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Abstract 

 

 

 Arsenic is an environmental contaminant of worldwide concern due its high 

toxicity and presence in groundwater aquifers. Adsorption of arsenic onto metal-oxides is 

an important phenomenon that locally controls the transport of arsenic in groundwater 

systems.  In this study, we have investigated adsorption of arsenic(V) onto iron (goethite) 

coated sands. We also developed novel methods to scale the adsorption models.  The 

study is divided into three phases: 

 

(i) In the first phase, we developed a scalable surface complexation modeling 

framework for predicting arsenic(V) adsorption onto various types of iron 

(goethite) coated sands.   We first synthesized four different types of goethite-

coated sands with iron content varying by nearly an order of magnitude and 

generated adsorption isotherms and pH edges for these four sands.  We then used 

experimental data from one of the sands to develop a surface complexation model 

for the sand.  We then scaled the surface complexation model developed for the 

sand, based on measured surface site density values, to predict adsorption onto the 

three other sands using the scaling procedure we developed.  In addition, we also 

scaled the model to make predictions for several other arsenate-goethite 

adsorption datasets available in literature.  The scaled models gave successful 
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predictions for all datasets, with an average error of less than 5%, as quantified 

using RMSE values. 

 

(ii)  Currently there are no suitable experimental setups available for studying 

equilibrium-controlled geochemical reactive transport.  In the second phase of the 

study, we developed a new experimental setup to study equilibrium- reactive 

transport of arsenate on goethite-coated sands. The proposed experimental setup, 

identified as the sequential equilibration reactor (SER) system, consists of several 

equilibrium batch reactors that are linked in series. The reactors are operated in a 

sequential manner analogous to the operations performed in a one-dimensional 

numerical model.  Arsenic(V) solution is introduced into the first reactor and is 

allowed to react until equilibrium is reached in the first reactor.  The solution 

phase is then transferred to the second reactor. This process is repeated until the 

solution reaches the last reactor. The effluent from the last reactor is analyzed. We 

conducted several SER experiments to study equilibrium arsenic transport under a 

wide range of pH, solid/solution ratio, and concentration conditions. The 

experimental datasets generated were also used to test whether the surface 

complexation models developed in the first phase were able to model the 

equilibrium reactive transport observed in the sequential equilibration reactor 

system. 
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(iii) In the third phase of the study, we developed a novel Unified Langmuir-

Freundlich (ULF) model, to describe pH-dependent arsenate adsorption on 

goethite-coated sands. The ULF model was integrated within a semi-analytical 

solution to predict arsenate transport observed in SER experiments. The semi-

analytical solution was then validated by using experimental datasets from SER 

experiments completed at various pH, solid/solution ratio, and concentration 

conditions. The predictions form the ULF isotherm based semi-analytical model 

matched with surface complexation model predictions. The approach was further 

tested by recreating a well-known benchmark problem (Cederberg et al., 1985). 

The ULF isotherm-based transport codes were more than 10 times faster than 

surface-complexation-coupled transport codes.  

 

 Overall, the study has made the following three contributions to the field: 

1) Development of scalable surface complexation modeling framework for arsenic-

goethite system 

2) A new experimental system to study equilibrium-controlled reactive transport 

problems 

3) A unified pH-dependent isotherm model and a semi-analytical modeling 

framework to predict equilibrium-controlled reactive transport at different pH 

values. 
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CHAPTER 1 

1. GENERAL INTRODUCTION 

1  

1.1 Background 

 

Adsorption plays an important role in reducing the mobility of metals and colloids 

in natural systems. Batch experiments have been extensively used to understand various 

adsorption reactions in laboratory-scale systems. However, there have been only a few 

studies that have attempted to scale the models developed for batch-scale systems to 

other large-scale natural systems.  

Surface complexation models are commonly used to simulate batch adsorption 

experiments (Goldberg, 1986; Dzombak and Morel, 1990; Goldberg, 1992). However, 

these models are system dependent since the model parameters derived for one adsorbent 

may not work for another similar adsorbent. Therefore, there is an urgent need to develop 

adsorption models, which can be easily modified to model adsorption at different scales 

for use in common groundwater transport codes. In this study we aim to develop such 

modeling methods for describing arsenic (a representative contaminant) interactions with 

iron-coated sand (a representative adsorbent). 
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In natural environments, arsenic is known to strongly interact with metal-oxide 

coatings found on sediment particle surfaces (Smedley and Kinniburgh, 2002; Nath et al., 

2009). Goethite is one of the most common metal-oxyhydroxide coatings present 

abundantly on natural sediments (Wang et al., 1993; Fuller et al., 1996).  Developing a 

fundamental understanding of arsenic adsorption processes onto goethite (iron) coated 

sands would help better predict arsenic transport in natural subsurface environments and 

could provide valuable insights into the fate of arsenic (and similar contaminants) in 

groundwater aquifers. In this study we have focused on As(V) (arsenate), the most 

common form of arsenic under aerobic conditions, since As(V) adsorption can be easily 

studied in laboratory without oxidation effects, unlike As(III), which may get oxidized to 

As(V). 

  

1.2 Objectives 

The overall goal of this dissertation is to investigate arsenic(V) transport in 

experimental subsurface systems and develop novel experimental and modeling methods 

to scale adsorption reactions. The specific objectives are: 

I. To develop a scalable surface complexation modelling framework for 

arsenate adsorption onto goethite and goethite-coated sands. 

II. To develop and demonstrate a novel experimental setup to generate 

equilibrium-reactive transport datasets for arsenate adsorption on iron-

coated sands under a wide range of pH, solid/solution ratio and 

concentration conditions. 
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III. To develop and test a new isotherm to describe pH-influenced adsorption, 

and to integrate the new isotherm within an analytical modeling 

framework to simulate pH influenced reactive transport processes. 

 

1.3 Organization 

This dissertation is organized into six Chapters including this general introduction 

Chapter (Chapter 1).  In Chapter 2, we present a brief literature review of arsenic 

adsorption.  

Chapter 3 describes the development of a method to scale surface complexation 

models using arsenate as a representative adsorbate and iron-coated sand as a 

representative adsorbent. A summary of the work was published in journal article titled 

“A scalable surface complexation modeling framework for predicting arsenate adsorption 

on goethite-coated sands” (Journal of Environmental Engineering and Science, 2010, 27 

147-158).  

Chapter 4 describes a novel experimental setup to generate equilibrium-transport 

datasets for arsenate adsorption on iron-coated sand. A summary of the work has been 

submitted as another journal article titled “A novel experimental system to study 

equilibrium-reactive transport problems” (Applied Geochemistry, submitted).  

In Chapter 5, we develop a semi-analytical formulation for modelling the 

experimental setup from Chapter 4 using a pH dependent unified Langmuir-Freundlich 

isotherm. We plan on submitting this work as a journal article titled “A semi-analytical 
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solution for reactive transport in sequential equilibration reactors using a novel unified 

Langmuir-Freundlich isotherm” (Journal of Contaminant Hydrology, to be submitted). 

 Chapter 6 provides a short summary of the key contributions of this study and 

suggests some ideas for future work. 
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CHAPTER 2 

2. LITERATURE REVIEW 

2 ? 

2.1 Introduction 

 Arsenic is classified as a metalloid in the periodic table. It has an atomic number 

of 33 and atomic weight of 74.92. Its minerals are ubiquitously found in nature and it 

ranks 20
th

 in earth’s crust, 14
th

 in seawater and 12
th

 in human body (Mandal and Suzuki, 

2002) in terms of abundance.  When in the elemental form, arsenic is a silvery-grey, 

brittle, crystalline solid with a specific gravity of 5.73, melting point of 817
0
C (at 28 

atm), boiling point of 613
0
C, and vapor pressure of 1 mm Hg at 372

0
C (Mohan and 

Pittman, 2007). Arsenic was first isolated in 1250 A.D. by Albertus Magnus, a German 

scientist, and has since then been notorious for its poisonous effects. Some of the 

common arsenic minerals are arsenopyrite (FeAsS), realgar (AsS), orpiment (As2S3), 

loellingite (FeAsS2) and arsenolite (Azcue et al., 1994). Arsenic compounds have been 

used in various medicines, insecticides, wood preservatives, dye, and industrial 

chemicals. Human exposure to arsenic and its compounds may occur through air, water, 

seafood, tobacco smoking, beverages, medicinal preparations, and industrial chemicals. 
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2.2 Toxicity of arsenic 

The most common pathway for human exposure to arsenic is via drinking water 

contaminated with arsenic. Due to its toxic effects at low concentration, the US 

Environmental Protection Agency (EPA) has recently reduced the maximum contaminant 

limit (MCL) standard for arsenic from 50 µg/l to 10 µg/ L (EPA, 2001), which is also the  

WHO drinking water quality guideline for arsenic.  

Inorganic As species are more toxic than organic. Among the inorganic species, 

As(III) is estimated to be two to ten times more toxic than As(V) (Kosnett, 1994). The 

toxicity of arsenic is mostly due to its ability to interact with sulfhydryl groups of 

proteins and enzymes and its ability to substitute for phosphorous in a variety of 

biochemical reactions (Goyer, 1996). Arsenic can be commonly detected in hair, nails 

and urine of people consuming arsenic contaminated water (Ahamed et al., 2006). Most 

of inorganic arsenic is metabolized to monomethylarsonic acid and dimethylarsenic acid 

in the human body. Arsenic-contaminated water is known to cause skin lesions, 

neurological problems, heart diseases, hypertension, cardiovascular disease, and internal 

cancers such as bladder, kidney and lung cancer (Smith et al., 2000; Mead, 2005; 

Walvekar et al., 2007). The most notable effect of arsenic is known as blackfoot disease, 

which is characterized by peripheral atheroscelrosis, resulting in dry gangrene causing 

spontaneous amputation of feet, arm and other organs (Tchounwou et al., 2003). Arsenic 

consumption in drinking water may also cause diabetes mellitus (Tsai et al., 1999) and 

hypertension (Rahman et al., 1999) . The US EPA has concluded that arsenic is a Group 

A carcinogen, which is known to trigger skin, bladder and lung cancers.    
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2.3 Speciation of arsenic 

An Eh-pH diagram of arsenic is given at Figure 2-1. Arsenic is present in arsenate 

[As(V)] or arsenite [As(III)] oxidizing states in most natural groundwater systems. As(V) 

is stable in oxidizing conditions and As(III) is stable in moderately reducing conditions. 

A speciation diagram of As(III) and As(V) is given below in Figure 2-2. Under typical 

EH values found in natural groundwater systems, the predominant As(V) specie is 

H2AsO4
-
 when pH is between 2.2 and 6.9, and HAsO4

-
 when  pH is between 6.9 and 11.5 

(Ferguson and Gavis, 1972). For As(III) oxidation state, H3AsO3
0
 is predominant below 

pH 9.2, and H2AsO3
-
 is predominant between pH 9.2 and 12 (Ferguson and Gavis, 1972). 

Therefore, the major As(III) species found in natural groundwater systems are H3AsO3
0
 

and H3AsO4(aq).  These species are neutral in charge and do not adsorb to charged 

surface, hence As(III) is highly mobile in groundwater systems. At very low Eh, arsine 

(AsH3) might be formed. Various methylated species such as monomethylarsonic 

(MMAA) [CH3AsO(OH)2
0
] and dimethylarsinic acid (DMAA [(CH3)2AsO(OH)

0
] may 

also be formed if conditions are favorable for biomethylation to occur. However, 

inorganic As species are the ones of the greatest environmental concern. Because of their 

high solubility, abundance and toxicity, As(V) and As(III) are the most important 

inorganic states of arsenic. 

Reducing conditions such as flooding enhance arsenic mobilization due to 

reduction of As(V) to more mobile As(III) species, or through dissolution of iron-oxides 

and iron-oxyhydroxides which then release adsorbed arsenic (Beauchemin and Kwong, 

2006; Wang et al., 2007). Dry periods can cause oxidizing conditions, which could 
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decrease arsenic concentration by precipitation of dissolved minerals of Fe, Mn, and As  

(La Force et al., 2000). 

 

 

Figure 2-1: Eh-pH diagram for As at 25
o
C and 1 atm with total As 10

-5
 M and total 

sulfur at 10
-3

 M  (Schnoor, 1996)  
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Figure 2-2: As(III) and As(V) speciation as a function of pH (I=0.01M) 

(Smedley and Kinniburgh, 2002). Redox conditions were chosen so that the 

specified redox state As(V) or As(III) is dominant. 
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2.4 Arsenic problem in Bangladesh 

Countries affected by severe arsenic contamination are: Bangladesh, India, 

Argentina, Vietnam, Hungary, Romania, and Chile (WHO, 2003). Among these 

countries, Bangladesh has attracted worldwide attention since it has the highest number 

of people impacted by arsenic poisoning (Dhar et al., 1997). A British geological survey 

study found that at least 22 million people drank water with arsenic levels more than 50 

µg/L in Bangladesh (British Geological Survey and Mott MacDonald Ltd, 1999). 

Groundwater pollution of Bangladeshi aquifers with arsenic was noticed first during the 

1970s, when the government of Bangladesh started to encourage drilling tube wells to 

solve drinking water problem as suggested by British Geological survey.  

 

 
Figure 2-3: Conceptual representation of arsenic problem in Bangladesh (Boreysza 

et al., 2006) 
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It is thought that the main non-point source of high arsenic concentration in ground water 

is natural (Smedley and Kinniburgh, 2002). However, there are many localized point 

sources due to mining, pesticides, wood-treatment, agriculture etc which may have small 

secondary influence. As shown in the conceptual diagram, the currently accepted theory 

is that the high As concentrations is mainly due the microbially mediated reductive 

dissolution of arsenic containing metal oxyhydroxides (Nickson et al., 2000; Macur et al., 

2001). Under aerobic conditions arsenic is strongly bound to metal oxides found in the 

sediments.  

As illustrated in Figure 2-3, it is thought that the source of arsenic is upstream and 

arsenic is carried downstream by the Ganga and Brahmaputra rivers. Arsenic minerals in 

sediments in Himalaya mountains, Bihar plateau and Rajmahal-Chotonagpur plateau areas 

in India were dissolved by rainwater. The dissolved arsenic was adsorbed by iron oxides 

and suspended sediments in water and was transported towards Bangladesh by the rivers. 

These arsenic-loaded dissolved oxyhydroxides were deposited in the aquifer sediments in 

low lying regions over the thousands of years. If organic matter is available, anaerobic 

conditions are created, dissolving the minerals and releasing high levels of arsenic 

(Nickson et al., 2000).  Saunders et al. (2008) showed that iron-reducing conditions 

caused by addition of organic carbon (sucrose, methanol) can favor release of arsenic. 

Shamsudduha et al. (2009) used digital elevation data to suggest that low hydraulic 

gradients in low lying deltaic regions cause slow groundwater velocities and slow flushing 

rates, wherein reducing conditions can cause arsenic release due to microbial reduction. 
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Low hydraulic gradient and reducing conditions favor formation of highly mobile 

H3AsO3
0
, causing high arsenic in groundwater.  

 

2.5 Arsenic adsorption on metal-oxides 

  Arsenic transport is influenced by a number of complex parameters such pH, 

redox potential, alkalinity, and the presence of metal-oxides and organic matter (Smedley 

and Kinniburgh, 2002; Nath et al., 2009). One of the important mechanisms by which 

transport of arsenic is retarded is by adsorption onto metal-oxides and metal-

oxyhydroxides (Anawar et al., 2003; Davis et al., 2005).  Metal-oxides are ubiquitously 

present in the subsurface as coatings on soil grains (Wang et al., 1993; Coston et al., 

1995), and have a high affinity for adsorbing arsenic in water.  

 

2.5.1 Arsenic adsorption on metal-oxides: Surface reaction mechanism 

 

          The adsorption of arsenic on metal oxides occurs by inner-sphere adsorption 

mechanism. Surface metal oxide groups exist in their hydroxylated form in aqueous 

solutions. Arsenic is adsorbed by ligand exchange with surface functional groups of 

metal-oxides containing OH
−
 or OH2

+
  ions as shown in the following surface reactions: 

As(V) adsorption: 

 

  
 

OHFeOHAsOAsOHFeOOH 2442 
        

OHFeOAsOHAsOFeOOH 2

2

4

2

4 
  

As(III) adsorption: 

OHAsOFeOHAsOHFeOOH 2

0

42

0

43 
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 OHAsOFeOHAsOHFeOOH 2

0

32

0

33   

 OHFeOHAsOAsOHFeOOH 2332 
            

OHFeOAsOHAsOFeOOH 2

2

3

2

3 
  

 

Where, >FeOH represents the hydroxylated surface iron-oxide group. Since adsorption of 

arsenic on metal-oxides is independent of ionic strength, it is thought that inner-sphere 

surface complexes could be formed (Hsia et al., 1992; Grossl and Sparks, 1995).  Asenic 

adsorption on iron-oxides and iron-oxyhydroxides was found to reduce the isoelectric 

point (Manning and Goldberg, 1996; Jain et al., 1999; Goldberg and Johnston, 2001) , 

which also indicates that inner-sphere complexes are formed. Formation of inner-sphere 

complexes is further confirmed by X-ray absorption fine structure (EXAFS) spectroscopy  

(Waychunas et al., 1993). 

          Mechanism of surface adsorption can be classified as monodentate or bidentate 

depending on the number of surface groups sharing a single ligand. Monodentate 

adsorption occurs when a single surface group complexes with a single ligand. Bidentate 

adsorption occurs when two surface groups complex with a single ligand, by sharing the 

ligand. Both bidentate and monodentate adsorption are thought to occur during arsenic 

adsorption on metal-oxides spectroscopy  (Waychunas et al., 1993; Goldberg and 

Johnston, 2001). Monodentate complexes are predominant at low surface coverages, 

whereas bidentate complexes are predominant at high surface coverages (Fendorf et al., 

1997). However,  monodentate models are commonly assumed in published literature 

(Dzombak and Morel, 1990; Dixit and Hering, 2003). Arsenic adsorption on metal-oxides 
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can be modeled either using empirical models or using mechanistic surface complexation 

models.  

 

2.6 Arsenic adsorption modeling using isotherm models 

  Empirical adsorption models correlate a relationship between the aqueous 

concentration and solid phase concentration at equilibrium without mathematically 

modeling the actual surface reaction mechanisms. Empirical adsorption models that are 

commonly used for modeling arsenic adsorption on metal-oxides are linear model, 

Langmuir model, Freundlich model and Langmuir-Freundlich model.  

The Linear adsorption model assumes that adsorption linearly increases with 

concentration and that solid phase has infinite adsorption capacity. The Linear adsorption 

isotherm is given by:  

CKq d

 

where, q is amount sorbed per weight of solid, C is amount in solution per unit volume of 

solution and Kd is the partition coefficient usually expressed in ml/g. 

