloxacin
R [−]		4	0.015	0.03	0.03	0.06
pMG252	QnrA	32	0.5	0.5	1	1
pHSH4-3	QnrA	16	0.25	0.5	0.5	0.5
pMG298	QnrB1	16	1	1	0.5	2
pMG299	QnrB1	16	0.25	0.5	0.5	1
pMG300	QnrB1	16	0.25	0.5	0.25	1

Table 2: Susceptibilities of *E. coli* transformed with plasmids harboring different qnr genes. (Jacoby et al, 2004)

Other variants of *qnr* include, 6 *qnrA*, 20 *qnrB*, 4 *qnrS*, *qnrC* in *Proteus mirabilis*, and *qnrD* in *Salmonella enterica* serovar *Kentucky* with *qnrB*19 being the most common (Rodríguez-Martínez, J. et. al 2010). *qnrB* is thought to be the oldest of the *qnr* genes with the first evidence of *qnrB* being identified from *E. coli* isolated in 1988. (Jacoby et. al. 2009)

Another plasmid mediated mechanism for quinolone resistance is the cr variant of aac(6')-Ib an aminoglycoside acetyltransferase found to inactivate ciprofloxacin by acetylating the antibiotic at the amino nitrogen on its piperazinyl ring; this change causes an increase of

MIC_{Cip} to 1.0 ug/ml. This was a groundbreaking finding since fluroquinolones are synthetic drugs and it was thought that there was no natural source of modification to them. Through the course of this finding Robicsek et. al. identified two mutations in aac(6')-Ib that conferred this cr variant. Mutations in Trp102Arg and Asp179Tyr were revealed to be responsible for the ability to modify ciprofloxacin at the piperazyl ring. This claim was strengthened by performing site directed mutagenesis on aac(6')-Ib-cr: in the absence of those two mutations the enzyme was no longer linked to ciprofloxacin resistance. (Robicsek et. al., 2007) In a survey of clinical isolates, aac(6')-Ib-cr was found in 15 of 47 ciprofloxacin resistant *E. coli* isolates. (Park et. al. 2006) (Shaheen et al, 2010b)

In 2007 a third class of plasmid mediated resistance was discovered in QepA, a plasmid mediated quinolone efflux pump first isolated from an *E. coli* in Japan. An *E. coli* KAM32 was transformed with pSTV with *qepA* as well as pSTV with *qepA* deleted. When subjected to susceptibility testing it revealed that pSTV*qepA* exhibited a 32 fold increase in MIC to ciprofloxacin when compared to pSTV $\Delta qepA$. An increase was also observed across all quinolones: naladixic acid, lomefloxacin, and sparfloxacin 2 fold, levofloxacin and pazufloxacin 4 fold, moxifloxacin and gatafloxacin 8 fold, tosufloxacin 16 fold, enrofloxacin 32 fold, and norfloxacin 64 fold, (Yamane et. al. 2007)

The amino acid sequence of QepA was found to be similar to EmrB from the MFS class of efflux pumps and secondary structure and super secondary structure was predicted and is shown in Figure 5.

Figure 3: Prediction of the secondary structure for the plasmid mediated quinolone efflux pump QepA. (Yamane et al. 2007)

A second efflux pump, OqxAB conferring quinolone resistance is associated with the pOLA52 plasmid, belonging to the RND superfamily of efflux pumps. Originally associated with resistance to olaquindox, it also confers resistance to ethidium bromide (a DNA mutagen) and chloramphenicol. *E. coli* N43 transformed with a pLOW plasmid with and without *oqxAB* exhibited no change in the MIC of 3 compounds, but an increase of MIC in 16 out of 19 compounds including Chloramphenicol and Sodium doecyl sulfate (128x), Ciprofloxacin and Flumequine (32x), Norfloxacin, Olaquindox and Trimethoprim (64x),. (Hansen et. al. 2007)

An emerging factor contributing to antimicrobial resistance is a state of persistence, a transient physiological state not associated with genetic modification but in which antibiotics are ineffective. Persisters to ciprofloxacin develop randomly, in response to antimicrobial exposure.

However, the mechanisms conferring persistence are not yet understood. Dorr et.al (2006) suggested that persistent bacteria do not experience double strand breaks in the presence of fluoroquinolones, eliminating the signals that induce genetic mutation, or subsequent repair functions, or allow a plasmid mediated response typical of such exposure. RecA and RecBCD are proteins expressed during the SOS response, RecA is responsible for binding to single stranded DNA and RecBCD is responsible for facilitating recombination repair. Mutants with *recA* or *recB* deleted were used to test this hypothesis; the remaining persisters in $\Delta recA$ mutants were greatly reduced. In $\Delta recB$ mutants persisters were eliminated within 6 hours of exposure. This suggests that the *recBCD* response is needed to repair double strand breaks in persisters and to induce the SOS response. There is also evidence that persisters undergo at least one site specific recombination event in order to repair damage from the double strand break. Therefore, in order for persistence to occur the SOS response must be induced by RecA binding to damaged DNA. Conversely, this does not rule out spontaneous induction of the SOS response in order to create the physiological state necessary for fluoroquinolone persistence. This study revealed that a certain level of SOS response is necessary for persistence to occur since antimicrobials elicit an SOS response from all bacteria. In the natural environment of a specific bacterium, the bacterium is usually faced consistently with stresses and growth is commonly being inhibited. It is now predicted that in the wild it is not uncommon to find persistent bacteria (Dorr et. al 2009).

Levels of persistence are seen to differ between stages of the bacteria growth curve, with persistence being low during exponential phase and high in stationary phase. This is because in a state of non growth their drug targets are inactivated. (Dorr et. al 2009).

Methods for Detection of Resistance

Methods by which fluoroquinolones resistance can be detected are numerous. The oldest is susceptibility testing by either broth dilution (Donovick et al., 1945) Kirby-Bauer antibiotic testing (Kirby et al., 1956), or Episilometer testing (Bolmstrom et al., 1988). Broth dilution is the original modern susceptibility test and remains as the gold standard today.

The broth dilution method was first introduced in 1945 by Donovick, R., et al., as a solution to standardize susceptibility testing. Previously, antimicrobial susceptibility was measured in dilution units (Waksman, 1943), from agar dilution and diffusion units (Schatz et. al., 1944), from antimicrobial diffused across agar. These practices lead to publishing of *Escherichia coli* units, *Bacillus subtilis* units, *Staphylococcus aureus* units, etc. all of which were incomparable. The lack of standardization was addressed with broth dilution performed using multiple dilutions of each antimicrobial in nutrient broth and inoculating this broth with standardized numbers of colonies of the organism of interest. The inoculated sample is incubated in optimal growth conditions until log phase growth, dilutions are then inspected for growth inhibition. The greatest dilution (or lowest concentration of drug) in which growth is not observed is considered the organism's minimum inhibitory concentration (MIC) toward that drug (Donvick, R. et al, 1945). This procedure has since been updated to such that it is performed using microbroth dilution procedures which is the considered the gold standard by the Clinical Laboratory Standards Institute (CLSI, 2008).

Kirby-Bauer antibiotic testing, also known as the disk diffusion method, is performed using solid agar inoculated with a known amount of bacterial or fungal suspension. A disk infused with the antimicrobial of choice is placed on the agar creating an antimicrobial gradient. Susceptible organisms will not grow in the presence of the antibiotic creating a zone of inhibition. Large zones of inhibition indicate organisms that have greater susceptibility to the antimicrobial and therefore smaller MICs. The radius of the zone of inhibition is measured and compared to the time elapsed since exposure to the disk and a MIC is estimated (Bauer et. al, 1966).

Episilometer testing (E-test) is conducted similarly to the Kirby- Bauer method. However the disk is substituted for a metered strip impregnated with the antimicrobial of choice at the top. The antimicrobial diffuses in to the agar creating a gradient. Susceptibility is measured by comparing the area of inhibited growth to the coordinating meter on the strip indicating the amount of antimicrobial present at that point in the gradient (Bolmstrom, et. al., 1988).

Advantages of culture and susceptibility testing is that a clear quantitative susceptibility threshold is acquired; however the disadvantage is for organisms like *M. tuberculosis*. For such organisms, slow growth complicates susceptibility testing due to risk of contamination and extended time between sample collection and sensitivity result. There is a need for development of more rapid assays.

Other novel approaches for detecting quinolone resistance have also been described. These approaches have been molecular approaches aim at creating rapid detection of quinolone resistance. Techniques such as blotting, high performance liquid chromatography, pyrosequencing, mismatch amplification mutation assay, single-strand conformation polymorphism, and quantitative PCR have been utilized to bypass susceptibility testing.

In 1996, a technique for detection of ciprofloxacin resistant *Mycobacterium tuberculosis* was introduced utilizing 16S rRNA precursor. The assay uses slot blots hybridized with

nucleotide probes specific for the sequences found in terminal stems of 16S pre-rRNA which is spliced during RNA maturation. They observed that in rifampin and ciprofloxacin resistant strains when exposed to these drugs in broth, 16S pre-rRNA collected in the cell unprocessed to mature rRNA and was detected in large amounts by the nucleotide probe. However, in susceptible strains pre-RNA was not detected after exposure to the antimicrobials (Cangelosi, et. al., 1996). For *Campylobacter jejuni*, a nonradioisotopic single-strand conformation polymorphism (non-RI SSCP) assay has been described for rapid detection of quinolone resistance. This assay takes advantage of changes in gyrA folding by comparing its mobility in a polyacrylamide gel, and silver staining which produces better resolution bands so that small differences can be detected. (Charvalos, et. al, 1996)

A mismatch amplification mutation assay (MAMA) was developed by Zirnstein et al. to detect ciprofloxacin resistance in *Campylobacter*. MAMA uses a conserved primer coupled with a mutation detection primer for PCR and products are analyzed by gel electrophoresis. Isolates that contain the targeted mutation in *gyrA* are amplified in the PCR reaction while wild type or non targeted mutations are not (Zirnstein et. al, 1999). In a further search for a rapid and sensitive assay, denaturing high performance liquid chromatography was attempted in *Salmonella enterica* to detect a DNA sequence variation indicative of quinolone resistance. This technique consists of temperature dependant denaturation of dsDNA followed by ion pair chromatography. In this study 11 profiles were created; however, the profile for the resistant Asp87Gly mutation was indistinguishable from the wild type (Eaves et al, 2002).

Quantitative PCR based assays were the next frontier for rapid detection of quinolone resistance. Again, in *C. jejuni* a technique was developed to detect quinolone resistance by targeting mutations in *gyrA*. Using Taq-man probe TAQ1 and primers designed specifically to

the QRDR of *C. jejuni* this assay was able to rapidly detect SNPs in *C. jejuni gyrA* responsible for quinolone resistance (Wilson, et al, 2000), a similar assay was also developed for *Salmonella enterica* (Esaki et al, 2004) and using a dual probe approach for *Mycoplasma bovis* (Ben Shabat et al, 2010). Soon FRET-PCR assays detecting SNPs in *gyrA* were developed for *Yersinia pestis* (Lindler et. al, 2001), *Neisseria gonorrhoeae* (Li et al, 2002), *Streptococcus pneumoniae* (Page et. al, 2008) along with a protocol for *Haemophilus influenza* for SNP detection in *gyrA/parC* (Nakamura et al, 2009) and *gyrA/gyrB* in *Clostridium difficile* (Spigaglia et al, 2010). Recently a new assay has been developed using qPCR for *M. tuberculosis*. This assay utilizes asymmetric PCR with sloppy molecular beacons (probes with long sequences allowing hybridization with many different species amid mismatched nucleotide pairs) to detect mixed resistance (Chakravorty et al, 2011).

References

- Anderson V., Gootz T., Osheroff N., 1998. Topoisomerase IV catalysis and the mechanism of quinolone action. J. Biol. Chem. 274; 17879-17885.
- Asahina, Y., Ishizaki, T., Suzue, S., 1992. Recent advances in structure activity relationships in new quinolones. Prog. Drug Res. 38; 57-106
- Barlow, A. M., 1963. Nalidixic Acid in Infections of Urinary Tract. Br Med J. 2; 1308–1310.
- Barnard F.M., Maxwell A., 2001. Interaction between DNA gyrase and quinolones: effects of alanine mutations at GyrA subunit residues Ser(83) and Asp(87). Antimicrob Agents Chemother. 45; 1994-2000.
- Barry, A.L., Jones, R. N., 1984. Cross-resistance among cinoxacin, ciprofloxacin, DJ-6783, enoxacin, nalidixic acid, norfloxacin, and oxolinic acid after in vitro selection of resistant populations. Antimicrob Agents Chemother. 25; 775-777.
- Bauer, A. W., Kirby, W. M. M., Sherris, J. C., Turck, M., 1966. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 36; 493-496.
- Ben Shabat ,M., Mikula, I., Gerchman, I., Lysnyansky, I., 2010. Development and evaluation of a novel single-nucleotide-polymorphism real-time PCR assay for rapid detection of fluoroquinolone-resistant Mycoplasma bovis. J Clin Microbiol. 48; 2909-2915.

- Blumberg, H.M., Rimland, D., Carroll, D.J., Terry, P., Wachsmuth, I.K., 1991. Rapid development of ciprofloxacin resistance in methicillin susceptible and -resistant Staphylococcus aureus. J Infect Dis. 163; 1279-1285.
- Bolmstrom, A., Arvidson, S., Ericsson, M. & Karlsson, A., 1988. A novel technique for direct quantification of antimicrobial susceptibility of microorganisms. In Program and Abstracts of the Twenty-Eighth Interscience Conference on Antimicrobial Agents and Chemotherapy. Los Angeles. CA, 1988. Abstract 1209, p. 325. American Society for Microbiology, Washington, DC.
- Boothe DM, Boeckh A, Simpson RB, Dubose K., 2006. Comparison of pharmacodynamic and pharmacokinetic indices of efficacy for 5 fluoroquinolones toward pathogens of dogs and cats.J Vet Intern Med. 20;1297-1306.
- Breines, D.M., Ouabdesselam, S., Ng, E.Y., Tankovic, J., Shah, S., Soussy, C.J., Hooper, D.C., 1997. Quinolone resistance locus *nfxD* of *Escherichia coli* is a mutant allele of the *parE* gene encoding a subunit of topoisomerase IV. Antimicrob Agents Chemother. 41, 175-179.
- Cangelosi,G.A., Brabant, W.H., Britschgi, T.B., Wallis, C.K., 1996. Detection of rifampin- and ciprofloxacin-resistant Mycobacterium tuberculosis by using species-specific assays for precursor rRNA. Antimicrob Agents Chemother. 40; 1790-1795.
- Chakravorty, S., Aladegbami, B., Thoms, K., Lee, J.S., Lee, E.G., Rajan, V., Cho, E.J., Kim, H.,
 Kwak, H., Kurepina, N., Cho, S.N., Kreiswirth, B., Via, L.E., Barry, C.E., Alland, D.,
 2011. Rapid detection of fluoroquinolone-resistant and hetero-resistant Mycobacterium

tuberculosis using sloppy molecular beacons and a dual melting temperature code in a real-time PCR assay. J Clin Microbiol. (E-pub ahead of print)

- Charvalos, E., Peteinaki, E., Spyridaki, I., Manetas, S., Tselentis, Y., 1996. Detection of ciprofloxacin resistance mutations in Campylobacter jejuni gyrA by nonradioisotopic single-strand conformation polymorphism and direct DNA sequencing. J Clin Lab Anal. 10; 129-133.
- Chu, D.T., Fernandes, P.B., 1989. Structure-activity relationships of the fluoroquinolones. Antimicrob Agents Chemother. 33; 131–135.
- Cohen, S.P., Hachler, H., Levy, S.B., 1993. Genetic and functional analysis of the multiple antibiotic resistance (*mar*) locus in *Escherichia coli*. J. Bacteriol. 175; 1484–1492.
- Cohn, L. A., Gary, A.T., Fales, W.H., Madsen, R.W., 2003. Trends in fluoroquinolone resistance of bacteria isolated from canine urinary tracts. J. Vet. Diagn. Invest. 15; 338-343.
- Critchlow, S.E., Maxwell, A., 1996. DNA cleavage is not required for the binding of quinolone drugs to the DNA gyrase-DNA complex. Biochemistry. 35; 7387-7393.
- Dalhoff, A., Petersen, U., Endermann, R., 1996. In vitro activity of BAY 12-8039, a new 8methoxyquinolone. Chemotherapy. 42; 410-425.
- Dean, F., Krasnow, M.A., Otter, R., Matzuk, M.M., Spengler, S.J., Cozzarelli, N.R., 1983. *Escherichia coli* type-1 topoisomerases: identification, mechanism, and role in recombination. Cold Spring Harb. Symp. Quant. Biol. 47; 769-77.
- Dörr, T., Lewis, K., Vulić, M., 2009. SOS response induces persistence to fluoroquinolones in *Escherichia coli*. PLoS Genet. 5; e1000760.