  The Langmuir adsorption isotherm is a commonly used function to model arsenic 

adsorption on metal-oxides  (Hingston, 1970; Raven et al., 1998; Thirunavukkarasu et 

al., 2001; Thirunavukkarasu et al., 2003; Kundu and Gupta, 2006). The Langmuir 

adsorption isotherm can be represented as:  

 

 

  (2-1)

 

 

CK

C
Kq

S

max



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Where, Kmax is the maximum adsorption capacity per unit weight of solid (mg/ kg),  ks is 

the Langmuir constant (mg/L), and C is the aqueous concentration (mg/L).   

       The Freundlich isotherm is a common empirical model used to model arsenic 

adsorption on metal oxides (Raven et al., 1998; Lin and Wu, 2001; Badruzzaman et al., 

2004). The Freundlich isotherm equation is given by the relation:  

 (2-2) 

 Where, q represents the total amount of adsorption per unit weight of solid (mg/kg), K is 

the distribution or partition coefficient (mg kg
-1

 (mg l
-1

)
-n

), C is the aqueous concentration 

(mg/L), and n is the dimensionless reactor order, which is typically less than 1.  

             The Langmuir-Freundlich isotherm (Sips, 1948) is a combined form of Langmuir 

and Freundlich isotherms. Rau et al. (2003) studied arsenic adsorption on metal-oxides 

using different types of adsorption isotherms and concluded that the Langmuir-

Freundlich isotherm best described the data.  The Langmuir-Freundlich isotherm is given 

by the expression: 

 

  (2-3) 

 

Where, K1 is the affinity constant (L/mg),  Kmax is the maximum adsorption capacity (mg/ 

kg).  

 

2.7 Adsorption modeling using surface complexation approach 

Surface complexation models provide a mechanistic description of the reactions 

occurring on metal-oxide surfaces. Chemical reactions occurring at metal-oxide surfaces 

nCKq 

1)C(K

)C(K
Kq

n

1

n

1
max



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cause charge development on surfaces. The sorption of metal ions on metal oxides occurs 

by the attraction of opposite charges. The electrical-double layer (EDL) theory (Gouy, 

1910; Chapman, 1913) can be used to describe the charge development. Language. 

  

2.7.1 Background of surface complexation modeling 

The following is a summary of history of surface complexation modeling from the 

comprehensive book by Dzombak and Morel (1990). The science of surface 

complexation modeling has evolved since the 1960’s, due to the interest in chemistry of 

adsorption in aqueous solutions (Dzombak and Morel, 1990) . Early research involved 

the use of electrical double layer (EDL) theory of Guoy and Chapman to explain physical 

adsorption. However, surface reactions were not considered. Later, several researchers 

used surface reactions and mass law equations to describe reactions at individual surface 

sites (Kurbatov et al., 1951; Stanton and Maatman, 1963; Dugger et al., 1964). However, 

they did not consider surface charge and electrostatic factors. The importance of surface 

charge was first recognized by Parks and Debruyn (1962). A significant ideological 

breakthrough came when the mass law approach was combined with the EDL theory by 

Schindler’s group, who proposed the constant capacitance model (Schindler and Kamber, 

1968; Schindler and Gamsjager, 1972). At the same time Stumm and co-workers 

proposed the diffuse layer model (Stumm et al., 1970; Huang and Stumm, 1973). The 

triple layer model was later proposed by Davis et al.  (1978a). Westall and coworkers 

devised a method to incorporate surface complexation reactions into chemical speciation 

models using electrostatic correction factor as a component (Westall, 1979a) . This 
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helped to incorporate the SCM models into computer-based geochemical speciation 

models, thus making the SCM models available for use within geochemical speciation 

models. 

In a surface complexation model, the adsorption on a surface is calculated as a 

function of the surface charge σ.  Surface is assumed to be at a potential Ψ with respect to 

the bulk of the solution. The potential Ψ has a representative component exp (-ΔZFΨ/RT) 

and the equivalent total mass of this component is represented by the charge on the 

surface. The potential Ψ also has a direct relation to the charge σ via the mass action 

equation. The term ΔZ is the change in surface charge due to the surface reaction. 

Consider the following surface reactions:  

  2XOHHXOH  
 

  XOHXOH
 

The equilibrium constants describing the surface complexation reactions are: 

                                                                                            (2-4) 

 

and,  

                                                                                         (2-5) 

 

 Where, ( ) denotes concentration and {} denotes activity. 
 

Several expressions have been proposed to relate Ψ to σ, and based on these 

expressions, following four types of surface-complexation models have been proposed: 

constant capacitance model, triple layer model, diffuse double layer model and the 

generalized diffuse double layer model.  
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2.7.2 Constant capacitance model 

 

The constant capacitance model was developed by Schindler and coworkers 

(Schindler and Kamber, 1968; Schindler and Gamsjager, 1972). The constant capacitance 

model assumes a high ionic strength, which implies a constant capacitance condition. It 

also assumes that all the surface complexes are inner-sphere complexes. The relationship 

between surface charge density ( ) and surface potential ( ), (where 0 indicates the 

surface plane) in the constant capacitance model is given by the relationship:  

 

                                                                                                                   (2-6) 

 

Where, C is the capacitance density (F/m
2
), A is the surface area (m

2 
g

-1
), S is the 

suspension density (g L
-1

), F is the Faraday constant (Coulombs mol
-1

),  is the surface 

charge density (Volt L
-1

), and , is the surface potential (volts). A diagram of the 

structure of the surface-solution interface for the constant capacitance model is shown in 

Figure 2-4 
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Figure 2-4: Conceptual representation of surface charge development in:  1) 

constant capacitance model 2) diffuse double layer model and 3) triple layer model 

(Drever, 1982) 
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2.7.3 Diffuse double layer model 

The diffuse double layer model was developed by Stumm and his co-workers 

(Stumm et al., 1970). The diffuse double layer model assumes two planes for surface 

charge: a surface layer (plane 0) and diffuse layer of counter ions (plane d). All the 

reactions are assumed to be inner-sphere complexation reactions. The relationship 

between surface charge and surface potential is described with the Gouy-Chapman 

theory. The relationship between surface charge and surface potential can be expressed as 

follows:  

 

            (2-7) 

 

Where  is the surface charge density (volt L
-1

),  is the surface potential (volts), I is 

the ionic strength (M), Z is the valence of the symmetrical electrolyte, T is the 

temperature (K), and R is the gas constant. 

 

2.7.4 Triple layer model 

The triple layer model was developed by Leckie and his co-workers (Davis and 

Leckie, 1978a). The triple layer model assumes three planes of charge (plane 0, plane d, 

and plane β) for surface charge. The reactions can either be outer-sphere or inner-sphere 

surface complexation reactions. Outer-sphere surface complexes are formed with ions 

from the background electrolyte. The relationships between surface charges and surface 

potentials in the triple layer model are given by: 
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                                    (2-8) 

 

                                   (2-9) 

 

Where, C1 and C2 are capacitance densities, A is the surface area (m
2 

g
-1

),  and  are 

surface charge densities (Volt L
-1

),  ,  and  are the surface potential (Volts) of the 

plane 0, plane β and plane d. A diagram of the structure of the triple layer model is shown 

in Fig. 2-4. 

 

2.7.5 Generalized diffuse double layer model and work of Dzombak and Morel 

 

Dzombak and Morel modified the diffuse double layer model of Stumm and co-

workers (Stumm et al., 1970; Huang and Stumm, 1973)  and developed the well known 

generalized diffuse double layer model or the Dzombak and  Morel model (Dzombak and 

Morel, 1987; Dzombak and Morel, 1990). The generalized diffuse double layer model is 

similar to the diffuse double layer model, but contains two types of sites (Type I and 

Type II sites, or weak sites and strong sites) for cation adsorption. Only Type-I sites 

(weak sites) are available for anion adsorption.  

Dzombak and Morel compiled a list of measured site densities from literature. 

The site densities in literature varied from 0.001 to 0.01 mole sites/mole Fe for Type-I 

sites. So they fixed the site density for Type-I sites as 0.05 mole sites/ mole Fe, which is 
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an approximate arithmetic mean of the site densities in literature. Similarly, the site 

density of Type-II sites was fixed as 0.2 mole sites/ mole Fe, from the approximate 

arithmetic mean of literature site densities, which ranged from 0.1 to 0.3 mole sites/ mole 

Fe.  Similarly, they also compiled a list of surface areas of hydrous ferric oxide (HFO) 

from N2 BET measurements and suggested an average surface area of 600 m
2
/g, which 

was also recommended by Davis  (1977)), Davis and Leckie  (1978b), and Luoma and 

Davis (1983).  They used these fixed surface area and site density values for HFO and 

developed a list of consistent set of equilibrium constants for sorption of inorganic 

cations and anions on HFO. Their efforts helped standardize the model development and 

parameter extraction procedure using FITEQL, thus providing a framework for further 

work.   

They noted that if the site density changes by a factor of 2, the sorption constants 

associated with the type-I sites may change systematically by 0.3 to 0.7 log units, and the 

log K values associated with type II sites may be systematically off by 0.15 to 0.3 log 

units (Dzombak and Morel, 1990). They also noted that errors in surface site densities 

could lead to poor results, especially when surface is close to saturation with adsorbate 

molecules. They also suggested that variations in site densities are to be expected among 

various samples of HFO and that sometimes different site densities may have to be used 

(Dzombak and Morel, 1990) 

The work of Dzombak and Morel (1990) was the first comprehensive attempt to 

develop a consistent and unified database in the field of surface complexation modeling. 

They developed a standard model for HFO which was later adopted by several 
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geochemistry modeling codes such as MINTEQA2 and PHREEQC. They also 

standardized the parameter estimation procedures to be used for developing surface 

complexation models using the FITEQL code.  

The limitation of the Dzombak and Morel model (generalized diffuse double layer 

model) is that site density is fixed. Whereas, site density and adsorption capacity and of a 

metal-oxide may vary widely.  Natural systems contain complex mixtures of minerals 

and it is difficult to quantity the concentration of surface sites for individual minerals. 

Stollenwork (1995) measured the site density of 51 core samples from a sand and gravel 

aquifer and found that the site density varied widely from 1.6 µmoles/ m
2 

to
 
4.1 µmoles/ 

m
2
. Therefore, it is difficult to satisfactorily model experimental adsorption results for 

different kinds of adsorbents using a single site density and use of a single site density 

may lead to significant modeling errors. Hence, several later studies used experimentally 

measured site densities for HFO, which differed from the value suggested by Dzombak 

and Morel  (Stollenwerk, 1995; Dixit and Hering, 2003; Giammar et al., 2004 ).  

 

2.8  Equilibrium geochemical speciation codes 

 

Several computer codes have been developed to solve the geochemical speciation 

problems. Some of the initial developments include REDEQL2 (McDuff and Morel, 

1972) ,WATEQ (Truesdell and Jones, 1974), MINEQL (Westall J. C. et al., 1976), 

MICROQL-I (Westall, 1979b) and MICROQL-II (Westall, 1979a). MINEQL was later 

developed into MINTEQA2 (Allison et al., 1990),  MINEQL+ (Schecher and McAvoy, 

1998), MINTEQA2 for windows (Allison, 2003) and Visual MINTEQ (Gustafsson, 
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2006). The code PHREEQE (Parkhurst et al., 1980) was developed by USGS and has 

been updated into PHREEQC (Parkhurst, 1995), PHREEQC2 (Parkhurst, 1999) and 

PHREEQCI (Clarlton and Parkhurst, 2002). The speciation code SOILCHEM (Sposito 

and Mattigod, 1980) was derived from GEOCHEM (Sposito and Mattigod, 1980) and 

REDEQL (McDuff and Morel, 1972). 

MINTEQA2 for windows is a user friendly chemical speciation code, which is 

used widely used by EPA, and contains a specialized sub-model for calculations 

involving dissolved organic matter. The original MINTEQ (Felmy et al., 1983) was 

developed at Battelle Pacific Northwest Laboratory (PNL) by incorporating the U.S. 

Geological Survey's WATEQ3 database (Ball et al., 1981) into MINEQL (Westall J. C. 

et al., 1976).  Recently the Fortran code of MINTEQA2 was converted to Visual Basic to 

create the program called Visual MINTEQ (Gustafsson, 2006), which has an easy to use 

Windows based interface. The PHREEQC family of codes is developed and maintained 

by USGS. The latest version called PHREEQCI (Clarlton and Parkhurst, 2002), has 

diverse capabilities including one-dimensional transport, inverse modeling and kinetic 

reaction routines.  

 

2.9 Coupling geochemical speciation codes to transport codes 

To model contaminant transport in groundwater, which involves both transport 

(advection, dispersion) and geochemistry, a number of reactive transport codes have 

coupled the equilibrium speciation models such as PHREEQC and MINTEQ to transport 

codes. For example, Cederberg et al. (1985) developed TRANQL by coupling the 
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geochemical code MICROQL-II (Westall, 1979a) to a transport routine. Noorishad et al. 

(1987) developed CHMTRNS using PHREEQE as the equilibrium module. Engesgaard 

and Kipp (1992) used CHMTRNS to develop benchmark problems for geochemical 

transport codes. Narasimhan et al. (1986) coupled the transport code TRUMP with 

PHREEQE to create a reactive transport model DYNAMIX. Walter et al. (1994) 

developed MINTRAN by coupling the finite-element transport module PLUME2D to 

MINTEQA2. Phanikumar and McGuire (2004) coupled PHREEQC-2 with RT3D 

(Clement, 1997) to create a biogeochemical, kinetic, reactive transport code BGTK. The 

widely used code PHAST (Parkhurst et al., 2004) couples PHREEQC with HST3D 

(Kenneth, 1997). Another popular reactive transport model PHT3D (Prommer et al., 

2003a) couples the transport code MT3DMS (Zheng and Wang, 1999) with PHREEQC-2 

(Parkhurst, 1999).  

 

2.10 Scaling of reactive transport processes 

 

When modeling contaminant transport using geochemical coupled transport codes, 

it is often necessary to predict the sorption parameters for a new chemical system by 

scaling the parameters obtained for a similar experimental systems (Ochs et al., 2006). 

Radu et al. (2007) scaled kinetic and Langmuir parameters obtained from batch 

experiments to predict arsenic adsorption and oxidation by pyrolusite (MnO2) in column 

experiments. A few studies have used extractable iron content or surface area to scale the 

adsorption parameters (Davis et al., 2005; Hartzog et al., 2009; Loganathan et al., 2009).  

However, scaling methods have not been well established for predicting surface 
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complexation model parameters. The surface complexation stability constants (log K 

values of surface complexation reactions) strongly depend on the value of the surface site 

density (Davis and Kent, 1990; Goldberg, 1991).  Davis and Kent (1990) pointed out that 

the stability constants derived using a known surface site density value for a given system 

may not be directly used for predicting adsorption in another system that has a different 

surface site density value. Hence, it will be useful to develop systematic scaling 

procedures for predicting such surface complexation model stability constants.
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CHAPTER 3 

3.  DEVELOPMENT OF A SCALABLE SURFACE COMPLEXATION MODELING 

FRAMEWORK 

 

 

3.1 Introduction  

 

 Analysis of natural sediments shows that one of the commonly found metal-oxide 

coatings present on sediments is goethite (Wang et al., 1993), which is also one of the 

most thermodynamically stable iron-oxyhydroxides. Hence, several researchers have 

used goethite-coated sands as a test media to study the interaction of various types of 

inorganic contaminants with natural sediments (Cheng et al., 2004; Giammar et al., 2004 

; Cheng et al., 2006; Romero-Gonzalez et al., 2007). Arsenic is a representative 

contaminant of worldwide concern, and goethite-coated sand resembles metal-oxide 

coated sediments in subsurface. Understanding the scaling of arsenic adsorption on 

goethite-coated sands can also help us understand scaling of other similar inorganic 

groundwater contaminants and adsorbents. 

In natural sediments, with a low organic content, inorganic adsorption is primarily 

controlled by metal-oxide/oxyhydroxide (Fe, Mn and Al) content of sediments (Lion et 

al., 1982; Davis and Kent, 1990; Fuller et al., 1996). Inch and Killey (1987) suggested 

that adsorption is proportional to the available surface area. The adsorption capacity 
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(maximum adsorption per gram of soil) appears to correlate well with the amount of 

metal-oxides present on soil per unit surface area, suggesting that metal-oxide content per 

surface area could be one of the geochemical parameters that control the spatial 

variations in metal adsorption (Fuller et al., 1996). The adsorption capacity per surface 

area is quantified by surface-site density parameter in surface complexation models. 

Therefore, surface-site density can be a useful scaling parameter for surface complexation 

models. The use of surface complexation models for predicting arsenic adsorption on 

pure iron-oxide minerals, such as hydrous ferric oxide (HFO), has been extensively 

studied (Dzombak and Morel, 1990; Manning and Goldberg, 1996; Sun and Doner, 1996; 

Goldberg and Johnston, 2001; Dixit and Hering, 2003; Dixit and Hering, 2006). 

However, none of these studies have explored the scaling properties of surface 

complexation models for different types of iron oxide/oxyhydroxide coated sands.  

The objective of this study is to develop a scalable surface complexation 

modeling framework for describing As(V) adsorption onto synthetic goethite-coated 

sands with different amount of iron content. We first generated multiple adsorption 

datasets (pH edges and isotherms) for four types of goethite-coated sands.  A diffuse 

double layer surface complexation model was developed and the log K values for the 

system were estimated by fitting the model to an adsorption dataset for one of the 

synthetic test sands.  This model was then scaled to make predictions for the other three 

sands.  In addition, we compiled three literature datasets to further test the validity of the 

scaling approach. 