- Domagala, J.M., 1994. Structure-activity and structure-side-effect relationshipsfor quinolone antibacterials. J. Antimicrob. Chemother. 33; 685-706
- Eaves, D.J., Liebana, E., Woodward, M.J., Piddock, L.J., 2002. Detection of gyrA mutations in quinolone-resistant Salmonella enterica by denaturing high-performance liquid chromatography. J Clin Microbiol. 40; 4121-4125.
- Emrich, N.C., Heisig, A., Stubbings, W., Labischinski, H., Heisig, P., 2010. Antibacterial activity of finafloxacin under different pH conditions against isogenic strains of *Escherichia coli* expressing combinations of defined mechanisms of fluoroquinolone resistance. J. Antimicrob. Chemother. (E-pub ahead of print)
- Esaki, H., Noda, K., Otsuki, N., Kojima, A., Asai, T., Tamura, Y., Takahashi, T., 2004. Rapid detection of quinolone-resistant Salmonella by real time SNP genotyping. J Microbiol Methods. 58; 131-134.
- Hansen, L.H., Jensen, L.B., Sørensen, H.I., Sørensen, S.J., 2007. Substrate specificity of the OqxAB multidrug resistance pump in *Escherichia coli* and selected enteric bacteria. J Antimicrob Chemother. 60; 145-147.
- Hecht, D.W., Wexler, H.M., 1996. In vitro susceptability of anaerobes to quinolones in the United States. Clin Infect Dis 23; S2-S8
- Hirose, T., Okezaki, E., Kato, H., Ito, Y., Inoue, M., Mitsuhashi, S., 1987. In vitro and in vivo activity of NY-198, a new difluorinated quinolone. Antimicrob Agents Chemother. 31; 854-859.

- Hosaka, M., Yasue, T., Fukuda, H., Tomizawa, H., Aoyama, H., Hirai, K., 1992. In vitro and in vivo antibacterial activities of AM-1155, a new 6-fluoro-8-methoxy quinolone.Antimicrob Agents Chemother. 36; 2108-2117.
- Imada, T., Miyazaki, S., Nishida, M., Yamaguchi, K., Goto, S., 1992. In vitro and in vivo antibacterial activities of a new quinolone, OPC-17116. Antimicrob Agents Chemother. 36; 573-579.
- Ito, A., Hirai, K., Inoue, M., Koga, H., Suzue, S., Irikura, T., Mitsuhashi, S., In vitro antibacterial activity of AM-715, a new nalidixic acid analog. Antimicrob Agents Chemother. 17; 103-108.
- Jacoby, G.A., Walsh, K.E., Mills, D.M., Walker, V.J., Oh, H., Robicsek, A., Hooper, D.C., 2006. *qnrB*, another plasmid-mediated gene for quinolone resistance. Antimicrob Agents Chemother. 50; 1178-1182.
- Jacoby, G.A., Gacharna, N., Black, T.A., Miller, G.H., Hooper, D.C., 2009. Temporal appearance of plasmid-mediated quinolone resistance genes. Antimicrob. Agents Chemother. 53; 1665-1666.
- Jones, R.N., Fritsche, T.R., Sader, H.S., 2008. Antimicrobial activity of DC-159a, a new fluoroquinolone, against 1,149 recently collected clinical isolates. Antimicrob Agents Chemother. 52; 3763-3775.
- Kato, J., Nishimura, Y., Imamura, R., Niki, H., Hiraga, S., Suzuki, H., 1990. New topoisomerase essential for chromosome segregation in *E. coli*. Cell. 63; 393-404.

- Khodursky, A.B., Zechiedrich, E.L., Cozzarelli, N.R., 1995, Topoisomerase IV is a Target of Quinolones in *Escherichia coli*. PNAS 92; 11801-11805
- Kirby, W. M. M., Yoshihara, G. M., Sundsted, K. S., Warren, J. H., 1957. Clinical usefulness of a single disc method for antibiotic sensitivity testing. Antibiotics Annu. 892; 1956-1957.
- Kumagai, Y., Kato, J.I., Hoshino, K., Akasaka, T., Sato, K., Ikeda, H., 1996. Quinolone-Resistant Mutants of *Escherichia coli* DNA Topoisomerase IV *parC* Gene. Antimicrob. Agents and Chemother. 40; 710-714
- Lafredo, S.C., Foleno, B.D., Fu, K.P., 1993. Induction of resistance of Streptococcus pneumoniae to quinolones in vitro. Chemotherapy. 39; 36-39.
- Lesher, G.Y., Froelich, E.J., Gruett, M.D., Bailey, J.H., Brundage, R.P., 1962. 1,8-Naphthyridine Derivatives: A New Class of Chemotherapeutic Agents. J. Med. Chem., 5; 1063–1065
- Li, Z., Yokoi, S., Kawamura, Y., Maeda, S., Ezaki, T., Deguchi, T., 2002. Rapid detection of quinolone resistance-associated gyrA mutations in Neisseria gonorrhoeae with a LightCycler. J Infect Chemother. 8; 145-150.
- Lindler, L.E., Fan, W., Jahan, N., 2001. Detection of ciprofloxacin-resistant Yersinia pestis by fluorogenic PCR using the LightCycler. J Clin Microbiol. 39; 3649-3655.
- Macinga, D.R., Renick, P.J., Makin, K.M., Ellis, D.H., Kreiner, A.A., Li, M., Rupnik, K.J., Kincaid, E.M., Wallace, C.D., Ledoussal, B., Morris, T.W., 2003. Unique biological properties and molecular mechanism of 5,6-bridged quinolones. Antimicrob Agents Chemother. 47; 2526-2537.

- Maira-Litrán, T., Allison, D.G., Gilbert, P., 2000. An evaluation of the potential of the multiple antibiotic resistance operon (mar) and the multidrug efflux pump *acrAB* to moderate resistance towards ciprofloxacin in *Escherichia coli* biofilms. J Antimicrob Chemother. 45; 789-795.
- Martínez-Martínez, L., Pascual, A., Jacoby, G.A., 1998. Quinolone resistance from a transferable plasmid. Lancet. 351; 797-799
- Matrat, S., Aubry, A., Mayer, C., Jarlier, V., Cambau, E., 2008. Mutagenesis in the a-3-a-4 GyrA Helix and in the Toprim Domain of GyrB Refines the Contribution of Mycobacterium tuberculosis DNA Gyrase to Intrinsic Resistance to Quinolones. Antimicrob. Agents and Chemother., 52; 2909-2914
- Murakami, S., Nakashima, R., Yamashita, E., Yamaguchi, A., 2002. Crystal structure of bacterial multidrug efflux transporter AcrB. Nature. 419; 587-593
- Nakamura, S., Minami, A., Nakata, K., Kurobe, N., Kouno, K., Sakaguchi, Y., Kashimoto, S., Yoshida, H., Kojima, T., Ohue, T., et al. 1989. In vitro and in vivo antibacterial activities of AT-4140, a new broad-spectrum quinolone. Antimicrob Agents Chemother. 1989 Aug;33; 1167-1173.
- Nakamura, S., Yanagihara, K., Morinaga, Y., Izumikawa, K., Seki, M., Kakeya, H., Yamamoto,Y., Kamihira, S., Kohno, S., 2009. Melting curve analysis for rapid detection of topoisomerase gene mutations in Haemophilus influenzae. J Clin Microbiol. 47; 781-784.
- Oethinger, M., Kern, W.V., Jellen-Ritter, A.S., McMurry, L.M., Levy, S.B., 2000. Ineffectiveness of topoisomerase mutations in mediating clinically significant

fluoroquinolone resistance in *Escherichia coli* in the absence of the AcrAB efflux pump. Antimicrob Agents Chemother. 44; 10-13.

- Page, S., Vernel-Pauillac, F., O'Connor, O., Bremont, S., Charavay, F., Courvalin, P., Goarant,C., Le Hello, S., 2008. Real-time PCR detection of gyrA and parC mutations inStreptococcus pneumoniae. Antimicrob Agents Chemother. 52; 4155-8
- Park, C.H., Robicsek, A., Jacoby, G.A., Sahm, D., Hooper, D.C., 2006. Prevalence in the United States of aac(6')-Ib-cr encoding a ciprofloxacin-modifying enzyme. Antimicrob Agents Chemother. 50; 3953-3955.
- Pfeiffer, E.S., Hiasa, H., 2004. Replacement of ParC alpha4 helix with that of GyrA increases the stability and cytotoxicity of topoisomerase IV-quinolone-DNA ternary complexes. Antimicrob Agents Chemother. 48; 608-611.
- Richard, P., Delangle, M.H., Merrien, D., 1994. Fluoroquinolone use and fluoroquinolone resistance: is there an association?. Clin. Infect. Dis. 19; 54–59.
- Robicsek, A., Strahilevitz, J., Jacoby, G.A., Macielag, M., Abbanat, D., Bush, K., Hooper, D.C.,
 2006. Fluoroquinolone modifying enzyme: a novel adaptation of a common aminoglycoside acetyltransferase. Nat. Med. 12; 83–88.
- Sanders, C.C., Sanders, W.E. Jr, Goering, R.V., Werner, V., 1984. Selection of multiple antibiotic resistance by quinolones, beta-lactams, and aminoglycosides with special reference to cross-resistance between unrelated drug classes. Antimicrob Agents Chemother. 26; 797-801.

- Schatz, A., Bugie, E., Waksman, S. A., 1944. Streptomycin, a substance exhibiting antibiotic activity against gram-positive and gram-negative bacteria. Proc. Soc. Exptl. Biol. Med., 55; 66-69.
- Shaheen BW, Boothe DM, Oyarzabal OA, Smaha T., 2010. Antimicrobial resistance profiles and clonal relatedness of canine and feline Escherichia coli pathogens expressing multidrug resistance in the United States. J Vet Intern Med. 24;323-330.
- Shaheen BW, Oyarzabal OA, Boothe DM., 2010. The role of class 1 and 2 integrons in mediating antimicrobial resistance among canine and feline clinical E. coli isolates from the US. Vet Microbiol. 26;363-370.
- Shaheen BW, Boothe DM, Oyarzabal OA, Wang C, Johnson CM., 2011. Evaluation of the contribution of gyrA mutation and efflux pumps to fluoroquinolone and multidrug resistance in pathogenic Escherichia coli isolates from dogs and cats. Am J Vet Res. 72;25-32.
- Shimizu, M., Takase, Y., Nakamura, S., Katae, H., Minami, A., Nakata, K., Inoue, S., Ishiyama, M., Kubo, Y., 1975. Pipemidic Acid, a New Antibacterial Agent Active Against *Pseudomonas aeruginosa*: In Vitro Properties. Antimicrob. Agents Chemother., 8; 132–138.
- Soussy, C.J., Wolfson, J.S., Ng, E.Y., Hooper, D.C., 1993. Limitations of plasmid complementation test for determination of quinolone resistance due to changes in the gyrase A protein and identification of conditional quinolone resistance locus. Antimicrob Agents Chemother. 37; 2588-2592.
- Spigaglia, P., Carattoli, A., Barbanti, F., Mastrantonio, P., 2010. Detection of gyrA and gyrB mutations in Clostridium difficile isolates by real-time PCR. Mol Cell Probes. 24; 61-67.
- Tanaka, M., Otsuki, M., Nishino, T., 1992. Bactericidal activities of ofloxacin and its optically active isomer (DR-3355) on non-growing cells of Escherichia coli and Pseudomonas aeruginosa. Chemotherapy, 38; 21-7.
- Tran, J.H., Jacoby, G.A., 2002. Mechanism of plasmid-mediated quinolone resistance. *PNAS*. 99; 5638-5642.
- Tran, J.H., Jacoby, G.A., Hooper, D.C., 2005. Interaction of the Plasmid-Encoded Quinolone Resistance Protein Qnr with *Escherichia coli* DNA Gyrase. Antimicrob. Agents Chemother. 49; 118–125
- Tran, J.H., Jacoby, G.A., Hooper, D.C., 2005. Interaction of the plasmid-encoded quinolone resistance protein QnrA with *Escherichia coli* topoisomerase IV. Antimicrob Agents Chemother. 49; 3050-3052.
- Turner, F.J., Ringel, S.M., Martin, J.F., Storino, P.J., Daly, J.M., Schwartz, B.S., 1967. Oxolinic acid, a new synthetic antimicrobial agent. Antimicrob. Agents Chemother. 7; 475-479.
- Vila, J., Ruiz, J., Goñi, P., De Anta, M. T., 1996. Detection of mutations in *parC* in quinoloneresistant clinical isolates of *Escherichia coli*. Antimicrob Agents Chemother. 40; 491– 493.
- Waksman, S. A., 1943. Production and activity of streptothricin. J. Bact., 46; 299-310.
- Wang, M., Jacoby, G.A., Mills, D.M., Hooper, D.C., 2009. SOS regulation of *qnrB* expression. Antimicrob Agents Chemother. 53; 821-823.

- Watt, P.M., Hickson, I.D., 1994. Structure and function of type II DNA topoisomerases. Biochem J. 303; 681-695.
- Webber, M., Piddock, L.J., 2001.Quinolone resistance in *Escherichia coli*. Vet. Res. 32; 275–284.
- Wick, W. E., Preston, D. A., White, W. A., Gordee, R. S., 1973. Compound 64716, a new synthetic antibacterial agent. Antimicrob. Ag. Chemother. 4; 415-420.
- Wilson, D.L., Abner, S.R., Newman, T.C., Mansfield, L.S., Linz, J.E., 2000. Identification of ciprofloxacin-resistant Campylobacter jejuni by use of a fluorogenic PCR assay. J Clin Microbiol. 38; 3971-3978.
- Wolfson, J.S., Hooper, D.C., 1989. Bacterial resistance to quinolones: mechanisms and clinical importance. Rev. Infect. Dis. 11; S960-968.
- Yamada, J., Yamasaki, S., Hirakawa, H., Hayashi-Nishino, M., Yamaguchi, A., Nishino, K., 2010. Impact of the RNA chaperone Hfq on multidrug resistance in *Escherichia coli*. J Antimicrob Chemother. 65; 853-858.
- Yamagishi, J., Yoshida, H., Yamayoshi, M., Nakamura, S., 1986. Nalidixic Acid-Resistant Mutations of the *gyrB* Gene of *Escherichia coli*. Mol. Gen, Genet. 204; 367-373
- Yamane, K., Wachino, J., Suzuki, S., Kimura, K., Shibata, N., Kato, H., Shibayama, K., Konda, T., Arakawa, Y., 2007. New plasmid-mediated fluoroquinolone efflux pump, QepA, found in an *Escherichia coli* clinical isolate. Antimicrob Agents Chemother. 51; 3354-3360.

- Yang, S., Clayton, S.R., Zechiedrich, E.L., 2003. Relative contributions of the AcrAB, MdfA, and NorE efflux pumps to quinolone resistance in *Escherichia coli*. J Antimicrob Chemother. 51; 545-556.
- Yoshida , H., Kojima, T., Yamagishi, J., Nakamura, S., 1988. Quinolone Resistant Mutations of the gyrA Gene of Escherichia coli. Mol. Gen, Genet. 211; 1-7.
- Yoshida, H., Bogaki, M., Nakamura, M., Nakamura, S., 1990. Quinolone resistance-determining region in the DNA gyrase gyrA gene of Escherichia coli. Antimicrob Agents Chemother. 34; 1271-1272.
- Yoshida, H., Bogaki, M., Nakamura, M., Yamanaka, L.M., Nakamura, S., 1991. Quinolone resistance-determining region in the DNA gyrase gyrB gene of Escherichia coli.
 Antimicrob Agents Chemother. 35; 1647–1650
- Yoshida, H., Nakamura, M., Bogaki, M., Ito, H., Kojima, T., Hattori, H., and Nakamura, S.,
 1993. Mechanism of action of quinolones against *Escherichia coli* DNA gyrase.
 Antimicrobial Agents and Chemotherapy. 37; 839-845.
- Zirnstein, G., Li, Y., Swaminathan, B., Angulo, F., 1999. Ciprofloxacin resistance in Campylobacter jejuni isolates: detection of gyrA resistance mutations by mismatch amplification mutation assay PCR and DNA sequence analysis. J Clin Microbiol. 37; 3276-3280

CHAPTER 2

DEVELOPMENT AND EVALUATION OF A FRET-PCR ASSAY FOR DETERMINING FLUOROQUINOLONE RESISTANCE IN CANINE URINE *ESCHERICHIA COLI* ISOLATES

Abstract

Antimicrobial resistance in *Escherichia coli* particularly that associated with urinary tract infection (UTI) is increasing in both human and veterinary patients. Fluoroquinolones (FQ) such as enrofloxacin are among the drugs of choice for treatment in canines. E. coli resistance to FQ, including ENR, includes mutations in topoisomerases, but may involve mechanisms associated with multidrug resistance (MDR). Among the difficulties in effective treatment of *E. coli* UTI is rapid detection of FQ resistance. The purpose of this study was to determine the specificity and sensitivity of a FRET-PCR based assay for the rapid detection of UTI caused by ENR-R E. coli. Three hundred and six clinical canine urine E. coli isolates were subjected to susceptibility testing for 14 drugs representing 6 drug classes, including ENR at a range of MIC (0.03-512 µg/ml). Isolates were designated (n) NDR (no drug resistance, n=89), SDR (single drug resistance, n=116) and MDR (multi-drug resistant, n=101, including ENR-S [n=51] and ENR-R [n=50]). Extracted DNA was subjected to FRET-PCR targeting single nucleotide polymorphisms in gyrA. Further, to determine the sensitivity of the assay, microbial free canine urine was inoculated with 10^6 to 10^1 CFU/ml of 7 E. coli isolates characterized by variable susceptibility to ENR (MIC_{Enro}=0.03, 0.06, 0.15, 1, 64, 128, 256 μ g/ml). Of 306 isolates, 43/50 ENR-R (MIC_{Enro} >4 μ g/ml), were positively identified by FRET-PCR to be enrofloxacin resistant (a sensitivity of 86%; increasing to 97% for isolates expressing high level resistance (MIC > 8 X breakpoint [64 mcg/ml]), and MDR (n=34). Only 1/50 ENR-R isolate was not detected (specificity = 97%). Colony dilutions of *E. coli* in sterile urine confirmed the assay able to detect enrofloxacin resistance in as few as 10^1 CFU/ml. These results confirm that the assay designed provides the specificity and sensitivity to accurately predict antimicrobial resistance in clinical *E. coli* isolates. Studies now are needed in urine samples from clinical patients.

Introduction

E. coli is a major cause of urinary tract infections (UTI) in canines (Ling et. al. 1979). Of these infections, antimicrobial resistant E. coli is increasingly identified. An increase in fluroquinolone resistance in particular has been reported; such isolates invariably express multidrug resistance (MDR) (Hirsch et. al. 1973), (Cook et. al 2002), (Cohn et. al. 2003), (Boothe et. al 2006), (Shaheen et al, 2009). An important risk factor associated with the emergence of FQ resistance is use of FQ antimicrobials (Richard et. al. 1994). Resistant E. coli have been documented to emerge during treatment of E. coli infections with quinolones, resulting in therapeutic failure (Webber and Paddock, 2001). Culture and susceptibility testing of E. coli continues to be the gold standard for the detection of antimicrobial resistance. However, this technique is tedious and costly and far from rapid, requiring 2-5 days from time of sample collection until results are reported to the clinician. This window can contribute to therapeutic failure particularly if treatment is initiated with an antimicrobial to which the infecting isolate is resistant (Bubenik et al., 2007). There is a need for an alternative method that allows rapid and sensitive detection of MDR/FQ resistance in urinary isolates for a clinical setting (Siedner et al., 2007).

Mutations characterized by single nucleotide polymorphisms (SNPs) in the quinolone resistance determining regions (QRDR) of DNA gyrase (*gyrAB*) and topoisomerase IV (*parCE*) are the most common mechanisms causing fluoroquinolone resistance (Oram and Fisher, 1991), (Willmott and Maxwell, 1993), (Everett et. al. 1996), (Villa et. al. 1996), (Piddock, 1999). These SNPs can be easily detected by hybridization probes and quantitative PCR (qPCR). qPCR allows monitoring of PCR amplification with each cycle. This is in contrast to conventional PCR for which only qualitative information is provided and further processing of the amplicon by gel electrophoresis is necessary. Other molecular techniques such as mismatch amplification mutation assay (MAMA) combined with DNA sequencing have been developed for the detection of ciprofloxacin-resistant clinical *E. coli* isolates in human medicine (Qiang, et. al 2002). However, this method also requires gel electrophoresis.

A quantitative PCR (qPCR) system can achieve precise discrimination with utilization of a Fluorescence Resonance Energy Transfer (FRET) assay monitoring the temperature-dependent hybridization of sequence-specific hybridization probes to single stranded DNA while performing melting curve analysis. The melting temperature (T_m) is dependent on the length, GC content, and on the degree of homology between the two DNA strands. Hybridization probes bound perfectly to the matching target DNA require a higher T_m to separate in comparison with those bound to DNA containing destabilizing mismatches.

In this study we evaluate the effectiveness of a FRET-PCR based assay for detection of SNPs in *E. coli gyrA* from pure culture originally isolated from canine urine samples as well as urine inoculated with *E. coli* and its accuracy in predicting FQ resistance.

Materials and Methods

Bacterial Isolate Culture Conditions

Escherichia coli isolates were harvested from canine urine samples submitted to IDEXX laboratories for suspected urinary tract infections. Isolates had been identified by the laboratory and subjected to susceptibility testing before duplicate cultures were transferred by mail on trypticase soy agar (TSA) slants to the Auburn University Clinical Pharmacology Laboratory. Upon receipt, each *E. coli* isolate was re-cultured on BBL CHROMagar Orientation (BD Diagnostics) at 37°C overnight to confirm isolate identification as *E. coli* before transfer to TSA for collection in cryovials. Isolates were stored at -80°C in trypticase soy broth/glycerol cyrovials (mixture Percentage) until testing.

Antimicrobial Susceptibility Testing

Isolates were subjected to antimicrobial susceptibility testing in order to determine their minimum inhibitory concentrations (MIC). The isolates were cultured directly by transfer to a tryptic soy agar (TSA) plate. The colonies collected from TSA plates were subjected to broth microdilution for susceptibility testing as described by CLSI (CLSI, 2008). Fifteen drugs representing 6 classes of antimicrobials were tested: amoxicillin-clavulanic acid, ampicillin, ticlacillin-clavulanic acid, cefotaxime, cefoxitin, cefpodoxime, ceftazidime, cephalothin, chloramphenicol, doxycycline, enrofloxacin, ciprofloxacin, gentamicin, meropenam and trimethoprim-sulfamethoxazole. Inocula were prepared by suspending growth from overnight cultures in sterile normal saline to a turbidity of approximately 0.5 McFarland standards. Final inocula contained 2 to 7 x 10^5 CFU/ml. The suspension was used to inoculate custom prepared microtiter trays (TREK Diagnostic Systems, Cleveland, OH). The trays were incubated at 37° C and read at 18 h with a TREK VIZION System (Trek Diagnostic Systems, Cleveland, OH). The

minimum inhibitory concentration (MIC) of each antimicrobial was recorded. For quality control purposes *E. coli* ATCC[®] 25922 (American Tissue Cell Culture, Manassas, VA) was included in each sample set. Using CLSI standards, each isolate was designated as resistant (R; MIC \geq the resistant breakpoint), susceptible (S; MIC \leq the susceptible breakpoint) or intermediate (I; MIC between the two breakpoints; this designation is not provided by CLSI for each drug) (CLSI, 2008). In this study, intermediate isolates were recorded and analyzed as "resistant". Each isolate was designated as to the presence of no drug resistance to any drug (NDR), single drug resistance (SDR; resistance to one drug class), or multidrug resistance (MDR; resistance to 2 or more of drug classes). All SDR isolates were susceptible to fluoroquinolones (FQ); MDR isolates were further classified as FQ-susceptible (FQ-S), FQ-low level resistant (4 µg/ml <MIC_{Enro}<32 µg/ml; FQ-LR) or FQ-high level resistant (MIC_{Enro}>64 µg/ml; FQ-HR) (Table 1).

Selection of Clinical Isolates and Sample Preparation

306 *E. coli* isolates (n=101 MDR, 51 MDR-FQ-S, 34 MDR-FQ-HR, and 16 MDR-FQ-LR), 116 SDR and 89 NDR) were revived on TSA plates at 37°C overnight. DNA was extracted using PrepMan ULTRA (Applied Biosystems, Foster City, CA) in preparation for the FRET assay.

Experimentally Inoculated Urine Samples

Canine urine was collected via cystocentesis, and submitted for culture to verify sterility. Urine determined as negative for bacteria was confirmed microbial-free by transfer of 10µl on to TSA and incubated at 37°C for 48h. After confirmation, 4.5 ml aliquots were made for dilutions. 7 *E. coli* isolates representing increasing enrofloxacin susceptibilites were suspended in 9% saline to .5 McFarland standard (~10⁹ CFUs) (Table 3). Dilutions were made from 10^6 to 10^1 CFUs in microbial free urine. After dilutions were made, the inoculated urine samples were applied to Microcep 100K Centrifugal Microconcentrators (Pall Corporation, Port Washington, NY) and centrifuged for 40m at 3000 rpm. After centrifugation, the filter was washed with 150uL of microbial free urine and the wash collected for DNA extraction. DNA was extracted using the Viral RNA Kit (Omega).

Quantitative FRET-PCR

The LightCycler 480 Real-time PCR system (Roche) was used for amplification, detection of quantification and melting curve analysis. Primers and probes were designed to be specific for a consensus QRDR wild-type sequence (Shaheen et. al, 2009). Fluorophores were selected with 3' labeled 6-FAM carboxyfluorescein for the donor probe and 5' labeled, 3' phosporylated LightCycler Red 640 for the reporter probe (Figure 1). LightCycler 480 Genotyping Master (Roche Applied Science, Indianapolis, IN) supplemented with 2.0 U Platinum Taq DNA Polymerase (Invitrogen, Carlsbad, CA) was used for the FRET-PCR reactions. The thermocycling program was based on a prior study with modifications for 96 well plates: 18 high stringency step down cycles were succeeded by 25 amplification and fluorescence acquisition cycles with a final melting curve (Shaheen et. al., 2009). The high stringency step down cycling program is as follows: 95°C for 5m; 6 cycles at 95 °C for 15 s, 72 °C for 30 s; 9 cycles at 95 °C for 15 s, 70 °C for 30 s; 3 cycles at 95 °C for 15 s, 68 °C for 30 s, 72 °C for 30. Amplification was then achieved by 35 cycles of denaturation at 95 °C 15 s, annealing at 52 °C for 15 s, 66 °C for 30 s, and extension at 72 °C for 30 s. Emittance for the Lightcycler was set at 498nm and absorption at 640nm. Determination of nucleotide sequences was performed by Macrogen USA (Macrogen, Rockville, MD) on the QRDR of gyrA locus of 20 isolates in order to determine the specificity of the assay.

Sequencing of Isolates to confirm FRET Results

20 isolates were selected by FRET results to confirm accuracy of the assay. These isolates exhibited low melting temperatures suggesting extreme resistance (T_m <60C), melting temperatures suggesting only one mutation (63C<T_m<68C), and isolates deemed ENR-R producing melting temperatures suggesting susceptibility (T_m >68C) (Table 2).

Results

FRET-PCR on Clinical Isolates in Pure Culture

Of 306 *E. coli* isolates, 50 were confirmed by susceptibility testing to be positive for enrofloxacin resistance (MIC_{Enro} >4 μ g/ml). 43 of these isolates were also positively identified by the FRET-PCR assay yielding a sensitivity of 86.00%. However, of the isolates expressing high level enrofloxacin resistance (MIC > 64 μ g/ml), and MDR phenotype (n=34), the assay yielded a sensitivity of 97.06%. 247 out of 256 isolates expressing an FQ-S MIC were negatively identified yielding a specificity of 96.66% (Figure 4). Three melting curve profiles for the isolates were produced by the assay (Figure 3). Sequences of the 20 selected isolates revealed a set of synonymous mutations present in 17 of the isolates (Arg91, Tyr100, Ser111). A complete deletion of codon 83 was also observed in one of the isolates creating the only false positive reading.

FRET-PCR on Dilutions of Experimentally Infected Urine

Colony dilutions of *E. coli* were detectable at as low as 10^1 CFU/mL (Figure 4). However, due to background, the melting temperatures could be accurately determined only at dilutions $\geq 10^3$ CFU/mL. No relationship between CFUs and the peak height of -(d/dt) fluorescence could be discerned. When nucleic acid concentrations were checked with a Nanodrop 2000c spectrophotometer (Thermo Fisher Scientific, Wilmington, DE) it was concluded that there was no discernable relationship between DNA concentration and colony forming units (CFU/ml) (Figure 6).

Discussion

From the specificity and sensitivity results it is confirmed that the FRET assay is able to detect fluoroquinolone resistance in E. coli. The presence of false negatives may have arisen because there are many other genetic and physiological factors linked with FQ resistance other than mutations located in the QRDR of E. coli gyrA. Transmembrane factors such as overexpression of efflux pump (most notably AcrAB) and porin modification have been attributed to MDR phenotypes. (Everett et al., 1996), (Giraud et al., 2001), (Mazzariol et al., 2000), (Piddock, 1999). Mutations in soxS and additional mutations in the QRDRs of gyrB, parCE have been identified; these along with presence of plasmids containing qnr (quinolone resistance gene) have also been linked to FQ related MDR phenotypes. Since so many other factors are involved in the conformation of FQ resistance it is impossible for an assay targeting gyrA to give a completely accurate correlation of mutations to MIC. However, for high level enrofloxacin resistance that is only reported to appear with the occurrence of nonsynonymous mutations in the gyrA gene, the FRET-PCR assay is able to specifically discern such isolates in pure culture. The standard deviation (σ) for T_m in isolates expressing extremely susceptible MICs (0.03-0.6 μ g/ml, n=225) is 0.991 for this set of isolates while σ for isolates expressing extremely resistant MICs (x \ge 128 µg/ml, n=19) is 0.671. Variation is observed in isolates expressing transition type MICs ($0.12 \le x \le 32 \mu \text{g/ml}$, n=38) shown by an σ of 4.575.

From sequencing of the amplified regions in isolates exhibiting unexpected FRET results, a set of synonymous mutations (Arg91, Tyr100, Ser111) were present in 17 of the 20 isolates (Table 2). The mutations were always found together with Arg91 (C \rightarrow T), Tyr100 (T \rightarrow C) located within the QRDR where as Ser111 (T \rightarrow C) was located 5 residues outside the QRDR. The possibility of Arg91 and Tyr100 to mutate is a cause of concern since Arg91 is involved with ciprofloxacin binding when Asp87 has been mutated to Tyr or Gly (Black et al, 2008). Tyr100 is a site of interaction with ciprofloxacin and gatafloxacin and should nonsynonomous mutation occur may cause instability in drug binding. Another interesting finding was a deletion of Ser 83 in an isolate that exhibited an MIC of 0.06 µg/ml, thus supporting the conclusion that Ser 83's interaction with the fluoroquinolone (e.g, Naladixic acid or Ciprofloxacin) is not what confers suceptability but the overall conformation of the gyrase protein that when changed (i.e. Ser 83 Leu causing hydrophobic interaction) results in high level quinolone resistance.

Results of the experimentally infected urine reveal that the FRET assay is sensitive enough to detect E. coli at 10^1 CFUs. However, if less than 10^3 CFU's, background interference may affect interpretation of results. Never the less since most urinary tract infections are diagnosed with greater than 10^5 CFUs, the FRET assay proves to be sensitive enough to distinguish in pure culture. Further research will have to be preformed to determine the efficacy of the FRET assay for *E. coli* FQ resistance in mixed culture clinical isolates.

Drug Class	Antimicrobial			
	Ampicillin (A)			
	Tricarcillin/Clavulanic Acid (R)			
	Amoxicillin/Clavulanic Acid (X)			
Poto Lostomosos (1)	Cephalothin (C)			
Beta-Lactamases (1)	Cefoxitin (O)			
	Cefpodoxime (P)			
	Cefotaxime (T)			
	Ceftazidime (Z)			
Tetracyclines (2)	Doxycycline (D)			
Chloramphenicol (3)	Chloramphenicol (H)			
	Enrofloxacin (E)			
Fluoroquinolones (4)	Ciprofloxacin (F)			
Aminoglycosides (5)	Gentamicin (G)			
	Trimethoprim/			
Sulfonamides (6)	Sulfamethoxazole (S)			

Table 1: Notation for the 14 Antimicrobials used and their respective drug classes.

	152 Upstream Pr	imer	LightCycler Red 640
Wild Type Mutant	CCATGAACGTACT	AGGCAATGACTGGAACAAAGCCTATAAAAAA	TCTGCCCGTGTCGTTGGTGACGTAATCGGTAAAT
	Probe	Fluorescein Probe	
Wild Type Mutant	ACCATCCCCATGG	TGACTCGGCGGTTTATGACACGATCGTCCGT	ATGGCGCAGCCATTCTCGCTGCGTTACATGCTGG
Wild Type Mutant	TAGACGGTCAGGG	TAACTTCGGTTCCATCGACGGCGACTCTGCG	GCGGCAATGCGTTATACGGAAATCCGTCTGGCGA
			Downstream Primer 427
Wild Type Mutant	AAATTGCCCATGA	ACTGATGGCCGATCTCGAAAAAGAGACGGTC	GATTTCGTTGATAACTATGACGGCACGGAAAA

Figure 1: Primer and Probe set designed for FRET-PCR. Shown is the alignment of Wild-Type and FQ-R E. coli QRDR regions, boxes outline the placement of described oligonucleotides. The 3' end of the reporter probe is labeled with LightCycler Red 640, while 5' end of the donor probe is labeled with 6-FAM fluorescein.