29 

 

3.2 Materials and methods 

3.2.1 Experimental methods  

 

Goethite-coated sands (GCS) were synthesized in our laboratory as outlined in 

Cheng et al (2004). Pure goethite was synthesized from ferrous chloride using the recipe 

from Schwertmann and Cornell (2000) and was then coated onto white quartz sand 

(0.210-0.297 mm) purchased from Sigma-Aldrich using the homogeneous suspension 

method (Scheidegger et al., 1993). The preparation of the goethite-coated sands is 

reported by the same group in an earlier study by Loganathan et al. (2009). Four types of 

goethite-coated sands with their iron content and surface area varying by nearly an order 

of magnitude were prepared for this study. Figure 3-1 shows the four goethite-coated 

sands, which are identified as Sand-A, Sand-B, Sand-C and Sand-D. The iron contents of 

these sands were modified by varying the number of goethite coating cycles during 

synthesis. The iron contents of the four sands were estimated using the dithionite-citrate-

bicarbonate buffer (DCB) extraction method. The data indicated that Sand-B had the 

lowest iron content (0.40 mg Fe/g), followed by Sand-C (1.82 mg Fe/g), Sand-D (3.15 

mg Fe/g) and Sand-A (3.48 mg Fe/g). The surface areas of the sands were determined by 

five-point BET measurements using N2  gas. The measured values of surface area are: 

1.08 m
2
/g, 0.18 m

2
/g, 0.43 m

2
/g, and 0.57 m

2
/g, for Sand-A, Sand-B, Sand-C and Sand-D, 

respectively. SEM and XRD studies were done and the results indicated that the coatings 

mainly consisted of goethite (Loganathan et al., 2009). Table 3-1 provides a detailed 

summary of these sand characteristics.  
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Table 3-1: Characteristics of the various goethite-coated sands 
 

 

Sorbent Type Sand-A Sand-B Sand-C Sand-D

Iron content (mg Fe/ g sand) 3.48 ±0.1 0.40 ±0.01 1.82 ±0.05 3.15±0.07

Surface area (m
2
/ g sand) 1.08 0.18 0.43 0.57

Maximum adsorption (mg As(V)/g sand) 0.140 0.028 0.070 0.097

Maximum adsorption  (mmoles As(V)/ mole Fe) 30.10 52.45 28.72 23.03

Surface site density (µmoles/m
2
) 1.73 2.11 2.18 2.29

Surface site density (sites/nm
2
) 1.04 1.27 1.32 1.38

 

 

 

Figure 3-1 : Samples of the four synthetic goethite-coated sands 

 

 

As (V) solutions were prepared by diluting 100 ppm As(V) stock solution, which 

was made by dissolving 0.416 grams of reagent grade Na2HAsO4.7H2O in 1 liter of 

deionized water. All the experiments were completed in triplicates. Unless otherwise 

mentioned, the ionic strength of all the solutions in this study were adjusted to 0.01 M 

ionic strength using sodium nitrate (Harter and Naidu, 2001). The room temperature was 

set at 25
0
C +2

0
C for all experiments. The pH of the solution was adjusted using either 

NaOH or HNO3 and was measured using an Orion (model 250A) pH meter. The pH 

Sand- A Sand- B Sand- D Sand- C 
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meter was calibrated using commercial pH 4.0, 7.0, and 10.0 buffers.  All reported pH 

values are the final pH values of solutions at equilibrium. The batch experiments were 

equilibrated for 24 hours in a shaker and the supernatant solution was centrifuged and 

filtered through a 0.45 m membrane filter (Millipore) using a disposable syringe. Our 

initial kinetic experiments (data not shown) indicated that the reactions attained close to 

equilibrium conditions within twenty four hours. The solutions were analyzed using a 

Graphite Furnace Atomic Absorption Spectrophotometer (GFAAS; Perkin-Elmer 5100 

PC). The amounts of GCS used in the pH adsorption edge experiments were 10, 50, 5 and 

2.5 g/liter for the systems having Sand-A, Sand-B, Sand-C and Sand-D, respectively.  

The experiments were conducted in tightly capped centrifuge tubes, thus minimizing 

interferences with atmospheric carbon dioxide. Also, earlier research studies have shown 

that carbonate has very little influence on arsenate adsorption at atmospheric CO2 partial 

pressures (Meng et al., 2000; Radu et al., 2005b). Furthermore, we also completed 

several control experiments which verified that pure silica sand without goethite coating 

did not adsorb arsenate. 

 

3.2.2 Modeling methods  

3.3.2.1Surface complexation modeling tools 

The stability constants for surface complexation of As(V) onto goethite for Sand-

A were determined using FITEQL 4.0 software (Herbelin and Westall, 1999).  The 

“goodness of fit” was quantified by the FITEQL’s WSOS/DF (weighted sum of squares 

of residuals divided by degrees of freedom) parameter. The stability constants obtained 
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from FITEQL were incorporated into MINTEQA2 For Windows software (Allison, 

2003) and the subsequent model simulation runs were completed using MINTEQA2. 

As(V) adsorption onto goethite was modeled using a single-site, monodentate diffuse 

double layer model. 

The difference between model predictions and experimental data was quantified by the 

root mean square error (RMSE) of the normalized concentrations (Cheng et al., 2004): 

 

RMSE =  

1/2
2

n
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d
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


                                                                                    (3-

1)  

Where, nd is the numbers of data points, i is an index, C is the measured aqueous 

concentration, Ĉ  is the predicted aqueous concentration, and C0 is the initial aqueous 

concentration (all in moles/L). The RMSE is a measure of the average difference between 

predicted and experimental data as a fraction of the initial concentration; thus smaller 

RMSE values indicate a better fit.  

 

3.3.2.2 Method for correcting stability constants 

Kulik (2002) derived an equation to normalize the log K values estimated for a 

system to a standard reference surface site density level. The reference site density, 

standard states, and surface activity were defined and used to construct an uniform, 

internally consistent thermodynamic dataset. The equation is given by the relationship 

(Kulik, 2002; Richter et al., 2005b) : 
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Log K0 = log KC +log(ГC / Г0)                  (3-2) 

Where, 

Г0 is the reference surface site density expressed as sites/m
2
 of surface area 

K0  is the stability constant value at a reference surface site density Г0 

KC is the stability constant value at a surface site density value of Г C   

The standard surface site density level is fixed at Г0 =20 mole/m
2
 or 12.05 sites/nm

2
, 

which approximately corresponds to the maximum density of H2O molecules in a surface 

monolayer (Kulik, 2002). The above equation can be used to approximately convert the 

log K values estimated for a given system to another system with a different value of 

surface site density and the method has an uncertainty of less than 0.2 pK units (Kulik, 

2002).  

The Kulik equation was found to be useful for predicting log K values when 

experimental data is not available (Brendler et al., 2004; Richter et al., 2005b). This 

equation has been successfully used in RES
3
T database, which is a mineral-specific 

surface complexation database (Brendler et al., 2002; Richter et al., 2003). A similar type 

of normalization approach has also been proposed by Sverjensky (2003). We employed 

the Kulik equation in our scaling approach since it gave good predictions for our data; 

furthermore, it has been used in several other published studies (Brendler et al., 2002; 

Kulik et al., 2003; Brendler et al., 2004; Kersten and Kulik, 2005; Richter et al., 2005b; 

Richter et al., 2005a; Kulik, 2006; Richter and Brendler, 2006).  
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3.3.2.3 Surface complexation reactions  

The surface complexation reactions used in this study are summarized in Table 3- 

2. The equilibrium constants for the aqueous protonation reactions (Reactions 1, 2 and 3 

in Table 3-2) were obtained from the MINTEQA2 for Windows database (Allison, 2003). 

The equilibrium constants, pKa1 and pKa2, for surface hydrolysis reactions (reactions 4 

and 5) for goethite are available in the literature. Richter et al. (2005b) compiled the 

surface hydrolysis equilibrium constants for goethite in the RES
3
T database for a surface 

site density value of 12.05 sites/nm
2 

at zero ionic strength to be: pKa1 = 6.38 and pKa2 = -

10.36. We used the Kulik equation to scale these values for our system. For our Sand-A, 

which had a surface site density of 1.04 sites/nm
2
, the scaled values are: pKa1=7.44 and 

pKa2 = -9.30, at zero ionic strength. The reaction equations 6, 7 and 8 in Table 3-2 were 

used to describe surface complexation reactions of As(V) species with goethite, as done 

in earlier studies (Goldberg, 1985; Manning and Goldberg, 1996; Dixit and Hering, 

2003). The equilibrium constants (pK1, pK2  and pK3) for the above reactions were 

evaluated for Sand-A by fitting the model to one of the adsorption data (25.3 µmoles/L 

data) using FITEQL and the results are given in Table 3-2. 
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Table 3-2: Aqueous protonation constants and intrinsic surface complexation constants 

for Sand-A at a surface site density of 1.04 sites/nm
2 

and at zero ionic-strength 

Reactions Log K  (I=0, 

 Г=1.04 sites/ 

nm
2
) 

Protonation reactions for As(V)
 A

  

H3AsO4    =  H2AsO4
-
 +   H

+  
 -2.24 (1) 

H3AsO4  =  HAsO4
2- 

+  2H
+  

 -9.20 (2) 

H3AsO4  =  AsO4
3-

    +  3H
+  

 -20.70 (3) 

Surface hydrolysis reactions of goethite-coated sand
B
    

>FeOH  + H
+
 =   > FeOH

2+
 7.44 

 

(4) 

>FeOH  =   > FeO
-   

+  H
+
 -9.30 

 

(5) 

Surface complexation reactions 
C
 

As(V) surface complexation reactions
c
 

 

>FeOH +  H3AsO4 =   >FeH2AsO4    + H2O 11.37 

 

(6) 

>FeOH  +  H3AsO4   =   >FeHAsO4
-
     + H2O  +   H

+
  5.98 

 

(7) 

>FeOH +  H3AsO4    =   >FeAsO4
2-

      +  H2O  + 2H
+
 -0.33 

 

(8) 

Surface site density =1.04 sites/nm
2
 for sand A, Surface area=1.08 m

2
/ g GCS.  

Total sites =18.6 µ moles/L for solid concentration of 10g/L of Sand-A 

A
 – From  MINTEQA2 for Windows thermodynamic database 

B
 –From Richter et al.(2005) normalized to surface site density of Sand A  

C 
– Values from FITEQL fitting of data collected in this study  
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3.3.2.4 Scaling approach used in this study 

 

The methodology used for scaling models in this study is summarized in Figure 3-

2. We first developed adsorption isotherms to evaluate the maximum adsorption capacity 

for one of the goethite-coated sands, Sand-A. The surface site density value for Sand-A 

was calculated based on the maximum adsorption capacity and the measured surface area 

(from BET analysis). Next, a diffuse double layer surface complexation model was 

developed for Sand-A by fitting the model results to the site density and pH edge data to 

derive the optimized log K values for the three surface complexation reactions using 

FITEQL.  

To apply the model to a new sand, we first determined the value of the maximum 

adsorption capacity of the new sand from the measured adsorption isotherm. We used the 

maximum adsorption capacity value and the measured surface area to calculate the 

surface site density value for the new sand. This was used in the Kulik equation to correct 

the log K values estimated for Sand-A. The values of new log Ks and the measured 

surface site densities for the sands were incorporated into MINTEQA2 to make 

predictions to validate the model.  
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Figure 3-2 : Flow chart of the modeling approach used in this study 

Measure the maximum adsorption capacity (moles/g sorbent) of the 

reference sorbent (Sand-A, in this work) using sorption isotherm 

experiments  

Compute the surface site density value (moles/m
2
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Measure BET surface area (m
2
/g) of the reference sorbent 

Conduct pH-edge experiments for the reference sorbent 

Use FITEQL to fit log K values to the pH data 

Measure the maximum adsorption capacity (moles/g sorbent) of the new 

sorbent using sorption isotherm experiments  

Measure BET surface area (m
2
/g) of the new sorbent  

Compute the surface site density value (moles/m
2
) for the new sorbent 

Use MINTEQA2 to make predictions using corrected log K values and 

surface site density values 

Use Kulik equation to estimate the log K values for the new sorbent 
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3.4 Results and discussions 

3.4.1 Evaluation of surface site density values from adsorption isotherms 

 

Our preliminary experiments showed that the maximum adsorption occurred near 

pH = ~ 4, and this value is consistent with other studies (Goldberg, 1985; Dixit and 

Hering, 2003). Therefore, pH 4 was used as the operating pH for determining the 

maximum adsorption capacity values. We also conducted multiple screening experiments 

(results not shown) and found that the maximum sorption capacity was similar at 

different solid solution ratios. 

Adsorption isotherm experiments were completed by equilibrating a known 

amount of sand with solutions of different As(V) concentrations at pH 4 for 24 hours. 

The solid to solution ratio used were: 10, 100, 25 and 12.5 g/liter for Sand-A, Sand-B, 

Sand-C and Sand-D, respectively. Figure 3-3 shows the adsorption isotherms for all four 

sands. The shape of the isotherms suggests that the goethite-coated sands have a strong 

affinity for adsorbing As(V).  We fitted the following Langmuir model to these datasets: 

 

qe = Kmax* Ce / (Ks+Ce)         (3-3) 

where, 

qe is the amount of As(V) adsorbed onto the sand at equilibrium (mg As(V)/ g sand) 

Kmax is the maximum adsorption capacity of the sand (mg As(V)/ g sand)  

Ce is the aqueous phase equilibrium concentration (µM ) 

Ks is the Langmuir constant (µM ) 
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Figure 3-3 : As(V) adsorption isotherm at pH 4 for Sand A, B, C and D (I=0.01M) 

 

 

 

Sand type Kmax(mg/g) Ks (µM) R
2
 

Sand-A 0.14 0.019 0.90 

Sand-B 0.028 0.01 0.67 

Sand-C 0.07 0.008 0.89 

Sand-D 0.097 0.364 0.75 

  

Table 3-3: Values of the fitted Langmuir model for various sands 

 

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 5 10 15 20 25 30 35 40

Ceq(µM As(V))

A
s
(V

) 
a

d
s

o
rb

e
d

 m
g

/g
 G

C
S

Sand A

Sand B

Sand D

Sand C
`



40 

 

We used the generalized reduced gradient algorithm, available within EXCEL 

solver and solved the equations to minimize the sum of square errors to evaluate the 

Langmuir parameters.  The maximum adsorption capacity (Kmax), Langmuir constant (Ks) 

and the corresponding R
2
 values are given in Table 3- 3.   

We computed the surface site density values using the maximum adsorption 

capacity and the measured surface area (given in Table 3- 1). The computed values of 

surface site density are: 1.04, 1.27, 1.32 and 1.38 sites/nm
2
 for Sand-A, Sand-B, Sand-C, 

and Sand-D, respectively.  

 

3.4.2 Calibration results for Sand-A pH edge data 

The first set of adsorption edge data was compiled by reacting 10 g/L of Sand-A 

with 25.3 µM initial As(V) solution at different equilibrium pH values ranging from pH= 

4 to pH= 12.  This data was used to fit the three surface complexation stability constants 

(log K values of reactions 6, 7 and 8 shown in Table 3- 2) using FITEQL. The surface 

site density value was set to 1.04 sites/nm
2
, a value determined above for Sand-A. The 

estimated surface complexation stability constants were then incorporated into 

MINTEQA2 for windows software to generate the model simulated pH edges. Figure 3- 

4 compares the calibrated model simulation results with experimental data. The goodness 

of fit (WSOF/DF) value estimated for the FITEQL fit was 0.243, for an estimated 3% 

experimental error in As(V) concentration measurements and 0.02 units of error in pH 

measurements. This value of goodness of fit estimate indicates a good fit (Dzombak and 

Morel, 1990; Herbelin and Westall, 1999). We completed additional FITEQL test 
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simulations using artificially higher experimental error (of 5%) and the log K values were 

similar to the third decimal place. The root mean square error (RMSE) value for the fit 

was 0.022 (i.e., average error is 2.2% of initial concentration), which indicates a good 

correspondence between model simulated results and experimental data. The fitted values 

of log Ks are summarized in Table 3- 2 and these values are used as base-line parameters 

in this study.   

 

 
Figure 3-4: Comparison of calibrated model results against adsorption data for 

Sand-A for an initial As(V) concentration =25.3 µM (10g/ L of Sand-A, I=0.01M) 
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3.4.3 Validating the model using different initial As(V) concentration datasets  

To test the predictive capability of the calibrated model at a different initial As(V) 

concentration, we conducted additional pH edge experiments for Sand-A at two different 

initial As(V) concentrations: 5.82 µM and 11.5 µM. We used the calibrated model to 

make independent predictions using MINTEQA2 for windows software for these new 

arsenate concentrations. Figure 3-5 compares the model-predicted pH edges with 

experimental data. The results show that the model was able to successfully predict the 

adsorption for the two different initial As(V) concentrations.  The root mean square error 

was 0.076 for the 11.5 µM dataset, and 0.18 for the 5.82 µM dataset (i.e., 7.6% and 18% 

of respective initial concentrations).  

 

 
Figure 3-5: Comparison of model predictions against adsorption data for Sand-A 

using 5.82 and 11.5 µM As(V) solutions ( 10g/ L of Sand-A, I=0.01M) 
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3.4.4 Validating the model using a different solid to solution ratio data for Sand-A 

To test the predictive capability of the model at a different solid to solution ratio, 

we conducted a pH edge experiment for Sand-A at a lower solid-to-solution ratio of 

4.25g/L using 12.1 µM of initial As(V). We then used the model to predict the pH edge 

data for this solid to solution ratio.  Figure 3-6 compares experimental data with model-

predicted pH edges for this simulation. The results show that the model was able to 

successfully predict the experimental data. The root mean square error was 0.033 (i.e., 

3.3% of initial concentration).  

 

 
Figure 3-6 : Arsenic(V) adsorption Vs pH for Sand-A at an initial concentration of 

12.1µM  and a lower solid to solution ratio of 4.25 g/L (I =0.01M) 
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3.4.5 Testing the scaling approach using Sand-B, Sand-C and Sand-D datasets 

In order to test whether the model developed for Sand-A can be scaled, using the 

approach described in Figure 3-1, we used the model to make independent predictions for 

Sand-B, Sand-C and Sand-D. All the simulations were completed by running the model 

in a predictive mode after completing the scaling steps shown in the figure. We computed 

the log K values for Sand-B, Sand-C and Sand-D by scaling the log K values of Sand-A 

using the Kulik equation and these values are summarized in Table 3- 4. The parameters 

given in Table 3- 4 were used to make predictions using MINTEQA2. Figure 3-7 shows 

the measured pH edge data for Sand-B, Sand-C and Sand-D along with the model 

predictions.  The results show that the model described the experimental data well. The 

RMSE values for Sand-B, Sand-C and Sand-D datasets were 0.09, 0.014 and 0.013, 

respectively (i.e., 9%, 1.4% and 1.3% of respective initial concentration levels), which 

indicate a good fit. The scaled model made good predictions for all the three sands (Sand-

B, Sand-C and Sand-D) though the iron content and surface area varied by nearly an 

order of magnitude.  