Sample ID	MDRx	$MIC_{\rm Enro}(\mu g/ml)$	Phenotype	Mutations
L9254925	MDR ¹²⁴	128	XATOPZCDER	S83L, D87N , R91, Y100, S111, I112L, A123V, E139A, V146F
B5664710	SDR	0.25	С	D87N, R91, Y100, S111
L0255814	NDR	0.03	N/A	N/A

Figure 3: Melting curves from 3 different *gyrA* mutation profiles encountered in the clinical isolates. Melting temperature and MIC are negatively correlated. MDR indicates the isolate is Multi-drug resistant while SDR and NDR indicate single drug resistance and no drug resistance respectively. Phenotype describes the antimicrobials of which the isolate expressed resistance.

Figure 4: Scatter plot of isolate MIC_{Enro} respective to T_m . MIC and Tm are negatively correlated (R=-0.688). 4 (µg/ml) is the resistant break point for enrofloxacin after which a clear distinction is made between melting temperature.

Figure 5: Mean and Standard Deviation of T_m for isolates grouped by MIC_{Enro} class. Variability is not observed in base susceptibility where no mutations in QRDR exist, or in extreme resistance which can only be conferred by coexistence of S83L and D87N. All variability is observed in mid-range MICs which may be conferred through methods of resistance other than QRDR mutations alone.

					ENROFL (E)		Forward Sequence
Sample	Location	Melt temp	MDR _X	PHENOTYPE	MIC µg/ml	Resistance	comments
M1896780	Box 3-13	56	MDR ¹³⁴⁵⁶	XAFOPZCHEGRS	64	R	Ser83Leu C->T Asp87Asn G->A
C8994648	Box 4-66	57	MDR ¹²³⁴⁵	AFHDES	16	R	Ser83Leu C->T Asp87Asn G->A
D8481203	Box 1-78	58	MDR ¹⁶	CG	0.06	S	Ser83 deleted Arg91Arg C->T Tyr100Tyr T->C Ser111Ser T->C
D8632999	Box 2-45	58	MDR ¹²⁴⁵⁶	ACDEGRS	8	R	Ser83Leu C->T Asp87Asn G->A Arg91Arg C->T Tyr100Tyr T->C Ser111Ser T->C
K5919720	Box 1-2	58	MDR ¹²⁴⁵⁶	XAFCDEGRS	64	R	Ser1113et 1->C Ser83Leu C->T Asp87Asn G->A Arg91Arg C->T Tyr100Tyr T->C Ser111Ser T->C
L9254925	Box 1 -89	58	MDR ¹²⁴	XATOPZCDER	128	R	Ser83Leu C->T Asp87Asn G->A Arg91Arg C->T Tyr100Tyr T->C Ser111Ser T->C Ile112Leu A->C Ala123Val C->T Glu139Ala A->C Val146Phe G->T
M1671888	Box 1-1	58	MDR ¹²⁴	XAFTOPCDER	128	R	Ser83Leu C->T Asp87Asn G->A Arg91Arg C->T Tyr100Tyr T->C Ser111Ser T->C
B5664710	Box 1-26	64	SDR	C	0.25	S	Asp87Asn G->A Arg91Arg C->T Tyr100Tyr T->C Ser111Ser T->C
20001110	2504 1 20		<u>bbit</u>		0.20	5	Arg91Arg C->T Tvr100Tvr T->C
C6393086	Box 1-22	64	SDR	С	0.12	S	Ser111Ser T->C
B5710554	Box 1-27	65	SDR	D	0.06	S	No Mutations

1	I	I	I Contraction of the second	I	I I I I I I I I I I I I I I I I I I I	l	
19323218	Box 3-82	65	NDR	N	0.5	S	Ser83Leu C->T Arg91Arg C->T Tyr100Tyr T->C Ser111Ser T->C Ala136Ala C->T
19874054	Box 3-33	65	NDR	N	0.03	S	Ser83Leu C->T Arg91Arg C->T Tyr100Tyr T->C Ser111Ser T->C Ala136Ala C->T
M1213579	Box 1-36	66	MDR ¹²³⁴⁶	XAOPZCHDEGR	4	R	Arg91Arg C->T Tyr100Tyr T->C Ser111Ser T->C
R6559423	Box 1-46	68	MDR ¹³	СН	0.5	S	Asp87Gly A->G Arg91Arg C->T Tyr100Tyr T->C Ser111Ser T->C
10960311	Box 4-23	70	MDR ¹²⁴⁵	XAFTOPZCDERS	64	R	Ser83Leu C->T Asp87Asn G->A Arg91Arg C->T Tyr100Tyr T->C Ser111Ser T->C
I3180001	Box 2-46	70	MDR ¹⁴	EM	8	R	Arg91Arg C->T Tyr100Tyr T->C Ser111Ser T->C
17862967	Box 3-27	70	MDR ¹³⁴	НЕМ	64	R	Arg91Arg C->T Tyr100Tyr T->C Ser111Ser T->C Ala136Ala C->T
K5693300	Box 2-50	70	MDR ¹⁴	CE	1	I	Arg91Arg C->T Tyr100Tyr T->C Ser111Ser T->C
L2020568	Box 3-7	70	MDR ¹²³⁴	HDEMR	4	R	Arg91Arg C->T Tyr100Tyr T->C Ser111Ser T->C
L9245953	Box 2-49	70	SDR	Е	2	I	Arg91Arg C->T Tyr100Tyr T->C Ser111Ser T->C

Table 2: Results of Nucleotide Sequences for Determination of Assay Specificity

		MIC _{Enro}	
Sample	MDRX	(µg/ml)	Phenotype
K5262419	NDR	0.006	Ν
J8067928	SDR	0.12	С
M1840309	MDR14	1	XAOPZCER
I0960311	MDR1245	64	XAFTOPZCDERS
M1671888	MDR124	128	XAFTOPCDER
N0728888	MDR123456	256	XAFTOPZCHDEGRS
ATCC	SDR	0.015	С

Table 3: 7 Escherichia coli isolates of increasing MIC_{Enro} used in inoculating urine. MDRX represents is isolate expresses no drug resistance (NDR), single drug resistance (SDR), or multidrug resistance (MDR) and to which antimicrobial class resistance is observed. Phenotype represents the individual antimicrobials which the isolate expresses resistance.

Figure 6: Melting Curves of Canine Urine Inoculated with Dilutions of *E. coli*. Colors denote the following inoculation dilutions (CFU/ml): Green 10^6 , Pink 10^5 , Brown 10^4 , Yellow 10^3 , Red 10^2 , Blue 10^1 . Top: Isolate N0728888 MDR1234 MIC_{Enro} 256 µg/ml Phenotype: XAFTOPZCHDEGRS, Bottom: ATCC25922 SDR MIC_{Enro} 0.015 µg/ml Phenotype:C.

References

- Black, M. T., Stachyra, T., Platel, D., Girard, A., Claudon, M., Bruneau J., Miossec, C., 2008.
 Mechanism of Action of the Antibiotic NXL101, a Novel Nonfluoroquinolone Inhibitor of Bacterial Type II Topoisomerases. Antimicrob Agents Chemother. 52, 3339–3349.
- Boothe, D.M., Boeckh, A., Simpson, R.B., Dubose, K., 2006.Comparison of pharmacodynamic and pharmacokinetic indices of efficacy for 5 fluoroquinolones toward pathogens of dogs and cats, J. Vet. Intern. Med. 20; 1297–1306.
- Bubenik, L.J., Hosgood, G.L., Waldron, D.R., Snow, L.A., 2007. Frequency of urinary tract infection in catheterized dogs and comparison of bacterial culture and susceptibility testing results for catheterized and noncatheterized dogs with urinary tract infections, J. Am. Vet. Med. Assoc. 231; 893–902.
- Clinical and Laboratory Standards Institute, 2008. Performance standards for antimicrobial disk and dilution susceptibility tests for bacterial isolated from animals. Approved standard, 3rd ed. Document M31-A3. CLSI, Wayne, Pa.
- Cohn, L. A., Gary, A. T., Fales, W. H., Madsen, R. W., 2003. Trends in fluoroquinolone resistance of bacteria isolated from canine urinary tracts. J. Vet. Diagn. Invest. 15, 338-343.

- Cooke, C.L., Singer, R.S., Jang, S.S., Hirsh, D.C., 2002. Enrofloxacin resistance in *Escherichia coli* isolated from dogs with urinary tract infections, J. Am. Vet. Med. Assoc. 15; 190–192.
- Everett, M. J., Jin, Y. F., Ricci, V., Piddock, L. J. V., 1996. Contribution of individual mechanisms to fluoroquinolone resistance in 36 *Escherichia coli* isolates from humans and animals. Antimicrob. Agents Chemother. 40, 2380–2386.
- Giraud, E., Leroy-Sétrin, S., Flaujac, G., Cloeckaert, A., Dho-Moulin, M., Chaslus-Dancla, E.,
 2001. Characterization of high-level fluoroquinolone resistance in *Escherichia coli*O78:K80 isolated from turkeys, J. Antimicrob. Chemother. 47; 341–343.
- Hirsh, D.C., 1973. Multiple antimicrobial resistance in *Escherichia coli* isolated from the urine of dogs and cats with cystitis, J. Am. Vet. Med. Assoc. 162; 885–887
- Ling, G. V., Bibestein, E. L., Hirsh, D. C., 1979. Bacterial pathogens associated with urinary tract infections. Vet. Clin. N. Am. Small Anim. Pract. 9; 617–630.
- Mazzariol, A., Tokue, Y., Kanegawa, T.M., Cornaglia, G., Nikaido, H., 2000. High-level fluoroquinolone-resistant clinical isolates of *Escherichia coli* overproduce multidrug efflux protein AcrA. Antimicrob. Agents Chemother. 44; 3441–3443.
- Oram, M., Fisher, L.M., 1991. 4-Quinolone resistance mutations in the DNA gyrase of *Escherichia coli* clinical isolates identified by using the polymerase chain reaction, Antimicrob. Agents Chemother. 35; 387–389.
- Piddock, L. J. V., 1999. Mechanisms of fluoroquinolone resistance: an update 1994–1998, Drugs 58, 11–18.

- Qiang, Y. Z., Qin, T., Fu, W., Cheng, W. P., Li, Y. S., Yi, G., 2002. Use of a rapid mismatch PCR method to detect gyrA and parC mutations in ciprofloxacin-resistant clinical isolates of *Escherichia coli*. J. Antimicrob. Chemother. 49, 549–552.
- Richard, P., Delangle, M. H., Merrien, D., 1994. Fluoroquinolone use and fluoroquinolone resistance: is there an association?. Clin. Infect. Dis. 19, 54–59.
- Shaheen, B. W., Wang, C., Johnson, C. M., Kaltenboeck, B., Boothe, D. M., 2009. Detection of fluoroquinolone resistance level in clinical canine and feline *Escherichia coli* pathogens using rapid real-time PCR assay. J. Vet. Micro. 139, 379-385.
- Siedner, M.J., Pandori, M., Castro, L., Barry, P., Whittington, W.L., Liska, S. Klausner, J.D., 2007. Real-time PCR assay for detection of quinolone-resistant *Neisseria gonorrhoeae* in urine samples, J. Clin. Microbiol. 45; 1250–1254.
- Vila, J., Ruiz, J., Goñi, P., Jiménez de Anta, T., 1996. Detection of mutations in *parC* in quinolone-resistant clinical isolates of *Escherichia coli*. Antimicrob. Agents Chemother. 40, 491–493.
- Webber, M., Piddock, L. J., 2001.Quinolone resistance in *Escherichia coli*. Vet. Res. 32, 275–284.
- Willmott, C.J.R., Maxwell, A., 1993. A single point mutation in the DNA gyrase A protein greatly reduces binding of fluoroquinolones to the gyrase-DNA complex, Antimicrob. Agents Chemother. 37; 126–127.

CHAPTER 3

EVALUATION OF A FRET-PCR ASSAY FOR DETERMINING FLUOROQUINOLONE RESISTANT *ESCHERICHIA COLI* IN CLINICAL URINE ISOLATES FROM COMPANION ANIMALS

Abstract

Antimicrobial resistance in *Escherichia coli* is becoming of increasing concern in public health affecting patients of both human and veterinary hospitals. A commonly selected antimicrobial for treatment in small animals is enrofloxacin, a second generation fluoroquinolone (FQ). Among the difficulties in effective *E. coli* treatment is rapid detection of fluoroquinolone resistance. The purpose of this study was to determine the specificity and sensitivity of a FRET based assay for the rapid detection of urinary tract infections caused by fluoroquinolone associated multi-drug resistant *E.coli*. Two hundred and thirty-eight clinical urine samples were collected via cystocentesis or free catch, and screened for presence of aerobic bacteria. Isolates were subjected to susceptibility testing for enrofloxacin and the FRET assay, while DNA was also collected directly from urine samples and subjected to the FRET assay. Of 438 urine samples, 278 were confirmed to contain *E. coli* 18 of which were confirmed to be resistant to enrofloxacin by susceptibility testing. The FRET assay positively identified 15 of the 18 enrofloxacin resistant *E. coli* urine samples for sensitivity of 83.33% and negatively identified 406 samples for specificity of 92.36%.

Introduction

Escherichia coli is a major cause of urinary tract infections (UTI) in canines (Ling et. al. 1979). Of these infections, antimicrobial resistant E. coli is increasingly identified. In particular, an increase in fluoroquinolone resistance has been reported, and it is frequently associated with multidrug resistant phenotypes (Hirsch et. al. 1973), (Cook et. al 2002), (Cohn et. al. 2003), (Boothe et. al 2006). A previous study demonstrated that a FRET-PCR based assay could discriminate between fluroquinolone resistant and susceptible E. coli. (Shaheen et al, 2009). Such an assay might facilitate early treatment decisions in the clinical patients infected with E. coli by minimizing the inappropriate use of an FQ if the E. coli already is resistant or by detecting resistance that emerges in the face of therapy (Richard et. al. 1994), (Webber and Paddock, 2001). While culture and susceptibility testing of *E. coli* continues to be the gold standard for the detection of antimicrobial resistance, time becomes an issue, requiring 2-5 days to obtain results. There is a need for an alternative method that allows rapid and sensitive detection of MDR/FQ resistance in urinary isolates for a clinical setting (Siedner et al., 2007). Development of rapid diagnostic tools for *E. coli* have been attempted in DNA microarray (Yu et al, 2007), (Barl et al, 2008), pyrosequencing (Guillard et al, 2010), and mismatch amplification mutation assay; however these techniques can be costly, cumbersome, and require specialty equipment. A FRET-PCR based assay for detection directly from urine sample would decrease the window between the collection and susceptibility result. This type of technique has been developed for many other pathogens with success while maintaining cost effectiveness (Lindler et. al, 2001), (Qiang et al, 2002), (Page et. al, 2008), (Nakamura et al, 2009), and (Spigaglia et al, 2010).

In this study we evaluate the ability of a FRET-PCR based assay to discriminate fluroquinolone resistant *E. coli* in clinical urine samples from companion animal patients.

Materials and Methods

Collection of Urine Samples and Isolation of Bacteria

Urine samples collected from dogs and cats and submitted to Auburn University Small Animal Teaching Hospital (AUSATH) through Clinical Pathology and Clinical Microbiology, and IDEXX Laboratory were studied. Samples had been collected either by cystocentesis or free catch. Upon receipt at Auburn University, samples were stored at 4C. 10uL of urine was transferred to CHROMagar (BD Diagnostics, Franklin Lakes, NJ) and incubated at 37C overnight for isolation, detection, and speciation of bacteria. Individual colonies from each present species were transferred to trypticase soy agar (TSA) in order to grow for cryogenic storageIsolates were preserved in brucella broth/ glycerol cyrovials (70% brucellla broth/30% glycerol); these samples were held in reserve (Table 1).

Susceptibility Testing for Enrofloxacin Resistance

Urine samples collected through AUSMTH Clinical Microbiology and IDEXX Laboratories were subjected to susceptibility testing appropriate to organism via CLSI guidelines (CLSI, 2008) and results forwarded to Auburn University Veterinary Clinical Pharmacology Laboratory. Isolates obtained through Clinical Pathology were subjected to susceptibility testing for enrofloxacin via E-test Epsilometer testing (bioMérieux, Marcy l'Etoile, France).