 

Table 3-4: Scaled surface complexation parameters for Sands-B ,C and D,  I=0 

 

 

 

 

 

 

    

Sorbent Type Sand-A Sand-B Sand-C Sand-D

Surface site density(Sites/nm2) 1.04 1.27 1.32 1.38

pKa1 7.44 7.35 7.34 7.32

pKa2 -9.30 -9.39 -9.40 -9.42

pK1 11.37 11.28 11.27 11.25

pK2 5.98 5.89 5.88 5.86

pK3 -0.33 -0.42 -0.43 -0.45

Surface area(m2/g) 1.08 0.18 0.43 0.57

Amount of Sand (g/L) 10.00 50.00 5.00 2.50
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Figure 3-7 : Comparison of scaled-model predictions against pH edge data using an 

initial As(V) concentration of 12.1 µM (50, 5, 2.5 g/L of Sand-B, Sand-C and 

Sand-D,  respectively, I=0.01M) 

 

We then tested the model performance by comparing model-predicted isotherms 

for the four sands against measured isotherm data.  The model simulation results 

(predictions) and the experimental data are compared in Figure 3-8.  The figure shows 

that the scaled model was able to predict the isotherm patterns very well.  These results 

show that the scaling approach can yield good predictions for a wide range of arsenate 

concentrations. 
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Figure 3-8 : Prediction of As(V) adsorption isotherms at pH 4 for Sand A, B, C and 

D (I=0.01M) 

 

3.4.6 Testing the scaling approach using literature datasets 

We further tested the predictive capacity of the proposed modeling approach 

using three independent pure goethite datasets derived from the published literature 

(Hingston, 1970; Hingston et al., 1971; Manning and Goldberg, 1996; Dixit and Hering, 

2003). The estimated surface site density values and surface complexation reaction 

constants (log K values), which were computed using the Kulik equation, are summarized 

in Table 3- 5 for all three datasets. The literature data was normalized to have a consistent 

solid-phase concentration unit of mole As(V) per mole Fe in the Y-axis to allow inter-

comparison of different published datasets. The model parameters summarized in Table 

3- 5 were used in MINTEQA2 to make predictions. 
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Table 3-5: Surface complexation parameters for published adsorption datasets for 

arsenate adsorption onto goethite at zero ionic-strength. Abbreviations: DH: Dixit 

and Hering (2003),  MG: Manning and Goldberg (1996), H71: Hingston et al. 

(1971), H70: Hingston (1970) 

Sorbant type Sand-A DH MG H71 H70

Surface site density (sites/nm
2
) 1.04 1.56 1.26 1.59 1.76

pKa1 7.44 7.26 7.36 7.26 7.21

pKa2 -9.30 -9.48 -9.38 -9.48 -9.53

pK1 11.37 11.19 11.29 11.19 11.14

pK2 5.98 5.80 5.90 5.80 5.75

pK3 -0.33 -0.51 -0.41 -0.51 -0.56

Surface area (m
2
/g) 1.08 54.00 43.10 60.00 32.00  

 

The first dataset was compiled from Manning and Goldberg’s (1996) study, which 

investigated competitive adsorption of arsenate onto pure goethite. They developed a 

constant capacitance model using FITEQL and used the model to predict adsorption. The 

surface area was 43.2 m
2
/g and the maximum adsorption capacity of their goethite were 

estimated to be 90 mmol As(V)/kg from their pH edge data (Manning and Goldberg, 

1996). The log K values were evaluated by us for diffuse layer model using the surface 

site density and the Kulik equation and the results are summarized in Table 3- 5. Figure 

3-9 compares their published data against our scaled model predictions. The RMSE 

values were 0.031 for the 133 µM data, and 0.059 for the 266 µM data (i.e., 3.1% and 

5.9% of respective initial concentration levels), which indicate a good fit.     
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Figure 3-9 :   Comparison of scaled-model predictions against published data from 

Manning and Goldberg (1996) (2.5 g/L goethite, I=0.01M) 

 

The second dataset was compiled from Dixit and Hering (2003). They 

investigated adsorption of arsenate onto pure goethite and HFO and used the diffuse 

double layer model to predict the experimental data. We first refitted their adsorption 

isotherm to estimate the value of the maximum adsorption capacity without using high 

As(V) data (> 500 µM) since surface precipitation could occur at high As(V) 

concentrations (Dzombak and Morel, 1990). The estimated value of maximum adsorption 

capacity was 140 µmoles As(V)/g goethite. We used the reported values of surface area 

(54 m
2
/g) and evaluated the value of surface site density for the system as 1.56 sites/nm

2
. 

These values were then used to evaluate the log K values (summarized in Table 3- 5) 
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using the scaling approach. The scaled model predictions are compared against Dixit and 

Hering (2003) data in Figure 3-10. The Figure shows that the scaled model was able to 

make excellent predictions at various arsenate concentration levels. The RMSE values are 

0.040, 0.024, 0.034 and 0.020 for 100 µM, 50 µM, 25 µM and 10 µM As(V) data, 

respectively  (i.e., 4%, 2.4%, 3.4% and 2% of respective initial concentration levels).  

 

 
Figure 3-10 : Comparison of scaled-model predictions against published data from 

Dixit and Hering (2003) (0.5 g/L goethite, I=0.01M) 

The third sorption dataset was assembled from two different studies that analyzed 

As(V) sorption onto pure goethite using the standard Langmuir isotherm model 

(Hingston, 1970; Hingston et al., 1971; Goldberg, 1986). The maximum adsorption 

capacity and surface area for the system were reported to be 0.588 moles of As(V)/m
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and 60 m
2
/g, respectively, for the Hingston at al. (1971) data and 0.433 mole/m

2
 and 32 

m
2
/g, respectively, for the Hingston (1970) data. These values were used in the Kulik 

equation to compute the log K values and the results are given in Table 3- 5. Figure 3-11a 

compares the experimental data and scaled model predictions. The RMSE values are 

0.046 for the 1070 µM dataset, and 0.086 for the 534 µM dataset (i.e., 4.6 % and 8.6% of 

respective initial concentration levels).  

Finally, in order assess the relative importance of the proposed scaling approach, 

we used the model derived for Sand-A to directly (without scaling) predict the Hingston 

(1970) and Hingston at al.  (1971) datasets. This unscaled model utilized the site density 

and log-K estimated for Sand-A (see Table 3- 2) without any scaling. Figure 3-11b 

compares the model predictions against experimental data. The results show that the 

unscaled model severely under predicted both 1070 µM and 534 µM datasets. The 

differences are particularly high at lower pH and near surface saturation. This result is 

consistent with the observations made by Dzombak and Morel (1990), who suggested 

that the systematic errors in surface site densities could lead to poor predictions at near 

surface saturation. For the 1070 µM As(V) data the RSME value was 0.13 (13%)  using 

the unscaled model; this was considerably higher than the RMSE value of 0.046 (4.6%) 

estimated for the scaled model predictions (see Figure 3-11a). For the 534 µM As(V) 

data, the RSME values was 0.220 (22%) using the unscaled model, which was much 

higher than the scaled model RMSE value of 0.086 (8.6%).  
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Figure 3-11 : Comparison of a) scaled-model b) unscaled model predictions against 

published data from  Hingston (1970) and Hingston et al. (1971) for 534 µM (4.64 

g/L of goethite) and 1070 µM (3.72 g/L of goethite) initial As(V) concentrations  

(I=0.01M) 
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3.4.7 Using existing published models for goethite to predict adsorption onto 

goethite-coated sands without using the scaling approach  

Next, we investigated the ability of the literature based models to predict 

adsorption onto goethite-coated sands without using the scaling approach. We used the 

same surface complexation parameters as published by (Dixit and Hering, 2003) and we 

used it to model the data for Sand-A. The model predictions are compared with published 

experimental data in Figure 3-12. The root mean square error was 0.209 for the 25.3 µM, 

0.247 for the 11.5 µM and 0.187 for the 5.82 µM data. Thus the model gave extremely 

poor predictions especially at high As(V) concentrations. This was expected because the 

measured site density for Sand-A (1.04 sites/nm
2
) was much lower than the site density 

for their model for goethite. Since extra sites are available, the model for goethite over 

predicts adsorption when arsenic concentration is higher than the experimental maximum 

adsorption capacity. This is because the model can adsorb an amount of arsenate nearly 

up to the site density value used in the model. Thus when we used a model developed for 

pure goethite to model adsorption data for goethite-coated sands without scaling, the 

unscaled models give poor prediction due the differences in the site density.  
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Figure 3-12 : Using model from (Dixit and Hering, 2003) for goethite to predict 

       adsorption onto Sand-A without using the scaling method 

 

Next we used a generic a model from (Mathur and Dzombak, 2006) for PO4
-3

 

adsorption by goethite and used it for arsenate since they have not studied arsenate 

adsorption and phosphate and arsenate exhibit similar surface complexation behavior. 

The generic model failed to capture the adsorption by the goethite coated sand especially 

when the concentrations are above surface saturation. This indicates that generic models 

may fail to predict adsorption by goethite coated sands. Our approach using the measured 

site density was able to predict the adsorption well for all goethite-coated sands and 

literature data for goethite, which suggests that our approach is better than the generic 

models especially when the sorbate concentrations are above surface saturation. 
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Figure 3-13 : Using model from (Mathur and Dzombak, 2006) for goethite to predict 

adsorption onto Sand-A without using the scaling method 

  

3.4.8 Using models developed for goethite-coated sands to predict adsorption for 
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expected because the site density used in our model for Sand-A (1.04 sites/nm
2
) is much 

lower than the actual site density for  their study (Dixit and Hering, 2003). The model 

under predicts adsorption because, the number of sites available according to the model is 

much lower than the actual maximum adsorption capacity and the model can adsorb only 

up to the site density used in the model and no higher. 

 

 
Figure 3-14 : Using models developed for Sand-A to predict adsorption for pure 

goethite from (Dixit and Hering, 2003) without using the scaling method 
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3.4.9 Development of a model for pure goethite and predicting adsorption onto 

goethite-coated sands by scaling 

Finally, to test the robustness of the approach, we developed a surface 

complexation model for published data from (Dixit and Hering, 2003) for pure goethite 

and scaled it to make predictions for goethite-coated sand, Sand-A.  We used the site 

density and surface area for Sand-A (Table 3- 5) and fitted the log K values for the above 

published data, using FITEQL 4.0 software. The log K values we estimated for the data 

are given in Table 3- 6. These surface complexation parameters were used to make 

predictions for the datasets. The plots of model predictions verses the experimental data 

is given in Figure 3-15a.  The RMSE values are 0.0206, 0.049, 0.0231 and 0.0156 for 100 

µM, 50 µM, 25 µM and 10 µM As(V) data, respectively. Thus the model developed was 

able to  describe the adsorption for the experimental data from (Dixit and Hering, 2003). 

Next we used the model from Table 3- 6 to predict the adsorption onto Sand-A by 

scaling. The values of surface complexation constants for Sand-A, got by scaling using 

Kulik equation are given in Table 3- 7.  The surface complexation parameters from Table 

3- 7 were used to make predictions for the literature datasets. Model predictions were 

made based on the scaled model in Table 3-7 for Sand-A. Figure 3-15b shows the 

predictions for Sand-A by the scaled model. The scaled model was able to predict the 

adsorption for Sand-A satisfactorily as shown in Figure 3-15b. The root mean square 

errors were 0.0484, 0.138, and 0.224 respectively for the 25.3 µM, 11.5 µM and 5.82 µM 

datasets. This shows the robustness of the approach which could be used for scaling 

models developed for pure goethite to predict adsorption onto goethite-coated sands. 
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Table 3-7: Scaled surface complexation parameters for Sand-A at zero ionic-strength 
 

ite density Dixit and Hering Sand A 

( Sites/nm
2
 1.56 1.04 

  pKa1 7.26 7.44 

pKa2 -9.48 -9.30 

pK1 11.52 11.70 

pK2 6.74 6.92 

pK3 0.05 0.23 

Surface area(m
2
/g) 54.00 1.08 

Table 3-6: Aqueous protonation constants and intrinsic surface complexation 

constants for pure goethite from (Dixit and Hering, 2003) at surface site density of 

1.56 sites/nm
2 

and zero ionic-strength. 

 

 

 

 

 

 

 

 

 

Reactions Log K  (I=0, 

 Г=1.56 sites/ nm
2
) 

Protonation reactions for As(V)
 A

  

H3AsO4    =  H2AsO4
-
 +   H

+  
 -2.24 (1) 

H3AsO4  =  HAsO4
2- 

+  2H
+  

 -9.20 (2) 

H3AsO4  =  AsO4
3-

    +  3H
+  

 -20.70 (3) 

Surface hydrolysis reactions of goethite
B
    

>FeOH  + H
+
 =   > FeOH

2+
 7.26 

 

(4) 

>FeOH  =   > FeO
-   

+  H
+
 -9.48 

 

(5) 

Surface complexation reactions 
C
 

As(V) surface complexation reactions
c
 

 

>FeOH +  H3AsO4 =   >FeH2AsO4    + H2O 11.52 

 

(6) 

>FeOH  +  H3AsO4   =   >FeHAsO4
-
     + H2O  +   H

+
  6.74 

 

(7) 

>FeOH +  H3AsO4    =   >FeAsO4
2-

      +  H2O  + 2H
+
 -0.05 

 

(8) 

Surface site density =1.56 sites/nm
2
 for sand A, Surface area=54 m

2
/ g GCS.  

A
 – From  MINTEQA2 for windows thermodynamic database 

B
 –From Richter et al.(2005) normalized to surface site density of 1.56 sites/nm

2
  

C 
– Values from FITEQL optimization for the data from Dixit and Hering(2003)  
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Figure 3-15 :  a) Comparison of model predictions verses adsorption data for the 

model developed by using literature data (Dixit and Hering, 2003)   b) Comparison 

of model predictions verses adsorption data for scaled model for the data for Sand-

A using 12.1, 5.82 and 11.5 µM As(V) solutions ( 10g/ L of Sand-A). 
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3.5 Conclusions  

A scalable surface complexation modeling framework for predicting As(V) 

adsorption onto various types of goethite-coated sands and goethite is presented. The 

approach was tested using a set of experimental data that characterized As(V) adsorption 

on four different goethite-coated sands with iron content and surface area values varying 

by nearly an order of magnitude. In addition, three sets of literature-derived data for 

As(V) adsorption on to pure goethite were used to further validate the modeling 

approach. The results indicate that surface site density was the most important scaling 

parameter. Also, the Kulik (2002) equation provides an approach for consistently 

correcting the log K constants for changes in site density values. 

In this study, we first calibrated a diffuse double layer model to fit a pH edge data 

obtained for one of the four goethite-coated sands (Sand-A).  The calibrated model was 

then validated by predicting the adsorption edges at different initial As(V) concentrations 

and solid-to-solution ratios.  The model was then scaled for the other three goethite-

coated sands using the measured values of surface site density and the log-K values were 

estimated using the Kulik equation. The scaled model was able to successfully predict 

arsenate adsorption data obtained for the three goethite-coated sands. In addition, the 

scaled model was also able to predict several literature-derived arsenate adsorption 

datasets for goethite. Whereas, unscaled models failed to satisfactorily predict the 

adsorption data.   

The results also show that a model developed for a pure goethite may not be able 

directly to predict adsorption for goethite-coated sands due the differences in site density.  
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And a model developed for goethite-coated sand was not able to predict adsorption onto 

pure goethite for the same reason. This inability of the models becomes particularly 

obvious at arsenate concentrations higher than the number of sites available. However 

models developed for goethite gave good predictions for goethite-coated sands when 

scaled according to the measured site densities.  

This study provides a practical surface complexation modeling framework that 

can be easily adapted from one system to another. The scaling approach yielded good 

predictions with minimum amount of experimental data. The average error in model 

predictions for the three goethite coated sands and the published datasets is less than 5%, 

as quantified using RMSE values. Also, the scaled models yielded predictions that were 

either comparable to or, in some cases, better than the original published model fits. 

These results are consistent with studies that have shown that scaling log K values based 

on surface site density can provide acceptable predictions (Richter et al., 2005b; Richter 

et al., 2005a; Kulik, 2006; Richter and Brendler, 2006). The limitation of the proposed 

scaling approach is that it requires measurement of site densities of the sorbent using 

adsorption isotherms. However, the approach is much easier than developing a whole 

new surface complexation model using FITEQL for every new adsorbent. Also, it is 

perhaps possible to develop empirical relationships between site density and iron content 

and/or surface area, and such relationships could be used to avoid direct measurement of 

site density for similar types of sorbents. Future studies should focus on testing this 

“scaling” procedure for systems involving other types of inorganic contaminants and/or 

other metal-oxide surfaces. 
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CHAPTER 4 

4. A NOVEL EXPERIMENTAL SYSTEM TO STUDY EQUILIBRIUM-

REACTIVE TRANSPORT PROBLEMS  

UILIBRIUM-REACTIVE TRANSPORT PROBLEMS 

 

4.1 Introduction 

Geochemical equilibrium reactions are important processes that control the 

transport of inorganic contaminants in groundwater aquifers. Under natural groundwater 

flow conditions, equilibrium conditions are usually assumed for most common 

geochemical reactions such as cationic exchange, acid-base reactions, complexation 

reactions, and adsorption reactions (Huber and Garrels, 1953; Rubin, 1983; Coston et al., 

1995; Davis et al., 1998; Wernberg, 1998; Friedly et al., 2002).  Therefore, studying 

geochemical reactions under equilibrium transport conditions, in laboratory setting, is 

useful for developing vital insights into the transport processes occurring in natural 

groundwater systems.  

Different types of experimental reactor setups have been used for studying 

geochemical reactions in laboratory conditions. Single reactor experimental setups that 

are commonly used are batch reactors, column reactors (plug flow reactors) and 

continuous stirred tank reactors  (Levenspiel, 1991). Multiple reactor setups that employ 
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several batch reactors in series or parallel or a combination are also sometimes used (Bale 

and Morris, 1981; García-Luque et al., 2006). However, none of the above reactor setups 

is suitable for studying equilibrium reactive transport involving geochemical reactions.  

In this Chapter we propose a novel sequential equilibration reactor experimental setup for 

studying equilibrium geochemical transport problems. We demonstrate the use of this 

experimental setup by investigating arsenate adsorption by surface complexation 

reactions on a synthetic goethite-coated sand. Arsenic was chosen as a representative 

reactive species since it is a common groundwater contaminant of world-wide concern 

(Smedley and Kinniburgh, 2002); also, goethite is a ubiquitously present adsorbent in 

groundwater aquifers (Wang et al., 1993; Fuller et al., 1996).  

Traditionally, batch reactors have been used for studying geochemical reactions 

since batch experiments are easy to conduct and parameterize. In a typical batch-reactor 

experiment, the reactants are initially charged into the reactor, mixed well and left to 

react until equilibrium is reached (Levenspiel, 1991). The resultant mixture is then 

analyzed for adsorbate concentration. Batch experiments have been extensively used for 

studying inorganic contaminant adsorption onto different types of metal oxides 

(Hingston, 1970; Manning and Goldberg, 1996; Dixit and Hering, 2003; Cheng et al., 

2004; Giammar et al., 2004 ; Dixit and Hering, 2006).  Although batch experiments are 

relatively easy to conduct, they are quite different from dynamic subsurface systems; they 

are usually conducted under no-flow conditions and hence they cannot be directly used to 

study subsurface transport problems. 
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Column experiments (which are conceptually similar to plug flow reactors) are 

commonly used to study geochemical transport under one-dimensional uniform flow 

conditions. Several researchers have studied arsenic transport in packed bed columns 

containing iron-coated sand or other adsorbents (Kuhlmeier, 1997; Williams et al., 2003; 

Radu et al., 2005a; Zhang and Selim, 2006; Dadwhal et al., 2009).  Residence times 

usually possible in column experiments is on the order of minutes, whereas it could take 

several hours or days to reach equilibrium for adsorption reactions such as arsenic 

adsorption on metal-oxides (Manning and Goldberg, 1996; Raven et al., 1998; Khaodhiar 

et al., 2000). Thus, one of the major disadvantages of studying geochemical equilibrium 

adsorption reactions in column reactors is that the experimental flow conditions might not 

allow sufficient contact time to attain equilibrium and hence the results could be 

influenced by kinetic effects (Williams et al., 2003; Zhang and Selim, 2006). Besides, 

column experiments are influenced by various issues related to irregular mixing and 

preferential flow paths. Barnett et al. (2000) observed that column experimental results 

could not be predicted using batch equilibrium adsorption parameters, and that modeling 

of column-scale adsorption data could be significant problem due to the presence of non-

linear kinetic effects.  

Continuous flow stirred tank reactor (CSTR) is another type of reactor, which is 

used in geochemistry literature to study kinetic reactions. Kirby and Brady (1998) used a 

continuous stirred tank reactor to determine the Fe
2+

 oxidation rates for an acid mine 

drainage problem. The rate constants obtained were later used to model a field scale 

wetland treatment facility. Rimstidt and Dove (1986) used a CSTR to determine 
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mineral/solution reaction rates for wollastonite hydrolysis reaction.  Some researchers 

have used a series of CSTRs, with continuous flow from one reactor to next, to study 

estuarine mixing dynamics (Bale and Morris, 1981; García-Luque et al., 2006).  

However, since CSTRs are continuous flow through systems, they offer a limited amount 

of retention time, and are hence not suitable for studying equilibrium reactions that need 

longer residence time. 

Geochemical equilibrium reactions in batch reactors can be mathematically 

simulated using batch computer codes such as PHREEQC (Parkhurst and Appelo, 1999) 

and MINTEQA2 (Allison et al., 1990). More recently, researchers have coupled these 

codes with transport codes to simulate reactive transport problems involving geochemical 

reactions (Cederberg et al., 1985; Noorishad et al., 1987; Gao et al., 2001; Prommer et 

al., 2003b; Parkhurst et al., 2004). Of these coupled codes, PHT3D (Prommer et al., 

2003b) and PHAST (Parkhurst et al., 2004) are widely used for simulating three-

dimensional reactive transport. The 2002 version of PHREEQC called as PHREEQCI 

(Clarlton and Parkhurst, 2002) also has the capability to simulate one-dimensional 

reactive geochemical transport. However, currently there are no suitable experimental 

setups available to conduct equilibrium geochemical transport experiments for validating 

these geochemical equilibrium coupled transport models. Therefore, theoretical problems 

(Cederberg et al., 1985; Engesgaard and Kipp, 1992),  analytical solutions (Parlange et 

al., 1984; Sun et al., 1999), simulations from already established models such as RT3D 

(Clement, 1997) or simplified field problems (Valocchi et al., 1981) are commonly used 

as benchmarks for testing geochemistry-coupled reactive transport codes. However, such 
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validation approaches can only provide an indirect assessment and do not really test 

reactive transport of a specific contaminant of interest to the modeler. Besides, due to 

uncertainties in equilibrium constants (Schecher and Driscoll, 1987; Ekberg and Emrén, 

2001), it is critical to validate geochemical-equilibrium transport models using actual 

experimental data. 

The goal of this phase of the study is to develop an experimental methodology to 

conduct reactive transport experiments involving equilibrium geochemical reactions. The 

methodology was inspired by the conceptual ideas inherently assumed in geochemical 

transport codes such as PHREEQCI and PHT3D (Clarlton and Parkhurst, 2002; Prommer 

et al., 2003b).  These numerical codes conceptualize one-dimensional reactive transport 

as a system involving a series of sequential equilibration reactors, as shown in Figure 4-1.  

The numerical operations at a node or a grid cell (which can be conceptualized as a batch 

reactor) consist of:  (i) transferring fresh influent solution (aqueous phase) into the cell, 

(ii) allowing the reactants in both aqueous and solids phases to react until equilibration is 

reached, and (iii) transferring the equilibrated aqueous phase to the next cell.  The solid-

phase components (immobile phase) are retained in the cell.  We propose an experimental 

setup that mimics the conceptual numerical grid system using a series of batch reactors, 

and is identified in this study as the multiple sequential equilibration reactor (MSER) 

experimental setup. It is also possible to exclusively study just a single numerical grid 

cell using a single batch reactor; this setup is identified as the single sequential 

equilibration reactor (SSER) experimental setup. Both MSER and SSER systems are 
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illustrated in Figure 4-1. Both of these sequential equilibration reactor experimental 

setups can be used to study equilibrium geochemical transport problems. 

 

 

 

 
Figure 4-1 : Conceptual diagram of a numerical grid compared to a sequential 

equilibration reactors (SER) system. A MSER system is shown in the top and a 

SSER system is shown in the bottom. 

 

The objective of this chapter is to demonstrate the use of sequential equilibration 

reactor experimental setups for conducting equilibrium geochemical transport 
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experiments. Both the single and multiple sequential equilibration reactor setups are used 

to generate equilibrium transport data for arsenic adsorption on synthetic iron-coated 

sand. The generated experimental datasets are then used to test whether a surface 

complexation model developed from batch experimental setup can be used to model 

equilibrium transport observed in sequential equilibration reactor systems under a wide 

range of pH, solid/solution ratio and concentration conditions. 

 

 

4.2  Materials and methods 

4.2.1 Experimental methods 

We used iron (goethite) coated sand (ICS), designated as Sand-A in Chapter three, 

as the adsorbent. The procedure used for synthesizing the iron-coated sand is described in 

our earlier publications (Cheng et al., 2004; Loganathan et al., 2009). Scanning electron 

microscopy (SEM) images showed that the iron coating mainly consisted of goethite 

(Loganathan et al., 2009). The characteristics of the iron-coated sand such as iron content 

and surface area are summarized in Table 4-1.   

 

Table 4-1: Characteristics of Sand-A 

 

Iron content (mg Fe/ g sand) 3.48 ±0.1

Surface area (m
2
/ g sand) 1.08

Maximum adsorption (mg As(V)/g sand) 0.14

Surface site density (µmoles/m
2
) 1.73

Surface site density (sites/nm
2
) 1.04  
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Arsenic solutions were prepared from a 100 ppm stock solution, which was made 

by dissolving 0.416 grams of reagent grade Na2HAsO4.7H2O in one liter of deionized 

water.  The ionic strengths of all the solutions were adjusted to 0.01 M using sodium 

nitrate (NaNO3). The pHs of the solutions were adjusted using NaOH or HNO3 and the 

value was measured using an Orion (model 250A) pH meter, which was calibrated using 

commercial pH 4.0, 7.0, and 10 buffers.  The average temperature was maintained at 

25
0
C +2

0
C for all experiments.  500 ml polypropylene plastic bottles were used as 

experimental reactors.  Our initial kinetic experiments indicated that near equilibrium 

conditions were reached in less than ten hours.  Similar results have also been observed in 

previous studies (Manning and Goldberg, 1996; Wilkie and Hering, 1996). All the 

sequential equilibration reactor experiments were done by equilibrating 100 ml (defined 

as one reactor volume or RV) of arsenate solution with iron-coated sand in a tumbling 

shaker. The supernatant solution was centrifuged and filtered through 0.45 m membrane 

filter (Millipore), which was fitted to a disposable syringe. The solutions were analyzed 

for total arsenic using a graphite furnace atomic absorption spectrophotometer (GFAAS; 

Perkin-Elmer 5100 PC) which has a detection limit of 5 g L
−1

 (5 ppb) of  total arsenic.   

 

4.2.2 Design of SSER and MSER experiments 

The single sequential equilibration reactor (SSER) experimental setup consists of 

a single batch reactor operated in a sequential fashion as shown in Figure 4-1. A known 

mass of iron-coated sand was loaded into the reactor. Each “sequential-equilibration-

cycle” consisted of introducing new influent solution into the reactor, equilibrating for 24 
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hours in a tumbling shaker and removing the aqueous phase for analysis. The aqueous 

phase was centrifuged, filtered and analyzed for arsenic at the end of each sequential-

equilibration-cycle. During the entire experiment, the immobile phase (sand) was retained 

in the reactor.  For the next sequential-equilibration-cycle, new arsenate solution was 

introduced into the same reactor, allowed to equilibrate, and the aqueous phase was 

removed and analyzed. This process was repeated several times. A SSER system is 

conceptually a numerical grid with a single node and can help simulate breakthrough 

from the first node for multiple reactor volumes.   

Our multiple sequential equilibration reactor (MSER) experimental setup 

consisted of three sequentially-linked reactors as shown in Figure 4-1. Initially the 

influent solution was introduced to the first reactor. After equilibration in the first reactor, 

the aqueous solution phase from the first reactor was transferred to the second reactor, 

allowed to equilibrate, and later transferred to the third reactor. The solution from the last 

reactor was removed, centrifuged, filtered and analyzed for arsenic. During the entire 

experiment, the immobile phase (sand) was retained within the reactors.  

Due to their conceptual similarity with one-dimensional numerical models, both 

SSER and MSER experiments can be used to produce datasets for testing transport codes 

that are coupled to batch equilibrium-geochemical models using the operator split 

procedure [e.g., PHT3D (Prommer et al., 2003a)].  The sequential equilibration reactor 

systems offer a simple alternative to conduct well-constrained experiments for generating 

datasets to test equilibrium-geochemical transport codes. Although the modeling part of 

geochemical transport is well established, the experimental design perhaps reflects one of 
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the first attempts to test the modeling methods. Previous studies have either used batch or 

column experiments and compared the results against equilibrium transport models. 

Whereas, sequential equilibration experiments physically implement the actual algorithm 

of the numerical equilibrium transport models. 

 

4.2.3 Surface complexation modeling methods 

In Chapter 3, we presented an approach for scaling surface complexation models 

for goethite and goethite coated sands. The scaling approach can greatly reduce model 

development time for different iron coated sands and iron-oxides. We used the model 

from Chapter 3 (Jeppu et al., 2010) to describe arsenate adsorption onto Sand-A. The 

surface complexation reactions and the model parameters for Sand-A were previously 

summarized in Table 3-2.  These reaction equations and constants were incorporated in 

PHREEQCI to make predictions for our experiments.  The advection block available 

within PHREEQCI allowed us to simulate the geochemistry-coupled advective transport 

on a numerical grid as shown in Figure 4-1. The difference between model predictions 

and experimental data was quantified using R
2
 value of predictions which is defined by 

the equation: 
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Where, Ci is the measured aqueous concentration, fi is the model predicted aqueous 

concentration, and Cm is the mean of observed aqueous concentration data.  

 

4.3 Results 

Adsorption of arsenic on goethite may depend on a wide range of geochemical 

parameters such as pH, dissolved organic matter, solid/solution ratio, competing-ions, 

redox conditions and adsorbate concentrations (Smedley and Kinniburgh, 2002; Hartzog 

et al., 2009; Nath et al., 2009). Solid/solution ratio, pH and adsorbate concentration 

determine the adsorption breakthrough time for arsenate adsorption on irons under 

laboratory conditions. We conducted sequential equilibration reactor experiments at 

various pH, solid/solution ratio, and initial arsenic concentration conditions to check if 

the surface complexation models are able to predict the experimental data during 

variations of these different conditions.  Since SSER experiments require considerably 

less time and effort than MSER experiments, we conducted a total of seven SSER 

experiments. Only one MSER experiment was conducted and the results are reported in 

the last section.  

 

4.3.1 Studying the effect of variations in solid/solution ratio on arsenate transport 

 First, we conducted single sequential equilibration reactor experiments to study 

equilibrium transport at different solid/solution ratios. Three experiments were conducted 

with different solid/solution ratios of 30 g/L, 60 g/L and 120 g/L and the results are as 

shown in Figure 4-2.  
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Figure 4-2: Comparison of PHREEQCI predictions and SSER experimental data 

at different solid/solution ratio for 12.5 µM As(V) solution (pH  = 4,I = 0.01 M). 

 

 

 The initial influent solution had an initial concentration of 12.5 µM As(V). The 

pHs of all solutions were 4 and ionic strengths of solutions were 0.01M.  In each 

sequential-equilibration-cycle, the sand was equilibrated with 100 ml (defined as one 

reactor volume or RV) of arsenate solution for 24 hours and then the liquid phase was 

removed and analyzed. In the whole experiment, the sand was treated with twenty-five 

sequential-equilibration-cycles (25 RVs) of new As(V) solution, and then flushed with 

four sequential-equilibration-cycles (4 RVs) of deionized water.  We tested the 

PHREEQCI code with the SCM model for Sand-A from Chapter 3, by using it to make 

predictions for this experimental system at different solid/solution ratios and the results 

are also shown in Figure 4-2.  It can be seen that the model predictions closely matched 

the breakthroughs and overall trend observed in the experimental system for all the three 
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solid/solution ratios. The R
2 

values were 0.89, 0.90 and 0.88 for the 30 g/L, 60 g/L and 

120 g/L experiments, respectively.  The transport of arsenate was retarded by adsorption, 

which is proportional to the solid/solution ratio. When the system was flushed with 

deionized water, the data show a sharp decline in the effluent arsenic concentrations.  

This can be expected since goethite has high affinity for As(V) at lower pH values and 

hence it is difficult to desorb the adsorbed arsenate at pH 4 (Manning and Goldberg, 

1996; Dixit and Hering, 2003).  

 

4.3.2 Studying the effects of variations in pH on arsenate transport 

 Next, to study equilibrium transport of arsenate at different pHs, we conducted 

single sequential equilibration reactor experiments at the following three pH values: 4, 7 

and 10.  The concentration of As(V) in the influent was 12.5 µM and ionic strength was 

0.01M.  In each sequential-equilibration-cycle, the sorbent (30 g/L of IOCS) was 

equilibrated with 100 ml (one RV) of arsenate solution and then the equilibrated solution 

was removed and analyzed.  The entire experiment consisted of 17 sequential-

equilibration-cycles of equilibrating with new As(V) solution, followed by three 

sequential-equilibration-cycles of flushing  with deionized water at the same pH and ionic 

strength.  Figure 4-3 shows the effluent As(V) concentration from this SSER system.  

The PHREEQCI code with the SCM model for Sand-A was tested by using it to make 

predictions for these experiments at different pHs and the results are also shown in Figure 

4-3.   
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Figure 4-3 : Comparison of PHREEQCI predictions and SSER experimental data  

for effect of varying pH  for 12.5 µM As(V) solution using 30 g/L of the ICS (I 

=0.01 M). 

 

 It can be seen from the Figure that the model predictions closely matched the 

experimental breakthroughs and overall trends for all the three pH values. The R
2 

values 

are 0.96, 0.91 and 0.94 for pH 4, 7 and 10 data, respectively. Arsenate transport was 

found to be highly dependent on pH. At pH 10 the breakthrough occurs at 1 reactor 

volume, which indicates that there is very low adsorption. At pH 7, breakthrough occurs 

after 2 pore volumes. Whereas at pH 4, breakthrough occurs after 4 pore volumes. Since 

arsenate adsorption is strong at low pH values, the pH-4 system treated the maximum 

number of reactor volumes of arsenate, followed by pH-7 and pH-10 systems, 

respectively.   

 

0

2

4

6

8

10

12

14

16

0 5 10 15 20 25

A
s

(V
) 

c
o

n
c

e
n

tr
a

ti
o

n
 (

µ
M

)

Reactor Volume

pH=4 data

pH=4 model

pH=7 data

pH=7 model

pH=10 data

pH=10 model



75 

 

4.3.3 Studying the effect of variations in the concentration on arsenate transport  

   

Next, we wanted to study equilibrium geochemical transport at different arsenate 

concentrations using single sequential equilibration reactor (SSER) experiments. To 

accomplish this, we conducted two experiments using the following initial arsenate 

concentrations: 12.5 µM and 25 µM. (Note that the 12.5 µM dataset is repeated in Figure 

4-3 and 4-4). The pH was fixed at 4 and the ionic strength was 0.01M for all solutions.  In 

each sequential-equilibration-cycle, the sorbent (ICS at a concentration of 30 g/L) was 

equilibrated with 100 ml (one RV) of new arsenate solution and then the equilibrated 

solution was removed and analyzed.  The whole experimental consisted of  treating the 

sand with 17 sequential-equilibration-cycles of new As(V) solution, followed by 3 

sequential-equilibration-cycles of flushing with deionized water, which is at the same pH 

and ionic strength.  Figure 4-4 shows the output As(V) breakthrough data profile for this 

SSER system.   The PHREEQCI code with the SCM model for Sand-A was tested by 

using it to make predictions for this experimental system and the results are also shown in 

Figure 4-4. 



76 

 

 

Figure 4-4: Comparison of PHREEQCI predictions and SSER experimental data for 

effect of varying initial arsenate concentration for As(V) =  12.5 µM and 25 µM  (pH  = 

4, I = 0.01 M). 

 

It can be seen from the Figure that the model predictions closely matched the 

experimental breakthroughs and overall trends for both concentration values. The R
2 

values were 0.96 and 0.88 for 12.5 µM and 25 µM data, respectively. Surface 

complexation models fail to give good predictions when the concentration is at or above 

surface saturation (Dzombak and Morel, 1990). The SCM model for Sand-A gave good 

predictions since model development was done using measured site densities. 
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4.3.4 Studying arsenate transport in a multiple sequential equilibration reactor  

 Finally, we conducted a sequential equilibration reactor experiment using three 

batch reactors in series to study equilibrium transport in a multiple sequential 

equilibration reactor (MSER). The concentration of As(V) in the influent was 1.25 µM 

and pH was 7. The solid/solution ratio was 1g iron-coated sand/L and ionic strength was 

0.01M.  Each sequential-equilibration-cycle consisted of equilibrating the sand with 100 

ml (one RV) of arsenate solution and transferring the equilibrated adsorbate to next 

reactor.  We first introduced fresh arsenate stock solution into the first reactor.  The 

system was allowed to equilibrate; then, the effluent from first reactor was transferred to 

the second reactor and the second reactor effluent was transferred to the third reactor, 

after equilibration. After equilibration, the effluent from the third reactor was analyzed 

for arsenic concentration.  During first phase of this experiment, a total of fourteen 

sequential-equilibration-cycles (14 RVs) of arsenic-contaminated water were passed 

through the system.  Later, during the second phase of the experiment, four sequential-

equilibration-cycles (4 RVs) of clean DI water (at pH 7 and I=0.01M) were flushed 

through the system. The observed breakthrough data (arsenic levels measured in the 

effluent from the third reactor) are shown in Figure 4-5 below.  We used the SCM model 

for Sand-A incorporated within PHREEQCI code to make predictions for this multiple 

sequential equilibration reactor (MSER) system and the model results are also shown in 

the Figure.  It can be seen from Figure 3-5 that the model was able to predict the 

breakthrough profiles and overall trends well for MSER experiment. The R
2 

value was 

0.89, indicating good match between the experimental data and model predictions.  
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Figure 4-5 : Comparison of PHREEQCI predictions and experimental data for multiple 

sequential equilibration reactor (MSER) experiment data with three reactors in series 

using  1g/L of the Sand-A and  1.25 µM As(V) solution  (pH  = 7, I = 0.01 M). 