Preparation of Urine Samples and Isolates for FRET-PCR

Urine samples were concentrated using Microsep 100k Centrifugal Devices (Pall Corporation, Port Washington, NY). Samples were centrifuged at 1900 x g for 40m, precipitate was collected along with 150 uL of urine supernatant for DNA extraction. DNA was extracted with the E.Z.N.A. Viral RNA Kit (Omega Bio-tek,) using the extracting bacterial DNA from urine protocol. DNA was eluted to 50uL and stored at 4C. For the bacterial isolates, one bacterial colony was selected from TSA plates and DNA was extracted using 200 uL of PrepMan ULTRA sample preparation reagent (Applied Biosystems, Foster City, CA). Isolated DNA was then stored at 4C. Gyrase A FRET-PCR primers and probes (Shaheen et al, 2009) and LightCycler 480 Genotyping Master (Roche Applied Science, Indianapolis, IN) supplemented with 2.0 U Platinum Taq DNA Polymerase (Invitrogen, Carlsbad, CA) were used for the FRET-PCR reactions.

Determination of FRET-PCR Results

A result was considered a true positive if FRET-PCR $T_m \leq 60^{\circ}C$ and if the sample contained an enrofloxacin resistant *E. coli* as determined by culture and susceptibility testing. A result was designated a true negative if FRET-PCR revealed $60^{\circ}C < T_m$ despite the absence of enrofloxacin resistant *E. coli*. False positive samples yielded FRET-PCR $T_m \leq 60^{\circ}C$ in samples containing no enrofloxacin resistant *E. coli* whereas false negative results reflected FRET-PCR $60^{\circ}C < T_m$ in samples containing resistant *E. coli*.

Results

Collection of Urine Samples and Susceptibility Testing From Each Origin

Out of 438 urine samples collected, 327 were positive for aerobic bacterial growth. Of these, 31 contained multiple species accounting for a total of 362 isolates. 280 of these isolates were identified as *E. coli*, 21 of which exhibited intermediate (1 ug/ml \leq MIC_{Enro} < 4 ug/ml, n=5) or resistant MIC_{Enro} (MIC_{Enro} \geq 4 ug/ml, n=16) For the rest of the isolates, 26 were identified as *Enterococcus sp.*, 22 were identified as *Klebsiella sp.*, 13 were identified as *Staphylococcus sp.*, 12 were identified as *Proteus sp.*, 7 were identified as *Streptococcus sp.*, and 4 were identified as *Pseudomonas sp.* (Table 1) (Figure 2) (Figure 3). The 64 isolates from Clinical Microbiology were unable to be cultured in the Clinical Pharmacology Laboratory due to hospital regulations on holding samples. Their isolates were unable to be compared to the urine sample results.

Anaylsis of Urine Samples by FRET-PCR

Of 438 urine samples, 17 were confirmed by culture and susceptibility testing to be positive for enrofloxacin resistant *E. coli*. 14 of these isolates were also positively (true positives) identified by the FRET-PCR assay yielding a sensitivity of 83.33%. 33 urine samples not containing *E. coli* FQ-R were detected yielding a specificity of 92.36% (false positives).

Out of 298 aerobic bacterial isolates that were cultured from the urine, 8 were confirmed by culture and susceptibility testing to be positive for ENR-R *E. coli*. All of these isolates were positively identified by the FRET-PCR assay yielding a sensitivity of 100%. 278 isolates not containing *E. coli* expressing an FQ-R MIC were detected yielding a specificity of 95.86% (Table 2). When sensitivity and specificity is determined for isolates collected from AUSMTH by collection method cystocentesis has lower sensitivity (70.00%) but higher specificity (94.11%) compared to voided (sensitivity = 100%, specificity = 89.52%) (Table 3).

Discussion

The results of this study confirm our findings from the previous study that the FRET assay is able to detect enrofloxacin resistant *E. coli*. While we do have discrepancy between specificity and sensitivity among the DNA extraction methods, it has been seen previously that extraction method can influence results (Behringer et al, 2011) (Figure 1). Sources of this discrepancy could be unculturable organisms found in the urine that would be lost when collecting isolates, interfering DNA from canine endothelial cells, or residual reagents from the different extraction methods may be enough to disrupt PCR reaction chemistry. In addition by products from the urine may contaminate the DNA elution or the extraction from urine may be too rigorous causing some damage to the DNA (Figure 4) (Figure 5).

Nucleic acids from these organisms would be present in the extracted DNA sample from urine and may interfere with probe specificity which is seen in the melting peaks in figure 5 there is noticeable background.

Urine samples containing confirmed mixed cultures resulted in 4 false positive profiles (3 of which contained E.coli/Enterococcus) and 1 false negative profile. Urine samples containing *Staphylococcus sp.* (n= 12) accounted for 5 false positive profiles along with uninfected urine (n= 110) Urine samples containing *Streptococcus pseudointermedius* (n= 7) accounted for 4 false positive profiles while only 3 samples containing *Enterococcus* (n= 26) and 1 sample containing each *Klebsiella sp.* (n= 22) and *Proteus sp.* (n= 13) gave false positive profiles. For the *Klebsiella* isolate the MIC_{Enro} >32 ug/ml, while for the *Proteus* isolate the MIC_{Enro} = .12ug/ml. After examination of alignments of the reporter probe and laboratory strains of each organism, this is probably due to the greater homology between the front of the reporter probe and regions in *Staphylococcus* and *Streptococcus gyrA* thus giving the probe a stronger anchor near the

fluorophore allowing it to become excited creating a low T_m melting curve. Adjustments in annealing temperature during themocycling may allow the primers to be more specific and avoid producing template that the probes could bind to causing inaccurate results.

Origin	Source	Species	Number of Strains
		Escherichia coli	17
Clinical Pathology		Enterococcus sp.	8
	Cystocentesis	Klebsiella sp.	4
		Proteus sp.	3
		Staphylococcus sp.	1
		Escherichia coli	22
		Enterococcus sp.	14
	Void	Klebsiella sp.	15
	Volu	Proteus sp.	4
		Streptococcus sp.	5
		Staphylococcus sp.	1
	Catheter	Escherichia coli	4
		Enterococcus sp.	1
		Klebsiella sp.	3
		Escherichia coli	53
	Custocontosis	Enterococcus sp.	3
	Cystocentesis	Pseudomonas sp.	2
		Staphylococcus sp.	1
Clinical Microbiology		Escherichia coli	11
	Void	Proteus sp.	1
		Streptococcus sp.	1
	Catheter	Escherichia coli	1
		Streptococcus sp.	1
		Escherichia coli	171
IDEXX		Proteus sp.	4
		Pseudomonas sp.	2
		Staphylococcus sp.	9
Total			362

Table 1: Species, source, and origin of organisms isolated from urine samples

Source of DNA Extraction	Result of FRET Assay	Totals
	True Positive	15
Urine	True Negative	387
	False Positive	32
	False Negative	3
	Sensitivity	82.35%
	Specificity	92.36%
	True Positive	8
	True Negative	278
Icolatas	False Positive	12
isolates	False Negative	0
	Sensitivity	100.00%
	Specificity	95.86%

Table 2: Comparison of sensitivity and specificity of FRET assay by DNA extraction method

	Result of FRET	Number of samples
Collection Method	Assay	expressing result
	True Positive	13
	True Negative	214
Custopontosis	False Positive	15
Cystocentesis	False Negative	3
	Sensitivity	81.25%
	Specificity	93.44%
Voided	True Positive	5
	True Negative	98
	False Positive	14
volded	False Negative	0
	Sensitivity	100.00%
	Specificity	87.50%
	True Positive	0
	True Negative	13
Cathotor	False Positive	0
Catheter	False Negative	0
	Sensitivity	0.00%
	Specificity	100.00%

Table 3: Sensitivity and Specificity of FRET Assay by Collection Method; IDEXX samples are omitted because collection method was not disclosed.

Sample #	ID#	FRET Result	Lab	Collection Method	Species 1	Phenotype	Species 2	Phenotype
111	1091631	+	Clin. Path	Voided	E. coli	Е		
160	1082748	+	Clin. Path	Voided	E. coli	Е	Klebsiella	Е
249	1092349	-	Clin. Path	Cystocentesis	E. coli	XAVOYHDE *GMBRS	Proteus	
312	1092349	+	Clin. Micro	Cystocentesis	E. coli	XAVOYHDE GMBRS	Pseudomonas	Н
319	1061672	-	Clin. Micro	Cystocentesis	E. coli	XAYDEGM BRS		
323	1092933	+	Clin. Micro	Cystocentesis	E. coli	AVYEMBRS	E. coli	Ν
325	Bac 2399	+	Clin. Micro	Voided	E. coli	XAVOYHDE MBRS		
341	1080953	+	Clin. Micro	Cystocentesis	E. coli	Е		
344	1079634	+	Clin. Micro	Cystocentesis	E. coli	XAVOYHEG MBR		
345	1091476	-	Clin. Micro	Cystocentesis	E. coli	XAVOYHDE MBR		
346	1061672	+	Clin. Micro	Cystocentesis	E. coli	XAVOYD	E. coli	XAVOYH DEMBRS
347	1082748	+	Clin. Micro	Cystocentesis	E. coli	ADEMBRS		
1024	S5749049	+	Idexx		E. coli	H*EGMS		
1065	A8435917	+	Idexx		E. coli	XVYH*EMB		
1090	L1553660	+	Idexx		E. coli	XVYEGM		
1094	L1590805	+	Idexx		E. coli	H*EM		
1112	L1604320	+	Idexx		E. coli	XVYHEMBS		

Table 4: FRET results for urine samples containing enrofloxacin resistant *E. coli*. For 17 resistant isolates, 14 were identified by the FRET assay. Species 1 designates primary infective species; Species 2 designates co infective species. Phenotype describes the antimicrobials to which the isolate expressed resistance.

Sample #	ID#	FRET Result	Lab	Collection Method	Species 1	Phenotype	Species 2	Phenotype
10	1090596	+	Clin. Micro	Cystocentesis	E. coli			
23	1085460	+	Clin. Path	Voided	Klebsiella	KHE*G	Streptococcus	E
33	1091169	+	Clin. Path	Voided	-			
62	1091330	+	Clin. Path	Voided	Enterococcus			
66	1069127	+	Clin. Path	Voided	Streptococcus			
85	1076465	+	Clin. Path	Cystocentesis	E. coli			
88	1082748	+	Clin. Path	Cystocentesis	Enterococcus	E*		
116	1091653	+	Clin. Path	Voided	-			
119	1070105	+	Clin. Path	Voided	-			
125	1082748	+	Clin. Micro	Cystocentesis	Enterococcus	XAEM		
134	1091717	+	Clin. Path	Voided	E. coli		Enterococcus	E*
136	1073104	+	Clin. Path	Voided	Streptococcus	E*		
153	1091783	+	Clin. Path	Voided	-			
213	1061672	+	Clin. Path	Cystocentesis	E. coli			
235	1090519	+	Clin. Path	Voided	Proteus			
240	1080953	+	Clin. Path	Cystocentesis	Enterococcus			
284	116514	+	Clin. Path	Cystocentesis	Klebsiella	Е		
321	Bac 2395	+	Clin. Micro	Voided	E. coli	N	Streptococcus	Ν
330	1090008	+	Clin. Micro	Cystocentesis	E. coli	AH	Enterococcus	Ν
1079	A8407897	+	Idexx		Staphylococcus	N		
1080	K2009631	+	Idexx		E. coli	H*		
1081	A8481393	+	Idexx		Staphylococcus	N		
1083	L1536014	+	Idexx		Staphylococcus	XVYEG*MS		
1084	C0551061	+	Idexx		E. coli	N		
1085	A8436315	+	Idexx		Proteus	N		
1086	A8480046	+	Idexx		Staphylococcus	N		
1089	A8312185	+	Idexx		Staphylococcus	N		
1096	A8547029	+	Idexx		E. coli	N		
1102	A8563514	+	Idexx		E. coli	Ν		
1105	L1607528	+	Idexx	E. coli	N			
------	----------	---	-------	---------	----	--		
1110	A8559398	+	Idexx	E. coli	Ν			
1111	L1610766	+	Idexx	E. coli	H*			
1114	L1602432	+	Idexx	E. coli	Ν			

Table 5: Urine samples falsely identified by FRET to have enrofloxacin resistant *E. coli*. Species 1 designates primary infective species; Species 2 designates co infective species. Phenotype describes the antimicrobials to which the isolate expressed resistance.

Figure 1: $\log_2 \text{MIC}_{\text{Enro}}$ vs. T_m for urine samples containing *E. coli* and *E. coli* isolates. A) Urine samples containing *E. coli* collected by cystocentesis. B) Urine samples containing *E. coli* collected by void. C) *E. coli* isolated from urine collected by cystocentesis. D) *E. coli* isolated from urine collected by void. R^2 represents the correlation between MIC_{Enro} and T_m .

Figure 2: Contents of urine samples by collection method. Urine samples negative for bacteria were most prominent overall and for voided urine. For cystocentesis, *E. coli* infection was most prominent.

Figure 3: Distribution of Urine samples containing multiple organisms by species and collection method. Species1 represents primary infective organism while Species 2 represents secondary infective organism. This was designated by concentration of each organism.

Figure 4: Representative Melting curve analysis of DNA from both extraction methods. 1) DNA extracted from urine sample A) 1085460 *Klebsiella sp./S. agalactiae*, C) 1091182 *E. coli*, D) 1091330 *Enterococcus sp.* 2) DNA extracted from isolated colonies A) 1085460-1 *Klebsiella sp.*, B) 1085460-2 *S. agalactiae* (Isolated from A in urine sample), C) 1091182 *E. coli*, D) 1091330 *Enterococcus sp.* The urine sample T_m is shifted left compared to isolate T_m , this may be due to other DNA contaminants found in the urine, such as host DNA.

Figure 5: Amplification curves of DNA from both extraction methods. 1) DNA extracted from urine sample A) 1085460 *Klebsiella sp./S. agalactiae*, C) 1091182 *E. coli*, D) 1091330 *Enterococcus sp.* 2) DNA extracted from isolated colonies A) 1085460-1 *Klebsiella sp.*, B) 1085460-2 *S. agalactiae*, C) 1091182 *E. coli*, D) 1091330 *Enterococcus sp.* The urine sample amplification is not smooth; this may be due to different extraction methods.

References

- Barl T, Dobrindt U, Yu X, Katcoff DJ, Sompolinsky D, Bonacorsi S, Hacker J, Bachmann TT., 2008. Genotyping DNA chip for the simultaneous assessment of antibiotic resistance and pathogenic potential of extraintestinal pathogenic Escherichia coli. Int J Antimicrob Agents. 32; 272-277.
- Behringer, M.G., Miller, W.G., Oyarzabal, O.A., 2011. Typing of *Campylobacter jejuni* and *Campylobacter coli* isolated from live broilers and retail broiler meat by flaA-RFLP, MLST, PFGE and REP-PCR. J. Microbiol. Methods. 84; 194-201.
- Boothe, D.M., Boeckh, A., Simpson, R.B., Dubose, K., 2006. Comparison of pharmacodynamic and pharmacokinetic indices of efficacy for 5 fluoroquinolones toward pathogens of dogs and cats, J. Vet. Intern. Med. 20; 1297–1306.
- Clinical and Laboratory Standards Institute, 2008. Performance standards for antimicrobial disk and dilution susceptibility tests for bacterial isolated from animals. Approved standard, 3rd ed. Document M31-A3. CLSI, Wayne, Pa.
- Cohn, L. A., Gary, A. T., Fales, W. H., Madsen, R. W., 2003. Trends in fluoroquinolone resistance of bacteria isolated from canine urinary tracts. J. Vet. Diagn. Invest. 15, 338-343.
- Cooke, C.L., Singer, R.S., Jang, S.S., Hirsh, D.C., 2002. Enrofloxacin resistance in *Escherichia coli* isolated from dogs with urinary tract infections, J. Am. Vet. Med. Assoc. 15; 190–192.

- Guillard, T., Duval, V., Moret, H., Brasme, L., Vernet-Garnier, V., de Champs, C., 2010. Rapid detection of aac(6')-*Ib*-cr quinolone resistance gene by pyrosequencing. J Clin Microbiol. 48; 286-289.
- Hirsh, D.C., 1973. Multiple antimicrobial resistances in *Escherichia coli* isolated from the urine of dogs and cats with cystitis, J. Am. Vet. Med. Assoc. 162; 885–887
- Lindler, L.E., Fan, W., Jahan, N., 2001. Detection of Ciprofloxacin-Resistant *Yersinia pestis* by Fluorogenic PCR Using the LightCycler. J. Clin. Microbiol. 39, 3649-3655.
- Ling, G. V., Bibestein, E. L., Hirsh, D. C., 1979. Bacterial pathogens associated with urinary tract infections. Vet. Clin. N. Am. Small Anim. Pract. 9; 617–630.
- Nakamura, S., Yanagihara, K., Morinaga, Y., Izumikawa, K., Seki, M., Kakeya, H., Yamamoto,Y., Kamihira, S., Kohno, S., 2009. Melting curve analysis for rapid detection of topoisomerase gene mutations in Haemophilus influenzae. J Clin Microbiol. 47; 781-784.
- Page, S., Vernel-Pauillac, F., O'Connor, O., Bremont, S., Charavay, F., Courvalin, P., Goarant,C., Le Hello, S., 2008. Real-time PCR detection of gyrA and parC mutations inStreptococcus pneumoniae. Antimicrob. Agents Chemother. 52; 4155-4158.
- Qiang, Y.Z., Qin, T., Fu, W., Cheng, W.P., Li, Y.S., Yi, G., 2002. Use of a rapid mismatch PCR method to detect gyrA and parC mutations in ciprofloxacinresistant clinical isolates of Escherichia coli. J. Antimicrob. Chemother. 49, 549-552.
- Richard, P., Delangle, M. H., Merrien, D., 1994. Fluoroquinolone use and fluoroquinolone resistance: is there an association?. Clin. Infect. Dis. 19; 54–59.