 

 

4.4 Discussion 

 Overall, the surface complexation model implemented within PHREEQCI 

advection block was able to provide good predictions for the wide range of experiments 

conducted under different solid/solution ratios, pHs and arsenate concentrations. The 

SCM-coupled transport code was able to simulate both SSER and MSER experiments. 
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We attribute the robustness of the model to predict under a range of conditions, to the use 

of actual measured site density, without assuming an arbitrary theoretical site density 

value. Goldberg (1991) noted that site density is the most important and sensitive 

parameter in surface complexation models. Average of R
2
 values of predictions, over of 

all our experiments, was 0.91. As expected, the predicted (and observed) breakthrough 

time in the experiments was proportional to the solid/solution ratio. When the 

solid/solution ratio was doubled, the breakthrough time nearly doubled. Also, when the 

pH increased, the breakthrough time decreased. This is because arsenate adsorption is 

strongest around pH4 and reduces with increase in pH (Dixit and Hering, 2003) . 

When we use computer models for simulating column experiments involving 

equilibrium geochemical reactions, there is an inherent uncertainty whether the results 

were influenced by kinetic effects or not.  This is because column experiments usually do 

not provide sufficient residence time for geochemical reactions to reach equilibrium. For 

example, a typical column with characteristic dimensions of 1 cm diameter and 10 cm 

length, porosity of 0.3, and supporting a relatively low flow rate of 0.5 ml/ min would 

have a residence time of 5 minutes.  To obtain a residence time of 24 hours, we need to 

pump the influent at an extremely low flow rate of 0.00164 ml/ min, which will be 

difficult to achieve and control. Whereas, most adsorption reactions on metal oxides have 

equilibration time ranging from hours to days (Manning and Goldberg, 1996; Raven et 

al., 1998; Khaodhiar et al., 2000; Dixit and Hering, 2003). The proposed sequential 

equilibration reactor experiments (both MSER and SSER systems) offer a practical, cost-

effective method to study such equilibrium-controlled reactive transport systems. This 
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methodology also offers the flexibility to vary experimental conditions such as 

solid/solution ratio, which cannot be varied in column experiments.  

The sequential equilibration reactor experimental setup has the characteristics of a 

batch experimental setup and provides complete control over the reaction time. 

Sequential equilibration reactors also resemble column experiments since they provide 

transport information. The proposed sequential equilibration reactor experimental system 

can hence be considered as an intermediate-scale experimental setup between batch and 

column experiments. When there are serious discrepancies between batch and column 

experiments [for example: (Barnett et al., 2000)] , Sequential Equilibrium Reactor 

experiments can be used to isolate and investigate the underlying causes of the 

differences. 

 

Sequential equilibration reactors can also be used to conduct feasibility studies to 

investigate the effectiveness of remediation strategies that use sorbents and/or liquid 

amendments that involve geochemical reactions. Currently, there are no suitable 

laboratory-scale testing procedures available for evaluating the feasibility of remediation 

strategies that employ chemical processes involving geochemical equilibrium reactions. 

The SSER and MSER experimental setups can be used to test such remediation strategies 

and the results from these studies can be used to calibrate reactive transport codes, which 

can then be used to simulate large-scale remediation of the plumes at the field scale. Both 

SSER and MSER experiments also allow us to easily vary the solid/solution ratio and 
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other treatment variables and hence can be used to design optimized remediation 

strategies. 

One of the disadvantages of the proposed sequential equilibration reactor system 

is that dispersion is not accounted for in these experiments. However, dispersion can be 

measured independently from tracer experiments. The measured dispersion can then be 

integrated into reactive transport models to account for the dispersive mixing.  

 

 

4.5 Conclusions 

In this study we have demonstrated the use of a novel sequential equilibration 

reactor experimental setup to study equilibrium geochemical transport.  The experimental 

system uses multiple batch reactors in series, operated in a sequential fashion, which 

directly mimic one-dimensional numerical grids used by geochemical equilibrium 

transport codes. Seven SSER experiments and one MSER experiment (using three 

reactors) were conducted to generate datasets for equilibrium-controlled transport of 

arsenate on iron-coated sand at different pH, solid/solution ratio, and initial arsenate 

concentration levels. A previously developed surface complexation model was integrated 

within PHREEQCI and it was able to make good predictions (average R
2
 =0.91) without 

any parameter adjustment.   

The proposed sequential equilibration reactor system is an alternative, cost-

effective approach for studying equilibrium-controlled reactive transport problems. The 

experimental system can be used for validating numerical equilibrium reactive transport 

codes for a specific contaminant of interest. It can also be used for conducting laboratory 
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feasibility studies of remediation systems involving equilibrium geochemical conditions. 

Future studies in this area also have the potential to bridge the gap between batch and 

column experiments and could help shed some light on the significant scaling issues 

associated with reactive transport problems.  
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CHAPTER 5 

5 A SEMI-ANALYTICAL SOLUTION FOR REACTIVE TRANSPORT 

IN SEQUENTIAL EQUILIBRATION REACTORS USING A NOVEL 

UNIFIED LANGMUIR-FREUNDLICH ISOTHERM 

 

5.1 Introduction 

 

Equilibrium geochemical reactions play a major role in determining the fate and 

transport of groundwater contaminants. Typical column experiments fail to capture 

equilibrium geochemical reactive transport behavior due to low residence times (typically 

in minutes), presence of preferential flow paths, and influence of non-linear reaction 

kinetics (Barnett et al., 2000; Jeppu et al., 2011). In Chapter 3, we proposed a novel 

sequential equilibration reactor (SER) experimental system which can be used to study 

equilibrium geochemical reactive transport using a series of batch reactors. The 

experimental setup conceptually mimics a one-dimensional numerical grid commonly 

assumed in reactive transport codes such as PHT3D  and PHREEQCI (Clarlton and 

Parkhurst, 2002). A conceptual diagram of two types of sequential equilibration reactor 

systems used in this study are given in Figure 4-1 in Chapter 4.  As shown in the top part 

of the figure, a multiple sequential equilibration reactor (MSER) system consists of a 
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number of batch reactors equilibrating in series. A single sequential equilibration reactor 

(SSER) consists of a single reactor treating fresh batch of influent several times. In 

Chapter 4, we used a transport coupled surface complexation models incorporated in 

PHREEQCI to simulate SER experiments. However, this approach is more complex and 

time consuming. Mathematical solutions can be derived from mass balance for SER 

systems. Currently there are no mathematical solutions for SER systems available in 

literature. Such mathematical solutions have are less complex and easier to use compared 

to surface complexation coupled transport codes. These semi-analytical models can also 

be used to validate SER experiments and surface complexation coupled transport codes. 

In this Chapter we develop a semi-analytical solution to model the transport in SER 

experiments. 

In this Chapter we also developed a novel Unified Langmuir-Freundlich 

adsorption isotherm to describe adsorption at different pH values and used it in the semi-

analytical solution. The most widely used isotherms for modeling adsorption of 

geochemical species on iron-oxides and iron-oxyhydroxides are Langmuir isotherm 

(Hingston, 1970; Raven et al., 1998; Thirunavukkarasu et al., 2001; Thirunavukkarasu et 

al., 2003; Kundu and Gupta, 2006) and Freundlich isotherm (Raven et al., 1998; Lin and 

Wu, 2001; Badruzzaman et al., 2004). Other isotherms that are occasionally used include 

Radke-Praunitz isotherm, Dubinin–Radushkevich (D–R) isotherm, Toth isotherm, and 

Temkin isotherm  (Rau et al., 2003; Kundu and Gupta, 2006).   

The Langmuir-Freundlich isotherm, also known as the Sips’s equation, is another 

versatile adsorption isotherm that has the potential to simulate both Langmuir and 
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Freundlich behaviors (Sips, 1948; Sips, 1950; Nahm et al., 1977).  Rau et al. (2003) 

studied arsenate adsorption on metal-oxides using different types of adsorption isotherms 

and concluded that Langmuir-Freundlich isotherms best described the data.  The 

Langmuir-Freundlich isotherm has also been successfully used to model adsorption by 

molecularly-imprinted polymers (Umpleby et al., 2001; Turiel et al., 2003) 

Adsorption isotherm datasets are typically developed for a single pH value. 

Hence, most adsorption isotherm models are valid only at the pH it was developed and 

hence it cannot be used to predict transport scenarios involving pH variations. A few 

researchers have attempted to use adsorption isotherm equations to model adsorption at 

different pH values. Anderson et al. (1976) used the Langmuir isotherm to predict 

arsenate adsorption at different pH values. Hingston et al. (1971) used a modified 

Langmuir isotherm to model competitive adsorption of arsenate in presence of phosphate 

at different pH values. However, both these studies fitted different maximum adsorption 

capacities and Langmuir constants at different pH values. They have not presented a 

unified model for all pH values. Yu et al. (1999) used a modified Langmuir isotherm to 

describe pH-dependent bio-sorption of heavy metals on marine algae. A similar modified 

Langmuir isotherm has been used to model arsenic adsorption on amorphous iron oxide 

(Hsia et al., 1992). However, these studies involve graphical estimation of reaction 

equilibrium constant and assumed different adsorption capacities at different pH.  Hence, 

such Langmuir isotherms have not been widely used. 

Currently, the effect of pH variation on sorption behavior of inorganic 

contaminants onto metal-oxides is primarily being modeled using surface complexation 
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models (Westall and Hohl, 1980; Davis and Kent, 1990; Dzombak and Morel, 1990). 

This numerical approach is intricate and time consuming compared to simpler analytical 

isotherm models such as Langmuir isotherm and Freundlich isotherm.  However, 

isotherm models are typically restricted to a single pH value. Hence, there is a need for a 

unified approach which can help develop isotherm models that describe the pH effects on 

adsorption. Such an isotherm could be easily incorporated into large-scale groundwater 

contaminant transport codes such as MT3DMS (Zheng and Wang, 1999) and RT3D 

(Clement et al., 1998) to predict pH dependent adsorption effects.  

  The objectives of this chapter are (i) to develop a semi-analytical solution to 

model equilibrium transport in sequential equilibration reactor systems,  (ii) to develop an 

unified adsorption isotherm, which can predict adsorption at different pH values, and use 

the unified adsorption isotherm in the semi-analytical solution, and (iii) to compare the 

semi-analytical-model based predictions against experimental datasets for arsenic(V) 

adsorption on iron-coated sands under a wide range of pH, solid/solution ratio and initial 

concentrations levels. 

 

5.2 Materials and methods  

5.2.1 Experimental methods  

The procedure used for synthesizing the iron (goethite) coated sands is described 

in detail in Chapter 3 and our earlier publications (Cheng et al., 2004; Loganathan et al., 

2009; Jeppu et al., 2010).  Iron-coated sand, identified as Sand-D in Chapter 3 was used 
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for experiments in this study.  The characteristics of Sand-D are summarized in Table 5-

1.  

Table 5-2: Characteristics of Sand-D 

Parameter Value

Iron content (mg Fe/ g sand) 3.15

Surface area (m
2
/ g sand) 0.57

Surface site density (sites/nm
2
) 1.38  

Arsenic solutions were prepared from a 100 ppm stock solution, which was made 

by dissolving 0.416 grams of reagent grade Na2HAsO4.7H2O in 1 liter of deionized 

water.  The ionic strengths of all the solutions were adjusted using sodium nitrate to 0.01 

M. The pH of the solution was adjusted using either NaOH or HNO3 and the value was 

measured using an Orion (model 250A) pH meter which was calibrated using commercial 

pH 4.0, 7.0, and 10 buffers.  The average temperature was set at 25
0
C +2

0
C for all 

experiments. All the sequential equilibration reactor experiments were done by 

equilibrating 100 ml (defined as one reactor volume or RV) of arsenate solution with 

iron-coated sand in a tumbling shaker. The supernatant solution was centrifuged and 

filtered through 0.45 m Teflon membrane filter (Millipore), which was fitted to a 

disposable syringe. The solutions were analyzed for total arsenic using a graphite furnace 

atomic absorption spectrophotometer (GFAAS; Perkin-Elmer 5100 PC) which has a 

detection limit of 5 g L
−1

 total arsenic.  
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5.2.2 The Langmuir-Freundlich isotherm 

In this study, the Langmuir-Freundlich (LF) isotherm equation (Sips, 1948; Sips, 

1950; Nahm et al., 1977) was used to model arsenic(V) adsorption on iron-coated sand in 

batch adsorption isotherm experiments.  The LF isotherm can written as: 

 

1)C(K

)C(K
Kq

n

1

n

1
max


                                                                                                   (5-1) 

 

where,  

q is the amount of As(V) adsorbed on the sand at equilibrium (mg As(V)/ g sand) 

Kmax is the maximum adsorption capacity (mg As(V)/ g sand) 

C is the aqueous phase concentration at equilibrium (µmoles/ L) 

K1 is the affinity constant for adsorption 

n is the heterogeneity index 

 

When n is between 0 and 1, the sorbant is assumed to be heterogeneous (Umpleby 

et al., 2001; Turiel et al., 2003). For a homogeneous material, n is set to 1, and the 

Langmuir-Freundlich isotherm reduces to the standard Langmuir isotherm below: 

CK

C
Kq

S

max


                                                                                                         (5-2) 

where,  

KS =1/K1 
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Also, when C or K1 approaches 0, the value of denominator in the LF isotherm 

(see Equation 5-1),

 

approaches 1, and the LF isotherm approaches the Freundlich 

isotherm (Umpleby et al., 2001; Turiel et al., 2003): 

nCKq                                                                                                                        (5-3)             

 Where, 

K = (KmaxK1
n
).  

 

When both n = 1 and K1 is very small, the denominator in Equation-1 approaches 

unity and the LF isotherm reduces to the linear adsorption isotherm: 

                                                                                                                 (5-4)
 

Where, Kd = KmaxK1. Thus, the LF isotherm is a versatile model that can simulate all 

Langmuir, Freundlich and Linear isotherm behaviors that are commonly observed in 

groundwater systems.  

 

5.2.3 Design of sequential equilibration reactor experiments 

The design of sequential equilibration reactor experiments has been discussed in 

detail in the previous chapter (Section 4.3.2). A conceptual representation of the single 

sequential equilibration reactors and multiple sequential equilibration reactors is shown in 

Figure 4-1.  Single sequential equilibration reactor (SSER) experiments required less time 

and effort; hence we conducted several SSER experiments to produce experimental data 

to validate the adsorption models under equilibrium reactive transport conditions. The 

SSER experiments were similar to experiments conducted in Chapter 4, but were 

CKq d
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conducted using a different sand, Sand-D. Also, a synthetic MSER experimental dataset, 

which employed five reactors in series, was simulated using PHREEQCI and the results 

were compared against the new analytical solution validate the analytical solution.  

 

5.2.4 Development of a semi-analytical solution for modeling one-dimensional 

advection-dominated equilibrium transport data  

A mathematical method to calculate the concentration of the effluent 

concentration from an advection-dominated grid cell (or a reactor) can be derived using a 

mass balance analysis. Consider a grid cell or a single sequential equilibration reactor, as 

shown in Figure 5-1. 

 

 

 

Figure 5-1 : Conceptual representation of a single sequential equilibration 

reactor (SSER) 
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The figure uses the following notations:  

Cinf is the influent sorbate [arsenic(V)] concentration before equilibrium at step “i” 

(mg/L) 

Ci+1 is the equilibrated concentration of the sorbate in the reactor at step “i+1” (mg/L) 

qi is the initial solid phase (iron-coated sand) concentration of arsenic in the reactor 

(mg/g) at step “i” 

qi+1 is the final equilibrium solid phase concentration in the reactor (mg/g) at setp “i+1” 

V as the reactor volume (L), and 

S is the sorbent (sand) concentration (g/L). 

 

A mass balance analysis of the sorbate in the reactor before and after equilibrium can be 

written as: 

SVqVCSVqVC 1i1iii  
                                                                                         (5-5) 

Which can be simplified as, 

 

)qS(qCC i1iinf1i                                                                                                  (5-6) 

 

Using the Langmuir-Freundlich equation (Eqn 5-1) in the above expression,  Ci+1 can be 

found by numerically solving the following equation: 

                                                                  (5-7) 
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The above equation can be represented as a nonlinear function:      

                                                 (5-8)                                                                                                                                                              

 

We can use the Newton-Raphson method to obtain the roots of the non-linear equation 

(5-8).    For a k
th

 iteration, the general Newton-Raphson formula can be written as : 

 

 

                                                                                                        (5-9) 

 

 

where,  

 

                                                                                 (5-10) 

 

By solving for Ci+1 using the above Newton-Raphson equation, we can evaluate 

the concentration of the equilibrated effluent. The above procedure can be repeated 

sequentially to get the effluent concentration after each equilibration step in a given 

reactor or a node. When there are n nodes linked in series, the effluent from one node can 

be used as the influent to the next node, and the mathematical calculations can be 

repeated in a sequential fashion to obtain the effluent breakthrough concentrations from 

the last node. 
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5.2.5 Geochemical equilibrium transport modeling using PHREEQCI 

  

 A scalable surface complexation modeling (SCM) framework, discussed in 

Chapter 3, was used to simulate the arsenic surface complexation reactions. Reaction 

equations and the model parameters used are summarized in Table 5-2. These reaction 

equations and constants were incorporated into PHREEQCI to make predictions.  The 

advection block available in PHREEQCI was used to simulate the geochemistry-coupled 

advective transport.  The difference between model predictions and experimental data 

was quantified using the R
2
 value for our predictions defined by the equation: 

 

 

R
2
 =                                                                                                                              (5-11)

  

 

Where, Ci is the measured aqueous concentration, fi is the model predicted aqueous 

concentration, and Cm is the mean of the observed aqueous concentration data.  
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Table 5-3: Aqueous protonation constants and intrinsic surface complexation 

constants used for the goethite-coated sand, Sand-D, at a surface site density of 1.38 

sites/nm
2 
and at zero ionic-strength 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reactions Log K  (I=0 and 

 Г=1.38 sites/ nm
2
) 

Protonation reactions for As(V)
 
 

H3AsO4    =  H2AsO4
-
 +   H

+  
 -2.24 (1) 

H3AsO4  =  HAsO4
2- 

+  2H
+  

 -9.20 (2) 

H3AsO4  =  AsO4
3-

    +  3H
+  

 -20.70 (3) 

Surface hydrolysis reactions of the iron-oxide coated 

sand 

  

>FeOH  + H
+
 =   > FeOH2

+
 7.32 

 

(4) 

>FeOH  =   > FeO
-   

+  H
+
 -9.42 

 

(5) 

Surface complexation reactions  

As(V) surface complexation reactions
c
 

 

>FeOH +  

H3AsO4 

=   >FeH2AsO4    + H2O 11.25 

 

(6) 

>FeOH  +  

H3AsO4   

=   >FeHAsO4
-
     + H2O  +   H

+
  5.86 

 

(7) 

>FeOH +  

H3AsO4    

=   >FeAsO4
2-

      +  H2O  + 2H
+
 -0.45 

 

(8) 

Surface site density =1.38 sites/nm
2
, Surface area=0.57 m

2
/ g 
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5.3 Results 

5.3.1 Development of a Unified Langmuir-Freundlich isotherm to model  pH 

dependent adsorption 

We first used the previously developed surface complexation model, summarized 

in Table 5-2, to simulate a series of adsorption isotherms datasets at different pH as 

shown in Figure 5-2. We then fitted the simulated adsorption isotherm datasets at pH 

values 4, 5.5, 7, 8.5 and 10, using the LF isotherm equation. The fitted adsorption 

isotherms are shown in Figure 5-2 along with experimental adsorption isotherm at pH 4 

from our earlier study (Chapter 3, Figure 3-3) 

The LF model parameters were fitted using the generalized reduced gradient 

algorithm available within the EXCEL solver. The LF constants were solved for by 

simultaneously minimizing the SQE (sum of squared errors) of the fits at five different 

pHs. We hypothesized that the maximum adsorption capacity and the heterogeneity index 

are independent of pH. So the values of Kmax (maximum adsorption capacity, which 

corresponds to total number of sites) and n (heterogeneity index) are assumed to be 

constant irrespective of the pH value. So the value of Kmax and n were optimized as 

constant for the entire pH range. Only the affinity constant (K1) was allowed to change 

with pH, and K1 value was separately fitted to each isotherm.  The fitted values of the LF 

isotherm parameters are given in Table 5-3.  The R
2

 values of the fitted curves were 

0.994, 0.940, 0.813, 0.974, 0.974 and 0.894 at pH 4, 5.5, 7, 8.5 and 10, respectively. The 

results suggest that the LF isotherm can be used to fit adsorption isotherm data observed 

at different pH values.   
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Figure 5-2 : Adsorption isotherms from surface complexation model at different pH 

values and corresponding LF model fits. Also shown is experimental data at pH 4. 

Closed symbols represent experimental data. Open symbols represent surface 

complexation model generated data. Lines represent LF model predictions.  
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Table 5-4:  Values of the fitted Langmuir-Freundlich parameters 

 

pH Kmax(mg/g) N Ks (µM) 

4 0.1 0.387 769 

5.5 0.1 0.387 50.9 

7 0.1 0.387 3.35 

8.5 0.1 0.387 0.200 

10 0.1 0.387 0.0371 

 

 

 
 

Figure 5-3: Plot of  pH  Vs LF model parameter K1 
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Since adsorption affinity changes with pH in a logarithmical relationship, as seen 

in Figure 5-2, the affinity constant K1 can be expressed as a function of pH as K1(pH). 

We can then write the Langmuir-Freundlich equation 5-1 in its general form as:  

 

                                (5-12) 

 

The above equation is identified hereafter as the Unified Langmuir-Freundlich 

(ULF) model, and will be used to describe variations in adsorption at different pH values 

using a single set of isotherm-model constants. 

 

We plotted Log K1 Vs pH to determine the relationship between K1 and pH as 

shown in Figure 5-3. The data indicated that Log K1 varies linearly with pH. The R
2
 value 

of the linear fit was 0.996 and the equation is: 

                                                          (5-13)

  

 

 

Inserting the above expression (5-13) for affinity constant K1 into the ULF model 

equation (5-12) allowed us to develop an expression that can model pH effects.  

 

The ULF model for arsenate adsorption on iron-coated sand system can be written 

as: 

  
   1pHKC

pHKC
Kq

n

1

n

1
max




0.722pH5.705

1 10K 
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1)10 C(

)10 C(
Kq

n0.722pH-5.705

n0.722pH-5.705

max


                                                             (5-14)

   

 

Which is of the form: 

1)10 C(

)10 C(
Kq

napH-b

napH-b

max




                                                                                     (5-15)

 

 

The constants a and b can be obtained from Log K1 Vs pH plot as shown in Figure 

5-3. The ULF model in equation (5-14) was incorporated in the semi-analytical solution 

(Equation 5-7) to solve for the equilibrium arsenate concentrations in our sequential 

equilibration reactor experiments explained in later sections. The predictions from the 

ULF equation based semi-analytical solution were compared with experimental data. 

 

5.3.2 Modeling transport in single sequential equilibration reactor experiments 

using the semi-analytical solution coupled with the ULF model 

 In order to test the proposed semi-analytical solution under different transport 

simulations involving a wide range of pH, solid/solution ratio and concentrations 

conditions, we conducted multiple SSER experiments. The data from the SSER 

experiments were used to further test the predictive capability of our model under 

equilibrium transport conditions.  

5.3.2.1 Modeling the effect of variations in solid/solution ratios 



100 

 

 To test the ULF-model based semi-analytical solution at different solid/solution 

ratios, we conducted SSER experiments at three different solid/solution ratios of 50 g/L, 

100 g/L and 150 g/L.  The concentration of As (V) in the influent was fixed at 12.5 µM at 

a pH value of 4 and ionic strength 0.01M. In each sequential-equilibration-cycle the sand 

was equilibrated with 100 ml (one RV) of arsenate solution for 24 hours. The total 

experiment consisted of equilibration with of the iron-coated sand with 25 RVs of fresh 

12.5 µM As(V) solution, followed by flushing with 4 RVs of deionized water of pH 4 

and ionic strength 0.01M.  The ULF-mode based semi-analytical solution was used to 

make predictions for the experimental system.  The model parameters for the Unified 

Langmuir-Freundlich model at pH 4 are given in Table 5-3. The semi-analytical model 

results along with experimental data are shown in Figure 5-4.  The breakthroughs were at 

5, 10 and 15 pore volumes as predicted by the models. It can be seen from the figure that 

the model predicted the overall trend observed in the experimental system. The R
2 

values 

were 0.9690, 0.9357, 0.9214 for the semi-analytical models at 50 g/L, 100 g/L and 150 

g/L, respectively, which indicates a good fit. Arsenate concentration in the effluent 

decreased rapidly when the system was flushed with deionized water as predicted by the 

models. 
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Figure 5-4: Comparison of ULF  model predictions with SSER experimental data  

for effect of varying solid/solution ratio at 12.5 µM As(V)  (pH  = 4, I = 0.01 M)  

5.3.2.2 Modeling the effect of variations in pH 

 To test the semi-analytical solution based on the ULF model under different pH 

conditions, we conducted SSER experiments at following three pH values: 4, 7 and 10.  

The concentration of As (V) in the influent was 12.5 µM with ionic strength 0.01M.  In 

each sequential-equilibration-cycle, the sorbent (50 g/L of Sand-D) was equilibrated with 

100 ml (one RV) of arsenate solution for 24 hours in a tumbling shaker.  The total 

experiment consisted of equilibrating the iron-coated sand with 17 RVs of fresh 12.5 µM 

As(V) solution, followed by flushing with 3 RVs of deionized water at the same pH. 

Figure 5-5 show the output As(V) concentration from this SSER system.  The ULF 
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model based semi-analytical model was used to make predictions for this experimental 

system and the results are also shown in the figure. The Unified Langmuir-Freundlich 

model parameters are given in Table 5-3 for the different pH values used.  It can be seen 

from the figure that at different pH values the model predictions closely matched the 

breakthroughs and overall trend. The R
2 

values were 0.9125, 0.9441, 0.8211 for the semi-

analytical models at pH 4, 7 and 10, respectively. Since arsenate adsorption is strong at 

low pH values, the pH 4 system treated the maximum number of RVs, followed by pH-7 

and pH-4 systems, respectively.   

 
Figure 5-5:   Comparison of ULF model predictions with experimental data  for effect of 

pH for As(V) =12.5 uM ppm (I=0.01M) 
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5.3.2.3 Modeling the effect of variations in initial arsenate concentration 

Further, we wanted to test the semi-analytical solution based on the ULF model at 

different initial arsenate concentrations. We conducted sorption experiments using 6.6 

µM, 12.5 µM and 25 µM as initial arsenate concentration. The pH was fixed at 4 and 

ionic strength at 0.01M.  In each sequential-equilibration-cycle cycle, the sorbent (50 g/L 

of Sand-D) was equilibrated with 100 ml (one RV) of arsenate solution for 24 hours.  The 

experimental steps included equilibration of 17 RVs of fresh As(V) solution with the 

sand, followed by flushing with 3 RVs of deionized water at the same pH and ionic 

strength. Figure 5-6 shows the output As(V) breakthrough data profile for this SSER 

system. The arsenate concentrations in the figure are normalized to 12.5 µM arsenate 

concentration. The ULF model based semi-analytical model was used to make 

predictions and the results are also shown in the figure. It can be seen from the figure that 

the model predictions closely matched the experimental breakthroughs and overall trends 

in the data. The R
2 

values were 0.8716, 0.8914, 0.9650 for the semi-analytical model at 

6.6 µM, 12.5 µM and 25 µM of initial arsenate concentrations respectively. 
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Figure 5-6 : Comparison of ULF model predictions and ScBR experimental data  for 

effect of varying initial arsenate concentration of As(V) =  6.6 µM, 12.5 µM and 25 µM 

(pH  = 4, I = 0.01 M). Arsenate concentration values are normalized to 12.5 µM. 

 

5.3.3 Comparison of the predictions from the semi-analytical model with 

PREEQCI model predictions 

 We compared the predictions from the semi-analytical solution with the 
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model at different pH are compared in Figure 5-7.  Both models were able to predict the 

breakthrough at different pH values satisfactorily. 

 
Figure 5-7 : Comparison of ULF model predictions with PHREEQCI predictions and 

experimental data  at different pHs (As(V) =12.5 uM ppm, I = 0.01 M ) 

  

 The R
2
 values were 0.947, 0.930, 0.938 for the PHREEQCI model and 0.944, 

0.947 and 0.932 for the semi-analytical models. This indicates that the proposed ULF 

model based semi-analytical solution could give predictions as good as surface 

complexation model based PHREEQCI predictions.  

 The mechanistic surface complexation models are much more complex than the 

proposed ULF model. The surface complexation models are also highly system 
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Table 5-2), which are: 8 equilibrium constants, site density and surface area. Whereas, 

the ULF model required only three parameters and provided equally good predictions, as 

indicated by R
2
 values. Also, due to the large number of parameters and complexity, the 

surface complexation models are difficult to incorporate into standard reactive transport 

codes such as RT3D(Clement, 1997) and MT3DMS (Zheng and Wang, 1999). The 

Unified Langmuir-Freundlich model presented here however can be easily incorporated 

into transport codes to predict adsorption under varying pH values. 

 

5.3.4  Comparison of the semi-analytical model with PHREEQCI models for a 

synthetic five reactor sequential equilibration reactor experiment 

Finally, we tested whether the semi-analytical solution based on the ULF model 

could provide good predictions for a one-dimensional equilibrium transport system 

represented by a MSER experiment. We conducted a synthetic numerical experiment 

using five reactors in series. The initial arsenate concentration was 12.5 µM. The pH was 

fixed at 4 and ionic strength at 0.01M.  Solid/solution ratio was 10 g/L of sand-A. The 

experimental steps included 20 sequential-equilibration-cycles of treatment with new 

As(V) solution, followed by flushing with 10 sequential-equilibration-cycles of deionized 

water at the same pH and ionic strength. Figure 5-8 compares the output As(V) 

breakthrough predictions profile for this MSER system from semi-analytical model and 

PHREEQCI. It can be seen from the figure that the semi-analytical model closely 

matches PHREEQCI in its predictions. The R
2

 value of fitting was 0.99 and indicates an 

excellent match. This shows that the semi-analytical model combined with Unified 
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Langmuir-Freundlich model can be used for modeling multiple sequential batch reactors 

using the proposed method.  

 
Figure 5-8 : Comparison of ULF model with PHREEQCI model for a five reactor  

experiment (10 g/L sand in each reactor, pH =4, As(V) =12.5 uM ppm, I = 0.01 M ) 
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pore volumes for 50 g/L, 100 g/L and 150 g/L sand, respectively. Also in Figure 5-6 

breakthrough can be expected to occur at approximately 2.5, 5 and 10 pore volumes for 

6.6, 12.5 µM and 25 µM As(V) solutions, respectively. This is because, 1000 ml of 6.6 

µM, 12.5 µM and 25 µM As(V) contain 0.47 mg, 0.94 mg and 1.88 mg As(V), 

respectively.  Thus theoretical calculations confirm the validity of our model predictions. 

 

5.3.6  Using the ULF model for predicting arsenate transport in a column 

 We designed a hypothetical column experiment to test the predictive capacity of 

the Unified Langmuir-Freundlich model in column experimental setup. A column of 7 

cm length and 1 cm diameter is assumed. The column is filled with Sand-D of bulk 

density 1600 g/L and porosity of 0.365 as given in Table 5-4. Ionic strength is maintained 

at 0.01 M during the entire experiment. The hypothetical experiment consisted of three 

stages. In the first stage, arsenate solution of 13.3 µM (1mg/L) concentration at pH 4 is 

introduced for 500 pore volumes. In the second stage of the experiment, the influent is 

switched to an arsenate solution at pH 5 and concentration of 6.67 µM/L for the next 200 

pore volumes. Finally, in the third stage of the experiment, the column is flushed with DI 

water at pH 6 from 300 pore volumes to 1000 pore volumes.  
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Table 5-5: Column Parameters 

 

Parameter Value Units 

Bulk density 1600 g/L 

Porosity 0.365 ─ 

Flow rate 0.2 ml/min 

 

  

 Predictions of the above experiment were conducted using the ULF model and the 

surface complexation model given in Table 5-2. The ULF model was incorporated in a 

 
Figure 5-9 :   Comparison of ULF model predictions with surface complexation model 

based PHREEQCI predictions for the iron-coated sand column experiment. 
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one-dimensional transport code (given in Aappendix A), which uses finite difference 

method for solving the advection-dispersion equation. In a second model, the surface 

complexation was incorporated in the PHREEQCI code (given in Appendix B). Both 

these models were used to predict the arsenate transport in the column experiment and the 

results are compared in Figure 5-9.  

 The Figure indicates that the ULF isotherm based transport code was able to 

match the predictions from PHREEQCI code for all the three stages of the column 

experiment.  The model predictions shows high retardation (R~400), which indicates that 

adsorption by iron-oxides and iron-oxyhydroxides can greatly retard arsenic transport at 

low pH values. When the pH is changed to 5, there is a sudden release of high 

concentration of arsenate in the effluent, which suggests that if the pH of influent 

increases the metal-oxides in subsurface may release high levels of arsenic to 

groundwater. Similarly, when the pH is changed to 6, there is a sudden release of 

adsorbed arsenic. This further indicates that even small changes in pH can cause major 

change in arsenate concentration levels. 

 Typically, the use of geochemistry-coupled transport codes would take 

considerable effort and resources than lumped parameter models. For example, the  the 

PHREEQCI code took 407 seconds (6 minutes 47 seconds) to complete, whereas the 

Unified Langmuir-Freundlich model took only 8 seconds to run. A Dell Inspiron 6000 

laptop with Intel Pentium 4 processor of 1.6 GHz speed and a memory of 1 GB RAM 

was used in the simulation. In another simulation, where a surface-complexation code 

MICROQL2 (Westall, 1979a)  was coupled to a transport routine, the ULF-based code 
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was around ten times faster. This result shows that using a ULF model can significantly 

decrease computational time required. This also suggests that computational time for 

three dimensional reactive transport models could be greatly reduced by using the ULF 

models. 

 

5.3.7 Use of the ULF model to simulate an existing benchmark problem 

The Cederberg problem (Cederberg et al., 1985)  is one of the key benchmark 

problems available in the published literature for validating surface-complexation 

coupled transport models. We wanted to validate our approach using this benchmark 

data. First, we developed a Unified Langmuir-Freundlich isotherm to model the 

isotherms at different pH values as shown in Figure 5-10. The ULF model parameters 

were obtained by fitting the constants to the surface-complexation model generated data. 

The fitted Unified Langmuir-Freundlich parameters are given in Table 5-5.  

 

         The Unified Langmuir-Freundlich models were able to model the isotherms which 

were linear in nature. When n =1 and K1 is very small the Unified Langmuir-Freundlich 

equation becomes linear isotherms. We fixed the value of n as 1 the K1 and Kmax values. 

As in the case of arsenate, the Log of K1values varied linearly with pH as indicated by the 

Figure 5-11. 
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Figure 5-10 : Adsorption isotherms from surface complexation model at different pH 

values and corresponding Unified Langmuir-Freundlich model fits. Covered and open 

symbols represent surface complexation model generated data. Lines represent 

Unified Langmuir-Freundlich model predictions.  

Table 5-6: Values of the fitted ULF model parameters for Cadmium adsorption by 

(Cederberg et al., 1985)   

 

pH Kmax(mg/g) n Ks (µM) 

4 0.00195 1 0.0051 

5.5 0.00195 1 0.0110 

7 0.00195 1 0.0236 

8.5 0.00195 1 0.0495 

10 0.00195 1 0.0934 

12 0.00195 1 0.1440 
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6  

 
Figure 5-11 : Plot of  pH  Vs ULF model parameter K1 for Cadmium 
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The ULF parameters were used in a one-dimensional transport code to model the 

cadmium transport problem given by (Cederberg et al., 1985). The results are shown in 

Figure 5-12. The ULF models are able to predict transport and matched the predictions 

by the surface-complexation coupled transport code TRANQL. These results are 

significant because they suggest that a pH dependent ULF isotherm is able to predict 

transport as good as a mechanistic geochemical-coupled transport code. This also 

indicates that our approach can be applied for a wide range of other contaminants.  

 

 
Figure 5-12 : Comparison of ULF model predictions (dotted lines) and data from 

(Cederberg et al., 1985) (open symbols). 
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5.5 Conclusions 

Arsenate adsorption on iron-coated sand was investigated over a wide range of 

pH, solid-to-solution ratio, and initial concentration levels using adsorption isotherms and 

sequential equilibration reactor experiments. A ULF isotherm model was developed that 

could predict adsorption at different pH values. A mathematical method was also derived 

for modeling transport in sequential batch reactors. The mathematical model was used to 

predict adsorption in sequential batch reactor experiments and was found to provide good 

predictions.   