- Shaheen, B. W., Wang, C., Johnson, C. M., Kaltenboeck, B., Boothe, D. M., 2009. Detection of fluoroquinolone resistance level in clinical canine and feline *Escherichia coli* pathogens using rapid real-time PCR assay. J. Vet. Micro. 139; 379-385.
- Siedner, M. J., Pandori, M., Castro, L., Barry, P., Whittington, W. L., Liska, S., Klausner, J.D., 2007. Real-time PCR assay for detection of quinolone-resistant *Neisseria gonorrhoeae* in urine samples, J. Clin. Microbiol. 45; 1250–1254.
- Spigaglia, P., Carattoli, A., Barbanti, F., Mastrantonio, P., 2010. Detection of gyrA and gyrB mutations in Clostridium difficile isolates by real-time PCR. Mol Cell Probes. 24; 61-67.
- Webber, M., Piddock, L. J., 2001.Quinolone resistance in *Escherichia coli*. Vet. Res. 32; 275–284.
- Yu, X., Susa, M., Weile, J., Knabbe, C., Schmid, R.D., Bachmann, T.T., 2007. Rapid and sensitive detection of fluoroquinolone-resistant *Escherichia coli* from urine samples using a genotyping DNA microarray. Int J Med Microbiol. 297; 417-29.

APPENDIX A

DATA FOR URINES CONTAINING NEGATIVE AND SINGLE CULTURES

Sample	ID	T _m C	FRET Result	Lab	Collection Method	Species 1	Phenotype
-				Clin			
4	1090460	70	_	Micro	Cystocentesis	E coli	
	1090400	70		Clin	Cystocentesis	<i>L. con</i>	
5	1080784	70	_	Micro	Cystocentesis	F coli	
	1000704	10		Clin	Cystocentesis	<i>L. con</i>	
6	1088931	70	_	Micro	Cystocentesis	E coli	
0	1000751	70	_	Clin	Cystocentesis	L. con	
7	1072801	70	_	Micro	Cystocentesis	E coli	ABS
/	1072001	70	_	Clin	Cystocentesis	L. con	AD5
8	1085623	70	_	Micro	Cystocentesis	E coli	
0	1005025	70	_	Clin	Cystocentesis	L. con	
9	1090093	70	_	Micro	Cystocentesis	E coli	
	1070075	70	_	Clin	Cystocentesis	L. con	
10	1000506	50	+	Micro	Cystocentesis	E coli	
10	1070570	37	Т	Clin	Cystocentesis	L. con	
14	1000885	70	_	Micro	Cystocentesis	E coli	Ν
14	1090885	70	-	Clin	Cystocentesis	<i>L. CO</i> 11	1
15	1000777	70		Miaro	Custosentesis	E coli	N
15	1090777	70	-	Clin	Cystocentesis	E. COII	19
16	1001157			Dath	Voided		
10	1091137			Clin	Volueu	-	
17	1001140	60		Doth	Voidad		
17	1091149	09	-	Clin	volueu	-	
10	1067405	70		Clin. Doth	Voidad		
10	1007403	70	-	r aui	volueu	-	
10	1088200	61 5		Doth	Voidad		
19	1088390	04.3	-	Clin	volded	-	
20	1001151	615		Dath	Custo contosio	E coli	N
20	1091131	04.5	-	Clin	Cystocentesis	E. con	19
21	1090206	60.5		Doth	Voidad		
21	1089300	09.5	-	Clin	volueu	-	
22	1001170	60		Doth	Voidad		
22	1091170	09	-	Clin	volded	-	
22	1085460	50	1	Clin. Doth	woided	Klabsialla	VHE*C
23	1065400	39	+	Clin	volueu	Kiebsiellu	NUE O
24	1001152	60.2		Doth	Voidad		
24	1091132	09.2	-	Clin	volueu	-	
25	1001174	60.5		Dath	Cystocentesis		
23	10711/4	09.5	-	Clin	Cystocentesis	-	
26	1001161	62.6		Dath	Cystocentesis		
20	1071101	02.0	-	Clin	Cystocentesis	-	
27	1001158	v		Dath	Cystocentesis	Klabsialla	HE*
<i>4</i> /	10/11/0	Λ	-	1 aui	Cystocentesis	medstettu	1115

20	1000740	(0.(Clin.			D *
28	1082748	69.6	-	Path Clin	Cystocentesis	Klebsiella	E*
29	1091184	68.6	-	Path	Voided	-	
				Clin.			
30	1076465	68.5	-	Path	Cystocentesis	-	
31	1066184	69.6	-	Path	Cystocentesis	-	
32	1091182	70.1	-	Clin. Path	Voided	E. coli	
33	1091169	60	+	Clin. Path	Voided	-	
34	1091152	64.25	_	Clin. Path	Voided	_	
57	1071132	04.23		Clin.	Volucu	_	
35	1091211	70	-	Path	Voided	-	
36	1091210	70.3	-	Clin. Path	Voided	-	
37	1090550	69.5	-	Clin. Path	Cystocentesis	-	
38	1091258	70.8	-	Clin. Path	Cystocentesis	-	
				Clin.			
39	1091256	70.1	-	Path	Voided	-	
40	1081036	70.48	_	Clin. Path	Voided	_	
10	1001020	/ 0.10		Clin.	Volucia		
41	1091249	70	-	Path	Voided	-	
42	1090899	69.6	-	Clin. Path	Catheter	-	
43	1085302	64.7	-	Clin. Path	Voided	-	
4.4	1001262	60.8		Clin. Dath	Crysta sentesis		
44	1091203	09.8	-	Clin.	Cystocentesis	-	
45	1091261	70.2	-	Path	Cystocentesis	-	
46	1091232	70	-	Clin. Path	Voided	E. coli	E*
47	1090805	69.5	-	Clin. Path	Cystocentesis	-	
48	1091281	69.7	_	Clin. Path	Voided	-	
		_		Clin.			
49	1091278	68.7	-	Path	Cystocentesis	-	
50	1091291	69.9	-	Path	Catheter	-	
				Clin.			
51	1091293	69.7	-	Path	Cystocentesis	-	
52	1091301	69.8	-	Path	Cystocentesis	-	
53	1091314	69.7	-	Clin. Path	Cystocentesis	-	
54	1091324	60.3		Clin. Path	Voided	_	
	1071324	09.3	-	Clin.	volueu	-	
55	1091344	69.6	-	Path	Cystocentesis	-	
56	1076465	69.4		Clin. Path	Catheter	Klebsiella	
57	1001279	60.7		Clin.	Void-1	V1 ab -: -11 -	E*
57	10913/8	09./	-	rath	voided	Kiedsiella	L [*]

50	1001272	(0.1		Clin.	X7 * 1 1		
58	1091373	69.1	-	Path Clin	Voided	-	
59	1091391	69.2	-	Path	Voided	E. coli	
				Clin.			
60	1091306	69.6	-	Path	Cystocentesis	-	
61	1091387	69.4	-	Path	Voided	Enterococcus	
01	10/100/	0,711		Clin.	, oraca	2	
62	1091330	59.9	+	Path	Voided	Enterococcus	
62	1001275	60.4		Clin. Doth	Voidad		
05	1091373	09.4	-	Clin	volded	-	
64	1091157	69.5	-	Path	Catheter	-	
		_		Clin.			
65	1091401	68.7	-	Path	Voided	Klebsiella	E
66	1069127	59.1	+	Path	Voided	Streptococcus	
00	1009127	57.1	1	Clin.	Volucia	Sheptococcus	
67	1091403	68.9	-	Path	Voided	-	
(0)	1001204	(0.0		Clin.			
68	1091394	69.2	-	Path Clin	Cystocentesis	-	
69	1091439	68.8	-	Path	Voided	-	
				Clin.			
70	1091417	69.5	-	Path	Cystocentesis	-	
71	1001469	(0.1		Clin.	Contractoria		
/1	1091468	09.1	-	Clin	Cystocentesis	-	
72	1091411	69.4	-	Path	Cystocentesis	-	
				Clin.			
73	1091412	68.5	-	Path	Voided	E. coli	
74	1076465	69.2	_	Clin. Path	Voided	E coli	ADB
, ,	1070105	07.2		Clin.	Volucia	2.001	
75	1091402	69.4	-	Path	Voided	-	
76	126524	(0.1		Clin.	37 1 1		
/6	126524	69.1	-	Patn Clin	Voided	-	
77	1091414	69.5	-	Path	Voided	-	
				Clin.			
78	1082592	69.4	-	Path	Voided	Klebsiella	
79	1088390	69.2	_	Clin. Path	Voided	-	
17	1000570	07.2	_	Clin.	Volucu	_	
80	1091477	69.3	-	Path	Cystocentesis	E. coli	
01	1001455	60 1		Clin.			
81	1091475	69.1	-	Path Clin	Voided	Enterococcus	
82	1091478	69.2	-	Path	Cystocentesis	E. coli	
				Clin.			
83	1082899	69.3	-	Path	Cystocentesis	-	
Q.1	1001509	68.0		Clin. Doth	Custocentesis		
04	1071508	00.9	-	Clin	Cystocentesis	-	
85	1076465	59.1	+	Path	Cystocentesis	E. coli	
	10			Clin.			
86	1091473	69.3	-	Path	Voided	E. coli	
87	1090121	69	-	Path	Cystocentesis	E. coli	

00	1002740	50.2		Clin.			D *
88	1082748	59.3	+	Path Clin	Cystocentesis	Enterococcus	E*
89	1091474	69.4	-	Path	Cystocentesis	-	
				Clin.			
90	1091492	68.7	-	Path	Cystocentesis	E. coli	
91	1091521	68.9	-	Clin. Path	Voided	-	
		_		Clin.			
92	1091522	68.9	-	Path	Cystocentesis	-	
93	1091523	69.3	-	Path	Cystocentesis	-	
				Clin.			
94	1091528	69.1	-	Path	Cystocentesis	-	
05	1001521	(0.1		Clin.	37 1 1		
95	1091531	69.1	-	Clin	Voided	Enterococcus	
96	1091518	69.1	-	Path	Voided	-	
				Clin.			
97	118704	68.9	-	Path	Cystocentesis	-	
	1001504	(2.2		Clin.			
98	1091524	62.2	-	Path Clin	Voided	E. coli	
99	1091540	69.2	-	Path	Voided	Fnterococcus	
	1091340	07.2		Clin.	Volucia	Emerococcus	
100	1091542	68.9	-	Path	Cystocentesis	-	
				Clin.			
101	1089908	69.1	-	Path	Cystocentesis	E. coli	N
102	1086044	69.1	_	Clin. Path	Voided	Futerococcus	
102	1000011	07.1		Clin.	Volucia	Emerococcus	
103	1076341	69.1	-	Path	Voided	Klebsiella	
				Clin.		_	
104	1091559	69	-	Path	Cystocentesis	Enterococcus	
105	1091542	68.4	-	Clin. Path	Catheter	Klehsiella	
105	1071342	00.4		Clin.	Cutheter	Medstella	
106	127374	67.6	-	Path	Cystocentesis	Proteus	D
				Clin.			
107	1091258	68.7	-	Path	Cystocentesis	E. coli	
108	1091585	68.3	_	Path	Cystocentesis	-	
100	1071202	00.5		Clin.	Cystocentesis		
109	1083914	68.7	-	Path	Voided	-	
				Clin.			
110	1088573	68.5	-	Path Clin	Voided	E. coli	
111	1091631	58	+	Path	Voided	E. coli	E
				Clin.			
112	1091630	68.5	-	Path	Cystocentesis	-	
110	1001201	60 7		Clin.			
113	1091391	68.5	-	Path Clin	Voided	-	
114	1088785	68	-	Path	Cystocentesis	-	
				Clin.			
115	1091648	66.7	-	Path	Cystocentesis	-	
116	1091653	58.4	+	Clin. Path	Voided	_	
110	10/1033	50.7		Clin.	, oraca	-	
117	1091644	68.6	-	Path	Voided	-	

118	1085164	68.4		Clin. Path	Custocentesis		
110	1065104	08.4	-	Clin.	Cystocentesis	-	
119	1070105	57.8	+	Path	Voided	-	
100	1001640			Clin.	37 1 1		
120	1091649	66.6	-	Path Clin	Voided	Enterococcus	
121	1618	66.9	-	Micro	Voided	E. coli	Ν
				Clin.			
122	1059042	69.1	-	Micro	Cystocentesis	E. coli	XADBRS
100	1001550	(1.10		Clin.			
123	1091559	61.18	-	Micro Clin	Cystocentesis	E. coli	
124	1579	67 45	_	Micro	Voided	E coli	Ν
121	1017	07.15		Clin.	Volucia	1.0011	
125	1082748	58.65	+	Micro	Cystocentesis	Enterococcus	XAEM
				Clin.			
126	1564	70	-	Micro	Voided	E. coli	N
127	1089908	69 31	_	Micro	Cystocentesis	E coli	N
127	1007700	07.51	_	Clin.	Cystocentesis	L. con	1
128	1091151	69.27	-	Micro	Cystocentesis	E. coli	Ν
				Clin.			
129	1090828	69.51	-	Path	Voided	E. coli	
120	1068074	60.86		Clin. Doth	Voidad		
150	1008074	09.80	-	Clin	voided	-	
131	1085481	69.47	-	Path	Voided	-	
				Clin.			
132	1088368	69.98	-	Path	Voided	-	
122	1001666	CO 49		Clin.	V -:		
133	1091666	69.48	-	Clin	Voided	-	
134	1091717	59.38	+	Path	Voided	E. coli	
				Clin.			
135	1069127	69.5	-	Path	Voided	E. coli	
126	1072104	50.47		Clin.	37 1 1	с	T*
136	1073104	59.47	+	Path Clin	Voided	Streptococcus	E*
137	1081614	69.58	-	Path	Cystocentesis	-	
				Clin.			
138	1089682	68.45	-	Path	Cystocentesis	-	
100	1005560	60 G		Clin.			
139	1085563	68.67	-	Path Clin	Voided	-	
140	1091739	68 99	_	Path	Voided	_	
110	1071737	00.77		Clin.	Volucia		
141	1091742	69.04	-	Path	Cystocentesis	-	
				Clin.			
142	127082	68.86	-	Path	Voided	-	
143	1088527	69.46	_	Path	Catheter	Klehsiella	F*
110	1000021	0,110		Clin.	Culletor	1100 510110	
144	1061738	69.18	-	Path	Catheter	-	
	10015			Clin.			
145	1091764	68	-	Path	Cystocentesis	-	
146	1091766	68.56	-	Path	Voided	-	
170	1071700	00.00		Clin.	, oraca		
147	1091767	68.09	-	Path	Cystocentesis	-	

148	1091754	v	_	Clin. Path	Voided	Futerococcus	М
140	1071754		_	Clin.	Volded	Emerococcus	141
149	1087129	68.67	-	Path Clin	Cystocentesis	-	
150	99480	69.08	-	Path	Voided	-	
151	1091761	62.71	-	Clin. Path	Cystocentesis	-	
152	1091796	67.8	-	Clin. Path	Catheter	E. coli	
153	1091783	58	+	Clin. Path	Voided	-	
154	1091791	66.19	-	Clin. Path	Voided	-	
155	100012	67.15		Clin. Dath	Voidad	E coli	
155	122913	07.15	-	Clin.	voided	E. COll	
156	1091805	68.77	-	Path	Voided	-	
157	1091823	66.49	-	Path	Voided	-	
158	1070473	67.95	-	Clin. Path	Voided	-	
159	1091828	66 29	_	Clin. Path	Catheter	_	
157	1071020	00.27	_	Clin.	Califeter		
160	1082748	67.69	-	Path Clin	Voided	E. coli	E
161	1091852	68.48	-	Path	Voided	E. coli	
167	1091874	х	-	Clin. Path	Voided	-	
168	1091876	69.8	-	Clin. Path	Voided	E. coli	
174	1001426	71 75		Clin. Both	Custopontosis	E coli	
1/4	1091420	/1./5	-	Clin.	Cystocentesis	E. Coll	
175	1081776	71.5	-	Path	Cystocentesis	-	
176	1091791	72.26	-	Path	Cystocentesis	-	
177	1067612	71.35	-	Clin. Path	Cystocentesis	-	
178	1090232	71.85	_	Clin. Path	Voided	-	
150	1004670	51.60		Clin.			
179	1084679	71.68	-	Path Clin.	Cystocentesis	-	
180	1087054	71.35	-	Path	Cystocentesis	-	
181	1091876	71.27	-	Path	Cystocentesis	E. coli	Ν
182	1091742	70.89	-	Clin. Path	Cystocentesis	-	
183	1088573	71.22	-	Clin. Path	Cystocentesis	E. coli	N
104	1001070	70.00		Clin.			
184	1091968	/0.98	-	Path Clin.	Cystocentesis	-	
186	1091970	70.81	-	Path	Cystocentesis	-	
187	1091966	x	-	Clin. Path	Cystocentesis	-	
188	1091972	72.36	-	Clin. Micro	Cystocentesis	-	