The ULF model was integrated within a transport code to test the usability of the 

model for simulating column transport scenarios. The ULF model was able to 

successfully predict arsenate adsorption in column scale simulations. We further 

validated our approach by comparing against an existing benchmark problem available in 

literature (Cederberg et al., 1985). The successful use of the ULF model in batch, 

sequential-batch and column experiments indicate that the model could be used to make 

predictions over a wide range of experimental conditions. The ULF model helped reduce 

the computational time by more than an order of magnitude. These results suggest that 

the ULF model is a useful alternative for modeling adsorption under variable pH 

conditions.  
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CHAPTER 6 

6. SUMMARY, IMPLICATIONS AND RECOMMENDATIONS 

 

6.1 Summary 

In this dissertation we have investigated the interaction of arsenate with synthetic 

iron-coated sands. This dissertation has helped develop a better understanding of arsenic 

adsorption on goethite and has made the following contributions:  

(i) We developed a scaling procedure for surface complexation models that 

can greatly reduce model development time and effort. The scaled models 

can be used to predict adsorption on goethite-coated sands with different 

solid/solution ratio and surface saturation. The scaled models can also be 

used to predict adsorption on different forms of goethite including pure 

(uncoated) goethite and goethite coated on sands.  

(ii) We proposed a novel sequential equilibration reactor experimental setup 

for studying equilibrium-controlled, advection-dominated reactive 

transport problems. The experimental results were used to validate 

predictions generated using reactive transport model, which consisted of a 

batch surface complexation model incorporated in PHREEQCI advection 

routine. 
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(iii) We have developed a unified Langmuir-Freundlich isotherm, which was 

able to model pH-dependent adsorption involving surface complexation 

reactions. We also derived a semi-analytical solution for modeling 

equilibrium controlled, advection-dominated one-dimensional reactive 

transport problems. The unified Langmuir-Freundlich model and the semi-

analytical solution were validated by using experimental datasets and 

literature-derived benchmark problems that use surface complexation 

reactions.  

 

6.2 Implications and recommendations 

We have investigated adsorption of arsenic on iron-coated sands using both 

experimental and modeling approaches. Results of this dissertation are expected to have 

strong implications on predicting the fate and transport of inorganic contaminants in 

subsurface systems. 

 The scaling methods developed allow surface complexation models developed for 

one sorbent to be used for other similar sorbents by employing the scaling procedure. We 

have demonstrated that the site density is the most important parameter in surface 

complexation models. Site density can vary even for sorbents prepared by same chemical 

procedure. Hence it is recommended that site density be measured and not assumed. 

Future work in this area could be to test the scaling procedure for other anions such as 

phosphate and other metal-oxide and metal-oxyhydroxide sorbents. 
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The sequential equilibration reactor experimental setup can be used to rapidly 

generate datasets to validate equilibrium geochemical transport models. Future research 

should employ this experimental setup to conduct feasibility studies for remediation 

systems, and to generate datasets to validate the transport codes used to model such 

remediation systems.  

 The Unified Langmuir-Freundlich isotherm we developed is a powerful 

framework that can be used for modeling pH dependent adsorption. This model can be 

easily integrated into groundwater transport codes unlike surface complexation models. 

The ULF isotherm-based transport codes can decrease computational time significantly 

(more than 10 times) when compared to surface-complexation-coupled transport codes. 

Further work can be done to extend the Langmuir-Freundlich model to model 

competitive adsorption and kinetic-limited adsorption reactions.  
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APPENDIX A: FORTRAN CODE FOR ULF ISOTHERM BASED REACTIVE 

TRANSPORT  

 

c********************************************************************** 

c********************************************************************** 

PROGRAM ULFTRANSPORT 

c Program to model arsenate transport in the hypothetical column  

c experiment given in Fig 5-9 using Fortran finite difference code 

c********************************************************************** 

c********************************************************************** 

c Definition of important variables 

c NC  Number ofo components 

c l  Length of column (cm) 

c Time  No of time steps 

c Nnode  Number of nodes 

c delx  Size of grid in x axis (cm) 

c Co  Courant number 

c Delt  Size of time step (min) 

c Ctx  Array for concentration of components (mg/L) 

c pct  Concentration array at previous time step (mg/L) 

c vv  Velocity (cm/min) 

c Finaltime Final time at which simulation ends 

c Numsteps Total number of time steps 

c Dis  Dispersivity (cm2/min) Assume a negligible low value 

 

c---------------------Declaration of variables------------------------- 

 Implicit none  

 Integer i,nc, time, ncmp,nxcount,nx,k,j,nnode 

 Double precision dct(1050), pdct(100), pct(30,2000) 

 Double precision ctx(30,2000),nxtotal, l 

 Double precision ct(1050), delx,vv 

 Double precision delt, numsteps 

 Double precision timer,finaltime,dis 

 Double precision a(1050), b(1050), c(1050), d(1050),con(1050) 

 Double precision alpha, beta,c0 

 

c----------------------Initialization of variables--------------------- 
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 l = 7.0 !cm 

 delx = 0.7 ! .02 !cm 

 delt = 1 ! min 

 finaltime = 10000 !15. ! '200 

 numsteps = finaltime / delt 

 timer = 0.0 

 vv = 0.7 !cm/day 

 Dis = 1E-5 !cm2/min 

 nnode = l / delx + 1 

 nnode =11 

 Alpha =dis*delt/(delx*delx) 

 Aeta=(vv*delt/delx) 

 Write(*,*) "alpha, beta", alpha, beta 

 Print*, "co", vv*delt/delx 

 Nc= 4 !aqeous arsenic, solid-phase arsenic, ph, poh 

 Ncmp=4 

 

c----------------------Background concentration------------------------------------- 

   

 do nx=2,nnode 

  ctx(1, nx) = 1.0e-30 !mg/ l of as(v) 

  ctx (2, nx) = 1.0e-30 ! as adsorbed in solid phase 

  ctx (3, nx) = 1.0e-4 ! ph not concentration  

  ctx (4, nx) = 1.0e-10 ! poh 

 end do 

 

 

 

c----------------------Source concentration------------------------------------- 

  ctx(1, 1) = 1 ! mg/ l of as(v) 

  ctx(2, 1) = 1.0e-30 ! as adsorbed in solid phase   

  ctx(3, 1) = 1.0e-4 ! ph 

  ctx(4, 1) = 1.0e-10 ! poh 

 

 

  Do nx=1,nnode 

   Do j =1,ncmp 

    pct(j,nx) = ctx(j, nx) 

   End do 

  End do 
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C---------------------MAIN TIME LOOP---------------------------------------------- 

   

 Do Time =1, numsteps 

 

  Print*, "Time = :", Time 

 

c Stage 1 is 0 to 5000 time steps 

  

 if (time > 5000) then  !stage 2 

  ctx(1, 1) = 0.5 ! mg/ l of as(v) 

  ctx(3, 1) = 1e-5 

  ctx(4, 1) = 1.0e-9  

   

  pct(1, 1) = 0.5 ! mg/ l of as(v) 

  pct(3, 1) = 1e-5 

  pct(4, 1) = 1.0e-9 

 end if  

 

 if (time > 7000) then   !stage 2 

  ctx(1, 1) = 1e-10 ! mg/ l of as(v) 

  ctx(3, 1) = 1e-6 

  ctx(4, 1) = 1.0e-8  

   

  pct(1, 1) = 1e-10 ! mg/ l of as(v) 

  pct(3, 1) = 1.0e-6 

  pct(4, 1) = 1.0e-8 

 end if 

 

  do j = 1,ncmp 

   do k=2, nnode   

    pct(j, k) = ctx(j,k)  

   end do ! end of nx loop 

  end do ! end of ncmp loop 

 

! Loop for one step advancement only for checking purposes 

   

!  do nx=2,nxcount 

!   do j =1,3 

!    ctx(j,nx) = pct(j, nx-1) 

!   end do 

!  end do 

 

! Loop for one step advancement only ends 
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c     ~~~~~~~~~~~~~~~~~Assembling the a,b,c, d matrix~~~~~~~~~~~~~~~~ 

  do j=1,ncmp 

   

   a(1)=0.0 

   b(1)=1.0 

   c(1)=0.0 

   d(1)=pct(j,1) 

 

   a(nnode)=0.0 

   b(nnode)=1.0 

   c(nnode)=0.0 

   d(nnode)=pct(j,nnode-1) 

 

   do k=2, nnode-1 

    a(k)=alpha 

    b(k)= -2*alpha-1.0 

    c(k)=alpha 

    d(k)=-pct(j,k-1) 

   end do 

c  ~~~~~~~~~~~~~~~~~End Assembling the a,b,c, d matrix~~~~~~~~~~~~~ 

 

c ~~~~~~~~~~~~~~~~~Calling Tridiagonal soolver subroutine~~~~~~~~~~~~ 

  

   call tridia(nnode, a,b,c,d,con) 

c ~~~~~~~~~~~~~~~~~Calling Tridiagonal soolver subroutine~~~~~~~~~~~~ 

 

   if (j ==2) then 

   go to 11 

   end if 

 

   do nx=1,nnode 

    

    ctx(j,nx)=con(nx) 

   end do 

 

11            continue    

  end do  

 

  do nx=1,nnode !reaction calling loop 

      

   do j =1,ncmp 

    dct(j) = ctx(j,nx) 

   end do 
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   if (time == 5991) then 

    if (nx== 10) then  

    continue 

    end if 

   end if  

 

c              ~~~~~~~~~~~~Calling ULF isotherm subroutine~~~~~~~~~~~~~~~~ 

call ULF(nc,dct) 

c              ~~~~~~~~~~~~Calling ULF isotherm subroutine~~~~~~~~~~~~~~~~ 

   do j = 1,ncmp      

    ctx(j, nx) = dct(j) 

   end do 

    

   end do 

 

 write(11,1003), time, ctx(1,nnode),ctx(2,nnode),  

     & ctx(3,nnode), ctx(4,nnode),  

     & -log10(ctx(3,nnode)) + -log10(ctx(4,nnode)) 

      

1003 format(i6, 5f 20.7) 

  

1209 format(4f 10.4) 

 end do ! end of loop for time 

 

write(*,*) "component concentrations for time = ", time 

 do nx=1,nnode 

  write(*,*) (nx-1)*delx, 

     &  ctx(1,nx), ctx(2,nx) 

  

  write(10,1002), (nx-1)*delx, ctx(1,nx), ctx(2,nx) 

    

1002 format(4f 20.7) 

10033 format(5f 12.6) 

  end do 

 

!----------------------end of main time loop--------------------------------------- 

 write(*,*) "end of main program" 

 

 stop 

 end  

 

c********************************************************************** 

C Subroutine to calculate adsorption using ULF isotherm     

c**********************************************************************  
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 subroutine ULF (NC,CT) 

  

 integer i,j  

 double precision ct1(1050),ct2(1050),ct3(1050),ct4(1050), ct(1050) 

 double precision caq, kd , caqi,caqiplus, kmax, nn, ks, ctot,aa 

 double precision rho, por, h, oh 

 nn = 0.3865 

 Kmax = 0.100013          

 Ks = 768 

 Kd = 0.096771875 

 Rho =1600 

 Por =0.365 

 H = CT(3) 

 OH = CT(4) 

 

 pH = -log10(H) 

 Ks = 10**(-0.738*pH+5.7493) 

 

 If (ph <= 4) Then 

 Ks=768 

 END IF 

 

 alpha = Kmax*Rho/Por 

 Ctot = CT(1) + CT(2) 

 

 Caqi =0.0000000000001 

 

c-------------Loop for newton raphson method------------------  

c   same as VB code 

 Do i = 1,100 

 a = (Ks * caqi) ** nn 

 fx = caqi - Ctot + alpha * a / (1 + a)  

 dfx = 1 + alpha *( a / (1 + a) ** 2 )* nn / caqi 

 Csolid  =alpha * a / (1 + a)  

 

 caqiplus = caqi - fx / dfx 

  

 

 If (Caqiplus < 0) then 

  Caqiplus =1e-10 

 end if 

   

 caqi = caqiplus 

 END DO 
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c-------------End loop for newton raphson method------------------  

12  ct(1) = Caqi 

  ct(2) = Ctot - Caqi !Csolid 

 if (ct(2) < 0) then 

 ct(2) =0 

 end if  

    

 return 

 end  

  

c*********************************************************************** 

c  Subroutine to solve matrix system using tridiagonal solver 

c*********************************************************************** 

 subroutine tridia(n,a,b,c,d,v) 

 implicit none 

 

 double precision a,b,c,d,u,v,ff,dummy,ac 

 dimension a(1001),b(1001),c(1001),d(1001),v(1001) 

 integer i,j,n 

 do i=2,n 

 

  ff=a(i)/b(i-1) 

  b(i)=b(i)-c(i-1)*ff 

  d(i)=d(i)-d(i-1)*ff 

 end do 

 

 v(n)=d(n)/b(n) 

 do i=1,n-1 

 

  j=n-i 

  v(j)=(d(j)-c(j)*v(j+1))/b(j) 

 

 end do 

 return 

 end  

c********************************************************************** 

c******************end of program***********************************  
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APPENDIX B: SURFACE COMPLEXATION MODEL BASED PHREQCI 

TRANSPORT CODE 

 

#******************************************************************** 

#******************************************************************** 

# PHREEQCI PROGRAM FOR TRANSPORT PROBLEM IN FIGURE 5-9 

#******************************************************************** 

#******************************************************************** 

#This program is to model arsenate transport in a hypothetical column experiment using 

#surface complexation model given in Table 5-2 for Sand-D. Note that we have to 

#appropriately convert log K values, since master species is AsO4-3 in PHREEQCI 

#database compared to MINTEQA2 where master specie is H3AsO4 

 

SURFACE_MASTER_SPECIES 1-9 #DEFINING THE SURFACE COMPLEXATION 

REACTIONS 

        Surf    SurfOH 

SURFACE_SPECIES 1-9 

        SurfOH = SurfOH 

                log_k   0.0 

        SurfOH  + H+ = SurfOH2+ 

               log_k   7.32 

        SurfOH = SurfO- + H+ 

                log_k   -9.42 

        SurfOH + AsO4-3 + 3H+ = SurfH2AsO4 + H2O 

                log_k   31.95 #32.67  

        SurfOH + AsO4-3 + 2H+ = SurfHAsO4- + H2O 

                log_k   26.56 

        SurfOH + AsO4-3 + H+ = SurfAsO4-2 + H2O 

                log_k   20.25 

SOLUTION_MASTER_SPECIES 1-9 

        As       H3AsO4        -1.0     74.9216    74.9216 

SOLUTION_SPECIES 1-9 

#H3AsO4  primary master species 

        H3AsO4 = H3AsO4 

        log_k           0.0 

#H2AsO4- 

        H3AsO4 = AsO4-3 + 3H+ 

        log_k   -20.7 
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#HAsO4-2 

        H+ + AsO4-3 = HAsO4-2 

        log_k   11.50 

#AsO4-3 

        2H+ + AsO4-3 = H2AsO4- 

        log_k           18.465 

PHASES 

Fix_H+   

H+ = H+ 

log_k 0 

 

#************Initial and Background concentration***************** 

SOLUTION 1-10 #10 cells =11 nodes 

    temp      25 

    pH        4 

    units     mmol/kgw 

    density   1 

    Na        10 

    Cl        10 

    -water    1 # kg 

 

SURFACE 1-10 Goethite 

    -sites DENSITY 

    SurfOH  1.38   0.57   4384 

end 

 

EQUILIBRIUM_PHASES 1-10 

Fix_H+  -4.0 HCl  

END 

 

#**********Output formatting (optional)************************** 

USER_PUNCH 

-headings Total_sorbed_As 

-start 

10 Astot = MOL("SurfH2AsO4")+ MOL("SurfHAsO4-") + MOL("SurfAsO4-2") 

20 PUNCH Astot 

30 END 

-end 

 

SELECTED_OUTPUT 

    -file                 s7.sel 

    -totals               As 

    -molalities           SurfH2AsO4  SurfHAsO4-  SurfAsO4-2 

#***********Transport part for stage 1****************************** 



144 

 

SOLUTION 0 

    temp      25 

    pH        4 

    units     mmol/kgw 

    density   1 

    Na        10 

    As        0.013333 

    Cl        10 

    -water    1 # kg 

 

EQUILIBRIUM_PHASES 1-10 

Fix_H+  -4.00 HCl 1 

  

TRANSPORT 

    -cells                 10 

    -shifts                5000 

    -time_step             60 # seconds 

    -flow_direction        forward 

    -boundary_conditions   constant flux 

    -lengths               10*0.007 

    -dispersivities        10*1.67E-11 #m2/s, which is same ias 1E-5cm2/min 

    -diffusion_coefficient 3e-018 

    -print_cells           10 

    -punch_cells           10 

    -warnings              true 

SAVE SOLUTION 1-10 

SAVE SURFACE 1-10 

END 

#***********Transport part for stage 2******************************** 

 

SOLUTION 0 

    temp      25 

    pH        5 

    units     mmol/kgw 

    density   1 

    Na        10 

    As        0.00667 

    Cl        10 

    -water    1 # kg 

 

EQUILIBRIUM_PHASES 1-10 

Fix_H+  -5.00 HCl 1 

  

TRANSPORT 
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    -cells                 10 

    -shifts                2000 

    -time_step             60 # seconds 

    -flow_direction        forward 

    -boundary_conditions   constant flux 

    -lengths               10*0.007 

    -dispersivities        10*1.67E-11 #m2/s, which is same ias 1E-5cm2/min 

    -diffusion_coefficient 3e-018 

    -print_cells           10 

    -punch_cells           10 

    -warnings              true 

 

SAVE SOLUTION 1-10 

SAVE SURFACE 1-10 

END 

#***********Transport part for stage 3********************************* 

 

SOLUTION 0 

    temp      25 

    pH        6 

    units     mmol/kgw 

    density   1 

    Na        10 

    As        1E-10 

    Cl        10 

    -water    1 # kg 

 

EQUILIBRIUM_PHASES 1-10 

Fix_H+  -6.00 HCl 1 

  

TRANSPORT 

    -cells                 10 

    -shifts                3000 

    -time_step             60 # seconds 

    -flow_direction        forward 

    -boundary_conditions   constant flux 

    -lengths               10*0.007 

    -dispersivities        10*1.67E-11  

    -diffusion_coefficient 3e-018 

    -print_cells           10 

    -punch_cells           10 

    -warnings              true 

 

SAVE SOLUTION 1-10 
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SAVE SURFACE 1-10 

END 

#*************END OF PROGRAM************************************* 