190	1082502	70 49		Clin. Dath	Voidad		
189	1082392	72.48	-	Clin.	volded	-	
190	1091940	72.2	-	Path	Cystocentesis	E. coli	
191	1090805	71 71	_	Clin. Path	Cystocentesis	_	
171	1090805	/1./1	_	Clin.	Cystocentesis	-	
192	1091941	71.56	-	Path	Voided	Enterococcus	
102	1001042	71.52		Clin.	X 7-: J - J	$E \rightarrow l$	
195	1091942	/1.55	-	Clin	volded	E. COll	
196	1091952	x	-	Path	Cystocentesis	Proteus	D
107	1000111	72.02		Clin.	37 1 1		
197	1090111	72.02	-	Patn Clin	Voided	-	
199	1075569	71.87	-	Path	Cystocentesis	-	
				Clin.			
200	1088194	71.58	-	Path Clin	Cystocentesis	-	
201	1779	72.08	-	Micro	Cystocentesis	E. coli	AB
				Clin.			
202	1715	71.95	-	Micro	Voided	E. coli	N
203	1716	x	-	Micro	Voided	E. coli	Ν
205	1/10			Clin.	, ondea	2.001	
204	1085353	x	-	Micro	Cystocentesis	E. coli	N
205	1001258	v		Clin. Doth	Custopentasis		
203	1091238	А	_	Clin.	Cystocentesis	-	
206	1091850	72.35	-	Path	Voided	E. coli	
207	1001205	72.05		Clin.	Contractoria	$E \rightarrow l$	
207	1091395	72.05	-	Clin	Cystocentesis	E. coll	
208	1091991	69.22	-	Path	Voided	-	
• • • •	10.15			Clin.			
209	1865	72.6	-	Micro Clin		-	
210	1088573	68.94	-	Micro	Cystocentesis	E. coli	Ν
				Clin.			
211	1091876	69.75	-	Micro	Cystocentesis	E. coli	N
212	1091868	69.44	-	Micro	Cystocentesis	E. coli	Ν
				Clin.	5		
213	1061672	58.61	+	Path	Cystocentesis	E. coli	XAVYDEGMBRS
214	1092223	69 37	_	Clin. Path	Catheter	F coli	
214	1072225	07.57		Clin.	Cutheter	<i>L. con</i>	
215	113914	69.64	-	Path	Voided	Klebsiella	
221	1085353	60.7		Clin. Path	Voided	E coli	
221	1065555	09.7	_	Clin.	Volded	E. Coli	
227	1092227	69.53	-	Path	Voided	Enterococcus	
225	1000510	57 02	1	Clin. Doth	Voided	Protore	
233	1090319	57.85	+	Clin.	volueu	FIOLEUS	
240	1080953	59.19	+	Path	Cystocentesis	Enterococcus	
241	1002229	70.2		Clin.	Custosenteri	E1:	NT
241	1092328	/0.5	-	Clin	Cystocentesis	E. coli	IN IN
249	1092349	69.25	-	Path	Cystocentesis	E. coli	XAVOYHDE*GMBRS

	1						
253	1092356	69.42	-	Clin. Path	Voided	E. coli	
25.6	1002262	(9.01		Clin.	Conto conto io		VANOVDCDDS
230	1092263	08.91	-	Clin.	Cystocentesis	E. Coll	AAVUTDGBKS
267	1092677	69.23	-	Path	Voided	Klebsiella	
271	1092762	69.76	-	Clin. Path	Voided	E. coli	
	1000-			Clin.	~ .		
272	1092764	69.56	-	Path Clin	Catheter	E. coli	
274	1092700	х	-	Path	Voided	Streptococcus	
275	1092755	x	_	Clin. Path	Cystocentesis	Enterococcus	F*
215	1072755	А		Clin.		Emerococcus	
280	1092797	69.12	-	Path	Voided	E. coli	
284	116514	58.72	+	Path	Cystocentesis	Klebsiella	Е
285	1002361	68.1		Clin. Path	Voided	Strantogoggus	
265	1092301	00.1	-	Clin.	volded	Sirepiococcus	
290	1092764	70.13	-	Path	Catheter	E. coli	
291	1092753	68.95	-	Clin. Path	Voided	Klebsiella	
				Clin.			
296	1090008	69.41	-	Path Clin	Voided	Klebsiella	
312	1092349	58.64	+	Micro	Cystocentesis	E. coli	XAVOYHDEGMBRS
313	1002328	69.42	_	Clin. Micro	Cystocentesis	F. coli	N
515	1072328	07.42	-	Clin.	Cystocentesis	E. con	1
314	1092223	69.51	-	Micro	Catheter	E. coli	XAVOYDBRS
315	1088549	69.54	-	Micro	Cystocentesis	E. coli	XAVOYDBR
216	1002542	(0.2		Clin.			N
316	1092542	69.3	-	Clin.	Cystocentesis	E. coli	N
317	1092263	69.19	-	Micro	Cystocentesis	E. coli	XAVOYDGBRS
318	1092192	69.28	-	Clin. Micro	Cystocentesis	E. coli	D
				Clin.			_
319	1061672	69.15	-	Micro Clin	Cystocentesis	E. coli	XAYDEGMBRS
320	Bac 2240	69.08	-	Micro	Voided	E. coli	N
221	Pag 2205	59 69	1	Clin. Miero	Voidad	F coli	N
321	Dac 2393	38.08	+	Clin.	volded	E. COll	1
322	Bac 2235	69.26	-	Micro	Voided	E. coli	AB
323	1092933	58.89	+	Micro	Cystocentesis	E. coli	AVYEMBRS
	1000550	<i>co. o.c.</i>		Clin.			N
324	1092552	69.26	-	Micro Clin.	Cystocentesis	E. coli	N
325	Bac 2399	58.85	+	Micro	Voided	E. coli	XAVOYHDEMBRS
326	1092893	67.72	-	Clin. Micro	Cystocentesis	E. coli	N
520	1072073	01.12		Clin.		<i>L. con</i>	
327	1080924	69.63	-	Micro	Cystocentesis	E. coli	N
328	107958	68.85	-	Micro	Cystocentesis	E. coli	N

329	89045	69.23	_	Clin. Micro	Cystocentesis	E coli	N
52)	07045	07.25		Clin.	cystocontesis	E. con	
330	1090008	58.93	+	Micro Clin	Cystocentesis	E. coli	AH
331	1071579	68.99	-	Micro	Cystocentesis	E. coli	Ν
332	Bac 2175	69.05	-	Clin. Micro	Voided	E. coli	А
333	1092930	69.07	-	Clin. Micro	Voided	E. coli	N
334	1093128	68.95	-	Clin. Micro	Cystocentesis	E. coli	AB
335	1093627	68.92	-	Clin. Micro	Cystocentesis	E. coli	А
336	1093584	68.92	-	Clin. Micro	Cystocentesis	E. coli	XAHDEMBRS
337	1093357	69.46	-	Clin. Micro	Cystocentesis	E. coli	А
338	1092952	69.95	-	Clin. Micro	Cystocentesis	E. coli	
339	1093217	69.47	-	Clin. Micro	Cystocentesis	E. coli	N
340	1093368	69.62	-	Clin. Micro	Cystocentesis	E. coli	А
341	1080953	58.93	+	Clin. Micro	Cystocentesis	E. coli	
342	1061672	69.36	-	Clin. Micro	Cystocentesis	E. coli	
343	1093457	69.32	-	Clin. Micro	Cystocentesis	E. coli	Ν
344	1079634	59.06	+	Clin. Micro	Cystocentesis	E. coli	XAVOYHEGMBR
345	1091476	69.26	-	Clin. Micro	Cystocentesis	E. coli	XAVOYHDEMBR
346	1061672	59.02	+	Clin. Micro	Cystocentesis	E. coli	XAVOYD
347	1082748	59.06	+	Clin. Micro	Cystocentesis	E. coli	ADEMBRS
348	1093680	69.25	-	Clin. Micro	Cystocentesis	E. coli	А
349	1093196	69.35	-	Clin. Micro	Cystocentesis	E. coli	А
1001	L1511445	63.95	-	Idexx		Proteus	Ν
1002	D1213201- 1	69.04	-	Idexx		E. coli	Ν
1004	L1514671	68.94	-	Idexx		E. coli	Ν
1005	L1519471	69.11	-	Idexx		E. coli	XHS
1006	L1513280	68.97	-	Idexx		E. coli	Ν
1007	A8204277	64.1	-	Idexx		Staphylococcus	Ν
1008	L1510448	68.86	-	Idexx		E. coli	H*
1009	L1510822	69.37	-	Idexx		Staphylococcus	Ν
1010	C0525802	64.25	-	Idexx		Staphylococcus	Ν
1011	L1513163	64.36	-	Idexx		Proteus	H*
1014	A8469156	69.18	-	Idexx		E. coli	Ν
1015	A8465237	64.27	-	Idexx		E. coli	XVH*

1016	A8451563	69.16	-	Idexx	E. coli	XH*
1017	F1887207	69.14	-	Idexx	E. coli	Ν
1018	L1553187	64.43	-	Idexx	E. coli	H*E*
1019	A8448441	69.2	-	Idexx	E. coli	H*
1020	A8448942	69.17	-	Idexx	E. coli	H*
1021	L1533818	69.17	-	Idexx	E. coli	H*S
1022	L1514975	69.25	-	Idexx	E. coli	H*
1023	A8451222	69.31	-	Idexx	E. coli	H*
1024	S5749049	58.95	+	Idexx	E. coli	H*EGMS
1025	A8468319	69.67	-	Idexx	E. coli	Ν
1026	F1888287	69.28	-	Idexx	E. coli	XH*
1027	A8455320	69.37	-	Idexx	E. coli	H*
1028	A8451803	69.16	-	Idexx	E. coli	X*H*
1029	S5749076	69.19	-	Idexx	E. coli	H*
1030	C0532173	69.16	-	Idexx	E. coli	H*
1031	A8484466	69.14	-	Idexx	E. coli	XVYH*
1032	K2007047	69.21	-	Idexx	E. coli	N
1033	A8464230	69.19	-	Idexx	E. coli	XV*H*
1034	L1533827	69.08	-	Idexx	E. coli	H*
1036	D0242530	69.17	-	Idexx	E. coli	H*
1038	L1519612	64.42	-	Idexx	E. coli	H*
1039	S5747966	69.11	-	Idexx	E. coli	H*
1040	F1836351	64.09	-	Idexx	E. coli	H*E*
1041	A8440514	64.18	-	Idexx	E. coli	H*
1042	F1872330	68.65	-	Idexx	E. coli	Ν
1043	L1548900	64.11	-	Idexx	E. coli	Ν
1044	L1544061	68.73	-	Idexx	E. coli	H*
1045	A8450341	68.77	-	Idexx	E. coli	H*
1046	A8469728	68.85	-	Idexx	E. coli	E*
1047	L1522153	69.03	-	Idexx	E. coli	H*
1048	L1514385	68.9	-	Idexx	E. coli	H*
1050	A8478781	68.99	-	Idexx	E. coli	H*
1051	L1555109	68.95	-	Idexx	E. coli	Ν
1052	A8474989	69.12	-	Idexx	E. coli	H*
1053	A8491381	69.12	-	Idexx	E. coli	Ν
1054	A8437466	64.12	-	Idexx	Proteus	Ν
1055	A8445833	69.23	-	Idexx	E. coli	H*
1056	L1522162	69.2	-	Idexx	E. coli	Ν
1058	A8461480	69.15	-	Idexx	E. coli	H*
1059	A8484143	69.26	-	Idexx	E. coli	Ν
1060	C0532281	69.17	-	Idexx	E. coli	H*

1061 A8491273 69.28 - Idexx E. coli XVYH* 1062 L1551413 69.19 - Idexx E. coli N 1063 A8483665 69.27 - Idexx E. coli N 1064 A8503759 68.69 - Idexx E. coli N 1064 A8503759 68.69 - Idexx E. coli N 1065 A8435917 58.47 + Idexx E. coli XVYH*EMB 1066 S5745282 68.81 - Idexx E. coli N 1067 L1551431 68.57 - Idexx E. coli N 1068 A8468721 63.59 - Idexx E. coli N 1070 L1537746 68.65 - Idexx E. coli N 1071 A8480153 68.82 - Idexx E. coli N 1071 A8469782 69.22 -
1062 L1551413 69.19 - Idexx E. coli N 1063 A8483665 69.27 - Idexx E. coli N 1064 A8503759 68.69 - Idexx E. coli N 1064 A8503759 68.69 - Idexx E. coli N 1065 A8435917 58.47 + Idexx E. coli XVYH*EMB 1066 S5745282 68.81 - Idexx E. coli N 1067 L1551431 68.57 - Idexx E. coli N 1068 A8468721 63.59 - Idexx E. coli N 1069 L1567048 68.67 - Idexx E. coli N 1070 L1537746 68.65 - Idexx E. coli N 1071 A8480153 68.82 - Idexx E. coli N 1072 A8469791 64.09 -
1063 A8483665 69.27 - Idexx E. coli N 1064 A8503759 68.69 - Idexx E. coli N 1065 A8435917 58.47 + Idexx E. coli XVYH*EMB 1066 S5745282 68.81 - Idexx E. coli H* 1067 L1551431 68.57 - Idexx E. coli N 1068 A8468721 63.59 - Idexx E. coli N 1069 L1567048 68.67 - Idexx E. coli N 1070 L1537746 68.65 - Idexx E. coli N 1071 A8480153 68.82 - Idexx E. coli N 1072 A8469791 64.09 - Idexx E. coli H* 1074 A8453666 68.76 - Idexx E. coli N 1075 A8469782 69.22 -
1064 A8503759 68.69 - Idexx E. coli N 1065 A8435917 58.47 + Idexx E. coli XVYH*EMB 1066 S5745282 68.81 - Idexx E. coli H* 1067 L1551431 68.57 - Idexx E. coli N 1068 A8468721 63.59 - Idexx Staphylococcus N 1069 L1567048 68.67 - Idexx E. coli N 1070 L1537746 68.65 - Idexx E. coli N 1071 A8480153 68.82 - Idexx E. coli N 1071 A8469791 64.09 - Idexx E. coli N 1072 A8469791 64.09 - Idexx E. coli H* 1074 A8453666 68.76 - Idexx E. coli H* 1075 A8469782 69.22 <td< td=""></td<>
1065A843591758.47+IdexxE. coliXVYH*EMB1066S574528268.81-IdexxE. coliH*1067L155143168.57-IdexxE. coliN1068A846872163.59-IdexxStaphylococcusN1069L156704868.67-IdexxE. coliN1070L153774668.65-IdexxE. coliN1071A848015368.82-IdexxE. coliN1072A846979164.09-IdexxPseudomonasHE*G*1074A845366668.76-IdexxE. coliH*1075A846978269.22-IdexxE. coliH*1076A846948869.16-IdexxE. coliN1078L15449168.94-IdexxE. coliN1079A840789758.61+IdexxE. coliN1080K200963158.54+IdexxE. coliH*1081A84139358.58+IdexxStaphylococcusN
1066 S5745282 68.81 - Idexx E. coli H* 1067 L1551431 68.57 - Idexx E. coli N 1068 A8468721 63.59 - Idexx Staphylococcus N 1069 L1567048 68.67 - Idexx E. coli N 1070 L1537746 68.65 - Idexx E. coli N 1071 A8480153 68.82 - Idexx E. coli N 1072 A8469791 64.09 - Idexx Pseudomonas HE*G* 1074 A8453666 68.76 - Idexx E. coli H* 1075 A8469782 69.22 - Idexx E. coli H* 1076 A8469488 69.16 - Idexx E. coli N 1077 A8456720 69.07 - Idexx E. coli N 1078 L1544491 68.94 <t< td=""></t<>
1067 L1551431 68.57 - Idexx E. coli N 1068 A8468721 63.59 - Idexx Staphylococcus N 1069 L1567048 68.67 - Idexx E. coli N 1070 L1537746 68.65 - Idexx E. coli N 1071 A8480153 68.82 - Idexx E. coli N 1072 A8469791 64.09 - Idexx Pseudomonas HE*G* 1074 A8453666 68.76 - Idexx E. coli H* 1075 A8469782 69.22 - Idexx E. coli H* 1076 A8469488 69.16 - Idexx E. coli N 1077 A8456720 69.07 - Idexx E. coli N 1078 L154491 68.94 - Idexx E. coli N 1079 A8407897 58.61
1068 A8468721 63.59 - Idexx Staphylococcus N 1069 L1567048 68.67 - Idexx E. coli N 1070 L1537746 68.65 - Idexx E. coli N 1070 L1537746 68.65 - Idexx E. coli N 1071 A8480153 68.82 - Idexx E. coli N 1072 A8469791 64.09 - Idexx E. coli N 1074 A8453666 68.76 - Idexx E. coli H* 1075 A8469782 69.22 - Idexx E. coli H* 1076 A8469488 69.16 - Idexx E. coli N 1077 A8456720 69.07 - Idexx E. coli N 1078 L1544491 68.94 - Idexx E. coli N 1079 A8407897 58.61 +
1069 L1567048 68.67 - Idexx E. coli N 1070 L1537746 68.65 - Idexx E. coli N 1071 A8480153 68.82 - Idexx E. coli N 1072 A8469791 64.09 - Idexx Pseudomonas HE*G* 1074 A8453666 68.76 - Idexx E. coli H* 1075 A8469782 69.22 - Idexx E. coli H* 1076 A8469488 69.16 - Idexx E. coli XVYH* 1077 A8456720 69.07 - Idexx E. coli N 1078 L154491 68.94 - Idexx E. coli N 1079 A8407897 58.61 + Idexx Staphylococcus N 1080 K2009631 58.54 + Idexx Staphylococcus N 1081 A8481393 58.58
1070 L1537746 68.65 - Idexx E. coli N 1071 A8480153 68.82 - Idexx E. coli N 1072 A8469791 64.09 - Idexx Pseudomonas HE*G* 1074 A8453666 68.76 - Idexx E. coli H* 1075 A8469782 69.22 - Idexx E. coli H* 1076 A8469488 69.16 - Idexx E. coli N 1077 A8469782 69.22 - Idexx E. coli N 1076 A8469488 69.16 - Idexx E. coli N 1077 A8456720 69.07 - Idexx E. coli N 1078 L1544491 68.94 - Idexx Staphylococcus N 1079 A8407897 58.61 + Idexx Staphylococcus N 1080 K2009631 58.58
1071 A8480153 68.82 - Idexx E. coli N 1072 A8469791 64.09 - Idexx Pseudomonas HE*G* 1074 A8453666 68.76 - Idexx E. coli H* 1074 A8453666 68.76 - Idexx E. coli H* 1075 A8469782 69.22 - Idexx E. coli H* 1076 A8469488 69.16 - Idexx E. coli XVYH* 1077 A8456720 69.07 - Idexx E. coli N 1078 L154491 68.94 - Idexx E. coli N 1079 A8407897 58.61 + Idexx Staphylococcus N 1080 K2009631 58.54 + Idexx Staphylococcus N 1081 A8481393 58.58 + Idexx Staphylococcus N
1072 A8469791 64.09 - Idexx Pseudomonas HE*G* 1074 A8453666 68.76 - Idexx E. coli H* 1075 A8469782 69.22 - Idexx E. coli H* 1076 A8469488 69.16 - Idexx E. coli XVYH* 1077 A8456720 69.07 - Idexx E. coli N 1078 L1544491 68.94 - Idexx E. coli N 1079 A8407897 58.61 + Idexx Staphylococcus N 1080 K2009631 58.54 + Idexx E. coli H* 1081 A8481393 58.58 + Idexx Staphylococcus N
1074 A8453666 68.76 - Idexx E. coli H* 1075 A8469782 69.22 - Idexx E. coli H* 1076 A8469488 69.16 - Idexx E. coli XVYH* 1077 A8456720 69.07 - Idexx E. coli N 1078 L1544491 68.94 - Idexx E. coli N 1079 A8407897 58.61 + Idexx Staphylococcus N 1080 K2009631 58.54 + Idexx E. coli H* 1081 A8481393 58.58 + Idexx Staphylococcus N
1075 A8469782 69.22 - Idexx E. coli H* 1076 A8469488 69.16 - Idexx E. coli XVYH* 1077 A8456720 69.07 - Idexx E. coli NVYH* 1078 L1544491 68.94 - Idexx E. coli N 1079 A8407897 58.61 + Idexx Staphylococcus N 1080 K2009631 58.54 + Idexx E. coli H* 1081 A8481393 58.58 + Idexx Staphylococcus N
1076 A8469488 69.16 - Idexx E. coli XVYH* 1077 A8456720 69.07 - Idexx E. coli N 1078 L1544491 68.94 - Idexx E. coli N 1079 A8407897 58.61 + Idexx Staphylococcus N 1080 K2009631 58.54 + Idexx E. coli H* 1081 A8481393 58.58 + Idexx Staphylococcus N
1077 A8456720 69.07 - Idexx E. coli N 1078 L1544491 68.94 - Idexx E. coli N 1079 A8407897 58.61 + Idexx Staphylococcus N 1080 K2009631 58.54 + Idexx E. coli H* 1081 A8481393 58.58 + Idexx Staphylococcus N
1078 L1544491 68.94 - Idexx E. coli N 1079 A8407897 58.61 + Idexx Staphylococcus N 1080 K2009631 58.54 + Idexx E. coli H* 1081 A8481393 58.58 + Idexx Staphylococcus N
1079 A8407897 58.61 + Idexx Staphylococcus N 1080 K2009631 58.54 + Idexx E. coli H* 1081 A8481393 58.58 + Idexx Staphylococcus N
1080 K2009631 58.54 + Idexx E. coli H* 1081 A8481393 58.58 + Idexx Staphylococcus N
1081 A8481393 58.58 + Idexx Staphylococcus N
1082 D0242567 68.85 - Idexx E. coli N
1083 L1536014 58.45 + Idexx Staphylococcus XVYEG*MS
1084 C0551061 58.51 + Idexx E. coli N
1085 A8436315 58.58 + Idexx Proteus N
1086 A8480046 58.5 + Idexx Staphylococcus N
1087 L1551450 67.52 - Idexx E. coli N
1088 L1551422 69.27 - Idexx E. coli N
1089 A8312185 58.83 + Idexx Staphylococcus N
1090 L1553660 58.77 + Idexx E. coli XVYEGM
1091 A8312194 62.45 - Idexx E. coli H*
1092 A8469531 69.24 - Idexx E. coli N
1093 A8551451 67.33 - Idexx E. coli XVY
1094 L1590805 58.13 + Idexx E. coli H*EM
1095 K2016494 69.21 - Idexx E. coli XVY
1096 A8547029 58.67 + Idexx E. coli N
1097 L1598296 69.3 - Idexx E. coli N
1098 A8545651 69.36 - Idexx E. coli N
1099 F1913568 69.11 - Idexx E. coli N
1100 S5758692 69.18 - Idexx E. coli H*
1101 S5756259 67.9 - Idexx E. coli XVY*H*
1102 A8563514 58.35 + Idexx E. coli N

1103	A8559683	67.96	-	Idexx	E. coli	Ν
1104	A8557455	68.8	-	Idexx	E. coli	H*
1105	L1607528	58.35	+	Idexx	E. coli	Ν
1106	A8561396	68.84	-	Idexx	E. coli	Ν
1107	F1879911	69.24	-	Idexx	E. coli	Ν
1108	L1603921	67.57	-	Idexx	E. coli	H*
1109	L1600204	68.97	-	Idexx	E. coli	Ν
1110	A8559398	58.38	+	Idexx	E. coli	Ν
1111	L1610766	58.06	+	Idexx	E. coli	H*
1112	L1604320	58.7	+	Idexx	E. coli	XVYHEMBS
1113	L1611585	69.26	-	Idexx	E. coli	Ν
1114	L1602432	58.74	+	Idexx	E. coli	Ν
1115	A8514055	69.16	-	Idexx	E. coli	Ν
1116	A8520132	69.4	-	Idexx	E. coli	Ν
1117	C0570497	69.27	-	Idexx	E. coli	Ν
1118	F1897956	69.46	-	Idexx	E. coli	N
1119	A8510717	69.26	-	Idexx	E. coli	H*
1120	A8510735	69.27	-	Idexx	E. coli	Ν
1121	A8510726	63.94	-	Idexx	E. coli	Ν
1122	A8519365	69.39	-	Idexx	E. coli	N
1123	\$5751038	64.78	-	Idexx	E. coli	XH*
1124	A8510708	64.23	-	Idexx	E. coli	X*H*
1125	L1570277	69.92	-	Idexx	E. coli	N
1126	A8509494	69.16	-	Idexx	E. coli	N
1127	A8516050	69.08	-	Idexx	E. coli	H*
1128	K2012539	69.05	-	Idexx	E. coli	H*
1129	L1582278	69.14	-	Idexx	E. coli	H*
1130	T3604679	68.9	-	Idexx	E. coli	H*
1131	A8510691	68.98	-	Idexx	E. coli	Ν
1132	K2014570	69.32	-	Idexx	E. coli	N
1133	A8502171	69.26	-	Idexx	E. coli	H*
1134	A8530101	69.3	-	Idexx	E. coli	H*
1135	F1850744	69.08	-	Idexx	E. coli	N
1137	A8528462	69.07	-	Idexx	E. coli	H*
1138	L1592748	69.56	-	Idexx	E. coli	Ν
1140	A8538290	69.51	-	Idexx	E. coli	Ν
1141	L1606084	69.38	-	Idexx	E. coli	Ν
1143	A8518500	69.31	-	Idexx	E. coli	Ν
1144	L1604473	69.48	-	Idexx	E. coli	XVYH*B
1145	L1579639	69.36	-	Idexx	E. coli	H*
1147	L1578435	69.49	-	Idexx	E. coli	Ν

1148	A8528168	68.53	-	Idexx		E. coli	Ν
1149	K1071535	69.06	-	Idexx		E. coli	H*
1150	A8469352	68.18	-	Idexx	E. coli		Ν
1152	C0553146	69.32	-	Idexx		E. coli	Ν
1153	A8518484	68.99	-	Idexx		E. coli	Ν
1154	A8518466	68.73	-	Idexx		E. coli	Ν
1155	D1280606	68.32	-	Idexx		E. coli	H*
1156	D0243420	68.64	-	Idexx		E. coli	Ν
1157	K2012520	69.25	-	Idexx		E. coli	Ν
1158	C0566609	69.06	-	Idexx		E. coli	Ν
1159	L1614184	69.3	-	Idexx		E. coli	Ν
1160	K1548688	64.43	-	Idexx		E. coli	H*
1161	L1614219	69.8	-	Idexx		E. coli	H*
1162	L1617248	69.44	-	Idexx		E. coli	Ν
1163	L1716264	69.37	-	Idexx		E. coli	H*
1166	C0572633	69.1	-	Idexx		E. coli	Ν
1167	A8564269	69.5	-	Idexx		E. coli	XH*
1168	C0559041	68.75	-	Idexx		E. coli	Ν
1169	D0244169	69.43	-	Idexx		E. coli	Ν
1170	A8580293	69.44	-	Idexx		E. coli	Ν
1171	D0244571	69.46	-	Idexx		E. coli	H*
1172	F1970967	69.3	-	Idexx		E. coli	H*
1173	D0243850	68.9	-	Idexx		E. coli	Ν
1174	D0244024	69.04	-	Idexx		E. coli	Ν
1175	A8574026	69	-	Idexx		E. coli	Ν
1176	L1614827	69.49	-	Idexx		E. coli	H*
1177	S5761419	69.38	-	Idexx		E. coli	H*
1178	C0559060	69.36	-	Idexx		E. coli	Ν
1179	A8582298	х	-	Idexx		E. coli	Ν
1180	D0247115	69.05	-	Idexx		E. coli	Ν
1181	L1626004	69.12	-	Idexx		E. coli	Ν
1182	L1617883	68.92	-	Idexx		E. coli	Ν
1183	D0243887	69	-	Idexx		E. coli	XVY*
1184	C0730831	69.32	-	Idexx		E. coli	Ν
1186	A8567916	68.86	-	Idexx		E. coli	Ν
1187	C0731408	69.3	-	Idexx		E. coli	H*
1188	A8567264	69.3	-	Idexx		E. coli	N
1189	L1720131	69.29	-	Idexx		E. coli	H*
1190	A8697812	69.29	-	Idexx		E. coli	N
1191	K1563906	69.34	-	Idexx		E. coli	H*
1192	\$5765329	68.96	-	Idexx		Pseudomonas	Н

r						
1035-1	L1535616	69.55	-	Idexx	E. coli	H*
1037-1	F1847471	69.27	-	Idexx	E. coli	H*
1049-1	F1886999	69.03	-	Idexx	E. coli	H*
1057-1	A8481532	69.08	-	Idexx	E. coli	HS
1073-1	A8469719	69.06	-	Idexx	E. coli	N
1136-1	L1595786	69.09	-	Idexx	E. coli	H*
1139-1	A8526459	69.46	-	Idexx	E. coli	N
1142-1	F1850477	69.78	-	Idexx	E. coli	H*
1146-1	F1878923	69.39	-	Idexx	E. coli	H*
1151-1	L1582779	69.02	-	Idexx	E. coli	XVY

(*) denotes antibiotics that intermediate resistance was observed according to CLSI standards.

APPENDIX B

DATA FOR URINES CONTAINING MULTIPLE CULTURES

Sample #	ID#	T _m C	FRET Result	Lab	Collection Method	Species 1	Phenotype	Species 2	Phenotype
23	1085460	59	+	Clin. Path	Voided	Klebsiella	KHE*G	Streptococcus	Е
46	1091232	70	-	Clin. Path	Voided	E. coli	E*	Klebsiella	E*
59	1091391	69.2	-	Clin. Path	Voided	E. coli		Klebsiella	E*
73	1091412	68.5	-	Clin. Path	Voided	E. coli		Proteus	
74	1076465	69.2	-	Clin. Path	Voided	E. coli	ADB	Klebsiella	E*
80	1091477	69.3	-	Clin. Path	Cystocentesis	E. coli		Enterococcus	
82	1091478	69.2	-	Clin. Path	Cystocentesis	E. coli		Enterococcus	
90	1091492	68.7	-	Clin. Path	Cystocentesis	E. coli		Enterococcus	
98	1091524	62.2	-	Clin. Path	Voided	E. coli		Klebsiella	
101	1089908	69.1	-	Clin. Path	Cystocentesis	E. coli	Ν	Enterococcus	
105	1091542	68.4	-	Clin. Path	Catheter	Klebsiella		Enterococcus	
106	127374	67.6	-	Clin. Path	Cystocentesis	Proteus	D	Klebsiella	
110	1088573	68.5	-	Clin. Path	Voided	E. coli		Enterococcus	
120	1091649	66.6	-	Clin. Path	Voided	Enterococcus		Proteus	
134	1091717	59.38	+	Clin. Path	Voided	E. coli		Enterococcus	E*
135	1069127	69.5	-	Clin. Path	Voided	E. coli		Klebsiella	E*
160	1082748	59.3	+	Clin. Path	Voided	E. coli	Е	Klebsiella	Е
161	1091852	68.48	-	Clin. Path	Voided	E. coli		Staphylococcus	
190	1091940	72.2	-	Clin. Path	Cystocentesis	E. coli		Staphylococcus	Е
193	1091942	71.53	-	Clin. Path	Voided	E. coli		Enterococcus	E*
249	1092349	69.25	-	Clin. Path	Cystocentesis	E. coli	XAVOY HDE*GM BRS	Proteus	
312	1092349	58.64	+	Clin. Micro	Cystocentesis	E. coli	XAVOY HDEGM BRS	Pseudomonas	Н
314	1092223	69.51	-	Clin. Micro	Catheter	E. coli	XAVOY DBRS	Streptococcus	KG
320	2240	69.08	-	Clin. Micro	Voided	E. coli	Ν	Proteus	HD
221	2205	59 69		Clin. Miaro	Voidad	E coli	N	Strantopopolis	N
321	2373	50.00	+	Clin.	voideu	<i>E. COU</i>	AVYEM	Sirepiococcus	1N
323	1092933	58.89	+	Micro Clin.	Cystocentesis	E. coli	BRS	E. coli	N
324	1092552	69.26	-	Micro	Cystocentesis	E. coli	N	E. coli	N
327	1080924	69.63	-	Micro	Cystocentesis	E. coli	N	Staphylococcus	N
330	1090008	58.93	+	Clin. Micro	Cystocentesis	E. coli	AH	Enterococcus	N

336	1093584	68.92	-	Clin. Micro	Cystocentesis	E. coli	XAHDE MBRS	E. coli	N
									XAVOY
				Clin.			XAVOY		HDEMB
346	1061672	59.02	+	Micro	Cystocentesis	E. coli	D	E. coli	RS

(*) denotes antibiotics that intermediate resistance was observed according to CLSI standards.